
I think I know less than I thought.
—Participant’s comment, after completion of the  

bicycle drawing task

Recent research has suggested that people often overes-
timate their ability to explain how things function. Rozen-
blit and Keil (2002) found that people overrated their un-
derstanding of complicated phenomena. This illusion of 
explanatory depth was not merely due to general overcon-
fidence; it was specific to the understanding of causally 
complex systems, such as artifacts (crossbows, sewing 
machines, microchips) and natural phenomena (tides, rain-
bows), relative to other knowledge domains, such as facts 
(names of capital cities), procedures (baking cakes), or nar-
ratives (movie plots). Rozenblit and Keil (2002; see also 
Mills & Keil, 2004) investigated why people overestimated 
their knowledge and which factors changed their ratings 
when they were confronted with evidence of the inadequacy 
of their understanding. Rozenblit and Keil found that peo-
ple reduced their estimation of their own knowledge after 
having to provide functional explanations. Similarly, stud-
ies of naive physics have demonstrated that adults’ under-
standing of mechanics (e.g., trajectories of falling objects 
and displacement of liquids; Kaiser, Proffitt, Whelan, & 
Hecht, 1992) and optics (e.g., mirrors; Bertamini, Spooner, 
& Hecht, 2003) is often sketchy, inaccurate, and inconsis-

tently applied. Together, these results demonstrate weak-
nesses in people’s understanding of everyday objects and 
events, and they appear to provide evidence against expla-
nation-based (or theory-based) theories of categorization 
(Murphy, 2002; Murphy & Medin, 1985).

Explanation-based theories assume that conceptual 
knowledge is represented like scientific theories in that 
concepts are causally related to each other and that expla-
nations underlie what can be directly observed (Ahn & 
Luhmann, 2005). Murphy and Medin (1985) and, from de-
velopmental research, Carey (1985) and Keil (1989), have 
proposed that our concepts are our ways of explaining the 
world to ourselves and others. Explanation-based theories 
contrast with similarity-based theories of categorization 
(prototype and exemplar theories), which assume that 
there is some simpler means of categorizing stimuli on the 
basis of similarity clusters in an internal representational 
space (Murphy, 2002). Explanation-based theories instead 
suggest that features of concepts are related to each other 
(often causally) within structured internal representations. 
These more complex representations incorporate our gen-
eral knowledge of the world and our intuitive theories about 
which aspects of a stimulus are most important when we 
are judging similarity (e.g., causal vs. superficial features). 
Concepts are thus not merely lists of independent features 
but rather include an “explanation” of the appearance, 
function, and other aspects of exemplars of that concept. It 
is important to note that most proponents of explanation-
based theories emphasize that these “theories” are informal 
explanations of the world and generally are not fully coher-
ent, organized, scientific accounts (Murphy, 2002).

Under certain circumstances, background knowledge 
has been found to influence concept acquisition and cat-
egorization performance (Lin & Murphy, 1997; Murphy, 
2002; Pazzani, 1991; Wisniewski, 1995). Nevertheless, this 
information may not be routinely available to us (Smith & 
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Sloman, 1994). In particular, if our causal understanding of 
familiar and relatively simple objects is scanty or inaccu-
rate—as Rozenblit and Keil’s (2002) results suggest—then 
this knowledge may not be a central component of our con-
cepts. Instead, a well specified similarity-based model of 
categorization may provide a better account of our normal 
conceptual processes than explanation-based theories do.

Keil and Wilson (Keil, 2003b; Wilson & Keil, 2000), 
however, have argued that the finding that people have 
an illusion of explanatory depth (Rozenblit & Keil, 2002) 
is not necessarily inconsistent with explanation-based 
theories, even though such theories assume that causal 
and functional knowledge underpin our concepts. Keil 
(2003b) has suggested that, even if our understanding of 
how objects function is fragmentary and shallow, it may be 
sufficient to track the causal structure of the world. Fur-
thermore, this minimal understanding would benefit us 
by not overburdening our limited information-processing 
and information-storage capacities.

Rozenblit and Keil (2002) focused on subjective mea-
sures of people’s knowledge of objects and phenomena. 
Their primary measure was the change in a person’s self-
ratings of the quality of his or her written functional ex-
planations. In order to extend their findings, in the present 
study I focused on measuring people’s objective under-
standing of everyday objects by asking them to draw object 
parts and to answer forced-choice questions about object 
function. This study assessed people’s understanding of 
the functioning of a familiar and relatively simple object: 
the bicycle. The bicycle was selected for two reasons. First, 
Rozenblit and Keil predicted that mechanical objects with 
visible parts would produce a greater overestimation of 
understanding than would electrical artifacts (like com-
puters) with hidden parts. They suggested that people may 
mistake being able to see the mechanism of an object (as is 
the case for bicycles, zippers, and can openers) with being 
able to understand how the object itself works. Second, 
bicycles are familiar, everyday objects. In the present stud-
ies, of those participants who claimed to never cycle or to 
only rarely cycle (n  193), 97% had learned to cycle and 
45% owned a bicycle. Additionally, most British people 
frequently see bicycles parked and being ridden.

The present study investigated the level of detail and the 
accuracy of the information that people have about how 
bicycles work. If people’s causal explanations are indeed 
central to their conceptual knowledge, then they should 
know how important parts of a bicycle are causally re-
lated. Note that this information is distinct from (and may 
be independent of) the motor knowledge necessary to ac-
tually ride a bicycle. The explanation-based approach to 
conceptual knowledge assumes that people have informal 
theories about all their concepts (e.g., snakes, volcanoes, 
nests), not just those artifacts that they use in their everyday 
lives. Motor knowledge may include only minimal causal 
information. For example, to ride a bicycle we need to 
know that pushing the top pedal forward and down drives 
us forward; we do not have to know how the pedal move-
ment is transformed into the motion of the bicycle (i.e., the 
roles of the chain and the back wheel). Also, perceptual 

information acquired online probably underpins people’s 
ability to ride a bicycle: People who rarely cycle may rely 
on seeing and feeling the bicycle to support their motor 
performance. Well designed man-made artifacts have af-
fordances and physical constraints that help to specify how 
they are to be used (Norman, 2002). Although we may be 
able to deduce how a bicycle works by looking at it, this 
information may not be stored as part of our conceptual 
knowledge of bicycles.

EXPERIMENT 1 
Nonexperts Who Were Not Told  

What the Study Was Testing

Method
Participants. Eighty-one unpaid volunteers were tested in three 

groups. They were prospective psychology students, their parents 
who had come to the University of Liverpool for an Open Day, and 
psychology undergraduates. Most participants either rarely cycled 
(31%) or never cycled (49%).

Materials and Procedure. The participants were given a single 
sheet of A4 (210 mm  297 mm) paper, folded in half. The bicycle 
drawing task (see Figure 1) and the forced-choice task (see Figure 2) 
were on the top and bottom of the first side, respectively, and a ques-
tionnaire was on the other side. First, the participants were asked 
to rate their functional knowledge of bicycles on a scale from 1 (“I 
know little or nothing about how bicycles work”) to 7 (“I have a 
thorough knowledge of how bicycles work”). Next, they were asked 
to draw the pedals, chain, and extra frame onto a sketch of a bicycle 
(see Figure 1). Then, they were asked to select which of four alterna-
tive pictures was correct for the bicycle frame, pedals, and chain (see 
Figure 2). This checked that drawing errors were not merely due to 
problems sketching or to scoring drawing errors. Finally, the partici-
pants were asked to rerate their functional knowledge of bicycles 
and fill out a questionnaire about their age, gender, and experience 
with bicycles. The study took 5–10 min to complete. The partici-
pants were given the bicycle questionnaire without being told what 
was being investigated.

Three types of errors, each of which would have severely impaired 
the functioning of a bicycle (see Figure 3 for examples), were re-
corded in the drawings:

Frame errors: drawing the frame joining the front and back 
wheels, making steering impossible.

Pedal errors: failing to draw the pedals between the wheels and 
inside the chain so the pedals could not drive the chain (if the pedals 
were separated from the chain, see Figure 3B, or were omitted) or 
rendered the chain unnecessary (if the pedals were drawn attached to 
the center of the front or back wheel, see Figures 3A and 3D). These 
errors often also meant that cyclists would find it difficult to reach 
the pedals with their feet.

Chain errors: failing to draw the chain around the pedals and the 
back wheel. In most errors the chain was depicted looped around 
both the front wheel and the back wheel. This design would require 
the chain to stretch when the cyclist was steering.

In the forced-choice task, the correct responses were first for the 
frame, second for the pedals, and fourth for the chain (see Figure 2). 
All other responses were errors.

Results
Over 40% of nonexperts made at least one error in both 

the drawing and the forced-choice tasks (see Table 1). In 
this and the subsequent experiments, error scores were al-
most as high on the forced-choice task as on the freehand 
drawing task, indicating that production problems were 
not the primary cause of people’s deficiencies (Kaiser 
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et al., 1992; Nobes, Martin, & Panagiotaki, 2005). Some 
posttest comments were “I think context matters, I know 
a bike when I see it but it’s different to recall [it] when sat 
in a room”; “Thinking about it in more detail, I realised I 
had no idea about its structure”; “I can’t believe I found it 
so difficult to remember what a bike frame looks like!”; 
“I thought I knew more about the workings than I actually 

did”; “It’s hard to picture a bicycle when you have to”; “I 
did not think long enough about the front wheel turning”; 
and “I never knew how little I knew about things until I 
had to draw them.”

Results from naive physics have shown that when 
people are given more lifelike alternatives, their ability 
to discriminate unnatural from realistic situations can im-

Figure 1. Response sheet for bicycle drawing task.

 

Second, as best you can, please fill in on the above schematic bicycle drawing the main bits of
the frame of the bicycle that you think are missing, the pedals and the bicycle chain. Use the
symbols given on the right of the drawing to show the frame, pedals and chain.   

Frame

Pedals

Chain   

First,  please can you rate your knowledge of how bicycles work on a scale from 1 to 7 where 1
means “I know little or nothing about how bicycles work” and 7 means “I have a thorough
knowledge of how bicycles work”. You do not need to be an expert to give yourself a “7” rating—an
expert would be rated as 7++. Also, you should rate how much you know, not how much you think
you know compared to other people. Rating: _______

Figure 2. Questions for forced-choice task. Correct responses: frame  first bicycle; 
pedals  second bicycle; chain  fourth bicycle.

5. CIRCLE which one of these four bicycles best shows the usual position of the chain: 

3. CIRCLE which one of these four bicycles best shows the usual position of the frame: 

4. CIRCLE which one of these four bicycles best shows the usual position of the pedals: 
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prove (Bertamini et al., 2003; Kaiser et al., 1992), but this 
is not always observed (Proffitt, Kaiser, & Whelan, 1990; 
Rohrer, 2003). The perceptual realism manipulation in the 
naive physics studies is similar to that which was used 
in the drawing compared with forced-choice tasks here. 
Participants continued to make many errors when they 
were shown pictures of possible bicycles in the forced-
choice task. Thus, participants could not remember what 
a bicycle looked like, even when they were prompted with 
perceptually realistic pictures.

EXPERIMENT 2 
Nonexperts Informed That Their  

Functional Knowledge Was Being Tested

In Experiment 2, 94 participants—from the same popu-
lation as Experiment 1—were tested in two groups. Most 
participants either rarely cycled (27%) or never cycled 
(54%). Experiment 2 replicated Experiment 1, except 

that in Experiment 2 participants were informed that their 
functional knowledge of bicycles was going to be inves-
tigated. Participants might have made drawing errors in 
Experiment 1 because they were concentrating on produc-
ing well drawn pictures rather than focusing on drawing 
functionally viable bicycles. To address this possibility, 
participants in Experiment 2 were given a heavy and rather 
patronizing hint about what the task was going to be about 
before they began. I told them, “I am not interested in your 
drawing ability. It does not matter if your lines are wobbly 
or whatever. What I am interested in is what you know 
about how bicycles work. I want to make you think about 
what the pedals of the bike do . . . and what the chain of the 
bike does . . . and why the frame of the bike is a particular 
shape . . . and how you steer a bike. So I want you to think 
about how a bike works before you draw in the parts.”

Surprisingly, this hint did not reduce errors in Experi-
ment 2 (see Table 1). Indeed, in comparison with Experi-
ment 1, more participants in Experiment 2 made at least 

Table 1 
Percentage Errors in the Bicycle Drawing and Forced-Choice Tasks 

in Experiments 1, 2, and 3 for Each Error Type (Frame, Pedals, and Chain) 
and Then If at Least 1 Error Occurred in Any of the Three Error Types

Experiment 1 Experiment 2 Experiment 3

Error Type Drawing  Forced Choice  Drawing  Forced Choice  Drawing  Forced Choice

Frame 12 26 23 46 3  7
Pedals  7  4 11  5 4  1
Chain 36 28 50 43 6  9

Any  44  40  60  55  9  13

Note—In Experiment 1, participants (N  81) were nonexperts given no hints about the task. In Experi-
ment 2, participants (N  94) were nonexperts told to focus on function. In Experiment 3, participants 
(N  68) were cycling experts given no hints about the task.

Figure 3. Four drawings from the bicycle drawing task (see Figure 1). Draw-
ings show pedal and chain errors in (A) and (B), frame and chain errors in (C), 
and the rare triple combination of frame, pedal, and chain errors in (D). The 
four participants stated that they (A) cycled at least once a month, (B) never 
cycled, (C) cycled most days, and (D) rarely cycled.

(D) Male 

(B) Female 

(C) Female 

(A) Male 
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one drawing error [ 2(1, n  175)  3.99, p  .05] and 
at least one forced-choice error [ 2(1, n  175)  4.36, 
p  .05]. These increased error rates can largely be ex-
plained by the higher proportion of females tested in Ex-
periment 2, as discussed below.

EXPERIMENT 3 
Cycling Experts Who Were Not Told  

What the Study Was Testing

The results of the first two experiments revealed that 
nonexperts made many fundamental mistakes when they 
tried to show how bicycles worked, even when they were 
told what I was investigating. I was concerned that this poor 
performance might simply be due to the difficulty of the 
task. Experiment 3 replicated the results of Experiment 1, 
but it tested 68 cycling experts to determine whether fre-
quent use of bicycles would lead to a reduction in error 
rates. Of these experts, 31 were tested together at the Mer-
seyside Cycle Campaign’s Annual General Meeting and 
37 were tested individually or in groups of up to 10. Most 
cycled frequently, and 88% cycled at least weekly.

Experts made far fewer errors than nonexperts (see 
Table 1), though they were not perfect. Relative to those 
tested in Experiment 1, many fewer experts made draw-
ing errors [ 2(1, n  149)  23.17, p  .001] or forced-
choice errors [ 2(1, n  149)  12.79, p  .001]. Thus, 
when participants had sufficient expertise with a bicycle, 
performance was generally good; so, the task was not too 
difficult or confusing per se. Note, though, that the as-
sumption behind explanation-based theories is that causal 
information is central to all our concepts and not just for 
a handful of objects for which we have large amounts of 
experience. The accurate performance of bicycle experts 
in Experiment 3 demonstrated that the task was not hard 
per se. Therefore, the poor performance of nonexperts 
in Experiments 1 and 2 suggests that most people do not 
have a basic understanding of how bicycles work.1

Self-Ratings of Understanding  
of Bicycle Function

Not surprisingly, the experts in Experiment 3 rated their 
bicycle knowledge higher than the nonexperts in Experi-
ments 1 and 2 [F(2,224)  14.02, p  .001; see Table 2]. 
Posttest ratings were lower than pretest ratings in Experi-

ments 1 and 2 (though this difference was not significant) 
and were higher in Experiment 3 [F(1,59)  9.142, p  
.005]. Thus, participants tended to alter their ratings de-
pending on whether they did poorly on the bicycle tasks 
(in Experiments 1 and 2) or were accurate (in Experi-
ment 3), consistent with Rozenblit and Keil’s (2002) find-
ings. This suggests that participants had some insight into 
their own performance. However, the small size of these 
differences—both across and within studies—suggests 
that these self-ratings only crudely measured changes in 
participants’ metaknowledge. This is consistent with re-
search showing that people are generally inaccurate at as-
sessing their own knowledge and abilities, particularly in 
domains for which it is difficult to assess personal perfor-
mance, such as in the provision of explanations (Dunning, 
Johnson, Ehrlinger, & Kruger, 2003; Mabe & West, 1982). 
Supporting this hypothesis, participants’ pretest and post-
test self-ratings of their knowledge of bicycle function did 
not correlate highly to their actual knowledge, as assessed 
by the total errors that they made in the task (see Table 2), 
though all correlations were significant ( p  .05).

Sex, Age, and Expertise Effects
An unanticipated finding in the present studies was 

a striking difference in performance between men and 
women (see Table 3). For the nonexperts in Experiments 
1 and 2, men made only about one third the errors that 
women made. This male advantage was significant in 
Experiment 1 for both drawing errors [ 2(1, n  80)  
15.20, p  .001] and forced-choice errors [ 2(1, n  
80)  20.12, p  .001], and likewise in Experiment 2 for 
both drawing errors [ 2(1, n  91)  18.39, p  .001] 
and forced-choice errors [ 2(1, n  91)  17.55, p  
.001]. The male advantage was also evident for the experts 
tested in Experiment 3, for both drawing errors [ 2(1, n  
64)  13.86, p  .001] and forced-choice errors [ 2(1, 
n  64)  9.98, p  .01].

One reason for this male advantage may be that most 
men have had more experience overall with bicycles, 
even those who rarely or never cycle. The results of the 
questionnaire provided some evidence for this. In the first 
two experiments, men reported slightly higher levels of 
cycling, and in all three experiments men stated that they 
repaired bicycles more than women did. However, no dif-
ference was found between the performance of males in 

Table 2 
Self-Ratings of Functional Knowledge Provided Before and After Completing the 
Bicycle Tasks in Experiments 1, 2 and 3, and Correlations Between These Pretest 

and Posttest Ratings and Total Errors on the Frame, Pedals, or Chain  
Across Both the Drawing and Forced-Choice Tasks*

Experiment 1 Experiment 2 Experiment 3

Rating Type Rating  Correlation  Rating  Correlation  Rating  Correlation

Pretest 4.6 .43 4.2 .36 5.4 .35
Posttest 4.5 .48 4.0 .32 5.6 .29
Change  0.1  –  0.2  –  0.2  –

Note—Negative correlations indicate that people who rated their functional knowledge as 
good generally made fewer errors in the bicycle test. Self-ratings ranged from 1 (little or no 
knowledge) to 7 (thorough knowledge); see Figure 1. *Maximum of 6 errors.
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Experiments 1 and 2 and that of females in Experiment 3, 
either for drawing errors [ 2(1, n  79)  0.18, p  .6] or 
for forced-choice errors [ 2(1, n  79)  1.17, p  .2]. 
This provides evidence that the male advantage was not 
solely due to men having greater experience with bicycles, 
since these nonexpert males reported much lower levels of 
cycling than did the expert women and similar levels of ex-
perience at repairing bicycles. An alternative possibility is 
that men may generally have a better causal and functional 
understanding of objects due to innate or environmental 
differences between the sexes (see, e.g., Crowley, Callanan, 
Tenenbaum, & Allen, 2001; Johnson, Alexander, Spencer, 
Leibham, & Neitzel, 2004; Robert & Harel, 1996).

The age of the participants had little influence on per-
formance. Across Experiments 1 and 2, for young females 
(n  75; mean age  18; age range 17–28), 71% made 
drawing errors and 63% made forced-choice errors. Simi-
larly high error rates occurred for older females (n  34; 
mean age  47; age range 40–54), with 71% making 
drawing errors and 76% making forced-choice errors. Far 
fewer errors were made by young males (n  28; mean 
age  18; age range 17–23), with 21% making drawing 
errors and 14% making forced-choice errors. Similarly 
low error rates occurred for older males (n  33; mean 
age  50; age range 42–63), with 24% making drawing 
errors and 18% making forced-choice errors.

The questionnaire results revealed that 30 of the 175 
nonexperts in Experiments 1 and 2 cycled at least monthly, 
whereas 7 of the 68 experts tested in Experiment 3 cycled 
less than weekly. The results of these participants were, 
nevertheless, similar to those of the remainder of the par-
ticipants in each experiment, so they do not alter the con-
clusions drawn above.

GENERAL DISCUSSION

Many of the nonexperts tested in the first two experi-
ments revealed major inaccuracies and omissions in their 
understanding of how bicycles worked, despite almost 
all of them having learned to ride a bicycle and nearly 

half of them owning a bicycle; and despite bicycles being 
common, everyday objects. When objective assessments 
were made, serious errors of functional understanding 
of bicycles were found to be common. Performance im-
proved—but was still not perfect—for bicycle experts (in 
Experiment 3) and for nonexperts shown a real bicycle to 
copy (see note 1).

It would be unsurprising if nonexperts had failed to ex-
plain the intricacies of how gears work or why the angle 
of the front forks of a bicycle is critical. Indeed, even 
physicists disagree about seemingly simple issues, such 
as why bicycles are stable (Jones, 1970; Kirshner, 1980) 
and how they steer (Fajans, 2000). What is striking about 
the present results is that so many people have virtually no 
knowledge of how bicycles function. For example, many 
people (but especially women) cannot specify the correct 
position of the bicycle pedals and chain. They do not ap-
pear to understand a simple set of causal relations (turning 
the pedals turns the chain that spins the back wheel that 
drives the bicycle forward); therefore, they do not know 
how turning the pedals moves a bicycle. These findings 
now need to be extended to a range of everyday objects to 
establish the generalizability of the present results.

The failures in understanding demonstrated in the pres-
ent study reveal that most people’s functional understand-
ing of bicycles is sketchy and shallow (see Keil, 2003b; 
Wilson & Keil, 2000). The present study concentrated 
on measuring functional knowledge objectively, so it 
complements Rozenblit and Keil’s (2002) studies (which 
focused on measuring changes to subjective self-ratings). 
Together, these results suggest that people have a vague, 
fragmentary, and often inaccurate understanding of how 
many everyday objects function. The weakness in people’s 
knowledge is particularly striking for mechanical objects 
with visible parts, such as bicycles (Rozenblit & Keil, 
2002).

Keil (2003b) has argued that a minimal, superficial un-
derstanding of function may actually benefit us by letting 
us efficiently interpret the world and make accurate causal 
predictions without overburdening our limited processing 

Table 3 
Percentage Errors in the Bicycle Drawing and Forced-Choice Tasks in Experiments 1, 2, and 3  

for Each Error Type (Frame, Pedals, and Chain) and Then If at Least 1 Error  
Occurred in Any of the Three Error Types, for Females and Males

Experiment 1* Experiment 2** Experiment 3***

Error Type  Drawing  Forced Choice  Drawing  Forced Choice  Drawing  Forced Choice

For Females
 Frame 16 42 30 58 11 11
 Pedals 09 05 13 06 17 11
 Chain 56 44 63 52 17 28

 Any 65 63 75 70 28 28

For Males
 Frame 08  8 08 21 00 02
 Pedals 05 03 04 04 00 00
 Chain 14 11 21 21 00 00

 Any  22  14  25  21  00  02

Note—1, 3, and 4 participants in Experiments 1, 2, and 3, respectively, did not specify their gender, so 
their results are not included here. *Females, n 43; males, n 37. **Females, n 67; males, n 
24. ***Females, n 18; males, n 46.
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and storage capabilities. People may overestimate their 
understanding of how objects work because they do not 
realize how reliant they are on extracting perceptual infor-
mation directly from the world rather than from memory 
(see note 1).

Similarly, Norman (2002) has argued that everyone 
forms theories about how everyday objects function to 
explain what they have observed. Norman, however, 
suggests that these explanations may be based on weak, 
fragmentary, or even inaccurate evidence. One example 
involves the room thermostat. People often try to quickly 
heat up a room by turning the thermostat all the way up. 
Norman suggests that this is because they have an incor-
rect explanation for how the thermostat works. He notes, 
“In the case of the thermostat, the design gives absolutely 
no hint as to the correct answer. In the absence of external 
information, people are free to let their imaginations run 
free” (p. 39). The present findings are more surprising, for 
they suggest that we may not acquire an understanding of 
how an object such as a bicycle works even if the neces-
sary information is readily available in our everyday en-
vironment (see note 1). We may only rarely try to provide 
explanations or to test the consistency of our fragmented 
understanding of the world (Leiser, 2001).

If we usually store only relatively superficial and frag-
mentary information about even the most familiar objects 
in our environment (Keil, 2003b; Norman, 2002); if we do 
not understand the basics of how common objects work 
(Rozenblit & Keil, 2002); if we rarely try to provide expla-
nations of object function; and if we do not test the consis-
tency of our knowledge (Leiser, 2001); then the role of ex-
planations and theories in our understanding of everyday 
concepts may need to be reexamined. Explanation-based 
(or theory-based) theories of categorization emphasize 
that relatively high level, sophisticated causal theories un-
derpin our concepts and that such theories are important 
in everyday behavior (Ahn & Luhmann, 2005; Murphy, 
2002; Murphy & Medin, 1985). The proponents of strong 
versions of explanation-based theories have gone further. 
For example, Brewer, Chinn, and Samarapungavan (1998) 
have suggested that children and adults both develop theo-
ries about concepts—theories that are similar to scientific 
explanations. Chaigneau, Barsalou, and Sloman (2004) 
have stated that “as common artefacts are encountered re-
peatedly, especially during development, people explore 
the underlying causal mechanisms to understand their 
functions. As a result, causal models become established 
in memory to represent these understandings” (p. 620). 
Yet these claims are not supported by the present results; it 
is now important to establish whether the present findings 
extend to other objects.

In contrast, others who support explanation-based 
theories of categorization have stressed the limitations 
of people’s explanations (Keil, 2003b; Rozenblit & Keil, 
2002). Keil (2003a) has suggested that often only mun-
dane, general knowledge—not sophisticated, domain-
specific information—may be available to us (e.g., that 
objects given the same name have similar properties; that 
all animals have roughly the same internal parts; that off-

spring grow up to look like their parents). Murphy (2002) 
has warned that “if explanations are often applied after 
the fact and are rather shallow, then how helpful could 
they be in using a concept? . . . It is possible that the limi-
tations on our knowledge will make it less than useful in 
many cases. Among those cases would be situations in 
which knowledge is incomplete or partially wrong, unfor-
tunately not unusual circumstances for humans” (p. 145). 
The present findings support these cautious views. It 
seems clear that people do sometimes use prior knowl-
edge when they categorize (Kaplan & Murphy, 2000; Lin 
& Murphy, 1997; Palmeri & Blalock, 2000; Wisniewski, 
1995). These cases may be exceptions, however. General 
background information might be useful for difficult 
categorization tasks that have relatively sparse category 
information (e.g., short verbal descriptions or simple de-
pictions of stimuli). Under most circumstances, though, 
our categorization processes may rely primarily on infor-
mation that is simple and largely perceptual. Even induc-
tion and category learning may not usually make use of 
functional or causal information (Murphy, 2002). These 
suggestions are, however, necessarily speculative: Expla-
nation-based theories are relatively recent and have not 
yet been extensively tested. More empirical research is 
needed to clearly establish the role played by functional 
and causal information in our conceptual knowledge 
across a range of tasks.

The present results are unexpected, even on accounts 
of categorization that emphasize the perceptual basis of 
conceptual knowledge. The bicycle frame, chain, and 
pedals are large, readily perceived parts. Correctly locat-
ing them is easy if a bicycle is visible (see note 1). Even 
if only visual information about bicycles was stored, the 
errors observed in Experiments 1 and 2 should not have 
occurred. Bicycles are visually distinctive, with no close 
neighbors in shape space (toy scooters have no frame 
and much smaller wheels; motorbikes and mopeds have 
bulkier frames and an engine). Since it is unnecessary to 
store detailed information about bicycle shape in order 
to distinguish bicycles from other similar objects, our 
stored visual representations of bicycles may themselves 
be sketchy. People have been found to have surprisingly 
poor perceptual memory for everyday objects such as 
coins (Nickerson & Adams, 1979) and road signs (Mar-
tin & Jones, 1998). Marmie and Healy (2004; see also 
Rinck, 1999) found that recall of the features of coins 
and their spatial position was much improved after just 
15 sec of intentional learning and that intentional study 
produced large benefits, even when recall was delayed by 
one week. Their results suggest that reports of strikingly 
poor memory for common objects (e.g., Martin & Jones, 
1998; Nickerson & Adams, 1979) are due to people’s 
failure to encode information because it is not useful for 
the everyday use of the objects (e.g., knowing the direc-
tion that a head faces on a coin). This suggests that little 
detailed visual information may be stored following in-
cidental learning of even highly familiar objects. Note, 
however, that most of the information tested in these stud-
ies had no functional significance. In contrast, a bicycle 
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with pedals attached directly to the front wheel or with a 
chain around both wheels would no longer function as a 
normal bicycle. Nevertheless, the present results indicate 
that even this functionally important and perceptually sa-
lient information is often not readily available to people.

A personal anecdote illustrates this last point. I regu-
larly scuba dive, and on one weekend trip two friends and 
I decided to do a night dive. We needed our weight belts, 
which were on a boat in the harbor, so I offered to fetch 
them. I swam the few meters to the boat in my dry suit, 
clipped my own weight belt around my waist, held one 
weight belt in each hand, slipped overboard, and headed 
back to the ladder. To my surprise, I immediately sank to 
the bottom of the harbor. I flailed up and managed to gasp 
some air but could not move forward before I was dragged 
down again. Realizing that I was well on my way to drown-
ing, I dumped the two loose weight belts and managed to 
reach the ladder. In retrospect, the mistake was shocking. 
I have spent years carrying lead weight belts around: Their 
heaviness is both perceptually highly salient and central 
to their function. I had tried to carry three people’s weight 
belts, even though I knew that my own weight belt was 
adjusted to make me only just buoyant in a dry suit. Why, 
then, did I fail to anticipate what would happen when I 
jumped into the water carrying enough lead to sink me, 
no matter how hard I swam? My conceptual knowledge of 
weight belts let me understand what had happened after 
the event, but it was not until the physical constraints of 
the real world impinged that I accessed this information. 
Such post hoc explanations created after perceptual expe-
riences allow us to learn from our mistakes but otherwise 
may have little influence on our everyday actions.

The present findings indicate people’s striking inability 
to remember the location of three causally critical parts 
of a common object: the bicycle. Many people do not ap-
pear to store accurate concept-specific information about 
causal function (e.g., that the pedals of a bicycle drive a 
chain around that drives the back wheel forward). Most 
people’s conceptual knowledge of this everyday object 
seems to bear little resemblance to a scientific theory. The 
present results are not consistent with those of strong ver-
sions of explanation-based theories, which propose that 
high-level, domain-specific causal and functional infor-
mation is central to our conceptual knowledge. Instead, 
people may rely largely on relatively simple, concept-gen-
eral information (e.g., that objects given the same name 
usually have the same shape but often differ in color and 
size, or that all animals have roughly the same parts inside 
them; Keil, 2003a).
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NOTE

1. A final experiment replicated the results of Experiment 1 and 
tested 58 nonexperts from the same population as Experiments 1 and 

2, but people could copy from a real bicycle as they completed the 
questionnaire. O’Regan (1992) suggested that we may be using the 
world as an “outside memory” to save us from having to store huge 
amounts of information. Since much of the information that we need 
in everyday life can be found simply by moving our eyes, we do not 
need to store it and then retrieve it from memory (Norman, 2002). If 
so, people shown a bicycle should succeed at the task. This hypothesis 
was supported. Relative to those tested in Experiment 1, many fewer 
nonexperts made drawing errors [ 2(1, N  139)  12.92, p  .001; 
mean errors  16%] or forced-choice errors [ 2(1, N  139)  12.61, 
p  .001; mean errors  12%]. Indeed, these nonexperts who could 
copy a real bicycle made no more errors than did the experts tested 
in Experiment 3, either in their drawing [ 2(1, N  126)  1.34, p  
.2] or in the forced-choice task [ 2(1, N  126)  0.04, p  .8]. The 
errors in Experiments 1 and 2 were thus not due to participants failing 
to understand the task or to their misinterpreting the bicycle sketch, 
nor were most errors due to their inability to draw or to their lack of 
motivation. The accuracy of nonexperts who were shown a real bicycle 
demonstrates that the information needed to succeed at the task is com-
monly available in people’s everyday lives.

(Manuscript received June 21, 2005; 
revision accepted for publication August 24, 2005.)


