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In this article an overview is given of traditional methodological approaches to stagewise cognitive 
developmental research. These approaches are evaluated and integrated on the basis of catastrophe 

theory. In particular, catastrophe theory specifies a set of common criteria for testing the disconti- 
nuity hypothesis proposed by Piaget. Separate criteria correspond to distinct methods used in 
cognitive developmental research. Such criteria are, for instance, the detection ofspurts in develop- 

ment, bimodality of test scores, and increased variability of responses during transitional periods. 

When a genuine stage transition is present, these criteria are expected to be satisfied. A revised 
catastrophe mode! accommodating these criteria is proposed for the stage transition in cognitive 
development from the preoperational to the concrete operational stage. 

Suppose that a team of developmental researchers stumbled upon 
a genuine stage in the development of some behavior. Would they 
be able to detect the stage that was right there in front of them? If 
they did notice it, how would they know what they had found? 
How would they be able to tell that it was a stage? What pattern of 
results would they look for? Despite the hundreds of studies of 
psychological development in recent decades, these questions 
still have no definitive answers. There is no uniform empirical 
criterion used by developmental researchers to determine when 
they have found a stage (K. W. Fischer, 1983, p. 5). 

The concept of stages, as proposed by Piaget (Piaget & In- 

helder, 1969), is a major subject of discussion in the field of 
cognitive development (Campbell & Bickhard, 1986; Emde & 
Harmon, 1984; Levin, 1986; Pinard, 1981). An important part 

of the debate concerns empirical criteria and methods for de- 

tecting stages and the interpretation of obtained results (K. W 
Fischer & Silvern, 1985). In the relevant literature a distinction 
can be made between stage criteria and transition criteria. Pia- 
get (1960) and the Genevean group used five explicit stage crite- 

ria for the acceptance of the stage hypothesis. These 
criteria—invariant sequences, cognitive structure, integration, 

consolidation, and equilibration—have met with considerable 

criticism (Brainerd, 1978; K. W Fischer & Silvern, 1985). How- 

ever, as for instance Flavell (1971) points out, stage-to-stage 

development entails qualitative changes, periods of major reor- 

ganization in thought between stages. This logical entailment 
leads to new criteria, transition criteria, which have been ap- 

plied in cognitive development research with some success. 

Each of the transition criteria (bimodality, sudden spurts, re- 

sponse variability, and second-order transitions) have been satis- 

fied in empirical research, yet have seldomly been investigated 
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simultaneously (but see K. W Fischer, Pipp, & Bullock, 1984). 

Also the rationale of each criterion has not been derived from 

an explicit formal transition theory. 

Because empirical evidence on the basis of any one of these 
criteria may not be sufficient to accept a stage theory, the inte- 
gration of transition criteria within a formal model is required 
(Connell & Furman, 1984). Such a theoretical model of transi- 

tions can be found in a branch of mathematics called catas- 
trophe theory (Thom, 1975). This general theory of discontinui- 
ties Catastrophes) yields a set of mathematically derived criteria 
to detect discontinuities Gilmore, 1981). An important part of 
this article is concerned with the correspondence between Gil- 

more’s transition criteria, called catastrophe flags, and criteria 
used in cognitive development research. It is argued that catas- 

trophe theory incorporates a basic formal model of transition 

criteria and thus enables the integration of empirical evidence 
for stage transitions into a powerful argument for stagewise 
development. 

The connection between Piaget’s stages and catastrophe 
theory has been noticed before (Freedle, 1977; Klahr & Wal- 

lace, 1976; Molenaar & Oppenheimer, 1985), and a few catas- 

trophe models of stagewise development have been proposed 

(Preece, 1980; Saari, 1977). These models are based on the origi- 

nal goal of catastrophe theory, namely, the classification of all 
possible discontinuities in a series of elementary catastrophes. 

One of these elementary catastrophes, the cusp model (dis- 

cussed in the next section), has been applied in many fields 

(Guastello, 1984; Zeeman, 1976). The construction of a cusp 

model or any other elementary catastrophe model) starts with 

the identification of variables that control the transition. In the 
case of cognitive development consensus about these control 

variables (the underlying forces of development) is hard to find. 
For instance, the models of Saari and Preece differ importantly 

with respect to the nature of control variables. 

The models of Saari (1977) and Preece (1980) are discussed 

later. Neither model has been tested empirically. Saari’s model 

lacks specificity and conflicts with Piaget’s theory on some 
points. Strictly speaking the model of Preece is not about stage- 

wise development; it is a model of sudden jumps in the re- 

sponses of so-called nonconservers. Therefore, we propose a
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new catastrophe model that is formulated on the basis ofempiri- 

cal findings of relevant neo-Piagetian research. 
This article is organized as follows: First, we start with an 

introduction to catastrophe theory, in which the cusp catas- 

trophe is explained. Second, the empirical evidence for transi- 

tions in cognitive development is summarized and related to 
Gilmore’s catastrophe flags. Third, the models of Saari (1977) 

and Preece (1980) are discussed, and a new improved model for 

stage-to-stage transitions in cognitive development is proposed. 

Aspects of Catastrophe Theory 

Although the concepts of stage and transition are intrinsi- 
cally vague in the context of very complex processes like cogni- 

tive development, they are well defined in simpler systems. The 
transition between the liquid phase and the gaseous phase of 

water, that is, boiling, isa well-defined discontinuity. This quali- 

tative change in a physical system can be modeled using nonlin- 

ear dynamical system theory. Molenaar and Oppenheimer 

(1985) showed that such dynamic models of increasing com- 

plexity transcend the dichotomy between the organismic and 

mechanistic paradigms. Catastrophe theory, as part of nonlin- 

ear system theory, describes physical processes like boiling but 
has also been applied in the social sciences (Zeeman, 1976). 
Successful applications in psychology can be found in, for ex- 

ample, perception research (Stewart & Peregoy, 1983; Taeed, 

Taeed, & Wright, 1988) and clinical psychology (Callahan & 
Sashin, 1990). 

As in regression models, catastrophe theory relates behav- 

ioral (dependent) to control (independent) variables. Catas- 

trophe theory models concern discontinuities in behavioral 
variables as a function of continuous variation in the control 
variables. The restriction to continuous variation of the control 
variables is essential because many discontinuities in psycholog- 
ical behavior may be due to simple discontinuous changes in 
the independent variables and then do not constitute a genuine 
stage transition because of intrinsic reorganization.' The rela- 
tion between behavior and the control variables is given in 

mathematical expressions that can generally (but far from exclu- 
sively) be conceived of as representing a dynamic system that, in 

varying situations, continually seeks to optimize some function 
(Poston & Stewart, 1978, p. 2). That is, most applications of 

catastrophe theory involve systems that minimize some quan- 

tity like energy, or (as a psychological example) cognitive disso- 

nance or maximize one, like entropy, or (as another psychologi- 

cal example) degree of adaptation. This process of optimization 

implies the concept of equilibrium: For fixed values of the inde- 

pendent control variables the behavior will change until it 
reaches a stable state. The definition of equilibrium in catas- 

trophe theory can be given in general mathematical terms (set- 

ting the first derivative of the dynamic system equations to zero) 
and covers continuous and discontinuous changes of the config- 
uration of stable behavioral states as a function of the control 

variables. More specifically, this definition covers the Piagetian 

equilibration concept as applied in the field of cognitive devel- 

opment. 
Another important concept of catastrophe theory is struc- 

tural stability, which is also commonly used but less uniformly 

defined in the literature (cf. Poston & Stewart, 1978, p. 94). 

Intuitively, it means that scientists assume that empirical facts 

are repeatable under similar conditions and that small changes 

in these conditions will not change the results of their experi- 

ments dramatically. In catastrophe theory this means that 

various perturbations will not change the type of Continuous 

or discontinuous) relation between control variables and the 

configuration of stable behavioral states. A mathematical exam- 

ple may explain this. Suppose we perturb the function X? witha 

term ¢X, where ¢ is a small positive or negative constant. As we 

see in Figure 1, the resulting function X°? + ¢X has different 

configurations of equilibria for various « (1 maximum and | 

minimum, | point of inflexion, and no equilibrium point at all, 

respectively). Therefore X° is not structurally stable Gee for fur- 

ther review Poston & Stewart, 1978, p. 64). 

Catastrophe theory concerns the study of equilibrium behav- 

ior of a large class of mathematical system functions that ex- 

hibit discontinuous jumps (more precisely, the points of func- 
tions where at least the first and second derivates are zero). 

Thom (1975), a major proponent of catastrophe theory, has 

proven that a large class of structurally stable system functions 

(involving up to four control variables) showing discontinuous 

behavior can be classified into seven archetypical forms (the 
elementary catastrophes) by means ofa set of smooth transfor- 

mations of the system variables. This result forms the basis of 

catastrophe theory. The maximum number of four control vari- 
ables is not a real limitation because catastrophe theory con- 

cerns only variables that are actively involved in the transition 

(Poston & Stewart, 1978). Although hundreds of variables 

could be of importance in psychological systems, most transi- 

tions are locally controlled by changes in only a few variables. 
The most popular elementary catastrophe is the cusp. All 

structurally stable discontinuities in three dimensions can be 

transformed to a cusp. The cusp function V,,.(Z) (behavior vari- 

able Z and two control variables Y and_X, called the splitting 

and the normal variable, respectively) is denoted by 

Vi AZ) = 1/4 Z4-1W/2Y 2 - ZX. 

It gives rise to the discontinuous equilibrium function after 
setting its first derivate with respect to Z to zero: 

Z2-YZ-X=0. 

For a continuum of values substituted for Y and X in this 

cubic equation, a range of values for Z is obtained. This relation 

between X, Y and Z can be elucidated by a geometrical repre- 

sentation in three dimensions (the equilibrium surface of points 

for which the equation holds, see Figure 2). 
In Figure 2, the folded smooth surface of the cusp is shown, 

and two paths are indicated (a and b), involving discontinuous 

and continuous change. In the bottom left-hand corner the axes 

are shown. The plane defined by X and Y is called the control 

plane. For a specific range of the control variables more than 
one value of the behavior variable is possible (the folded part of 

the surface). This particular area in the control plane is called 
the bifurcation set. As can be seen in Figure 2, in this set three 

' In their discussion of the transition concept, Connell and Furman 
(1984) allowed discontinuous causes of behavior, for example, entering 

a new school.
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Figure 1. For three distinct values of the perturbation ¢ the configura- 
tions of equilibria of {(X) = X? + eX are shown (1 maximum and | 
minimum, | point of inflexion, and no equilibrium point at all, respec- 

tively). 

modes of behavior are possible; the middle sheet, however, rep- 

resents unstable states and therefore is called the inaccessible 

region (see the Catastrophe Detection section). The presence of 

the two remaining modes of behavior implies a bimodal distri- 

bution of the behavioral variable. 

Movement through the control plane leads to changes in the 

value of the behavior variable. A specific instance of an individ- 

ual transitional process is obtained by description of the move- 

ment through the control plane, such as Paths a and b in Figure 

2. To illustrate, the various characteristic paths are explained 

by means of the well-known model of aggression in dogs pro- 
posed by Zeeman (1976). Zeeman modeled sudden changes 

from attack to flight as a function of the emotions of a dog. The 
behavior dimension (or variable) ranges from attacking to flee- 
ing. This behavior is assumed to be controlled by fear and rage. 
Zeeman argued that these controls can be measured indepen- 

dently of the observable behavior. A linear (noncatastrophic) 

model of this behavior is given in Figure 3. 

In this linear model fear and rage are seen as the opposites of 
one dimension. Clearly, no discontinuity controlled by continu- 
ous change in fear-rage is possible in this model. In contrast, in 

Zeeman’s (1976) model fear and rage are independent variables 

or conflicting factors. When a dog is both angry and frightened 
sudden changes from attack to flight can appear. A cusp model 

expressing this idea is shown in Figure 4a. 

At the neutral point no fear or rage is present. Starting from 

this point, an increase in fear or rage only leads to a continuous 
increase of retreating or attacking. However, if rage is increased 
in an already fearful dog, an attack catastrophe appears (a sud- 

den jump from the flight to the attack mode). The reverse pro- 
cess leads to a sudden jump from attack to flight. The magni- 
tude of change depends on the distance from the neutral point. 

neutral point (0,0,0)     inaccessible region 

sudden jump 

    

  

control 
plane 

  an 
z i 

\ sitrcaton set 

x 

  

  
Figure 2. Thesmooth folded surface of the cusp is shown in three dimensions. (z represents the equilibria 

of the behavior or dependent variable, whereas x and y are control or independent variables. In the control 

plane, spanned by x and y, the bifurcation set is situated. In this area, for fixed values of the independent 

variables, there are two modes of behavior, and sudden jumps between these modes are possible)
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attack 

behavior 

neutral 

  flight 
Figure 3. Linear model of dog aggression: The behavior variable at- 
tack-flight is a continuous function of the control variable fear—rage. 

(In this model small variations in fear—rage do not give rise to sudden 
changes between attack and flight) 

A continuous change from flight to attack is still possible, if 
first fear is decreased before rage is increased, thus transversing 
the neutral point. Both catastrophes (attack or flight) take place 

at different positions on the control plane. This is called Aystere- 

sis and is shown in Figure 4b as a cross section of the cusp along 
Path a. Movement along this path from left to right will lead to 
a jump upwards. Going back from right to left will lead to a 

jump downwards but on a different position more to the left in 

the control plane. In the dog aggression model this has the 

following conceptual meaning: You have to anger a frightened 

dog very much before it will attack, but once it has attacked, it 

will continue doing so though its anger may have abated. 
Besides attack and flight catastrophes, the cusp model im- 

plies divergence of behavior, often called a bifurcation (see Fig- 
ure 4c, which depicts a cross section of the cusp perpendicular 
to that of Figure 4b). That is, a very small initial difference 
between two paths in the control plane could become very large 

when entering the bifurcation set. In Zeeman’s (1976) model 

this is expressed as follows: If rage and fear are simultaneously 

increased from the neutral starting point, the upper or the 

lower sheet is followed (because the middle sheet is inaccessi- 

ble). The dog will attack or flee, but it will not remain indiffer- 

ent. These phenomena-—bimodality, inaccessibility, hysteresis, 

and divergence—can be used as indicators of discontinuities 
and are therefore called catastrophe flags. 

Notice that the formulation of the model is independent of 

time; time is not a control variable. Although catastrophe 

theory belongs to dynamical system theory (systems that evolve 

in time), in the ultimate formulation of elementary catas- 

trophes time is implicit. Time is expressed in the model in the 

changes in the values of control variables, resulting in various 

trajectories through the control planes. Consequently, the time 

taken for changes in the behavioral variable is given by the 
velocity of change in values of control variables. However, this 

time-dependent relation does not apply to the abrupt jumps 

between the two equilibria in the bifurcation set. Although the 
catastrophic jump is depicted in the cusp surface as occurring 

instantaneously, an actual abrupt change in a behavioral vari- 

able will take a small but definite amount of time. For example, 

the boiling of water, that is, the transition between the liquid 

phase and the gaseous phase of water, takes a finite amount of 

time because of purely physical constraints and hence is not 

completely instantaneous. 

It may seem strange that models without explicit time vari- 

ables are applied to developmental phenomena, as is the case 

with this article. Yet the specification of paths in the control 

plane does imply time. Moreover this implicit treatment of time 

in catastrophe models is in agreement with an important no- 
tion in developmental research, namely, that time is not a genu- 

ine causal factor of development (Lewis, 1990; Wohlwill, 1973). 

A last remark concerns the control axes in Zeeman’s (1976) 

model. In Figure 2 the control axes (¥ and Y) are called normal 

and splitting variable, respectively. In Zeeman’s model the axes 
are rotated 45°. In this rotated configuration of axes, the con- 

trols are called conflict variables (rage and fear are clearly con- 
flicting). It is this latter configuration that we use in our model 
of a stage transition proposed in the Catastrophe Modeling 

section. 
After a rapid popularization of catastrophe theory, mainly 

because of Zeeman (1976), some critical reactions followed 

(Zahler & Sussmann, 1977). These criticisms concern the al- 

leged deductive power of catastrophe theory. The weak point of 

Zeeman’s models is the lack of experimental evidence. Zeeman 

constructed many appealing catastrophe models in several dis- 

ciplines but never tested them rigourously. Yet empirical inves- 

tigation is possible, as is discussed in the next section. 

Detection, Modeling, and Analysis of Catastrophes 

In addition to catastrophe modeling, two other methods can 

be used in the application of catastrophe theory. One of these is 

catastrophe detection, which is based on the work of Gilmore 

(1981). It involves the application of so-called catastrophe flags, 

that is, typical properties of behavior that indicate the presence 

of a catastrophe. These flags are especially useful in social 
sciences applications, as is explained in the next section. 

A second strong variant is called catastrophe analysis and 

consists of mathematical analysis of the dynamic equations ofa 
transition process. Catastrophe analysis requires knowledge of 

the mathematical equations of the transition process. By re- 

peated application of transformation techniques these mathe- 

matical equations are reduced to one of the seven archetypical 
topological forms specified by Thom (1975), the so-called ele- 

mentary catastrophes. In Poston and Stewart (1978) the useful- 

ness of catastrophe analysis is demonstrated in, for example, 

laser physics, the geometry of fluids, and optics. In the social 

sciences this variant of catastrophe theory is not yet feasible, as 

we do not know the precise dynamical equations of the pro- 

cesses governing, for instance, cognitive stage transitions. 
Hence, we do not discuss catastrophe analysis any further. 

Catastrophe modeling is intermediate in strength between 

detection and analysis. Zeeman’s (1976) cusp model of dog ag- 

gression is a typical example of catastrophe modeling, involv- 

ing the direct specification of behavioral and control variables 
in one of the elementary catastrophes. An intricate problem 

with catastrophe modeling concerns the actual fitting of the
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Figure 4. a: Dog aggression model of Zeeman (1976): In this nonlinear model attack-flight is still the 
behavior of interest as in the linear model shown in Figure 3, but fear and rage are now independent 
control variables. (If rage is smoothly increased in an already fearful dog, this may lead to a sudden change 
from flight to attack. From “Catastrophe Theory” by E. C. Zeeman, 1976, Scientific American, 234, p. 66. 

Copyright © 1976 by Scientific American, Inc. All rights reserved. b: A cross section of the cusp is shown 
along Path a in Panel a. That is, if movement through the control plane is limited to Path a, the cusp surface 
reduces to a two-dimensional projection (comparable with the linear model in Figure 3), depicting hyster- 

esis. Hysteresis means that both catastrophes (attack or flight) take place at different positions on the 
control plane. This occurs if Path a is followed from left to right and backwards. c: The cross section 
perpendicular to Path a is shown, displaying divergence. An initial very small difference between two 

paths in the control plane could become very Jarge when entering the bifurcation set. The dotted lines in 
Panels 4b and c correspond to the inaccessible region of the cusp) 

specified model to data. This problem is mainly a statistical 

one. Specifically, it is necessary to reformulate the determinis- 
tic model in probabilistic terms. 

Statistical Catastrophe Theory 

In a series of articles, Cobb (Cobb, 1978, 1980, 1981; Cobb, 

Koppstein, & Chen, 1983; Cobb & Watson, 1980; Cobb & 

Zacks, 1985) started to solve this problem by developing statis- 

tical techniques for the application of probabilistic catastrophe 

models. Parameter estimation techniques on the basis of the 

method of moments and maximum likelihood have been con- 
structed. The latter method permits hypothesis testing accord- 
ing to the likelihood ratio test. This is not possible with the 
method of moments, but this method has the advantage of 

computational simplicity (Cobb, 1980). Both methods have 

been combined in a single computer program (Cobb, 1980) and 

have been used in several applications of catastrophe theory 

(Stewart & Peregoy, 1983; Taeed et al., 1988). In response to 

Cobb's (1980) approach, alternative estimation techniques have 

been developed. Guastello (1988) used a polynomial regression 

method that permits hypothesis testing, whereas Oliva, De-
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sarbo, Day, and Jedidi (1987) presented a multivariate method 

to accommodate multiple behavioral and control indices. All 

these methods have problems, for instance regarding optimiza- 

tion of the likelihood function and the required transforma- 

tions of the raw data. The transformations concerned are called 

local diffeomorphisms and include all kinds of smooth transfor- 
mations. At present the available statistical techniques only con- 

sider a small subset of these transformations. 

Catastrophe Detection: Empirical Evidence for 

Transitions in Cognitive Development 

In this section we restrict the discussion to catastrophe detec- 
tion. The presence of a catastrophe is invariantly associated 

with so-called catastrophe flags. Each flag is a behavioral prop- 

erty that has been mathematically derived from catastrophe 
theory by Gilmore (1981). Gilmore distinguished eight flags 
that are, as is shown, applicable in cognitive developmental 

research. Each one is discussed (in a nonmathematical fashion) 

in relation to experiments used to detect stage-to-stage transi- 

tions. 

Five flags were briefly introduced in the previous section, 
namely, hysteresis, divergence, sudden jumps, inaccessibility, 
and bimodality. Additional flags are divergence of linear re- 
sponse, critical slowing down/mode softening, and anomalous 

variance. The first five flags will occur when the values of the 
control variables are inside the bifurcation set (see Figure 2). 
According to catastrophe theory these five flags occur simulta- 
neously when the system is in transition. The three remaining 
flags can be manifest when the control variables are outside the 
bifurcation set and hence may occur before the bifurcation set 
is entered. An important point has to be made here: We actually 

want to distinguish between the sudden rapid spurt and the 

more general concept of transition. That is, we want to relate 

spurts to sudden catastrophic jumps, on the one hand, and 

transitions to the entire bifurcation set, on the other (See Figure 

2). A system is in transition if it resides in the bifurcation set 
and has the potential to jump. However, a jump is only one of 

the five phenomena that characterize the transitional system 
state. Only the last three flags can be used as predictors of 
transitions because they may occur outside the bifurcation set. 

The detection of catastrophe flags can be carried out 
straightforwardly and only requires the availability of behav- 

ioral measures. This may be especially useful in the initial analy- 
sis of stagewise cognitive development. In the following sections 
(see Table 1) we first discuss the general characteristics of Gil- 

more’s (1981) flags and then proceed with a consideration of 
each flag in relation to traditional methods used in cognitive 
developmental research. 

Gilmore’ (1981) Catastrophe Flags 

Gilmore (1981) gave a mathematical explanation of each ca- 

tastrophe flag. The mathematical arguments involved are 
rather complex, so we restrict ourselves to a heuristic presenta- 

tion. 

In Figure 5 the occurrence of the Ist five flags is illustrated in 
a cusp model. In the Aspects of Catastrophe Theory section the 

Table 1 

Gilmore’ (1981) Catastrophe Flags Related 

to Psychological Transition Research 
  

Relations to cognitive 
Gilmore’s catastrophe flags developmental research 
  

Bimodal score distributions on 
developmental tests 

Modality and inaccessibility 

Sudden jumps Spurts in longitudinal data 
Hysteresis Regression in development 

Divergence Optimai test conditions 

Validity of training studies 
Psychometric tests of 

conservation 

Second-order transitions 
Oscillations in responses of 

transitional subjects 

Divergence of linear response 
Critical slowing down 

Anomalous variance 

  

equilibrium concept was introduced and the cusp surface, 

called the surface of equilibrium points. This means that each 

point of this surface represents a minimum or maximum of the 

function V,,(Z). In Figures 5 and 6 this relation between the 

cusp surface and V,,(Z) is elaborated. For given points in the 

control plane along Paths a and b in Figure 5, the correspond- 

ing projections of the function V,,(Z) are shown in Figure 6. 
These projections can be interpreted as areas in which a little 

ball tends to roll to the lowest point (minimum). 

In these graphs the pattern of minima and maxima is shown 

for Points! to 7 along Path a and Points I to 3’ for Path b. Moving 
from Points | to 7 leads to the following typical pattern of 

change. At Point 2 a point of inflexion emerges, which trans- 

forms to a local maximum and additional minimum when the 
bifurcation set is entered at Point 3. The two minima cause 
bimodality, and the local maximum gives rise to an inaccessible 
mode (at Point 4). At Point 5 the original minimum reduces, 
and a new unique minimum is established after leaving the 
bifurcation set (Sudden jump at Point 6). Hysteresis occurs 

when Path a is followed in both possible directions, as is shown 

in Figure 5. When moving from Points 7 to! the ball remains in 
its minimum until Point 2 (instead of Point 6) where the sudden 

jump back will take place. Path b is added to Figure 6 to explain 
divergence. Starting at I' moving to the center of the bifurcation 
set leads to a splitting of the original unique minimum into two 

new minima and a maximum {at 3). Which one of the two 

minima is chosen by the little ball depends on very small varia- 
tions in its original position. 

The remaining three flags, divergence of linear response, 
critical slowing down/mode softening, and anomalous vari- 
ance, are of special importance because they are not restricted 

to the bifurcation set. Divergence of linear response and critical 

slowing down/mode softening concern the observable instabil- 
ities because of perturbations of the system. In the vicinity of a 

catastrophe such perturbations cause significant changes in the 

magnitude (divergence of linear response) and the relaxation 
time (critical slowing down/mode softening) of the behavioral 

variable or variables. The relaxation time is the time it takes to 
restore a perturbed equilibrium. The ball in its minimum posi- 
tion again provides a good example: the magnitude of its reac- 
tion to a perturbation and the time it will subsequently roll
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Figure 5. Five catastrophe flags—bimodality, inaccessibility, sudden jumps, divergence, and hysteresis 
—that are associated with the bifurcation set are here elucidated in a cusp model. (Two paths are indi- 
cated, which give rise to hysteresis and divergence. Each point on the cusp surface reflects an equilibrium 

state) 

around until it retakes its equilibrium position are larger near a 

catastrophe. Finally, anomalous variance relates to large in- 

creases in the variance of behavioral variables near a catas- 
trophe. 

If one flag is observed, one expects the others (except hystere- 

sis) also to occur in case a genuine transition is taking place. 
Consequently, together they form a strong argument for the 
presence of a catastrophe. The proper ways in which the detec- 
tion of each flag in psychological data has to be carried out may 
involve intricate methodological problems. For each separate 

flag we give plausible solutions and present examples of its ap- 

plication. 

The presence of hysteresis is closely associated with a special 

condition called the delay convention. Both the delay conven- 
tion and its alternative, the maxwell convention, concern the 

behavior in the bifurcation set. The delay convention implies 
that the system state remains in a local minimum of the energy 
function until that minimum disappears altogether. In con- 

trast, the maxwell convention implies that the system always 
tries to move to the global minimum of this energy function. 
According to the maxwell convention, a sudden jump takes 

place on Position 4 or 5 (Figure 6), whereas according to the 

delay convention this jump takes place at Position 6. Which 

convention is obeyed by the system is an empirical issue that 

has to be settled by experiments. Moreover, this is not a matter 

of either-or: The delay and maxwell conventions are two ex- 

tremes of a continuous scale of possible intermediate conven- 

tions (see Gilmore, 1981, chap. 8). 

Gilmore’s (1981) flags are particularly important for the defi- 

nition of a transition. Earlier, we distinguished between a tran- 

sition and an actual sudden jump; in that the latter discontinu- 

ity) is only one property (flag) of transitions. Another important 

distinction is that between a sudden jump and a developmental 

acceleration. In psychological developmental research the dif- 

ference between a genuine transition and an acceleration in 
a continuous process may not be immediately clear (See Fig- 

ure 7). 

It may be hard to differentiate between these two kinds of 
developmental changes on the basis of noisy data. However, by 

means of the catastrophe flags the discontinuity hypothesis is 

testable in that the remaining flags will not occur in the case of 
an acceleration. 

Many authors either do not make this distinction or accept 
both as transitions (Kenny, 1983). In a recent article by van 

Geert (1991) stage transitions have been explicitly interpreted 

in terms of accelerations. van Geert’s approach and the present 

one are closely related, as both start from nonlinear system 

theory. van Geert studied various phenomena in the develop- 

ment of cognitive and language skills by invoking modifica- 
tions of the so-called Verhulst equation. In these modified 

equations rapid increases in independent variables (growth rate 
and limited resources) lead to even more rapid changes in 

growers (cognitive strategies and grammatical rules). According 

to catastrophe theory, however, such a rapid increase only con- 

stitutes a genuine sudden jump if it is caused by continuous 

small variations in the control variables. A mathematical analy- 

sis of van Geert’s equations shows that these do not yield catas- 

trophes. However, it is possible to extend the basic Verhulst
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Figure 6. For given points in the control plane along Paths a and b in Figure 5, the corresponding 

projections of the function V,,(Z) are shown. (These projections can be interpreted as areas in which a 

little ball tends to rol! to the lowest point (minimum). The two modes of behavior in the bifurcation set are 

represented as two distinct minima; inaccessibility as a local maximum that is not a stable state for the 
little bail. Moving from f to 3 leads to divergence, that is, a splitting of the original unique minimum into 

two new minima and a maximum. Movement from Points | to 7 and back from Points 7 to | gives rise to 
hysteresis in the form of sudden jumps when leaving the bifurcation set at Points 6 and 2, respectively, 

equation in such a way that it may give rise to genuine catas- 

trophes. In this way, the present catastrophe approach could 

also be applied to van Geert’s models.” 

Modality and Inaccessibility: Bimodal Score 
Distributions 

Modality and inaccessibility are discussed together, as both 
relate to the properties of bimodal score distributions. The rela- 

tion between surfaces of equilibrium (like the cusp) and proba- 

bility densities or score distributions is explained by Gilmore 

(1981, chap. 9) and Cobb et al. (1983). 

Several authors in the field of cognitive development use bi- 
modality as an important transition criterion. Wohlwill (1973) 
explained the occurrence of bimodality by referring to classical 
test theory. That is, the assumption that responses to the 

various items of a test are independent is not justified in the 
case of discontinuous behavior. According to Wohlwill, the 

high degree of interdependence among responses to different 

items may result in a sharply bimodal distribution of responses. 
In contrast, a continuous change will lead to a uniform or a 
normal! distribution. K. W Fischer and Bullock (1981) and K. 
W Fischer et al. (1984) extended Wohlwill’s argumentation. Ina 
nutshell, they translate a spurt in cognitive level as a function of 

age directly into a distribution of scores. It then follows that 
only a low proportion of children will have intermediate test 

scores. This is shown in Figure 8. 

Kenny ({983) and Tabor and Kendler (1981) gave similar 

reasoning as K. W Fischer et al. (1984). Thus, the presumed 
relation between discontinuous cognitive behavior and bi- 
modality is certainly not new. The occurrence of bimodality has 
been shown in several experiments for various age groups and 

in the context of various stage theories (cf. Kenny, 1983). Here 

we concentrate on cognitive stage theories and especially on the 
transition from preoperational to concrete operational 

thought. 

Tabor and Kendler (1981) used two tasks, Piaget's class inclu- 

sion task and the optional shift task. The latter task is expected 

to produce a unimodal, bell-shaped distribution; this task 

serves as the control task. It was found that the Piagetian task 
produced clearly bimodal score distributions, whereas the op- 

tional shift task did not. Field (1987) also presented bimodal 

distributions for the number, length, mass, and liquid items of 

the conservation test. 
Wohlwill (1973) referred to three conservation experiments, 

which all showed strong bimodal distributions. One of these 

? The necessary modifications are the addition of an extra variable 
Nand the introduction of a higher order constraint on the exponential 
growth term. That is, instead of the normal Verhulst equation, X,.,;=7 
X, (1 — X,,), the equation X,,, = 1X, (1 — X2) + N must be used. van 
Geert (1991) already gave an interpretation for the additional variable 
N Inhisarticle he assumed that the increase of growth must be autoca- 
talytic: “Any increase that amounts to mere additions from an outside 
source is not genuine growth” (p. 4). If this constraint is skipped the 

variable N may represent these mere additions from an outside source.
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Figure 7. Schematic diagrams of a genuine sudden jump associated 
with a catastrophe (Panel a) and a rapid acceleration in a continuous 

developmental model (Panel b). 

experiments was performed by Bentler (1970). The evidence for 
bimodality given by Bentler is very convincing. He used the 
complete Goldschmid and Bentler version of the conservation 

test (the standard conservation test at present) and assessed 560 

children (aged 4 to 8 years) in a cross-sectional design. Amaz- 

ingly, Bentler argued that the score distributions he obtained do 
not confirm the stage hypothesis. On the basis of the Piagetian 
classification in nonconservers, partial conservers (transition 

group), and conservers, he expected to find a trimodal distribu- 
tion. However, the scores of partial conservers, children in the 

transition period, do not relate to a distinct mode of function- 

ing. According to Wohlwill’s argument as well as catastrophe 
theory, the partial conservers will be subsumed in the two other 
groups. Bentler displayed the results of Form A and B of the 
Goldschmid and Bentler test in a frequency table. Here, the 

same results are depicted as distributions. In Figure 9a the over- 

all scores are presented (N = 560), whereas in Figure 9b the 
scores are displayed for each age group. The development of 

conservation scores shown in this figure suggests a discontinu- 
ity in the acquisition of conservation. 

Although the degree of bimodality of the distributions 
shown in Figure 9 can be inspected visually, this has to be 
objectively ascertained by means ofa statistical test. Everitt and 
Hand (1981) provided several statistical tools for the analysis of 
bimodal (mixture) distributions (see also Cobb & Watson, 1980, 

for an alternative approach). A recent application of their meth- 

ods to psychological data can be found in Thomas (1989). 
The use of bimodality as a transition criterion can be criti- 

cized in two ways. First, according to Zahler and Sussmann 

(1977), most applications of catastrophe theory in the social 

sciences model behavior that cannot be measured on a continu- 

ous scale. For instance, they argued that flight and attack 

(which are two modes of a continuous behavior variable in Zee- 

man’s, 1976, dog aggression model) in reality are dichotomous. 
However, with respect to the conservation test this criticism 

does not apply. Even conservation tests concerning only single 

domains of conservation (for instance, conservation of volume) 

consist of slightly different items that cover different difficulty 

degrees. Together these items will form a one-dimensional con- 
tinuous scale satisfying certain statistical criteria (cf. G. H. 

Fischer, 1974). (Incidentally, notice that this criticism, which 

presumably affects most social scientific applications, is a bit 

strange in the present context in that opponents of Piaget's 

stage theory claim that the acquisition of conservation is essen- 
tially continuous). 

Wohlwill (1973) already pointed out that a similar criticism, 

that is, that many psychological tests consist of dichotomous 
items, is not appropriate. According to classical test theory, the 

responses to a set of independent dichotomous items add up to 

an approximately normal distribution. Consequently, accord- 
ing to Wohlwill, the occurrence of bimodality can only be due 

to interdependence of responses. 

The second criticism of bimodality as a transition criterion is 

a more serious one. In a nutshell, this criticism implies that a 
discontinuity in behavior gives rise to a bimodal (or multimo- 
dal) distribution, but the reverse may not be true. That is, a 

bimodal distribution may be due to interdependence of re- 

sponses that can be induced by various sources unrelated to 

discontinuous behavior (for examples, see Everitt & Hand, 

1981). In Figure 7 we discriminate between a discontinuity and 
an acceleration in continuous development. Both a discon- 

tinuous and a continuous accelerated development may lead to 

a bimodal distribution (see Figure 8). Consequently, bimodality 

in itself is not sensitive to this important distinction. The an- 

swer to this problem was already indicated before: Gilmore's 
(1981) flags have to occur in concert so that the remaining flags 
can discriminate between the two sources of bimodality. 

Problems related to bimodality of (conservation) score distri- 
butions may arise in training experiments. These problems 
concern (a) the assumption of a normal score distribution un- 

derlying most statistical methods and (b) the identification of 

transitional children (often called partial conservers). The first 

problem can be solved by the use of nonparametric or robust 

  
  

Figure 8. The upper frame shows developmental paths that may give 

rise to the bimodal distribution of scores depicted in the lower frame.



404 HAN L. J. VAN DER MAAS AND PETER C. M. MOLENAAR 

a 50 
proportion 

of children 40 

30 

20 

10 

  

age 5 to 5.5 age 5.5 to 6 

  

b age 4 to 4.5 age 4.5 to § 

Pp 
r 

o 

p 
oO 

T 

t 

i 

o 

n 

score score 

age 6 to 6.5 age 6.5 to 7 

  

age 7 to 7.5 age 7.5 to 8 

  

a
o
r
e
r
t
o
u
u
d
c
 

t
s
 

  

Figure9. a: Bimodal distribution of conservation scores of 560 children. (Figure 9a is based on data from 
Bentler, P. M. “Evidence Regarding Stages in the Development of Conservation.” Perceptual and Motor 
Skills, 1970, 31, 855-859. © Perceptual and Motor Skills, 1970. Used by permission of author and pub- 
lisher) b: Distributions for eight age groups. 

parametric statistical methods. The second problem, however 
is harder to solve. Essentially, this problem concerns the impos- 

sibility of discriminating between transitional subjects and 

nontransitional subjects if only scores at a single (pretest) mea- 

surement occasion are available, because these yield insuffi- 
cient information to identify the catastrophe flags. 

Sudden Jumps: Spurts in Longitudinal Data 

The most obvious catastrophe flag, sudden jumps, is directly 
coupled to bimodality and inaccessibility It has been often 

proposed as a transition criterion or seen as equivalent to a 

transition. In catastrophe theory the sudden jump is just one
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property of transitions. It is defined as a large change in the 
value of the behavioral variable because of a small change in 
the value of a control variable. In cognitive developmental re- 
search, K. W Fischer and his colleagues (K. W. Fischer, 1983; 

K. W Fischer & Bullock, 1981; K. W Fischer et al. 1984; 

K. W Fischer & Siivern, 1985) repeatedly recommended the use 

of the sudden jump or spurt criterion as an important transition 

criterion. 
The method to detect spurts in developmental functions is 

based on a simple procedure. It consists of a yardstick (a devel- 
opmental test) and a clock (age) for cognitive change. Each devel- 

opmental test that consists of items constituting a Guttman- 
type scale can be used in a longitudinal design to test for spurts. 
Wilson (1989) presented a latent trait model for analyzing 

spurts in development. K. W Fischer and his group discussed a 

number of applications of this method in different fields, for 

instance speech development, brain development, object per- 
manence, and classification. In psychophysiological research 
strong evidence for spurts in electrocortical indices of brain 
development has been found by several authors (Hudspeth & 

Pribram, 1990; Stauder, Molenaar, & van der Molen, in press; 

Thatcher, 1991; Thatcher, Walker, & Giudice, 1987). 

In our opinion, K. W Fischer’s scalogram method in longitu- 
dinal designs has two advantages. First, it allows for the study of 
individual developmental functions, and second, in case reli- 

able frequently repeated measurements are available, one could 

try to discriminate between the presence ofa discontinuity and 
an acceleration in development. Another method recom- 

mended by K. W Fischer, second-order spurts, is discussed in 

the Anomalous Variance section. 

Hysteresis and Divergence 

Hysteresis, jumps at distinct values of the control variables, 

when the latter follow either an increasing or a decreasing path 
(see Figure 4b), may be difficult to detect. First, the magnitude 
of the hysteresis effect will decrease insofar as the pure delay 
convention is not obeyed. Second, for detection of hysteresis 
the actual control variables have to be known. For example, in 

perception research it is hypothesized that variation in shape of 

the Necker cube (perceived as either hollow or solid) controls 

the jumps between the two distinct modes of apperception. It 

then follows that systematic variation in stimulus shape must 
give rise to hysteresis. 

If time or age would have been considered as a control vari- 
able of cognitive development, this would have hampered the 

detection of hysteresis because this involves effective manipula- 
tion of control variables. Specifically, to show jumps at distinct 

values of the control variable it is necessary to enter the bifurca- 
tion set from both directions. Obviously, this cannot be done 

with age as the control variable. 
Instead of taking age as the control variable (cf. Lewis, 1990), 

several alternative explanatory variables that may feature as 

controls are proposed in the field of cognitive development. For 

instance, short-term memory and cognitive capacity (Case, 

1985; Pascual-Leone, 1970). These explanatory variables could 

be used as controls in the detection of sudden jumps and hys- 

teresis. That is, if we assume that short-term memory is a con- 

trol variable for discontinuities in the acquisition of conserva- 

tion, then a small increase in short-term memory may lead toa 

sudden change in conservation. However, these alternative ex- 
planatory variables may in themselves be difficult to manipu- 

late as control variables (in particular, the experimentally in- 

duced continuous increases and decreases of a control variable 
required in detecting hysteresis). Possibly, in this respect, the 
threshold models proposed by Freedle (1977) may be of help in 
suggesting feasible experimental designs. In addition, hystere- 
sis has been detected in simple neural networks that may be 
relevant to simulation of stagewise development (van der Maas, 

Verschure, & Molenaar, 1990a, 1990b). 

The remaining flag associated with the bifurcation set is di- 
vergence (see Figures 4c, 5, and 6). It occurs when a small 

change in the initial value of a path through the control plane 
ultimately leads to large changes in the behavioral variable. The 
occurrence of divergence is not dependent on the actual (max- 
well or delay) convention. It appears that divergence has not 

been used as a criterion for stage transitions in cognitive devel- 
opmental psychology, hence no direct experimental evidence 
can be given. However, divergence may be related to the role 
K. W Fischer et al. (1984) assigned to environmental test condi- 

tions. They argued that the detection of developmental spurts 
has to take place under optimal test conditions. That is, spurts 

will only become manifest if the performance on the develop- 

mental test is optimized. This suggests that the optimality of 
environmental conditions controls the discontinuity in a way 
that is represented by the splitting control variable in catas- 

trophe theory. This variable is represented in Figure 2 as the 

splitting axis. 

Change along this splitting variable axis leads to divergence 

of two modes of behavior: For low values jumps are smaller 
than for higher values. This can be seen in Figure 6 where 
Points f to 3 depict movement along the splitting axis of the 
cusp. For higher values of the splitting variable the minima are 
seen to be more distinct. Jumps along paths that are perpendic- 

ular to the splitting axis will be more pronounced for increasing 
values of the splitting variable (see Figure 10). 

K. W Fischer et al. (1984) presented empirical evidence for 

the role of optimal test conditions for the detection of spurts in 

longitudinal data. Incidentally, divergence could also be tested 

in cross-sectional designs in which suboptimal environmental 
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Figure 10. Increase in jumps as a function of increased splitting 

value. (This effect corresponds to what K. W Fischer, Pipp, and Bul- 

lock, 1984, call the role of optimal performance. Only in optimal con- 

ditions can significant jumps appear)
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conditions are expected to generate unimodal distributions, 

whereas optimal conditions yield bimodal distributions of test 
scores. In the Catastrophe Modeling section we return to this 
hypothesis and to other interpretations of the splitting variable 
in stage-to-stage transitions. Both hysteresis and divergence can 
be statistically tested with empirical data by means of Cobb's 
algorithm (Cobb & Zacks, 1985). 

Divergence of Linear Response: Effect of Training 

The divergence-of-linear-response flag implies that pertur- 

bations of the control variables near a catastrophe point will 
lead to a large loss of stability and large oscillations of the 

behavioral variable. Divergence of linear response tells us also 
which behavioral variables are directly involved in the disconti- 
nuity. This flag is not easily operationalized in psychological 
developmental research because this requires the use of densely 

sampled time series in which the consequences of perturba- 

tions can be studied. 
The divergence-of-linear-response flag may be of interest in 

relation to training experiments. A popular issue in develop- 

mental research concerns the effects of training (feedback, ver- 

bal rule explanation, measurement training, etc) on the acqui- 

sition of stage-related cognitive capacities. Recently, Field 
(1987) reviewed training studies of conservation in relation to 

the theoretical stance of the researchers concerned. It appears 

that training studies differ in almost every respect: selection of 
nonconservers, use of delayed posttest, outcome criteria, and 

interpretation of obtained results. According to Field, some of 

these differences are due to distinct theoretical outlooks of re- 
searchers. Consequently, no consensus has been reached about 

the effects of training and the implications for Piaget's theory. 
According to the catastrophe theoretical interpretation of 

Piaget’s stage hypothesis, a positive effect of training may occur 
for transitional children (ee also Murray, 1983). If the distance 

to a catastrophe point is small, training could cause variation 
along the control axes and thus induce enough divergence and 

loss of stability for a stage transition to occur. Kuhn (1974), in 
reaction to the review of Brainerd and Allen (1971), examined 

several problems with such training experiments, including the 

lack of agreement on methodological criteria for inferring 
change and the ambiguity in application of even the most strin- 

gent (Genevan) criteria. On the basis of catastrophe theory an- 

other problem arises. That is, one cannot be sure, on the basis of 

a low test score on a pretest or on the basis of a young age, that a 

child really is a nonconserver. It may also be a transitional 
child. As only transitional children will profit from training, 
this sample heterogeneity will seriously affect the outcomes of 
training studies. A related argument has been put forward by 

Flavell and Wohlwill (1969). 

Critical Slowing Down: Delayed Recovery of Equilibrium 

Another dynamic consequence of perturbations in the neigh- 

borhood of a catastrophe is the lengthening of the relaxation 

time. This flag does not concern the magnitude of change but 
the speed of reequilibration of the behavioral variable. Nor- 

mally, it will take a relatively short time before a system reaches 

its equilibrium mode. This time will become longer and longer 
if the bifurcation set is reached. 

This flag does not appear to have been used in cognitive 

development research, although it may be possible to do so. 
First, one needs an effective perturbation, and second, a proper 

measure for relaxation time is required. In general, training 
might be viewed as a perturbation. The operationalization of 

relaxation time is more difficult; perhaps a reaction time mea- 

sure could be used for this purpose. However, reaction time 

measures may not be suitable for classical Piagetian tasks be- 
cause of the complex interaction occurring between child and 

experimenter and the required verbal explanation. This prob- 

lem can be solved by using so-called psychometric versions of 

these Piagetian tasks in which reaction time can be measured 
more effectively. Computer-regulated conservation tests have 
been found to correlate high with traditional conservation 

tests, like the Goldschmid and Bentler test, and could be used 

for this objective (van der Maas et al., 1992). 

Anomalous Variance 

Gilmore (1981) distinguished two consequences of catas- 

trophes on the variance of behavioral variables. Generally, the 
variance may become large in the neighborhood of a catas- 

trophe. Gilmore proved this by invoking a probabilistic formu- 
lation of catastrophe theory. 

The first consequence for the behavioral variance arises from 

changes in the correlation structure if the system approaches a 

catastrophe point. The changes concerned imply that common 

factors will disappear. Accordingly, this increased behavioral 
variance will be associated with the second-order transitions or 

drops in correlations investigated in transition research (K. W. 

Fischer et al. 1984; see also Bornstein & Sigman, 1986; Rutter, 

1984; Sternberg & Okagaki, 1989). A particularly successful 
application of methods for the detection of second-order transi- 

tions is given by McCall, Eichorn, and Hogarty (1977) and 

McCall (1983). They show sudden drops in stability of individ- 

ual differences (changes in factorial structure) at various ages in 

which stage transitions are expected to occur. 
The second consequence refers to the influence of a newly 

emerging equilibrium. The emergence of this second equilib- 

rium is a source of anomalous variance. The increased behav- 

ioral variance is closely related to response variability or oscil- 

lations in the probabilistic transition model of Flavell and 

Wohlwill (1969). Their so-called disequilibrium-stabilization 
model possesses four phases. In the initial phase the children 

fail at all test items, whereas in the transitional phase children 

have low scores and many oscillations in their response pat- 

terns. Subsequently, in the stabilization phase the scores in- 

crease, whereas the number of oscillations decreases. In the 

final or terminal phase scores are very high, and oscillations are 

almost absent. This model corresponds to Piaget’s model of 

transitions, whereas the expected sequence of behavior can be 

characterized by the use of a cross section of the cusp as shown 

in Figure 11. 

The graph in this figure shows the deterministic equilibrium 

surface, whereas the variance in the probabilistic analogue is 

indicated along the abscissa. Notice that the two criteria, anom- 
alous variance and oscillations, have the same expected pat-
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Figure 11. The relation between oscillations and anomalous vari- 

ance. (The flag anomalous variance incorporates the slightly different 
conceptions of instability or disequilibrium as recommended in litera- 

ture and places them within a formal theory of discontinuity. Variance 
and oscillations predicted by catastrophe theory and by Flavell and 
Wohlwill, 1969, respectively) 

tern. Flavell and Wohlwill (1969) presented empirical evidence 

for their model by reanalysis of a cross-sectional conservation 
data set of Uzgiris (1964). 

Instead of oscillations, other researchers used inconsisten- 
cies in verbal reports (Genevean method) or discrepancies be- 

tween gestures and verbal reasoning (Breckinridge Church & 
Goldin-Meadow, 1986; Perry, Breckinridge Church, & Goldin- 

Meadow, 1988) as measures of disequilibrium. In fact a large 
body of developmental research is concerned with the concept 

of disequilibrium, and various definitions and operationaliza- 

tions have been introduced. The flag anomalous variance incor- 
porates these slightly different conceptions of instability and 
places them within a formal theory of discontinuity. 

Catastrophe Modeling: Transition Models 

Our review of applied criteria for stage transitions in cogni- 
tive development within the context of Gilmore’s (1981) catas- 

trophe flags constitutes a convenient starting point for the con- 
struction of a more encompassing transition model. Although 

the combined empirical evidence presented in the previous sec- 

tion consistently supports the reality of stage transitions, only 
the availability of a formal transition model on the basis of 
catastrophe theory will allow a direct integral test of this hy- 

pothesis. Unfortunately, the construction of a suitable catas- 

trophe model meets with several difficulties. The most impor- 
tant one has been mentioned earlier: the choice of control vari- 
ables constituting the driving processes of cognitive 

development. This is not a problem that we pretend to solve 

definitively; we only indicate some possible solutions and an 

approach for testing their validity. 

We start with a brief discussion of two relevant catastrophe 

models, which have appeared in the literature: a qualitative 

model for the dynamics of cognitive processes (Saari, 1977) and 

a geometrical model of Piagetian conservation (Preece, 1980). 

Both models received relatively little attention, yet they are of 

interest for the ensuing discussion of stagewise development. 
Our alternative catastrophe model, a conflict model of stage 

transitions, is explained in the Conflict Cusp Model of Stage 

Transitions section. 

The Model of Saari: Assimilation and Accommodation 

Saari’s (1977) model of stages in cognitive development re- 
flects mainly his mathematical point of view and thus leads to 
an important discussion of several problems in the construc- 
tion of catastrophe models. Saari, however, neglected almost all 

results of neo-Piagetian research. That is, his model only per- 
tains to Piaget’s equilibration process. As to this, Saari summa- 

rized Piaget’s argumentation about the role of adaptation, as- 

similation, and accommodation as follows: “Any improvement 
in the level of organization must be discussed in terms of con- 
comitant changes in the level of assimilation and accommoda- 
tion, plus the strength of stabilizing efforts of the adaptation 

process” (p. 149). 

This Piagetian equilibration process forms the basis of the 
model, which relates assimilation and accommodation as con- 

trol variables to developmental level as a behavioral variable. 
Each variable is seen as a one-dimensional construct, where the 

behavioral variable includes all manifestations of organizing 
levels. In Piaget’s theory the interaction between assimilation 
and accommodation is rather complex, involving two distinct 
but concurrent ways of processing information. Yet, a success- 

ful co-operation of these control variables is necessary for the 
qualitative increase of developmental level. Saari (1977) mod- 

eled this co-operation as a double cusp surface of equilibria, 

which is shown in Figure 12. 
In Figure 12a two kinds of jumps are possible. One is due to 

an increase of assimilation, the other to an increase of accom- 

modation. The upper side of the cusp surface represents a new 

stage in cognitive development. Continuous and discontinuous 

changes are allowed, and the model clearly shows the necessity 

of balancing accommodation and assimilation controls. Notice 

that Saari’s (1977) model consists of two coupled cusps. In Fig- 

ure 1 2b (in which the uninterrupted lines represent the lines of 
jumps or fold lines) a typical path through control space is 

shown. 

Figure 12 represents one stage transition. According to Saari 
(1977), it would be possible to model a series of stage transitions 

in this way, although no precise details are given. An additional 

important component of Saari’s model is the role of adaptation. 
In Saari’s view adaptation is the strength of attraction of the 
equilibrium surface and is called the adaptation vector field. 

This theoretical model relates some basic concepts of Piaget’s 
equilibration theory in a way that explains major properties of 

cognitive development. It is difficult to ascertain whether the 
mathematical operationalizations of these basic concepts 
correspond to Piaget’s ideas in a valid way. As to this, Saari 
(1977) discussed several issues, for instance, the presumed dis- 
tinctiveness of assimilation and accommodation, the possibil- 
ity of regression, and the reduction of complex processes like 

3 The only intricacy was the number of oscillations in Phase 3 (and 
between Phases 2 and 3); this was higher than expected, possibly be- 

cause the Maxwell convention is being obeyed.
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    assimilation 

Figure 12. a: In Saari’s double cusp model the balancing of assimila- 

tion and accommodation leads to sudden jumps to a new stage in 

development. b: A path in control plane. (Change from Points ! to 5 
leads to a jump between Points 3 and 4. Points !, 2, and 3 are situated at 

the lower sheet; Points 4 and 5, at the upper sheet. Points 3 and 5 are 

located in the bimodal area. Paths a, b, and c illustrate the possibility 
of individual differences in paths, locations, and magnitudes of the 
transitions. Path a does not lead toa sudden jump, and Pathc will show 

a larger jump than Path b. Figures 12a and 12b are from “A Qualitative 
Model for the Dynamics of Cognitive Processes” by D. G. Saari, 1977, 

Journal of Mathematical Psychology, 15, pp. 160 and 162, respectively. 
Copyright 1977 by Academic Press. Adapted by permission, 

assimilation and accommodation to one-dimensional con- 
structs. 

There are two issues that Saari (1977) did not discuss: the 

empirical test of the model and the intrinsic local character of 

catastrophe models. To start with the latter issue, Saari’s model 

predicts stage transitions in all cognitive developmental pro- 
cesses in which assimilation and accommodation are involved. 
This is in contradiction to Piaget’s theory. As Saari already 
pointed out, Piaget’s theory is highly task specific. Hence, a 
catastrophe model must be restricted to the local behavior in 

the vicinity ofa single transition. In the Conflict Cusp Model of 

Stage Transitions section we return to this point. The first prob- 

lem, concerning the empirical test of the model, has been al- 
luded to earlier in our discussion of Zeeman’s (1976) model. For 

Saari’s model, empirical tests will present problems with re- 

spect to the operationalization of the assimilation and accom- 
modation controls. This problem may be hard to solve. Assimi- 
lation and accommodation are highly abstract theoretical con- 
cepts that underlie a multitude of manifest cognitive processes. 

There appear to be no cognitive tests available that, for exam- 

ple, distinguish conservation from assimilation and accommo- 
dation. Some explicit definitions of assimilation and accommo- 

dation provided by Sommerhoff (1969) may lead to a solution 

of this problem. 

Preece’ (1980) Model: Acquisition of Conservation 

Preece (1980) rejected the global character of Saari’s (1977) 

model and therefore constructed a local model for the transi- 
tion from preoperational to concrete operational thought. The 

model gives an interesting view of conservation acquisition, is 
testable, yet involves a discontinuity in the responses of chil- 
dren within the preoperational stage instead of between the 

preoperational and the concrete operational stages. This subtle 

change in the actual focus of catastrophe modeling is an impor- 
tant one. Preece’s model is, strictly speaking, not a model of 

stage transitions. It is, however, a catastrophe model related to 

Piaget’s theory and therefore is discussed next. 

Preece (1980) used the conservation of weight as an example 

to illustrate his model. Conservation of weight is tested with 
two clay balls of the same form and the same weight. One of 

these balls is rolled in the form of a sausage by the experi- 

menter. Then three responses of the child are possible: The 

weight is considered to be still the same, it’s more, or it’s less. 

Preece expected a switch in responses of nonconservers when 

one clay ball is rolled in a sausage that becomes progressively 

longer and thinner. First a nonconserver would say something 

like “There is more because it is longer,” and after a while “Now 

there is less because it is too thin.” This switch from a wrong 

answer to another wrong answer is due to a switch in focusing 

on one dimension (length) to another dimension (thickness) 

and the inability to integrate information about both dimen- 
sions. According to Preece, this inability to integrate is caused 
by a limited cognitive capacity. For the preoperational child the 
relation between thickness of the clay ball and the response is 
presented in Figure 13. 

The sequence a, b, c, and d represents the effect of rolling the 

clay ball in a progressively longer and thinner sausage. First, at 
Position a, the two clay balls are equal in form and judged as 

equal. From Positions a to c the distorted clay ball is seen as 

longer and hence as heavier. Then at c the increased salience of 

thinness causes a jump to the opposite judgment. Preece (1980) 

expected that a decrease of thinness from Point d would lead to 

a reverse jump at another Position e. This is a typical example 

of hysteresis. Preece’s model constitutes a cusp model, as shown 

in Figure 14, with thickness of clay balls and cognitive capacity 
as control variables. 

The front of Figure 14 is identical to the cross section shown 

in Figure 13. An increase in cognitive capacity (i.e. moving to- 

ward the back of Figure 14) yields a flat curve representing the 

correct answers of conservers (consistent equality responses ir- 

respective of thickness). The pocket of conservation shown in 

Figure 14 is a property of a higher order catastrophe model, the 

butterfly catastrophe, and is added to the model to explain the 

acquisition of conservation. In the pocket of conservation the 
inaccessible region (the interrupted line between c and d in 

Figure 13) now becomes a structurally stable equilibrium. This 

ad hoc extension of the model suggests that it could explain the 

  

  

—> thickness 

Figure 13. Switch from one wrong answer to another wrong answer. 
(Variation in thickness of clay sausage may lead to the hysteresis effect. 
Reproduced with permission of authors and publisher from: Preece, 
PF W “A geometrical model of Piagetian conservation.” Psychological 
Reports, 1980, 46, 143-148. © Psychological Reports, 1980)
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Figure 14. The complete Preece (1980) model, with thickness of clay 

sausage and cognitive capacity as control variables. (An increase in 
cognitive capacity, that is, moving toward the back of the figure, yields 
a flat curve representing the correct answers of conservers. The pocket 
of conservation is a property of the butterfly catastrophe and should 

explain the acquisition of conservation. Reproduced with permission 
of author and publisher from: Preece, P. F. W. “A Geometrical Model of 

Piagetian Conservation.” Psychological Reports, 1980, 46, 143-148. © 

Psychological Reports, 1980, 

acquisition of conservation. However, Preece (1980) did not 

present further details concerning this extension to a butterfly 

catastrophe. Yet, two problems immediately arise. First, the 

butterfly catastrophe includes four control variables, whereas 
only two control variables have been specified in Preece’s 
model. Second, it is not clear whether every child has to followa 
path through the pocket of conservation. 

Preece’s (1980) model is not a model of the discontinuity 
between preoperational and concrete operational thought. It 

pertains to a discontinuity in nonconservation responses only. 
As far as we know there is no firm empirical evidence for a 

hysteresis effect along the thickness of clay dimension, as pre- 
sumed by Preece. 

Conflict Cusp Model of Stage Transitions 

A problem of Saari’s (1977) model is the lack of specificity. It 

is a limitation of catastrophe theory that it provides local de- 
scriptions of transitions instead of global descriptions of series 

of stages. It is necessary to apply catastrophe theory to just one 

transition at a time. The advantage of Preece’s model is that it 
concerns only one transitional period. With Preece we share 
the interest in the same transitional period (between preopera- 

tional and concrete operational thought), but we choose alter- 

native behavioral and control variables. We present a prelimi- 

nary cusp model that relates discontinuities in conservation 

acquisition to the set of different strategies for solving conserva- 
tion items by an appeal to the concept of cognitive conflict. In 

this model the general concept of cognitive level, as used by 

Saari, has been restricted to conservation only. Although the 
model has not yet been applied to real data, it is based on 

empirical results obtained in experiments discussed in the fore- 

going sections. 
The model is presented in three steps. First, the behavioral 

variable is introduced; second, the control variables are speci- 

fied and explained. In the third step we introduce the cusp 

model, starting with the deterministic variant and then pro- 

ceeding to the final, probabilistic model. In the closing section 
some connections with theories of cognitive development are 

discussed. 
Behavioral variable: Conservation. The choice of conserva- 

tion instead of cognitive level would seem appropriate for at 
least three reasons. First, according to Piaget’s theory conser- 
vation will specifically discriminate between the actual stages 

in which we are interested. Second, conservation has been in- 

tensively studied, yielding several alternative (continuous) mod- 
els with which our cusp model can be compared. Third, conser- 
vation is, in contrast with cognitive level in general, a behav- 

ioral variable that is, in principle, measurable so that empirical 

verification is possible. 
Regarding this last point, there have been issues with the way 

conservation should be measured. This discussion concerns 

the procedure of scoring conservation tests and is directly rele- 
vant to our present purposes. Conservation has been defined as 

the invariance of a characteristic despite transformation of the 

object or collection of objects possessing this characteristic 
(Field, 1987). Conservation ability is measured by conservation 
tasks that combine a particular characteristic with a particular 

transformation. In Figure 15 a typical conservation item is sche- 

matically shown: it depicts the volume of liquid that is poured 

from one glass into another. 
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Figure 15. A schematic view of a typical conservation item of vol- 

ume. In the initial situation two equal glasses are filled with the same 
amount of liquid. After the transformation the child has to compare 
the amounts of liquid in Glasses A and B. A nonconserver will focus on 

the difference in the level of liquid and ignore the information of the 

initial situation.
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The question that is asked after the transformation (the 

arrow) is “Is the amount of liquid in A equal to B, or has one of 

them more liquid in it?” Normally, a child will respond to this 

question by answering “equal” and “unequal.” This first re- 

sponse is called the judgment. The simplest way to score items 

of conservation tests is based on judgments only, that is, the 
response is correct (equal) or not correct (other judgment). How- 

ever, apart from this judgment, Piaget asked for explanations of 
judgments and involved these explanations in the scoring. In 
the scoring procedure he used, acorrect judgment and explana- 

tion are required. Brainerd (1973), on the other hand, limited 

the scoring procedure to the judgments. In the Goldschmid 

and Bentler conservation test a correct judgment without an 
appropriate argumentation is scored as being intermediate be- 

tween correct and incorrect. 
Which procedure should be used is still unclear (Kingma, 

1984; McShane, 1991; van der Maas et al., 1992). According to 

McShane, this is a fundamental problem that has been exten- 

sively discussed in the literature but, perhaps unexpectedly, still 
has not been resolved. Brainerd’s (1973) procedure has been 
criticized because it may overestimate conservation ability, 

whereas success of unusual nonconservation strategies cannot 

be ruled out. On the other hand, the validity of verbal explana- 
tions obtained by means of the Piagetian method can be ques- 

tioned because they are sufficient, but not necessary, condi- 
tions for the presence of logical abilities and hence may lead to 

underestimation of true ability. 
A possible solution to this problem involves the statistical 

analyses of the judgments only, using a set of many items that 
are specifically constructed to disentangle conservation, non- 
conservation, and, for example, gambling strategies. Presently, 

we restrict attention to the simple scoring criterion, as it has 
been recommended by Brainerd (1973), that is, a test score that 

is based on judgments only. 
Now the behavioral variable of the model can be defined 

more precisely: it is the number of correct judgments of conser- 
vation items. The behavioral variable thus defined is denoted as 
a p value, that is, the quotient of the number of correct judg- 

ments and the total number of conservation items. 
Control variables: Predominances of strategies. The basic 

problem of constructing catastrophe models of complex dis- 

continuous processes is the choice of control variables. For sim- 

ple processes this choice is normally simple, but, in the case of 

complex processes like cognitive development, there is a great 

number of possible control variables. Preece (1980) used cogni- 

tive capacity and a particular characteristic of the stimulus as 
control variables, whereas Saari (1977) referred to the Piagetian 

assimilation and accommodation concepts. In the literature on 

cognitive development additional variables have been proposed 
as important influences on cognitive level and conservation 

ability. Each of these variables could play the role of control 

variable; examples are Piagetian concepts like maturation, 

equilibration, along with several alternative concepts like cog- 

nitive capacity, training, short-term memory, language, and 

field dependency. In our opinion it should be possible to con- 
struct catastrophe models on the basis of a judicious selection 
of these variables (see the Relationship With Theories of Cogni- 

tive Development section for further discussion). We first for- 

mulate the model at a psychometric level, while invoking the 

concept of strategy (rule, operation, argumentation, scheme, or 

algorithm). This psychometric level pertains to the strategies 

that children apply to conservation items and the cognitive con- 

flicts associated with transitional periods. 

1. Classification of strategies. Our basic assumption is that 

a child uses a strategy to solve test items of a cognitive develop- 

mental test. In the case of conservation this assumption is fre- 

quently made, see for example Brainerd (1979). Brainerd (1979) 

constructed a Markovian model for conservation learning that 

was based on the concept of strategies (see also Molenaar, 

1986a). Moreover, the strategy concept includes the mental 

operations that are, according to Piaget, necessary for conser- 

vation. Piaget distinguished three genuine conservation strate- 

gies: compensation, addition-subtraction, and inversion. At 

present another strategy is often added, namely, qualitative 

identity (Bruner, 1967; Goldschmid & Bentler, 1986). Brainerd 

(1979) distinguished as many as six correct conservation strate- 

gies. Typical of this category of strategies is that it leads to 

systematically correct judgments. In contrast, a second well- 

known category consists of the nonconservation strategies. A 

child that applies a nonconservation strategy will focus on only 

one relevant dimension (¢¢g., the height of the liquid or the 

thickness of the clay ball). Conservation items are constructed 

in such a manner that these strategies lead to systematically 

wrong judgments. 

Each classification of conservation strategies should mini- 
mally distinguish between these two sets of strategies. Brainerd 
(1979) introduced a third set, the partial conservation strate- 

gies. In Brainerd’s (1979) model it is assumed that these are used 
by partial conservers, that is, the transitional subjects. How- 

ever, Brainerd (1979) did not specify what these strategies really 

are. It is argued that partial conservation strategies do not form 

a distinct set, but transitional subjects apply a mixture of con- 

servation and nonconservation strategies. 

In our classification the conservation and nonconservation 

sets are included, whereas the set of nonconservation strategies 

is explicitly limited to those leading to systematically wrong 
judgments. We do propose a third set, but this set includes 
strategies that are not test relevant. That is, strategies in the 

latter set do not lead to systematically correct or wrong judg- 

ments. Examples are application of the same judgment to ail 

items, reaction to cues of the experimenter, and responses to 

irrelevant stimulus cues (Color of clay ball). 

These strategies are considered to be a threat to the validity 

of the scoring criterion on the basis of judgment only. However, 
it is only on tests comprising a small number of items that a 
spuriously high conservation score will be obtained using these 
strategies. These strategies may be used for several reasons, 

such as a lack of understanding of verbal concepts like same 

and more, lack of concentration, or anxiety. In suboptimal test 

conditions every child is expected at times to use these strate- 

gies. One could argue that irrelevant strategies are not strategies 

at all. We think this is a matter of definition; as is shown later, 

our implicit “weak” definition of strategy has some important 

advantages. In Brainerd’s (1979) model these irrelevant strate- 

gies are not explicitly defined, they are not permitted, or they 
are classified as nonconservation strategies. The previously 

mentioned conservation, nonconservation, and irrelevant sets
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of strategies are henceforth denoted, respectively, as CS, NS, 

and IS. 

The justification of our classification is based on the conse- 
quences of each set of strategies for the observed test score. 

With the usual psychological developmental tests, the lowest 

test score is given by chance level (for dichotomous items, this is 

p = .5). It is crucial that this is not the case for conservation 
tests. The NS lead to test scores below chance level. Conserva- 

tion items are often called perceptually misleading (see Brain- 
erd, 1979; Globerson, 1985; Odom, 1972) because of this sys- 

tematic negative effect of NS on test score. The actual occur- 
rence of children with scores below chance level justifies the 
distinction between NS and JS in that the IS do lead to scores at 
chance levei. 

2. Cognitive conflict. By means of the classification intro- 
duced earlier we can define four groups of children. A con- 
server will sample CS and IS; nonconservers have at their dis- 

posal NS and IS. Transitional children have at their disposal all 
three sets, whereas the remaining children (called here provi- 

sionally the residual group) use predominantly IS. Although all 

groups have at their disposal IS, conservers, nonconservers, 

and transitional children are supposed to use them minimally. 
In our model these groups are modeled by means of two 

latent control variables. These controls are based on the strat- 
egy concept and are called predominance of NS and predomi- 

nance of CS, denoted by m and n. The latter variables are sup- 

posed to vary continuously and independently. What these pre- 
dominances really are (what their relation is to variables 
proposed in the pertinent literature on cognitive development) 

will not be specified in this section. In the Relationship With 

Theories of Cognitive Development section we discuss two pos- 

sible interpretations of the predominances in the current 
model. For now they are used as two opposite tendencies or 

influences, one implying a tendency to use NS and the other 
CS. These predominances, as given by their values m and 7, are 

related to the four conservation groups (see Table 2). 
These definitions are easily explained for Groups |, 3, and 4. 

The transitional group is a special case, however. A transitional 

child is faced with two opposite tendencies, a situation often 

described as a cognitive conflict (Cantor, 1983; Pinard, 1981). 
Although cognitive conflict may seem to be a rather vague con- 

cept, it is elaborated in our description of transitional subjects. 

That is, we use the conflict interpretation of the cusp along 

with the presumed predominances of NS and CS to arrive at a 

formal representation of cognitive conflict. 
Cusp model of cognitive conflict. The cognitive conflict be- 

tween predominances is modeled by means of the predomi- 

nances as controls and the conservation p-valued score as a 

Table 2 

Four Conservation Groups Associated With the Predominances 

of Nonconservation (m) and Conservation (n) Strategies 
  

  
Group m n 

Conservers Low High 

Nonconservers High Low 
Transitional High High 
Residual group Low Low 
  

behavioral variable. The preliminary deterministic model is 

shown in Figure 16. 
Discontinuities can occur when both control variables are 

active (m and n are high). Path a illustrates a typical stage transi- 
tion. First, the test score of a nonconserver depends on m only; 
the child consistently uses NS. The score of the nonconserver 
will be below chance level. Then, as the value of n, the predomi- 

nance of CS, increases, the child reaches the bifurcation set and 

becomes a transitional child. CS and NS are now both avail- 

able, and the child is faced with a cognitive conflict. Although 
both predominances could be equally strong, the actual appli- 
cation of strategies (and therefore the test score) is biased to- 

ward one set of strategies. The model implies that a transitional 
child must choose; it cannot remain indifferent. The middle 

sheet, the inaccessible region, represents a situation in which 

both predominances have equal influence. However, this re- 

gion consists of inaccessible unstable states so that a transi- 
tional child will score below or above chance level and not at 
the chance level. If the delay convention is obeyed (as in Figure 
16), the jump to the higher level takes place at the moment of 
leaving the bifurcation set. After leaving the bifurcation set the 
child becomes a stable conserver. 

During the transition a number of typical behavioral aspects 
are present, which have been described in Catastrophe Detec- 

tion section as catastrophe flags. Inaccessibility, sudden jumps, 
and bimodality are clearly shown in this model, consequently 

the evidence summarized in the Modality and Inaccessibility 
and Sudden Jumps sections applies to this model. Especially, 

the large body of evidence for bimodal conservation score dis- 
tributions is remarkable; the results of Bentler (see 1970; Fig- 

ures 9a and 9b in the present article) corroborate the discontinu- 
ity hypothesis. 

Hysteresis and divergence are also shown in Figure 16. Diver- 

gence will occur when both predominances are equally in- 
creased in the residual group (m as well as n increases). That is, 

some children will follow the upper sheet; some will take the 
lower. This interpretation of divergence is closely connected to 
K. W Fischer’s et al. (1984) argument about optimal conditions 

(see the Hysteresis and Divergence section). A simple example 

of the divergence effect is formulated in the following experi- 
mental hypothesis: Suppose a group of children is tested in 

suboptimal conditions. According to the strategy model this 
will lead to low values along the splitting axis, where this split- 

ting axis can be interpreted as optimality of test conditions (see 
also discussion of Figure 10). This low value along the splitting 
axis will give rise to a dominance of irrelevant strategies, imply- 
ing that most children will reside in the residual group. When 

this group is subsequently tested in optimal conditions, this 

results in higher values along the splitting axis and hence the 
dominance of relevant strategies (CS as well as NS) will in- 
crease. Some children will now apply CS instead of IS, but for 
others NS will become dominant. Consequently, the scores of 

some of the children of the residual group in the first condition 
(with scores at chance level) will significantly increase, whereas 

scores of others will decrease below chance level. 

Hysteresis will show up when the predominances are manip- 

ulated near the bifurcation set. Of course it is not immediately 

clear how the predominances should be manipulated. Their 

possibler operationalizations are discussed later. The interpre-



412 HAN L. J. VAN DER MAAS AND PETER C. M. MOLENAAR 

  

  

  

    

  

    

behavior 
surface of 

p-values residual group 
p=0.5 pl p=l 

conservers_ 

transi- 

p=0.5 
[/_-—_—___—+}_- sudden 

* jump 

noncon- . p=0 
servers tional YS | 

| 
| neutrality, 

\ J m=0 and n=0 

“ Yn 
m 

7 f= 

path’A 

bifurcation set = 

area of transition 

Figure 16. A conflict cusp model of conservation acquisition. (On the right side of the figure the axes are 
depicted. The two opposite forces define the control plane. Variation along one axis only [m = 0 or n= 0], 

for example, variation in predominance of nonconserver strategies (NS) in nonconservers {n = 0], yields 
continuous changes in the behavioral variable. The same argument applies to conservers, but for them m= 
0. For both conserver and nonconserver groups the conservation score is continuously related to variation 
in predominances. The residual group is placed around the neutral point where both predominances are 
zero. The use of irrelevant strategies by the residual group will lead to scores at chance level, p= .5. Sudden 
jumps occur in the bifurcation set for high values of both predominances, typical of the transitional 
subjects. p = conservation test score, m = predominance of NS, n = predominance of conservation 
strategies.) 

tations of divergence of linear response, critical slowing down, 

and anomalous variance, discussed, respectively, in the Diver- 

gence of Linear Response, Critical Slowing Down, and Anoma- 

lous Variance sections are also in agreement with this cusp in- 

terpretation of conservation acquisition. 

In our view the evidence reported in literature for the occur- 

rence of anomalous variance constitutes another empirical cor- 

roboration of our cusp model. This occurrence of increased 

variance is also predicted by the model of Flavell and Wohlwill 

(1969). However, the weakness of Flavell and Wohlwill’s dis- 

equilibrium—stabilization model, as argued by Brainerd (1979), 

is that in contrast with their objective, it is essentially linear and 
continuous. Brainerd’s (1979) criticism concerns the model’s 

linear mathematical representation. The cusp model includes 

the behavioral properties of the disequilibrium-stabilization 

model while, at the same time, it is based on a discontinuity 

theory of nonlinear equations. 
Path a in Figure 16 represents only one path through the 

control plane, other paths at different distances from the neu- 
tral point are feasible. Consequently, several kinds of individual 

differences are allowed. Path b represents a child that will regu- 

larly apply irrelevant strategies. Moreover, paths that are not 

parallel to a and b are also possible. Notice that a child follow- 

ing Path a could jump much later than a child following Path b 
but immediately after the jump may have a better score on the 

test. Even a continuous change from nonconserver to conserver 

is possible. For this to happen, m should decrease to zero before 

nincreases. This path along neutrality represents the possibility 

to follow the sequence consisting of nonconserver, residual 
group, and conserver instead of the normally expected se- 

quence of nonconserver, transitional, and conserver. 

Although this model includes irrelevant strategies, actually a 

probabilistic element, it is called the deterministic variant of the 

Table 3 

Strategies and Control Values of Distinct Conservation Groups 
  

  

Group Strategies Control values 

Conservers Conservation and m=0 

test-irrelevant n>c 
strategies 

Transition Conservation, m>c 
nonconservation, n>c 

and test-irrelevant 
strategies 

Nonconservers Nonconservation and m>c 
test-irrelevant n=0 

strategies 
Residual Irrelevant strategies m<c 

n<c 
  

Note. cisaconstant. m= nonconservation strategy; 7 = conservation 
strategy.
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Figure 17. Distribution of scores of distinct conservation groups 

(compare with Table 3). 

model. Genuine probabilisticcatastrophe models include repre- 
sentations of the distributions of scores of the behavioral vari- 

able. The probabilistic interpretation is shown in Table 3 and 
Figure 17. 

In Table 3 four groups are characterized by strategies, control 

values, and score distributions. The distributions of the con- 

server, nonconserver, and residual groups do not differ from 

those normally occurring in psychological research. The distri- 
bution belonging to the transitional group is a special case, 
however, as it is a bimodal one. Incidentally, each distribution 
shown in this table can be obtained with a cross-sectional sam- 

ple of subjects and with time series data of one subject. 

In our discussion of conservation training (see the Diver- 
gence of Linear Response section) we mentioned the problem 

of identification of distinct conservation groups. In particular, 
by what procedure can we discriminate between the four con- 

servation groups? As is evident from Table 3, the p value is not 

sufficient. That is, when a low test score criterion is used to 

identify nonconservers, some transitional subjects will be in- 
cluded. Manipulation of control variables (like training) for the 
latter, transitional, subjects may lead to sudden increases in 

their scores. Consequently, a statistically significant effect of 
training does not in itself allow rejection of Piaget’s stage hy- 
pothesis. Evidence concerning the special sensitivity of transi- 

tional subjects for training has been found by Breckinridge 
Church and Goldin-Meadow (1986). 

The validity of our model depends in particular on the choice 

of control variables, that is, the predominances of NS and CS. 

Before we specify possible substantive interpretations (sources) 
of these predominances, an important point has to be made. 

Namely, the predominances are not simply related to the pro- 

portions of use of NS and CS. If they were, the model would be 
a continuous model because the test score then is linearly re- 

lated to the proportions of use of NS and CS. For conservers 

and nonconservers the predominances may be linearly related 

to the proportions of use, but not in the case of transitional 

children. Hence, our control variables are latent constructs that 

are nonlinearly related to conservation scores and, by implica- 
tion,.to the proportions of use of strategies. This assumption of 

nonlinearity is based on the concept of cognitive conflict. 

Relationship With Theories of Cognitive Development 

The concept of strategies is so general that it relates to all 
major theories of cognitive development. An important ques- 
tion to answer is what are the predominances of strategies; that 
is, is it possible to interpret the strategy model in terms of more 
encompassing cognitive variables? 

We distinguish between two interpretations: one in terms of 
Piaget's theory, the other in terms of the theory of information 
processing. These interpretations, preliminary extensions of 
the strategy model, are examined concisely. The literature on 
theories of cognitive development is so extensive that an ex- 
haustive overview cannot be given here. 

As suggested before, according to the Piagetian view the con- 
flict of predominances can be seen as conflict between the 

preoperational and the concrete operational structures. Piaget 
described the role of conflict in development relative to the 

equilibration concept. Although Piaget changed his definition 
of equilibration several times (Murray, 1983), it appears that 

disequilibrium defined by catastrophe theory (ic., related to 
the behavior in the bifurcation set) is in agreement with Piaget's 

ideas (see Saari, 1977, for a discussion of this problem). More- 

over, Piaget’s description of transitional behavior corresponds 
both to predictions of the model of Flavell and Wohlwill (1969) 

and to the predictions of our strategy model. The notions strat- 
egy and operation are closely related; the classification of strate- 
gies and conservation groups is comparable with similar classi- 
fications by the Genevean group. 

The disadvantage of an interpretation in terms of Piagetian 
theory is that it does not yield an operationalization of the 
predominances of the conservation and nonconservation strate- 
gies. This problem is comparable with the problem encoun- 

tered in Saari’s (1977) model where theoretical concepts like 

assimilation, accommodation, and preoperational or concrete 

operational structures do not have mutually independent empir- 
ical definitions. That is, they cannot be measured indepen- 

dently of behavioral variables like conservation. Hence, an in- 

terpretation in terms of Piagetian theory does not lead to a 

convincing empirical verification of catastrophe models. 
The second interpretation is associated with another large 

body of literature on conservation and transitions on the basis 
of the information processing view. In the theories of Pascual- 
Leone (1970) and Case (1985), the growth of cognitive capacity 

(related concepts are M power, short-term memory, and work- 

ing memory) causes the emergence of conservation strategies. 

Measures of cognitive capacity and related variables may be 
operationalizations of the predominance of CS. 

Another concept in this context is field dependency (Case & 
Globerson, 1974; Globerson, 1985; Pascual-Leone, 1989). This 

concept is introduced to discriminate between cognitive styles; 
that is, to explain differences in test scores of children with the 
same cognitive capacity. According to Globerson and Zelniker 
(1989), it is independent on cognitive capacity; consequently, it 
could be seen as an alternative control variable. Field depen- 

dency-independency is related to the explanation, recom- 

mended by Odom (1978), of differences in conservation scores
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in terms of the salience of perceptual cues. Operationalizations 

of field dependency and perceptual salience might be used as 

indicators of the predominance of NS. In this way, using statis- 
tical methods, a direct empirical verification should be possi- 

ble. It even could be possible to manipulate cognitive capacity 

and perceptual salience to study directly the occurrence of hys- 

teresis and divergence. This possibility may have an interesting 
bearing on Pascual-Leone’s approach in which cognitive capac- 

ity and field dependency (among others) are integrated within a 
single process model of cognitive development. In particular, 

an application along these lines of catastrophe theory to scores 

obtained with the horizontality of water level task (Pascual- 

Leone & Morra, in press) might shed more light on the precise 

relations between the process model concerned and catas- 

trophe theory. 

In Figure 18 both interpretations are displayed, the first one 

is based on the cognitive conflict between structures; the sec- 

ond one, on field dependency (or perceptual salience) and cog- 

nitive capacity (mental power, short-term memory, and working 

memory). 

Discussion 

In this article we applied two distinct methods, on the basis 

of catastrophe theory, to the problem of stage-to-stage transi- 

tions. In this discussion we evaluate these methods. First, we 
discuss catastrophe modeling, in particular the advantages of 
the proposed strategy model and its extensions to theories of 

cognitive development. Second, catastrophe detection by 
means of Gilmore’s (1981) catastrophe flags is examined. 

Our evaluation of catastrophe modeling consists of a short 
list of the advantages and the disadvantages that in our opinion 

are important. It is a major advantage of the strategy model that 
it is directly relevant to most studies of conservation acquisition 
and stage-to-stage transitions. It is in agreement with results of 

conservation experiments and thus integrates different fields of 
research. Examples are the implications for training studies 

and for the procedure of test scoring. The behavioral phenom- 

ena predicted by the strategy model are generally in agreement 

with Piaget’s description of conservation acquisition as well as 
with the behavioral properties of Flavell and Wohlwill’s (1969) 
disequilibrium-stabilization model. Brainerd’s (1979) criti- 

cism of the latter model, implying that the model equations 

would depict a continuous change, does not apply to the strat- 

egy model. The equations of the cusp model are nonlinear and 

are derived from an adequate formal theory of discontinuities. 
The interpretations of the predominances of strategies in 

terms of two alternative theoretical views on cognitive develop- 
ment illustrate the relative independence of nonlinear models 

with respect to theoretical dichotomies (Molenaar & Oppen- 

heimer, 1985). Although these interpretations are preliminary 

extensions, they indicate several possible implications on a the- 

oretical level. 
We distinguish four major limitations of the model and, in 

general, catastrophe modeling of cognitive stage transitions. 

The first limitation of the strategy model concerns the 
décalages horizontales. The sequence of conservation domains 
in conservation acquisition is not covered by our model. The 

model cannot explain this sequence and therefore would seem 

to apply to subtests (within a domain) only. The second problem 
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Figure 18. Two possible theoretical models. (In the first, a Piagetian interpretation of the strategy model 
is given. The relevant cognitive structures serve as contro! variables. In the second, neo-Piagetian interpre- 
tation, perceptual salience, and cognitive capacity are used as controls.)
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involves the explanatory status of the model. Although it may 

explain typical observable behavioral properties of conserva- 
tion acquisition, it does not explain the emergence of new strate- 
gies itself. That is, it does not specify a mechanism according to 
which conservation strategies evolve. Hence, the model could 

be considered to be descriptive, at least in this respect. A third 

problem concerns the limitation of transition research. Our 
approach is essentially focused on models of a single transition 
(which is a consequence of the local nature of catastrophe 

theory). Empirical results indicating the occurrence of a transi- 
tion do not confirm a complete stage theory but is only prelimi- 

nary to its confirmation. For a more definite confirmation not 

only do other transitions have to be identified, but also the 
investigation of nontransitional periods is important (see, for 

example, Tabor & Kendler, 1981). 

The final problem concerns the verification of the proposed 

model. Although that has been one of our objectives, the com- 

plete model is not easily verified with real data. For an overall 
verification, the statistical methods of Cobb (1980; and related 

methods) might be applied to measurements of conservation 

ability and the control variables (Cognitive capacity and percep- 
tual salience). On the other hand, it is possible to partly investi- 

gate the model by means of specified hypotheses in combina- 

tion with catastrophe-detecting methods (the catastrophe 

flags). 

Our review of applied criteria (Corresponding to flags) for 
stage transitions in cognitive development has to be considered 

as being independent from our particular strategy cusp model. 
In the field of applied catastrophe theory, catastrophe detection 

appears to be rather unknown. Its advantage is that it does not 

presume knowledge of the control variables (except for hystere- 

sis). Flags were derived from catastrophe theory by Gilmore 

(1981) to detect catastrophes in physical systems. Some of our 

psychological interpretations of the flags might be weak, espe- 

cially the interpretations that concern behavioral indices (flags) 

after perturbations. We are uncertain which of the possible envi- 

ronmental influences on conservation ability are adequate 

operationalizations of a perturbation. Yet, the general corre- 

spondence between Gilmore’s flags and the applied transition 
criteria is remarkable. In our opinion catastrophe detection is 

useful to integrate traditionally applied transition criteria and 
to summarize their results. 

Conclusions 

At present we are witnessing a revolution in the pure and 

applied mathematical analysis of nonlinear systems. Under the 

headings of bifurcation theory, catastrophe theory, nonequilib- 

rium thermodynamics, synergetics, soliton, and chaos theory, 

considerable progress has been made in the analysis of various 
aspects of nonlinear systems. One distinguishing feature of 
these systems is that sudden qualitative changes may occur in 

the dynamic structure of their behavior. These so-called cata- 

strophic changes mark transitions to newly emerging equilibria 

that arise through endogenous reorganization of the system 

dynamics. Accordingly, catastrophes are associated with a kind 

of self-organization that can only take place in nonlinear sys- 

tems and as such are unrelated to the fast smooth changes that 

may occur in the behavior of linear systems because of large 

fluctuations in their input. 
The basic tenet of this article is that catastrophes constitute 

formal analogues of stage transitions in Piaget’s theory of cog- 
nitive development. Undoubtedly, the cognitive system is one of 
the most complex information-processing systems in nature, 
and at least its neural substrata is highly nonlinear. Hence, we 

can characterize cognitive development in a formal sense as the 
evolution of a nonlinear system for which the general mathe- 
matical results of catastrophe theory will hold. Specifically, the 
evolution of the cognitive system may undergo catastrophes or 

genuine stage transitions as put forward in Piaget’s theory and 
thus may be characterized as epigenetic development (cf. Mo- 

lenaar, 1986b). In our view, this is in itself a decisive contribu- 

tion of catastrophe theory to the debate of whether stage transi- 
tions can have genuinely explanatory status (Brainerd, 1978). 
Contrary to Brainerd’s (1978) conclusion, it follows from catas- 

trophe theory that stage transitions constitute the landmark of 
epigenetic development. Moreover, ironically, it is the Marko- 

vian state-space model put forward by Brainerd (1978) that 

lacks explanatory status as a model of stage transitions, because 

it is a linear model. 
We considered three increasingly strong versions of catas- 

trophe theory for the applied analysis of stage transitions in 

cognitive development. The weakest version involves the detec- 

tion ofa number of catastrophe flags that have been mathemati- 
cally derived from the general catastrophe model by Gilmore 
(1981). It is expected that all these catastrophe flags are present 

when a stage transition takes place. This can be established by 
means of standard statistical techniques applied to behavioral 

measures only. Some of these catastrophe flags, like bimodality, 

sudden jumps, and anomalous variance were already put for- 

ward in the developmental psychological literature as indica- 
tors of stage transitions. Catastrophe theory gives a formal un- 

derpinning of the validity of these indicators, introduces new 
flags, like divergence of linear response and critical slowing 
down, and makes explicit the close interrelationships between 

all flags. 
A stronger version of catastrophe theory, called modeling, 

involves the fit of elementary catastrophe models to a dataset 
that not only consists of behavioral measures but also includes 

measures of the control variables. Fitting catastrophe models 
requires special techniques. If the goodness of fit of a catas- 
trophe model is acceptable, then this constitutes strong evi- 

dence that a stage transition is present. We proposed a viable 
catastrophe model for the transition from the preoperational to 

the concrete operational stage in cognitive development that 

might serve this purpose. 

Our catastrophe theoretical approach to stagewise develop- 

ment thus leads to a methodology for detecting and modeling of 
stage transitions that can be applied straightforwardly in empir- 

ical research. Given the appropriateness of the underlying 
model of catastrophe theory as a model of cognitive develop- 
ment, this methodology has established validity. As to this, it is 

important to note that the underlying model of catastrophe 

theory is a restricted model. Stated succinctly, catastrophe 

theory only applies to dynamic nonlinear systems that can be 

characterized by a so-called potential function and that con- 

serve energy. Hence, if the cognitive system would be a dissipa-
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tive system, then it would seem that our catastrophe theoretical 

approach does not apply. However, it turns out that catastrophe 

theory is applicable to any dynamic nonlinear system insofar as 
this system can be locally characterized by an arbitrary poten- 

tial function at each bifurcation point or transition. Although 
this result has important consequences for inductive (so-called 

inverse) modeling, its obtainment in any given application can 

only be ascertained if the mathematical expressions character- 

izing the nonlinear system under scrutiny are known (cf. Jack- 

son, 1989, p. 117). Consequently, our approach can be expected 

to be quite robust if attention is restricted to single stage transi- 

tions. 

In closing, the catastrophe theoretical approach is in the first 

place a formal approach to cognitive development. This implies 

that not all aspects and issues associated with the neo-Piagetian 
world view are directly subsumed under it. We only expect that 
catastrophe detection and modeling will lead to more definite 
tests of one essential aspect of epigenetic development, namely, 
stage transitions. 
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