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Simulation of Expert Memory Using EPAM IV
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EPAM is a theory of the processes of human perception and memory, first programmed for a com-
puter by E. A. Feigenbaum in 1959, that has shown an excellent fit to experimental data from a wide
variety of psychological tasks. Over the years, it has been progressively extended to new domains
without essential change in its central mechanisms. This article examines EPAM 1V, a version ex-
tended to account for expert memory, especially the work in recent years by Chase and Ericsson
(1981, 1982) and Staszewski ( 1988a, 1988b, 1990). EPAM 1V has also been adapted to deal with
numerous other short-term and long-term memory tasks, which will be reported elsewhere. The
main modifications of EPAM that are relevant to the serial recall task examined in this article are a
schema in long-term memory (called a retrieval structure) created by the expert’s learning and the .
addition of an associative search process in long-term memory. These new components operate in
close interaction with the other EPAM structures to match the observed behavior. EPAM 1V repro-
duces all of the phenomena explained previously by EPAM III and in addition gives an accurate
detailed account of the performance (studied by Staszewski) of an expert recalling long sequences of
digits. The theory substantially revises, improves, and extends Chase and Simon’s earlier “chunking”

explanation of expert memory.

In cognitive psychology in recent years great interest and
much empirical research has focused on the abilities of experts
in several domains to retain large amounts of information in
memory after brief exposure to stimuli—much briefer
exposure than is required for rote verbal learning in the stan-
dard paired-associate paradigms (Bellezza, Six, & Phillips,
1992; Chase & Ericsson, 1982; Ericsson, Chase, & Faloon,
1980; Ericsson & Oliver, 1984; Ericsson & Staszewski, 1989;
Payne & Wenger, 1992; Staszewski, 1988a; Thompson, Cowan,
& Frieman, 1993).

What is it at stake here is not just the vast store of knowl-
edge about a domain that experts in the domain generally
hold in memory, but in particular the experts’ abilities to
store new information rapidly for later retrieval. Extrapola-
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tion from the results of verbal learning experiments and the-
ories of memory based on them (see Baddeley, 1981) would
predict that short-term memory (STM) has insufficient ca-
pacity to retain the information presented and also that the
information could not be stored in long-term memory
(LTM) at the rapid rates at which it was presented ( Bugelski,
1962; Simon, 1976). The problem is to explain how, under
these circumstances, the information can be acquired and re-
tained within the narrow time limits allowed.

This article shows how these and similar phenomena, which
have not been dealt with by other broad-gauged models of
memory with which we are familiar, can be explained by the
Elementary Perceiver and Memorizer, Model IV (EPAM 1V)
program. EPAM 1V is a version of EPAM that incorporates in
the LTM of the previous model a learned retrieval structure
that stores one part of the accumulating experience of the ex-
pert subject. Such a mechanism was proposed by Chase and
Ericsson (1982 ) and by Staszewski (1988a) and an application
to chess has been programmed by Gobet (1993 ), but the mech-
anism has not previously been incorporated in a comprehensive
model of perception and memory.

A well-known example of a retrieval structure is that used in
the so-called Method of Loci, used by orators and others since
Greek and Roman times to facilitate retention of lists (Chase &
Ericsson, 1982; Luria, 1968; Mitchell, 1939; Yates, 1966). In
one version of this method, the plan of a building (“memory
palace”) is memorized thoroughly, usually including major
pieces of furniture in each room, until the subject can traverse
the building and the rooms mentally, systematically, and with-
out hesitation. When a list of items is now presented for memo-
rization, successive items are associated with successive loci in
the building; and when recall is required, it is achieved by visit-
ing these loci and noting what items are stored there. The slots
referred to in the description of retrieval structures are the loci
where information can be stored rapidly and retained.
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It appears that experts in a domain that makes heavy de-
mands on memory commonly possess retrieval structures that
they have learned, deliberately or incidentally, while acquiring
expertise in the domain. Experimental data reveal considerable
detail about the form that such schemas assume in several task
domains in which expert memory has been studied, including
memory for lengthy number sequences, short number se-
quences in mental calculation, restaurant waiters’ memories for
customers’ orders, and chess (Chase & Ericsson, 1981, 1982;
Ericsson & Polson, 1988a; Staszewski, 1988a, 1988b). For the
chess expert, it appears that the schemas are based on the pat-
tern of a chess board on which squares have slots with which

" pieces, patterns of pieces, and other information can be associ-
ated and on the typical patterns of pieces in chess openings that
are known to master players (Gobet, 1993). The latter patterns,
gradually acquired in the course of study and play, can be called
templates to distinguish them from the deliberately acquired
retrieval structures that are of principal concern in the present
study. Templates contain information about a familiar situa-
tion, as well as slots for new information. The retrieval struc-
tures discussed here contain only slots.

In recent years additional support for the expert memory
theory has been obtained in studies that vary in a number of
details, such as the stimuli (numbers, words ) and the presen-
tation rates (1 s to 5 s or more; Bellezza et al., 1992; Payne &
Wenger, 1992; Thompson et al., 1993). All of these studies
reported that the mnemonists made use of previously ac-
quired semantic memory, retrieval structures, or both and
that retention of sequences, although not quite as long as
those reported here, exceeded by many times the normal
short-term digit span of 7 or so.

From the data that we examine here, obtained over 3 years
from a subject, DD, it appears that he used retrieval struc-
tures conjointly with information already stored in semantic
memory. We have noted that retrieval structures also appear
to be essential to expert memory in chess and in other do-
mains, but the data of DD’s performance, and the earlier per-
formance of another subject, SF (Ericsson et al., 1980), are
the first to be modeled in detail. A major goal of the present
study is to build and test, within the EPAM model, a viable
theory of retrieval structures, their interactions with LTM,
and their contribution to the redundancy, and hence reliabil-
ity, of the information stored.

A detailed model of a single subject carrying out a single,
rather unusual, task would not be of great general interest ex-
cept for the insight it gives us into the mechanisms that account
for the performance, mechanisms that can be generalized to
many other subjects and many other tasks. Our goal, then, is to
model a general theéory of this kind of expertise and to test it in
great detail with the data of one subject. As the data are very
extensive, they permit an unusually close investigation of even
the details of the theory and the processes it embodies.

Introduction and Overview

In the first section of the article, we briefly describe the tasks
performed by the subject DD and sketch out the EPAM theory
and its implementation as a computer program. Next, we de-
scribe more fully the newest version of EPAM, EPAM 1V, and

in particular the modifications that permit it to simulate expert
performance in recalling sequences of digits presented at one
per second. The remaining sections will describe the operation
of EPAM 1V in this task and compare its behavior with that of
a human subject, DD, who learned to perform the task at a
very high expert level through more than 3 years of nearly daily
training.

We mention, from time to time, other explanations for mem-
ory phenomena that have been proposed in the literature; but
as we are not acquainted with any other theories that undertake
to account, either in quantitative or even qualitative detail, for
the data of DD’s performance or the performance of other
skilled mnemonists or to show how such skills can be reconciled
with “normal” memory capacity limits and rates of acquisition
(even those of experts) in a general model of memory, we com-
ment on other theories only cursorily. This is not to deny the
importance of attempting such an extension for other theories,
but the attempt is best made by those who have developed those
theories and who are thereby most likely to be able to elaborate
and generalize their mechanisms to account for the new
phenomena.

In discussing the changes introduced into EPAM from its ear-
liest versions through EPAM 1V, we need to distinguish between
alterations in architecture, which are genuine changes in the
theory, and changes through learning ( without modification of
EPAM’s architecture) that represent performance-enhancing
additions to the expert’s knowledge. “Additions to knowledge”
include both new information and new strategies for perform-
ing particular tasks, both stored in LTM. These additions to
memory alter the initial conditions from which the experiment
starts and the contents of the subject’s memory at each subse-
quent stage. They represent the subject’s learning prior to and
during the experiment, learning the nature and extent of which
is substantiated by extensive empirical evidence. What is being
tested in this study is whether EPAM, after initial learning has
occurred, will continue to learn at the same rate and will
achieve the same level of performance as the expert subject did
in a number of memory tasks.

Expert Memory Tasks

Over a period of more than 3 years, a subject, DD, working
in almost daily sessions, attained a remarkabie ability to recall
long sequences of digits that were presented at the rate of about
one digit per second. To do this, he created and learned a se-
quence of larger and larger retrieval structures, which he used
as mnemonic aids to storing and recalling the digits. At the same
time he learned, and stored in semantic memory, three- and
four-digit series interpreted as running times or as ages and used
these interpretations to help recall the digits reliably. He also
Iearned to notice, and use as cues, symmetries and other pat-
terns among the digits. Over the course of about 865 practice
sessions he acquired the ability to recall, in the order of presen-
tation, up to 104 digits.

At the end of each practice session, DD was also asked to
recall all of the digits that had been presented during that ses-
sion. He was able to do this with a high level of accuracy. How-
ever, he recalled them not in the order of presentation, but ac-
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cording to the semantic interpretations he had associated with
them in long-term memory.

After about 790 practice sessions, when DD’s span was about
90 digits, he performed a third memory task, memory
scanning: After he was cued by the digit chunk at a particular
position in the list, he recalled the just-following or just-preced-
ing chunk. This task casts further light on the cues on which he
relied for recall. .

This article reports EPAM IV’s simulation of the following
five aspects of DD’s skilled-memory performance: (a) his cre-
ation of his retrieval structures; (b) his gradual improvement in
performance on the serial recall task over the course of the prac-
tice sessions; ( ¢ ) the detail of his performance on the serial recall
task; (d) his performance on the free-recall task; and (e) his
performance on the memory scanning task.

Brief Introduction to EPAM

The history of the EPAM system goes back more than 30
years. Initially constructed in 1959 by Edward A. Feigenbaum,
EPAM has undergone several revisions. The present version,
EPAM 1V, grows out of EPAM 111, first reported in Simon and
Feigenbaum (1964 ) and described more fully in Feigenbaum
and Simon (1984). A variant of EPAM 111, called EPAM IIIA
(Richman & Simon, 1989), successfully simulated context
effects in letter perception in addition to replicating all of the
earlier EPAM simulations.

EPAM describes and explains, accurately and usually in
quantitative detail, a wide range of human perceptual and mem-
ory processes. In addition to the tasks reported in this article
and the experiment on context effects just mentioned, EPAM
has been used successfully to account for the observed effects,
in paired-associate or serial anticipation verbal learning para-
digms, of speed of presentation of stimuli, interlist and intralist
similarity, familiarization, one-trial versus multitrial learning,
and so forth. A list and discussion of the principal successful
predictions of EPAM, as of a decade ago, can be found in
Feigenbaum and Simon (1984, pp. 150-152).

Although EPAM’s ability to model verbal learning in the
standard experimental paradigms attracted considerable atten-
tion to it, that attention faded with the shift of experimental
activity to free-recall tasks and subsequently to categorization
tasks. Theories dealing with these latter tasks have generally
taken a more abstract and algebraic form. (For recent surveys
see Estes, 1991 and 1994.) It was not widely recognized that the
mechanisms of EPAM, if they represented a basically correct
picture of perceptual and memory mechanisms, should be able
to give an account of behavior in these other kinds of experi-
ments also.

With the improvements in the theory incorporated in EPAM
1V, EPAM can now account for expert mnemonic performance
like that discussed in this article, performance in several con-
cept-attainment (categorization) paradigms and performance
in a substantial number of standard short-term memory para-
digms. Concept attainment and STM paradigms and expert
performance in chess-playing environments will be examined
in separate articles; this article is limited to expert mnemonic
performance.

Core EPAM Structures

The EPAM theory was developed to identify a basic set of
mechanisms that would give a unified account of diverse per-
ceptual and memory phenomena. The phenomena surrounding
verbal learning were selected as the core, and the program has
been gradually extended, while retaining its central mecha-
nisms, to encompass other task domains. From EPAM’s first
versions to the present one, the core of the EPAM system con-
sists of a small STM that can hold a few familiar chunks of
knowledge and a long-term semantic memory accessed from a
discrimination net. These three structures are operated on by
programs of information processes, also stored in long-term
memory. In particular, both LTM and the discrimination net
expand and are modified by learning processes that operate con- -
currently with task performance processes like recognition and
recall. The EPAM programs are controlled by learned strategies
for specific tasks that are invoked by task instructions.

Performance Processes

Stimuli for EPAM are represented by lists of features or attri-
bute values (Estes, 1994) or, in the case of more complex stim-
uli, by objects that have subobjects (and possibly sub-subob-
jects, etc.) and lists of features associated with the objects or
subobjects at each level. Features in EPAM do not have weights.
Similarity between stimuli depends on the number of features,
and which ones, stimuli have in common. We believe that none
of the phenomena examined in this article would permit us to
choose between alternative representations of similarity.

In performing perceptual and memory tasks, EPAM sorts
stimuli through its discrimination net to recognize them and
gain access to information about them that is stored in long-
term semantic memory. The successive nodes in the net through
which a stimulus is sorted contain tests on the values of the
stimulus attributes that select the subsequent node to which it
will be passed. Ultimately, the stimulus reaches a leaf node,
which serves as an interface between the discrimination net and
semantic memory. A leaf node contains no tests, but instead
stores a partial image of the stimulus (a chunk) together with
links (associations) to structures in semantic memory that con-
tatn additional information about it. Thus, a chunk is a percep-
tual unit that has become familiar and recognizable through
previous experience with it. The chunking concept dates back
to Miller’s (1956 ) celebrated “magical number” paper and has
been a central feature of all versions of EPAM.

The discrimination net in EPAM performs essentiaily the
same function as the hidden layers in connectionist schemes
or the more abstract computational schemes that measure
similarity in other memory models. It is not necessary in this
particular study to address the question of whether empirical
tests can be devised to choose among these mechanisms or
computational schemes. Our concern here is whether the
EPAM mechanisms are sufficient to account for the observed
phenomena and how accurate an account they can give. Com-
parison with alternatives will have to wait until other theories
have been enlarged to deal with the expert memory phenom-
ena considered here.
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Semantic Memory

Semantic memory consists of images at leaf nodes of the dis-
crimination net and associative structures of nodes and links,
of arbitrary size and configuration, that contain the informa-
tion used to make responses. Through the associative links, the
various nodes in the net can be linked with each other through
learning of new associations. EPAM’s semantic memory, then,
closely resembles some other semantic memories that have been
proposed in the literature, for example, Quillian’s (1968) se-
mantic net and Anderson’s (1983) ACT*.

The images and other structures in EPAM 1V’s semantic
memory (A1) can represent objects or classes of objects of the
outside world as sets of attribute-value pairs along with optional
lists of images representing subobjects. Thus, the image of cat
may have the attribute color with value black and subobjects
like head, legs, body, tail, and so on. Each value in an attribute-
value pair and each subobject on the list of subobjects can rep-
resent either another object or a primitive (unanalyzed ) feature.

Some objects are categorical: For example, a node may rep-
resent the class of cats. Other leaf nodes represent specific ob-
jects, for example, my marmelade cat, Mehitabel. The term ob-
Ject also comprehends larger structures that represent complex
situations (scenes or scripts) involving relations among sets of
objects. In the current implementation, the ASCII characters
serve as the system primitives.

Descriptions (full or partial) of objects, then, are stored as
images at leaf nodes of the discrimination net or elsewhere in
semantic memory. In particular, they may be stored in a
retrieval structure, which is a specialized and learned tree of
nodes and links. A complete copy of an object contains enough
information to reproduce the object, but most descriptions con-
tain only incomplete information about their objects. Attri-
butes of objects are represented as slots whose values can be
chunks, system primitives, or variables. Slots can be instanti-
ated by filling in particular attribute values to represent more
specific objects. A slotted schema is a memory structure having
at least one variable among its attribute values. An uninstanti-
ated slot, then, does not have a wholly definite image associated
with it, but can be filled by any one of a set of chunks, system
primitives, or both. For example, the allowable values for a par-
ticular slot may be any one of the digits from 0 to 9.

Learning Processes

EPAM is capable of two kinds of learning: {2) It can learn to
recognize new stimuli and to discriminate among stimuli pre-
viously judged to be the same by adding new tests and branches
to its discrimination net ( discrimination), and (b) it can store
new information about stimuli by elaborating the images at leaf
nodes and the associative structures in LTM (familiarization).
The discrimination net and associated images are part of LTM,
as are the processing mechanisms that EPAM uses for discrim-
inating and learning,.

Several kinds of indirect evidence indicate that adding a
branch to the discrimination net is a slow process, requiring 5 s
or more; but adding a feature to an image or supplying the value
of a variable feature in an associative structure is a relatively
rapid process, requiring only a fraction of a second (Simon,

1976). When a stimulus is recognized, this information be-
comes accessible, either directly (if it is part of the image), or
by associative search from the leaf node through semantic
memory.

STM

Both while responding to stimuli and while learning, EPAM
holds chunks of symbols in a limited STM whose capacity, in
previous versions of the theory, was limited to a fixed (small)
number of chunks. In contrast, in EPAM IV it is limited by the
need to rehearse chunks before they fade from memory
{Baddeley, 1981; Zhang & Simon, 1985). For the range of ex-
periments run on previous versions of EPAM, these two forms
of STM limitation produce nearly identical effects on
performance.

Outline of Changes in EPAM IV

EPAM 1V, the version that is reported here, elaborates and
improves the earlier model of STM by including specialized au-
ditory and visual components in STM, with separate iconic
memories for each. In addition, EPAM IV’s STM holds a small
cache of symbols for current inputs and outputs to its processes.
These new features bring EPAM’s STM model closer to numer-
ous empirical phenomena that have been reported in the litera-
ture, but they have only secondary effects on the findings re-
ported in this article.

‘As we have already seen, EPAM IV also makes provision for
learned retrieval structures in LTM that augment the other
contents of semantic memory, thereby enabling the system to
perform difficult mnemonic tasks. The idea that instantiating
existing memory structures might require less time than learn-
ing new discriminations dates back to Simon (1976). He ob-
served that the unexpected absence of retroactive inhibition in
Charness’s chess memory experiments (Charness, 1976) could
be explained by assuming that adding a branch to the discrimi-
nation net will take more than 5 s but adding a value to an
existing attribute of a structure in semantic memory will take
only a fraction of a second. Subsequently, Chase, Ericsson, and
Staszewski (Chase & Ericsson, 1981; Staszewski, 1988a) have
demonstrated the presence and nature of retrieval structures
and their efficacy in accounting for the performance of skilled
mnemonists; but EPAM 1V represents the first detailed speci-
fication and computer implementation of such a scheme in the
context of a general model of perception and memory.

Finally, a process has been added to EPAM 1V for activating
links and nodes of LTM when they are accessed, and a process
has been added for searching activated memory along associa-
tive paths. These new processes, which incorporate in EPAM
mechanisms that have received strong empirical support from
the work of, among others, Quillian (1968) and Anderson
(1983), do play a significant part in the performance reported
here.

In summary, EPAM IV contains the following major compo-
nents (see Figure 1):

A. LTM, consisting of semantic memory, a growing network
of list structures (also known as node-link structures, schemas,
frames, scripts)—(a) retrieval structures and (b) other seman-
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Figure 1. Principal structures of EPAM. STM = short-term memory;
LTM = long-term memory; WM = cache (or working memory).

tic memory, organized associatively; a discrimination net that
learns, providing a growing “‘index” that gives access to seman-
tic memory by recognizing percepts; and other processes
(productions)—(a) learned strategies (task specific) and (b)
association and activation processes in LTM.

B. STM, consisting of auditory—(a) iconic (*“‘echo box™)
and (b) STM with capacity determined by articulatory loop;
Visual—(a) iconic (“Sperling memory”) and (b) imaging
memory (“mind’s eye”); and cache (WM): small immediate
memory for process inputs and outputs.

A glance at this list and at Figure 1 shows that the basic archi-
tecture of EPAM, although not always the details of its design,
conforms closely to the memory model that has been prevalent
in the experimental literature of the past 20 years, following,
say, the publication of the Atkinson and Shiffrin ( 1968 ) article.

Only the LTM structures affect, significantly, EPAM 1V’s per-
formance on the tasks reported in this article. The elaborations
of STM were introduced to take account of phenomena, noted
earlier, that are well established in the experimental literature,
and comparisons of the EPAM predictions for these phenomena
with human data will be undertaken in later articles. But the ex-
pert memory performances considered in the present article
would not be materially altered if the simpler and more primitive
STM of earlier versions of EPAM had been retained, for the phe-
nomena addressed here are predominantly LTM phenomena.

Strategies for the Evolution of EPAM

EPAM contributes toward the long-run strategy of building
a unified theory of cognition (Newell, 1990). It incorporates
major STM and LTM mechanisms, learning mechanisms,
and the perceptual {but not the sensory) “front end” re-
quired for such a theory. Chapter 6 of Newell (1990), espe-
cially pages 341-343, shows how EPAM can be accommo-
dated in Soar, a leading proposal of a comprehensive archi-
tecture for a unified theory. However, Soar, at its present stage
of development, cannot simulate the perceptual and memory
tasks that are central to EPAM.

In general, the modifications made to EPAM over the vears
do not significantly alter its basic mechanisms, but represent
the learning of strategies that aliow it to perform new tasks and
that typically involve storing new knowledge in LTM. To per-

form these same tasks, human subjects also have to adopt new
strategies and acquire appropriate knowledge. Although strate-
gies and knowledge are not part of the core theory, they set
boundary conditions to the performance of particular tasks.
The acquisition of new strategies and knowledge does not alter
the EPAM theory, but (just as is the case for humans) modifies
its performance in new task environments. The importance of
distinguishing architecture from strategies in cognitive theories
is discussed in chapter 14 of Newell and Simon ( 1972).

In making these extensions, the perceptual and memory ar-
chitecture of EPAM remains mostly unaltered (exceptions that
constitute genuine changes in the theory will be mentioned
explicitly). The same parameter values for architectural fea-
tures are retained from one experiment to another, and the ex-
tended EPAM is always tested on the old as well as the new tasks
to verify that it performs consistently with the earlier versions
over the whole range of tasks previously simulated. This cumu-
lative consistency is essential, of course, if we are to construct a
genuinely unified theory.

EPAMIV

We have already sketched the architecture of EPAM IV, but
we must now provide more complete information about the -
changes that distinguish it from EPAM II1, and especially about
those structures and processes that are important for its perfor-
mance in expert memory tasks.

To ensure that EPAM IV can still account for the phenomena
simulated previously by EPAM 111, it has been tested as a subject
in serial-anticipation and paired-associate experiments, pro-
ducing good replications, both gualitative and quantitative, of
the simulation data reported for those earlier versions of EPAM
(Feigenbaum & Simon, 1984; Gregg & Simon, 1967; Richman
& Simon, 1989; Simon & Feigenbaum, 1964). The present
study reports further testing of EPAM 1V with data on new tasks
of expert memory, specifically, human subject DD’s memory
for long strings of digits presented to him at a rapid rate (1 s per
digit; Staszewski, 1988a).

The performance of EPAM 1V demonstrates that these mem-
ory data and the mechanisms that have been postulated to ac-
count for them are wholly consistent with the mechanisms used
to explain the wide range of perceptual and memory phenom-
ena for which EPAM has previously been tested. By using the
same theory, including the same parameters, to account for all
of these phenomena, we bring a range of converging operations
to bear on the theory, thereby reducing the ratio of degrees of
freedom to the number of independent observations to which
the theory is fitted.

The only completely satisfactory description of a model of
complex cognitive processes is the program itself, accompa-
nied by explanatory text. The most recent version of EPAM
IV, written in executable form in Common Lisp and accom-
panied by explanations of its main processes, is available on
computer disk.!

'EPAM IV can be obtained on 3%-in disk from Howard Richman,
RD 2, Box 117, Kittanning, Pennsylvania 16201. Send $5 to cover ship-
ping and specify whether you want DOS or Macintosh format. The au-
thors will be glad to provide assistance to enable researchers to examine
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The substantive changes in EPAM IV from EPAM III are as
follows: (a) simplification of the learning mechanism; (b) pro-
vision for multiple responses to a stimulus; (c) elaboration of
the STM mechanism (Figure 1, B), which was quite skeletal in
previous versions of EPAM; (d) provision for learning in LTM
in background at the same time that STM processes (such as
rehearsal) occur in awareness; (e) addition of a depth-first
search mechanism that can follow pathways through the dis-
crimination net that have previously been activated; and (f) ad-
dition of a retrieval structure (Figure I, Ala). '

All of these changes, except the last, are changes in the EPAM
architecture. In each case they are the result rather directly of
either phenomena observed in the experiments with DD or phe-
nomena that have been reported in the literature, or both. Each
change is described and motivated separately, but first we de-
scribe how EPAM accomplishes the skilled memory task: re-
calling long strings of rapidly presented digits.

EPAM 1V in Skilled Memory Performance

EPAM 1V’s performance on the skilled memory task is based
primarily on knowledge it has acquired and stored in LTM con-
sisting of (a) the retrieval structures (Figure 1, Ala); (b) se-
mantic categories ( €.g., running times, ages ) for sublists of three
or four digits each; and (c¢) numerical pattern codes (i.e., sym-
metries like 13-31, 27-27) used to recognize and encode higher
order patierns explicitly (Staszewski, 1990, 1993). Items (b)
and(c), bothin A1 (Figure 1), offer no novelty. The former are
stored as images at the nodes of the EPAM discrimination net,
just as other LTM contents are; the latter could be handled in
exactly the same way, but in the current version they are imple-
mented by a separate set of recognition processes. There is di-
rect evidence in the data from DD, and also from other subjects
whose expert memory performance has been studied, that these
three kinds of memory structures and the information in them
are in fact created and used in performing the task (Chase &
Ericsson, 1982; Staszewski, 1990, 1993).

When the experiments with DD began, he already had stored
in memory a substantial amount of information about running
times and was capable of recognizing simpie patterns in number
sequences. ( This information was also supplied to EPAM at the
outset of its runs.) Over the course of the 3 years of the experi-
ment, these LTM structures expanded through gradual learn-
ing, and DD also stored in memory the retrieval structure,
which he elaborated by adding new branches as the lengths of
the lists he was recalling grew. The EPAM runs simulated both
the performance of the recall task and the long-term learning in
semantic memory.

In simulating DD’s performance of the digit retrieval task, at
the outset of each trial EPAM uses components already in LTM
to construct an empty retrieval structure for the list. EPAM
stores information about the digits as they are presented, both
in the retrieval structure and with associative links to the
chunks that are already available in semantic memory and rec-

ognizable as running times, ages, or patterns. Next, EPAM re-
hearses, using semantic memory to supply information that is
missing from the retrieval structure. Finally, EPAM, guided by
the retrieval structure and using information stored in that
structure as well as information in semantic memory accessible
by association and from the discrimination net, recalls the suc-
cessive groups of digits in the list.

EPAM’s ability to recall lists of digits of slowly increasing
length is due to the gradual expansion of the retrieval structure,
the gradual accumulation in semantic memory of digit chunks
associated with running times and ages, and the gradual expan-
sion of the set of symmetry patterns in digit sequences that it
recognizes.

For reasons that will become clear in the course of our anaty-
sis, the expert performance cannot be produced by any one of
these mechanisms operating separately, as even a small proba-
bility of forgetting a single item would make error-free retrieval
of long lists impossible. Reliability in performance requires us-
ing in combination the information stored in the regular EPAM
semantic memory (including the pattern codes) and the infor-
mation stored in the retrieval structure.?

Rerrieval Structure

The retrieval structure is treelike, hence it can be viewed as a
generalization of the EPAM discrimination net, with slots at
each terminal (leaf) node to hold a string of three or four digits
together with some information about special features the string
may possess. Storing information about the items to be re-
trieved in the successive slots of the retrieval structure pre-
serves, at least for the duration of the task, the information
about both the items and their sequence. During performance
of the memory retrieval task, the retrieval structure is traversed
node by node in linear order (i.e., by sequential depth-first
search of the tree), thereby retrieving the items in their original
order. Later, we describe in detail the EPAM retrieval structure,
which was modeled directly on the one that DD intentionally
and explicitly learned and used.

As we shall see, DD is also able to recite the digits under free-
recall instructions. However, with these instructions he orders
them according to the categories by which they are stored in the
semantic net rather than in the sequence defined by the retrieval
structure. The free recall provides direct evidence that the in-
formation about the lists, or a large part of it, is stored redun-
dantly in LTM according to two or more distinct classificatory
schemes. This proves to be essential for DD’s ability to perform
the serial retrieval task at a high level of accuracy.

Semantic Memory

The semantic memory, indexed by EPAM’s standard dis-
crimination net, also holds at its nodes information about pos-
sible digit strings, together with their semantic interpretations.
Each of the digit strings that is to be recalled is stored (although
not always completely or accurately) at two loci—at a node of

the performance of EPAM IV in detail, to work toward the modification
and extension of the theory, or to use the program as an aid in teaching
cognitive psychology.

2 On the underlying theory of reliability, see Von Neumann ( 1956).
For the application of the theory to the present task, see the Appendix
of this article.
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the retrieval structure and at a node of the semantic memory.
These nodes are connected by links (associations) that may run
either or both ways. The dual storage provides essential redun-
dancy. There is detailed evidence in DD’s data of the way he
organizes and uses semantic memory and the way he associates
the information in semantic memory with corresponding infor-
mation in the retrieval structure. The memory structures as-
sumed in the simulation are based directly on this evidence.

The semantic memory is acquired gradually over the whole
sequences of trials, using EPAM’s standard learning processes,
as EPAM tries to recall lists of greater and greater length. The
memory is permanent, so that once a chunk has been added to
semantic memory, it will remain there and be accessible if the
same chunk is seen again in later trials. Associative links be-
tween nodes in semantic memory and slots in the retrieval
structure are formed during presentation of each list, and their
permanence is not assumed or required to account for DD’s
performance.

Pattern Codes

Numerical pattern codes are also stored in long-term seman-
tic memory, but in the form of discrete tests that can be per-
formed on digits and groups of digits, not as leaf nodes of the
EPAM net.? These codes contain information about perceptual
patterns of digits, describable as symmetries within and be-
tween groups. When such patterns are detected in a digit group
presented to EPAM, this information is stored, along with in-
formation about the group, in the retrieval structure.

DD’s data provide direct evidence for his use of pattern
codes. DD creates the codes to augment further the information
about each digit group that he stores in the retrieval structure
and semantic net. For example, DD may encode the fact that
the digits of the group 1331 are symmetric or “back to back,”
or that the first digit of a group is the same as the last digit of the
previous group. The pattern codes, whenever they are detected,
are associated with the corresponding digit groups in the re-
trieval structure. The specific pattern codes that DD (and
EPAM) used are described later in more detail.

Experimental evidence shows that DD recalls the digits more
rapidly when lists provide many opportunities for storing pat-
tern information than when the lists provide few such opportu-
nities (Staszewski, 1990). This evidence, together with DD’s
direct statements about his active search for, and coding of, such
patterns, shows how they provide additional redundancy, serv-
ing to counteract the interference that builds up within and
across trials as a result of similarities among the digit groups.

Summary of Encoding and Recall

Before being presented with a list of digits of specified length,
EPAM instantiates a retrieval structure containing slots equal
in number to the expected number of digits. While the list is
being presented, EPAM memorizes the items by inserting suc-
cessive digits into the corresponding slots of the retrieval struc-
ture. Hence these slots are filled (at less than | s per digit) as
each new list is encountered. At the same time, associations are
formed with corresponding chunks already stored in the se-
mantic memory and with any pattern codes that are detected.

After presentation of the list, time is allowed for rehearsal. Dur-
ing this time, EPAM notes missing information in the retrieval
structure or semantic memory and fills it in if it is available from
one of the other sources.

Subsequently, as EPAM progresses through a list trying to
recall successive chunks, it accesses the appropriate (next) leaf
node of the retrieval structure; then, by recognition, the corre-
sponding node, if any, in the semantic memory, and any pattern
codes that it detects. Combining the information from these
three sources almost always provides EPAM with enough total
information to recover the digits in the chunk and to report
them. It then proceeds to the next chunk until it has recalled
the entire list (or failed).

The principal and essential novelty in EPAM 1V is the pres-
ence of the retrieval structure with its rapidly fillable slots and
the association of these slots with learned chunks in semantic
memory. The redundancy of information provided by these
memory structures plays an essential role in the reliability of
recall. The existence of retrieval structures, gradually acquired
through extensive practice, and their role in skilled memory
performance are strongly supported by empirical evidence in
all of the task domains in which such performance has been
studied.

Learning Mechanism

In EPAM 1V the learning mechanism has been simplified.
Whereas in EPAM 111 learning a new node in the net was often
accompanied by automatic learning of several other nodes in-
cluding empty imageless nodes, in EPAM IV only one node is
learned at a time and every node learned is provided with a
(partial ) image.

Discrimination Net

EPAM 1V uses the same discrimination net architecture as
did previous versions of EPAM. The discrimination net (Figure
1, A2) is a tree structure, somewhat like a family tree. The top
node in a net, the root node, is the ancestor of all of the nodes
‘below it. It has children, and its children have children, all the
way down to the leaf nodes at the bottom of the net, which have
no children of their own but link the net to semantic memory
(Al). An object from the outside world is recognized by being
sorted through the net using tests that are associated with each
node along the way. The principal mode of learning involves
growing new nodes in the net.

In the studies of expert memory reported here, EPAM simu-
lates the discrimination net of DD, an experienced runner who
often recognized groups of digits as running times. Figures 2A,
2B, 2C, and 2D illustrate learning in the portion of EPAM’s
discrimination net that discriminates quarter-mile running
times from each other.

Figure 2A shows an EPAM IV discrimination net after the
quarter-mile times 40.0 s and 50.0 s have been learned com-

3 Contrary to our initial expectation, there now seems to be no need
to distinguish pattern codes from the other contents of semantic mem-
ory, and in subsequent versions of EPAM we will undertake to remove
their special status.
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Figure 2. Growth of discrimination net through learning. (See text for further discussion. NEC = not

elsewhere classified.)

pletely. The root node in the net has a test for type; this root
node holds the various subnets together. Other subnets sort 1-
mile running times, ages, and other types of stimuli. Once
EPAM knows that a particular stimulus is a quarter-mile run-
ning time, it sorts that stimulus to the top node for this type of
stimulus. The top node in the net for quarter-mile running
times is the node pictured in Figure 2A with a test for first digit.
The arrows without destinations are included in this figure to
indicate that there are other areas of the net not pictured.

If the quarter-mile running time 50.0 is presented, it will be
sorted to the node with the image (5 0 0).* The sorting would
begin at the root node, which includes a test for type. Then the
branch labeled quarter-mile running time is followed to the
node that includes a test for first digit. As the first digit is 5, the
branch labeled 5 is followed to the node having the image (5 0
0). As no tests are associated with this node (a leaf node), the
sorting routine outputs the node and terminates. If the quarter-
mile running time 53 s were now presented, it would be sorted
to the same node.

Figure 2B shows the same net after a new node, for a run of
53 s, has been learned. A test for second digit has been added to
the node, which has the image (5 0 0). At this point, the run-
ning time 53 s would be sorted to the node having the image (5
3). If the quarter-mile running time 58.8 s were now presented
it would be sorted to the node having the image (5 00). As there
is no branch at this node for the digit 8, the sorting routine
outputs this node even though it is not a terminal node.

Figure 2C shows the same net after a chunk for 58.8 s has
been completely learned. At this point, any running time be-

ginning with the digits 58 would sort to the chunk with the im-
age for (58 8). -

Figure 2D shows the same net after chunks for 58.1 s, 58.2 s,
and 58 s have been learned. The branch to the node with the
image (5 8) has been labeled NEC, which stands for not else-
where classified. The NEC branch is followed in EPAM IV
when the stimulus cannot be tested by the test at a node.
Because 58 has no third digit, the NEC branch is followed
from the node with the test for third digit to the node with the
image (5 8).

Multiple Responses to a Stimulus

The simulations using EPAM III never required multiple as-
sociations (alternative responses) to a stimulus chunk. How-
ever, multiple associations in SAL (Hintzman, 1968), a model
similar to EPAM, allowed SAL to perform successfully in sim-
ulations of paired-associate experiments in which more than
one response to a single stimulus was required. This mechanism
also enabled SAL to simulate changes 1n response time over the
course of a simple paired-associate experiment. EPAM [V
adopts this improvement. In EPAM IV, the image at a node in
the discrimination net can include the attribute “instances.”
The value of this attribute can be a single instance or a set of
instances that have been associated with this node.

* For clarity of presentation the association list belonging to each im-
age has been omitted from Figure 2.



EXPERT MEMORY 313

STM Mechanisms

In EPAM 1l and EPAM 111, STM is represented by a small set
(7 £ 2) of slots in which information can be held. In EPAM
1V, STM is represented in more detail and more realistically by
sensory stores ( Figure 1, Bla and B2a) and imagery stores (B1b
and B2b) in auditory and visual modality and a small push-
down stack, or cache (B3), that can hold a few pointers to
chunks. These changes relate EPAM more closely with our cur-
rent empirical knowledge about the structure of STM and re-
lated sensory stores (Baddeley, 1981; Zhang & Simon, 1985).
Some of these structures and the processes that manipulate
them were borrowed from SHORT (Gilmartin, Newell, & Si-
mon, 1976), a model of STM under strategic control.

Specifically, the visual and auditory sensory stores corre-
spond to the echoic (Darwin, Turvey, & Crowder, 1972) and
iconic (Sperling, 1960) memories, and the auditory and visual
imagery stores correspond to Baddeley’s articulatory loop and
visuospatial sketch pad (Baddeley, 1981; Zhang & Simon,
1985). The visuospatial sketch pad is referred to by others as
a mental image, or the mind’s eye. The references cited above
provide strong empirical evidence for these components of
STM. The contents of a store are a list of objects (in the EPAM
IV sense) with tags attached to each object to indicate how
much longer it can remain in the store before it will disappear
and how it has been grouped.

The push-down stack is used to hold the inputs and outputs
of various processes, which get their inputs and then leave their
outputs, if any, at the top of this stack. For example, to rehearse
(i.e., refresh) a group of objects (such as words) in the articula-
tory loop, EPAM IV first recognizes the objects in the group
(using the discrimination net), puts pointers to the leaf-node
chunks for these objects at the top of the push-down stack, and
then articulates the images of the chunks, creating objects in the
auditory modality that are placed in the articulatory loop.

Long-Term Learning in Background

The fuller specification of STM mechanisms and rehearsal
processes in EPAM IV caused us to make a small change to
EPAM’s serial processing assumption. If rehearsal in the artic-
ulatory loop were to pause while EPAM is engaging in long-term
tearning, then information would be lost from the loop. Instead
we adopted the assumption of SHORT (Gilmartin et al., 1976)
that LTM learning processes operate in parallel with rehearsal,
that is, that these processes occur in background (without
awareness) at the same time that processes involving STM
(such as rehearsal) occur in the foreground (with awareness).
We are currently conducting additional tests of this amplified
short-term memory in EPAM IV with simulations of key STM
experiments in the literature. The findings will be discussed in
subsequent articles.

With EPAM’s current parameters each step in LTM learning
takes at least 1.75 s. In nonsense syllable learning, several steps
are required to learn new chunks. Building new chunks and
adding new nodes to the discrimination net are especially costly
in terms of time (about 8 s). EPAM has successfully simulated
the incremental learning of a response syllable as requiring sev-
eral learning steps, one at a time (Gregg & Simon, 1967). Ina

paired-associate experiment, EPAM can be given the strategy of
rehearsing the stimulus and response objects, thus keeping them
available, while it engages in the required learning steps. If other
incoming stimuli are ignored, EPAM can persevere until the
stimulus elicits the complete response. EPAM 1V has success-
fully matched the total learning time, which is independent of
presentation rate, required to memorize stimulus-response
pairs (Bugelski, 1962).

Depth—F irst Search Mechanism

The process of recognition—of sorting a set of properties of
an object through a discrimination net—is very rapid (EPAM
hypothesizes that it takes about 10 ms per test node) and is not
accessible to conscious awareness. In recognition, a person is
aware of the result (the leaf node in the net that is reached ) but
not of the path leading to it. People can also access contents
of LTM by the more deliberate process of association, which
involves moving step by step from one node in memory to a
connected (associated) node, using the information at each
node to determine what step to take next. EPAM 1V is capable
of both recognition and association.

Associative Searches in LTM

Previous versions of EPAM have used the discrimination net
only for recognition processes. EPAM 1V also uses the discrim-
ination net to perform depth-first searches by the process of
association, which we hypothesize to take about 250 ms to tra-
verse each node, as compared with 10 ms per test node in rec-
ognition. The 250-ms time is consistent with the time, esti-
mated from DD’s performance, to move one link upward or
downward in the retrieval structure. Of course total associative
reaction times in response to external stimuli are much longer
than this, but we are dealing here with a single step in a wholly
internal search with no time required for sensory processing.
The association mechanism is used to search for recently acti-
vated information in the discrimination net when only incom-
plete information about the object is available.

Depth-first associative search requires some specific informa-
tion and uses the following special processes:

1. The node where search begins.

2. Anexit test, used to determine if the search should be ter-
minated because a node with the proper characteristics has
been found. In particular, the test can be used to find a node in
the discrimination net that points to (associates to) a particular
node in the retrieval structure.

3. A continue-test routine, used to determine whether search
will continue down a particular path. This test can be used to
keep the search within activated regions of the discrimination
net.

4. Partial information about the object being sought, which
is used to guide the search. This partial information includes
the knowledge that the object in question is an example of a
slotted schema. The search process considers the members as-
sociated with a slot of the schema to be alternative possible lo-
cations of the missing information.

Some examples will make clear what is meant by typed slots
of a schema. A consonant-vowel-consonant schema has three
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slots. The first is for an object of type consonant, the second
for-an object of type vowel, and the third for an object of type
consonant. If the word (C_N) is a member of the consonant—
vowel-consonant schema, then the vowel slot causes EPAM to
try the vowels a, ¢, i, 0, 4, and y in the middle position during
its depth-first search for a chunk in the net. Similarly, a three-
digit number schema has three typed slots, each representing a
digit. If the number (45__) is a member of this schema, then the
third slot causes EPAM to try the digits 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9 in the third position when it searches the net.

The output of the depth-first routine is either a node in the
net that satisfies the exit test or the Lisp symbol “nil,” which is
used to indicate that the net has been searched without finding
the sought-for information.

Activation

Consistent with several other current models of semantic
memory (e.g., Soar, ACT*), EPAM postulates that nodes in
memory can be activated. Like ACT*, EPAM IV uses two kinds
of activation: for branches (the arrows of Figure 2) and for
nodes. EPAM’s simulation of activation is currently quite sim-
ple, but adequate for the cognitive tasks to which it has been
applied here. A branch or a node is either completely activated
or not activated. Once a branch or a node has been activated, it
remains activated throughout that particular experimental
“day.” In the interval between sessions it loses its activation, and
the next day it will no longer be activated. No claim is made that
activation is all-or-none or that it does not fade gradually; but
that degree of refinement of the mechanism is not required for
the tasks that EPAM has done thus far.

Branches and nodes are activated automatically by EPAM
processes. One process activates branches, and a different one
activates nodes. A branch is activated whenever EPAM sorts
‘through it, thereby activating pathways through the discrimina-
tion net. A branch is also activated whenever it is checked in an
EPAM search process to determine its state of activation. As a
result, the act of searching the net gradually expands the regions
of activation. The depth-first search mechanism restricts
EPAM’s search to activated portions of the net.

A node is activated whenever new information is added to its
tmage. The exit-test routine in depth-first search can consider
nonactivation of a node as one of the reasons to exit there.

Retrieval Structures

The specific retrieval structures used in EPAM 1V have al-
ready been described. We need to examine them now in a more
general context of research on memory and mnemonics. A ma-
jor finding of research on memory feats using mnemonics is
that, in the course of acquiring the new skill, the expert builds
up in LTM a new schema, a retrieval structure, containing slots
in which new information can be stored far more rapidly than
it could be added to semantic memory. Only specific types of
information can be stored in these slots. A schema with slots for
numbers cannot store letters, and vice versa; a schema with slots
for chess pieces cannot store playing cards.

The research on rote verbal learning shows that it requires
about 8 s to add a new chunk to LTM, and the learning param-

eters in the EPAM system match quantitatively the average rate
of acquisition in rote learning experiments. In contrast, in ex-
pert memory performances, items appear to be stored in long-
term memory at the rate of one item per second, or (taking
account of chunks the expert has already learned ) one chunk
every 3 or 4 s. Moreover, this material is generally retained
longer than is the material acquired in the standard rote learn-
ing paradigms using subjects who lack expert memory skills.
(For the bases of these parameter estimates, see Newell, 1990,
pp. 129-149, 271-273; Newell & Simon, 1952, chapter 14; Si-
mon, 1974; Simon, 1976.)

The experiments with EPAM 1V were designed to test
whether adding retrieval structures to EPAM, and assuming
(for both retrieval structures and other semantic memory) that
filling an open slot takes much less time than is required to add
a new node to a discrimination net, would enable EPAM, using
the redundant memory resources of the retrieval structure and
the semantic memory, to match the performance of an expert
mnemonist. The hypothesis that filling a slot is a more rapid
process than building a node was initially proposed in 1976
(Simon, 1976, pp. 87, 91) to explain unusual memory perfor-
mances using mnemonic schemes and was more fully developed
by Chase and Ericsson (1982) and Ericsson and Staszewski
(1989), but this is its first implementation in a comprehensive
theory of perception and memory.

DD’s Retrieval Structures

Chase and Ericsson (1982) and Staszewski (1988a, 1990)
have mapped out the characteristics of the retrieval structures
that DD uses when he recalls, in order, up to 104 digits pre-
sented to him at a rate of about 1 per second. As we have already
seen, DD’s retrieval structures are hierarchically organized.
Their exact organization varies from trial to trial, being ad-
justed precisely to the length of the list presented on a trial;
however, considerable stability is evident in their organization.
For example, when DD is tested with lists of the same length on
different occasions, he reports using the same retrieval structure
each time. Moreover, as the retrieval structures shown in Figure
3 indicate, even structures that vary considerably in length
share most of the same architectural properties.

Both earlier analyses of DD’s performance (Chase & Erics-
son, 1982; Staszewski, 1988a) and a previous information-pro-
cessing model of his thought processes over the course of a digit-
span session (Staszewski, 1993) suggest that DD’s retrieval
structure performs at least three distinct functions in a single
digit-span trial. First, during list presentation, the retrieval
structure guides his parsing of the list into three- and four-digit
sublists, each of which is sorted through the discrimination net
to code and store it as a meaningful chunk. Second, as each such
sublist of digits is stored at a node of the retrieval structure, the
node provides the “address” of the sublist. Third, at the time of
retrieval, DD’s depth-first traversal of the structure reactivates
the addresses in the order dictated by the organization of the
structure, and each address cues the retrieval of the content of
its slot. In short, DD’s retrieval structures coordinate his list
encoding with his list retrieval processes, constituting a highly
effective implementation of the encoding specificity principle
( Tulving & Thomson, 1973).
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Figure 3. Retrieval structures for 25-, 50-, 75-, and 100-digit lists.

EPAM IV’s Retrieval Structures

In speed of storage, retrieval structures resemble STM struc-

tures like Baddeley’s ( 1981) articulatory loop; but in more fun- -

damental ways, they are LTM structures at the ends of the dis-
crimination net branches, traversable by (slow ) association pro-
cesses. EPAM IV’s model of retrieval structures for memory of
number sequences has the following properties:

1. Items can be placed in siots on the retrieval structure
about as rapidly as they can be articulated: about 300 ms for a
one-syllable word (Zhang & Simon, 1985).

2. Each node in the structure can have several typed slots,
holding information about the digits stored at that node. Infor-
mation that fills these slots constitutes an image attached to the
node.

3. Each slot on a node can hold only one of a small set of
values of a particular attribute. For example, most of the slots
on DD’s retrieval structure nodes can hold only a single digit
each.

4. The system does not process information in the entire re-
trieval structure at once—just one node. To obtain information
that is stored at other nodes, it traverses the retrieval structure
at the depth-first (associative ) search rate of 250 ms per node.

5. Unlike information stored in the discrimination net itself,
new information that has been stored in a retrieval structure
slot can be forgotten. Although it is likely that this forgetting
occurs gradually over time, the current simulation assumes one-

time loss of a fixed percentage of the information. The loss of
information at a particular node takes place as soon as the sys-
tem moves its focus of attention away from that node and its
children. According to our current estimate, about one fourth
of the new information that has been attached to a retrieval
structure node is lost when attention shifts from it.

Simulations

EPAM IV was used to simulate four major aspects of DD’s
skilled-memory performance: (2) his creation of his retrieval
structures; (b) his gradual improvement in performance on the
serial recall task over the course of about 865 practice sessions,
each on a different day; (¢ ) the detail of his performance on the
serial recall task; and (d) his performance on a free-recall task.

For each task, we determined the strategy that DD gave evi-
dence of using when performing that task and then pro-
grammed that strategy as part of the EPAM model. The strate-
gies that were built for EPAM were based on observations of
DD while he was doing the same task and on protocols taken
from him during or after performing the tasks. .

Hence the strategies are not free parameters, assigned at will
1o fit the learning data; the behavioral data and verbal reports
on which they were based are separate from the quantitative
task performance that we measured. The strategies are best
viewed as (learned ) initial conditions for the simulation that do
not add degrees of freedom to the theory. This section reports
our simulations and compares EPAM’s behavior with DD’s
behavior.

Most of the numerical parameters used in the simulation are
permanent features of EPAM’s structure, estimated from ex-
perimental data during early simulations with EPAM (e.g.,
Gregg & Simon, 1967; Simon & Feigenbaum, 1964) and held
constant over simulations of behavior in the numerous different
task environments in which EPAM has been tested. To the ex-
tent that they derived from evidence that is independent of the
current experiments on expert memory, they are not free pa-
rameters. Hence they do not introduce additional degrees of
freedom into the theory, but instead add constraints to which it
must conform. When we make use of particular parameters, we
will provide some indication of the sources for our estimates of
them.

Creating Retrieval Structures

DD developed his retrieval structures on the basis of advice
given to him by SF, the first subject in Chase and Ericsson’s
pioneering study of skilled memory (Chase & Ericsson, 1982).
DD’s retrieval structures for 25-, 50-, 75-, and 100-digit lists
have been mapped by Staszewski (1988a), using the explicit
comments DD made, while performing the tasks, about the
structures he planned to use for specific lists and about the lo-
cations in the structures of specific groups of digits. Staszewski’s
diagrams of these structures appear in Figure 3. As we shall see
later, these postulated structures agree closely with the retrieval
intervals between successive digits, although we will also see
that we can improve the fit by altering the 100-digit structure
somewhat.

EPAM creates new retrieval structures by chunking together
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their components. The new chunks can be chunked, in turn,
producing recursive branching trees of arbitrary depth, as in
Figure 3. Because new structures can be readily assembled from
a few basic chunks, because all the structures that DD (and
EPAM) uses are modeled on the same basic pattern, and be-
cause lists change in length slowly over any sequence of trials, a
structure appropriate to the length of the next list announced
by the experimenter can be activated rather rapidly in long-term
memory.

There are three primitive components, with slots for three,
four, and five digits, respectively. (DD’s protocols suggest that
he may also use a two-digit chunk and that his five-digit chunk is
a composite of a two-digit with a three-digit chunk. The current
version of EPAM 1V differs from DD in this respect, but the
difference will not have an observable effect on performance of
the tasks analyzed here.) EPAM IV’s chunks can be represented
by the following images:

d3 = (digit digit digit)
d4 = (digit digit digit digit)
ds = (digit digit digit digit digit)

EPAM puts together larger retrieval structures by chunking
smaller structures. Following Staszewski’s ( 1988a) diagrams, it
is given the following patterns for structures of 6, 7, 8,9, 10, 11,
12,13, 14, 16, 21, 22, and 23 digits. ( These patterns again serve

as initial or boundary conditions for the theory and do not add
degrees of freedom.)

d6 = (d3d3)
d9 = (d3d3d3)
d12 = (d4 d4 d4)
dl6 = (d4 d4d4 d4) d2! =(d9dl12)
d23 = (d9 d14)

d7=(d3d4) d8 = (d4 d4)
d10=(d3d3d4) dll=(d3d3d5)
d13 =(d4d4ds5) dl4=(d4d4d3d3)
d22 = (d9 d13)

EPAM 1V constructs retrieval structures of other lengths fol-
lowing an algorithm that assembles them, recursively, from
these basic chunks. The basic pattern is very simple: The initial
component of the structure is always d16; this is followed by
a series of structures of the form d21 = (d9 d12). The other

" productions group any remainders of less than 21 digits, using
structures built up mainly from d3 and d4. In other words,
EPAM begins with groups of 3 or 4 or occasionally 5 digits, then
assembles these into groups of 2 to 4 digits, then assembles pairs
of these into groups at the next level, and so on.

Applying these productions, EPAM’s structures for 25 digits,
50 digits, 75 digits, and 100 digits, which correspond to DD’s
structures as illustrated in Figure 3, are represented by the fol-
lowing EPAM images:

d25 = (d16 d9) ds0 = (d16 d21di3)
d75 = (d16 d21d21 d17) d100 = (d16 d21d21d21d21)

Many other patterns are also possible. In fact, according to
Chase and Ericsson’s ( 1982) diagrams, DD’s predecessor, SF,
combined components to produce somewhat different retrieval
structures from those chosen by DD. Despite these differences

of detail, all of these structures are trees with two to four
branches at the nodes below the root node (the highest branch-
ing level ). '

EPAM’s branching factors are four or less, even at the root
node, for structures less than 82 digits. For structures from 83
to 102 digits the branching factor is five at the root node. For
structures larger than 102 digits and less than 124 digits the
branching factor is six at the root node. Theoretical models of
chunking arrive at optimal chunk sizes of three or four ( Dirlam,
1972) or find that the optimum may vary, depending on as-

' sumptions, up to seven (MacGregor, 1987). There is much em-

pirical evidence in the psychological literature that people usu-
ally group things by threes and fours (e.g., Broadbent, 1975;
McLean & Gregg, 1967; Wicklegren, 1964; Woodworth, 1938,
pp- 28-30). Mandler (1967, 1975) has found evidence for
groups of five, but we believe that there is a preponderance of
evidence for the values three or four.

Later, when we compare DD’s performance with EPAM’s, we
will have more to say about the large branching factor at the top
of the tree, and we will suggest a modification of the top-level
retrieval structure that will give a better fit to DD’s learning data
and will provide a possible explanation for the long (more than
1 year) plateau he experienced after reaching a list length of
about 80 items.

Once a retrieval structure of a particular length has been con-
structed by EPAM, it uses its usual chunk-learning mechanism
to memorize that structure so that it can find it in LTM without
having to reconstruct it each time it encounters a list of that
length.

Learning Curves

DD’s gradual improvement in performance and the corre-
sponding improvement of EPAM are shown on the same scale
in Figures 4A and 4B. Over the course of 850 serial recall ses-
sions, each on a separate day, DD slowly increased his memory
digit span from the normal range of 7 to 9 digits to a peak of
104 digits. Each time that he was able to recall all of the pre-
sented digits in order, the next list presented to him was one
digit longer, but when he failed on a list the next list was one digit
shorter. The same rule was followed in the EPAM simulations. A
consequence of this procedure is that DD and EPAM will each
make, on average, about one error for every two lists at-
tempted—a little less when performance is improving through
learning and a little more in periods when performance is
deteriorating.

Each session involved presentation and recall of from 3 to 25
lists of random digits. The total number of lists presented in a
session was gradually decreased by the experimenter as the lists
grew longer so as to limit sessions to about 1 hour, as shown
in Table 1. In our simulations the same number of lists were
presented to EPAM as were presented to DD in the correspond-
ing session.

We now examine in more detail how this generally close cor-
respondence of EPAM’s learning with DD’s came about. First,
we consider the learning that was postulated to have occurred
before the test trials, that is, what DD and EPAM were assumed
to know when the experiments began. Next, we analyze the test
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Figure 4. Learning curves for DD and two runs of Elementary Per-
ceiver and Memorizer, Model IV (EPAM 1V). (See text for further
discussion.)

trials. Then, we discuss the assumptions that were made about
forgetting during the course of the trials. '

Presimulation Learning

Before any simulations began, an initial EPAM net of 109
nodes was created to represent information known to be avail-
able to DD before the experiment began or very shortly there-
after. Twenty-one of these nodes were used for translating digits
(0,1,2,3,. . .)intotheir spoken forms as represented by words
(“oh,” “one,” “two,” “three,” . . .). Forty-three of the nodes

represented EPAM’s initial retrieval structure for lists of 37 dig-

Table 1
Number of Lists Presented to DD and EPAM Each Session
Sessions Lists per session
1-15 25
16-20 15
21-25 10
26-40 8
41-220 6
221-265 5
266-475 4
476-865 3

Note. EPAM = Elementary Perceiver and Memorizer, Model IV.

its. The other 46 nodes provided roots for the 14 subnets of the
discrimination net assumed to constitute EPAM’s preexisting
semantic memory for digit groups. These subnets correspond to
the 12 semantic interpretation categories used by DD to per-
ceive and represent three- and four-digit sequences as meaning-
ful chunks (Staszewski, 1990). These interpretations included
running times (DD is an experienced runner, highly familiar
with times for standard distances), people’s ages, and some mis-
cellaneous interpretations.

Two of the categories defined by Staszewski ( 1990) have been
split in two to simplify computations. Two-mile times were split
into fast 2-mile times (below 10 min) and slow 2-mile times.
Ages were split into two- and three-digit ages (such as 29 or
29.2) and four-digit ages (such as 8969 ), the latter called “dou-
ble ages” by DD because he treated them as pairs of two-digit
ages. EPAM’s 14 subnets are (a) quarter-mile running times,
(b) half-mile times, (c) three-quarter-mile times, (d) 1-mile
times, (e) 3-km times, (f) fast 2-mile times, (g) slow 2-mile
times, (h) 3-mile times, (i) 10-km times, (j) 10-mile times, (k)
dates, (1) ages, (m) double ages, and (n) miscellaneous salient
number patterns (such as 222 or 468 ). DD possessed his set of
categories at the beginning of the experiments, and EPAM, like
DD, continued to use them throughout the simulations. As in
the case of the other observed characteristics of DD that were
incorporated in EPAM, these patterns are initial conditions for
the system’s behavior and do not introduce new degrees of free-
dom into the system.

Pattern Codes

EPAM also was given, in the form of productions, a set of
pattern codes—symmetries in number patterns that DD recog-
nized and used to help recall the lists. The patterns incorporated
in EPAM were based on evidence of DD’s use of them, and
they were of the kinds that most people would notice in digit
sequences (e.g., that 3663 is “frontwards-backwards™). Thus,
they represent basic human capabilities for recognizing various
kinds of symmetries in perceptual inputs. Again, these produc-
tions are initial conditions of the simulation, constraining it
rather than adding to its degrees of freedom.

Results: Learning During Recall Trials

Before looking at the details of their learning, we will
summarize the performance of EPAM in comparison with
that of DD over the entire run of 865 sessions. EPAM was
run twice through this whole task, each time being given a
different, randomly generated sequence of digits to recall. To
simplify the comparison of EPAM’s with DD’s results, we
have held strategy and availability of retrieval structures con-
stant throughout the simulations. The improvement in
EPAM’s performance is due solely to the growth in EPAM’s
semantic memory for digit groups.

We discuss some details of the performance not to claim that
EPAM simulates DD at an almost microscopic level, but to pro-
vide a feeling for how the learning processes of both EPAM and
DD proceed and to reveal the kinds of real or apparent fluctu-
ations that can occur in such processes. We also speculate a
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Figure 5. Growth of Elementary Perceiver and Memorizer, Model
1V’s (EPAM’s) discrimination net over two runs.

bit on the mechanisms that might account for fluctuations—
without ruling out the possibility that they are wholly random.

As shown in Figures 4A and 4B, in both runs of EPAM its
digit span is interlaced with DD’s digit span over the first 500
sessions (the first 100 blocks), the average learning rates
matching closely. Over the next 250 sessions ( 50 blocks), DD
appears stuck at a digit span of about 80, whereas in the first
of its two tests, EPAM continues to climb to a span of about
100, falling back later to 80, with some sizable fluctuations in
span from blocks 100 through 140. Over the last 100 sessions
(20 blocks), DD resumes his progress, climbing to a span of
about 104 digits.

In the second run, EPAM appears to stay on a plateau with a
span between 80 and 90 digits from about the 80th to the 150th
block, then again increases its span to about 110, to match DD’s
final performance. As there is nothing in the EPAM mechanism
of which we are aware to account for the long plateau, it is most
likely simply a product of the particular random number string
that EPAM encountered in the second run. The fact that
EPAM’s learning rate showed as large fluctuations as DD’s sug-
gests that the plateau in DD’s data may also be an artifact, al-
though we will see later that it can be provided with a possible
explanation that does not depend on chance.

Figure 5 shows the growth of EPAM’s discrimination net over
the course of its two runs, represented on the same chart. The
two curves are so similar as to be almost indistinguishable. As
will be explained in our description of the ‘“‘rehearsal stage” of
the serial recall task, the learning that the curves record occurs
as soon as an entire list of digits has been presented to EPAM.
EPAM studies (and usually learns) the final group of three to
five digits each time a list is presented. Thus, the number of
nodes added to the net is a function of the number of lists pre-
sented to EPAM and is just about the same for both runs. We
have no evidence, one way or the other, whether DD’s learning
is focused on digit groups at the ends of his lists. Furthermore,
the exact location of the groups learned will not affect perfor-
mance noticeably, for when and where a particular group will
next appear in a list is unrelated to the location it had when it
was learned.

EPAM’s semantic memory grows from an original net of 109
chunks at the beginning of the first session to a net of about
3,400 chunks at the conclusion of the 865th session. Both runs

follow almost the same growth curve. With the exception of the
original 109 chunks and the 100 or so additional retrieval struc-
ture nodes that EPAM learns prior to list presentation in the
serial recall task, all of the chunks in EPAM’s net are learned
by studying new digit groups while performing the task. As is
explained in our description of the rehearsal stage of the serial
recall task, this learning occurs as soon as the presentation of a
list of digits to EPAM has been completed. EPAM studies the
list and attempts to learn new chunks (i.e., to add to semantic
memory the last group of three to five digits) each time a list is
presented.

EPAM’s basic explanation for DD’s gradual growth in digit
span is that DD added about one new node to the net per list
presented, at the same time adding to the number of familiar
patterns stored in his semantic store of familiar running times
and ages. This explanation, however, may be ignoring at least
three other factors:

1. Even though DD did derive some benefit from explana-
tions of strategy provided to him by SF, it is likely that he con-
tinued to develop his own strategy over the course of the simu-
lationis. The need for strategy development would predict a
slower start for DD than for EPAM, and this is not evident in
the figures. At about block 145 (i.e., near the end of the plateau
in DD’s learning), his protocols began to include more frequent
reports of using pattern codes during list encoding. (DD had
originally been told by SF that taking time to search for pattern
codes would hurt performance.) It may be that DD’s eventual
climb beyond a mean digit span of 80 was at least partly a result
of using pattern codes more frequently than he had used them
previously. EPAM used its pattern codes to the same extent on
all trials.

2. As DD is an experienced runner, he began the simulations
with a sizable semantic memory for running times. Perhaps he
had 500 or more in memory. These chunks would predict a
quicker start for DD than for EPAM, balancing point 1.

3. It is likely that DD had problems with developing his re-
trieval structures. His long plateau at about the 80-digit level
coincides with the point at which EPAM’s retrieval structure
first requires more than four branches at the top node. If DD
was unable to handle retrieval structures with more than four
branches at a node, he would have had to reorganize his struc-
ture at this point to handle longer lists successfully. This reorga-
nization provides a second possible explanation for the resump-
tion of learning after the plateau. (Of course each of the pro-
posed explanations may tell part of the story.) We come back to
these points later, when discussing the data on response pause
latencies.

Despite these possible differences, EPAM’s rate of growth in
the Iength of the lists it recalled successfully matches closely
DD’s growth over the first 100 blocks (about 2 years of daily
sessions). In 16 blocks on Figure 4a their mean digit spans are
equal (blocks 5, 6, 12, 17, 18, 25, 42, 46, 50, 55, 56, 57, 58, 72,
86, and 87). In Figure 4B the two curves overlap in a similar
manner. We discuss later DD’s long plateau that is not simu-
lated by EPAM.

Another similarity is a mild (and possibly illusory) tendency
for both DD and EPAM to hit temporary ceilings around mean
digit spans of 37, 58, 79, and 100 digits. These digit spans cor-
respond to points at which both EPAM and DD have just added
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three additional four-digit groups to their retrieval structures.
Both EPAM and DD make more errors with fourdigit groups
‘than with three-digit groups; on a set of 30 lists of 100+ digits
each, for example, EPAM erred on 3.0% of the four-digit groups
but on only 1.5% of the three-digit groups. EPAM makes more
errors with four-digit groups because its discrimination net has
learned a higher proportion of the chunks for the 1,000 possible
combinations of three digits than for the 10,000 possible com-
binations of four digits. This finding can also account for DD’s
higher error rate with four-digit groups.

Forgetting

The match between EPAM’s and DD’s learning rates depends
heavily on the forgetting rate, a parameter that is only moder-
ately constrained by independent evidence and hence can be set
to match DD’s overall learning rate without contradicting other
data. The forgetting parameter determines how much informa-
tion will be lost after it is initially attached to the retrieval struc-
ture. In the simulations reported here the forgetting parameter
has been set at 25%, so that one fourth of the information placed
on the retrieval structure (including information from the pat-
tern codes) is forgotten. The EPAM simulation assumed no for-
getting in the semantic net, but only in the retrieval structure
slots, including the pattern cues.

if the forgetting parameter is set at 20%, EPAM climbs more

quickly to a digit span above 100; if the parameter is set at 30%,
EPAM may not reach a digit span of 100 over the entire course
of 865 sessions. A parameter value of about 25% appears to
provide the best fit with DD’s performance.

With this parameter available for fitting, it might not be con-
sidered surprising that both curves have about the same average
slopes, but we report below closely similar rates (23.6%) for
DD’s forgetting of patterns, so that the rate we used is not arbi-
trary. What is even more compelling is that the mechanisms
of EPAM, and especially those that provided redundancy, were
sufficient to account for the gradual acquisition of the extraor-
dinary final memory performance, using memory parameters
that have some prima facie plausibility.

In the Appendix we present an analysis developed by our col-
league, Shmuel Ur, relating the probabilities of forgetting indi-
vidual items with performance on the task. The analysis also
relates the total forgetting rate to the component forgetting rates
for digit groups in the retrieval structure, pattern code informa-
tion, and information in the semantic net. This analysis allows
us to reach at least a qualitative judgment that the assumed for-
getting rate of 25% is consistent with what is known about the
stability of human memory and with such statistics of forgetting
as we are able to extract from DD’s performance.

The analysis of forgetting in the Appendix underlines strongly
the importance for expert memory of encoding and retaining
redundant information ( the digits on the retrieval structure, the
semantic memory, and the pattern codes) to limit the damage
to performance from forgetting. If information were stored
without redundancy, then, in lists of 30 digit groups (100
digits), the observed average success rate in recall of one com-
plete list in two would require an average reliability of .977 per
group. With a forgetting rate of 25% per digit, and without re-
dundancy, a list of 30 digit groups could hardly ever be repro-

duced without error {about three times in one trillion trials).
On the other hand, if retention of two independent items of in-
formation about a group is sufficient for recall of the group, and

. if the forgetting rate for items were 25%, the chance of retaining

a digit group would be .984, in excess of the minimum require-
ment for reliability of .977, given above.

The actual situation for EPAM was a little more complex: (a)
No forgetting was assumed for semantic memory, but at any
given trial learning had not yet stored in semantic memory a
compilete chunk for all digit groups; and (b) information pro-
vided by the pattern codes did not fully define all the digit
groups. Nevertheless, our analysis shows to a first approxima-
tion why an assumed forgetting rate of 25% per digit in the pres-
ence of three independent information sources would produce
roughly the observed level of error rates for digit lists.

This illustration of the importance of redundancy explains
why the retrieval structures alone cannot explain DD’s (or
EPAM’s) ability to retain long lists. The additional information
from semantic memory and pattern codes, structures already
present in the previous versions of EPAM, was absolutely essen-
tial for this feat.

Serial Recall Task

In broad outline, the serial recall task we have been discussing
is quite simple: The experimenter reads DD a list of random
digits at the rate of one per second, then when DD is ready, he
repeats those digits back to the experimenter. Actually, the task
involves DD in four separate stages of activity: (a) a preparation
stage before list presentation, (b) a study stage during list pre-
sentation, (c) a rehearsal stage between presentation and serial
recall, and (d) a serial recall stage when DD reports the digits
in order. Each of these stages is simulated by EPAM.

Preparation Stage

Before the list is presented, the experimenter tells DD how
many digits it will contain, and DD then tells the experimenter
when he is ready for list presentation. DD reports that during
the interval he is preparing a retrieval structure for the number
of digits that will be presented.

In our simulations, EPAM uses this stage to prepare an in-
stantiated retrieval structure. First it either finds a preexisting
pattern for a retrieval structure in memory or constructs and
memorizes a new pattern. As explained earlier, because the
structures for lists of different lengths are highly stereotyped,
with their components already familiar, and because the pro-
gression to lists of new lengths is slow, this process does not con-
sume much time,

For example, if the list of digits will have 25 digits, EPAM
remembers or constructs the retrieval structure pattern that we
earlier referred to as “d25.” It then instantiates d25 as a node-
link tree like the one pictured in Figure 3. Then it makes the
root node of the retrieval structure its “focus.” The system has
a special cell called the RSF (retrieval structure focus), which
holds a pointer to a retrieval structure cell. RSF, as used in the
remainder of this article, refers to the retrieval structure node
that is currently in focus, that is to the cell of the structure to
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which the symbol in the special RSF cell points, Now the system
is ready for presentation of the list.

Study Stage

The study stage occurs while a list of digits is spoken to DD
at the rate of one digit per second. DD generally sits stiil while
the digits are being presented. The digits are not grouped in any
way by the experimenter when they are presented to DD, but
DD imposes his own grouping on them.

In all of our simulations, EPAM follows the same routine for
each group of digits. The digits arrive at the auditory sensory
store at a simulated rate of one per second. We have estimated
the retention of information in the auditory sensory store (often
called the echo box) at 3,800 ms, so that about four digits are
held there at any one time. This retention time and capacity
are consistent with published estimates of the parameters of the
auditory sensory store, not to be confused with the articulatory
loop (Baddeley, 1981; Zhang & Simon, 1985).

A time parameter is assigned for each step in processing the
digits. There are five basic parameters: (a) 100 ms to access a
digit in a sensory store, (b) 200 ms to attach a digit to a symbol
structure, (c¢) 100 ms to notice a pattern cue, (d) 10 ms per
node to perform a recognition search through the discrimina-
tion net, and (e) 250 ms per node to perform an associative
search through the net. The first two parameters fall well within
the 1 s per digit presentation rate, leaving time for other learning
activities. Parameter (a) is about half of a simple reaction time
(no external reaction is called for). Parameter (b) is consistent
with earlier estimates that the bulk of EPAM’s learning time is
devoted to net elaboration, the insertion of information into
leaf slots requiring only a short time ( Simon, 1976).

Parameters (c¢) and (d) are consistent with times required for
noticing and recognizing in the other tasks to which EPAM has
been applied. The 250 ms of Parameter (e) is consistent with
measurements of skilled performance. For example, moder-
ately skilled typists transcribe at about this rate per character,
and skilled readers read at about this rate per word (Newell,
1990, pp. 236-240). If we assume that characters are the basic
chunks in transcription typing (given that each character must
be produced) and that words are the basic chunks in reading,
then 250 ms can be interpreted as the basic time for accessing
well-learned nodes in memory. ( For further discussion of pa-
rameters in this time range for simple processes, see, for exam-
ple, chapter 5 of Newell, 1990.) Modest changes in these param-
eters have little or no effect on performance, so that EPAM’s
performance is not sensitive to their exact values, but would be
to mis-estimates of an order of magnitude. We would claim that
the parameter values we have used are well within this limit of
error. .

The following steps, with the time parameters as indicated
above, define the processing strategy:

1. Access the first digit in the auditory sensory store and in-
sert it in the slot of the retrieval structure focus (RSF) node. (It
takes 100 ms to access a digit from the auditory sensory store
and 200 ms to attach the digit to the retrieval structure node.)

2. If not running short of time (if there is no more than one
digit that has not yet been attended to in the auditory loop),

check the auditory loop to find whether there were back-to-back
digits.

3. Digits are back to back when the first digit of one group is
the same as the last digit of the previous group. If back-to-back
digits are found, EPAM puts that information on the image of
the RSF node. (It takes 100 ms to check for back-to-back digits.
When such digits are found, the time required to attach that
information to the retrieval structure is 200 ms.)

4. Repeat Step 1 with the second digit in the auditory sensory
store.

5. Repeat Step 2 with the second digit, for pairs of back-to-
back digits.

6. Repeat Step 1 with the third digit.

7. Convert the information about the three digits into a list,
add blanks at the end of the list to mark the places of future
digits, delete an initial O if there is one, and then sort the list in
the semantic net to find their interpretation. For example, if the
digits are (4, 2, 4) and the RSF node will hold three digits,
EPAM sorts the list (4, 2, 4) in the semantic net; if the RSF
node will hold four digits, EPAM sorts the list (4, 2,4, _).[The
semantic net was hand-constructed so as to match the semantic
interpretation that DD gives to groups. The portion of the net
that sorts lists beginning with a 4 is iflustrated in Figure 6. The
list (4, 2, 4) sorts to a node whose category is *“1-mile time”
(i.e., 4 min, 24 s), the list (4, 6, 4, _) sorts to a node with the
category ““10-mile time” (i.e., 46 min, 40-some s), and the list
(4, 2) sorts to a node with the category *““quarter-mile time”
(i.e., 42 s). The semantic category that has been found is then
associated to the image of the parent node of the RSF node. (It
takes 10 ms per node to sort in the semantic net and 200 ms to
attach to the parent node.)]

8. If this RSF node is not the first of the group descended
from the parent, and if not running short of time (as described
in Step 1), then examine the RSF parent’s node to see if the
RSF node has the same semantic interpretation as the previous
node descended from the parent. If so, add to the image at the
RSF node the information that the semantic categories are
“back-to-back.” (It takes 100 ms to check for code and 200 ms
to attach information to retrieval structure.)

9. If this RSF node is the last of the group descended from
the parent, and if not running short of time, then examine the
parent node in the retrieval structure to determine whether
there are any numerical patterns. If a pattern is found, attach
that information to the parent node. The patterns include iden-
tical categories (i.e., all are dates), symmetry (i.e., mile time,
then half-mile time, then mile time), ascending progressions
(i.e., quarter-mile time, then half-mile time, then three-quarter-
mile time), and descending progressions (i.e., three-quarter-
mile time, then half-miie time, then quarter-mile time). (It
takes 100 ms to check for pattern and 200 ms to attach infor-
mation to retrieval structure).

10. Access the remaining digits in the auditory imagery
store, and determine how many should be in a group by exam-
ining the structure of the RSF node. Nodes for three, four, and
five digits each have different structures. ( This takes 300 ms per
digit accessed, as in Step 1.}

11. Convert the digits and semantic information associated
with the RSF nodes and their parents into a list, and then sort
that list in the discrimination net. { Eliminate leading zeros be-
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fore sorting. For example, if the digits in the image at the RSF
node are (0, 5, 6, 9) and the semantic category is quarter-mile
time, the list (5, 6, 9) will be sorted to a semantic node that
holds chunks for quarter-mile time. The chunk sorted to may
hold an identical image (5, 6, 9) or a similar image such as (5,
6, 8). (It takes 10 ms per node to sort in the discrimination
net.)]

12. If not running short of time, test the image at the RSF
node to determine if there is a pattern code within the group of
digits. If one is found, attach that information to the image of
the RSF node. (It takes 100 ms to search for a digit pattern and
200 ms to attach to the retrieval structure.)

13. Note a single difference, if there is one, between the list
that was sorted in Step 10 and the image that was reached. For
example, if the digits were (5, 6, 9) and the image reached was
(35,6, 8), the difference would be the digit 9 in the third position.
Attach information about any difference to the RSF node’s im-
age. (It takes 100 ms to search for a difference and 200 ms to
attach to retrieval structure.)

14. Use the association routine to place a pointer to the RSF
node on the image of the semantic node that was found in Step
10. This is the only part of the serial recall strategy that adds
information to LTM, rather than to the retrieval structure. [In
EPAM 1V, this association process takes about 1.75 s, but once
initiated can be carried out in the background, without requir-
ing attention, while the system proceeds with activities that do
not require adding information to LTM. The required 1.75 s is
available, for associations are only built once for each digit

not elsewhere classified; MISC. =

group in the serial recall task, and the digit groups are presented
for 3-5 seach (1 s per digit).]

15. Finally, update the RSF by traversing the retrieval struc-
ture in a depth-first search to find the next retrieval structure
node and place a pointer to it in the RSF. This search will occur
at the same time that Step 12 is occurring in the background.
(Time charged is 250 ms per node traversed. At least two nodes
are traversed to go from one retrieval structure node to the
next.)

Rehearsal Stage

In the time between list presentation and serial recail, DD
rehearses. He is quite animated during this stage, in contrast
with his passivity during the previous stage. DD reports that
during rehearsal he is reviewing the semantic category of each
digit group, moving backward through the groups. He also re-
ports that he tries not to spend too much time with any digit
group and that he discontinues rehearsal when he comes to the
four groups of four digits each that are at the beginning of the
entire list.

During this stage, EPAM follows the following strategy:

1. First EPAM studies the last group of digits that were pre-
sented. In this respect, the simulation does not exactly match
DD’s behavior, for he consistently rehearses the last two groups
and may be learning at other times as well. As we do not have
direct evidence to show exactly when DD’s learning took place,
and as the effects of learning are distributed over the whole per-
formance, we simplified matters by concentrating EPAM’s
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learning at one point in the performance cycle. We are not
aware of any substantial consequences of this simplification for
the simulation.

EPAM puts the digits into its auditory imagery store and then
rehearses and studies them until they are fully familiar, which
means that the image of a node in the discrimination net in-
cludes all of the digits in the group. EPAM also associates the
fully familiar chunk with the RSF node so that there will be a
pointer to the RSF node on the image of the chunk. This is
where EPAM learns the one new chunk per list that increases its
discrimination net. The time required is often extensive (about
8-10 s if a new node is built in the discrimination net). The
process of rehearsing a stimulus while learning it is the same as
in paired-associate experiments, with the same time
parameters.

2. Next EPAM progresses backward through the list in
depth-first search, focusing on each node and then the previous
one. The time required is about 250 ms per node traversed.
Whenever it is found that a node has back-to-back digits or
back-to-back categories, or back-to-back digit pairs, the corre-
sponding information is placed on the previous node.

Also, except when reviewing the first four groups of four dig-
its, EPAM searches for the semantic category and a chunk rep-
resenting the digit groups in semantic memory described in
Steps 3 and 4 of the recall stage. The difference is that, during
rehearsal, it discontinues the search for a missing semantic cat-
egory if it does not find it on the first try.

Thus, throughout the rehearsal stage EPAM follows a proce-
dure closely similar to the one Staszewski ( 1988a) observed DD
following during this stage. This strategy is again one of the ini-
tial conditions, or “givens,” of the simulation.

Recall Stage

During the recall stage, DD outputs the digits in order, gener-
ally group by group. If he cannot find a digit, he sometimes
goes back to the previous group and tries to see whether it may
provide some clues about its successor, for example, pattern
cues that relate the two groups. If he cannot get a whole group,
he sometimes skips it, goes on, and comes back to it later.

EPAM goes through the groups one at a time. It traverses the
retrieval structure in depth-first search to focus on each succes-
sive node. Sometimes the process requires extensive time-con-
suming associative searches of the discrimination net at the rate
of 250 ms per node traversed during the search. Traversal of the
discrimination net and the retrieval structure during depth-first
searches accounts for most of the time spent in this stage, as well
as in the rehearsal stage and the optional free-recall stage. The
process iterates through the following steps:

1. Fill in the digits on the retrieval structure using digit pat-
tern and back-to-back digits information.

2. Try to find the semantic category on the image of the RSF
node’s parent, using any available information about semantic
categories that has been stored at the parent node to help deter-
mine the semantic category for the given RSF node. (DD ap-
pears to take this second step before the previous one.)

3. If you cannot find the pattern at the parent node, then
conduct a search for the semantic category. Make an educated
guess about the category based on the information about digits

A

A

Figure 7. Original (A) and revised (B) retrieval structures. {See text
for further discussion.)

at the RSF node’s image. Guess what the missing digits could
be, then, based on that guess, choose a likely semantic category.
Then search the subnet of the discrimination net for that cate-
gory in hopes of finding an active semantic node that points to
the RSF node. (A parameter limits the amount of time that
EPAM will spend searching for the semantic node of a digit
group. These simulations were all conducted with a cutoff of 1
min on the simulated clock—if the system could not find the
category after searching for 1 min, it would give up on that digit
group.)

4. Now check the retrieval structure image to see if it gives a
complete account of the digits. If not, search the semantic cate-
gory (if one was found) for an active node that has a pointer to
the incomplete RSF node. ( The digits in the retrieval structure
serve as a partial image to guide the search.) If the node is found,
use its information, and any difference information that was
stored with the RSF node image, to fill out the retrieval struc-
ture node.

5. Finally, vocalize the digits at a rate of 200 ms per digit.

Pause Latencies

Staszewski (1988a) has measured DD’s pause times between
digits during serial recall on 29 lists of 100 or more digits each.
We have similarly computed EPAM’s pause times between dig-
its for the same lists. We have computed two different sets of
pause times for EPAM on the basis of different assumptions
about the top-level organization of the retrieval structure. The
first estimate is based on the retrieval structure for 100 digits
that was induced from DD’s reports (Figure 7A}. The second
estimate is based on a slightly modified retrieval structure de-
rived directly from DD’s pause times (Figure 7B). A rationale
for the second estimate, related to the yearlong plateau in DD’s
learning, is provided later.
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Figure 8. Comparison of predicted with actual pauses in serial recall
for retrieval structures of Figures 7A and 7B. (See text for further dis-
cussion. EPAM = Elementary Perceiver and Memorizer, Model IV.)

EPAM tends to pause at about the same places for about the
same median amounts of time as DD, as shown in Figures 8A
and 8B. The fit in Figure 8A, based on the retrieval structure in
Figure 7A, is poorer than that in Figure 8B, based on the struc-
ture in Figure 7B. The Pearson coefficient of correlation be-
tween predicted and actual pause times is .932 for Figure 8A
and .964 for Figure 8B.

To match DD’s data, EPAM’s pause time within group
boundaries is set at 200 ms, which is the approximate time a
person requires to vocalize a digit. (This implies that the re-
trieval structure addresses are used to recover the groups of
three or four digits, not the individual digits.) For the pause
times between digit groups (except for the first three spikes, at
digit locations 4, 8, and 12), the 200 ms required to vocalize a
digit is added to the 250 ms required to traverse each node in the
retrieval structure when changing the retrieval structure focus.

Qccasionally, EPAM must pause for much longer periods at
these junctures while if searches the discrimination net for in-
formation about the digits or semantic category that are missing
from its retrieval structure images. However, these occasions oc-
cur rarely, as EPAM does most of its searching for these digit
groups during the rehearsal stage. EPAM’s predictions for this
part of the curve follow closely the predictions of a simple math-
ematical model earlier reported by Staszewski ( 1988a) that had
just one parameter—250 ms to traverse a node—but counted
nodes traversed in a slightly different way from EPAM. Both
Staszewski’s model and Figure 8A are based on the same dia-
gram of DD’s retrieval structure.

Times for the first four digit groups, those that DD did not
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rehearse before recalling the list, are treated differently in the
EPAM model, and as a consequence, EPAM’s first three spikes
in Figure 8A are quite variable, ranging in our simulations from
950 to 2,700 ms each. At a minimum, each spike includes the
200 ms required to vocalize a digit and the 500 ms required to
traverse the two nodes to move from one retrieval structure lo-
cus to the next in this region of the retrieval structure. To these
times are added the time required to search the discrimination
net for information that is missing from the retrieval structure.
For both DD and EPAM, without rehearsal the information
stored in the retrieval structure is often incomplete and searches
in semantic memory are needed to supplement it.

Effect of Pattern Encodings on Recall

Staszewski (1990) has reported an experiment to evaluate
DD’s use of pattern information in the serial recall task. In each
of eight experimental sessions conducted on separate days, DD
received six digit span trials of 50 digits each. In this experi-
ment, list content was manipulated. Half of the lists were *“‘de-
pleted” so that their number sequences would not contain those
patterns that DD consistently recognized and encoded as pat-
tern codes. The rest were “enriched” to provide more than the
usual number of opportunities to code pattern relations. DD
performed this task after he had achieved a digit span of over
100. EPAM also performed the task when it had achieved a digit
span of 100. The main results of the experiment are shown in
Table 2. (The results reported for EPAM are the average of 12
runs through all of the lists.)

The total recall time for both EPAM and DD is lower for the
enriched lists than for the depleted lists, although there is a
greater difference for DD than for EPAM. DD takes an average
of 115.6 s for the depleted lists and 72.4 s for the enriched lists,
whereas EPAM takes an average of 102.6 s for the depleted lists
and 86.3 s for the enriched lists.

EPAM is faster with the enriched than with the depleted lists
because the pattern information allows EPAM to note pattern
codes in enriched lists during the study stage of the serial recall
task. These codes permit EPAM to reconstruct information
that was lost due to forgetting in its retrieval structure, allowing
it to avoid some searches and shorten other searches.

As we have already noted in our description of EPAM’s
serial recall process, the system notes 10 different types of
numerical patterns during the study stage (see the descrip-
tion of the study stage for more detail). It notices five patterns

Table 2
DD’s and EPAM’s Mean Serial Recall Performance Scores
(in Seconds) as a Function of List Type

Enriched lists Depleted lists
Measure DD EPAM DD EPAM
Percentage correct 99.8 99,4 98.8 99.6
Rehearsal time 29.1 395 48.9 41.2
Recall time 433 46.8 66.7 61.4
Total time 724 86.3 115.6 102.6

Note. EPAM= Elementary Perceiver and Memorizer, Model TV.
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in semantic categories (i.e,, back-to-back categories, identi-
cal categories, symmetric categories, ascending progressions,
and descending progressions ), two types of patterns in which
identical digits are found at the end of one digit group and at
the beginning of the next group (back-to-back digits and
back-to-back digit pairs), and three types of patterns within a
group of digits (“frontwards-backwards,” “differences,” and
‘“add-em-ups’’). The fact that enrichment facilitates EPAM’s
recall less than it does DD’s is probably due mainly to the
fact that in these runs of the system we did not capture all of
the patterns that DD uses (although we probably also incor-
porated a few that he does not use consistently).

DD reports having used each of the patterns that were used
in these EPAM runs, but other patterns appear in his protocols
as well. For example, if 2-mile times appear back to back, DD
will not only note that the categories are the same, but he will
note which one is faster. Similarly, if a very similar mile time
appeared in the identical location of the retrieval structure in
the previous list, DD will note that fact as well as which one is
faster. Staszewski (1993 ), after a more thorough study of DD’s
numerical patterns, has achieved a more complete match to
DD’s data.

From DD’s use of numerical patterns, we were able to obtain
a rough estimate of his forgetting rate, which can be compared
with our assumptions about EPAM’s forgetting. When EPAM
notices a numerical pattern, it attaches information about that
pattern to its retrieval structure. This information is subject to
the 25% forgetting parameter for information that is attached to
the retrieval structure.

At the end of the presentation of a list, DD gave verbal proto-
cols of his semantic interpretations and pattern codes. We com-
pared EPAM’s noticing and reporting of pattern codes with
DD’s protocols. Assuming that DD noticed all of the same pat-
tern codes that EPAM did, but then forgot a fraction of them,
the proportion of codes reported by DD permits an estimate of
the amount of his forgetting on these 50-digit lists.

Before making the comparison we had to eliminate some pat-
tern codes from consideration. For example, in one case EPAM
classified a digit group differently than DD did, finding a pattern
in the semantic codes that was not noticed by DD. Also, in sev-
eral cases larger pattern codes subsumed smaller ones even
though both were reported by EPAM. For example, if EPAM
noticed back-to-back digit pairs in the reverse direction (i.e.,
7523 then 3291), it would also notice the back-to-back digits
(the 3 at the end of 7523 and the 3 at the beginning of 3291).
DD would either report having seen back-to-back digit pairs or
back-to-back digits, but seldom both. In such cases we would
count the larger unit as being forgotten if it was not reported,
but we would not count the smaller unit as forgotten if the larger
unit were reported.

After such codes were deleted from consideration, 295 pat-
tern codes remained that were noticed by EPAM during the
study stage of the simulation. Seven of these were eliminated
from consideration: five instances of a digit group consisting of
three identical digits (e.g., 000 or 666) in which EPAM noticed
a frontwards-backwards relation that was not reported by DD,
and two instances (4051 and 2226) that EPAM described as
“eleven-apart” and “four-apart,” while DD described them as
“add-em-ups.” Of the 288 remaining cases, EPAM reported

218, for a forgetting rate of 24.3%; DD reported 220, for a pos-
sible forgetting rate of 23.6%.

Although this result appears to confirm our estimate that DD
forgets about 25% of the information that is added to his re-
trieval structure, we should not put excessive weight on the es-
timate for at least two reasons. First, instead of forgetting these
codes, DD may not have noticed all of the patterns. Second, -
there is much evidence that DD remembers many codes redun-
dantly. For example, he often notices when the same codes ap-
pear in sequence; when 232 follows 545 he notes that the two
groups are “back-to-back frontwards-backwards.” Such extra
redundancy would help DD recover pattern codes that might
otherwise have been forgotten. The first of these possibilities
would suggest that 23.6% would overestimate DD’s forgetting
rate whereas the second would suggest that 23.6% would under-
estimate it. Nonetheless, the fact that the observed rate was
close to EPAM’s justifies added confidence in the model.

Effect of Trial Order on Recall

Staszewski’s (1990) analysis of recall times in the pattern en-
codings experiment revealed a general increase in median total
recall times (rehearsal time + recall time) as a function of trial
order during a single session. This effect could be labeled “pro-
active inhibition™ as the study and recall of earlier lists appar-
ently resulted in longer times to study and recail later lists. DD’s
results and EPAM’s results appear in Figure 9 and Table 3.
(Each point in DD’s graph is the median of four data points,
and each point in EPAM’s graph is the median of 48 data points
given that EPAM was run 12 times with these data.)

It is not surprising that EPAM shows a smaller time difference
than DD between enriched and depleted lists, for EPAM does
not notice as many pattern codes as DD. However, both DD
and EPAM show a clear increase in total recall times with trial
order. If the enriched and depleted lists are combined, the best
fitting linear regression for EPAM’s and DD’s total times are
nearly the same, as follows:

1. EPAM’s total time = 6 X trial order + 53 s {r = .974)

2. DD’stotal time = 7 X trial order + 56 s (r* = .544)

Each additional list during a session takes EPAM about 6 s
longer in rehearsal and ordered recall than the previous list,
whereas it takes DD about 7 s longer.

Table 3
DD and EPAM’s Median Total Recall Times (in Seconds) by
Trial Order for Enriched and Depleted 30-Digit Lists

Both lists
Enriched lists Depleted lists combined
Trial
order DD EPAM bD EPAM DD EPAM
1 53.5 57.8 67.5 67.1 61.0 60.8
2 55.5 62.9 102.5 71.8 61.5 63.3
3 55.0 69.1 113.0 69.7 96.5 69.3
4 54.5 69.9 102.0 83.3 78.0 74.6
5 73.5 79.6 109.0 92.9 77.5 84.7
6 77.0 77.9 112.0 97.2 103.5 88.5
Note. EPAM = Elementary Perceiver and Memorizer, Model 1V.
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Figure 9. Effects of contextual coding on serial recall times. (EPAM = Elementary Perceiver and Memo-

rizer, Model IV))

EPAM’s recall time increases with trial order because each
additional trial on a given day activates more nodes in EPAM’s
discrimination net, thereby expanding and slowing down the
depth-first searches. This explanation is quite different from the
usual explanations of proactive inhibition. But as the experi-
ments reported in the published literature deal with much
shorter stimulus sequences than the experiment under discus-
sion here, there is no reason to attribute the proactive inhibition
seen under two quite different circumstances to the same mech-
anism. Proactive inhibition is the name of a phenomenon; it is
not an explanation.

Prediction of DD’s Category Choices

EPAM uses its discrimination net (a portion of which is pic-
tured in Figure 6) to categorize digit groups according to their
semantic interpretation. The initial discrimination net was
handcrafted to produce as high a match with DD’s semantic
interpretations as possible on the set of 798 digit groups that
were presented to DD during the free-recall experiments.
EPAM’s classifications achieved a 99% agreement with DD’s
classifications for these data. Again, this net serves as an initial
condition, representing DD’s knowledge of classes of running
times at the beginning of the experiment, thereby constraining
EPAM’s behavior. It is not a free parameter of the model.

It may not be possible to match DD’s performance more
closely, for DD does not appear to be completely consistent, In
fact he reports that, during the study stage of serial recall, he
sometimes chooses between two alternative categorizations of a
digit group. With an earlier program, Staszewski (1990) was
also able to obtain a 97% match with DD’s categorizations of
the same data.

Memory Scanning Task

When DD had accumulated approximately 790 sessions of
practice and his span stood at 90 digits, Staszewski ( 1988a)

conducted a memory scanning experiment with two condi-
tions, an after condition and a before condition. After a 50-
digit list had been presented to DD in the usual fashion,
groups of digits chosen from the list were presented to him
visually. In the after condition, DD’s task was to report the
digit group that followed the probe group on the list. In the
before condition his task was to report the digit group that
preceded the probe group on the list.

We did not simulate the visual presentation of the digit
groups, but we did simulate EPAM’s processes after it had put
the digit group in a form suitabie for sorting in its semantic net,
EPAM’s strategy was the following:

1. Orient to task and turn digit group into a list (estimated
time = 1,500 ms).

2. Cut a leading zero off the group (if there is one) and use
the usual routine to determine the semantic category (10 ms
per node).

3. Sort the digit group ( without the leading zero) in the sub-
net for that semantic category in the discrimination net (10 ms
per node).

4. Find the retrieval structures associated with the semantic
node that was found. If there are several such retrieval structure
nodes, pick the first one that represents the same number of
digits as the number presented. Make the chosen retrieval struc-
ture the retrieval structure focus (no time charge).

5. If the direction is forward, conduct the usual depth-first
search through the retrieval structure to refocus on the next
node; if backward, search to refocus on the previous node
(usual time charge of 250 ms per node traversed ).

6. Ifthe retrieval structure node has missing information, fill
it out just as it is filled out during the ordered-recall task. This
may involve searching for the corresponding semantic node and
other time-consuming processes ( usnal time charge of 250 ms
per node).
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Figure 10. Median response times in memory scanning task for for-
ward ( A ) and backward (B) directions. ( See text for further discussion.
EPAM = Elementary Perceiver and Memorizer, Model IV.)

Both DD and EPAM were able to perform this task quite
accurately, as indicated by DD’s overall error rate of 5.8% and
EPAM’s overall error rate of 1.9%. Both EPAM and DD paused
for median times proportional to the number of nodes traversed
at boundaries between digit groups, as estimated from Stas-
zewski’s ( 1988a) diagrams of DD’s retrieval structure for 50-
digit lists. There was essentially no difference in DD’s times for
forward and backward search, and the same times were charged
for EPAM’s searches in both directions. Median times for DD
and EPAM are graphed in Figure 10A and 10B for forward and
backward search, respectively. Combining both forward and
backward times, we find that EPAM’s response times are well
correlated with DD’s, the Pearson correlation between them be-
ing.70.

Free-Recall Task

At the conclusion of many serial recall practice sessions, Stas-
zewski (1990) asked DD to recall freely, in any order, all of the

Table 4
Results of Free Recall for Sessions of Three 100+ Digit Lists
Jor EPAM Compared With DD

Digit No. groups Same Spearman

group output by semantic rank-order
no. both interpretation correlations
858 76 76 932
860 78 78 914
861 85 83 .868
862 82 81 .862
863 80 80 .984
864 77 74 192
865 76 75 985
866 81 81 985
868 78 77 981

Note. 87 digit groups were presented each session. EPAM output all

of the groups. One group output by DD that did not appear on the lists
presented is omitted. EPAM = Elementary Perceiver and Memorizer,
Model I'V.

digit groups presented in that session. Staszewski has studied
DD’s free recall of 27 lists of about 100 digits each presented at
three lists per session. (A 10th session was discarded from his
analysis because DD erred on the recall of one of the lists.) Stas-
zewski found that DD’s recall is organized by his semantic cod-~
ing categories and that he always reports running time catego-
ries in an ascending order foliowed by dates, ages, and the mis-
cellaneous category. Using a very strict scoring criterion he
found that 94% of the digit groups recalled are clustered within
categories and that the order of items recalled within each cate-
gory is from smallest to largest. (With a slightly more generous,
but quite defensible, scoring criterion, the measure of fit rises
close to 100%.)

To recall the digit groups, EPAM simply searches the seman-
tic nodes of its discrimination net beginning in turn with the
top nodes of each category. Whenever an active node is found,
EPAM accesses the pointer or pointers to retrieval structure
nodes that were stored with its image. Then it fills out the re-
trieval structure node’s image with information from the se-
mantic node’s image, outputs the digits, and resumes the
search. One hundred percent of the digit groups that EPAM
recalls are clustered within categories.

EPAM never misses a digit group, whereas DD missed 8% of
the groups. When the order in which the groups are produced
by DD was correlated with the order in which the groups are
produced by EPAM in each of the nine free-recall sessions, the

Table 5
DD’s and EPAM’s Mean Performance Times
(in Seconds) on 100+ Digit Lists

Measure DD EPAM
Rehearsal time 190 91
Ordered-recall time 200 118
Free-recall time 504 388

Note. EPAM = Elementary Perceiver and Memorizer, Model IV.
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Spearman rank-order correlation ranged from .782-.985 (see
Table 4). Four of the nine correlations were above .980 (.981,
.984, 985, and .985).

Both DD and EPAM recall the digits by the same categories
and go through the categories in the same order. DD, unlike
EPAM, sometimes returns to a previous category and reports
digits that he had missed earlier. If digit groups appeared twice
within the three-list session, both DD and EPAM recall them
twice, in immediate succession. EPAM can do this because it
is able to associate two retrieval structure nodes to the same
semantic node.

EPAM takes less time on average with 100-digit lists than does
DD, as is shown in Table 5. DD’s free recall required an average
of 492 s for a three-list session, whereas EPAM’s free recall took
an average 388 s per session, a ratio of about 5 to 4.

As Table 5 shows, EPAM underpredicts the rehearsal and or-
dered-recall times for these 100+ digit sessions. The rehearsal
time predicted by EPAM is only about one half of the time taken
by DD (92 s vs. 184 s), and the ordered-recall time taken by
EPAM is about 60% of the time taken by DD (118 s vs. 199 s).

It is possible that EPAM’s underprediction of these times is
related to DD’s long-lasting plateau at about 80 digits during
the learning stage. When DD tackles lists of more than 80 digits,
he appears to encounter some difficulties that are not explained
by the present version of EPAM.

The serial recall experiments provide various forms of con-
verging evidence for the existence and organization of DD’s re-
trieval structures and indirect evidence for the role of the EPAM
discrimination net and semantic memory in enabling his recall
of long strings of digits. The free-recall experiments provide di-
rect evidence for the existence and organization of DD’s seman-
tic memory and the growth of that memory through learning
over successive trials. Thus, there is extensive converging evi-
dence that DD’s expert performance depends both on the
mechanisms modeled in EPAM [IV’s new components
(principally the retrieval structure) and on the mechanisms al-
ready present in previous versions of EPAM (principally the
discrimination net and its associated semantic information).

Conclusion

The simulations that we have reported here provide a broad
outline of mechanisms that are used by DD. There are many
details that remain to be filled in, but EPAM’s current behavior
already provides a close simulation to DD’s performance on
four expert memory tasks, both at an aggregate level and in
many quite specific details. It does this over long stretches of
trials and time, during which substantial learning takes place.
Moreover, it achieves its fit to the data largely using mechanisms
that have already been validated in simulations of behavior in
quite different experimental paradigms and without change in
the parameters that determine the speed with which the mech-
anisms operate. The new mechanisms that have been added to
EPAM 1V are mostly specific to expert memory performance
and are supported by explicit empirical evidence from the per-
formance of DD and his predecessor, SF. (Reports on SF’s per-
formance can be found in Ericsson et al., 1980, and Chase &
Ericsson, 1981.) Both EPAM and DD are similar in the follow-
ing aspects:

1. Learning. EPAM closely simulates DD’s learning curve
for 3 years of daily learning and practice sessions by acquiring
new nodes in a discrimination net. This aspect of learning does
not explain why DD plateaus for well over a year at a maximum
digit span of 80. It may be that DD has trouble at this level
because of difficulties with trying to build a retrieval structure
with more than four branches at a node or that he did not at
first use pattern codes, or both reasons. In its ability to recall
very long lists with an average of only one error in every two
lists, EPAM demonstrates the essentiality to expert memory of
the redundant storage of information provided by retrieval
structures, semantic codes, and pattern codes.

2. Pattern codes. EPAM closely simulates DD’s documented
use of pattern codes and provides an explanation of why lists
that have been enriched with pattern codes are more quickly
studied and recalled than lists that have been depleted of pattern
codes.

3. Proactive inhibition. EPAM simulates the interference
that accrues over a six-list session as partly due to growing re-
gions of activation in the discrimination net that cause depth-
first searches to become more extensive and hence to take longer.

4. Memory scanning. EPAM closely simulates the median
time required by DD to scan his retrieval structure from one
digit group (given as a probe) to an adjacent group (in either
the forward or backward direction).

5. Pause times. EPAM closely simulates the median pause
times in DD’s ordered recall of digit lists of more than 100
digits.

6. Times required for various operations. EPAM closely sim-
ulates the overall time required for DD in rehearsal, ordered
recall, and free recall as composed largely of depth-first
searches, requiring 250 ms per node searched. EPAM produces
excellent fits to DD’s data with the one exception that it predicts
too brief rehearsal and ordered-recall times for 100-digit lists.

Although Ebbinghaus provides us with a good precedent, it is
somewhat unconventional to build a theory of memory pro-
cesses on the behavior of a single individual (or two, when we
include SF). However, by following this strategy we were able to
match data and theory in exquisite detail, avoiding the “smear-
ing” of small but illuminating effects that occurs when we aver-
age data over many subjects. Of course, we do not advocate ex-
clusive use of this strategy over the other, but a judicious selec-
tion 1n each instance of the one likely to provide the deepest
insights in a given experimental situation.

This study is also limited to behavior in a single (and rather
esoteric) task: retaining and repeating back long digit strings
that were presented at a rapid rate. To establish generality for
the results, similar studies will have to be undertaken for a range
of tasks in which this kind of special proficiency is exhibited by
experts. Such an extension has already been carried out for the
memories of waiters (Ericsson & Polson, 1988b) and a master
playing chess blindfolded (Ericsson & Oliver, 1984), and a
model of expert chess memory that incorporates retrieval struc-
tures and templates has now been constructed and is being
tested (Gobet, 1993). But though the range of tasks studied in
detail is very limited to date, the fact that most of the mecha-
nisms used (with the principal exception of the retrieval
structures) have already served within EPAM to explain many



328 H. RICHMAN, J. STASZEWSKI, AND H. SIMON

perceptual, learning, and memory phenomena in other do-
mains gives reasons for being sanguine about generalization.

These results were obtained with an architecture extended
from EPAM III by adding components based on clear and ex-
plicit empirical evidence: the evidence provided by DD’s per-
formance and his verbal reports of his memory structures and
strategies. With its rich memory structures and contents,
through which previous experience interacts with current stim-
uli to determine behavior, EPAM IV is highly responsive to
context, and its behavior is strongly ‘“‘situated.” Using its seman-
tic memory, its retrieval structures, and its task-dependent strat-
egies, it models an individual mind that is in close and constant
communication with its physical and social environment.

Like other computer simulation models, EPAM IV attains a
high standard of rigor. There is nothing ambiguous about the
behavior it predicts, because the predictions can be tested in
detail by running the computer and comparing its output with
human behavior. We have taken pains to show that this
precision is not acquired at the expense of introducing numer-
ous degrees of freedom. Most of the parameters of the system,
and most of the mechanisms incorporated in it, are supported
by converging evidence from a variety of experimental settings.
Moreover, EPAM can be tested against extended stretches of
human behavior; as we have seen, it can be matched to immense
numbers of observations.

When we combine the results reported here with previous
findings that show EPAM’s ability to simulate human behavior
in detail in a wide range of experimental paradigms, we think it
fair to claim that EPAM comes closer to providing a unified
theory of perceptual and memory processes than any alterna-
tive theory that has been proposed to date. We are not aware
that any other theory has provided an explanation of the kind
of expert performance exhibited by DD, which makes a direct
comparison impossible in this case.

But “unified,” of course, is a relative term. A great deal of
work lies ahead to extend and test EPAM in concept attainment
and categorization, episodic memory, and other semantic mem-
ory paradigms to which we are now beginning to apply it. Until
that is done, full contact cannot be made with current lines of
experimentation that use these paradigms or with the models,
some symbolic, others algebraic and stochastic, that have been
used to explain the findings (Estes, 1991, 1994).

Even more effort will be required to integrate EPAM’s expla-
nation of perception and memory with theories like Soar, which
has approached the integration of cognition starting from the
domain of problem solving, or ACT ¥, which has taken semantic
memory as its central structure. But all of that is work for the
future.
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Appendix
Effects of Redundancy of Information on Retention

This appendix provides a somewhat more detailed account than is
given in the body of the article of the probabilities associated with re-
calling long lists without error and the role of redundancy of informa-
tion in keeping this probability at the level observed in DD’s behavior.

In the digit span experiment, the length of the list presented to DD
was increased by one digit each time he recalled a list correctly and
decreased by one each time he made an error. This means that, with his
observed moderate learning rate, he recalled entire lists correctly a little
more than 50% of the time and made errors a little less than 50% of the
time. With lists of 100 digits each, and assuming equal and independent
probabilities of recall for each digit, to achieve a recall probability of .50
for the list would require a recall probability for each digit of .993
(.993!% = 50),

However, we know that DD did not memorize his lists as strings of
individual digits, but as strings of groups of digits, with a group size of
three or four. Assuming that a string of 100 digits consists of about 30
groups, to achieve a recall probability for the list of .50 would require a
recall probability for each group of .977 (.977° = .50).

If .007 is a wholly unrealistic forgetting rate, then .023 is only a little
more plausible. In fact, we have estimated (with a little corroboration
from evidence in DD’s protocols) that DD forgets about 25% of the
information he is placing in the retrieval structure as he hears the digits
read.

However, we must take into consideration that DD has two additional

sources of information besides the digits stored in the retrieval struc-
ture: namely, the semantic code (running times and ages) and the pat-
tern code. Of course, even apart from forgetting, the semantic code or
the pattern code will not always provide complete information about a
digit group. DD’s semantic net is incomplete—many digit groups are
not represented in it—but it gets larger as the trials continue. We esti-
mate that by the time the experiment ended DD had 3,000 digit groups
in the semantic net, enough to represent substantially all three-digit
groups but only a fraction of the 10,000 possible four-digit groups. The
pattern codes, too, are incomplete; many groups do not have special
features that are represented by patiern codes.

When we add a probable forgetting rate of 25% for digits and pattern
codes in the retrieval structure and for the associative links from the
semantic codes to the retrieval structure, matters become much worse.
No single one of the information sources is nearly sufficient to account
for the high retention rate of .977 per group that is required for the
average 50% performance on long sequences.

The fallibility of the individual information sources is compensated
by strong effects of redundancy—by the relatively low probability that
all the sources will fail simultaneously. Let us create a rough model of
the situation to calculate the effect of redundancy. Under reasonable
circumstances, DD could reconstruct a three-digit group if information
were retained in at least two, or perhaps three, of the information
sources. For example, information about two of the three digits might
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be stored in the retrieval structure. This would provide enough infor-
mation to retrieve the semantic code, where the remaining information
could be found. Or the missing information might be recovered if one
or two digits and a pattern code had been stored.

If we count the three digits in the retrieval structure (four for four
digit groups), the semantic code, and the pattern code as constituting,
collectively, five (six for four-digit groups) independent but fallible
sources of information, and assign the same probability of loss to each
of them, we can calculate the probability that at least k pieces of infor-
mation will be retained for each digit group, where 4 is the number of
pieces that must be available to guarantee recall. If this probability is in
excess of .977, then the entire list can be recalled with a probability of
at least .5.

Table A1 displays these probabilities for & = 1,5 pieces of information
retained for three-digit groups and k = 1,6 for four-digit groups. To show
how this table is to be interpreted, let us consider how its entries are
calculated in a simple case, with a forgetting rate of 30% and only one
piece of information required for reliable recall of the group (k£ = 1).
The probability that no one of the five pieces of information will be
retained is .3 raised to the fifth power, or .00243. Hence the probability
of recalling this group will be .9976, as shown in the third column of the
last row of Table Al.

DD divides the 100-digit lists into about 30 groups, some of three and
some of four digits. From Table A1, we see that the retention rate is
above .977 (except for 30% forgetting in the three-digit groups), pro-
vided that only one or two pieces of information are required to recall
each group, and is not much below this critical value even if three pieces
of information are required.

From Table A1 it can be seen that, because there is more opportunity
for redundancy of information with four-digit than with three-digit
groups, the former have the larger probability of recall. However, this
will only be the case if semantic codes are stored for the same fraction
of both sets of groups. For three-digit groups, a complete set of codes

Table A1
Probability of Retaining Digit Group as a Function of
Information Retention and Group Size

Minimum Group size 3 Group size 4
no. of digits
retained 20% 25% 30% 20% 25% 30%

6 262 178 117
5 .328 237 .168 .655 534 .420
4 737 633 528 901 .830 744
3 942 .897 .837 983 962 .929
2 993 984 969 998 .995 984
1 9997 999 9976 9999 9998 9993

requires a semantic net of only 1,000 nodes, but for four-digit groups,
10,000 would be required. The fact that DD and EPAM, in the course
of their learning, acquired nearly complete nets for three-digit groups
but much less complete nets for four-digit groups provides a possible
explanation of why both make fewer errors with the three-digit than
with the four-digit groups.

This model of redundancy only approximates EPAM’s performance.
It does not take into account the activation mechanism, the mechanism
for searching semantic memory, the fact that different pieces of data
contain more or less information (e.g., the semantic code is more com-
plete than a single digit in the retrieval structure), and interlist interfer-
ence. Nevertheless, it shows the relation of redundancy to the reliability
of recall and provides estimates of the general magnitudes of the proba-
bilities involved.
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