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A Dynamic Systems Model of Cognitive and Language Growth
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In the first part of the article, a conceptual framework is sketched to define cognitive growth,

including language growth, as a process of growth under limited resources. Important conceptsare

the process, level, and rate of growth; minimal structural growth level; carrying capacity and

unutilized capacity for growth; and feedback delay. Second, a mathematical model of cognitive

growth under limited resources is presented, with the conclusion that the most plausible model is a

mode] of logistic growth with delayed feedback. Third, the model is transformed into a dynamic

systems model based on the logistic growth equation. This model describes cognitive growth as a

system of supportive and competitive interactions between growers. Models of normal logistic

growth, U-shaped growth, bootstrap growth, and competitive growth are also presented. An over-

view is presented of forms of adaptation of resources (e.g., parental and tutorial assistance and

support) to the growth characteristics of a cognitive or linguistic competence. Finally, the question

of how the model can account for stages of growth is discussed.

The problem of quantitative increase of a capacity, skill, or

knowledge base, a major concern for learning theories, is still

largely unsolved in current structural theories of cognitive and

language development. The theories address the problem of the

emergence of new cognitive capabilities in terms of adding or

deleting rules (or whatever the structural components are in the

theory at issue) to or from a knowledge or procedural base. For

instance, in a system of production rules that describes how the

child solves the balance scale task (e.g, Siegler, 1983), a specific

decision rule is either part of the rule system or not. In a trans-

formational generative model of syntactic development, the

chikfs grammar either contains a rule to change the subject-

verb position in questions or not, but it does not contain rules

such as "Change the subject-verb position arbitrarily in 27% of

the cases." Put differently, the distinctions between develop-

mentally different states of a cognitive structure occur in the

form of discrete steps (see van Geert, 1987a, 1988c, for a more

general account). However, the performance concerned does

not change in the form of a sudden discrete leap corresponding

to a state shift, but rather follows a gradual, sometimes irregu-

lar, increase (discussed later). Classical structural theories of

cognitive development have accounted for such phenomena by

introducing notions such as decalage or resistance of contents

to assimilation by a specific operational structure (Smedslund,

1977) and distinctions such as between competence and perfor-

mance.

In modern structural theories of cognitive development, in-

formation-processing models for example, the quantitative in-

crease of cognitive capacities is of more central concern. For

instance, some theories rely on the growth of working memory

(e.g., Case, Marini, McKeough, Dennis, & Goldberg, 1986; Pa-

scual-Leone, 1970) to explain structural changes, whereas

others view specific forms of increase, namely S-shaped curves,

Correspondence concerning this article should be addressed to Paul

van Geert, Department of Psychology, University of Groningen, Grote

Kruisstraat 2/1, 5712 TS Groningen, The Netherlands.

as the quantitative analogon of a structural change (e.g., Fischer,

1980; Fischer & Canfield, 1986; Fischer & Pipp, 1984). The fact

remains, however, that the quantitative aspect of cognitive devel-

opment—referred to as cognitive growth in this article—is not

the primary concern of structural models. They explain growth

phenomena on the basis of transition mechanisms that are of-

ten peripheral to the structural core of the models. The prob-

lem of how to reconcile nongradual structural changes with

gradual change in performance does not stand on its own. It is

related to why in individuals the levels of development of

various skills that allegedly refer to identical underlying compe-

tencies or structural bases are far less coherent than should be

inferred from the underlying structural model (e.g., the discus-

sion on the Piagetian structure d'ensemble concept, Piaget,

1972; Flavell, 1982). Although there is no general solution to

the problem of quantitative increase in structural models, con-

nectionist models of cognitive development seem to offer a way

out of the impasse. The connections in an association network

of cells change gradually, as does the performance based on the

network state (e.g., Rumelhart & McClelland, 1987). A diffi-

culty remains, however, in that one needs an explicit model of a

network, one for learning the past tense of verbs for example, to

generate a quantitative learning curve. In this article, I try to

demonstrate that there is a general model of quantitative in-

crease or decrease in cognitive development, namely a dynamic

systems model oj logistic growth. This model is intended to ap-

ply to all theories that subscribe to the idea that cognitive

growth occurs under the constraint of limited resources.

The Concept of Cognitive Growth

A Definition of Cognitive Growth

I define cognitive growth as an autocatalytic quantitative in-

crease in a growth variable following the emergence of a spe-

cific structural possibility in the cognitive system. Examples

include the growth of vocabulary, the growth of subject-verb

inversion in interrogative sentences, and the growth of the
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PAUL VAN GEERT

correct use of a strategy in solving fractions problems. There are

three properties of cognitive growth, (a) The increase must be

autocatalytic, that is, given no extrinsic impediments; growth is

something that runs by itself. Any increase that amounts to

mere addition from an outside source is not genuine growth,

(b) It must be quantitative; growth is a property of a variable,

the value of which can be expressed in terms of real whole or

fractional numbers, such as the number of words or a percent-

age of correct applications. Growth could be used to describe

qualitative changes such as structural development, but that is

not the meaning addressed in this article. Of course, quantita-

tive growth could result in qualitative changes in a system, but

again this is not the major concern here, (c) Growth must follow

a structural possibility of the cognitive system. That is, observ-

able behavior, such as the use of words or grammatically correct

interrogatives, should be considered to refer,
1
 for instance, to

the growth of vocabulary or to a subject-verb inversion rule

only within the framework of a structural theory that considers

words or interrogatives as the expression of a vocabulary or of a

grammatical inversion rule. Although this may seem rather triv-

ial, it implies that a growth model is always subsumed under a

specific structural model, that is, a model providing specific

cognitive interpretations for observable data (see van Geert,

1987a, 1990, for further discussion).

Growth Level and Growth Rate

I define a growth relation in set-theoretic terms as a relation

with its domain a structural property and its range a field of

applications. The growth relation is defined over the cardinal-

ity of this field of applications, that is, as a quantitative property.

For example, the inversion rule is a structural property in some

generative grammar model of language acquisition. Its range of

application is those sentences to which the rule is actually ap-

plied. The cardinality of the range could be defined as the

relative number of inversions in questions—that is, the number

of inversions divided by the total number of questions during a

time interval—or as the percentage of correct uses relative to all

sentences in which, according to a correct grammar, the rule

should be applied (e.g., Labov & Labov, 1978). The quantitative

property of this range is called growth level, or L. For instance,

the number of words actually understood by a child is the

child's growth level of the structural property passive vocabu-

lary, the percentage of correct questions with inversion is the

growth level of the structural property inversion rule, and

soon.

Thus, a growth relation G can be written as follows:

that maps a growth level L onto another growth level, given a

specific time interval between these two levels:

G:(S,t)~(La,La,L0 £,„), (1)

where a growth relation C? is a relation that maps a structural

property S, defined over a time interval t, onto an ordered

sequence of growth levels £„, La, and so on; the growth levels

correspond to the successive quantitative properties of the

range of application of the structural property S. G defines a

quantitative relationship between successive growth levels L,

such as La/La, which takes the form of a regular increase or

decrease, in other words, of a rate of change. Hence, growth rate

relation R may be defined in set-theoretic terms as a relation

• £«,-. (2a)

Given the quantitative nature of L, the relation R actually

corresponds with a ratio r, for

.g., r=0 .2) , (2b)

where r is the growth rate.

Minimal Structural Growth Level and Growth-Onset Time

It follows from Equation 2b that there can be no initial

growth level with a value of 0 (if i.0 = 0, multiplication by any r

only leads to 0; i£., the growth level remains 0). Because the

initial state of growth is in principle the lowest possible growth

level, and because this lowest possible level cannot be 0, it

should be some arbitrarily small number (e.g., one word, or one

correct application). This arbitrarily small number is the mini-

mal structural growth level of a cognitive property or element.

For instance, if making a subject-verb inversion in a question

has become a structural possibility in a child's grammar, one

may expect the child to use a minimal (and probably small)

number of nonimitative questions using inversion. This is the

rule's minimal structural growth level for this particular child.

The growth-onset time is the moment at which a structurally

minimal expression of a cognitive element emerges. For in-

stance, the growth-onset time of a child's lexicon is theoreti-

cally the age at which the child has acquired his or her first real

word. However, such minimal extension is not only hard to

ascertain empirically, it is also likely that the minimal set is

actually a few items (see the section on germinal phenomena).

Growth Processes Under Ecological Constraints

Given a specific cognitive theory, a Piagetian or an informa-

tion-processing model for example, the structural elements dis-

cerned in this theory, such as skills, concepts, and rules, may be

described metaphorically as cognitive species in a mental ecol-

ogy: Each "species" occurs with a specific population (growth

level) and relates to other "species," that is, to other structural

elements (cf. Boulding, 1978). For instance, fast growth of the

species words in a child probably will affect, positively or nega-

tively, the growth in the species grammatical knowledge. This is

so because one growth process may "feed" upon the other. For

instance, the onset of grammatical growth may depend on the

acquisition of some threshold number of words, in that skills

necessary to learn new words contribute to the learning of

grammatical rules, and rapid increases in grammatical knowl-

edge consume part of the time and effort that might be used in

building up the initial vocabulary (Dromi, 1986). 1 therefore

1
 Refer is used in the semantics sense; that is, observable behavior

should refer to theoretical concepts, such as a grammatical rule. It is

not implied that observables should refer to discursively interpreted

mental states orstructures, such as"rules in the head" or whatever; the

reference relation does not imply the assignment of a specific ontologi-

cal status to the theoretical concepts used such as "rules," "concepts,"

and so on.

T
h
is

 d
o
cu

m
en

t 
is

 c
o
p
y
ri

g
h
te

d
 b

y
 t

h
e 

A
m

er
ic

an
 P

sy
ch

o
lo

g
ic

al
 A

ss
o
ci

at
io

n
 o

r 
o
n
e 

o
f 

it
s 

al
li

ed
 p

u
b
li

sh
er

s.
  

T
h
is

 a
rt

ic
le

 i
s 

in
te

n
d
ed

 s
o
le

ly
 f

o
r 

th
e 

p
er

so
n
al

 u
se

 o
f 

th
e 

in
d
iv

id
u
al

 u
se

r 
an

d
 i

s 
n
o
t 

to
 b

e 
d
is

se
m

in
at

ed
 b

ro
ad

ly
.



A MODEL OF COGNITIVE GROWTH

compare the cognitive system of a developing individual to an

evolving ecological system, which is not an ecosystem of ani-

mals and plants, but an ecosystem of cognitive "species" that

take the form of rules, concepts, skills, and so forth.
2
 The ecolog-

ical metaphor is specified in five heuristic principles.

1. Given a specific structural model, the human cognitive sys-

tem can be described as an ecosystem consisting of species

(i.e., structural elements such as vocabulary, grammatical

rules, problem-solving skills, and concepts) that entertain

growth relationships with specific fields of application.

2. The elements engage in various types of functional relation-

ships among one another, which are supportive (the growth in

one supports the growth in another), competitive (the growth

in one relates to the decline in another), or virtually neutral.

3. The elements show strongly dissimilar growth rates and

growth-onset times.

4. The components compete for limited spatiotemporal, infor-

mational, energetic, and material resources.

5. (a) There exist more cognitive species (skills, knowledge items,

rules, etc.) that can in principle be appropriated than actually

will be appropriated by any particular person. (b) In princi-

ple, any cognitive species may occur with any possible growth

level, (c) The set of cognitive species and respective growth

levels characteristic of a person's cognitive system is the dy-

namic product of cognitive growth under limited resources.

The previous heuristic principles are reminiscent of those

holding for biological ecological systems in general, and evolu-

tionary systems in particular. For instance, the fifth principle is

reminiscent of a principle in Darwinian theory, namely that the

number of offspring exceeds the number of organisms that an

environment is able to support long enough for the organism to

reproduce (Gould, 1977). From this it follows that the adapta-

tion of organisms to their environment increases over genera-

tions. Likewise, a heuristic claim is that learning under compe-

tition for limited resources favors species that can be learned

more easily than others. Because learnability is dependent on

the set of supporting cognitive resources that together form an

individual's cognitive system, more easily learnable cognitive

species (rules, skills, concepts, etc., that are more easily learn-

able in the individual's current cognitive system) tend over time

to become more frequently represented in such a system than

do less learnable ones (e.g., see Newport, 1982, for an applica-

tion to language; van Geert, 1985).

In the framework of this ecological metaphor, I may speak

about a cognitive grower and its environment. A cognitive grower

can be any of the species in the mental ecology, or any structural

element or component of a cognitive system to which the

growth relation applies (thus, by grower I do not mean an indi-

vidual child, but rather the child's vocabulary or the child's use

of the inversion rule in questions). Trivially, a grower is a cogni-

tive species that grows. The environment is the totality of sup-

porting or competing resources upon which the grower feeds.

Thus, as far as the nature of the cause, the magnitude, and time

of the effect are concerned, I make no a priori distinction be-

tween subject-dependent resources (e.g., a child's mastery in

dividing numbers will support the learning of rules for solving

fractions) and external resources, such as amount of available

models, tutorial support, and so on (see also Fogel & Thelen,

1987; Thelen, 1989).

The Nature of Limited Resources for Cognitive Growth

There exist many kinds of different resources that contribute

to cognitive growth. I have just claimed that in principle no a

priori distinction can be made among resources of different

types (e.g., biological vs. environmental) in regard to their po-

tential effect on growth (e.g., it is not so that in general, biologi-

cal resources are more important than environmental ones, or

the other way around). Decisions about the relative importance

of resources depend on specific contexts and circumstances of

growth. Nevertheless, for the sake of conveniently arranging an

overview of the different resources, it could be handy to make a

distinction between two dimensions. The first concerns the

origin of resources and distinguishes between internal (in the

subject) and external (outside the subject) ones; the second di-

mension deals with the nature of the resources, namely spatio-

temporal, informational, energetic-motivational, and material

resources. It is probably so that only in extreme cases will it be

possible to distinguish the exact contribution of each of these

types of resources. After all, the distinctions have no intrinsic

theoretical meaning but primarily amount to a matter of

"bookkeeping." The following overview is based on the two

descriptive dimensions mentioned.

The concept of internal spatial resources refers to the limited

amount of information one can deal with simultaneously (Kah-

neman, 1973; Miller, 1956) or to the limited range of one's

working memory (Baddeley, 1976). The size of this mental ca-

pacity is believed to increase with age, either in the form of a

literal increase or in the form of increasing efficiency of infor-

mation processing (Case et al, 1986; Globerson, 1983; Pascual-

Leone, 1970). However, the specific nature of the increase is

still a much discussed issue (Case, 1984; Siegler, 1983). Internal

temporal resources refer to the time on task that one is able or

willing to invest in a specific cognitive activity, relative to the

number of different cognitive activities carried out over a spe-

cific period. Internal informational resources consist of the

knowledge and skills already present in the subject, which act as

the internal learning or acquisition context for new skills and

knowledge and which may either facilitate or impede the acqui-

sition of specific new knowledge or skills. Internal motivational/

energetic resources consist of the amount of energy, arousal,

effort, activation, and so on invested in specific acquisition ac-

tivities (e.g., Sanders, 1983). The energetic investment during

specific information-processing activities may constitute a dis-

tinguishing property of normal and clinical groups in develop-

ment (e.g., van der Meere, 1988). If energetic investment is de-

fined as a content-specific variable, it can be called motivation

(e.g., see Leontew's 1973 theory in which motivation plays a

major developmental role). Internal material resources amount

to the bodily outfit of a developing subject, for example, the

availability of correctly working sensory and nervous systems.

2 The metaphorical term cognitive species is similar to several terms

introduced by scholars who have applied evolutionary analogies to the

problem of the cultural transmission of knowledge and skills. They

have proposed several terms to describe the units of such transmission;

Dawkins (1976) used the term meme as the cognitive analogon to gene:

Lumsden and Wilson (1981) used the term culturgen; see van Geert

(1985) for an overview.
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External spaliotemporal resources are the spatial and tem-

poral degrees of freedom given to developing or learning sub-

jects by their controlling environment. Caretakers and educa-

tors explicitly restrict the free-moving space and time of chil-

dren, with the often implicit intention to structure this limited

space in an optimally profitable way for the child. This princi-

ple is also inspired by the educator's need for a resource econ-

omy in the environment. Valsiner (1987) described this princi-

ple as the "zone of free movement." External informational re-

sources primarily amount to the number, availability, and form

of the items that could be assimilated by the developing and

learning subject (e.g., the lexicon presented by the speaking

environment, the specific ways in which the teaching environ-

ment makes information available to the learner). The third

form of external resources is energetic/motivational resources.

These are task-specific payoffs, such as the sort of reinforce-

ment provided by the environment after performance of spe-

cific activities of the learner. External material resources are

things like food and shelter, objects such as books and writing

paper, and so on.

The availability, nature, and relationships of all these re-

sources differ greatly among individuals and groups and also

within individuals (e.g., temporal variations in the information

given to a child or in the nature and amount of the energetic

resources invested). However variable the resources may be,

they are always limited, and asdiscussed later, this limited avail-

ability is one of the major formative forces in cognitive develop-

ment.

The Concept of Carrying Capacity

At first sight it is very difficult, if not impossible, to character-

ize the amount of growth support that the cognitive environ-

ment provides to a specific grower in detail (e.g., vocabulary in

a specific child) because this support characteristically

amounts to various resources, many of which probably consider-

ably vary over time. There is, however, a simple way to specify

growth support. It is based on the following considerations. In

principle, a grower might attain any possible maximal level if

all available resources were invested in the grower concerned.

However, there is competition for time, effort, information,

and so on from other growers, and this limits any particular

growth process. In fact, if too many resources were allocated to

one specific grower, the whole cognitive system would become

unstable and finally collapse. This is so because any individual

grower depends strongly on the support of other growers and

thus has to leave sufficient resources for the other growers to

develop. Therefore, the highest possible level a grower may at-

tain is automatically limited by the constraint of the long-term

stability of the overall system.

In ecology, this limitation is associated with the concept of

carrying capacity Kotthe system (De Sapio, 1976; Hof bauer &

Sigmund, 1988). It expresses the long-term sum of resources

supporting a specific grower over time, and it is specified in the

form of the maximal stable growth level of a particular grower in

this specific cognitive environment (i.e., stable under the condi-

tion that the present structure and amount of resources do not

drastically change). This definition has important theoretical

consequences. Because it is rather unusual to think in these

terms in psychology, I return to a (pseudo-)biological example.

Suppose that there is a hermetically closed cage that is popu-

lated with a couple of flies that are free of diseases. Suppose

also that fixed amounts of food, water, oxygen, and so on are

added per unit of time and that fixed amounts of waste prod-

ucts, carbon dioxide, and so on are withdrawn. What is added

and withdrawn from the cage constitutes a multidimensional

resource structure (in that each component, such as water,

food, and waste, is independently variable). If the number of

flies in the cage is the variable of focus, this multidimensional

resource structure may be transformed into a one-dimensional

measure, namely the maximal stable number of flies that cage

can contain, given all the resources invested per unit of time.

Thus, the multidimensional resource structure has not only

been translated in a one-dimensional variable, it also has been

translated in a variable that is qualitatively identical to the focus

variable, namely a number of flies. Clearly, a change in the

focus variable (e.g., number of very big flies) coincides with a

change in the carrying capacity (the sum of resources must

then be expressed in terms of the number of very big flies the

cage may support). Another advantage of the concept of carry-

ing capacity is that local variations in the amount of resources

supplied do not necessarily affect the stability of the carrying

capacity level itself. This is so for at least two reasons. First, i f K

is the expression of a multitude of resources, relative scarcity in

one may be compensated within certain limits by relative abun-

dance in another. Second, the variation (if not catastrophic) is a

resource factor in itself: It is likely, for instance, that an irregular

food supply with the same average as a regular one in another

cage would have a slight negative effect on the number of flies

the cage can sustain.

In cognitive development, one could say that the carrying

capacity of a cognitive environment with regard to a cognitive

grower such as vocabulary is a one-dimensional function of all

the informational and tutorial support actually given to word

learning, the time and energy spent in word learning, and the

material support, such as books and toys. The one-dimensional-

ity stems from the fact that given the investment of all these

resources, there is a maximal level of vocabulary growth that

can in principle be attained. This maximum level (e.g., 50,000

words during the life span in a literary culture or 350 words

during the 1-word period for a bright child) is a quantitative

measure of the sum of resources contributing to word learning

during a given term. In summary, carrying capacity is a func-

tion that one-dimensionally expresses the sum of resources

over time in terms of a maximal stable level a grower may attain

given these resources.

External resource factors are specific in that they are in gen-

eral more directly controllable than internal factors. An in-

crease in any of the external factors that contribute to a specific

carrying capacity (amount of food in the fly example; amount

of parental help given in the example of word learning) would

most likely lead to an increase in the carrying capacity, that is,

in the highest possible stable level the grower at issue could

achieve. Also likely, however, is that the effect of such increases

would not pass beyond a ceiling level—that is, a level beyond

which increase in external resource factors would no longer

positively affect the carrying capacity. This upper limit forms

the expression of the growth limitation inherent in the internal
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A MODEL OF COGNITIVE GROWTH

resource factors. For instance, young children will not learn

abstract words—which they do not understand—no matter

how much such words are used and explained by the environ-

ment. This upper limit plays an important role in Fischer's

(1983a; Fischer & Silvern, 1985) skill theory. Most such upper

limit K levels will change as a consequence of overall develop-

mental changes in the cognitive environment. For instance, the

child's growing understanding of multiple relations will make

the learning of abstract words possible (Fischer, 1980) and will

lead to a significant rise in the carrying capacity for vocabulary.

In optimal circumstances this rise is partly caused by the in-

crease in the internal resource factor (cognitive understanding)

and partly by the increase in specific help that the environment

presents following the change in the child. I discuss this mecha-

nism further in the sections on bootstrap growth.

In summary, the carrying capacity is a one-dimensional vari-

able closely linked to a specific one-dimensional growth vari-

able, namely the growth level of a specific grower (e.g., words).

It expresses the multidimensional structure of available re-

sources in terms of the maximal stable level the grower at issue

could achieve in the presence of these resources. Thus, it ex-

presses resources in terms of the same dimension as the vari-

able that is focused on, namely the level of a specific grower.

Increase in external resources will in general lead to an upper

limit in the carrying capacity, which is characteristic of intrinsic

(but changeable) limitations in the internal resource factors.

The Concept ofUnutilized Capacity for Growth

If K is the carrying capacity of a grower and L is its current

growth level, the grower has to grow by K minus L items before

it reaches its ceiling (that is, its growth limit arising from the

limited resources in this particular cognitive environment). Be-

cause K is a measure of the resources available in a cognitive

environment to a specific cognitive grower, (K— L) is a measure

of the amount of resources that can still be used to promote

further growth. Thus, the function (K - L) may be called the

unutilized capacity for growth, denoted by U. As shown in a later

section, it is a major component in logistic growth models.

The form of the growth relation associated with a growth

process affected by a limited carrying capacity is as follows:

R:(L,,K)~LM. (3)

Given R, there is a ratio number r, such that r = L,/LM, and this

ratio depends on the unutilized capacity for growth, (K— L,)

or U,.

Direct or Delayed Effects in Cognitive Growth Processes

If a teacher tells an adult nonnative student of English that

sentences beginning with Wh require subject-verb inversion,

the effect on the number of correct interrogative sentences ut-

tered by the speaker is likely to increase immediately (it is as-

sumed that the student did not know the rule). In this case,

there is a direct (i.e., undelayed) effect of an increase in infor-

mational resources on the growth level of the inversion rule.

Compare this situation with one in which a class gets a better

English teacher than the pupils had previously. The introduc-

tion of the better teacher amounts to a sudden increase in infor-

mational resources and tutorial support. However, it will take

some time before the effect of the better teaching is actually

observable in the pupils' performance. Even in the example of

the inversion rule, it is likely that a considerable amount of time

will be needed before the student actually uses the rule consis-

tently. That is, it takes a specific amount of time for the cogni-

tive system to move from a state producing a performance p to

a state producing a performance (p + Ap). In this respect, the

cognitive system is not different from other complex systems in

nature. They are all dissipative systems (Brent, 1978; Stewart,

1989), and changing them means that a certain amount of iner-

tia, friction, and resistance toward moving to a higher level of

order must be overcome. This consumes time and energy.

The time lag between a growth state, that is, a specific growth

level and its corresponding unutilized capacity for growth, and

its effect on a later growth state is called feedback delay, de-

noted by f. The form of the growth relation of cognitive growth

processes with feedback delay is as follows:

R:(L,, K) => LM. (4)

Note that the only difference from Equation 3 is that the index

for the L to the right of the arrow has changed into / + f.

Feedback delay, as a content-specific expression of the inertia

of the cognitive system, is not the same as learning time, al-

though learning time contributes to feedback delay. For in-

stance, at later stages of vocabulary learning, more words are

learned during an equal time interval, and this is probably at

least partly due to a considerable decrease in average learning

time per word. Learning time is the average time needed for a

word to move from an unlearned to a learned state (Greeno,

1974). Feedback delay, on the other hand, is the time lag be-

tween states—for instance, a present vocabulary level and a

level that is r-(K — L) percent higher (discussed later). This

time is not necessarily affected by changes in learning time.

Feedback delay is a measure of the inertia, friction, or resis-

tance that the cognitive system must overcome to move from its

present state to a more developed state. Although actual feed-

back delay depends on a myriad of factors, feedback delay as

such is probably a constant property (i.e., constant given overall

constancy of the cognitive system). This assumption is based

on the general observation that complex systems tend to reduce

the degrees of freedom of each of their components consider-

ably, in that variability in many dimensions reduces to variabil-

ity in a single dimension (Haken, 1987; Stewart, 1989; Thelen,

1989). Feedback delay may of course change, but such change

will occur as a consequence of overall developmental changes

in the cognitive system. That feedback delay can indeed be

considered a constant should of course be demonstrated empiri-

cally. In this article, I show that a mathematical model using

this constancy assumption yields good mathematical descrip-

tions of regular and irregular empirical cognitive growth

curves. Although feedback delay is different in different

growers and at different times, the model presented herein is

based on the simplifying assumption that feedback delays for

all growers involved in a specific interaction are equal.

Germinal Phenomena and Allopatric Growth

In discussing the concept of growth rate, I have shown that an

initial growth level must be a positive real number, however
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PAUL VAN GEERT

small. The concept of "minimal structural growth level" has

been introduced to account for that fact. If the assumption is

rejected that everything that can grow in cognition is innately

present in some minimal, germinal form, then one must ex-

plain how the step from a nil state (growth level is zero) to a

germinal state (growth level is an arbitrarily small positive num-

ber) can be made. This step cannot itself be a growth process.

There are three logically discernible possibilities. First, the ger-

minal state is innately given. Second, the germinal state has

been inseminated from outside the developing subject; that is,

it has been taught or imitated. Third, the germinal state has

been constructed by the developing individual. One may ques-

tion whether these logical possibilities also constitute psycho-

logically relevant distinctions. With regard to the first possibil-

ity, presence in a germinal state actually refers to the innate

nature of the concepts and strategies in question. Basic con-

cepts in particular have an important germinal component.

Examples include the notions of object (Spelke, 1985), human-

ity (Sylvester-Bradley, 1985), causality (Leslie, 1982), and num-

ber (Antell & Keating, 1983). This component is not the result

of intellectual construction or teaching, nor is it qualitatively

similar to the final state (van Geert, 1988a). For instance, the

germinal state of the concept of human being probably amounts

to a specific tendency on the part of the baby to pay attention to

and interact with events that are in general typical of, but not

exclusive to, animate objects (Sylvester-Bradley, 1985). The ini-

tial state of the concept of causality is probably a modular type

of perception rule operating on mechanical causality events

(Leslie, 1986). The actual onset of growth of these innate ger-

minal states is probably timed by the growth of conditional or

control variables.

The second possibility for making the step from a nil to a

germinal state is by assimilating an externally presented model,

specifically through imitation and demonstration or teaching.

This process refers to the main source of intellectual growth as

far as the transmission and appropriation of culture by every

new generation are concerned. In teaching, the germinal form

of a new grower is inseminated from outside, and its growth is

carefully supported and controlled. However, imitation isa pro-

cess that leads only to a germinal state of what has to be appro-

priated by the subject; that is, it is the starting point of a growth

process. In this respect, imitation is similar to the effect of

allegedly innate skills: What is innate is a specific starting point

and possibility for learning and construction.

The third way in which a new grower can be initiated

amounts to its autonomous construction by the subject himself

or herself. That is, because there is neither an example that can

be imitated nor any innate inclination, the subject discovers a

new cognitive possibility. This is what probably occurs in crea-

tivity.

However, the three logical possibilities discerned—innately

present, imitated, and self-constructed—refer only to potential

germinal states, that is, to different types of starting points or

initial states of cognitive growers. They do not make a differ-

ence with regard to the nature of the cognitive growth process

itself, which always amounts to a process of construction. It is

never so that a skill, form of knowledge, or whatever is innately

given, or innately given in its complete form. Such form is al-

ways the result of a process of construction by the subject,

regardless of the exact nature of the initial state or of the re-

sources supplied.

The construction of new germinal forms in cognition is a

major problem of development, originally discussed in Plato's

Menon, which is concerned with the emergence of new forms

out of old forms. This problem is still not satisfactorily tackled

by existing theories of cognition (Thelen, 1989). The process of

constructing new cognitive forms is probably similar to that in

biology. Given a specific cognitive (or biological) structure,

there exists a limited domain of degrees of freedom for con-

structing new forms (Ho & Saunders, 1984; Saunders, 1984).

The construction of new forms is an intrinsic possibility of a

cognitive system, in that its reproduction over time or its mainte-

nance is vulnerable to random perturbation (mutation) and to

imported models (imitation; Fogel & Thelen, 1987; Siegler,

1984). In some cases, these unintended mutations of some ex-

isting cognitive capacity are selected and supported by the ex-

ternal environment. A good example is the early growth of

words, based on meanings given by the adults to protomeaning-

ful acoustic productions in a baby (e.g., see Jakobson, I960, on

the growth of mommy-daddy words). In general, however,

newly emerging forms have to compete with those that already

exist, and although in the long run the new forms will turn out

to be more powerful than existing ones (e.g., operational as

opposed to preoperational thinking), they are definitely much

less powerful at the time they emerge in a germinal form. In

evolutionary biology, a comparable problem occurs in explain-

ing the emergence of new species, namely the problem of clado-

genesis (Gottlieb, 1984). It is often solved by using the concept

of allopatric growth or allopatric spedation (Mayr, 1976; Simp-

son, 1983). Allopatric speciation is rapid evolutionary change

in a geographically separated (i.e., frontier) part of the original

species population. Because the separated part occupies its

own small habitat, relatively isolated from the mainland, it can

change under relatively safe circumstances, with little or no

competition from the main species. Later, the altered species

form, if better adapted to circumstances that might have

changed in the meantime, may take over the habitat of the

original main population. Applied to cognitive development,

allopatric growth means that a new capacity, rule, and so on

may be constructed by random variation, selection, imitation,

and so on. This may occur in a relatively isolated and uncompe-

titive subfield of the field of application of an already estab-

lished capacity, rule, or whatever. Allopatric cognitive growth is

a natural phenomenon, because almost all fields of application

of a rule or production system break down into subfields.

These subfields are characterized by differences in cognitive

complexity, difficulty, specific domain of application, and so

on. A particularly clear example is offered in Klausmeier and

Allen's (1978) longitudinal study of concept development dur-

ing the school years. The authors distinguished four conceptual

rule systems that form a developmental sequence, namely con-

crete, identity, classificatory, and formal levels. They observed

that conceptual development is not equal for all concepts at all

levels. For instance, there is a natural decalage between object,

geometric, and abstract concepts and between concepts within

each domain as far as speed and ease of development are con-

cerned. A very difficult task would be to construct a new con-

cept rule system (e.g., a classificatory level) for the whole do-
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A MODEL OF COGNITIVE GROWTH
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Figure 1. Keren's cumulative lexicon during the one-word stage compared with an exponential growth
curve, where growth rate r = 0.2 per week. (Adapted from "The One-Word Period as a Stage in Language

Development: Quantitative and Qualitative Accounts," p. 229, by E. Dromi, 1986, in I. Levin, Stage and

Structure: Reopening the Debate, Norwood, NJ: Ablex. Copyright 1986 by Ablex. Adapted by permission.)

main of concepts at once, but this task would be relatively easy
for limited domains, such as a particular concept from a partic-
ular class (e.g., the concept of cutting tool from the object class).
By the time a conceptual strategy in a more difficult concept
domain has reached the limit set by its carrying capacity, a
more advanced strategy is likely to be ready in a relatively iso-
lated, easier subdomain (e.g., a specific concept). The latter
may then be adapted to the requirements of the more complex
conceptual domain with relative ease. Thus, instead of being
some sort of nuisance, as for instance in Piaget's model, deca-
lages are the key to cognitive development, in that they create
opportunities for allopatric growth of new cognitive forms.
Decalages may occur because fields of application of cognitive
rules, concepts, and so on have a laminar structure; that is, they
tend to fall apart into (weakly) independent subfields. Al-
though the problem of the creation of new cognitive forms is
indeed a central problem that requires much further scrutiny, in
this article I confine myself to discussing growth following the
installation of a germinal growth form.

Toward a Mathematical Model of Cognitive

and Language Growth

Exponential Growth Without Feedback Delay

I start from the simplest possible assumption, namely that,
for all practical purposes, during a given interval t, a specific
cognitive growth process is not intrinsically restricted and that
no feedback delay occurs. Given the growth rate relations
(Equation 2),

where A is the symbol for difference. Because there is no feed-
back delay, Equation 5 may be differentiated:

L, - L0 (6)

where e is the base of the natural logarithm, which is the classi-
cal formula for exponential growth. To test whether an empiri-
cal growth curve is actually modeled according to this equa-
tion, its growth rate may be computed with a formula inferred
from Equation 6, namely

[ln(L2) - ln(L,)]//. (7)

The empirical growth rate results from taking the difference
between the natural logarithm of two consecutive growth levels
and dividing this number by the number of units of time; L{ and
£2 represent the size of a growth variable at two different mo-
ments. Possible examples include the lexicon or the number of
problems solved in a standard test.

3

Let me first try to apply this concept of growth rate to an
empirical example. Dromi (1986) studied the growth of the
lexicon in a girl, Keren, between the ages of 10 and 17 months.
Figure 1 shows the cumulative lexicon (see also Gillis, 1984, and
K. Nelson, 1985, for comparable data).

4
 In view of the intensive

data-gathering procedure normally used in these n = 1 language
studies, the measurement error may be considered to be
rather low.

AL/Af = L • r, (5)

3 This formula is identical to Haldane's formula for relative speed of
change in evolution (Simpson, 1983).

4 The parameters and equations necessary to reconstruct the pres-
ent theoretical curve are described in the text. Details are described in
the Appendix.
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10 PAUL VAN GEERT

Growth rate may be computed by taking two points on the

growth curve, for example, at ;27 (where the number of words is

227) and f, (where the number of words is 1). Computed growth

rate is about 0.2 per week (i£., about 0.88 per month, which is

very high). If the exponential and the empirical growth curves

are compared, one sees that both run closely together until

about Week 27. At this point, the empirical curve levels off, but

the exponential curve continues to increase. It is interesting that

the sudden drop relative to the exponential curve coincides

with the onset of syntactic development, as shown by the child's

use of multiword sentences (Dromi, 1986). My first tentative

conclusion from this example on vocabulary growth is that

initial growth rate—in this case, vocabulary growth during the

1 -word stage—should be very high, or at least much higher than

later growth rate. If it were low, it would take too much time to

build up a critical mass in the domain at issue. Thus, initial

growth rate should be quite high. The second conclusion is that

high initial growth rate should drop very quickly after some

critical mass has been achieved, simply because a continuing

high growth rate would lead to exhaustion of all available re-

sources, for example, learning time. For instance, if the initial

growth rate of 0.88 per month in early lexical development

were to continue, by the 16th month of learning the child would

have to assimilate 17 items every minute, nights included, to

keep up with the growth rate. This is physically and psychologi-

cally impossible. Consequently, a model that does not explicitly

take resource limitations into account seems untenable.

Logistic Growth Without Feedback Delay

In the previous example, vocabulary growth slowed down at

the end of the one-word stage for the child concerned. Why or

when exactly this deceleration occurred does not matter, but

that it occurs is necessary, because otherwise the exponential

growth would rise too rapidly. The deceleration could be the

effect of an underlying growth program's putting the brakes on

Keren's word learning and accelerating her syntax learning.

However, slight delays in the onset of the preprogrammed brak-

ing action would provide an exponential grower that is only

slightly in advance of others at the beginning of the growth

process, with the opportunity to rise to an extremely high level.

The price of this exponential eruption would be the consump-

tion of almost all the available resources, and this would seri-

ously jeopardize the growth of potential supportive skills and

knowledge. However, the model includes the assumption that

the collection of supportive and competitive relations among

cognitive growers in a single subject sets intrinsic and specific

growth limits for any individual grower in the form of a specific

carrying capacity K. For instance, there is an intrinsic limit to

the number of words that are accessible to the child at any given

moment (MacNamara, 1982; K. Nelson, 1985). This accessibil-

ity is based on various factors, such as the average word exposi-

tion time per day, the frequency and number of words used by

the more competent speakers in the child's environment, and,

in particular, the cognitive accessibility of words. Imagine a

child growing up in a family of dog breeders with tax problems:

Although both words occur very frequently, the young child

will easily learn the word dog but probably not taxes.
11

Let K be the (temporary) carrying capacity resulting from

the limited-resource factors mentioned earlier, and let L be the

number of words already assimilated in the vocabulary. At any

moment, the unutilized opportunity for vocabulary growth is

(K- L). From the definition of growth under restricted carry-

ing capacity (see Equation 3), one may infer that growth is a

function of the number of items already acquired relative to the

maximum of learnable items; that is,

for

AL/A( = r - L - U

U= K- L.

(8a)

(8b)

Carrying capacity and the unutilized opportunity for growth

inferred from it may take different psychologically operational

forms. For instance, if a minimal number of encounters with an

item is required in order for it to be assimilated, then the more

items one knows the lower the probability that an encountered

item will be unknown, and therefore the lower the probability

that a contribution to item growth will be made. Another possi-

bility is that easily learned items are learned first (i.e., they are

the first to move from an unlearned to a learned state), such

that learning rate becomes slower as the number of unlearned

items grows smaller. The more difficult an item, the longer it

will remain in the unlearned item set. Finally, U may consist of

tutorial assistance that decreases as the level of mastery of the

tutee increases. Any combination of such factors is also pos-

sible.

In line with classical approaches to logistic growth in biologi-

cal sciences, I shall (provisionally) assume that there is no feed-

back delay, that A/ approaches 0. Thus, Equation 8a may be

differentiated to find the classical logistic growth function (De

Sapio, 1976):

L,= K/(\

for

c=K/L0-\,

(9)

(10)

meaning that the growth level at time t is a function of a frac-

tion, where the numerator is the carrying capacity and the de-

nominator contains the product of a constant c (Equation 10)

with the exponential function of the negative product of the

carrying capacity K, the growth rate r, and time /)• If K is set

arbitrarily to 1 and L is expressed as a fraction of 1, logistic

growth rate in a given empirical growth process can be com-

puted according to the formula

r=-ln[(l-/.)/(/..£•)]/(. (U)

This equation is applied to the data from Dromi's (1986)

study. Provided the drop in lexical growth rate at the end of the

one-word stage indeed refers to an upper limit of accessible

words, this limit may be estimated at 350 and then set arbi-

trarily to 1. Then the number of words at Week 32 (n = 335) is

expressed as a fraction of 1. Equation 11 yields a weekly growth

5
 It is very likely that cognitive and physical accessibilities are also

subject to growth. However, particularly in the first phase of word

acquisition, one may expect that vocabulary growth rate will be much

higher than the growth rate of the accessibility threshold, and in gen-

eral, of the carrying capacity for vocabulary.
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A MODEL OF COGNITIVE GROWTH 11

rate of about 0.28, which is very high. Figure 2 shows that the

logistic curve, although roughly similar to the empirical curve

in its general S shape, differs considerably from the latter in

terms of its slope. This lack of empirical fit implies that the

chosen growth model—logistic with feedback delay equal to

0—is inadequate for the present data. However, consideration

must be given to whether there is a form of cognitive growth

that can be modeled after the present logistic/no-delay model.

Fischer and Pipp (1984; see also Fischer & Canfield, 1986)

claimed that cognitive growth phenomena take place in the

form of S-shaped growth spurts (e.g., see the growth in correct

application of the concept of sweetness in Strauss & Stavy,

1982). They further explained that such spurts are seldom

found because standard testing conditions provide a distorted

image of real cognitive growth. To reveal such growth curves,

testing practices are needed in which the subjects are given

feedback to their answers and additional support (see Figure

3). If the growth rate is computed according to Equation 11,

there is a yearly growth rate of 1.26. The logistic curve based on

this growth rate approximates the empirical curve only roughly

(Figure 3). In a later section of this article, I present a dynamic

systems application of the logistic curve and show how a much

better fit with irregular curves may be achieved.

Restricted Growth Without Feedback Delay

In the previous section the assumption was tested that

growth is a nondelayed function of L and l/(i.e., of a present

growth level and the resulting unutilized capacity for growth,

K — L). There was only a rough qualitative fit to the data, in

that both the empirical and the theoretical curve had an S

shape. Before studying the effect of feedback delay on growth, I

test the assumption that growth is only a function of U(\£., K—

L) and not of U and L. The equation for the curve is as follows:

AZ./A* = r • (K - L). (12)

If there is no feedback delay, Equation 1 2 may be differentiated

to yield

L,= K-(K-L0)-e"",

and r can be computed as follows:

(13)

L,mK-LiH)]/t. (14)

An example of this type of growth is offered by Klausmeier

and Allen's (1978) longitudinal study of concept development

during the school years. Four levels of processing conceptual

information were distinguished. Children learn to solve increas-

ingly complex problems at each level for each specific concept

(e.g., the classificatory level of the concept noun). Most of the

growth curves reported in Klausmeier and Allen's study take

the form depicted in Figure 4. These growth curves are typical

of restricted growth, that is, growth that is solely determined by

the unutilized opportunity for growth U, which is the difference

between the growth level already acquired and the maximal

growth level K. For the empirical growth curve shown in Fig-

ure 4, Equation 1 4 yields an average growth rate of 0.28 (for K=

1 ) . The resulting computed growth curve follows the empirical

one very closely. Growth equations (12 and 13) imply that the

conceptual growth measured by Klausmeier and Allen is en-

tirely determined by negative evidence, that is, by the nature

and amount of the problems the child is not yet able to solve.

This follows from the fact that in these equations growth is not

determined by L — that is, the knowledge the child already

has — but by K- L — that is, the knowledge the child has not yet

achieved. There is no way for the child to know or be con-

fronted with this unknown knowledge other than in the form of

the errors the child makes, the problems he or she is confronted

-I—I—I—I—I—I—I—I—T~

1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132

Keren's data

week of study

+ r-.23

Figure 2. Empirical curve of Keren's vocabulary growth compared with logistic curves, where K = 350

words and growth rates are 0.23 and 0.28.
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practice&support

o differentia!

age in years

+ spontaneous

A difference

Figure 3. The growth of arithmetic problem solving under practice-and-support and spontaneous condi-

tions compared with theoretical curves (difference and differential form). (Adapted from "Processes of

Cognitive Development: Optimal Level and Skill Acquisition," p. 57, by K. WFischerand S. L. Pipp, 1984,

in R. J. Steinberg, Mechanisms of Cognitive Development, New York: W H. Freeman. Copyright 1984 by

W H. Freeman. Adapted by permission.)

with that he or she is not yet able to solve, the corrections made

by a tutor, and so on. The form of the Klausmeier and Allen

curves is very similar to that of the classical learning curves

(Hilgard & Bower, 1966). It is not too difficult to fit these

learning curves by applying equations that define learning as

the negative growth of what the learner does not yet know (see

van Geert, in press). The major problem with Equation 13,

however, is that it does not model S-shaped curves (only the

upper part of the S shape) that are characteristic of many forms

of cognitive growth. Thus, it appears that the assumption un-

time (in years)

D data •*- theoretical curve

Figure 4. Growth of noun-concept problem solving at the classificatory level compared with curve for

restricted growth, where r = 0.28. (Adapted from Cognitive Development of Children and Youth: A Longitu-

dinal Study, p. 12, by H. J. Klausmeierand P.S. Allen, 1978, Madison: Board of Regents of the University of

Wisconsin System. Copyright 1978 by the Board of Regents of the University of Wisconsin System.

Adapted by permission.)
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A MODEL OF COGNITIVE GROWTH 13

derlying the logistic equation (Equation 9) is basically correct

and that Equation 13 models only a subset of growth forms. I

next test the assumption that a better fit can be achieved by

introducing feedback delay.

Feedback Delay and Approximative, Oscillatory,

and Chaotic Growth

The delayed-feedback hypothesis can be covered in a simple

mathematical model, namely one that does not use differential

operators, as with the growth equations discussed earlier, but

instead uses difference operators (Burghes & Wood, 1985).

The assumptions are a growth level L, (e.g., the number of

words a child knows at his or her second birthday) and a carry-

ing capacity A^(the maximal numbers of words the child could

acquire and maintain, given the present conditions of internal

and external cognitive support). The state of the growth level

may be inferred at a later moment, where later means after

feedback delay time has elapsed, according to the growth form

(Equation 3) as follows:

£,„,= (! +O'£,. (15)

Also, the rate r' is a function of the unutilized opportunity for

growth. However, if growth rate is to be treated as a dimension-

less variable, the value of which is not dependent on the abso-

lute magnitude of the variables on which it operates, then r'

should be assumed to be a function of the relative unused oppor-

tunity for growth and a constant intrinsic growth rate r (Hof-

bauer & Sigmund, 1988):

r'= r-(K-L,)/K. (16)

Combining Equations 15 and 16 yields the difference equation

for logistic growth, that is, the equation for logistic growth with

feedback delay, namely

This iterative equation specifies any point on a growth curve as

a function of a point that occurs a temporal interval f earlier.

Given an initial growth level, it is easy to generate a growth

curve as a set of points at a mutual time distance of f( in another

section, I discuss how to infer intermediary points).

An interesting notational variant of Equation 17a is

for

r-a-L,)-L,

a = r/K and K = r/a

(lib)

(17c)

(in Equation 17b, a is used as a braking parameter).

Equation 17a has a stable solution, in that L no longer

changes. To find this stable solution, the variable part of Equa-

tion 17a is set to 0; that is,

(18)

(19)

It follows that Equation 1 7a has a stable solution when

L,= K.

could infer the growth rate r by taking two points at a distance f

from one another according to the following equation:

(20)

The stable solution is an important property of the logistic

growth curve, as shown later. Given an empirical curve, one

Because f is unknown, any two consecutive points on an empiri-

cal curve can be used to compute a corresponding r. It can be

shown, however, that the overall fit of the theoretical growth

curve increases as the estimated time interval approaches the

real feedback delay (see Figure 5).

Actually, time does not appear as a real variable in Equation

17a (in contrast to time in the ordinary logistic growth Equa-

tion 9). Time is nothing but an index variable. The unit of time

is ihe feedback delay. An empirical interpretation of the real

length of f may follow from curve fitting: Given an empirical

curve of which the total growth time t is known, feedback delay

equals (divided by the number of iterations used to reconstruct

the empirical curve mathematically.

The previous iterative growth equation has proved its validity

in a wide range of applications, such as meteorology, popula-

tion dynamics, economics, and fluid dynamics (Abraham,

1987; Abraham & Shaw, 1987; Garfinkel, 1987; Gleick, 1987;

Hofbauer & Sigmund, 1988). Peitgen and Richter (1986)

termed these dynamics Verhulsl dynamics, named after a Bel-

gian 19th-century mathematician and population researcher.

These dynamics have a number of interesting and unexpected

properties, despite the very simple character of the basic equa-

tion (Schuster, 1988).

I next explore whether this simple model is indeed capable of

giving a simple mathematical explanation for some of the

growth forms found empirically. I have shown that the ordi-

nary, differential logistic equation sharply overestimated the

first half of the growth curve in Dromi's (1986) study and un-

derestimated the second half. With different feedback delays,

for instance 1 and 2 weeks, Equation 20 can be used to find the

corresponding rs. The best overall approximation seems to be

one with a feedback delay of 2 weeks and r = 0.71 (see Figure

6). The major argument for taking a feedback delay of 2 weeks

is that it provides a better fitting curve than a feedback delay of

I week. A feedback delay of 2 weeks is not necessarily the most

optimal solution (although better than 1 week), but it is easy to

test, because the data are based on weekly measurements. An

additional empirical argument is that 2 weeks is the average

time for a word to stay in an underextended state (Dromi,

1986). A still better fit can be obtained by considering the

empirical curve as a two-step process. The first step seems to be

an initial growth period stabilizing at about 25 words (Week

12). Then a secondary growth period follows, starting at the

25-word level and stabilizing at about 350 words. A good-fitting

curve for the second substage has f = 1 week and r = 0.35 (see

Figure 7). The corresponding undelayed feedback curve either

strongly overestimates the initial growth speed or strongly un-

derestimates the growth speed toward the steady state (Figure

7). The two-substage hypothesis is supported by the fact that

the development of word meaning in Keren's vocabulary pro-

ceeded in two different stages, one in which semantic exten-

sions of newly acquired words were unpredictable and a second

in which those extensions were regular and closely followed the

adult meanings (Dromi, 1986). These two types of meaning

acquisition were clearly differentiated only at about Week 19,
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14 PAUL VAN GEERT

o f=8

Figure 5. The length of feedback delay defines a unique curve: Differences in growth rate r cannot

compensate for different feedback delay (f = 1 vs. 4 and 8).

although Week 12 was considered the point of separation. This

delay might be caused by the fact that the observable overt

expression of a growth phenomenon is delayed relative to its

actual growth onset or by the fact that the two substages of

vocabulary growth overlap. A general explanation for the possi-

ble two-substage character might be found in the potential dif-

ferences in cognitive requirements and contents of initial words

(e.g., those might be more directly related to sensorimotor dis-

coveries; Brown, 1973; Gopnik, 1984). A related explanation

refers to the child's discovery of the "naming insight" (K. Nel-

son, 1985). Such assumptions of course remain to be tested

empirically. In the next part of this article, however, I discuss a

dynamics model that generates stepwise growth, comparable

with the stepwise growth in Dromi's data, without referring to

ad hoc structural explanations. Finally, please note that the

growth rates and feedback delays found in this example are

typical of Dromi's subject and do not constitute general or uni-

versal parameters of vocabulary growth. Later, I discuss other

data (Corrigan, 1983) with different lexical growth curves. It is

likely that these parameters vary among subjects and that up-

per and lower boundaries of these parameters define "nor-

mality."

An interesting feature of the iterative logistic growth equa-

tion is that it is capable of describing nonlinear growth phenom-

ena and even near-chaotic growth (Peitgen & Richter, 1986;

Schuster, 1988). For r < 1, the curve has the characteristic S

shape or sigmoidal form seen in the vocabulary data. This may

be called asymptotic growth. For 1 < r < 2, the curve shoots

above the stable solution level, which is the carrying capacity

(see Equations 18 and 19), then drops and moves on in a de-

creasing vibration, aiming at the level of the carrying capacity

(Figure 8, bottom curve). This may be called approximate

growth. The carrying capacity, which is the stable solution of the

logistic growth equation, is a so-called point attractor for all

growth processes where r < 2. For 2 < r < 2.57, the growth

process has 2" attractors, and growth takes the form of a peri-

odic oscillation (Figure 8, middle curve), which may be called

oscillatory growth. Above 2.57, the process loses its periodicity

and moves into chaos, or near-chaotic growth (Figure 8, top

curve). The previous processes provide good illustrations of the

principle of phase shifts following boundary transitions of a

gradually and monotonically changing control parameter (Fo-

gel & Thelen, 1987). Linear increases in the growth parameter

lead growth processes over several sharply distinguished types

(asymptotic, approximative, etc.).

Learning and Forgetting Under Limited Resources

In the previous section, I discussed cognitive growth as a

form of increase, expressed by the growth rate r. Obviously,

however, there is not only increase, in the form of acquiring or

learning words, skills, and so on, but also forgetting, the loss of

proficiency, and so on. Thus, a forgetting factor needs to be

included in the logistic growth equation. Let m' be a rate of

forgetting, loss of competence, and so on. In accordance with

the basic growth form and Equation 15,

/.„=(! +r'-m')-L,. (15')
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1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

week of study

data + logistic; f=1 week

a Keren's data

week of study

logistic; f-2 weeks

Figure 6. Empirical curve of vocabulary growth (Dromi, 1986) compared with mathematical curves

based on the difference form of the logistic equation for feedback delays of 1 and 2 weeks. (Adapted from

"The One-Word Period as a Stage in Language Development: Quantitative and Qualitative Accounts," p.

229, by E. Dromi, 1986, in I. Levin, Stage and Structure: Reopening the Debate, Norwood, NJ: Ablex.

Copyright 1986 by Ablex. Adapted by permission.)

One may assume that m' is the complement of r'. Thus, whereas

r' is dependent on the unutilized opportunity for growth U, m' is

related to l/'s complement. Because U=(K- L)/K, its comple-

ment is L/K:

m' = m • L,/K. (21)

Substituting Equations 16 and 21 in Equation 15' yields the

difference equation for logistic growth and forgetting:

This equation has a stable solution when the sum of the variable

parts is 0; that is,
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1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829.3031.52

Keren's data

delay = 0 week

week of study

0 delay = 1 week

Figure 7 Mathematical curves of vocabulary growth in second substage of one-word stage: Differential

logistic curve (f = 0) compared with difference form (f = 1 week, r = 0.35) and empirical curve. (The line

of triangles marks the assumed base level for the second substage.}

r-L, = (r+m)-LtlK. (18')

From Equation 18' it follows that 17a' has a stable solution when

L, = K-r/(r + m). (22)

This means that if a learning-and-forgetting curve grows to-

Figure 8. A smooth and linear increase in growth rate corresponds to

abrupt shifts in the form of logistic growth curves (vibration toward

stable level K for r = 1.9, four-period oscillation for r = 2.5, and chaotic

oscillation forr- 3).

ward a stable level, it grows toward a fraction r/(r + m) of its

carrying capacity. It may now be questioned whether there ex-

ists a growth rate r", producing a growth process that is identi-

cal to a growth process produced by a growth rate r and a

forgetting rate m, with a stable solution that is described by

Equation 22. That is, what is the value of r" if

(1 + r')-L, - r°-L?-(r + m)/(K-r)

= (l + r)-L,- (r+ m)-L\IK1 (23a)

The answer from solving the above equation is that

r" = r. (23b)

Put differently, the logistic curve for growth and forgetting is

identical to the curve for growth only, provided that the carry-

ing capacity of the latter is set to

K" = K-r/(r+ m}. (23c)

This means that the effect of forgetting or loss of proficiency

merely consists of lowering the carrying capacity, in compari-

son with the case in which no or less forgetting occurs, whereas

the growth rate r stays the same. That is, in Equation 17a, the

rate of growth is the net result of actual learning and forgetting

processes, and the carrying capacity K is a function of pure

learning and pure forgetting; that is, K is lower the higher the

rate of forgetting. If forgetting were not a resource-dependent

function—that is, if Equation 21 would not hold—there would

be an entirely different growth curve. However, if learning, the

sheer cognitive growth increase, is a resource-dependent func-

tion, it would be very surprising if its complement, forgetting,

would be resource independent.
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A MODEL OF COGNITIVE GROWTH 17

Inferring Intermediate Growth Points

in the Difference Equation

The difference equation for logistic growth reduces a growth

curve to a set of discrete points, at a distance of (n • f) from the

initial state. The inference of intermediary growth points is not

trivial. For instance, if the logistic curve were to describe the

growth of a fly population, the members of which die at the end

of the season after having laid their eggs, there would be no

intermediate points. If the equation describes vocabulary

growth, it actually specifies a mathematical relationship be-

tween any pair of growth levels that are separated by a time

interval f. That is, in this case, there are intermediary states,

because it is unlikely that all words simply pop up together an

interval f later. Rather, they will probably be released in an

exponential way: The more easily learnable words emerge soon

after the process of learning has started, and the closer the end

of the f interval, the more words will emerge per unit time.

Thus, given an initial state, a feedback delay time, and a growth

rate, one may compute L^f and infer any number n of interme-

diary states by solving Equation 24a for r':

L f = ( l + r ' ) " . L 0 . (24a)

It is easier to solve Equation 24b, however, which is based on

Equation 7:

This yields re, which is an exponential growth rate, for n, the

number of intermediary steps wanted. Any intermediary step

between L0 and L, may be taken as a point for applying the

logistic growth equation. Thus, the growth curve may be filled

with intermediary points to any desired level of detail.

Exponential release of items probably occurs only at growth

intervals that are very close to the minimal structural growth

level, that is, close to the real initial state of growth. A general

algorithm to make growth interpolations for irregular growth

far from the initial state is the fractal interpolation method

(Grasman, 1990). It is based on the concept of self-similarity. If

there is an irregular growth process, with quasi-random ups

and downs, the sequence of intermediary points between any

two given measurement points can be assumed to follow a pat-

tern that is geometrically similar to the pattern of the overall

process. I use this property in a reconstruction of intermediary

points in the growth of lexical knowledge.

Robustness in the Face of Random Perturbation

In real life, cognitive growth and learning are probably sub-

ject to all sorts of random fluctuations, for instance fatigue,

fluctuations in the condition of health, random fluctuations in

the quality and quantity of the information available to a

learner, and so forth.
6
 The logistic growth model is quite robust

in the face of these random fluctuations, and this is so for two

reasons. The first reason concerns the nature of the variables

involved. The way in which growth rate and carrying capacity

are defined implicitly takes the normal, random fluctuations of

life into account. Carrying capacity is defined as the maximal

stable growth level attainable, given all the resources and limit-

ing factors of a cognitive environment. This implies that nor-

mal, random fluctuations, insofar as they interfere with cogni-

tive growth, have been taken care of in the form of a resource

property contributing to setting a specific limitation on the

height of the carrying capacity (comparable to the way in which

forgetting is accounted for by the height of AT). Because the

carrying capacity and the growth rate form a sort of weighted

sum of a great variety of variables, very significant random

fluctuations are needed to cause small to moderate changes in

either carrying capacity or growth rate.

The second reason that the logistic growth equation (the dif-

ference form) is rather robust in the face of random perturba-

tion lies in the form of the equation itself. For instance, if at

some (or even each) step of the computation of a growth se-

quence, a random number of about 10% is added to or sub-

tracted from the growth rate and carrying capacity, the result-

ing growth curve is still very similar to one where no such

significant random numbers have been added. Note, however,

that if L has approached K very closely, the variance of L is

greater or smaller than the random variance of K, dependent

on the mean value of r (high average rs producing random

variance in L that is much higher than the random variance in

K) and the random variance of r.

Note also that robustness is just one side of the coin. The

effect of random perturbations is state dependent. For in-

stance, in some well-determined regions of growth processes,

even very small random perturbations have important long-

term effects, for instance because a random perturbation

pushes the system over a threshold value or because in some

regions small random perturbations are of about the same mag-

nitude as the structural changes themselves. In general, how-

ever, it may be stated that ordinary simple logistic growth pro-

cesses are quite insensitive to normal random perturbations or

moderate random variations in the carrying capacity and

growth rate.

A Measure for Growth Efficiency

Thesubsumptionofcognitive growth under ecological princi-

ples, particularly that of the struggle for limited resources, im-

plies that growth processes have a price. That is, the growth of

vocabulary or the increase in mathematical skill requires time

and energy. Provided the "price" of a growth process could be

estimated, its efficiency might also be calculated, and by so

doing the relative efficiencies of different parameter values

(e.g., different growth rates) could be compared. It is intuitively

clear, for instance, that a delayed growth process with a growth

rate higher than 2.57 is considerably less efficient than one with

a rate of 1. The first uses time and energy to run through a

chaotic oscillation and builds up high growth levels that are

torn down immediately afterward. The growth process with r=

1, on the other hand, evolves toward a steady-state level of 1 and

stays there. One may assume that a final growth level that is

about the height of the carrying capacity is most optimal from a

cognitive economy point of view: It is stable and provides a

reliable basis for the growth of additional skills, rule systems,

6 Fatigue and motivational changes may be an effect of the growth

process itself; for example, motivation may decrease as a function of

effort invested in the growth process. In this particular case, such

changes are not considered extrinsic "random" factors.
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concepts, and so on so that no resources are left unused. A

simple operationalization of growth efficiency, therefore, is the

average relative distance between the carrying capacity and the

growth level, measured over a fixed time interval and starting

with a realistically low initial state (e.g., 1% of K). Previously, I

defined the relative distance between L and K, that is (K —

L)/K, as the unutilized capacity for growth U. Now 1 call the

average U over a fixed time interval [£,. Because the central

issue is cognitive growth, that is, the processes that lead to the

attainment of a steady state, the short-term efficiency of growth

processes is measured, meaning the efficiency over the time

needed to approximate the steady state. The more efficient a

grower, the less time it needs to approach the steady state, and

therefore the smaller the average relative distance between K

and i, or t£,. Because the "cost" of learning a word cannot be

compared, for instance, with that of learning to solve a fraction

problem, I confine the comparison of efficiencies to one

grower at a time (i.e., I compare the efficiency of different

growth rates in vocabulary, for instance, but I do not compare

vocabulary with learning to solve fractions).

Given a set of growth processes that are identical except in

one variable, which in general will be growth rate, there is at

least one for which t£, is minimal: t/J!"1.1 can arbitrarily set the

cost in terms of time, energy, effort, and so on of t/JJ"1 to 1. Thus,

the relative growth cost of a grower A (e.g., a grower with a

growth rate rA) is

EL = U*JU^
m
, (25)

where EL is a measure of the relative "expenses" made to let L

increase.

Provided the carrying capacities for all the compared

growers are similar, the only extra cost factor involved is the

cost of maintaining different growth rates. It is assumed that

the cost of maintaining a high growth rate is higher than that of

a low growth rate. A high growth rate implies a higher speed of

acquisition and thus requires better information handling and

structuring. From an ecological point of view, the maintenance

of a more complex structure is more expensive in terms of

resources needed than that of a less complex structure (similar

principles occur in thermodynamics; Atkins, 1984). The cost

of maintaining the average growth rate that led to U^,'" may be

arbitrarily set to 1, and the cost of all other growth rates may be

expressed as follows:

E,= rt,lT%°. (26)

Let w, be a weight factor attached to Er, which, if EL and £,are

considered to contribute equally to the total growth costs, is set

to 1. To compare growers with different carrying capacities, one

should reckon with the fact that maintaining a specific carrying

capacity level uses resources and thus contributes to the ex-

penses. Consider the most optimal carrying capacity level to be

set arbitrarily to 1 —whatever "most optimal" may mean under

specific circumstances—such that the cost involved in main-

taining this carrying capacity is 1 too. Then attribute a weight

WK to it. The final efficiency equation is

EB = (EL - EK)I( l WK). (27)

Figure 9 represents an efficiency graph for an ordinary logistic

growth curve with delayed feedback, with an initial growth

level of 0.1 and a time interval of 20 growth steps, which is

sufficiently long for most growth rates to approach the final

state level (if any exists). Given the chaotic nature of growth

where r > 2.57, the right part of the graph is not very interest-

ing. However, as can be seen from Figure 9, there are two local

optima, namely about 1.5 and 1.86. These growth rates corre-

spond to the approximate growth type explained in an earlier

section: It is a very fast growth form characterized by a se-

quence of over- and undershootings approaching the AT level. It

is the sort of growth that can be expected in fast and early forms

of learning, such as the learning of the meaning of words.

Although the differences between the optima and their neigh-

boring points are small, such optima may be interesting from a

cultural-evolutionary point of view (see Boyd & Richerson,

1985; Lumsden & Wilson, 1981). Assume that there exist two

alternative forms of a skill that have largely similar sorts of

functional meaning (e.g., ways of solving social conflicts either

by democratic or by autocratic decision). Suppose further that

these alternatives are currently evenly distributed over the popu-

lation and that their learning by a new generation is largely a

matter of imitation. If both strategies are equally difficult (or

easy) to master, their distribution over the population will re-

main identical over consecutive generations. However, if one is

easier to master—in the sense that its appropriation goes more

efficiently than with the alternative—a slight increase may be

expected in the number of people from the next generation who

have adopted the more efficiently learnable strategy, and this

relative increase will be proportional to its higher efficiency.

This means that, all other conditions being equal, of any two

alternative strategies, rules, or whatever whose germinal state is

imitation, the most efficiently learnable form will become dom-

inant in a population and finally exorcise its less efficiently

learnable competitor. However, the effect of acquisition effi-

ciency is sensible only under conditions where efficiency is a

decisive property of a growth or learning process, that is, under

conditions of extreme survival pressure. Such conditions have

most probably occurred often during the early ages of the hu-

man species. This could explain why basic universal human

properties such as language and social structure are learned

very easily, at an early age, and in a more or less approximate

way. Of course this is mere speculation, but it could be tested by

mathematical theories of cultural evolution, such as Boyd and

Richerson's.

Building Dynamic Systems Models of Cognitive

and Language Growth

General Principles

The model of cognitive growth discussed so far may be ex-

tended considerably by applying principles of dynamic systems

modeling. Basically, a dynamic system consists of a state space

to which a set of dynamic rules is assigned. A state space is any

n-dimensional space, the dimensions of which consist of the

various degrees of freedom of a system. For instance, the

growth of vocabulary during the one-word stage can be de-

scribed in the form of a state space consisting of four dimen-

sions, namely the number of words acquired, the growth rate,

the height of the carrying capacity, and the feedback delay. For a

real-word learner, the state space will consist of a fragment of a
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EFFICIENCY SCALE

2.8

a
LJ

0.9

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9
/ \

GROWTH RATE *

1.07

0.99

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9

GROWTH RATE

Figure 9. Efficiency graphs for different growth rates, where 0.1 < r < 3; growth rates 1.2 < r < 1.9 are
roughly equally efficient (top); the window 1.2 < r < 1.95 shows two local efficiency maxima, at r = 1.5 and

r=1.85.
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Euclidean four-dimensional space, with number of words and

carrying capacity between 1 and 500, growth rate between 0.5

and 2, and a feedback delay of between 1 and 2 weeks. Each

point in this state space represents a potential developmental

state of a word learner. The set of dynamic rules assigned to the

state space describes the evolution over time of any point in the

space. In the example, the dynamic rule consists of the differ-

ence form of the logistic growth equation. Thus, for a point (K=

\, L = 0.\,r= \, and f = 1), the equation describes a line that

consists of an arbitrary number of consecutive states. This par-

ticular starting point can be described as the initial state of the

system.

The line starting from this initial state, which may be alterna-

tively called the trajectory of the initial state point, amounts to

the logistic growth form discussed in the previous section. The

trajectory for initial states where r < 1 leads asymptotically to-

ward a point where L = K. This point is an attractor for all

trajectories where r < 2. For 1 < r < 2, the trajectories move

toward the point attractor in a whirling fashion. For 2 < r <

2.57, the attractor is no longer a point but a cycle (is., the

periodic oscillation discussed previously). With linearly in-

creasing r, these cycles get twisted to form twofold, fourfold,

eightfold, and upward loops. For r > 2.57, the trajectories form

extremely complicated open loops. Points for which r is 1,2, and

2.57 are bifurcation points, or points where the geometry of the

trajectories changes qualitatively (e.g., from a spiral into a

closed loop). Because a four- and often a three-dimensional

state space is difficult, if not impossible, to represent on paper,

it is necessary to compress the dimensions some way. A good

way to compress the dynamic system of logistic growth is to use

two dimensions, namely L/K (i.e, growth relative to K) and a

dimension representing absolute speed of growth. The latter

can be expressed as (LM- L,)jL,. Because for any given L, this

speed of growth is a direct function of r, this second dimension

is a way of representing different values of r in the state space.

Figure 10 shows the growth types of Figure 8 in the form of their

state space diagrams. Such diagrams can reveal structure or

regularity that would not be visible in the ordinary time-axis

diagrams.

Instead of the geometric concept of a dynamic system, from

now on a more intuitive version is used. By dynamic system, I

intend any structure of n one-dimensional variables that affect

one another over time. The way in which they do so is expressed

in the form of difference equations for logistic growth with

different parameters. Thus, the simplest dynamic growth sys-

tem is the K-L-r-f system (or simply K-L-r system, because I

treat f as a constant), where only L develops over time. In the

discussion on the ecological constraints on cognitive growth, I

explain that cognitive growth dimensions may entertain sup-

portive or competitive relationships. For instance, vocabulary

and syntactic knowledge are two growers that seem to compete

for the same resources, whatever those may be, in the first

stages of language development (Dromi, 1986). Each grower

may be represented by a K-L-r structure, and both structures

may be related by a mutual competitive relationship. For in-

stance, one may postulate that each growth level inversely af-

fects the growth rate of its competitor. I use the principle of

competition to introduce a model of regressive or U-shaped

growth. Another principle I mentioned earlier is that the

growth equation may be applied recursively. For instance, the

growth rate of vocabulary may be conceived of as a variable

that is subject to growth in its turn and thus can be character-

ized by a growth rate r, and a carrying capacity Kr, and so in

principle ad infinitum. This principle of recursion, in addition

to the principle of supportive growth, is used to introduce a

model of bootstrapping phenomena in cognitive growth. Fi-

nally, dynamic models are constructed where the direction of

growth (i£., increase or decrease) is treated as an autocausat

phenomenon; that is, increase causes increase, and decrease

causes decrease. This form of positive feedback effect can be

used in models of stepwise and U-shaped growth. In the re-

mainder of the article, I present several empirical cognitive

growth phenomena and try to construct a dynamic systems

model for each of them. These models will consist of structures

of K, L, and r components and their respective competitive and

supportive relationships. Instead of studying the geometric

properties of the state spaces corresponding to these structures,

I discuss ways of fitting empirical growth curves with trajecto-

ries that naturally occur in these spaces. The study of several

adjacent trajectories in these state spaces may reveal specific

models of families of growth curves of which the empirical

growth curves are members.

To provide a short overview of the types of bilateral interac-

tions (i.e., interactions among any two variables in a system), I

return to the five heuristic principles mentioned earlier, and

the second principle in particular. This principle makes a dis-

tinction between competitive, supportive, and neutral interac-

tions between variables. Thus, provided that the effect of one

variable on another may be one of the aforementioned sorts,

there are nine possible bilateral interactions (Table 1). The col-

umn heads specify the effect of a variable A on a variable B,

whereas the row heads describe the opposite, that is, from B to

A. The most interesting interaction types are 1, 2, and 4 be-

cause the neutral type is only an interaction in the logical sense

of the word (it is a zero-order interaction). Type 1 is a mutual

support interaction: Both growers, A and B, positively affect

each other's growth. This type of interaction is used in models

of bootstrap dynamics. Type 4 represents a mutually competi-

tive interaction: Both growers negatively affect each other. This

type of interaction will occur in competition among alternative

strategies and in cognitive takeover phenomena. Type 2 repre-

sents an asymmetric form of interaction: Whereas one variable

affects another positively, the latter affects the former negatively.

This type of interaction has played a prominent role in biologi-

cal models of predator-prey relationships and is usually mod-

eled in the form of so-called Lotka-Volterra equations. Interac-

tions of the Lotka-Volterra type can be used to model the

growth of corrective behavior of parents, for instance, in re-

sponse to the growth of unwanted habits of behaviors in their

children (van Geert, in press).

Table 1

Supportive, Competitive, and Neutral

Interactions Among Variables

Interaction

Supportive

Competitive

Neutral

Supportive

1

Competitive

2

4

Neutral

3

5

6
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time axis representation state space representation

21

0.0013

0.0016

0.5 -0.6 0.6

0.4
-0.7 0.7 -0.7

connected disconnected
0.7

Figure 10. Growth curves can be represented in different ways: Figures at the left represent normal
time-axis diagrams; figures at the right are corresponding state space diagrams. (State space diagrams
exist in two farms: line representations, which show the connections between data points [connected state
space diagrams], and point diagrams, which represent only the data points [disconnected state space
diagrams]. Connected slate space diagrams provide clear pictures of approximative and oscillatory
growth [second and third rows ]. The disconnected type of diagram is especially useful for representing
chaos and near-chaos evolutions: Local concentrations of data points can be seen immediately [bottom
row].)

Cognitive Dynamics Based on Mutual Competition

Cognitive takeover phenomena and competitive growth.

Under various conditions, the growth in one dimension may

force another dimension to change qualitatively. For instance, a

multicellular organism that exceeds a specific number of cells

is, through evolution, forced to abandon its direct cell-environ-

ment contacts as a major form of energy exchange and to de-

velop an inner structure (e.g., a structure with a digestive tract).

Cognitive and linguistic rules and strategies can be considered

as information-management and production systems. Just as

with the biological example, the form of information systems is
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not independent of quantitative properties of the information

they have to manage. Manageability is a function of resources;

that is, it poses no problems if one has all the time, space, and

energy of the world. If an information-management system

reaches a management limit—for example, in addressing prob-

lems that require more information than the system can cope

with because of memory limitations—then it is likely either to

remain constrained by that limit or to be replaced by another,

more powerful information-management system. If the latter is

the case, it is called a takeover. In the previous examples, the

takeover is the effect of scarcity in internal resources, such as

time or memory extension. In other cases, takeovers may be the

result of external resource limitations. For instance, children

often use "wrong" linguistic forms that are based on their im-

mature grammars. Adults initially accept such forms but be-

come increasingly intolerant as the child's mastery of the

correct form increases.

Cognitive development is full of takeover phenomena. Exam-

ples are the takeover of one-word by two-word sentence rules,

takeover of concrete operatory logic by formal operatory logic

in specific domains of application, or the takeover of one bal-

ance scale rule by another in the balance scale task (Siegler,

1983). In a significant number of cases, takeover phenomena

usually result in developmental regression (Bever, 1982), U-

shaped behavioral growth, or oscillatory growth (Strauss, 1982;

Strauss & Stavy, 1982). Such regression is either a complete

abandoning of the older rule or principle or a temporary de-

crease of the field of an initially successful application of a

specific production rule, concept, and so on. Regressions have

been found in the fields of early object cognition, concept devel-

opment, ratio comparison, early imitation, language acquisi-

tion, face recognition, artistic development, intuitive thinking,

gender identity development, and so on (Bever, 1982; Strauss,

1982). A good example of regression toward zero performance

level caused by a quantitative increase in the information to be

managed by a rule system is provided by the development of

conservation in 2- to 5-year-olds (Mehler, 1982). According to

Mehler, 2-year-olds use a perceptual memory strategy and are

capable of correctly solving a significant number of simple con-

servation problems. As perceptual differentiation increases,

the amount of information encoded within a situation to be

remembered increases correspondingly. At a specific point, the

average amount to be remembered is simply too much to be

managed by the perceptual memory strategy. This is the point

at which a new strategy, based on the inference of rules and

regularities, is adopted, while the old strategy quickly disap-

pears. The new strategy, however, leads to a spectacular reduc-

tion—toward zero—of correct conservation performance.

Only at the age of 5 is the regularities strategy back at the perfor-

mance level of the 2-year-old using the memory strategy. The

regularities approach, however, is much more powerful and has

a much higher performance ceiling.

A comparable example concerns the development of the con-

cepts of temperature and sweetness studied by Strauss and

Stavy (1982). Children aged 4 use identity justifications and

manage to solve about two thirds of the problems correctly.

Then they start to use a method of compari ng quantitative prop-

erties, which results in a considerable drop in the number of

correct solutions. By the age of 11, they start to understand the

connection between identity and comparison rules and solve

most of the problems correctly. The main question, then, is why

at a specific moment should one strategy (representation sys-

tem, etc.) take over the domain of another that has proved to be

quite successful? Why does the cognitive system not choose to

adapt to the carrying capacity or resource limitations level and

stick to its earlier and successful strategy? One explanation

could be based on a Wernerian orthogenetic principle: The cog-

nitive system would show an intrinsic tendency toward more

complexity and rationality. That is, a logically or information-

ally more powerful system will inevitably interfere, at one mo-

ment or another, with a less powerful one. Without claiming

that this solution is necessarily false, I present an alternative

answer that is not based on a postulate of intrinsic tendency

toward higher complexity but simply on a dynamic systems

model of competitive growth.

The dynamic system consists of two growers, A and B. A is

the strategy, rule, or whatever that, at the end of the day, will be

the weaker of the two (e.g., the qualitative strategy in the sweet-

ness or temperature problems or the memory strategy with con-

servation). This relationship between A and Bean be expressed

by stating that the final state of A is considerably lower than

that of B, or that the carrying capacity of A is much smaller

than that of B (e.g., at the end of the day, the rule strategy will

solve many more conservation problems correctly than will the

memory strategy). In principle, the competition between the

two growers is mutual; both "suffer" from the success of their

competitor. A simple way to introduce this competition mathe-

matically is by making the growth parameter r of a grower A

increase or decrease by some direct function of the difference

between its growth limit, that is, carrying capacity KA and the

actual growth level of the competing grower B, namely LB (and

similarly for the growth rate of B; see Figure 11). The expres-

sion (KA — LB ) indicates how much of the potential application

field of a grower A is already accounted for by a competitive

grower and, if Lg > KA , the powerfulness of the B form com-

pared with the A form. It thus provides a good characterization

of the relative success of A versus B (and vice versa). Because

the growth parameter r is also supposed to be constrained by

some intrinsic resource level (otherwise, it would quickly

mount toward a rate that farexceeds the physical possibilities of

its carrier system) , the logistic growth equation can be applied

to the growth parameter itself. For instance,

'„„ = [1 + (*A, - LB,) ' c] • /-A, - (*A, - LB,) -c-rljK^ (28a)

specifies that the value of r of the grower A at time ( + f is a

logistic function of several variables, namely (a) a previous

value of r of A at time ( , ( b) a carrying capacity K for rA at /, (c) a

growth rate that amounts to the difference between the carry-

ing capacity for A , K^ , and the growth level of the grower B, Ly

at time /, and (d) a competition factor c (the bigger the value of

c, the stronger the effect of the competitor).

The system consisting of two competitive growers A and B is

characterized by four equations, namely

'Vw=/('A,, , (28b)

(28c)

, and (28d)

(28e)
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Figure II. A dynamics model of two competing growers: The simplified model (top) specifies only the

direction of the negative effect of one grower on another as a consequence of a competitive relationship.

(In the present model, A competes with and thus negatively affects B and vice versa. The full model of

interactions [ bottom ] specifies the way in which the competitive interaction has been shaped: The growth

rate of A is a function of the difference between the carrying capacity of A and the growth level of B [and

vice versa for B \. Thus, the bigger L,, the smaller rA.)

provided that

KB,^ Kf.:, L^. > iB) rA > rB(, (28f)

where /is the symbol for the logistic function; the subscript;

refers to the initial state values. This set of equations describes a

system consisting of a more primitive strategy A, which is

rather well developed at the start of the observations (hence,

the initial state values of LA and rA are significantly higher than

those of Z.B and rB, for example, the identity strategy in Strauss's

sweetness experiment). Its growth initially profits from the lack

of competition from a more powerful strategy, which is then

still in a sort of germinal state (e.g., the quantitative rule in the

sweetness experiment).

Assume that unrealistic values of the competition factors—

that is, those that lead to highly instable and chaotic behavior of

the dynamics—have been ruled out in the course of the phy-

logeny of the human cognitive system. Given realistic competi-

tion factors, the behavior of the dynamics modeled after Equa-

tions 28b-f is as follows. If the strong grower B (i.e., the grower

that will achieve a much higher final level than A but with an

initial state level that is significantly lower than that of A) has a

reasonably high initial growth rate, both growers develop as if

their growth was completely independent of the growth of their

actual competitor. That is, in this particular region of the state

space of competitive growth, there is no regression (fallback or

U-shaped growth). For a significantly lower initial growth rate

of B, grower A sets into a chaotic oscillation as B approaches

and passes A\ carrying capacity level. As B approaches its own

carrying capacity level, the amplitude of A's oscillation de-

creases, and finally A settles down into its final state value (see

Figure 12; see the Appendix for details). Probably there are

various ways in which this sort of growth may be expressed in

behavior. For instance, the oscillation of A amounts to quick

alternations in the use of the -4-versus-S strategy in problem

solving. This is the sort of phenomenon that often occurs when

a more mature cognitive strategy goes through some sort of

breakthrough state (Bijstra, van Geert, & Jackson, 1989; The-

len, 1989). If one takes the average growth level in such a dy-

namics (e.g., over three consecutive states), one finds a tempo-

rary regression. However, the following sections discuss much

more direct forms of the regression phenomenon.

Positive feedback effects in U-shaped growth. Cognitive strat-

egies, rules, and knowledge are reality-driven acquisitions. If a

cognitive strategy continuously leads to errors, it is likely to be

abandoned; that is, it will show negative growth or extinction.

Extinction or negative growth can be easily modeled in the

logistic growth equation by inverting the sign of the growth rate

from positive to negative. If such inversion were to happen

whenever a strategy encounters an instance of counterevidence,

cognitive growth would be very chaotic, if not simply nonexis-

tent. However, according to cognitive developmental studies, as

well as from studies in the history of science, children and

T
h
is

 d
o
cu

m
en

t 
is

 c
o
p
y
ri

g
h
te

d
 b

y
 t

h
e 

A
m

er
ic

an
 P

sy
ch

o
lo

g
ic

al
 A

ss
o
ci

at
io

n
 o

r 
o
n
e 

o
f 

it
s 

al
li

ed
 p

u
b
li

sh
er

s.
  

T
h
is

 a
rt

ic
le

 i
s 

in
te

n
d
ed

 s
o
le

ly
 f

o
r 

th
e 

p
er

so
n
al

 u
se

 o
f 

th
e 

in
d
iv

id
u
al

 u
se

r 
an

d
 i

s 
n
o
t 

to
 b

e 
d
is

se
m

in
at

ed
 b

ro
ad

ly
.



24 PAUL VAN GEERT

n weaker grower A

TIME

stronger grower B

Figure 12. A cognitively weaker strategy A becomes temporarily unstable as a stronger strategy B takes

over its domain of application, and A stabilizes again as B stabilizes.

scientists alike tend to stick to their models, theories, world

views, or strategies, even in the face of considerable counterevi-

dence (Elbers, 1986,1988). That is, cognitive development is

rather conservative. However, once a paradigm shift has

started, it leads rather rapidly to considerable changes. A good

way to build this behavior into the growth models is the follow-

ing positive feedback rule: When increasing, continue increas-

ing; when decreasing, continue decreasing. Thus, as long as a

strategy or rule grows toward some carrying capacity level, it

will continue doing so; that is, it will not invert the sign of its

growth rate. However, if the growth rate is higher than 1, the

grower will overshoot its carrying capacity and inevitably be

thrown back under the carrying capacity level. This fallback

then switches the sign of the growth rate (in accordance with

the simple conservative principle just mentioned), and an ex-

tinction process sets in. This process will continue until the

grower passes some minimal structural growth level. This level

is the minimum level of a strategy, rule, principle, and so on,

given the specific structural possibilities of the cognitive system

at issue. For instance, an operationally thinking child will not

completely abandon qualitative strategies in solving sweetness

or temperature problems. To the cognitive system, such strate-

gies are well within the structural possibilities and are thus

likely to be generated anew even when, for some reason or

another, they might have disappeared temporarily. Thus, as

soon as a strategy in the process of extinction falls under its

structural minimum, it automatically rises again, which

switches the sign of the growth rate, and its growth starts anew

(provided, of course, that neither r nor K has meanwhile been

reduced to about zero level). This mechanism, which is based

on a positive feedback effect of the direction of growth on the

sign of the growth rate, provides a model for the so-called cog-

nitive pendulum phenomenon (K. E. Nelson & Nelson, 1978)

and also for regression in cognitive growth. The model accounts

for the fact that strategies, rules, models, and so on are changed

only if their application effectively exceeds the carrying capac-

ity of the environment, that is, the level above which the strate-

gies and other things always and automatically lead to errors or

to anything else that is unpleasant to the system, such as a

taxing of resources.

One may object that the conservative rule just mentioned

makes growth extremely vulnerable to random perturbations.

This is true only if the random perturbations are bigger than

the increases or decreases due to either growth or extinction. If

that is the case, the grower as such is intrinsically unstable

anyhow, in that the growth level depends more on random fac-

tors than on cognitive acquisition or learning capacities. Never-

theless, small random perturbations have very interesting and

far-reaching effects on growth, as I show later. First, however, 1

specify the dynamic rules for a system of competing growers to

which the aforementioned positive feedback has been added

and then demonstrate the effect of small random perturba-

tions, which have very interesting long-term consequences on

growth.

The equation for the growth rates in positive feedback sys-

tems is actually a modification of Equation 28a, namely

= abs[( 1

-v, (29a)
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for

v,= (LM- i, (29b)

which implies that t), is -1 if the last growth level is lower than

its immediate predecessor and +1 otherwise. The complete set

of dynamics rules is similar to Equations 28b-f except for the

equation on which the growth rates are based (Equation 29). I

demonstrate the behavior of the resulting dynamic system for

initial state values LA = 0.5, rA = 0.8, LB = 0.1, and a minimal

structural growth level, which is almost 0. For varying initial

state values of rs, there is the following behavior. For the initial

growth rate rB > 0.33, A and B simply grow seemingly indepen-

dently of one another; that is, no regression occurs. For rB with a

value of about 0.24, A shows inverted U-shaped growth, which,

depending on the exact value of re, may amount either to com-

plete or to partial extinction (see Figure 13; see the Appendix

for details). For rB with a value of about 0.1, there is a prototypi-

cal U-shaped growth, as described by Bever (1982), Mehler

(1982), and Strauss and Stavy (1982; see Figure 13). For an rB of

about 0.07, grower A displays M-shaped growth, and for increas-

ingly lower initial growth rates for B, the growth of A turns into

a chaotic oscillation, exhibiting W-, UM-, or other-shaped

growth (Figure 13).

If a small random perturbation p is added to each successive

growth state of A and B (for instance, between —0.005 and

0.005), the growth patterns are no longer determined by the

initial growth rate values. Overall, the same sort of growth pat-

terns are found as with the deterministic system, but their con-

nection with the initial values is only probabilistic. The fate of

the competitive system is now strongly determined by those

small random perturbations that occur in the vicinity of the

carrying capacity level (e.g., 1) on the one hand and the mini-

mal structural level (e.g., a very small positive number) on the

other hand. This property is reminiscent of the so-called but-

terfly effect in some dynamic systems (the name refers to the

fact that, in principle, the weather for the next day could be

determined by a butterfly fluttering its wings at the proper time

and place; Gleick, 1987; Schuster, 1988). The form of the

growth curve A is explained by two factors. First, it depends on

the course of the growth rate itself, the absolute magnitude of

which is approximately equal to the first derivative of the

growth level of B (see Equation 28b) and thus assumes a bell

shape. Second, it depends on the local positive or negative value

of the growth rate, and this depends partly on the magnitude of

the random perturbation in the vicinity of the carrying capac-

ity and structural minimum levels (see Figure 14).

The model of U-shaped growth presented thus far is only the

most elementary model. First, it does not specify the way in

which performance patterns are mapped upon the growth of

the competitive cognitive strategies in the model. One mapping

might consist of the subject following the strategy providing the

highest success rate (e,g.,/as in U-shaped face recognition, Carey

& Diamond, 1977). This results in a set of potential perfor-

mance patterns that vary from growth patterns containing one

plateau (of increasing length) to growth with real fallbacks, all

dependent on the speed with which the weaker strategy goes up

and down and the stronger strategy grows (see Figure 15; see

the Appendix for detail. Another pattern might consist of a

random oscillation between both available strategies as the

older starts to decline (e.g., in conservation intermediates). Fi-

nally, if a strategy drops nearly to zero, this might force the child

to apply a new strategy that is not yet sufficiently developed to

deal successfully with the problems he or she now has to face,

which inevitably leads to high error levels ( Bever, 1 982; Strauss

& Stavy 1 982 ). Still another possibility is that the actual perfor-

mance is itself a grower, the growth rate of which is a function of

either the growth level or the growth speed of the strategies A

and B. Which of these possibilities actually models empirical

performance curves should be decided through a thorough em-

pirical investigation of the growth process in question.

Second, the resource level or carrying capacity for the A

grower has been held constant in the examples. It is likely, how-

ever, that this level also increases with age, for instance because

of increases in supporting cognitive strategies or because of a

bootstrapping effect (discussed later). Correspondingly, the

structural minimum level of a grower might increase as an ef-

fect of general cognitive growth. This implies that the regres-

sions will become shallower the later they occur in the course of

the growth process.

Third, if individuals vary significantly as to relevant initial

state properties, it is very likely that group data will actually

conceal the U-shaped nature of the underlying developmental

dynamics. An empirical description of a U-shaped growth pro-

cess, and of any process of cognitive growth for that matter,

should amount to a description of a state space, where the tra-

jectories correspond to individual growth curves. The princi-

ple of positive feedback effects in cognitive growers will turn

out to be a useful building block of more complex cognitive

dynamics, for instance in dynamics explaining stepwise growth

or irregular growth toward an optimum (discussed later) .

Competitive growth in alternative strategies. The previous

sections focus on the problem of takeover of an inferior by a

superior strategy (regardless of how this superiority had been

defined). However, there are many instances of cognitive

growth where, in principle, no such value distinction exists

among alternatives. An example is cognitive "styles" in strate-

gies, such as globalistic versus analytic problem approaches, a

more democratic versus a more authoritarian way of solving

social decision problems in a peer group, and synthetic versus

analytic perception of class distinctions. A criterion for distin-

guishing such alternatives from developmental ly unequal strate-

gies or skills is that the former will show a distribution over a

population that is relatively independent of developmental lev-

els (interindividual distribution) or that a single individual will

use different alternatives in different contexts (intraindividual

variation). A basic idea behind the growth of alternatives in a

subject or in specific problem contexts is that the final domi-

nance of one strategy over the other is the result of a competitive

growth process among the alternatives. Such competition can

be achieved by making the growth rate of each alternative lin-

early dependent on the growth level of its competitor. Thus, for

two alternative strategies A and B, the growth equations are as

follows:

,., = 0 + 'A + c- LB)- LA, - rA-

»,„ = (1 + r* + c' • LA)- LBi - /•„•

(30a)

(30b)

(the factors c and c' are negative numbers expressing the magni-

tude of the negative effect of B on A and vice versa).

Despite the simplicity of the equations, a system of two com-
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D grower A (r-.33)

O grower A (r=.28)

TIME

• stronger grower B

wer A (r-.lS)

O grc r A (r-.ll)

TIME

stronger grower

Figure 13. The growth patterns of competing growers, one of which is subject to positive feedback, are

different for different initial growth rates of the stronger grower B; for rB > 0.33, no regression in the

weaker grower A occurs (grower A is indicated by a line formed with either squares or diamonds).

peting alternative strategies shows a variety of qualitatively dis-

tinct outcomes (see Figure 16). First, for growth rates exceeding

a specific threshold level (about 0.1), the alternative strategies

A and B grow toward a stable level, which, if the growth rates of

A and B are not too different, is approximately equal to

• re/(rB + KB-c') (30c)

(if AT, r, and c are exactly similar for A and B, there is a single

steady state that asymptotically approaches the value expressed

in Equation 30c). In other words, if alternative strategies grow

sufficiently quickly, they will evolve toward a steady-state ratio

that approximates

[*A- 'A-(r, + KB- C')]/[(<-A + KA-c)-KB- rB]. (30d)

This ratio corresponds with the probability that a person will

use either alternative A or B in a specific problem situation.
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grower A growth rote rA

rA absolute values

Figure 14. The growth rate of the weaker grower A changes over time. (While the absolute height of rA

follows a bell-shaped course, the actual direction of growth expressed by the sign of rA changes around the

extreme zones of 0 and 1; such changes are sensitive to small random perturbations only in the vicinity of

Zones 0 and 1.)

Second, if the growth rates stay beneath a threshold value

(e.g., if r = 0.05), a completely different type of behavior is

found. Provided at least one of the parameters at the initial

state is slightly unequal to its counterpart with the competing

Figure 15. Potential performance curves based on competing growers,

one of which is subject to positive feedback (curves follow the highest

performance level).

strategy, the most advantageous of the alternatives will grow

toward its maximum, whereas its competitor, after an initial

stage of increase, will drop back and evolve toward zero level

(see Figure 16). The steady-state outcome (either A wins and B

disappears or vice versa) depends on sharp threshold values

that interfere in complex ways. For instance, a disadvantageous

competition ratio (A suffers more from B than vice versa) can

be compensated by a slightly higher initial state level, or a

slightly higher initial state carrying capacity, or a slightly higher

growth rate. The qualitative patterns that appear are the follow-

ing: If one alternative is significantly more advantaged than the

other, its growth resembles a normal logistic S shape; if both

alternatives are less strongly different in regard to the major

parameters, a stepwise growth pattern is observed in the win-

ning alternative, and an inverted U shape is observed in the

losing alternative. The winner qualitatively evolves from a zero

stage (strategy absent) by means of an intermediary stage,

where both alternatives have about equal growth levels toward a

final stage characterized by complete absence of the competi-

tor. This qualitative pattern is often observed in several forms of

cognitive growth. In several cases, which depend on the exact

ratios among the parameters, temporary regression may be ob-

served in the finally winning strategy. The qualitative patterns

that result from the present dynamic interaction between alter-

native strategies are preserved if parameters, and particularly

the competition factor, vary randomly over time (e.g., under a

±10% variation of the default values). This qualitative conser-

vatism of the dynamics is important in light of the fact that the

parameters are unlikely to remain mathematically constant in
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r=0.4 d(a)=0.05 d(b)=0,l5 K=1 r=0.05 d(a)=0.1 d(b)=0.099 K=1

d(b)=0.09 L(A-lnlt)-0.0126 L(b-init)=0.01 d(b)0,09 L(A-init)=0.0126 L(b-init)=0.01

A .B A

Figure 16. Threshold phenomena in competing growers: For a sufficiently large growth rate (r = 0.4) the
competitors grow toward a stable ratio (top left). (With small growth rates [r = 0.05 ], very small inequali-
ties in the competition factor lead to a disappearance of one and an upper limit growth of the other. A,
which suffers slightly more from B than vice versa grows toward a maximum, then disappears. B grows
toward a level equal to A's maximum, then starts to increase as A decreases [top right ]. If A compensates
its competitive disadvantage with a slightly higher initial [init ] growth level, A and B grow toward a stable
ratio [bottom left]. A very slight increase in A's initial state advantage changes the pattern into the
opposite of the second case: B disappears, and A grows toward an upper limit.)

real cases. The question of what factors determine the value of
the parameters cannot be answered without taking the context
of the growth process into account. For instance, a holistic
strategy will suffer less from an analytic alternative if the child
in question is led to use this sort of strategy in other problem
domains, whereas there may be more difficulties in competing
with the analytic alternative if the latter is favored by the envi-
ronment. Finally, the occurrence of threshold values and the
compensatory interactions among the parameters are reminis-
cent of phenomena that may be observed in education in gen-

eral and compensatory education in particular: the observation
that success in changing unfavorable learning conditions de-
pends on crossing threshold levels, the existence of which is
often difficult to predict, and the fact that conditions of unfa-
vorable learning can be changed via different ways and under
specific conditions.

Cognitive Dynamics Based on Mutual Support

Bootstrapping: A basic cognitive growth mechanism. Ac-
cording to most theories, cognitive development amounts to a
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bootstrapping process: Cognitive growth releases the resources

upon which further growth is based. For instance, in Piaget's

theory, the child's activity is based on his or her current level of

cognitive development. These activities bring about experi-

ences that affect the underlying cognitive structures and lead

these structures toward increasing complexity and equilibra-

tion (Piaget, 1975; van Geert, 1987a). In transactional models

(Sameroff, 1975), the nature and level of the child's current

development, for example, of temperament, is considered to

release supportive activities in the caretaker and to change the

norms, expectations, and supportive activities of the caretaker

with regard to the child. In language development, the child's

caretakers adapt the syntactic complexity of the language ad-

dressed to the child to the child's assumed level of understand-

ing, and they speak so-called Motherese (Snow & Ferguson,

1977).

Bootstrapping dynamics are easy to construct. To the ele-

mentary K-L-r dynamics is simply added a supportive relation-

ship from L to K (see Figure 17). That is, the initial carrying

capacity for a low growth level, of some syntactic rule for exam-

ple, is low also (and it is made so low because of some tutorial or

pedagogical adaptation, e.g., because the parents temporarily

tolerate grammatical errors and are not inclined to actively

correct the child). The carrying capacity grows as an effect of

increases in the growth level it supports. One way of structuring

this relationship between L and Kis to make the growth rate of

Kst function of the growth level L. In principle, there are two

or

Figure 17. A model of a simple bootstrap dynamics. (The simplified

model [top ] represents a grower A positively affecting itself [circular

arrow]. The full model [bottom] specifies this bootstrap effect:

Arrows represent effects as described in the logistic growth equation.

The arrow from L to K implies that L contributes to the growth of its

own carrying capacity K. K is further affected by its proper carrying

capacity KK, which specifies an upper limit for K)

ways in which the carrying capacity JCcan be a function of the

growth level L, namely as a function of relative change in L on

the one hand and the absolute level ofL on the other. I shall first

discuss a dynamics based on relative increase.

K's growth might depend on the relative increase in L, that

is, on how much L has increased or decreased over the past

period relative to its absolute magnitude or to its previous in-

crease. This is the sort of increase that might be expected in

transactional social models of development. For instance, in

the interaction games studied by Bruner (1975; Bruner & Sher-

wood, 1976) and Wertsch (1979), a subtle interplay occurs be-

tween the information and guidance provided by the mothers

and the behavior of their young children. The activity of the

mothers technically amounts to a continuous raising of the

carrying capacity of a growth variable (eg., knowledge of lan-

guage or of the structure of games) by raising the demands as

well as the complexity of the examples and corrections given.

One may assume, however, that mothers, or educators in gen-

eral for that matter, will be sensitive to the relative growth of

knowledge in the child, that is, to the speed with which the

child progresses on the aspect of knowledge at issue. More pre-

cisely, the rate of making more complex help and information

available probably will increase if the child proceeds quickly

and probably will decrease if the child no longer shows consider-

able relative progress (this sort of feedback principle is nicely

illustrated in Bruner, 1975). In addition, one may assume that

mothers or caretakers in general will differ in the level of sensi-

tivity with which they will regard the child's behavior as a signal

of his or her needs and developmental level (Ainsworth, Blehar,

Waters, & Wall, 1978). This sensitivity can be expressed in the

form of a damping function, or a function that either magnifies

or reduces the effect of a growth level on the growth of the

carrying capacity:7

rKM = d-(LM-L,)/L, (31)

The dynamic rules for the complete system amount to the fol-

lowing :

Ka=f(Ka,dK-A.L,KK) (32a)

L = f(L,r,K,f) (32b)

dK = f'(sL) (32c)

K,<KK, (32d)

which reads for Equation 32a, the effective carrying capacity A^f

is a logistic growth function of its previous level, the change in

the growth level L, a factor dK damping the effect of L, and a

maximal carrying capacity KK; for Equation 32b, growth level

is a logistic growth function of the effective carrying capacity

Ktf and the growth rate /•; for Equation 32c, the factor damping

the effect of L on K is a function /' (e.g., a simple linear func-

tion) of the sensitivity of the system to changes in L, or SL; and

for Equation 32d, the initial levelof the effective carry ing capac-

ity Kj is significantly lower than its highest possible final state

level KK.

7
 When no subscripts referring to time (e.g., subscripts i, I + f ) are

shown, it is assumed that the argument left of the equal sign should

take the subscript / -V- f, whereas the arguments right of the equal sign

take the subscript /.
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Thus far, I have assumed that bootstrapping occurs in an

upward direction. However, downward movements also occur

in cognitive growth. For instance, it is likely that the initial

growth rate of a fast grower like vocabulary is much higher

than later growth rates, regardless of the damping effect of the

carrying capacity (see the section on exponential growth with-

out feedback delay). That is, especially with young children

acquiring basic skills and knowledge, one may assume that the

initial phase is characterized by very fast learning, whereas the

learning rate will decrease as a consequence of increasing skill

or knowledge level. Note that in the ordinary logistic model it is

the absolute speed of growth that decreases as L approaches K,

while the growth parameter r remains constant. The present

model postulates that r itself shows a decline. Therefore, assume

that the growth rate, of vocabulary growth for example, is also

subject to negative growth, in that its carrying capacity, that is,

the growth rate's potential final state, lies well below its initial

state level. The bootstrapping principle may now be applied to

the growth of the growth rate by assuming that the initial

growth rate grows toward its much lower final carrying capac-

ity as a result of the increase in the cognitive growth level (e.g.,

vocabulary). Thus, as far as changes in the growth rate are

concerned, the bootstrapping leads downward, instead of up-

ward, as with the carrying capacity discussed previously. For

the sake of the argument, let me demonstrate the effect of abso-

lute growth level (e.g., vocabulary) on the changes in the depen-

dent variable (growth rate of the vocabulary). This effect

amounts to the principle that the more words the child knows,

the lower the rate with which the vocabulary grows, regardless

of the actual carrying capacity for the vocabulary. That is, a

competitive relationship is postulated from a growth level to its

underlying growth rate. Again, one should assign some sort of

damping factor to the variable vocabulary level to account for

different levels of sensitivity within the dynamic system at is-

sue. A dynamics consisting of a K-L-r structure with the de-

crease in r dependent on the increase of L gives rather trivial

results (trivial in the sense that it yields growth curves where the

growth rate decreases faster toward the end than with constant

r). However, the competitive relationship from growth level to

growth rate should be added to the dynamics discussed in the

previous section, a dynamics that contained a supportive rela-

tionship from growth level to carrying capacity (see Figure 18).

Thus, to the dynamics rules (Equation 32a-d) are added:

'rf = /(/•*, </,-£,*,)

d, = .As,)

(32e)

(32f)

<32g)

which reads for Equation 32e, the effective growth rate ra is a

logistic growth function of its previous level, the growth level

L, a factor dr damping the effect of L on r, and a carrying

capacity Kr, which amounts to a stable final level of r; for Equa-

tion 32f, the damping factor dr is a function /' (e.g., a simple

linear function) of the sensitivity of the growth rate r to the

growth level L; and for Equation 32g, the initial level of the

effective growth rate is significantly higher than its final state,

which is close to Kr. I now give two empirical examples of

bootstrap dynamics in which both forms of adaptations, up-

ward adaptation of the carrying capacity and downward adapta-

tion of the growth rate, are incorporated. In the first example,

Figure 18. A model of a more complex bootstrap dynamics based on

the model from Figure 17. (The arrow containing a minus sign speci-

fies a relationship as described in the logistic growth equation, but

with opposite sign. That is, L is a factor reducing, instead of increasing,

the value of r. This bootstrap dynamics starts with a low initial ̂ and a

high initial r and stabilizes at a level where K is high (K = KK) and r is

low.)

the main assumption is that parents adapt their help, correc-

tion, and support in function of the relative increase in a child's

competence, that is, in terms of whether more or less progress

has been made than during a comparable preceding period.

A first empirical example: A bootstrap dynamics incorporat-

ing parental sensitivity. Ainsworth et al. (1978) have studied

different forms of parental responsivity and their effects on the

development of attachment in infants. Parents have been found

to differ in their sensitivity to the infants' behavioral signals.

This sensitivity is expressed in the form of responses toward

these signals, in providing help and support, in giving the child

a specific amount of independence, and so on. Mothers could

be distinguished on the basis of differences in sensitive respon-

siveness: Some were highly (i.e., optimally) sensitive, others

were highly insensitive, and a third group was characterized as

inconsistently insensitive. The last group is characterized by a

tendency toward overstimulating their infants (Belsky, Rovine,

& Taylor, 1984), in addition to inconsistency in giving support

(Ainsworth et al., 1978). Paternal sensitivity has an effect on the

quality of the child's attachment (Belsky et al., 1984) and proba-

bly also on later personality and cognitive development (Cam-

pos, Barrett, Lamb, Goldsmith, & Stenberg, 1983; Van Ijzen-

doorn, 1988).

The dynamics modeling the developmental effect of parental

sensitivity has the form depicted in Figure 18 and is modeled

according to Equation 32a-g. In this model, parental sensitivity

amounts to the damping factor that mediates the effect of the

growth of a developmental variable (e.g, attachment behavior

and sociocognitive understanding in the child) on the growth

in the support and help given by the parent. This support and

help should adapt to the increasing competence of the child.

That is, it should take the form of a carrying capacity that

increases as the growth level of the child's competence at issue

increases. In the model, this increase in the carrying capacity is

the effect of a growth rate, which is a function of the relative

increase in a growth level of the child's competence and a

damping function representing the parent's sensitivity. I do not
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specify the child's growth level L, but one might imagine it

representing the quality of the chikTs attachment, for instance

(assuming the latter is a continuous one-dimensional variable),

a sociocognitive competence, the growth of which is believed to

depend on the quality of the parent-child interaction, or a per-

sonality property such as ego control or ego resiliency (Block &

Block, 1980). If the dynamics are run with a low-sensitivity

factor, the carrying capacity, which is a function of parental

support and responsiveness, grows slowly. In fact, it cannot keep

a sufficient distance from the growth level of the child's compe-

tence L. As L comes within a critical distance of K, K and

consequently, also Z. no longer increase; that is, they get trapped

into a point of stability that is well beneath the maximal level

that Kand L could actually achieve (see Figure 19, top right; see

the Appendix for details). With an optimal sensitivity factor, K

and L grow smoothly toward their maximal level (maximal

given the complete system of resources and possibilities in a

particular environment; Figure 19, top left).

If the sensitivity is above optimum, the carrying capacity

grows too fast, which corresponds to overstimulating the child

(providing him or her with much more support and help than

actually needed, given the child's present level of growth). The

fate of high growth rates is that the resulting growth level starts

to oscillate in an almost chaotic way. This also occurs in the

present dynamics, and this corresponds with the observation

that the parents' responsiveness is actually inconsistent (some-

times too high, sometimes too low: see Figure 19, bottom

right). With increasing magnification of the sensitivity factor,

the behavior of the carrying capacity (e.g., of the support and

scaffolding of the parents) becomes chaotic, until it (almost

neurotically) oscillates between its lowest and highest possible

values. This usually results in a cognitive growth process that

shows a mild oscillation around some low final state value. It is

interesting to see, though, that the growth rate of the grower L

may sometimes compensate for the damaging effect of oversen-

sitivity. It may have a sort of appeasing effect on the neuroticism

of the carrying capacity (e.g, the parents' deployment of re-

sources, attention, and help) and lead toward a final state com-

parable with that achieved with an optimal sensitivity level (Fig-

ure 19, bottom left). One may therefore conclude that the pres-

ent dynamics simulates the theory and empirical findings on

parental sensitivity quite well, as far as the relation between the

level of sensitivity, the resulting parental support, and the re-

sulting growth in the child are concerned. From the previous

simulation, it follows that the effect of decreasing sensitivity on

the stable final state value of the growth level,8 given all other

initial state values are equal, is nonlinear (see Figure 20; see the

Appendix for details). Running the dynamics with various sen-

sitivity values demonstrates this clearly. As can be seen in Figure

20, the separation between optimal and hypersensitivity effects

does not take the form of a simple dip in the final state effects.

Rather, there is a chaotic band in which the final state effect of

sensitivity values, which are very close to one another, is

strongly different (i£., either about zero or maximum). This

chaotic zone separates two qualitatively different ways in which

the environmental support system adapts to the needs of the

grower (i£., either with too high to hypersensitivity, or with

optimal to low sensitivity).

A second empirical example: A bootstrap dynamics for syn-

tactic growth. By syntactic growth I mean the increase in the

relative amount of correct use of some specific syntactic rule.

Examples are the growth in the correct use of plurals and pres-

ent progressive, studied by Brown (1973), and the growth of

inversion in Wh- questions (e.g., "What mama is doing" vs.

"What is mama doing?"; Labov & Labov, 1978). Data on the

growth of inversion are shown in Figure 21. To construct a

dynamics model for growth of inversion, I make three assump-

tions. First, syntactic growth, such as inversion, is an example

of a bootstrap process. That is, I assume that the carrying capac-

ity, exemplified for instance by parental effort invested in pro-

viding examples of correct sentences and in correcting errors

and by the child's effort in experimenting with particular syn-

tactic constructions and paying attention to the latter, is a func-

tion of the growth of competence in using the syntactic rule

already attained by the child. Second, I assume that in syntactic

growth it is the absolute level of competence of the child to

which parents are sensitive in regard to providing help, correc-

tion, and support. That is, growth in carrying capacity is not a

function of relative increase in growing competence, but of the

absolute level attained. In the present example, this absolute

level has a psychologically relevant meaning, in that it can be

compared easily with an absolute standard, namely correct

grammatical use. Mature language users have very clear intu-

itions about the idiomatic grammaticality of sentences; un-

grammaticality in the language of immature or nonnative

speakers is quite salient information. This situation is different

from the previous example (e.g., play behavior and event knowl-

edge) , where no such absolute standard exists or can be applied

easily to characterize the child's absolute level of competence

and where only relative increase provides useful information.

Third, I assume that the empirical growth curve represents the

growth in one underlying variable, namely the child's compe-

tence in using the inversion rule. This level of competence de-

termines the probability that a correct form will be used (and

inversely, that an error will be made; Spada & Kluwe, 1980). It

is expressed in the amount of errors produced, relative to the

amount of correct sentences.

The dynamics is of the type represented in Figure 18. The

dynamics rules consist of rules presented in Equations 32b-g,

but Equation 32a should be replaced by

which reads that the effective carrying capacity Ka is a logistic

growth function of its previous level, the growth level L, a

damping factor dK, and a maximal final state level KK. In accor-

dance with the previous dynamics model, it is assumed that K

increases toward a carrying capacity that yields 100% correct

responses and that r decreases toward some minimum level.

Instead of using constant damping functions, a curvilinear re-

lationship may be introduced. That is, the effect of Lon Ka.nd r

is more strongly damped the closer L is to either its initial or its

* Final state has been operationally denned as the state after 100

iterative applications of the growth equation, that is, 100 f after the

initial state); after this interval, all but the slowest trajectories have

settled into a stable state, or at least into a state that changes only very

minimally; if f = 1 week, 100 f is about 2 years, which is a sufficiently

long developmental interval in view of the fact that the developmental

processes discussed in this section take place during infancy and tod-

dlerhood.

T
h
is

 d
o
cu

m
en

t 
is

 c
o
p
y
ri

g
h
te

d
 b

y
 t

h
e 

A
m

er
ic

an
 P

sy
ch

o
lo

g
ic

al
 A

ss
o
ci

at
io

n
 o

r 
o
n
e 

o
f 

it
s 

al
li

ed
 p

u
b
li

sh
er

s.
  

T
h
is

 a
rt

ic
le

 i
s 

in
te

n
d
ed

 s
o
le

ly
 f

o
r 

th
e 

p
er

so
n
al

 u
se

 o
f 

th
e 

in
d
iv

id
u
al

 u
se

r 
an

d
 i

s 
n
o
t 

to
 b

e 
d
is

se
m

in
at

ed
 b

ro
ad

ly
.



32 PAUL VAN GEERT

I-
z
UJ

cr

LU

co
z
LLI

CO

c
O

O

3

I

D.

O

LU

cc

LLJ

CO

z
UJ

CO

Q_

O

o
Q.
a.
D
CO

05

c
03

fe
D.

O

O

CD

Q.

O

5
<D <D
£ "D

O
Q.
Q.

CO

CD

CO
Q.

CD

z
LJJ

CC

LU

co
z
LU

CO

LU
I—

CO

CO

O'
o

CD

z
UJ

CC

LU

CO

z
LU

CO

LU

CO

CO

c
O

T
h
is

 d
o
cu

m
en

t 
is

 c
o
p
y
ri

g
h
te

d
 b

y
 t

h
e 

A
m

er
ic

an
 P

sy
ch

o
lo

g
ic

al
 A

ss
o
ci

at
io

n
 o

r 
o
n
e 

o
f 

it
s 

al
li

ed
 p

u
b
li

sh
er

s.
  

T
h
is

 a
rt

ic
le

 i
s 

in
te

n
d
ed

 s
o
le

ly
 f

o
r 

th
e 

p
er

so
n
al

 u
se

 o
f 

th
e 

in
d
iv

id
u
al

 u
se

r 
an

d
 i

s 
n
o
t 

to
 b

e 
d
is

se
m

in
at

ed
 b

ro
ad

ly
.



A MODEL OF COGNITIVE GROWTH 33

0.01 [.damping factor 10.01 0.85

damping factor 0.714

Figure 20. The effect of varying parental sensitivity levels upon the final state of a growing competence

that depends on parental support, modeling, and so on. (Parental sensitivity is specified in the form of a
damping factor. The figures represent increasingly small portions of the sensitivity scale, i.e., 0.01 <
damping factor < 0.01,0.01 < damping factor < 2.01,0.65 < damping factor < 0.85, and 0.704 < damping
factor < 0.714. In the latter region, the final state effect is strongly nonlinear, showing a chaotic succession

of maximal and near-minimal final states. The chaotic nature of the dynamics in this region amounts to

the fact that very small differences in the sensitivity parameter lead to fundamentally different outcomes.)

final state. The latter implies that the sensitivity of the system to
the syntactic growth level is greater at the beginning than at the
end (and the other way round for the former case). Figure 22
shows a simulation of the growth of inversion in What sentences
(see the Appendix for details). Basically, it applies the principle
of oscillatory or near-chaotic growth with a carrying capacity
that itself grows as a consequence of the growth in the use of
inversion in What sentences. The high initial growth rate grows
toward a much lower final state, also as a consequence of
growth in the inversion rule, thus accounting for a considerable
reduction in the amplitude of the growth oscillations toward
the end state (the 100% correct level). By intrapolating interme-
diary growth states* between the first and second points of the
curve, a complete set of intermediary growth points can be
computed (e.g., weekly data points, instead of monthly averages
presented in the empirical study). Figure 22 shows two differ-
ent interpolation strategies, one based on random numbers,
another on the self-similarity method described earlier. In this
case, the self-similarity method yields a strongly oscillating pat-
tern, which is probably not in accordance with the empirical
findings. It is also easy to study the effect of small random
perturbations (e.g., ranging between -1 % and +1 % of the
growth rate involved) on the evolution of the growth curve. It

seems that, although the actual form of the curve may vary
rather drastically as a consequence of such perturbations, the
qualitative form of all these curves (irregular oscillations with
diminishing amplitude as L approaches K) is rather robust. In
fact, this finding is in accordance with individual data, which
show rather strong intraindividual differences for different sen-
tence types that are not strongly different in terms of complex-
ity (Brown, 1973; Labov & Labov, 1978). Notwithstanding
these intraindividual differences, the qualitative nature of these
empirical curves is similar for all the types of syntactic struc-
tures studied.

Combining support and competition: An alternative explana-
tion for syntactic growth phenomena. There appears to be an
obvious fallacy in the previous dynamics model of syntactic
growth: Correct use cannot grow higher than 100%, whereas the
simulated growth curve may easily overshoot the 100% level,

' Instead of making an intrapolation on the basis of an exponential
increase between the first and second growth points, it has been as-
sumed that intermediary growth points follow an oscillating course
geometrically similar to the overall oscillation of the empirical growth
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feb mor opr may

monthly averoge

where o

Figure 21. Empirical growth curves of percentage correct useof inversion in wh- questions. (Adapted from

"Learning the Syntax of Questions," pfJS, by W Labov and T. Labov, 1978, in R. N. Campbell and P. T.

Smith, Recent AdvancesinthePsychology of Language: Language Development and Mother-Child Interac-

linn, London: Plenum Press. Copyright 1978 b,}
1
 Plenum Press. Adapted by permission.)

provided growth rate is high. This problem could be solved by

interpreting overshoot as error, as an overgeneralization error

for example. More important, however, the model is rather un-

likely from a psychological point of view. One of the major

discoveries of cognitive developmental research is that the

child's errors and mistakes are in general not based on trial and

error, or sheer ignorance, but are rather the expression of under-

lying rules. This is true for cognitive and language growth alike.

For instance, the use of the noninverse strategy in questions

seems directly based on the subject-verb-object strategy (Quig-

ley & King, 1980; Slobin & Bever, 1982), or on a "head-initial"

parameter setting (Atkinson, 1986), or whatever rule is consid-

ered a major sentence-formation rule in the early stages of syn-

tactic growth. Inversion, on the other hand, may be based on

imitation of model sentences, an alternative setting of a syntac-

tic parameter, and so on. Essential to this discussion is the

understanding that these rules are competitive: The noninver-

sion rule is consistent with major sentence-formation principles

existing in the child's current grammar, whereas the inversion

rule is consistent with the environmental sentence models. As-

sume that these rules are in fact separate growers, that their

domains of application grow in a logistic way. Also assume that

as the growth level of the correct rule (i.e., inversion rule) in-

creases, the explicit support for this rule also increases, for in-

stance because the child tends to notice more and more exam-

ples of this inversion rule in the language of the environment or

because the inversion gets established as a structurally coherent

rule in the child's grammar. Put differently, the carrying capac-

ity for the correct rule increases as a consequence of a boot-

strapping process. On the other hand, it is likely that the sup-

port for the wrong rule decreases as a result of growth in the use

of the correct rule. For instance, parents probably tend to be

more tolerant with regard to syntactic errors when the child

starts to use a specific construction, such as a question, and less

tolerant of errors as the child's capacity to use the correct rule

increases; parents probably tend to provide less corrective mod-

eling when a new sentence form has just emerged; and the child

probably pays much less attention to parental corrections of

syntactic constructions when a construction is new than later

on. In fact, a whole range of factors contribute to the increase in

the carrying capacity of the correct rule and the decrease in the

carrying capacity of the wrong rule.

There could be an asymmetric competitive relationship be-

tween the growth level of the correct strategy and the carrying

capacity (i.e., environmental support) for the wrong strategy.

That is, the support for the correct strategy is probably directly

dependent on the growth of that strategy, whereas the support

(carrying capacity) for the wrong strategy decreases as the

growth level of the correct strategy increases. Psychologically,

the latter amounts to a decrease in the environmental tolerance

of and support for the wrong strategy as the mastery of the

correct strategy increases, whereas on the other hand, the sup-

port for the correct strategy does not decrease when, tempo-

rarily, the mastery of the wrong strategy increases. A wrong

strategy is probably also characterized by the fact that it is toler-

ated until it exceeds some threshold (i.e., until it exceeds its

environmental tolerance level, which is nothing other than its

carrying capacity) and is then explicitly discouraged and recti-

fied until its use falls below some minimal threshold (e.g., until

it is no longer noticeable). After that, the wrong strategy may

grow again until it again shoots above its tolerance, and the

cycle may start anew. I have already described a dynamics for

this sort of process, namely the positive feedback cycle in re-

gressive growth (described in a former section), which is typical
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of weak cognitive strategies. The complete dynamic system for
the competitive growth of a correct and a false strategy is repre-
sented in Figure 23.

The dynamics rules for each grower are similar to those de-
scribed under bootstrap dynamics (dependent on absolute
growth levels) and regressive growth. Figure 24 (see the Appen-
dix for details) shows a mathematical simulation of Brown's
(1973) data on the present progressive in 1 child, which are
based on setting initial state values of all the parameters in-
volved in the dynamics and letting the system run in accor-
dance with the equations described in the previous section. The
curve shows the monthly average of the percentage of correct

uses of the rule. Advantages of the dynamics are that it also
yields a theoretical reconstruction of weekly averages and that
it shows the growth of the correct and the false strategy sepa-
rately (Figure 24, bottom). Such theoretically reconstructed
data can then be checked against the empirical data as a further
test of the postulated dynamic model.

Bootstrap dynamics of interacting and competitive growers
are very rich, in that many different types of building blocks
can be used (e.g., direct or indirect effects of L on AT and r, effect
of either absolute level of L or relative increase on A" and r, and
either positive feedback effects or not). Although each of these
dynamics yields growth curves that are qualitatively very simi-
lar, the quantitative nature of these curves may be characteristic
of different dynamics architectures. Much work still needs to
be done to reveal the properties of these dynamics and to see
how far they provide valid models of empirical cognitive
growth processes.

negatively affect*

Figure 23. A dynamics for competitive growth in a correct and a wrong

strategy. (The simplified model [top ] specifies that both are bootstrap
growers [the circular arrows refer to a positive effect of each grower on
itself ]. The correct strategy negatively affects the growth in the wrong
strategy; i.e., there exists a competitive relationship from the correct to
the wrong strategy. The wrong strategy is subject to positive feedback
[the broken "pf" arrow ]. The full dynamics model [ bottom ] specifies
the nature of the negative effect of correct strategy on wrong strategy:
The growth level of the correct strategy negatively affects the carrying
capacity of [i.e., the support given to ] the wrong strategy. The positive
feedback cycle holds for the carrying capacity of the wrong strategy.
Both strategies grow in accordance with a bootstrap dynamics as de-
picted in Figure 18 [with the KK component omitted ].)

Adaptation of the Carrying Capacity

In preceding sections, I discussed a particular form of adapta-
tion of the carrying capacity called bootstrapping: The tutorial
environment adapts its support to a current, low growth level
and raises that support as a consequence of increase in the
grower. This process amounts to a temporary adaptation of the
effective carrying capacity, which then moves toward an intrin-
sic carrying capacity level that remained constant during the
whole growth process.

I have shown that carrying capacity is a measure of the over-
all support a cognitive environment may lend to a specific
grower. This specific amount of support is expressed in the
form of a potentially stable upper limit a grower may attain,
that is, the carrying capacity level. It follows that if major
changes in the cognitive system occur, the inferred carrying
capacity, for vocabulary growth for example, will change ac-
cordingly. The problem that is addressed in this section is the
following: Because a grower (e.g., vocabulary) is an intrinsic
part of the overall cognitive system and because the carrying
capacity is determined by the overall properties of that system,
what will be the contribution of growth in a single variable (e.g.,
vocabulary) to changes in the overall system and thus to
changes in its own carrying capacity? In the context of this
question, the bootstrap dynamics discussed in previous sec-
tions is a very particular tutorial adaptation of the carrying
capacity. The carrying capacity as such is not changed, but it is
dissociated into an effective carrying capacity and a sort of
background carrying capacity toward which the effective K
evolves as a consequence of growth in the dependent variable
(e.g., grammatical rule use). This type of positive adaptation of
support can also be observed in what Fischer and coworkers
(e.g., Fischer & Canfield, 1986; Fischer & Pipp, 1984) called
"practice and support" conditions of testing skills. Practice and
support are offered in function of the student's increase in mas-
tery of a skill, and this greatly enhances the speed with which
the skill grows. A related concept is Vygotsky's "zone of proxi-
mal development" (Vygotsky, 1978).

An opposite form of adaptation occurs when, as a conse-
quence of significantly low performance, for example in mathe-
matics, a student's curriculum is changed (e.g., the student
moves to another curriculum where mathematics is no longer
an obligatory subject). These changes are coercive tutorial adap-
tations of the carrying capacity, and they are not the major
concern of this section. More subtle changes in the carrying
capacity might result from the negative effect that poor mathe-
matics performance, for instance, might have on the student's
attention to mathematics-related information, to effort spent in
doing exercises, and so on. In this case, a slow downward
growth of the carrying capacity for mathematics occurs as a
consequence of low mathematics performance in the student.
However, if a person's cognitive environment too easily lowered
the carrying capacity of relatively slow growers (e.g., mathemat-
ics knowledge) and similarly raised that of quick ones (e.g.,
knowledge of pop music), the person concerned would rapidly
change into some sort of "idiot savant" (it may be that that is
what is characteristic of idiot savants, namely that their cogni-
tive system adapts too swiftly to differences in growth rates of
the components). I explore which principles of K adaptation
are more adequate.
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DEVELOPMENT OF INFLECTIONS

PRESENT PROGRESSIVE (BROWN. 1973)_

37

GROWTH OF PRESENT PROGRESSIVE

GROWTH OF CORRECT AND WRONG RULES

TIME (WEEKS)

+ non—inversion

Figure 24. A mathematical simulation of the growth of the correct present progressive form; curve shows

monthly averages of the percentage correct per week based on separate growth of correct and wrong

strategy. (Although the curves [top ] are slightly out of phase at the beginning, the theoretical curve follows

the oscillations in the empirical data quite closely. The theoretical curve is based on a simulation of the

growth of the correct and the wrong strategies [ bottom ]. The top panel was,adapted from A Firs^Lan-

gunge: The Early Stages, p. 256, by R. Brown, 1973, London: Allen & Unwin. Copyright 1973 by Alien &

Unwin. Adapted by permission.)
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A first adaptive principle implies that carrying capacities

should grow slowly toward the growth level of slow growers,

whereas a second holds that they should grow quickly away

from the growth level of fast ones. Although the first principle

is probably intuitively plausible, the second requires some expla-

nation. Fast growers (e.g., r > 1.5) overshoot their carrying ca-

pacity level. The more they overshoot, the lower they will fall at

the next step. It follows, then, that if K grows not toward but

away from L, the next A" level will always anticipate the next L

level. This can be implemented easily by making K grow as a

function of (K — L)/K.
10

 A third adaptive principle is that K

should grow as a function of the relative distance between K

and L, that is, (K — L)/A", which is the unutilized capacity for

growth, U. The default principle is that the growth rate of K

should be higher as the distance from K to L is larger. These

A'-adaptation principles can be summarized in the following

equations:

d = /

(34a)

(34b)

meaning that the next state of the carrying capacity K is an

exponential function of the previous state K, and a growth rate,

which is the product of a damping factor d and the unutilized

capacity for growth U,; d is a function of the growth rate r and

yields a large negative number if r is very low, a number slightly

bigger than 1 if r is very high, or a positive number that is

practically zero for all intermediary values of r. The fact that an

exponential instead of a logistic growth form is used for A^

implies that no intrinsic limits were set to the upper level that

the cognitive grower may attain. It is expected that the upper

limit of the grower will result from the way in which the growth

rate r is determined by the parameters in the model. Figures 25

and 26 (see the Appendix for details) show the effect of A'adap-

tation on slow and fast growers. The effect on a fast grower is of

special interest: A"increases and decreases such that oscillations

will be damped, and A"and L move toward a common stability

point that is considerably higher than the original carrying ca-

pacity level (Figure 26). The natural interpretation of this ef-

fect is that people who are considerably better in some cognitive

ability (mathematics, language, etc.) will achieve a higher level

of mastery and, similarly, that cognitive environments tend to

invest more resources into fast growers than in others. Using an

efficiency equation (Equation 27), I can show that raising K

and damping the oscillations is more efficient than keeping K

constant and tolerating high-amplitude oscillations of the

growth level. Such raising and damping is not necessarily the

effect of intentional tutorial activities, but rather the result of a

simple A'-adaptation principle.

Figure 25 shows the effect of an adaptation of (-U) to a slow

grower, resulting in a considerable decrease of the final state of

K. The fact, however, that the growth of A" toward a slowly

growing L depends on {/, that is, on the relative distance be-

tween L and U, could be a disadvantage. Assume, for instance,

that the growth of vocabulary in a child is very slow. A fast

negative adaptation of the resources needed to build up a vocab-

ulary (i.e., the vocabulary's carrying capacity) would finally

result in a very poor vocabulary. Because in a complex cultural

environment even a "minimal" vocabulary should be rather

extensive, it is better not to adapt the carrying capacity too

soon. One way to accomplish this is to increase the damping

factor d from Equation 34a. Another way is to make AT depen-

dent not on (-) U but on the inverse of (-) U: (-) 1 / U.

A, (35a)

(35b)

Equation 35a implies that A:adapts only very little as long as its

distance from L is still big and adapts faster the closer A" and L

approach each other. The functionality of this form of adapta-

tion lies in the fact that in the middle of the S-curve, absolute

increase is rather considerable, even for low growth rates,

whereas in the vicinity of A", the growth of L decelerates any-

way. Thus, if AT would wait to adapt to L until L has sufficiently

closely approached K, implying that L's absolute growth would

have decreased considerably, the system could have spared the

cost of maintaining a high AT when L is approaching only slowly,

while still achieving a sufficiently high final state of L. Thus, U

can be substituted in Equation 34a by I /U. The effect on growth

of adapting A" in accordance with this last equation is very

interesting. Instead of settling down to a steady state, the

grower and its carrying capacity start to meander in a sort of

narrowband random walk, rather reminiscent of stock ex-

change variations (see Figure 27; see the Appendix for details).

Dependent on the height of the damping factor, sudden leaps

and dips may be observed. The whole system is also very sensi-

tive to small differences in initial state conditions. For all prac-

tical purposes, the growth level and its carrying capacity be-

have as if they followa random evolution, which in general stays

within a small margin and now and then shows unexpected

leaps and dips that are rather considerable. However, the evolu-

tion is not the result of random factors but is completely deter-

ministic. More precisely, a deterministically evolving grower

may provide a source of randomlike perturbations to other

growers that depend on it. Thus, a growth system in which the

present adaptation principles hold produces its own random

perturbations. In complex systems, random perturbations are

important in that they may determine the long-term evolution

of the entire system, given that they occur at points where the

system is in relative instability (Prigogine&Stengers, 1982;see,

for instance, the section on pendulumlike growth processes

and the effect of small random factors therein). Finally, in on-

going research, I am trying to determine the evolution of carry-

ing capacities in terms of competition and support among

growers in more complex systems (whereas in this article K has

been treated as a single factor). It can be shown that systems of

competitive and supportive effects from a multitude of growers

on one another nevertheless result in one-dimensional A" fac-

10 For instance, when /. is bigger than K, it will drop back under the

A~level, and the higher L is, the deeper it falls. If L > K, then the growth

rate of K will be negative, and thus K will decrease relative to the

distance between Kand L. That is, at the next growth state, K and L

will thus be in each others' proximity. However, the closer L is to K, the

closer it will stay to K in the next growth state. Consequently, A"and L

evolve toward a stability point, which would not be the case if A" would

not adapt (see Figure 26).
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D carrying capacity

D carrying capacity + grower

Figure 25. Adaptation of the carrying capacity K to a slow grower as a function of negative value of the

unutilized opportunity for growth, — U.

tors for each separate grower. The evolution of systems of 10 to sient regressions in some growers, stable regressions (some

15 interacting growers shows various classical cognitive growth growers disappear), stepwise growth, and so on (see van Geert,

phenomena, such as evolution toward a stable end point, tran- in press).
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D K-ADAPTING GROWER O NO K ADAPTATION

Figure 26. If carrying capacity A; adapts to a rapid grower as a function of the unutilized opportunity for

growth, +U, chaotic oscillations of the growth level L are damped, and AT and L move toward a common

point attractor at a higher level (top curve); if A* does not adapt, L follows a chaotic course (bottom curve).

How Can Growth Phenomena Account for Stages?

Stages are traditionally accounted for in terms of structural

models. Because an analysis of the way in which structural the-

ories explain stages would far exceed the scope of this article,

the reader is referred to other publications in which this work is

undertaken (van Geert, 1986, 1987a, 1987b, 1987c, 1988a,

1988b). Note that the current concept of stage has shifted away

from the classical Piagetian view of an overall state definition

in terms of unique and characteristic structural features of the

entire cognitive system, to a view that is much more content

specific. Stages may occur within, and not necessarily across,

cognitive domains or dimensions, and they may be character-

ized by various qualitative as well as quantitative properties

(Levin, 1986). The question I address here is in how far the

present growth model, which is explicitly gradualistic, may ac-

count for stage phenomena.

Logistic growth and stepwise shifts. Stepwise shifts in the

magnitudes of characteristic variables are frequently seen as the

major indication of stage shifts (Fischer & Canfield, 1986; see

also Fischer, Pipp, & Bullock, 1984; Globerson, 1986), whereas

a stage as such corresponds to a temporarily stable level

(Fischer, 1983a). Stage shifts do not necessarily amount to the

construction of entirely new skills, structures, and so on charac-

teristic of the new stage. Those skills and structures were often

present long before the onset of the stage shift, but they existed

in germinal form (as decalage phenomenon, or as an innate or

at least very early generic concept, a possibility even Piaget

took seriously; Piaget, 1968). The germinal form may last for a

rather long time before it starts to grow. Growth occurs in the

form of a spurt followed by a leveling off toward a steady final

state. This is exactly what the logistic growth model explains,

and it does so in purely quantitative and gradualistic terms. In

fact, what makes the difference between an apparently slow

and quasi-linear increase in a variable and an almost quantum-

leap-like emergence of the steady state of a variable is the height

of the growth rate tactor rather than some hidden structural

factor, such as a restructuring of an underlying rule system

causing the growth spurt. This underlying restructuring, if any,

might be the result rather than the cause of a growth spurt. That

is, a potential restructuring of the underlying rules (or whatever

generative structure is assumed to cause performance) probably

constitutes a response to the increasing pressure on the cogni-

tive rule system that follows from the fact that the application

of a rule or principle steadily grows and thus requires a more

efficient or more powerful system than the one already avail-

able in order to be able to manage the significant increase in the

domain of application.

Shifts and stages resulting from changes in resource and con-

trol variables. A quantum-leap-like shift in a major variable

may amount to the effect of growth in either an underlying

resource variable or a control variable. By resource variable I

mean a variable that significantly contributes to the carrying

capacity of a grower. For instance, the carrying capacity of

complex problem-solving strategies is clearly dependent on the

size and efficiency of working memory. In fact, this is the sort of

hypothesis put forward by several neo-Piagetian researchers

(e.g., Case, 1985; Pascual-Leone, 1970) who related Piagetian

stage transitions to increase in working memory. By substitut-

ing different values for L and K in the difference equation of

logistic growth (Equation 17a), one can demonstrate that the

effect of stepwise increases in carrier capacity, for instance as a

consequence of working memory growth, is significant only for

growth variables that are close to their carrying capacity level,

or their upper growth limit. This is so because the absolute

speed of growth strongly reduces in the vicinity of K such that
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1.02-

41

0.98.'

.5
£

o

0.72
time time

0.985

time

Figure 2 7. If carry ing capacity adapts to growth level L as an inverse function of the unutilized capacity for
growth, or as a function of (-1 / U), L and K follow a quasi-random meandering course (detail of left graph
is shown at bottom of panel). (Extremely small initial state differences in the damping factor may cause
dramatic differences in the course of the growers only after a considerably long interval; in some cases,
unexpected drops or rises of about 25% may occur. Lines represent separate growers that differ only in the
damping function. The left differs from the right only in the initial state condition.)

any sudden rise in K will suddenly increase the distance be-

tween Kand L, which automatically results in a higher absolute

growth speed expressed in the form of a jump. In this connec-

tion, a short discussion of functional and optimal levels of skill

development, as they are termed by Fischer and Pipp (1984),

may be relevant. The functional level, measured under condi-

tions of low support, increases only slowly and more or less

linearly. The optimal level, measured under optimal contexts

(i.e., optimal practice and support) shows an S-shaped growth

that is significantly higher than the functional level. What is

probably witnessed in this case is the effect of different growth

rates in the environmental help and support as expressed by the

carrying capacity. If the growth rate of A: is significantly lower

than that of L (the growth level of some specific skill), L will

very closely follow the slow, gradual increase of K in that L is

always asymptotically close to its upper level as determined by

K. Phenomenally, slow growth—although theoretically S

shaped—appears in the form of a slow linear increase. If the

help and support level grows much faster than the skill level

itself—because the environment is particularly sensitive to the

growth of the skill level in the subject, for example—L, pro-

vided its growth rate is high enough, will show the characteris-

tic S shape of logistic growth and the high upper limit that is

associated with high and adequate help and support. Quantum-

like shifts may be the effect of a rise in a resource, control

variable, or both. I interpret control variable (Fogel & Thelen,

1987; or order parameter, Haken, 1987) to mean any variable

other than the carrying capacity and the growth rate that deter-

mines the growth in a dependent variable. In fact, a control

parameter acts as a timing device for the dependent variable.

That is, the dependent variable cannot start growing until the

control variable starts growing or until the latter has reached

some threshold level. A simple way to model a control system is

the following: The growth rate of a dependent variable D has a

very small initial state value and grows as a function of the

growth level of a control variable C. In this dynamics, the

growth rate of the control variable functions as a timer for the

onset of a very quick growth process in the dependent variable

(see Figure 28; see the Appendix for details). An example of a

powerful control parameter for a variety of cognitive growth

processes is given by Mounoud (1986) and concerns the ability

to embed information in new contexts. Mounoud suggested

that the sudden growth of cognitive skills such as reading, writ-

ing, and formal thinking around the age of 6 to 7 is made

possible by the emergence of the general cognitive capacity to

extract information from one context and embed it in another.
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GROWTH DEPENDENT ON A CONTROL VARIABLE LOG(r-initial) = -10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

P DEPENDENT GROWER

TIME

CONTROL VARIABLE

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 9O 95

TIME

LOG(r-initial) = -20

0 S 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Figure 28. A Grower G, which seems to appear suddenly, grows as a consequence of growth in its control
variable C (right). (If the control variable is an autocatalytic grower, its growth-onset time depends on its
initial state level [top right vs. bottom right ]; the autocatalytic timer [at ] determines the growth onset of
dependent growers [dg, and dg2 ].)

Another example of a control parameter in a Piagetian model
of cognitive development is the probability with which a spe-
cific sort of cognitive conflict will arise (e.g., a conflict between
two opposing strategies for solving the same type of problem).
If the growth of some specific form of logical understanding is
indeed dependent on the probability that a specific sort of cog-
nitive conflict arises and if this probability itself grows logisti-
cally, then the growth of the logical understanding will be
timed by the underlying probability growth and take the form
of a quantum-leap-like increase as shown in Figure 28 (top
left). It is also possible to make an autocatalytic version of the
timing device dynamics, that is, a dynamics where the timing of
a sudden quantum leap is a function of the absolute growth of
the dependent variable itself. The growth equation for such a
dynamics is as follows:

rt - (36)

which means that the growth rate of the growth rate of L is an
exponential function of the absolute increase of Z- over the in-
terval (t — f ) until;. It can be shown that in this dynamics, the
duration of the initial state period is approximately an inverse
logarithmic function of the magnitude of the initial state of the
growth rate. The long initial state is then followed by a quantum
leap in the growth level, which amounts almost to a sudden
emergence of the variable at issue (see Figure 28, right). Auto-
catalytic timing functions like the present one might provide a
model for cognitive capacities, the timing of which seems to be
maturationally determined (i.e., they are apparently not depen-
dent on experience or learning).
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Stages and shifts resulting from different carrying capacities
and mutual competition. A sequence of so-called conjunctive
stages may result from separate growers with different growth
rates. A conjunctive stage sequence (Van den Daele, 1968) can
be denned as one in which each later stage encompasses the
field of application of a former stage, in addition to new and
more complex applications. In fact, conjunctive stage se-
quences amount to takeover phenomena. For instance, in Pia-
get's model, the formal operational logic takes over the domain
of application of the concrete operational logic and adds to this
the domain of specific formal operational applications. The
sequence of such stages could result from an initial state in
which all systems are present in a germinal state. The differ-
ences in growth rates and resource level account for the stage-
like sequence. For the moment, assume that the growers enter-
tain competitive relationships, which is quite likely anyhow, and
that the positive feedback principle applies. Under these condi-
tions, a temporary regression of a former stage may occur by
the time it is surpassed by its successor (Figure 29; see the
Appendix for details). Although the general shape of the inter-
action between the conjunctive growers is rather robust, the
specific form, that is, whether and when regressions will occur,
may rather strongly depend on small random factors (e.g., max-
imally 0.0001, as in the simulation from Figure 29). Takeovers
and conjunctive growth are often, if not always, an indication of
hierarchical relationships among growers. For instance, a grow-
ing skill A takes over the former domain of application of a skill
B because B is a structural component of A or because A can-
not start growing if B remains beneath a specific threshold
level. For a growth model to explain long-term cognitive growth
in various domains it should contain a model of such condi-
tional relationships among growers. A model of conditional

relationships requires an elaborated structural model of skills,
rules, or knowledge describing their composition in terms of
structural constituents.

Stages as shifts in a single grower. Finally, the concept of
stage or substage may be applied to stepwise changes in a single
variable (see Fischer, 1983b, for several examples). For in-
stance, Dromi's (1986) vocabulary growth curve shows a tempo-
rary flattening which probably marks the transition to another
substage during the one-word period. It is highly probable that
the flattening of the learning curve following the onset of syn-
tax is also only temporary and that it will be followed by a
(probably slight) increase in the growth rate of new words, end-
ing in a final leveling when the ultimate carrying capacity is
approached. Corrigan's (1983) data on vocabulary growth in 3
children show a pattern of successive increases and decreases of
the growth rate, resulting in a humped growth curve (see Figure
30). Such stepwise growth forms probably reflect the effect of
oscillating growth in a sort of attentional resource variable. The
time and effort a child may invest in specific learning (e.g.,
learning new words) is limited and could be controlled by some
sort of activation-of-attention function attached to a specific
grower (e.g., words or applications of a syntactic rule). This
function actually determines the average amount of time and
effort allocated to the learning process to which it is attached
and thus specifies the child's interest in or motivation to per-
form some sort of acquisition task. It is also likely that this
resource function is subject to positive feedback growth of the
type discussed earlier—in other words, that it rises as a conse-
quence of the success (progress and growth) of the dependent
grower and that it tends to fall when some intrinsic resource
limit (i.e., its carrying capacity) is crossed. This will, of course,
negatively affect the growth rate in the dependent variable.

D level 1 grower

O level 3 grower

TIME

+ level 2 grower

Figure 29. Three conjunctive growers with different growth rates produce a steplike sequence and tempo-
rary regression after takeover by a cognitively more powerful grower (e.g., sensorimotor, preoperational,
and operational cognitive strategies).
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However, this fallback implies that more time and effort will

become available to some other acquisition process.

For instance, one may assume that the child tends to tempo-

rarily invest much time and effort in learning new words and,

as this investment decreases, that the time and effort not spent

on word leaning will be invested in the growth of syntax ex-

pressed in the form of a growing mean length of utterance

(MLU; assuming that this is a reasonable measure of overall

early syntactic growth. Individual MLU data show that the in-

crease is not smooth, but rather irregular; Brown, 1973, Perez-

Pereira & Castro, 1989).

The dynamics of this process is represented in Figure 31. In

the present dynamics, two parameters are important. The first

is the strength of the competition relation. If it is low, the

growers grow smoothly and independently of one another to

their proper maximum. The stronger the competition, the

more steps occur and the more irregular they are. Mathemati-

cal implementation of a dynamics with rather strong competi-

tion leads to a picture of stepwise increasing growth curves,

with mutually exclusive plateaus and rises in the growers that

compete for the same attentional resource (see Figure 32; see

the Appendix for details). A second important parameter is the

amount of damping of the effect of the oscillating resource

function. For instance, it is not necessarily the case that if the

child's attention to syntactic aspects of language is temporarily

minimal, syntactic growth simply stops (an implicit assump-

tion made in the model from Figure 32). Rather, under such

circumstances, growth rate decreases but is not reduced to

about zero. This phenomenon may be used to model the Corri-

gan (1983) data mentioned earlier. Corrigan compared, among

others, vocabulary growth with growth in maximal length of

utterance in 3 children between 10 and 27 months of age. Her

data can be mathematically modeled quite well by a dynamics

of the sort represented in Figure 31, given that the effect of the

Figure 31. A model of a dynamics explaining long-term stepwise

growth. (Two bootstrap growers C and D [circular arrows ] grow anta-

gonistically as a function of a resource B. Whereas B is positively af-

fected by B, D is positively affected by the inverse of B; \£., K, - Le

[hence, the qualification "inversely affects" on the B-D arrows]. B is

subject to positive feedback [hence, the broken "pf" arrow] and is

positively affected by a grower A. There is a competitive relationship

from C to A; i£., C negatively affects A and feeds upon the growth of a

variable A.)

oscillating resource variable is sufficiently damped (see Figure

30; see the Appendix for details). Again, this simulation is

based only on a set of initial state values, which then develop

deterministically in accordance with the equations based on

the dynamics from Figure 31.

This discussion of how the growth model may account for

stage phenomena has been restricted to quantitative aspects.

Qualitative shifts, in the sense of the emergence of new forms,

constitute in fact the major challenge to any developmental

approach (Thelen, 1989). In principle, the quantitative ap-

proach presented here could contribute to the explanation of

qualitative changes, for example by using the growth mecha-

nism as a major transition factor in synergetics-type models. In

such models, many variables cluster into simple structures that

are characteristic of different developmental stages.

Some Final Prospects

The major idea behind the cognitive and language growth

model discussed in this article is that cognitive growth occurs

under the constraint of limited resources, with either mutual

support or competition for resources among the cognitive

growers that constitute a person's cognitive and language sys-

tems. This point of view explicitly subsumes cognitive growth

under the general laws of thermodynamics: The cognitive sys-

tem is a system carrying complex information and as such is far

from thermodynamic equilibrium. Increasing its order and in-

formation load consumes time and energy. The cognitive sys-

tem is also a self-organizing system, maintaining and increas-

ing its own order, provided sufficient resources are available. Its

form is to a great extent determined by the fact that these re-

sources are limited.

I have shown that cognitive growth can be modeled mathe-

matically in the form of a logistic difference equation, which

applies to all—or at least to a very significant majority—of the

variables involved in cognitive growth processes. All such vari-

ables interact and react with one another, thus making even

relatively simple growth dynamics complex, transactional

events. The growth curves resulting from such dynamics were

often very difficult, if not impossible, to predict on the basis of

simple linear extrapolation of initial state properties. A dy-

namic systems approach like the present one might change the

meaning—at least the connotational meaning—of concepts

such as deterministic, random, predictable, and so on. For in-

stance, in several cases, growth sequences appear very similar

to random sequences, although they behave completely differ-

ently from real random sequences, for instance in that under

specific circumstances they may evolve toward stable points,

which random sequences will never do. Although the equations

involved are very easy to understand and involve no compli-

cated mathematics, they are very difficult to solve; that is, it is

very difficult to give general answers to questions such as under

which conditions specific equations will lead to stable solu-

tions, to damping of oscillations, and so on. Thus, further math-

ematical scrutiny of the equations presented here is necessary.

1 have discussed several dynamics without entering deeply

into the psychological and process interpretations of these dy-

namics and their components. The major aim of this article was

to show that dynamics of the sort I have discussed may provide
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35 40 45 50 55

grower A

TIME

+ grower B growthrate function

Figure 32. Growth curves following a stepwise course, based on the step dynamics from Figure 31. (Both

growers correspond to the components Cand D in the dynamics from Figure 31, and the oscillating

resource corresponds to the B component. The A component from Figure 31 is an intermediary variable

not represented in this figure.)

a plausible general model of several cognitive growth processes.

The real work of thoroughly testing the empirical merits of

specific dynamics applied to specific developmental fields and

of finding psychological interpretations that can stand up to

empirical scrutiny is still to be done. Moreover, several obvious

theoretical questions have not been answered. I give two exam-

ples. One concerns the application of mixed interactions, that

is, interactions in which one affects another positively whereas

the other affects the first negatively. An example of mixed inter-

action is the negative support dynamics, such as paternal correc-

tion following the growth of unwanted skills or habits. Another

question still to be answered concerns the simulation of inter-

actions in more complicated systems of cognitive growers, for

instance, systems consisting of 10 or more growers which inter-

act with each other, the effects of random perturbations on the

long-term course of processes, and so on.

From a methodological point of view, applying the present

dynamics model would ideally require longitudinal individual

studies with a sufficiently dense measurement schedule and

with maximally reliable data. This is especially so in cases

where growth functions show strong interindividual variability.

Unfortunately, this requirement is much more than most

current studies in cognitive development can offer. If individual

growth functions do not differ too considerably in general

shape and rate, cross-sectional and mixed designs may be used

to test several growth patterns. For instance, in a mixed design

with at least two consecutive measurements for each age group,

one may use differences in the slopes of the curves or the degree

of instability of measurements over time as indicators of an

underlying growth form. Cross-sectional group data should be

used selectively. For instance, if group data reveal a transient

regression, then such regression should be characteristic of a

significant portion of the individual growth curves, if such

curves would be available (and provided the groups developed

under largely similar cultural and social-historical cohort con-

ditions). If cross-sectional group data fail to show regressions,

this may be due either to the fact that individual regressions

have compensated one another or to the fact that no such re-

gressions have occurred. Methods in which multiple tasks are

presented to children and related to specific developmental

functions may also be used to reveal different underlying

growth processes (Fischer et al., 1984).

Another methodological aspect of the model is that intrain-

dividual instability of growth data is not considered a weakness

or a sign of unreliable measurement, but rather as an essential

characteristic of cognitive growth. Of course, reliable measure-

ment remains an essential condition for theory building. On

the other hand, one should not automatically imply stability

over time as a criterion of reliability of measurement, because

there are many forms of growth conceivable in which temporal

instability is a major structural characteristic of growth instead

of some sort of aberration.

As far as the underlying assumptions of the logistic growth

model and the dynamic systems approach apply to microgene-

tic events, such as the growth of attention or skill during a single

experimental session, the model may also be used to describe
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short-term changes in behavior or short-term learning effects.

Finally, in this dynamics model, the data from a group of sub-

jects on a specific form of growth (e.g., of inversion rules in Wh-

questions) should not be considered for means and overall data

but should be viewed as a collection of trajectories specifying a

state space. The developmental or growth model should pro-

vide a general model of this state space and explain which indi-

vidual trajectories are theoretically possible and which are not.

My approach does not start from the idea that in each process

of development some orthogenetic line of development should

exist that is typical of a group of subjects as a whole. Rather, the

dynamics model describes cognitive and language growth as a

constrained bundle of individual growth possibilities or trajec-

tories that proceed as a result of a specific underlying dynamics.
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Appendix

Equations, Initial State Values, and Constants Used in Growth Sequences Depicted in Figures

All growth sequences depicted in the figures are described, except

those for which a description is given in the main text. The mathemati-

cal symbols correspond to those in the equations mentioned. The vari-

ables include real variables, meaning those changing during the

growth process, and constants. Of the real variables, only the initial

state values are given. If the equations used do not correspond to equa-

tions explicitly discussed in the text, they are presented in this appen-

dix. The difference form of the logistic growth equation is either pre-

sented by its equation number(17a), or presented in abridged form—

that is, with the symbol /followed by its arguments, which are

separated by a comma. The arguments are presented in a fixed order:

L-r-K. For instance, K= f(K, d-L, KK) means that the growth of a

carrying capacity AT is a logistic difference function of the level of AT

occurring a time interval f ago, a growth rate that is a product of a

damping function d and the growth level of a grower L (also a time

interval f ago), and finally a carrying capacity that corresponds to the

highest possible stable level of K.

Figure 12: Competition Without Positive Feedback

Initial State Variables

'A =1-25

LA=Q.S

rB = 0.35

Constants

CA = 0.2 competition factor damping

the effect of (KA- Le)

CB = 0.1 competition factor damping

the effect of (K^- LA)

Equations

28a-f

Figure 13 (Top Figure)

Initial State Variables

rA = 0.8

LA = 0.5

rB = 0.07 (and 0.1, 0.24, and 0.33 for the

other examples in Figure 13)

Constants

Equations

cA=0.1

CB = 0.05

28b-e

29a-b

= abs[(l + (KAl -

• (KA, ~

Figure 15: Competition Among Alternative Strategies

Initial State Variables

Figure 15 a:

r A = r B = 0 . 4

c = -0.05

c' = -0.15

Figure 15b:

rA = /•„ = 0.05

Z, A =L B =0.01

c=-0.1

c' = 0.099

Figure 15c:

Z.A=0.0125

LB=0.01

c = -0.1

c' = -0.09

Figure 15d:

rA=rB= 0.05
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Equations

LA =0.0126

LB=O.OI

c=-0.1

c' = -0.09

30a-b

Figure 19: Effect of Sensitivity Levels

Initial State Variables

K=0.2

r = 3

L = 0.02

Insensitive: dK = 5

Sensitive: dK=\.\

Inconsistent 1: dK= 0.017123

Inconsistent 2: 0.0171

Constants

MK = 0, 2 (minimal structural growth

level M of K is 0.2)

ML = 0.01 (minimal structural growth

level M of L is 0.01)

4=0.5

K, = 0.2

31

32a-g

for 32f, r,̂  = sin (L,) • rfr (the growth rate of the growth

rate is a sinus function of the growth level of L times the

damping function of r)

If K < 0.2, resell to 0.2

lfK>2, reset Klo2

If L < 0.01, reset L to 0.01

Figure 20: Nonlinear Effect of Sensitivity on Final State

Initial State Variables

K=OA

r = 3

L = 0.02

Constants

C: 0.65 «4< 0.85

Z): 0.0704 < 4 < 0.07 14

ML=0.0\

4=0.5

Equations

(as in Figure 19)

Figure 22: Simulation of Inversion in Wh- Questions

Initial State Variables

A: =0.2

L = 0. 165281 (similar to the initial state

value, with 100% correct set to 1 )

Constants

Kr= 0.132

d, = 0.025

«k= 1.0526

Equations

for jj^

andr

32b, 32d, 32e, 32g

33

t = (cos L, - 0.4) • dK in Equation 33

= sin L, • d, in Equation 32a',

, r,, K,) + 0.4

Figure 24: Growth of the Present Progressive Form

Correct Strategy

Initial State Variables

L = 0.00065
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Constants

PAUL VAN GEERT

Constants

Equations

KK=\

K, = 0.5

714=0.001

714=0.001

KC(~ /(^ifi
 r

Ki KK)

If A;f < MK, reset K^ to MK

I f L < ML, reset L to 714,

Wrong Strategy

Initial State Variables

ra= 0.6

L = 0.0035

r, = 0.05

K, = 0.5

714=0.001

^ = 0.2

Equations

ML = 0.4 /f

~ ^correct,) * <*correct, * *KK

= abs[(l

r < MK, reset A^f to MK

If L < ML, reset Z- to ML

Figure 25: Adaptation to Slow Growth

Initial State Variables

L = 0.05

Equations

MK=Q.Q5

r = 0.05

34a

Figure 26: Adaptation to Fast Growth

Initial State Variables

K=\

L=0.3

r = 3

MK = 0.05

M, = 0.01

34a

I f A f < MK, reset AT to 714-

If L < 7I4> reset L to 714

Figure 27 Quasi-Random Meandering

Initial Stale Variables

K=\

L = 0.998

Constants

r=0.3

</, = 1£- 10 (10 to the power -10)

4= (1 +l£-13)£-10[equals(10 + 10-

35a

Figure 28: Autocatalytic Timer and Dependent Growers

Initial State Variables

r A =l£ -20

LA = 0.001

U = 0.001

T
h
is

 d
o
cu

m
en

t 
is

 c
o
p
y
ri

g
h
te

d
 b

y
 t

h
e 

A
m

er
ic

an
 P

sy
ch

o
lo

g
ic

al
 A

ss
o
ci

at
io

n
 o

r 
o
n
e 

o
f 

it
s 

al
li

ed
 p

u
b
li

sh
er

s.
  

T
h
is

 a
rt

ic
le

 i
s 

in
te

n
d
ed

 s
o
le

ly
 f

o
r 

th
e 

p
er

so
n
al

 u
se

 o
f 

th
e 

in
d
iv

id
u
al

 u
se

r 
an

d
 i

s 
n
o
t 

to
 b

e 
d
is

se
m

in
at

ed
 b

ro
ad

ly
.



A MODEL OF COGNITIVE GROWTH 53

Constants

Equations

36

Figure 29: Three Conjunctive Growers

Initial State Variables

L. = 0.5

h = 0,1

0 < p < .001 (p is a positive random number)

Constants

of, = 0.04

Equations

17a for L123

29a-b for r, 2

Figure 30: Simulation of Corrigan's data

Initial State Variables

Lyx = 6, where voc = vocabulary

LMLU = 0.1, where MLU = maximal

length of utterance

r =0.001

r= 0.01

Constants

*voc = 5,000

MLU =10

Kr = 0.4

Kr = 1.5

Equations

£voc = /(ivoc, (0.05 + r/ 10),

29a for r,, provided that

-d,r

LMLU is rounded off to whole numbers

Figure 32: Stepwise Growth

Initial Slate Variables

r=0.01

rr= 1

LA=0.01

LB= 0.001

Constants

Equations

. = 0.1

4r= 0.166

dA = 0.6

d, = 0.4

17afor LAB

29a for
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