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a b s t r a c t 

Online and offline gaming has become a multi-billion dollar industry, yet, games of chance 

(in contrast to games of skill) are prohibited or tightly regulated in many jurisdictions. 

Thus, the question whether a game predominantly depends on skill or chance has impor- 

tant legal and regulatory implications. In this paper, we suggest a new empirical criterion 

for distinguishing games of skill from games of chance. All players are ranked according to 

a “best-fit” Elo algorithm. The wider the distribution of player ratings are in a game, the 

more important is the role of skill. Most importantly, we provide a new benchmark (“50%- 

chess”) that allows to decide whether games predominantly depend on chance, as this 

criterion is often used by courts. We apply the method to large datasets of various games 

(e.g. chess, poker, backgammon). Our findings indicate that most popular online games, 

including poker, are below the threshold of 50% skill and thus depend predominantly on 

chance. In fact, poker contains about as much skill as chess when 75% of the chess results 

are replaced by a coin flip. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

Online and offline gaming has become a multi-billion dollar industry. According to the Economist, the legal gambling 

market amounted to 335 billion US dollars in 2009 ( Economist, 2010 ). The size of the industry justifies a careful investigation 

of the regulatory and economic issues that come with it. 

From a legal perspective, a key aspect regarding this industry is what distinguishes games of skill from games of chance 

( Bewersdorff, 2004 ). This question has both legal and regulatory implications: in many jurisdictions games of chance are 

prohibited or tightly regulated, where one of the reasons given is the possibility of problem gambling and addiction. Fur- 

thermore, in many countries winnings from games are treated differently for tax purposes if they are generated in games of 

skill rather than in games of chance. 

So far, no universally accepted quantitative criterion exists that separates games of skill from games of chance. The 

difficulty arises because very few games are games of pure skill or games of pure chance. Mixed games, which involve 

both skill and chance elements, are by far the most popular games. Without clear guidance from the theoretical literature, 
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courts and lawmakers had to draw a line and often classify gambling as referring to games that “predominantly depend 

on chance”. 2 But how can one measure whether the outcome of a game depends predominantly on chance? Even if one 

specifies what predominantly means, for instance “more than 50 percent”, the question remains, “50 percent of what?”

We propose a new method for measuring the skill and chance components of games and apply it to poker, chess, tennis, 

backgammon, and several other popular games. The main objective is to provide a method that allows to define a clear 50%- 

benchmark for the predominance of chance versus skill. Furthermore, the measure should be easily applicable to a variety 

of games and not specific to, for example, one particular type of poker. Our approach is empirical and benefits from the 

availability of very large datasets. Sport associations and online platforms track the outcomes of games played both online 

and offline. Thus millions of observations are available from public or commercial databases. We also have access to millions 

of observations from one of Europe’s largest online gaming websites, which offers a variety of different games. 

Our method can be described in two steps. First, we propose a measure for skill and chance in games. Then, we use 

this measure to define a 50%-benchmark. For the first step, rather than using performance measures like prize money won 

or finishing in the top x percentile in a tournament, we apply a complete rating system for all players in our datasets. In 

particular, we build on the Elo-system ( Elo, 1978 ) used traditionally in chess and other competitions (e.g. Go, table tennis, 

scrabble, eSports). It has the advantage that players’ ratings are adjusted not only depending on the outcome itself, but also 

on the strength of their opponents. Additionally, it is able to incorporate learning. The rating system is applicable to two 

player games immediately, and can be generalized to handle multiplayer competitions. We calibrate the Elo rating system 

to obtain a best fit for each game and type of competition individually. 

In the Elo rating, a given difference in ratings of two players corresponds directly to the winning probabilities when the 

two players are matched against each other. Thus, the more heterogeneous the ratings are, the better we can predict the 

winner of a match. If the distribution of Elo ratings is very narrow, then even the best players are not predicted to have 

a winning probability much higher than 50%. The wider the distribution, the more likely are highly ranked players to win 

when playing against lowly ranked players, and the more heterogeneous are the player strengths. In our data, the rating 

distributions of all games are unimodal, which makes it possible to interpret the standard deviation of ratings as a measure 

of skill. Accordingly, the standard deviation is high in games of pure skill and with a large heterogeneity of playing strength 

(e.g. chess). On the other hand, if the outcome of a game is entirely dependent on chance, in the long run, all players will 

exhibit the same performance. In this case, the standard deviation of ratings tends to zero. 

In the second step, we propose an explicit 50%-benchmark for skill versus luck. We do this by constructing a hybrid 

game that is arguably exactly half pure chance and half pure skill. For the pure skill part we use chess as a widely accepted 

game of skill with the added benefit that there is an abundance of chess data. We construct our hybrid game by randomly 

replacing 50% of matches in the chess dataset by coin flips. This way, we mix chess with a game that is 100% chance and 

thereby construct what we call “50%-chess”. We can then compare the standard deviations of ratings for all of our games to 

50%-chess as a benchmark. 

One may argue that even chess contains an element of chance. For comparison, we also provide a more extreme bench- 

mark. This “50%-deterministic” game consists of matches where the better player wins 50% of the matches right away, while 

the other 50% are decided by chance. 

Applying our method to the data, we obtain a distribution of ratings for each game. As expected, chess and Go, as well as 

a traditional sport like tennis, have high standard deviations. Poker, on the other hand, has one of the narrowest distributions 

of all games. When we compare the games to our benchmarks, we find that poker, backgammon, and other popular online 

games are below the threshold of 50%-chess (and therefore also below the higher threshold of 50%-deterministic) and thus 

depend predominantly on chance. In fact, when we reverse our procedure and ask how much chance we have to inject into 

chess to make the resulting distribution similar to that of poker, we find that poker contains about as much skill as chess 

when 75% of the chess results are replaced by a coin flip. Furthermore, the amount of skill we find in poker is comparable 

to that of a deterministic game when 85% of the results are replaced by chance. 

There are a number of earlier approaches in the literature that are mostly concerned with poker. 3 While most conclude 

that skill plays a statistically significant role in poker (a result we do not dispute at all), they do not provide a benchmark for 

classification. One interesting approach is to compare poker to sports or financial markets. Croson et al., 2008 compare data 

from poker to data from golf and find that past performances have about the same predictive power in both games. However, 

when we compare poker to tennis, we find large differences. Levitt and Miles (2014) calculate the return on investment of 

top players in the World Series of Poker and conclude that these are comparable to or even higher than returns in financial 

markets (concluding that either both are games of skill or none). 

2 For example, 31 US Code §5362 targets “unlawful internet gambling” and defines betting and wagering in this context as “the purchase of a chance 

or opportunity to win a lottery or other prize (which opportunity to win is predominantly subject to chance)”. Similarly, German law defines a game of 

chance as one whose “outcome depends largely or wholly on chance” (translated by the authors, §3 Abs. 1 GlueStV). 
3 There has been an extensive debate in courtrooms as to whether poker is a game of chance or rather a game of skill. Different courts have come 

to very different conclusions. For example, in the US, several online poker providers were shut down in 2011 due to a violation of the Unlawful Internet 

Gambling Enforcement Act (UIGEA), see Rose (2011) . On the other hand, in 2012 a federal judge in New York ruled that poker is rather a game of skill, see 

USA vs Lawrence Dicristina, US District Court Eastern District of New York, 11-CR-414 . Similarly, in other jurisdictions like e.g. Austria, Israel, and Russia, poker 

is categorized as a game of skill ( Kelly et al., 2007 ). In Germany, courts still refer to a decision by the Reichsgericht from 1906 that considered poker as a 

game of chance ( Holznagel, 2008 ). 
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Several studies try to define certain player or strategy types and compare their performance in simulations or experi- 

ments. Borm and van der Genugten, 2001 , Dreef et al. (2003, 2004a, 2004b) , and van der Genugten and Borm (2016) propose 

measures that compare the performances of different types of players. In order to calculate which part of the difference in 

performance may be attributed to skill and which to chance, they include as a benchmark an informed hypothetical player 

who knows exactly which cards will be drawn. The use of their approach is, however, limited to simplified versions of poker. 

Nevertheless, even for simple poker variants, the different studies report a substantial degree of skill. Van Essen and Wood- 

ers (2015) compare the behavior of online poker players to the behavior of novices for a stylized version of the game and 

find significant differences. 

Larkey et al. (1997) and Cabot and Hannum, 2005 conduct simulation studies with different strategy types and find that 

more sophisticated strategies perform better. DeDonno and Detterman (2008) give one group of subjects some instruction on 

how to play better poker and observe that this group outperforms the control group. Siler (2010) shows that performance 

in online poker is related to playing style (aggressive, tight etc.), and that differences in style and performance between 

players decrease as stakes increase. 

Finally, if a game has a skill component, in the long run, by the law of large numbers, better players will outperform 

weaker players. Thus, one way of measuring the skill component is to calculate how long it takes for a better player to be 

ahead of a weaker player with a certain probability. Fiedler and Rock (2009) propose a “critical repetition frequency” and 

find that it takes about 750 hands of online poker in their data for skill to dominate chance. Similarly, Potter van Loon et 

al., 2015 use simulations to calculate the minimum number of hands for a player who ranks in the top 1% to outperform 

a player who ranks in the worst 1% with a probability p > 0.75. They find that the threshold is about 1500 hands. Our 

preferred measure can also be expressed in terms of a frequency of play and we report the according numbers below. 

The rest of the paper is organized as follows. In Section 2 we explain our new approach for measuring skill and chance 

in detail. Section 3 describes our data and in Section 4 we present the empirical results. Section 5 concludes. 

2. A new approach for measuring skill and chance 

Our empirical approach to measuring skill and chance is based on checking whether the past performance of players 

can predict their future success. In a game of pure chance, the past has no predictive power for the future (if the random 

draws are time independent). If players were successful in roulette, this does not imply that they will be successful in the 

future. In a game of skill, this is obviously different. As our measure of past success, we use the Elo rating ( Elo, 1978 ). It 

is well-established and immediately applicable to two-player games. Furthermore, we introduce a generalization of the Elo 

rating for multiplayer competitions, which is based on the rank-ordered logit model (see e.g. Beggs et al., 1981 ). 

Thus, the first step in our procedure is to rank all players in all games according to the Elo rating formula. This for- 

mula has one parameter that needs to be calibrated for each game. In Subsection 2.3 we explain in detail how this is done. 

Once all players are ranked, we can look at the distribution of player ratings for a given game. The wider this distribu- 

tion (measured by its standard deviation), the more heterogeneous are the player strengths. Differences in Elo ratings of 

players correspond to their predicted winning probabilities via a logistic function. 4 Therefore, the heterogeneity of ratings 

is correlated to the predictability of outcomes and is a proxy for the amount of skill involved. The standard deviation of 

a well-calibrated rating should approach zero in a game of pure chance. 5 In a game of pure skill like chess, the standard 

deviation is very high. 6 

The standard deviations of ratings give us an ordinal measure as they allow us to make statements such as “game A is 

more of a skill game than game B”. Our aim, however, is to define a general measure of skill and chance in games that 

allows to specify whether a game is “predominantly” a game of skill or chance, respectively. For this purpose our innovation 

is to construct a hybrid game that is a convex mixture of a game of pure skill and a coin flip. Chess is commonly regarded 

as an archetypical game of skill. It is also widely known and very large datasets are available, making it a good benchmark. 

Additionaly, we consider a more extreme theoretic benchmark for pure skill: a simulated game where all players can be 

ordered according to their playing strengths, and whenever two players face in a competition, the better one will always 

win. We call it “deterministic game”. A coin flip, on the other hand, is an archetypical game of chance. We construct our 

hybrid games “x %-chess” and “x %-deterministic” by replacing randomly (100 − x )% of matches in our data by a coin flip. 

In fact, for “x %-chess”, since chess has many draws, we allow our coin flip to have a “draw” as well. Thus, we replace the 

outcomes of the chosen matches by a “draw” with probability γ , where γ is the fraction of draws in the original chess 

dataset, by a “win” with probability 1 
2 (1 − γ ) and a “loss” with probability 1 

2 (1 − γ ) . For “x %-deterministic”, we simulate 

a dataset of players with distinct strengths. 7 For every match, there is a chance of (100 − x )% that the better player wins, 

while there is an x % chance that a coin flip will decide the winner. 8 

4 While Elo’s original proposal ( Elo, 1978 ) was based on a normal distribution, a logistic one is used today by some chess federations. 
5 We confirm this by replacing all outcomes by random results in three datasets. The standard deviations take values of between 0.3 for the smallest to 

0.003 for the largest dataset. For details, see Section A.5 . 
6 In fact, purely deterministic outcomes would correspond to an infinite rating difference between any two matched players. 
7 In fact, we simulated datasets with different parameters (number of players in the dataset, average number of matches per player) and found that our 

analysis is robust to these changes. We provide the do-files of our simulations with the supplementary material of this paper. 
8 In this case, the coin does not allow a draw. 
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We will use “50%-chess” and “50%-deterministic” as our benchmarks since this seems to be the most plausible inter- 

pretation of “predominantly skill” used by courts and legislators around the world. 9 Thus, if the standard deviation of a 

given game is higher than that of 50%-chess and 50%-deterministic, we will say that the game is predominantly skill. If it is 

below, it is categorized as a game of predominantly chance. Yet, our method is quite flexible as it can be used to calculate 

any arbitrary version of x%-chess or x%-deterministic as a potential benchmark. Similarly, one could replace chess with any 

other pure skill game, e.g. Go. 

2.1. Starting from two player Elo ratings 

The Elo rating ( Elo, 1978 ) is defined for two-player games. As data we have a finite set of players I to be ranked, a 

finite number of matches T , and a finite series of outcomes from each match t ∈ {1, ..., T } between players i and j , where 

i, j ∈ I . 10 Outcomes are denoted by S t 
i j 

∈ [0 , 1] and can, for example, be a win for player i ( S t 
i j 

= 1 ), a loss ( S t 
i j 

= 0 ), or, a 

draw ( S t 
i j 

= 0 . 5 ). In some games intermediate outcomes may be allowed. Due to the constant-sum nature of the outcomes, 

it holds that S t 
ji 

= 1 − S t 
i j 
. We denote the set of players involved in match t ∈ T by ρ( t ). 11 

The rating R t 
i 
of player i is an empirical measure of player i ’s playing strength. More specifically, player i ’s chance of 

winning against j is related to the difference in ratings via the expected score E t 
i j 

∈ (0 , 1) , which can also be thought of as 

i ’s expected payoff (e.g. when a draw is counted as 1 2 ) and is given by 

E t i j := 
1 

1 + 10 −
R t 
i −R t 

j 
400 

. (1) 

Expected scores range from zero (sure loss) to one (sure win). The parameter 400 in the logit function is a normalization 

used by chess federations which we retain for familiarity. 12 Given this parameter, a rating difference of 100 translates into 

an expected score of 0.64. 

We normalize the initial rating of each player to R 0 
i 

= 0 . 13 The Elo ratings of the players who were involved in match t 

are updated as follows, 

R t+1 
i = R t i + k · (S t i j − E t i j ) , 

∀ i, j ∈ ρ( t ), j � = i . The ratings of players who are not involved in match t do not change, i.e. ∀ i / ∈ ρ(t) : R t+1 
i 

= R t 
i 
. 

2.2. Generalizing Elo ratings for multiplayer competitions 

The concept of the Elo rating can be generalized to deal with multiplayer competitions by defining a proper framework. 

We adopt the perspective used by choice theorists, who extend models for pairwise comparison to n alternatives by applying 

a rank ordered logit model. Most of our notation of the two player case can be adopted, but some adjustments have to be 

made. We formalize this as follows. 

Again, we have a finite set of players I to be ranked, a finite number of matches T , a finite series of outcomes from each 

match t ∈ {1, ..., T }, and the set of players involved in match t ∈ T denoted by ρ( t ), where ρ( t ) ⊂ I . Let n t denote the number 

of players participating in t and let S t 
i 
≥ 0 be the outcome (payoff) in match t for player i ∈ ρ( t ). 

After each match, players in ρ( t ) are ranked according to their performance. There are n t ! different rankings. Let Q t be 

the set of possible rankings in match t and q t ∈ Q t a ranking. Then, q t 
k 
denotes the player ranked at position k (by ranking 

q t ) and q t ( i ) is the rank order of player i ∈ ρ( t ) under ranking q t . 

Each match t is characterized by a prize money structure that assigns a prize π t 
k 
to each position k in the ranking. We 

denote the probability of player i being ranked k -th in match t by P t (q t (i ) =k ) . Thus, the expected payoff of player i in 

match t equals 

E t i := 

n t 
∑ 

k =1 

π t 
k · P 

t (q t (i ) =k ) . 

The rating R t 
i 
of player i after match t is an empirical measure of player i ’s playing strength. We assume a standard 

rank-ordered logit model (see e.g. Beggs et al., 1981 ). Thus the probability of a particular ranking q t , where ranking position 

k ranges from 1 (first) to n t (last) is 

P (q t ) := 

n t −1 
∏ 

l=1 

e R 
t 
l 

∑ n t 

j= l e 
R t 
j 
. 

9 cf. footnote 1 . 
10 Matches are ordered chronologically by start time. 
11 This, for now, is always a pair of players. 
12 Due to our calibration method, the use of this parameter is without loss of generality ( Appendix A.3 shows this formally). 
13 Typically, chess federations use a positive initial rating. However, since only rating differences matter, this normalization is without loss of generality. 
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We can use this to calculate the probability P t (q t (i ) =k ) of player i ending up at a given position k . It is the sum of 

probabilities of rankings q t in which the k -th ranked player is player i . 

P t 
(

q t ( i ) =k 
)

= 

∑ 

q t ∈ { q t ∈ Q t | q t k = i } 

P 
(

q t 
)

Let π t 
max denote the maximum possible payoff of match t . We normalize the outcome as well as its expected value to 

represent shares of this payoff, 

ˆ S t i = 
1 

π t 
max 

· S t i , 
ˆ E t i = 

1 

π t 
max 

· E t i . 

Due to the normalization, these shares range from zero to one. 14 

Once more, the initial rating of each player is set to R 0 
i 

= 0 . Subsequently, the Elo ratings of the players who were 

involved in match t are updated, 

R t+1 
i = R t i + k · ( ̂  S t i −

ˆ E t i ) , ∀ i ∈ ρ(t) , 

and the ratings of players who are not involved in match t do not change, i.e. ∀ i / ∈ ρ(t) : R t+1 
i 

= R t 
i 
. 

Before we measure the standard deviation, we multiply all ratings by 400 to retain comparability with our two player 

ratings and established chess ratings. 

2.3. Calibrating the Elo ratings 

While the actual scores S t 
i 
are observed in our data, the expected scores are determined recursively and depend on k . 

To indicate this we write E t 
i 
(k ) . A crucial element of the procedure is the determination of an appropriate value for k . 

This so-called k -factor determines by how much ratings are adjusted after observing a deviation of the actual score from 

the expected score in each match. Clearly, there is a trade-off between allowing for swift learning on the one hand and 

reducing fluctuations of rankings due to the inevitable randomness in games with stochastic outcomes. In reality, the k - 

factor is chosen in many different, complicated, and relatively ad hoc ways by the different sports and chess federations. 15 

Our approach is to calibrate a k -factor for each game in order to obtain the best fit given our data. The goal is to predict 

the winning probabilities as accurately as possible. For this purpose we minimize the following quadratic loss function 

summing over all matches of all players: 

k ∗ := arg min 
k 

1 

T 

∑ 

t∈ T 
i ∈ ρ(t) 

(

S t i − E t i (k ) 
)2 

. (2) 

The graph of this loss function is roughly U-shaped for all of our datasets, and we derive the solution to the minimization 

problem numerically. 16 Note that for a game of pure chance, k ∗ takes a value very close to zero, leading to nearly identical 

ratings for every player (independent of the number of observations). 

It may be tempting to interpret a high k ∗-factor as a sign of a game of skill. However, there are two reasons why the 

k -factor is an undesirable measure of skill. First, the learning curve can differ from game to game. In some games, learning 

will be slow and gradual. In other games, learning could be condensed into a single “epiphany” ( Dufwenberg et al., 2010 ). 

The k -factor of these different types of games is likely to be very different although all may be games of skill. Second, the 

optimal k -factor depends on the number of observations in the data. This is so because of the above mentioned trade-off

between swift learning and reducing fluctuations. Our preferred measure, the standard deviation of ratings, does not suffer 

from these drawbacks. 

3. Data 

In order to apply the proposed measure in practice, we acquired large datasets of various games. These include matches 

of chess, poker, and online browser games. We remove matches between isolated players (i.e., players who are not connected 

to the main dataset via playing). 17 The remaining datasets are still quite large and are summarized by the statistics in 

Table 1 . For each game, Table 1 lists the total number of matches, as well as the number of players, and the number of 

“regulars”. The latter are those players who play at least 25 matches within our data. Furthermore, we report the maximum 

number of matches played by a single player. 

14 Note that the sum of these scores equals the sum of all payoffs divided by the maximum payoff. This sum amounts to 1 if and only if the maximum 

payoff is the only payoff, i.e. a “winner-takes-all ” competition. 
15 For instance, the United States Chess Federation (USCF) historically used a set of fixed k -factors, where the value for each player was chosen according 

to his present rating. Today, they calculate the k -factor for each player separately depending on his rating in a quite complex way, for details, see Glickman 

and Doan, 2017 . 
16 See Appendix A.4 for an example graph as well as an exact description of the numerical procedure. 
17 This removes, for most games, less than 0.3% of the original datasets. For poker and Go however, about 1.3% of the data had to be removed. 
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Table 1 

Statistics on the number of players, matches and regulars in the datasets. 

Number of players per match in parentheses for games with different for- 

mats. 

#Players #Regulars #Matches Max. Matches 

Chess 233,683 71,345 4,253,630 2,280 

Poker (9p) 105,787 5,799 94,261 3,095 

Poker (2p) 55,158 1,883 191,704 7,531 

Jewels (2p) 38,878 7,770 441,905 1,649 

Poker (6p) 38,277 966 26,975 1,100 

Solitaire (2p) 33,762 9,374 641,220 3,277 

Go 25,888 3,165 222,334 3,722 

Tennis 21,034 6,502 614,714 1,243 

Jewels (5p) 19,923 5,664 154,311 1,713 

Solitaire (3p) 17,240 4,355 200,489 6,980 

Solitaire (5p) 15,747 4,796 150,084 3,322 

Yahtzee (4p) 12,760 3,535 134,455 3,649 

Crazy 8s (2p) 12,392 2,136 102,187 2,945 

Tetris (2p) 10,484 882 47,507 514 

Yahtzee (2p) 9,969 1,678 106,722 1,378 

Yahtzee (3p) 9,932 1,467 61,212 1,847 

Skat 8,123 793 28,262 571 

Rummy (2p) 7,719 672 39,349 3,026 

Crazy 8s (3p) 6,872 190 11,062 656 

Backgammon 4,229 780 42,126 1,301 

Tetris (3p) 2,926 340 11,590 620 

Regarding chess, we were able to obtain a fairly comprehensive database provided by ChessBase. The observations date 

back to 1783 and include nearly 5 million matches in total. We restrict ourselves to a subset of the data ranging from 20 0 0 

to 2016, excluding any rapid and blitz formats. 18 The resulting subset consists of roughly 4.25 million matches from more 

than 230,0 0 0 players. 

The poker data consist of Sit-and-Go -tournaments (SnG), a competition type where players pay an equal entry fee, are 

endowed with an equal stack of chips, and compete until all chips are owned by one player. Each tournament is treated as 

one match. 19 We purchased the data from “HH Smithy”, a commercial provider of poker hand histories. The data we use 

for this project include 55,158 players who participate in 191,704 tournaments for the two-player version (so-called “heads- 

up”). Furthermore, we analyse 26,975 tournaments of 6 player poker (“short-handed”) including 38,277 players, as well as 

94,261 tournaments of 9 player poker (“full-ring”) including 105,787 players. All of these tournaments are “No Limit Texas 

Hold’em” matches, which is the most popular type of poker online. They took place between February 2015 and February 

2017. The entry fee for each tournament was $3.50. 

For Go data, we use a database dump from the popular webpage online-go.com published on Github. 20 We restrict 

attention to 19x19 Go games played without handicap, with Komi 6.5 and using Japanese rules. This corresponds to the 

default used on the website for creating a new game. In total, the data used consist of 222,334 matches played by 25,888 

players. 

In addition, we received data from one of Europe’s largest online gaming platforms, where a variety of games can be 

played in a web browser for money. The dataset includes more than 13 million matches in total, from more than 35 different 

games. We restrict the analysis to games that are (more or less) well-known, or comparable to well-known games, giving us 

more than 2 million matches. The number of different players for each game range from about 3,0 0 0 to 40,0 0 0. The games 

used are online versions of rummy, tetris, backgammon, skat, jewels, solitaire, yahtzee, and crazy eights. 21 

Most people would consider sports as games of skill. It may therefore be useful to compare our games also against a 

suitable two-person sport. Thus, we use a large database on men’s tennis, which was collected by Jeff Sackmann. 22 The 

614,714 matches we analyze were played at Grand Slam tournaments, ATP World Tour, ATP Challenger Tour, and ITF Future 

tournaments by 21,034 male tennis players between 1968 and 2017. 23 

18 These types of chess have more restrictive time limits for the players and are usually separated from “standard” chess, i.e. chess federations use separate 

ratings for these formats. 
19 Unlike cash-game poker, the participants of these heads-up tournaments cannot leave the match after every single hand (unless they choose to give 

up). They commit to this when starting the tournament. Therefore, we treat each heads-up tournament as one “match” in the sense of Section 2 . 
20 https://github.com/gto76/online- go- games using commit 9fe78d5 from 6 Mar 2016. 
21 For a detailed description of these games, see Appendix A.2 . 
22 https://github.com/JeffSackmann 
23 The top tennis players in the world compete in Grand Slam tournaments and the ATP World Tour, while the ATP Challenger Tour is considered to be 

the second highest level of competition. The players on this tour, among them talented young players, try to qualify for the ATP World tour. The ITF Future 

tournaments finally are the lowest tier of professional tennis and the starting point for nearly every professional player. 
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Table 2 

Summary statistics of rating distributions - regulars only 

Std. Dev. Min. 1% 99% Max. p sd p 99 1 Rep. 

Go 278.9 -659.2 -440.1 859.3 1,432.2 83.3 99.9 1 

Tennis 218.8 -389.6 -242.9 790.4 1,438.0 77.9 99.7 1 

Chess 171.7 -684.6 -289.4 579.6 945.3 72.9 99.3 3 

50% Determ. 122.8 -304.7 -263.0 244.1 295.7 67.0 94.9 5 

Tetris (2p) 95.7 -372.0 -221.2 269.5 374.8 63.4 94.4 7 

Tetris (3p) 61.6 -143.0 -116.8 204.3 256.7 58.8 86.4 15 

Jewels (2p) 48.8 -411.1 -154.7 109.5 225.0 57.0 82.1 23 

50% Chess 44.9 -201.7 -75.5 159.0 324.4 56.4 79.4 27 

Rummy (2p) 35.9 -137.3 -64.5 103.0 121.7 55.1 72.4 43 

Solitaire (5p) 32.7 -142.3 -75.0 99.9 218.6 54.7 73.2 51 

Skat 29.4 -96.7 -58.4 89.1 132.5 54.2 70.0 65 

Backgammon 24.8 -120.1 -62.9 73.2 130.1 53.6 68.6 89 

Solitaire (2p) 24.5 -176.8 -60.8 63.9 122.5 53.5 67.2 93 

Poker (6p) 23.2 -69.3 -45.6 71.2 86.5 53.3 66.2 103 

Poker (2p) 22.9 -98.6 -40.9 81.1 123.1 53.3 66.9 105 

Jewels (5p) 22.0 -225.5 -53.3 57.9 275.9 53.2 65.5 115 

Yahtzee (2p) 20.8 -65.3 -46.1 65.3 86.3 53.0 65.5 127 

Poker (9p) 18.3 -159.7 -37.5 58.1 93.7 52.6 63.4 165 

Solitaire (3p) 18.2 -99.7 -46.1 54.3 108.9 52.6 64.1 165 

Yahtzee (4p) 17.1 -86.3 -35.9 53.9 104.3 52.5 62.6 189 

Yahtzee (3p) 16.8 -50.5 -34.5 57.9 93.1 52.4 63.0 195 

Crazy 8s (2p) 15.2 -105.5 -32.0 39.9 184.8 52.2 60.2 239 

Crazy 8s (3p) 2.3 -5.4 -4.6 9.6 9.9 50.3 52.0 12,637 

4. Results 

In this section, we present the results of our analysis, in particular, the standard deviations of the respective best-fit Elo 

rating distributions, which resulted from our rating procedure described in Section 2.3 . Due to the fact that the Elo rating is 

based on an updating formula, the approximations of ratings become more and more meaningful the larger the number of 

matches played by a given player is. Thus, it seems prudent to require players to have played a certain minimum number 

of matches before including them into the rating distributions. On the other hand, when the required minimum number of 

matches is too high, we lose too many observations in some games. Since there is no obvious a priori cutoff value for the 

minimum number of matches, we calculate the rating distributions for all possible cutoffs from 1 to 100 games. 

Figure 1 shows the standard deviations for all two player games depending on the cutoff number of matches. We split 

the set of games into two graphs with different scales on the y-axis. The top graph of Figure 1 shows the games with 

relatively high standard deviations, the bottom one those with relatively low standard deviations. Our 50%-chess benchmark 

is included in both graphs to facilitate interpretation. The benchmark 50%-deterministic is depicted in the top graph. Note 

that we derived a threshold value which is independent from the minimum number of matches per player and therefore 

present it as a straight line. The value is robust to variations of the parameters of our simulations. 

Several facts are apparent from Figure 1 . First, the standard deviations for all games show an upward trend when we 

increase the cutoff number of matches. Initially the increase is quite steep but flattens out quickly. More importantly, for 

cutoffs of 25 matches and higher there is hardly any change in the relative order of games, which is really the main focus 

of our analyis. 24 Thus, we pick a cutoff number of matches of 25 as our preferred version and call such players “regulars”. 

However, we also report tables with cutoffs of 1 and 100 in Appendix A.1 . 

In Table 2 we report summary statistics for the Elo rating distributions of regular players. These include the minimum 

and maximum rating, the rating of the 1% and the 99% percentile player, and most importantly, the standard deviation of 

all ratings. We sort the table according to this value. Via formula (1) , we can transform the standard deviation of each game 

into the corresponding winning probability of a player who is exactly one standard deviation better than his opponent. We 

refer to this probability as p sd . For comparison, we also provide the winning probablities when a 99% percentile player is 

matched against a 1% percentile player, which we call p 99 1 . The winning probability p sd can be used to calculate the number 

of matches necessary so that a player who is one standard deviation better than his opponent wins more than half of the 

matches with a probability larger than 75%. 25 This number is reported in the repetitions column (abbreviated “Rep.”). 

Table 2 confirms in more detail what was already apparent from Figure 1 . The rating distributions of chess, Go, and tennis 

have very high standard deviations above 170. Our benchmark 50%-chess has a standard deviation of 44.9, 26 and almost all 

24 This also holds true for the respective graphs of the multiplayer games. 
25 This definition is used by e.g. Potter van Loon et al., 2015 . 
26 Note that 50%-chess has a standard deviation that is substantially below 50% of the standard deviation of chess. 
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Fig. 1. Standard deviation of rating distributions for different cut-off values (min. number of matches per player). Note: The top graph depicts games with 

relatively high standard deviations, the bottom one those with relatively low standard deviations. The 50%-chess benchmark is included in both graphs to 

facilitate interpretation. The benchmark 50%-deterministic is depicted in the top graph as a thick solid line. 

of the other games have a standard deviation substantially below this benchmark. Alternatively we could compare to the 

benchmark of 50%-deterministic, which would make our results even stronger in all cases. The online version of tetris is 

the single browser game that exhibits a larger heterogeneity of skill and positions itself clearly above the threshold of 50%- 

chess (but below 50%-deterministic) in all versions. Poker, on the other hand, is clearly below the threshold with a standard 

deviation of about 18-23 depending on the number of players, which ranks quite low in the list of all games we consider. 

Regarding winning probabilities, p sd , a poker player who is one standard deviation better than his opponent seems to have 

not more than a 53.3% chance of winning the match. This translates into more than 100 repetitions that are needed for 
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Table 3 

Average rating difference of pairs of matched players and standard devia- 

tions of ratings in two-player games 

Avg. rating diff in data Std. Dev. of ratings Ratio 

Go 220.0 278.9 0.79 

Tennis 155.1 218.8 0.71 

Chess 112.8 171.7 0.66 

Tetris (2p) 72.9 95.7 0.76 

Jewels (2p) 39.3 48.8 0.80 

50% Chess 36.3 44.9 0.81 

Rummy (2p) 37.1 35.9 1.03 

Backgammon 25.6 24.8 1.03 

Solitaire (2p) 22.2 24.5 0.91 

Poker (2p) 30.1 22.9 1.32 

Yahtzee (2p) 22.4 20.8 1.08 

Crazy 8s (2p) 12.7 15.2 0.84 
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Fig. 2. Rating distributions for chess, 50%-chess, and poker (2p) - regulars 

the better player to be ahead of his opponent with at least 75% probability. Similarly, the card game Skat fails to make the 

threshold of 50% skill. 27 

The histograms in Figure 2 provide the full distributions of Elo ratings of regulars for chess, 50%-chess, and poker. Com- 

paring the distributions of poker to those of chess and 50%-chess, it is apparent that the heterogeneity of ratings is much 

smaller for poker with most of the ratings concentrated around 0. 

We can now also reverse our procedure and ask: how much chance do we have to inject into chess and the deterministic 

game to obtain a distribution of player ratings similar to poker. 28 As a result, we find that we would have to replace roughly 

27 German courts refer to Skat as a game of skill, if it is played in tournaments and repeated for at least 36 times (see Bewersdorff (2004) ). On the online 

platform, matches consisted of three to twelve repetitions. 
28 For details on this procedure, see Appendix A.6 
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Table 4 

Coefficients, standard errors clustered on player level, t-values and R 2 -values for re- 

gression specification (3) 

#Obs β1 Robust Std. Err. t -value R 2 -value 

Go 357,564 0.662 ∗∗∗ 0.008 86.81 0.058 

Tennis 1,150,040 0.597 ∗∗∗ 0.006 97.55 0.026 

Chess 7,082,266 0.436 ∗∗∗ 0.003 160.94 0.018 

Tetris (2p) 56,204 0.331 ∗∗∗ 0.031 10.73 0.012 

Jewels (2p) 706,626 0.306 ∗∗∗ 0.010 31.59 0.007 

50%-Chess 7,082,266 0.331 ∗∗∗ 0.003 97.60 0.007 

Rummy (2p) 48,207 0.270 ∗∗∗ 0.022 12.38 0.006 

Backgammon 64,594 0.211 ∗∗∗ 0.023 9.07 0.003 

Solitaire (2p) 1,133,111 0.200 ∗∗∗ 0.006 32.75 0.002 

Poker (2p) 235,780 0.182 ∗∗∗ 0.015 12.26 0.001 

Yahtzee (2p) 170,365 0.175 ∗∗∗ 0.014 12.57 0.002 

Crazy 8s (2p) 145,472 0.103 ∗∗∗ 0.018 5.77 0.001 

∗∗∗ p < 0.001 

3 out of 4 chess games by a coin flip in order to produce a rating distribution as the one in poker (i.e., the standard deviation 

of ratings is about the same in poker and 25%-chess). In our deterministic data, about 85% of the results have to be replaced 

by chance. 

Result 1: Most of the games we consider produce rating distributions that are narrower than 50%-chess. In particu- 

lar, poker clearly fails to pass the 50% benchmark. Our calibration suggests that poker is roughly like 25%-chess or 15%- 

deterministic. 

Result 1 poses an empirical puzzle. If poker is a game that depends predominantly on chance, then why are there poker 

professionals? It is undisputed that there are quite a number of professional poker players, some of which are very well 

known from TV shows and live events. In addition, there are also numerous unknown professionals who seem to be able to 

make a living, in particular from online poker. These players continuously win more money than they lose, at least when 

their results are aggregated over longer time periods. 29 On first view, this might seem to be in conflict with our findings. 

However, there are two reasons why there is no contradiction. First, as we will show below, although the influence of skill 

in poker may be smaller than in other games, it is still significant. Online poker professionals often play many hours per 

day and several matches in parallel. Thus, by the sheer number of matches, they can make a decent return despite being 

only marginally favored in each match. Second, game selection is an important factor in poker. This is a crucial difference 

between chess and poker. In chess, one is mostly matched with opponents of similar strength. 30 On the other hand, in 

poker players try to find an opponent who is as bad as possible (a “fish” in poker terminology). This becomes apparent 

when considering the difference in playing strengths of the average pair of players entering a match in Table 3 . For most 

two-player games, the magnitude of this difference is between 0.66 and 1 standard deviations of the rating distribution. 

Poker, on the contrary, shows a value that corresponds to 1.32 times its standard deviation. Thus, it seems that professional 

online poker players can make a living by playing many matches and by using additional information to identify weak 

players. 31 

In order to demonstrate that skill is important in the games we consider, we present the results of simple OLS regressions 

which are inspired by the approach taken by Croson et al., 2008 . Whenever a player competes in a match, we use his 

previous results to calculate his average performance in the past. 32 Let S̄ t−1 
i 

denote the average of all past scores of player 

i up to match t − 1 . Then, we estimate the effect of this previous average performance on the outcome of the current 

match. 33 

S t i j = β0 + β1 · S̄ 
t−1 
i + ε t i (3) 

Whenever β1 is significant and positive, we conclude that skill plays a significant role. Furthermore, comparing across 

games, we interpret a larger coefficient as a sign of more skill in a game. 

We run OLS regressions with standard errors clustered on the player level. Table 4 shows the results. The first thing to 

note is that the coefficients for past average rank are highly significant ( p < 0.001) for all games we consider. As the past 

performance should have no predictive power for future performance if the game in question is a game of pure chance, 

this suggests that for all of the games considered in Table 4 , skill plays a statistically significant role. We can thus confirm 

the results of earlier studies for poker, in particular, Croson et al., 2008 . Remarkably, the coefficients in Table 4 have a very 

29 One of the authors made this experience himself when he played poker to finance his studies. 
30 Partially, this is due to players striving to find worthy opponents where no money is at stake, and partially due to tournament organizers enforcing it 

via the usage of swiss matching. 
31 This information is not automatically available to every player. Statistics can be acquired through tracking software while playing, or a priori be pur- 

chased from special vendors. Generally, stronger players use these more often, leading to asymmetric information among players. 
32 To be consistent with our previous approach, we analyze regulars, i.e. those players who made at least 25 games within the dataset. 
33 The 50%-chess dataset uses a modified independent variable. The average performance in the past is based on half real, half random performances. 



P. Duersch, M. Lambrecht and J. Oechssler / European Economic Review 127 (2020) 103472 11 

similar order as the one we obtained for our standard deviations measured using the best-fit Elo rating, despite using a 

different methodology. To facilitate comparison, the games in Table 4 are presented in the same order as in Table 2 . 

Result 2: All games we consider (including poker) show a statistically significant influence of skill. 

5. Conclusion 

The contribution of this paper is twofold. On the theoretical side we suggest a new way of classifying games as games of 

skill versus games of chance. Our preferred measure is the standard deviation of ratings after we rank all players according 

to a “best-fit” Elo rating. Most importantly, we provide a 50% benchmark that allows us to determine whether a game 

depends “predominantly” on chance. This benchmark is created by randomly replacing 50% of outcomes in our chess dataset 

as well as 50% of outcomes in an artificial deterministic dataset with coin flips. On the empirical side we employ large 

datasets from chess, poker, Go, and online browser games to give our method a first practical test. 

Our results clearly show that most popular games in our data predominantly depend on chance in the sense that they 

do not pass the 50% threshold. This holds in particular for poker, which we can classify as roughly “25%-chess” or “15%- 

deterministic”. This does by no means imply that there is no skill in poker. However, if one adopts our view that “predom- 

inantly” is supposed to mean “by more than 50%”, and if one accepts our way of inducing a 50%-benchmark, then, as a 

conclusion, poker is a game of chance. 

There are some caveats to mention. One may argue that “predominantly” might not translate to “more than 50%”. Of 

course, politicians may decide to use a less strict benchmark instead, e.g. by changing the wording of the law to require less 

than predominance of skill. As long as a percentage-based interpretation is possible, our benchmark can easily be changed 

to accommodate “x %-chess” for any value of x . 

It is worth noting that, when replacing chess or deterministic outcomes by a coin flip, the model and its transitivity 

are affected (e.g., for 50%-chess winning probabilities are bounded between 0.25 and 0.75, while extreme rating differences 

would imply winning probabilities close to 0 and 1). However, we do not want to rate any actual 50%-chess players but 

rather use this artificial game as a benchmark. 34 

One inevitable feature of any empirical approach is that our results depend on the population we observe. 35 Suppose 

that we observed chess matches in a completely homogeneous population, where every player had exactly the same skill. 

If we applied our method to this sample, we would conclude that chess is a game of chance as the distribution of ratings 

would be very much concentrated at zero. Or consider a population with separate pools of players such that players are 

completely “stratified”, i.e. good players play only against good players and bad players only against bad players. This could 

happen when players are matched by a platform into extremely homogeneous groups (or because players choose similar 

opponents voluntarily). If the good players never play against the bad players, the best of the bad players will have a 

ranking comparable to the best of the best players (because they both win most of their games). As a result, the overall 

ranking distribution would be compressed. The Elo rating is capable of handling this issue if at least sometimes some of the 

good players are matched against some of the bad players. Transitivity of the Elo ranking will then detect the heterogeneity 

in skills, which allows it to rank the players accurately. For this reason, any ranking method that does not control for the 

strength of the opponents would underestimate the skill distribution. 

The purpose of this paper is not to discuss the reasonableness of the current regulation of gaming. Gambling regulation is 

a much-debated issue. While arguably pathological gambling (or problem gambling) imposes social costs on societies, both 

the identification of pathological gamblers as well as the estimation of the respective welfare losses are difficult. A recent 

study by Filippin et al. (2020) tries to identify pathological gamblers by items from the DSM-5 of the American Psychiatric 

Association. They find that gamblers showing severe scores of pathological gambling are more likely to play games that are 

pure chance games versus games that have some skill components. Similarly, Binde et al., 2017 find that the percentage 

of problem gamblers is higher among players who choose to play casino games than among players who prefer sports 

betting. In general, it seems fair to assume that few people become addicted to playing chess for money, since repeated, 

predictable, losses against better players would reduce the likelihood of addiction. In poker, on the other hand, even a fairly 

inexperienced player may win a few hands or even a tournament and very good players may lose early. Park and Santos- 

Pinto (2010) find that overconfidence differs significantly for chess and poker players, which might contribute to games of 

skill being less problematic than those with a higher degree of randomness. 36 

In this study, we leave open whether games that “predominantly depend on chance” should be treated differently from 

skill games. We are neither challenging nor justifying the decision of legislators to have a binary classification. The legal 

status of gaming simply serves as a starting point for our analysis. However, we conjecture that games with a higher degree 

34 One could also adjust the method for 50%-chess and calculate expected scores according to ˆ E t 
i j = 0 . 5 · 0 . 5 + 0 . 5 · E t 

i j , which is a combination of the 

expected outcome of a coinflip and the original Elo formula. Approximating the players’ ratings with this adjusted formula leads (after calibration of the 

optimal k-factor) to p sd = 56 . 7 and p 99 1 = 72 . 4 , which would not change our main results. 
35 For our algorithm, it is sufficient to track the players and the winner of a competition. However, if you remove the tracking of players (i.e., “anonymous 

data”), the results of a game of pure skill (say, our “deterministic” game) would be indistinguishable from the results of a game of pure chance (i.e., coinflip 

results). For our research, we aimed to ensure that our datasets are as comprehensive and representative as possible. Unfortunately, no purely theoretical 

approach exists that is able to address games like poker in its full complexity. 
36 For more evidence on overconfidence, see also Camerer and Lovallo (1999) , Biais et al. (2005) , Malmendier and Tate, 2005 , and Malmendier and Tate, 

2008 . 
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Table 5 

Summary statistics of rating distributions - all players 

Std. Dev. Obs. Min. 1% 99% Max. p sd p 99 1 Rep. 

Go 140.4 25,888 -659.2 -299.5 538.6 1,432.2 69.2 99.2 3 

Tennis 143.0 21,034 -389.6 -212.3 597.3 1,438.0 69.5 99.1 3 

Chess 123.8 233,683 -684.6 -247.8 440.6 945.3 67.1 98.1 5 

50% Determ. 122.8 1,000 -304.7 -263.0 244.1 295.7 67.0 94.9 5 

Tetris (2p) 53.4 10,484 -372.0 -123.4 184.2 374.8 57.6 85.5 19 

Tetris (3p) 28.8 2,926 -143.0 -70.3 107.8 284.1 54.1 73.6 67 

Jewels (2p) 27.2 38,878 -411.1 -79.1 80.1 225.0 53.9 71.4 75 

50% Chess 28.6 233,683 -201.7 -59.0 110.9 324.4 54.1 72.7 67 

Rummy (2p) 14.9 7,719 -137.3 -37.6 55.7 121.7 52.1 63.1 249 

Solitaire (5p) 19.3 15,747 -142.3 -51.0 71.8 218.6 52.8 67.0 149 

Skat 12.3 8,123 -96.7 -30.3 45.6 132.5 51.8 60.8 365 

Backgammon 12.4 4,229 -120.1 -32.8 42.4 130.1 51.8 60.7 359 

Solitaire (2p) 14.2 33,762 -176.8 -40.1 48.2 122.5 52.0 62.4 275 

Poker (6p) 5.9 38,277 -69.3 -12.3 20.5 86.5 50.8 54.7 1,581 

Poker (2p) 6.1 55,158 -98.6 -12.1 20.5 123.1 50.9 54.7 1,471 

Jewels (5p) 12.6 19,923 -225.5 -38.5 40.4 275.9 51.8 61.2 345 

Yahtzee (2p) 9.8 9,969 -65.3 -26.3 38.4 86.3 51.4 59.2 577 

Poker (9p) 5.5 105,787 -159.7 -12.2 20.7 93.7 50.8 54.7 1,793 

Solitaire (3p) 10.0 17,240 -99.7 -28.0 36.2 108.9 51.4 59.1 553 

Yahtzee (4p) 9.6 12,760 -86.3 -24.1 38.2 104.3 51.4 58.9 601 

Yahtzee (3p) 7.4 9,932 -50.5 -18.7 29.4 93.1 51.1 56.9 991 

Crazy 8s (2p) 7.4 12,392 -105.5 -18.1 23.6 184.8 51.1 56.0 997 

Crazy 8s (3p) 0.7 6,872 -5.4 -1.6 2.2 9.9 50.1 50.5 56,868 

of chance elements might be more subject to problem gambling (and that games of chance potentially impose higher social 

costs than games of skill). In order to eventually analyze potential welfare losses from players choosing games of chance over 

games of skill, one first needs to define a validated measure of skill and chance. Thus, we see our study as an important 

building block for assessing the welfare cost of gambling in future studies. 

Appendix A 

A1. Results for all players and players with at least 100 matches in our dataset 

As a robustness check, Table 5 shows results for the rating distributions when all players are included (i.e. when the 

cutoff for the minimum number of matches is set to 1). To facilitate comparison, the games are presented in the same 

order as in Table 2 . It is noticeable that the standard deviations of all games are substantially lower than in Table 2 . This 

is a consequence of the fact that our data include many players who only compete in a few matches and whose ratings 

therefore remain close to the initial value of 0. However, the overall ranking of games changes little. Go and poker are 

ranked slightly lower if all players are included. 

Table 6 shows the results when the cutoff for the minimum number of matches is set to 100. When restricting the 

distributions to these players, the order of games is nearly the same as in Table 2 . However, note that for some games the 

number of observations is very low. Poker is still clearly below the benchmark of 50%-chess and 50% deterministic. 

Figures 3 and 4 show the histograms corresponding to Figure 2 when the cutoff for the minimum number of games is 

set to 1 or 100, respectively. Again, the qualitative results are independent of the cutoff chosen. 

A2. Description of browser games 

From the multitude of games that are offered on one of Europe’s largest online gaming platform, we selected browser 

games that do not differ significantly from popular versions of those games. Nevertheless, some adjustments were made by 

the platform. On the one hand, games that are originally single person games are played as tournaments, on the other hand 

the platform tries to minimize the influence of random devices e.g. by giving competitors the same cards or dice rolls. 

The implementations of skat, crazy eights and rummy do not differ much from the popular variants. Crazy eights (also 

known as “Mau-Mau”) is a shedding-type card game with the objective to get rid of all cards. Rummy is a matching card 

game with the objective to build melds and to get rid of all cards by doing so. Skat is a three-player card game that is 

specifically popular in Germany. 

The two-player board game backgammon offered by the platform is nearly identical to the popular version of the game. 

The goal for each player is to remove all of his playing pieces from the board. 

The single player games solitaire (also known as “patience”), jewels, and tetris are complemented with a scoring scheme 

in order to establish a winner. In solitaire the players aim to sort a layout of cards. The initial setup of cards is identical for 

both players in the online variant. Jewels and tetris are tile-matching puzzle games. While in jewels both players have to 
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Table 6 

Summary statistics of rating distributions - players with 100 or more games only 

Std. Dev. Obs. Min. 1% 99% Max. p sd p 99 1 Rep. 

Go 296.2 1,023 -659.2 -464.1 933.6 1,432.2 84.6 100.0 1 

Tennis 222.6 3,419 -317.0 -156.9 877.1 1,438.0 78.3 99.7 1 

Chess 188.3 18,963 -684.6 -200.9 703.4 945.3 74.7 99.5 3 

50% Determ. 122.8 1,000 -304.7 -263.0 244.1 295.7 67.0 94.9 5 

Tetris (2p) 84.7 139 -224.1 -156.1 260.3 308.2 62.0 91.7 9 

Tetris (3p) 63.2 45 -121.2 -121.2 161.6 161.6 59.0 83.6 15 

Jewels (2p) 58.2 1,899 -411.1 -205.5 128.8 225.0 58.3 87.3 17 

50% Chess 56.8 18,963 -201.7 -73.5 205.6 324.4 58.1 83.3 17 

Rummy (2p) 46.5 108 -137.3 -100.1 118.3 121.7 56.7 77.9 25 

Solitaire (5p) 42.2 1,759 -142.3 -90.2 114.4 218.6 56.0 76.5 31 

Skat 42.0 111 -96.7 -82.9 112.8 132.5 56.0 75.5 31 

Backgammon 36.4 179 -120.1 -86.1 106.1 130.1 55.2 75.2 41 

Solitaire (2p) 30.7 3,297 -176.8 -80.5 76.9 122.5 54.4 71.2 59 

Poker (6p) 32.0 172 -69.3 -58.6 85.8 86.5 54.6 69.7 55 

Poker (2p) 30.8 446 -98.6 -53.1 104.2 123.1 54.4 71.2 59 

Jewels (5p) 30.6 1,951 -225.5 -67.5 76.1 275.9 54.4 69.6 59 

Yahtzee (2p) 29.2 444 -65.3 -55.5 77.8 86.3 54.2 68.3 65 

Poker (9p) 27.2 1,263 -159.7 -62.4 67.4 93.7 53.9 67.9 75 

Solitaire (3p) 25.6 1,387 -99.7 -57.9 70.2 108.9 53.7 67.6 85 

Yahtzee (4p) 23.7 1,322 -86.3 -47.2 69.4 104.3 53.4 66.2 99 

Yahtzee (3p) 24.2 371 -50.5 -40.4 78.9 93.1 53.5 66.5 95 

Crazy 8s (2p) 26.7 302 -105.5 -50.5 60.5 184.8 53.8 65.4 77 

Crazy 8s (3p) 4.4 15 -5.4 -5.4 9.9 9.9 50.6 52.2 2,825 
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Fig. 3. Rating distributions for chess, 50%-chess, and poker (2p) - all players 
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Fig. 4. Rating distributions for chess, 50%-chess, and poker (2p) - players with 100 or more games only 

play the same patterns of gems, in tetris the order of tetrominos is predetermined and equal for the competitors. In all of 

these three games, identical strategies will lead to the exact same outcome. 37 

The latter also holds for the offered version of yahtzee (also known as “Kniffel”). It is a dice game with the objective to 

score by making certain combinations. In the online version, all rolls are predetermined and identical for the players. 

A3. Normalization of Elo rankings 

In this subsection, we provide a formal proof of the fact that the normalization parameter in the USCF version of the Elo 

rating does not change our results. The main reason is our calibration of the k-factor, as the minimization process adjusts 

the optimal k-factor accordingly. Thus, the results are equal apart from scaling. The USCF uses 

E t i j := 
1 

1 + 10 −
R t 
i −R t 

j 
400 

, (A.1) 

to calculate expected outcomes. Furthermore, the update formula to adjust ratings after each observation of S t 
i j 
is 

R t+1 
i = R t i + k ·

(

S t i j − E t i j 
)

. (A.2) 

We show that, given a constant set of observations S t 
i j 
and equal initial ratings R 0 

i 
= ˆ R 0 

i 
, the expectation formula 

ˆ E t i j := 
1 

1 + 10 −( ̂ R t 
i −

ˆ R t 
j ) 

(A.3) 

and the update formula 

ˆ R t+1 
i = ˆ R t i + ̂  k ·

(

S t i j −
ˆ E t i j 

)

, (A.4) 

37 Nevertheless, draws are very unlikely to occur, as time also counts towards the score and therefore an identical strategy would have to be identical in 

timing as well. 
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where 

ˆ k = 
1 

400 
· k, (A.5) 

lead to the same predictions for each and every game. The resulting ratings (and therefore, the standard deviation of their 

distribution) are equal apart from scaling. 

Definition A.1. Two Elo ratings are equivalent if they lead to the same expected outcomes for every player and every match. 

Proposition 1. Assume a constant set of observations S t 
i j 

and equal initial ratings R 0 
i 

= ˆ R 0 
i 

= 0 . Then, the USCF Elo rating with 

expectation formula (A.1) and updating formula (A.2) is equivalent to the Elo rating with expectation formula (A.3) and updating 

formula (A.4) . 

Proof. First, we show that 

ˆ R t i = 
1 

400 
· R t i ∀ i, t (A.6) 

by induction over t . At t = 0 , all ratings equal zero. Therefore, it is left to show that, given (A.6) , 

ˆ R t+1 
i = 

1 

400 
· R t+1 

i . 

Note that (A.6) yields 

−( ̂  R t i −
ˆ R t j ) = −

(R t 
i − R t 

j ) 

400 
. (A.7) 

Now, by definition, 

ˆ R t+1 
i = ˆ R t i + ̂  k ·

(

S t ij −
ˆ E t ij 

)

= ˆ R t i + ̂  k ·

(

S t ij −
1 

1 + 10 −
(

ˆ R t 
i −

ˆ R t 
j 
)

)

. 

Using (A.5), (A.6) , and (A.7) yields 

ˆ R t+1 
i = 

1 

400 
· R t i + 

1 

400 
· k ·

( 

S t ij −
1 

1 + 10 −
( R t i −R t 

j ) 
400 

) 

= 
1 

400 
·
(

R t i + k ·
(

S t ij − E t ij 
))

= 
1 

400 
· R t+1 

i . 

Finally, given (A.7) holds, it follows that 

E t i j = ˆ E t i j ∀ i, j ∈{ 1 , ...k } , t ∈{ 1 , ..., T } . 

�

Remark 1. If k ∗ minimizes the loss function of USCF Elo rating with expectation formula (A.1) and updating formula (A.2) , 

then ˆ k ∗ = 
1 

400 · k 
∗ minimizes the loss function of the Elo rating with expectation formula (A.3) and updating formula (A.4) . 

A4. Minimization of loss function 

Here we describe the numerical procedure used to minimize the quadratic loss function given in (2) . Let 

L (k ) := 
1 

T 

∑ 

t∈ T 
i, j∈ ρ(t) 

(

S t i j − E t i j (k ) 
)2 

be the value of the loss function for a given k-factor. Our algorithm is based on the improvement relative to L (0) , which 

is the loss when all ratings are set to the initial value of zero. For all games we considered, the loss value is roughly U- 

shaped, starting high at L (0) but increasing again after k ∗. As an example see Figure 5 , which shows the loss for the game 

of backgammon. 

To find the minimum we conduct a grid search moving to a finer and finer grid in each iteration. We start by consid- 

ering five equidistant k -values of 0, 40, 80, 120 and 160. 38 Suppose 40 produces the lowest loss among those five, then we 

continue by halving the grid size taking 40 as center point k ∗, i.e., the new grid will consist of 0, 20, 40, 60, and 80. We 

stop this procedure at k ∗ once we have achieved a desired degree of precision, which we define as 

[ L (k + ) − L (k ∗) ] + [ L (k −) − L (k ∗) ] 

L (0) − L (k ∗) 
< 10 −6 , 

where k + denotes the grid point above k 
∗ and k − the grid point below k ∗ (see Figure 6 ). 

Table 7 shows the results of the procedure for each dataset. It includes the optimal k -factor derived through the numeri- 

cal algorithm, k ∗, as well as the resulting value of the loss function L (k ∗) when applying this k -factor to the data. The value 

38 We chose these initial values conservatively to guarantee that the solution to our minimization problem is in the interior of this interval. 



16 P. Duersch, M. Lambrecht and J. Oechssler / European Economic Review 127 (2020) 103472 

0.4948

0.4961

0.4974

0.4987

0.5

0 2 4 6 8 10 12 14

L
(k
)

k

Fig. 5. Loss as function of k-factor for the game “Backgammon”
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Fig. 6. Numerical procedure for the game “Backgammon”

of the loss function can be interpreted similar to the Brier score ( Brier, 1950 ). The lower this value, the more accurate are 

the predictions of outcomes. 39 

39 For games where every match has an outcome of 0 or 1, per definition L (0) = 0 . 5 , as this loss would result when predicting both players to be equally 

likely to win in each of the matches. Note that chess and 50%-chess are the only datasets which include draws. This significantly reduces the values of 

their loss functions, because a draw is very close to the predicted outcome whenever two players of similar skill compete with each other. 
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Table 7 

Derived k -factors and corresponding loss- 

function values 

L (0) L (k ∗) k ∗

Go 0.5 0.384 104.1 

Tennis 0.5 0.411 48.1 

Chess 0.359 0.298 57.0 

Tetris (2p) 0.5 0.475 39.5 

Jewels (2p) 0.5 0.491 12.4 

50% Chess 0.359 0.350 12.0 

Rummy (2p) 0.5 0.491 9.8 

Backgammon 0.5 0.495 5.7 

Solitaire (2p) 0.5 0.497 4.9 

Poker (2p) 0.5 0.494 4.9 

Yahtzee (2p) 0.5 0.496 4.4 

Crazy 8s (2p) 0.5 0.498 3.6 

Table 8 

Standard deviations for artificial pure chance datasets 

”Pure Chance” (Backgammon Data) ”Pure Chance” (Poker (2p) Data) ”Pure Chance” (Solitaire (2p) Data) 

#Players 4,229 55,158 33,762 

#Regulars 780 1,883 9,374 

#Matches 42,126 191,704 641,220 

Std. Dev. (All) < 0.3 < 0.004 < 0.003 

Std. Dev. (Regulars) < 0.6 < 0.015 < 0.005 

Table 9 

Summary statistics of rating distributions - simulated x%-deterministic 

Std. Dev. Obs. Min. 1% 99% Max. p sd p 99 1 

50% Determ. 122.8 1,000 -304.7 -263.0 244.1 295.7 67.0 94.9 

40% Determ. 91.9 1,000 -232.4 -193.8 192.6 223.8 62.9 90.2 

30% Determ. 61.1 1,000 -156.3 -127.6 129.4 172.1 58.7 81.4 

20% Determ. 32.3 1,000 -95.9 -67.3 69.2 87.1 54.6 68.7 

15% Determ. 22.7 1,000 -66.0 -51.3 50.7 65.0 53.3 64.3 

10% Determ. 10.7 1,000 -32.4 -23.1 23.8 34.3 51.5 56.7 

A5. Pure chance simulations 

In order to interpret the results of our algorithm and compare different datasets, we want to verify whether pure chance 

simulations produce standard deviations close to zero like the theory would predict. Furthermore, we want to test whether 

the size of the dataset has any impact. For this reason, we chose three datasets of different size (backgammon, poker (2p) 

and solitaire (2p)) and replace the result of every match by a coinflip. Afterwards, we measure these artificial datasets with 

our procedure. 40 Table 8 summarizes the results. 

The standard deviations of estimated playing strengths in our pure chance simulations turn out to be very small, while 

an increase in observations seems to drive the results even closer to the theoretical prediction of zero. The reason for this 

is our calibration method of the optimal k -factor. One could think of the k -factor to measure the predictive power of the 

observed (randomly generated) results, which by the law of large number tends toward zero if the number of observations 

increases. 

A6. x% simulations 

In Table 9 , we summarize the results of our x%-deterministic simulations. We can use these results to estimate how 

much chance needs to be injected into the deterministic game to end up with a distribution similar to poker. The standard 

deviations of our poker data range from 18 to 23, while 15% deterministic has a standard deviation of 22.7. Therefore, we 

call poker to be roughly 15% deterministic. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.euroecorev.2020. 

103472 

40 Due to the computational effort, we restrict ourselves to report upper bounds instead of calculating the standard deviations to full precision. 
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