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Abstract. We describe a neural model for forming size- and position-invariant representations of visual objects. 

The model is based on a previously proposed dynamic routing circuit that remaps selected portions of an input array 

into an object-centered reference frame. Here, we show how a multiscale representation may be incorporated at 

the input stage of the model, and we describe the control architecture and dynamics for a hierarchical, multistage 

routing circuit. Specific neurobiological substrates and mechanisms for the model are proposed, and a number of 

testable predictions are described. 
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1. Introduction 

The formation of invariant object representations is a 

problem that confronts both biological and machine 

vision systems. Since objects may appear over a wide 

range of different positions and sizes in the visual field, 

invariant properties of objects must be somehow cap- 

tured and represented in order to successfully recognize 

them under different viewing configurations. Most the- 

ories for how invariance is achieved have been based 

on the notion that increasingly complex features are ex- 

tracted through a series of processing stages, with cells 

at each stage becoming progressively less specific for 

position and size via a process of regional summation 

(e.g., Fukushima, 1980; LeCun et al., 1990; Foldiak, 

1991). Aninherentproblem with these proposals, how- 

ever, is that information about the spatial relationships 

of features within an object is lost. Thus, it is unclear 

how these systems would discriminate between objects 

containing the same features with different spatial ar- 

rangements. In addition, these systems necessarily lose 

information about the position and size of an object, or 

other contextual information (e.g., the slant or font of 

a character) that we readily retain and use to advantage 

during recognition, 

Recently, we proposed a neurobiological model 

for forming position- and size-invariant representa- 

tions in which information about spatial relationships 

is explicitly preserved (Olshausen et al,, 1993; An- 

derson and Van Essen, 1987). The model utilizes 

a set of control neurons to dynamically change the 

strengths of intracortical connections so that informa- 

tion from a windowed region in the retina is routed 

into an object-centered reference frame representation 

in higher cortical areas. Although this model was de- 

signed to be consistent with available neurophysiologi- 

cal, neuroanatomical, and psychophysical data, certain 

aspects of the early representation in cortical area V1 

were ignored as an initial simplification. For example, 

the fact that cells in the visual cortex are tuned to dif- 

ferent spatial-frequencies was not considered in initial 

versions of the model, nor was the logarithmic trans- 

formation of visual space due to non-uniform spatial 

sampling in the retina taken into account. 

In this paper, we expand upon our earlier model 

(Olshausen et al., 1993) by showing how the multiscale, 

logarithmic nature of the early cortical representation 

may be modeled as a stack of sampling lattices 

with different resolutions and spatial extents. This 

representation can then be incorporated into the routing 
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circuit advantageously by selectively routing informa- 

tion from high or low resolution lattices depending on 

whether the window is small or large respectively. This 

way, much of the image blurring required for rescal- 

ing can be accomplished by switching between the 

different lattices of  the stack (where the scaling has 

been "precomputed"),  rather than requiring the routing 

circuit to dynamically blur over a very large range of 

spatial scales. We also describe here the control ar- 

chitecture and dynamics for a multistage, hierarchical 

routing circuit, since the initial version of the model de- 

scribed only the control of a single stage routing circuit. 

We begin by describing a scaled-down, model rout- 

ing circuit that is largely divorced from neurobiological 

details for the purposes of illustration and simulation. 

The full-scale model along with its proposed neurobi- 

ological substrates and mechanisms is presented in the 

next section. Predictions arising from the model are 

then discussed, and the commonalities and differences 

between this model and related models are described. 

A Bayesian interpretation of the model is also provided 

which provides a coherent framework for understand- 

ing the operation of the routing circuit as a whole. Fi- 

nally, we describe some of the shortcomings of the 

model and suggest future directions for improvement. 

2. Model 

Multiscale Representation 

The input to the routing circuit is composed of a multi- 

scale array of sampling nodes, as in the stack model of 

Koenderink and van Doorn (1978). The basic scheme is 

illustrated in Fig. 1. A stack of sampling lattices repre- 

sents the image at different resolutions. Each sampling 

lattice has the same total number of sample nodes and 

covers a portion of the visual field with uniform sample 

spacing. A low resolution lattice (e.g., scale 2) thus 

covers a proportionally larger region of visual space 

than a high resolution lattice (e.g., scale 0). It is as- 

sumed for the moment  that resolution changes by a 

factor of two from one lattice to the next. The com- 

bination of these lattices provides a multi-resolution 

representation of the input image and also constitutes 

a piecewise approximation to the linear dependence 

of sample spacing on eccentricity found in the retina 

(which results in the logarithmic transformation of vi- 

sual space in the cortex, Schwartz, 1977). A useful 

property of  this scheme is that when an object changes 

in size by a factor of two, its representation simply 

Smallesl 
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v 

Fig. 1. The multiscale "stack" model of Koenderink and Van 
Doom. The input is represented by a stack of sampling lattices 
at different scales. Each lattice comprises the same number of sam- 
ple nodes and covers a progressively greater spatial extent, at lower 
resolution, than the level below it. When combined, the different 
lattices of the stack provide both a multi-resolution representation 
of the input image and also a piecewise appro:cimation of the linear 
dependence of sample spacing on eccentricity found in the retina, as 
shown below. 

translates from one lattice to another but otherwise re- 

mains unchanged. In order to take advantage of this 

property for forming invariant object representations, 

though, there must be a mechanism for routing infor- 

mation from the appropriate lattice and spatial location, 

and also for appropriate interpolation when the scale of 

the object lies in between that of neighboring lattices 

(i.e., when the size change of the object is not an integer 

multiple of an octave). 

Routing Circuit Architecture 

In devising a neural architecture for routing informa- 

tion from an input array into an output array, it is 

important to consider constraints on fan-in, since real 

neurons are limited in the number of inputs they ac- 

cept. In order to route information from any location 

within an N x N input array to an M x M output 

array, a fan-in of  ( N - M  + 1) 2 is required for each 
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Fig. 2. Routing architecture for a single lattice of the stack. (a) A two-stage routing circuit. Connections are shown only for the leftmost 

node of each level. The connections for the other nodes are the same but merely shifted. An intermediate level of 13 nodes allows a window 

of 5-8 nodes located anywhere within a 17-node input array to be remapped into a five-node output array while maintaining a fan-in of five 

inputs on any node. The first stage is composed of overlapping modules of 9 inputs and 5 outputs each (a module is outlined by the trapezoid), 

while the second stage links the output of these modules to the top level. The left border of each module's output is denoted by the vertical 

tick marks in level 1. (b) A connection-space diagram illustrating the shape of the control blocks (%). The horizontal axes represent the 

nodes of an input array, and the vertical axes represent the nodes of an output array. (Since I d) serves as both an input and output array, 

it appears depicted both horizontally and vertically.) Each x denotes a physical connection from an input node to an output node. Each 

control neuron modulates a local block of connections, as outlined by the diagonal ellipses. The connection space of a single module in the 

first stage is shown magnified at right, with an example of how continuous shifting and scaling may be achieved by interpolating patterns in 
connection space. 

output  node. I f  this amount  exceeds  the al lowable fan- 

in, then the rout ing circuit  must  be broken into mult iple  

stages. 

We cons ider  first the rout ing circuit  for a single lat- 

t ice o f  the stack in one dimension.  For  the scaled-down 

circuit, we shall assume that each input lattice com-  

prises 17 sample  nodes across, that the output array 

comprises  f ive nodes across, and that a m a x i m u m  of  

five inputs is a l lowed on any node. Thus, the rout- 

ing circui t  mus t  be broken into at least two stages in 

order to satisfy the fan-in constraint.  One  possible  

mul t i s tage  rout ing  architecture that satisfies this con- 

straint is shown in Fig. 2a. It is helpful  to think of  

the first stage of  this circuit  as composed  of  overlap- 

ping modules  o f  nine inputs and five outputs each. The  

second stage then connects  the output  node  o f  each 

first-stage modu le  (spaced apart by two nodes in the 

intermediate  level) to its cor responding  node in the top 

level. 

The  activities o f  the nodes at each level  are deter- 

mined  via a l inear summat ion  f rom the level  below. 

That  is, 

IF +1) = ~ w(O I (l) z..., u J '  (1) 
] 

where I J  ) denotes the act ivi ty of  node i o f  level  l, and 
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w (l) ij denotes the weight of the connection from node 

j of level I to node i of level 1 + 1. The weights are 

set dynamically by a set of control neurons, c, that 

make multiplicative couplings with the inputs. Each 

control neuron of level l, _(t) modulates a local group c k , 

of connections so that patterns in weight space may be 

generated via interpolation: 

(I) ~ ( l ) . . . ( I ) . .  
tOi, j = ~ C k W k I,J, i) + Wrest (2) 

k 

kI/(I) ( :, i) is an analog function that specifies the where k J 

extent to which the connection from input j to output 

i is modulated by control neuron k, and the term Wrest 

denotes the default value of a connection in the absence 

of any control neuron activity The region of weight 

space covered by each to(t) (i.e., v (t) =k w k > 0) is denoted 

a control block. 

The specific configuration of the control blocks is 

illustrated in the connection-space diagram of Fig. 2b. 

At the top stage of  the circuit, the ~1)  are chosen so 

that each control neuron maps the output of a different 

module of level 1 into level 2. Thus, 

*~ ' ) ( j , i )  = 3 ( j - i - 2 k ) ,  k = 0 , 1  . . . . .  4 (3) 

1 i fx  = 0 (4) 
3(x) = 0 otherwise. 

There are a total of five control neurons for this stage 

(one for each module). In the bottom stage, the control 

blocks have a gaussian taper and are chosen to over- 

lap so as to interpolate patterns in weight space. This 

allows scaling and warping less than a factor of two 

within each module. Formally, we specify the shape of 

these control blocks as 

q~o)(j, i) = exp [ (j  - i - m) 2 (i - n W )  2 ] 

20 -2 W 2 / 2  J 

k = m N s + n ,  m = 0 , 1  . . . . .  4 

n = 0, 1 . . . . .  6 (5) 

where m denotes the index of translation (i.e., which 

diagonal in Fig. 2b), n is the index of the control block 

within a diagonal, NB is the number of control blocks 

within a diagonal, and W is the spacing of the con- 

trol blocks along the diagonal. Here, W = 2 (half 

the window size), and N~ = 7, giving a total of 35 

(7 x 5) control neurons for this stage. Choosing the cou- 

pling coefficients for the upper and lower stages in this 

way results in a hierarchical control scheme, in which 

the top stage control neurons perform "macroshift- 

ing" among the five modules in level 1, while the bot- 

tom stage control neurons perform "microshifting" and 

rescaling within a factor of two on the input. (The com- 

bination of macro- and micro-shifting was originally 

proposed for translational shifts by Anderson and Van 

Essen, 1987.) 

The proposed routing architecture incorporating all 

lattices of the stack is shown in Fig. 3. Each lattice 

serves as input to a separate routing stream that trans- 

lates the window of attention within that lattice and 

rescales within a factor of two. The final stage of the 

circuit performs rescaling greater than a factor of two 

by switching between the outputs of the different rout- 

ing streams for each scale. More generally, multiple 

scales could be routed into the output simultaneously 

S c a l n  - 

suiftin  

scaring < z L "~'/,/l~ . . . . . . . . . . . .  

_ I ,  

Stack "~ . . . . . . .  "~ . . . . .  l ' "  ] 

i2 ........................ ;;;;;;;;I;;;;;;;;..2 ........ 2 . . . . . .  

Fig 3. Routing architecture for the stack. A third and final stage switches between scales by selecting among the outputs of the different 

routing streams for each scale. 
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in order to have a multiscale representation within the 

attentional window (as in the "jet" representation of 

Buhmann et al., 1990), but for now we shall utilize 

only one scale at a time. 

An alternative means for arranging the routing cir- 

cuit would be to perform only shifts within the lower 

stages, leaving the top stage to perform the interpola- 

tion between the precomputed scales provided by the 

stack. However, this would require routing an image 

twice the window size up to the top stage. On the other 

hand, rotations and warps would best be performed at 

the top stage; and since these operations will inevitably 

involve a moderate amount of rescaling, it may actually 

be desirable to maintain an extra margin of space sur- 

rounding the window as information is routed upward. 

Control Dynamics 

The purpose of the routing circuit is to focus the neu- 

ral resources for recognition on a specific region, or 

object, within a scene. Thus, it would be desirable 

for the control neurons to automatically steer the atten- 

tional window to salient areas, or potential objects in 

the image. Salient areas can often be defined on the 

basis of relatively low-level cues--such as local con- 

trast in motion, depth, texture, or color (i.e., "pop-out"; 

Koch and Ullman, 1985; Anderson et al., 1985; Mi- 

lanese, 1993). Here, we utilize a very simple measure 

of salience based on luminance contrast, in which at- 

tention is attracted to "blobs"--or  contiguous regions 

of activity--in the image. Once the attentional win- 

dow has been roughly focused on a blob, the contents 

of the window are fed to an associative memory, which 

then acts to refine the position and size during object 

matching. After this has been accomplished, the cur- 

rent locus is inhibited so that attention may be shifted 

to other blobs within the input. 

In what follows, we derive the control circuitry and 

dynamics for achieving these autonomous modes of 

operation. We consider first the control of a routing 

circuit for a single lattice of the stack (i.e., Fig. 2a) and 

then the multiscale case. 

Focusing Attention on a Blob. In order to focus the 

attentional window on a blob in the input, the network's 

"goal" will be to fill the output array with a blob while 

maintaining a topographic correspondence between the 

input and output nodes. This goal is formulated as a two 

part objective function, and the control neuron dynam- 

ics are then obtained by performing gradient descent on 

this function. The first part of the objective function, 

Eb, provides a measure of how well a blob is focused 

on the output array. We choose Eb to be defined as 

E,, = - #2 c, (6 )  

i 

where the Gi are samples of a blob template centered 

on the output array, Gi = e -(i-2)2/4. The second part of 

the objective function, Ec, is designed to favor control 

states that correspond to translations or scalings of the 

input-output transformation. We choose Ec to be 

Ec = - ~ ~(t) rr(l)~q) 
~'m U mn"n (7) 

/,m,n 

where the constraint matrix for each stage, U q), is cho- 

sen so as to appropriately couple the control neurons: 

for the top stage of the circuit, where each control neu- 

ron corresponds to a different position of the window 

of attention, we set U (1) to a matrix of all - 1  's except 

along the diagonal, which has the effect of punishing 

any state in which two or more control neurons are ac- 

tive simultaneously (winner-take-all); for the bottom 

stage, where control blocks overlap so as to interpolate 

patterns in connection space, the constraint matrix is 

set so that control neurons corresponding to a common 

~ranslation or scale (those lying along a common diago- 

nal in connection-space) couple positively (Urn(~ > 0), 

while control neurons that are not part of the same 

transformation couple negatively (U~(~ < 0). 1 These 

couplings are only necessary for control neurons be- 

longing to the same module, so we can set U,(~~ = 0 if 

c(m ~ and G (~ are in different modules. 

The differential equation governing the dynamics of 

the top-stage control neurons is the same as that derived 

previously for a single-stage circuit (Olshausen et al., 

1993). It is based on taking the derivatives of Eqs. 6 

and 7 with respect to c~1): 

C~ 1) = Cr(U~ 1)) (8) 

dt'~l) L/~I) IJ/(1) (j, i) 1~1) d - - 7 - + - -  = 
/7 i,j 

n t- T]/~ Z v/'/(1)km ~m'~(1) (9) 
m 

where the constants r and r/ determine the rate of 

convergence of the system, and the constant r deter- 

mines the contribution of Ec relative to Eb. A sigmoidal 

squashing function (~) is used to limit e to the interval 

[0, 1]. (Equations 8 and 9 are a simultaneous system of 

equations.) The neural circuitry required for comput- 

ing Eqs. 8 and 9 is shown in Fig. 4a. The first term on the 
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Fig. 4. Autonomous control of a multistage routing circuit. (a) Each control neuron in the top stage has a Gaussian receptive field in level 1 
�9 (o) . 

whose position corresponds to the module it gates into I (2) (b) Each control neuron in the first stage, c k ,nas a Gaussian receptive field in 

level 0 whose activity is gated by the control neuron in stage 1 that corresponds to the module to which c~ ~ All five control neurons 

in the top stage compete among each other, whereas control neurons in the first stage both cooperate and compete in local groups within each 

module�9 

right of Eq. 9 is computed by correlating the Gaussian, 

G, with a shifted version of the intermediate level array, 

1 (1) (the amount of shift depends on the index k). The 

second term is computed by forming a weighted sum of 

the activities on the other control neurons. These two 

results are then summed together and passed through 

a leaky integrator and squashing function to form the 
1 (1) output of the control un't, c~ . Thus, each control neu- 

ron essentially has a Ganssian receptive field in layer 

1, and competition among the control neurons allows 

only the unit with the strongest input to prevail. 

The dynamics for the control neurons in the bottom 

stage are derived by using the chain rule to take the 

derivative one step further down, which yields 

ck(~ = cr(uk (~ (10) 

dt + ~ = 0 ~ ~- ~  i )ql~0)(  n,  j)I(~ ~ - -  , j  i ~. m "Jr m ~.j , 
T 

i , j ,m ,n  

+ 0/~ ~ "(~ ~(0~ (11) U k m  c m 

t n  

This equation essentially states that c~ ~ has a Gaussian 

receptive field in layer 0, and that the total input from 

this receptive field is gated by the control neuron in 
(0) 

stage 1 that corresponds to the module to which c~ 

belongs. This is illustrated in Fig. 4b. Control neurons 

at this stage both compete via inhibitory interactions 

(Uk(2 < 0) and cooperate via excitatory interactions 

(Uk(Cm ~ > 0) locally within a module, as specified above. 

Thus, a global selection of position and size is ef- 

fected through local interactions among the control 

neurons in a hierarchically organized control circuit. 

Initially, the activity of the level 1 units is determined 

by blurring I (~ in the "all connections open" state-- 

that is, with all c~ ~ = 0 and wi. j" (0) = Wrest. (Alterna- 

tively, without a default connection strength, one could 

allow each control neuron to have a low, tonically fir- 

ing resting state.) The stage 1 control neurons will 

then compete among each other to select the brightest 

module, or "chunk," of I 0). The winning C (1) will then 

enable those control neurons in stage 0 belonging to the 

selected module, and these control neurons will then 

compete and cooperate locally to position and scale the 

window of attention within this module. One can alter- 

natively think of the control neurons as being driven by 

a hierarchical saliency map, with each node in the first 

level of the saliency map having a Gaussian receptive 

field in the input, and the second level forming a coarse- 

grain map by summing and subsampling this map. 

Recognition. To derive the control neuron dynamics 

during recognition, we substitute the Nob portion of 

the objective function, Eb, with a recognition measure, 

Em, which we define as 

Em = - } 2  v, r,, v , -  Z ;  #2'v i  (12  
i,j i 

where the 11/ are the activities of associative memory 

neurons, and the T/j are the coupling coefficients in 

which the memories are stored (see e.g., Cohen and 

Grossberg, 1983; Hopfield, 1984). Taking derivatives 

as before, we find that the activities in the top stage 

control neurons are determined by 

1' = (13) 

d~/~l)d___~ -~- .~l)z. = l ] ~ V i  X'IJ(l) ( j ,  i )  ij(.1) 

i,j 

m 



and the control neurons in the bottom stage are deter- 

mined by 

dt r 

(15) 

rl Z ~z~(1)~162 i~qJ(~ = ' i ~ m  i m  , j ,  , ~ ( , j ) C  ) 

i,j,m,n 

+ v?  
m 

These equations are exactly the same as (8, 9) and 

(10, 11), with the exception that Vi replaces Gi. The 

significance of this difference is that the Vi are dy- 

namic variables, and so we cannot simply incorporate 

their multiplicative effect into a fixed weight as we 

did for the Gi previously. Thus, the top-stage control 

neurons, c~ 1), will be driven by the correlation between 

the level 1 nodes, 1~ 1), and memory outputs, Vi, that 

are connected via that control neuron. The bottom- 

stage control neurons, c~ ~ are driven by correlating 

the inputs, I~ (~ and memory outputs, V/, that are con- 
. (o) 

nected via c k , and gating the result by the appropriate 

control neuron in the stage above. Alternatively, we 

can rewrite the first term on the right of Eq. 16 in a 

simpler form as rl ~ i  Y-~,~ V~ l) W~ ~ J) I(~ where 

V) l) = ~ i  V/w{} ) is the result of routing the output of 

the associative memory, V, "backwards" into a separate 

population of neurons in level 1. In other words, V (1) 

is a fed-back template of what is expected in the inter- 

mediate level. In this case, the activity of c~ ~ would be 

driven by correlating the inputs, I~ (~ and the fed back 

signals in level 1, V) ~), that are in the same position as 

(o) This then the level 1 nodes connected to Im (~ via c k . 

circumvents the need for a long-distance feedback con- 

nection from the high-level (V) directly to the low-level 

control neurons. 

Switching between Modes. The main difference be- 

tween the "Nob search" and "recognition" modes is 

that in the former case the control neurons are driven 

by fixed, gaussian receptive fields, whereas in the lat- 

ter case the control neurons are driven by local corre- 

lations between groups of associative memory outputs 

and groups of inputs. Switching from one mode to 

the other thus requires switching between these two 

sources of input. This is a global switching process, 

as opposed to the highly specific and localized switch- 

ing performed by the routing control neurons, and can 

be mediated by a global control system that alternates 

between two modes. For example, there may be two 

sets of mode control neurons that gate the two alter- 
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hate sources of input feeding into the routing control 

neurons. The two sets of mode control neurons could 

then be made to oscillate between alternate states of 

one set being active and the other set inactive by hav- 

ing delayed, inhibitory connections between the two 

sets. The delay would need to be long enough to allow 

the routing control neurons to settle to the steady state 

in both blob search and recognition modes. 

Shifting Attention. The method used for shifting the 

locus of attention will depend on how the default state 

of the weights is determined in lower stages of the rout- 

ing circuit. In the case where the control neurons have a 

low, tonically active resting state, we can simply inhibit 

those control neurons in the first stage corresponding to 

the currently attended locus. This will then prevent any 

activity from showing up in I(1) and subsequently being 

used to attract attention. In the case where the control 

neurons have a default state of zero and wi.i = Wrest, it 

will not be feasible to simply inhibit the first stage con- 

trol neurons corresponding to the attended locus. This 

is because the saliency in I O) is being computed inde- 

pendent of the control neuron activities and will still 

register these locations as interesting. Thus, a node 

in the first level saliency map must receive a delayed 

inhibitory signal from the currently active control neu- 

ron corresponding to its position. A third alternative is 

that the top-stage control neurons may be self-inhibited 

weakly, or with a fast time constant, and the bottom- 

stage control neurons self-inhibited strongly, or with a 

slow time constant. This way, attention would more 

likely be drawn to an object that is far away from (or 

a different size than) the currently attended object, but 

would go back to revisit neighboring objects after a 

sufficient delay period. 

Multiscale Case. We now return to the multiscale 

stack circuit in which there are three different rout- 

ing streams corresponding to different spatial scales 

(Fig. 3). The dynamics for the control neurons at the 

top stage of this circuit can be derived following the 

same steps as before. Thus, C~ 2) will have a Gaussian 

receptive field in level 2 of scale s. Or, in terms of 

the saliency map, c~ 2) is driven by the sum of activity 

in the top-level saliency map for scale s. Control of 

attention thus begins at the top stage (stage 2); control 

neurons here will compete to select the scale with the 

most salience, and the winning control neuron will en- 

able control neurons below to select the most salient 

module within that scale, and finally the position and 

size within that module. 
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In order to make the comparison between saliencies 

at different scales meaningful, the shape of the saliency 

function, G, needs to be modified to be appropriate for 

selecting a particular scale. As it stands, the saliency 

nodes for the smallest scale will respond equally well 

or better to part of a large object as compared to a small 

object alone. The actual objective we seek during Nob 

search is to just fill the window of attention with a Nob 

that is confined within the bounds of the window. A 

simple-minded scheme for expressing this objective is 

to add an inhibitory surround to G, so that objects be- 

yond a certain size are no longer salient at one scale 

but instead become salient at the next higher scale. In 

general, more sophisticated forms of saliency detection 

will be required in order to pre-attentively segment ob- 

jects of different sizes in a realistic manner, but this 

topic is beyond the scope of this paper. 

It may also be desirable to build-in a precedence 

for global (low-resolution) over local (high-resolution) 

information by providing the low-resolution circuits 

with faster time constants. This would have the effect 

of "canceling out" the larger objects before attending 

to the small objects. 

Simulation 

A 2D version of the above model was implemented in 

computer simulation. In Fig. 5, the circuit is shown 

attending to a medium-size 'A' at the middle level of 

the stack (scale 1). The small 'C'  was attended in the 

previous fixation, and thus has been canceled out in 

the saliency map for scale 0. (The method for shifting 

attention was based on delayed inhibition to the level 0 

saliency nodes.) Switching from blob search mode to 

recognition mode and back again was accomplished by 

automatically switching the source of input to the con- 

trol neurons after 50 iterations (~2T). Note that most 

of the activity in level 1 is the result of blurring I (~ 

in the all-connections-open state [tOij" (0) = W r e s t )  , except 

for the attended region of level 1 where the first-stage 

connections have been refined by the active control neu- 

rons. The circuit as a whole is capable of continuously 

scaling the attentional window over a factor of eight: 

Objects of sizes 5 x 5 to 8 x 8 are attended at scale 0, 

sizes 9 x 9 to 17 • 17 are attended at scale 1, and sizes 

18 x 18 to 40 x 40 are attended at scale 2. The in- 

terpolating circuit for each first-stage module rescales 

objects ranging in size from 5 x 5 to 9 x 9, and has been 

discussed and demonstrated at greater length elsewhere 

(Olshausen, 1994). 

3. Neurobiologicai Substrates and Mechanisms 

We now turn to the issue of how the model routing 

circuit we developed in the previous section may be 

scaled-up to neurobiological proportions, and we pro- 

pose specific anatomical substrates and mechanisms in 

the brain of the macaque monkey. We first describe a 

multiscale stack model for the representation in area 

V 1, and then the neurobiological substrates for routing 

and control. 

The Multiscale "Stack" 

In order to propose a quantitative model for a multi- 

scale stack representation in V1, we need to specify 

1) the highest resolution available as a function of ec- 

centricity, and 2) the resolution ratio between adjacent 

lattices of the stack. For the primate visual system, the 

highest resolution available at a given eccentricity is 

approximately 

S(E) = .01(E + 1.3) deg (17) 

where S denotes the average retinal spacing (in one- 

dimension) between samples nodes at eccentricity E 

(Van Essen and Anderson, 1990). In two dimensions, 

each sample node would cover an area of approx- 

imately S 2. To infer the resolution ratio between 

adjacent lattices, we consider the spatial-frequency 

bandwidths of V1 cells. An efficient coverage of the 

spatial frequency domain would require that the spac- 

ing in spatial frequency be approximately equal to 

the bandwidth. Since the physiologically determined 

bandwidths of V1 cells are generally in the range of 

1 to 1.5 octaves (De Valois et al., 1982), we will as- 

sume that resolution approximately doubles for each 

successive lattice of the stack (see also Field, 1989, for 

computational reasons for octave spacing based upon 

the statistics of natural scenes). 

Given these constraints, a stack comprising approx- 

imately 6 lattices would suffice to cover the visual field 

up to +50 ~ eccentricity (atotal of 100~ as illustrated in 

Fig. 6. This range of eccentricity corresponds roughly 

to the region of binocular overlap, or about 90% of the 

surface area of visual cortex (Van Essen et al., 1984). 

Beyond this range, retinal ganglion cell sample spacing 

no longer adheres to the linear relationship of Eq. 17 

(Drasdo, 1977), and it is even debatable whether ob- 

jects beyond this size 2 are recognizable as a whole. The 

highest resolution lattice of the stack has a mean sam- 

ple spacing of about .015 ~ , while the lowest resolution 
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Fig. 5. Simulation of the stack circuit. The input array consists of an array of 68 x 68 sample nodes. There are three lattices in the stack, each 

comprising an array of 17 x 17 sample nodes and separated in resolution by octaves. The thin dotted lines in the input denote the borders of 

each lattice. Above the input array are shown the routing circuits for each lattice. The output of the entire routing circuit is shown above this 

(I3), and at the top is shown the output of the associative memory (Memory). The saliency map and control neurons are shown to the left of each 

level, with the exception of the first-stage control neurons which are shown only for the attended module (inset to right of the input). The circuit 

is shown attending to a medium-size (14 x 14) 'A'. The object is rescaled by a factor of two by the sampling lattice of scale 1, reducing it to 

a size of 7 x 7 by the time it reaches the input to the routing circuit (I0). The object is then remapped by the attended first-stage module into 

a size of 5 x 5 in 11, where it is then passed up h l  to the top level (I3) and successfully recognized by the associative memory. The saliency 

function (G) used in the simulation was chosen to have a value of +1 within a 7 x 7 window (with a gaussian taper) and - 2  within a two-pixel 

wide perimeter. This choice allowed objects of size 5 x 5 to 8 x 8 within a particular scale to be registered as salient within that scale. If the 

net input to a saliency node was negative, its output was set to zero. 

lattice has a mean spacing of about 0.5 ~ The number 

of sample nodes in 1D for each lattice is given by 

2 E  2 E  
N - -  - -  - -  (18)  

S(E) . 0 1 ( E  + 1.3) 

which equals approximately 200 for E >> 1~ At ec- 

centricities near or below one degree the number of  

nodes within a lattice will be fewer. The total number 

of  sample nodes for the entire stack will thus be on 

the order of  6 x 2002 = 240,000, which is in rough 
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Fig. 6. A six-level "stack" model for V1. Resolution, or sample spacing (~), is represented along the vertical axis and eccentricity (E) along 
the horizontal axis. The function S(E) is plotted by the solid lines. The six levels of the stack are represented by the sampling arrays. N denotes 
the number of nodes in each level in one-dimension. The sample nodes are shown separated by 20 times their actual spacing in order that they 
remain distinguishable for most levels of the stack. 

agreement with the total number of sample nodes de- 

livered by the optic nerve for the central 50 ~ (ca. 80% 

of the total) when one takes into account the fact that in- 

formation is divided into on- and off-channels and dif- 

ferent spectral bands within the dominant parvo stream 

(Van Essen and Anderson, 1990). (The number of sam- 

ple nodes in the stack would actually be expected to 

be slightly larger than the original number of sample 

nodes supplied by the optic nerve, due to the addition 

of multiple scales.) 

Within foveal V1 cortex, the highest resolution 

nodes would have a spacing of about 200 /zm (cor- 

tical distance), based on physiologically determined 

estimates of cortical magnification factor (ca. 10- 

20 mm/deg in the foveal region; Van Essen et al., 1984). 

The lowest frequency nodes would have a spacing of 

about 6 mm. With increasing eccentricity, the cor- 

tical spacing between low resolution nodes will de- 

crease, and the number of lattices will decrease as 

well until only the lowest resolution lattice remains. 

At the largest eccentricity (50~ the spacing between 

the lowest resolution nodes will be equal to the spac- 

ing between the highest resolution nodes in the fovea 

(~200/zm). Since the density of sampling nodes de- 

creases by a factor of four (in 2D) for each octave de- 

crease in resolution, the total density of sample nodes 

in the cortex does not vary greatly with eccentricity, 

even though there are many more lattices present in the 

fovea than in the periphery (i.e., there will be a modest 

over-representation in the fovea.) 

It is not necessary that the nodes in the stack model 

be arranged in a highly uniform, crystalline lattice as 

depicted in Fig. 6, since the coupling coefficients of 

the routing circuit (qJ) can be computed, or learned, 

once the node positions in scale-space (5, E) have been 

specified. Thus, the actual positions of the sample 

nodes may be scattered about the lattice shown, with 

an average density in scale space of 

{6 -2 i f ~ > S ( E )  (19) 
D(~, E) = 0 otherwise. 

where D denotes the number of sample nodes (in one 

spatial dimension) per square degree of scale-space 

(5, E). 

Routing Circuit Substrates 

Since we are primarily interested in how invariant rep- 

resentations are formed for object recognition, we will 

focus on the "form" pathway from V1 to IT as the 

main substrate for routing. 3 The major intermediate 

visual areas in the form pathway (i.e., V2, V4) are pro- 

posed to serve as intermediate stages for routing visual 

information from the multiscale stack in V 1 into rep- 

resentations that are progressively more position and 

scale invariant at higher stages. The size of each area 
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would be roughly proportional to the number of "sam- 

ple nodes" in each area, where each node now rep- 

resents a vector of feature analyses extracted in that 

area (e.g., a full set of orientation tuning curves in V1), 

rather than simple luminance values. Thus, a combina- 

tion of feature analysis, shifting, and rescaling would 

occur in the intermediate visual areas, leading to a 

canonical object representation that preserves spatial 

relationships among features within the object. This 

canonical representation is hypothesized to exist at 

early or intermediate stages of the inferotemporal com- 

plex (area PIT or CIT). Cells at higher stages (i.e., AIT, 

or in the STS) would then perform their analyses on the 

contents of the window of attention, with variations in 

position and scale removed (e.g., face cells). Since the 

nature of form processing occurring in the intermediate 

visual areas is not yet fully understood, we will leave 

this aspect as an unknown for now and attempt to deal 

with the issues of routing independently. 

The number and sizes of intermediate stages of rout- 

ing required depend on the total input-output conver- 

gence and the maximum allowable fan-in. The input 

to the routing circuit for each scale will be a 2D ar- 

ray comprising approximately 200 x 200 nodes, as 

described above. The output of the routing circuit is 

hypothesized to be a relatively small array, compris- 

ing on the order of 30 x 30 sample nodes (an esti- 

mate based on spatial acuity and recognition studies 

that provide hints about the resolution of the window 

of attention--see Van Essen et al., 1991). Thus, the 

total convergence for the routing circuit for each scale 

needs to be about 40,000:1. Since the maximum al- 

lowable fan-in is on the order of 103-104 inputs per 

neuron (Cherniak, 1990; Douglas and Martin, 1990a), 

the routing circuit for each scale must be broken into 

several stages. A nominal configuration would be for 

each routing circuit to be broken into two stages, as 

shown in Fig. 7a. This circuit is simply a scaled-up 

version of the circuit described in the previous sec- 

tion (Fig. 2a), where the first stage is now composed of 

modules comprising 60 inputs and 30 outputs each. On 

the right, the circuit is pictured in terms of its fan-out, 

which is more neurobiologically relevant. Although 

this architecture does not appear to pose any anatom- 

ical problems as shown, it must be kept in mind that 

the routing circuits for each scale will most likely be 

superimposed in register in the cortex. Thus, the low 

resolution nodes will need to have a very great diver- 

gence in terms of cortical distance in order to span 30 

nodes in the next cortical area. We can reduce the fan- 

in/fan-out at each stage by breaking the routing circuit 

into more stages, as shown in Fig. 7b, c. In each of 

these circuits, the fan-out at each stage is the same but 

spread over a progressively larger area at higher levels. 

This is generally consistent with neuroanatomical ev- 

idence showing increasing divergence and patchiness 

in the intracortical connections of higher visual areas 

(Van Essen and DeYoe 1994; Rockland 1992; Felleman 

and McClendon 1991; De Yoe et al., 1994). Also, it 

is interesting to note that direct projections from V1 to 

V4 have been reported mainly for central visual fields 

(Yukie and Iwai, 1985; Van Essen et al., 1986), which 

is consistent with the view that this direct access would 

be mainly used for routing the high resolution informa- 

tion from the fovea. 

Control and Gating Mechanisms 

The pulvinar is hypothesized to serve as a major source 

of the control signals required for routing information, 

due to its massive interconnectivity with all visual ar- 

eas, and the lesion and physiological studies that point 

toward a role in visual attention. Bottom-up sources 

for driving the control neurons during blob search are 

hypothesized to arise from a saliency map in either 

the superior colliculus or the posterior parietal areas, 

while top-down sources for driving the control neu- 

rons during recognition are hypothesized to originate 

from IT. A variety of biophysical mechanisms pro- 

vide plausible candidates for gating intracortical con- 

nection strengths, such as shunting inhibition, NMDA 

channels, or voltage gated spikes in dendrites. (See 

Olshausen et al. 1993 for further discussion of these 

issues.) 

The minimum number of control neurons required 

for any stage of the routing circuit is given by 

(Ne x F) 2, where NB is the number of control blocks 

along a diagonal in connection space (as in Fig. 2b) 

and F is the fan-in, in one-dimension. For the first 

stage of the routing circuit of Fig. 7a, Ne = 12 (nom- 

inally) and F =  30, thus requiring about 130,000 con- 

trol neurons. For the second stage, approximately 

(1 x 11) 2 = 121 control neurons would be required. 

The total number of control neurons required for the 

other circuits (Fig. 7b, c) would be similar. Thus, the 

minimal number of control neurons required for rout- 

ing from all levels of the stack would be on the order of 

6 x 130,000 ~ 800,000, which is well within a plau- 

sible estimate for the number of neurons in the pulv- 

inar. It should be noted, however, that since there will 

be a multitude (100-1000) of neurons for each sam- 

ple node in the routing circuit (corresponding to the 
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Fig. Z Some possible multistage routing circuits. The numbers to the left of each stage (x/y) denote the fan-in (x) and the spacing between 
inputs (y) for the stage. NI denotes the number of sample nodes in 1D for each layer. The vertical tick marks in the next to last layer denote the 
borders of the modules of size 30 (equal to the size of the window of attention). Each circuit is redrawn to the right in terms of fan-out. (a) A 
nominal configuration, corresponding to the circuit of Fig. 2a. The modules here are spaced apart by 15 nodes (half the window size). (b, c) 
The fan-in/fan-out in the first stage can be reduced by adding more intervening stages. 

particular features extracted in each area), the fan-out 

of each pulvinar control neuron will need to be ampli- 

fied by additional neurons. This function may possibly 

be subserved by additional control neurons residing in 

the deeper layers (5 and 6) of the cortex (Olshausen, 

1993; Van Essen and Anderson 1990). Control may 

thus be distributed between the pulvinar and cortex, 

with the pulvinar control neurons selecting a general 

region and scale of  the visual field to attend to, and the 

cortical control neurons acting within this context to 

take care of  the details of routing information between 

nodes and maintaining spatial relationships within the 

window of attention. 

4. Discussion 

Predictions 

Stack Model. The stack model predicts that there 

should exist a large range of spatial-frequency bands 

represented within foveal V1. Assuming that the op- 

timum spatial-frequency represented on a given lattice 

is somewhat less than half the sample node frequency, 

then the highest spatial-frequency band would be ex- 

pected to be around 15-30 cy/deg (corresponding to the 

nodes spaced at .015 ~ and the lowest spatial-frequency 

band should be around 0.5-1.0 cy/deg (corresponding 
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to the nodes spaced at 0.5~ This predicted range is in 

reasonable agreement with physiologically determined 

estimates for foveal V1. For example, De Valois et 

al. (1982) report that the peak spatial-frequency tun- 

ings of foveal V1 cells range from 0.5 to 16 cy/deg. In 

addition, Tootell et al. (1988) show that the range of 

spatial frequency bands represented is greatest in the 

foveal region, and drops off with increasing eccentric- 

ity: On the other hand, there is a major discrepancy 

in the relative numbers of cells predicted in different 

spatial-frequency bands. In our model, the number 

of cells at each spatial-frequency band decreases by a 

factor of four for each octave decrease in resolution. 

However, the data of De Valois et al. (1982) show 

that most foveal V1 cells are tuned to peak spatial- 

frequencies in the range of 2-4 cy/deg, with extremely 

few cells at 15 cy/deg or above. The data of Parker 

and Hawken (1988) are somewhat more encouraging, 

showing that the majority of foveal V1 cells can be 

fit by a difference-of-difference-of-gaussians function 

with a central, excitatory zone of about 2-4 minutes 

in diameter. However, these cells would still be tuned 

about an octave or so lower than the highest expected 

spatial-frequency band, and they also do not exhibit 

anywhere near a factor of four decrease in number for 

each octave decrease in resolution. 

If these data are correct, they imply that the rep- 

resentation of spatial structure at 8 cy/deg and above 

is very incomplete, and that rather sophisticated de- 

blurring processes must be at work at higher stages 

of cortical processing in order to allow primates to 

perceive the world as clearly as they do (Olshausen 

and Anderson, 1994). On the other hand, there are 

several reasons to suspect that the incidence of cells 

tuned for high spatial-frequencies may have been sig- 

nificantly underestimated. Most of the relevant data 

reported to date have been from anesthetized mon- 

keys (including the studies mentioned above), and it 

is possible that anesthesia and also sub-optimal optics 

degrades high spatial-frequency tuning. In addition, 

short-term adaptation effects, such as those demon- 

strated by Pettet and Gilbert (1992), may cause cells 

that are normally very small to become larger (via their 

horizontal connections) and thereby exhibit low-pass 

filtering characteristics when they are not being stim- 

ulated in a more "natural" environment. Finally, a 

sampling bias toward low frequency ceils might oc- 

cur because the low spatial-frequency cells will out- 

compete the high spatial-frequency cells in terms of 

their duration of firing in response to the bar stimuli 

typically used as probes during isolation. A possible 

strategy for overcoming these effects would be to use 

multi-neuronal recording techniques (e.g., Wilson and 

McNaughton, 1993) that are capable of isolating many 

cells simultaneously (i.e., not just those that the exper- 

imenter happened to be drawn to) and to record from 

these cells while the animal is awake and performing 

a natural and challenging visual task. If these more 

stringent tests confirm existing physiological reports, 

then the current theory is wrong and must be reformu- 

lated. In particular, it will be necessary to formulate 

theories for how high spatial resolution information is 

preserved despite an overwhelming dominance of low 

spatial-frequency cells. 

Routing Circuit. The most obvious prediction of the 

routing circuit model is that the receptive fields of cor- 

tical neurons should change their position or size as 

attention is shifted or rescaled. This prediction is thus 

far consistent with the neurophysiological findings of 

Moran and Desimone (1985) and Connor et al. (1993; 

1994a, b) in area V4. In particular, Connor et al. 

(1994a, b) have mapped the receptive fields of V4 cells 

while an animal attends to different regions within its 

visual field, and they have found evidence in many cells 

for substantial shifts in the receptive field position in 

the direction of attention. For a third of the cells tested, 

the maximal response region within the receptive field 

shifted by an average of half the classical receptive field 

(CRF) diameter. An important aspect of these data is 

that the cell's responsiveness cannot be described in 

terms of a simple function of proximity of the probe 

stimulus to the attended stimulus. Thus, it provides 

direct evidence of an actual receptive field shift, as 

opposed to a simple halo of enhancement surrounding 

the attended stimulus as would be predicted by "spot- 

light" models of attention (see below). A preliminary 

investigation of the effect of size changes revealed no 

major changes in the receptive field profile for a fac- 

tor of four change in the size of the attended region 

(Connor et al., 1993); however, according to our mul- 

tiscale model, one would expect no more than a factor 

of two change for a cell in an intermediate stage of 

the circuit; for size changes beyond this it is difficult 

to predict what exactly the cell would do (e.g., it may 

simply relax into the all-connections-open state). 

A prediction that arises from the proposed modular 

structure at higher stages of the routing circuit is that 

one would expect to see the beginnings of an object- 

centered reference frame formed in the higher interme- 

diate areas (i.e., V4). If the modules do not overlap, as 

in Fig. 7b, c, then the receptive field of any particular 
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cell would be expected to maintain a constant position 

with respect to the window of attention. If the mod- 

ules do overlap, as in Fig. 7a, then a cell's receptive 

field may have several distinct positions relative to the 

window. Interestingly, Connor et al. (1994a, b) have 

observed that some cells respond preferentially to a bar 

probe when presented to one side of the attended stim- 

ulus, which is consistent with a cell that happens to 

reside to one side of the center of a non-overlapping 

module within V4. It will be important to ascertain 

whether this effect also is evident in inferotemporal 

cortex. 

Since the control neurons of the routing circuit are 

instrumental for forming invariant object representa- 

tions, one would expect damage to hypothesized con- 

trol structures such as the pulvinar to yield deficits in 

the recognition of objects independent of position and 

size. Previous lesion studies of the pulvinar have shown 

that it plays a role in mediating attention, but its role 

in invariant object recognition has not been properly 

explored (see Olshausen et al., 1993, for further dis- 

cussion of this issue). 

Finally, a prediction that arises from having a fixed 

number of sample nodes in the output of the routing 

circuit is that the resolution within the window of at- 

tention should be limited to a fixed number of "pixels" 

at any size. Thus, increasing the size of the attentional 

window should result in the same number of pixels be- 

ing spread over a larger area, with decreased overall 

resolution (Van Essen et al., 1991). Previous exper- 

iments have shown a general decrease in processing 

efficiency as attentional window size increases (e.g., 

Eriksen and St. James, 1986; Verghese and Pelli, 1992), 

but the issue of resolution has not yet been investigated. 

This aspect of the model could be tested by controlling 

attentional window size and measuring performance 

on a task requiring judgments of spatial relationships 

(e.g., spatial interval discrimination). 

Relation to Other Models 

The idea of gating connection strengths in order to 

translate and rescale sensory information is not new. In 

fact, the general notion has its origin in the early model- 

ing work of Pitts and McCulloch (1947). Several mod- 

els since then have also proposed gating-type circuits 

for shifting and rescaling information (e.g., Trehub, 

1977; Hinton, 1981; Hinton and Lang, 1985; Baron, 

1987; Sandon and Uhr, 1988), but without the requisite 

ties to neurobiology, that allow them to form detailed 

predictions. On the other hand, neurobiological models 

of attention, such as those of Niebur and Koch (1994), 

Desimone (1992), Tsotsos (1994), Ahmad (1992), and 

LaBerge et al. (1992), have largely been concerned 

with the general problem of how a select portion of the 

input is enhanced, as in a spotlight, and do not make 

clear provisions for preserving information about spa- 

tial relationships within the window, which we con- 

sider crucial for object recognition. Von der Malsburg 

and Bienenstock (1986) have proposed methods for 

remapping information from one array to another using 

a synchronicity-based short-term binding mechanism; 

however, in our view it is doubtful that temporal fluc- 

tuations of neuronal activity could be coordinated in a 

neurobiologically plausible fashion in order to estab- 

lish point-to-point mappings of the type discussed here. 

Presumably, a unique frequency or phase of bursting 

would need to be attached to each input node within the 

attentional window in order to map its activity onto a 

unique node in the output array, and this would seem to 

require even more elaborate and precise circuitry than 

our routing circuit. 

Postma (1992; 1994) has proposed a neurobiolog- 

ical model for shifting and rescaling visual infor- 

mation that shares many similarities to our model. 

The main difference lies in the control structure, in 

that Postma's network does not utilize control blocks. 

Rather, control neurons for each synapse are inter- 

linked in a"gating lattice," and the dynamics are formu- 

lated within a statistical mechanical framework. Also, 

Postma's network utilizes a hierarchical control net- 

work in which control is propagated bottom-up, instead 

of top-down as proposed here. The notion of bottom- 

up control is an interesting and plausible alternative 

worth exploring further. 

A Bayesian Interpretation of the Objective Function 

The total objective function of the network, in its most 

general form, can be written as 

Etotal = - i l l  I ~ - /32VTV -/33 cUc (20) 

where the boldface variables denote the same quantities 

as in Section 2 except that they have been converted to 

vectors and matrices to eliminate the bulky summation 

signs and indices. We can write I ~ in terms of the input 

image, I in, and the control neurons, e, as I ~ = c r I  in, 

where r is a concatenation of the coupling coefficients, 

ku~(j, i), at all stages of the routing circuit. 

The goal of the network is to infer the most 

probable identities of the objects (WHAT) and their 
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positions and sizes (WHERE) within the image. In 

other words, we wish the network to maximize 

P(WHAT,WHERE [ IMAGE). Expanding this function ac- 

cording to BaTes' rule gives us 

P (WHAT, WHERE ] IMAGE) 

e~ P (IMAGE ] WHAT,WHERE) P (WHAT, WHERE) 

= P(IMAGE I WHAT, WHERE) P(WHAT) P(WHERE) 

(21) 

where the last step can be taken assuming that WHAT 

and WHERE are statistically independent (i.e., that any 

given object is equally likely to appear at any location 

and size). In the network, the IMAGE is represented by 

I in, WHAT is expressed in the ensemble of activity in 

V, and WHERE is expressed in the ensemble of activity 

in c. If  we make the following equivalences using the 

Gibb's distribution 

P (IMAGE I WHAT, WHERE) (3( e ~' VcFli" (22) 

P(WHAT) (3( e ~2vrV (23) 

P(WHERE) (x e ~3cvC (24) 

then it follows that Etotal is equivalent to 

- log P(WHAT, WHERE [ IMAGE) plus a constant. 

Thus, performing gradient descent on Etotal will tend to 

hill-climb on P(WHAT, WHERE [ IMAGE). In Bayesian 

terms, e ~1 vcr'I~" acts as the likelihood function for the 

image (i.e., it measures how well c and V can "ex- 

plain" I in by taking the inner product VcF �9 Iin), while 

the terms e ~2vrv and e ~3cuc act as priors on V and c. 

Finding the WHAT (V) and WHERE (c) that maximize 

the posterior, P (WHAT, WHERE [ IMAGE), requires op- 

timizing over a huge search space. The strategy we 

adopt in the routing circuit is to first set/32 = 0 and 

let c evolve while holding V = G (blob search). Then 

we turn on f12 and let V evolve. The reason we can 

do this is that the statistical independence of WHAT and 

WHERE allows the use of rather primitive, pre-attentive 

measures to guess the wHERE without knowing WHAT. 

More generally, though, the pre-attentive measures can 

also help guess WHAT as well. For example, measures 

such as color, texture, or primitive shape statistics may 

be able to narrow down the class of objects to be consid- 

ered as potential matches. (See Lowe, 1985, for related 

ideas in machine vision.)In this fi'amework, then, "at- 

tention" may be understood as a heuristic that exploits 

the statistical independence of WHAT and WHERE in 

order to make an extremely computationally intensive 

problem tractable with limited resources. 

Future Directions 

Our eventual goal is to provide a physically realizable 

and neurobiologically plausible model of visual object 

recognition. The model presented here represents an 

incremental step in pursuit of that goal. Some of the 

more important problems that remain to be solved are 

outlined here. 

Learning. The degree of specificity required in the 

connectivity of the routing circuit is most likely be- 

yond what can be specified genetically. One must 

therefore design learning algorithms that could develop 

or fine tune such an architecture from visual experi- 

ence. One promising approach has been described by 

Foldiak (1991), who has shown how a complex cell 

can learn translation invariance by assuming that the 

presence of an object (or feature) is stable over time. 

In our model, stability would be desired in the repre- 

sentation in IT, and the control neurons would need 

to learn how to configure themselves to maintain the 

stability of this representation as an object moves or 

changes size on the retina. The key to doing this, we 

believe, lies in formulating learning rules for networks 

with control-like structures, or three-way interactions 

among units, rather than simple perceptron-type net- 

works with two-way interactions only. Recent work 

in this direction has shown that networks in which in- 

puts interact in a local, non-linear fashion are capable of 

learning higher-order regularities--such as disparity-- 

using a local Hebb rule (Lee and Olshausen, !994). We 

are currently working on extending this type of learning 

to the control networks proposed here. 

Pre-attentive Segmentation. Clearly, something 

more sophisticated than "blob detection" will be re- 

quired in order to indicate the presence of objects within 

more realistic and natural visual environments. Pre- 

sumably, other salience measures--such as motion or 

texture gradients--could provide a more robust method 

for pre-attentively guessing the size and position of 

potential objects, as evidenced by other work in this 

area (Anderson, 1985; Milanese, 1993). In addition, 

it may be necessary to utilize grouping rules based on 

local shape cues to provide hints as to which image 

features should be bundled together within the window 

of attention (e.g., Freeman, 1992; Sajda and Finkel, 

1994; Thau, 1994). It will also be important to ex- 

plore how low-level feature measures can be used to 

position the attentional window within object space 

so as to pre-attentively narrow down the number of 
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objects to be considered as potential  candidates during 

recognit ion.  

Recogni t ion .  The simple model  of recognit ion em- 

ployed here utilizes only second-order correlations 

be tween image  pixels for storing objects. More  realis- 

tically, higher-order correlations among features within 

the window could be used to improve memory  capacity 

(e.g., combinator ia l  codes). It will  also be necessary to 

provide a richer descript ion of spatial structure, beyond 

mere luminance  values. Work on formulat ing effi- 

cient  visual  coding strategies based on the redundancies  

that natural ly occur in the envi ronment  provides one 

promis ing  approach (e.g., Field, 1994; Atick, 1992). 

5. Conclusions 

We have shown in this paper how a mult iscale repre- 

sentat ion may  be incorporated advantageously into a 

rout ing circuit  architecture for forming posit ion- and 

scale- invariant  representat ions of visual  objects, and 

we have described a solution for the autonomous con- 

trol of  a mult is tage circuit  us ing  a hierarchical control 

circuit. The proposed neurobiological  substrates and 

mechan i sms  lead to a number  of  predictions,  such as 

shifting receptive fields and object-centered representa- 

tions, that are amenable  to experimental  tests. In addi- 

tion, the stack model  presented here advances upon the 

earlier vers ion of  Koender ink and Van Doorn (1978) by 

proposing a specific neurobiological  substrate, area V 1, 

for the mult iscale  representat ion of  visual information.  

The model  exposes certain gaps in our unders tanding 

of the spatial f requency organizat ion in primary visual 

cortex that motivate the need for addit ional data in this 

area. 
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Notes 

1. This is similar to the constraint matrix utilized in the Marr/ 

Poggio stereo algorithm (Marr and Poggio, 1976). 

2. 100 ~ would be the extent of a fully stretched hand when held 3 

inches from the eye. 

3. More generally, one can conceive of dynamic routing taking 

place in the other visual processing streams as well--for exam- 

ple, in the motion pathway for making fine discriminations of 

motion (Nowlan and Sejnowski, 1993; Van Essen and Anderson, 

1990). 
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