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ARTICLE INFO ABSTRACT

We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelop-
mental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-
based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolu-
tional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN
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PDf;SclsgnMRI framework to predict cognitive and motor developmental outcome scores from structural brain networks of
Connectome infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks
Deep learning gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate
Neurodevelopment the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and

added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model
parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of
joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for
prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same
data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks.
Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each
connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the
context of the anatomy and function of the developing preterm infant brain.

1. Introduction

Preterm birth places infants at a higher risk for a variety of
cognitive and neuromotor challenges. Despite decreasing mortality
rates for preterm infants due to improving care, the rate of preterm
birth is increasing in nearly every country, world-wide (where birth
statistics are available) (World Health Organization, 2014). With
information about specific brain injuries or abnormalities shortly after
birth (i.e., via brain imaging), it may be possible to predict neurode-
velopmental outcomes and potentially even improve those outcomes
through targeted early interventions (Back and Miller, 2014; Bear,
2004). However, prediction of cognitive and neuromotor outcomes
remains a challenging problem due to the complexity of the developing
infant brain and the large number of confounding factors which may

influence development (Brown et al., 2014). Some recent studies have
used topological features from structural brain networks, derived from
diffusion tensor images (DTI), to classify normal from abnormally low
scores of general neurological and neuromotor function (Brown et al.,
2015; Ziv et al., 2013). Other studies have confirmed that DTI-based
features, such as fractional anisotropy (FA) in certain regions of the
brain are correlated with neurodevelopmental outcomes of preterm
infants (Ball et al., 2015; Chau et al., 2013).

Here, we use DTI-derived structural brain connectivity networks
(i.e., connectomes) of preterm infants to predict Bayley-III cognitive
and motor scores, assessed at 18 months of age, adjusted for
prematurity. While direct prediction of the scores (i.e., regression) is
perhaps a harder problem than prediction of abnormality (i.e., 2-class
classification), having an actual predicted score may be more informa-
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tive of the infant's development. To perform this prediction task, we
employ a deep learning approach.

Artificial Neural Networks (ANNs),” specifically Convolutional
Neural Networks (CNNs), have had much success lately in performing
prediction tasks on medical image data (Ciresan et al., 2012, 2013;
Roth et al., 2015). CNNs are especially useful when important features
are too complex to be designed or even easily recognized by human
observers (LeCun et al, 2015). In this paper, we propose
BrainNetCNN, a novel type of CNN with specially designed edge-to-
edge, edge-to-node and node-to-graph convolutional layer types for
brain network data. These novel layer types are actually specific cases
of more general convolutional filters that have meaningful interpreta-
tions in terms of network topology. BrainNetCNN is the first deep
learning framework with architecture designed specifically for brain
network data.

We validate our BrainNetCNN on both synthetic graph data and
DTI-derived structural brain networks of preterm infants. Our infant
dataset consists of 168 DTI images from a cohort of infants born very
preterm and scanned between 27 and 45 weeks postmenstrual age
(PMA). Due to the relatively few number of training instances available,
a problem common to many neuroimaging applications, CNNs are
advantageous as they share weights within layers which can reduce the
number of free parameters to learn when compared to fully connected
neural networks. We first demonstrate this in controlled experiments
on synthetic graph data by showing that BrainNetCNN outperforms a
fully connected neural-network with the same number of model
parameters.

On the preterm infant connectome data, we first test BrainNetCNN
with the task of predicting infant PMA at the time of scan.
BrainNetCNN is able to predict an infant's age with an average error
of about 2 weeks, demonstrating that it can learn relevant topological
features from the connectome data. Finally, we apply BrainNetCNN to
the much more challenging task of predicting neurodevelopmental
scores. We were able to achieve statistically significant correlations
between predicted scores and true scores, with an average prediction
error of around 11%. Furthermore, we show that BrainNetCNN
achieves significantly higher correlation values than other competing
prediction methods on this task.

Finally, we explore the high-level features learned by the CNN by
visualizing which connections in the brain are most predictive of age,
cognitive outcomes and motor outcomes. We find that edges important
for predicting age are well distributed across the brain network. Also,
we find that edges important for motor score prediction are connected
to regions known to be responsible for motor function, and that other
unique connections are important to predict cognitive scores.

1.1. Related works

The usefulness of representing the brain as a structural brain
network for inference or prediction of injury and disease in adults
has been widely recognized (Cuingnet et al., 2011; Ghanbari et al.,
2014; Munsell et al., 2015; Zhu et al., 2014). However, only a very
limited number of studies have applied these techniques to scans of
infants. Ziv et al. (2013) examined if it were possible to predict general
neurological health of infants at 6 months after birth using brain
networks derived from DTIs. They employed a support vector machine
(SVM) trained on high-level topological features. In our recent previous
work, we used similar features to predict neuromotor development
outcomes at 18 months from scans of preterm infants acquired shortly
after birth (Brown et al., 2015).

While the application of ANNs to medical image analysis is well

2 We refer to two types of networks in the text: The artificial neural networks (e.g.,
CNN) and the human brain network (connectomes). To avoid possible confusion between
the two, we have endeavoured to make the distinction clear from the context and use of
qualifiers such as ‘brain’ or ‘convolutional’.
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established for some clinical applications, its use for neurological
applications has only lately become more popular (Yoo et al., 2014;
Yang et al., 2014; Liu et al., 2014; Li et al., 2014; Brosch and Tam,
2013; Suk et al., 2014, 2015; Dvorak and Menze, 2015). For instance,
ANNs have recently been used to segment brain lesions in multiple
sclerosis patients (Yoo et al., 2014), segment brain tumors in multi-
modal MRI volumes (Dvorak and Menze, 2015), and classify different
types of cerebellar ataxia (Yang et al., 2014). Various deep architectures
have also recently been used to predict stages of Alzheimer's disease
progression (Liu et al., 2014; Li et al., 2014; Suk et al., 2014, 2015).
Similarly, Brosch and Tam (2013) employed deep belief networks to
learn a manifold describing variation in a population of Alzheimer's
patients. The networks in these studies, however, were all trained over
standard grid-like MR images of brain structure as opposed to graph or
network representations of brain structure.

Very few papers have applied ANNs to brain connectivity data.
Munsell et al. (2015) used a fully connected deep auto-encoder to
extract features from connectomes, but did not explicitly consider the
structure of the brain network in the fully connected layers. Plis et al.
(2014) explored the use of deep belief networks for a variety of
classification tasks over functional MR (fMRI) and standard MR brain
data, but collapsed the spatial dimensions of each input image to a
single vector of voxels .

Recently, Bruna et al. (2013) and Henaff et al. (2015) showed that
CNNs could be applied to data over a graphical domain (as opposed to
grid-like data such as images). Their work followed work by Shuman
et al. (2012) who showed how to generalize convolutions to graph
structured domains . In those works the input signal was given over the
nodes of the graph with a single set of edge weights fixed for all
samples. In contrast, for the case of structural brain networks, the
input signal is given as weights over the edges (reflecting, e.g.,
connectivity strength), implying a different set of edge weights for
each sample. Thus, the techniques described by those works are not
immediately applicable to brain network data and so, here, we
introduce specialized filters for the task. There is, however, a relation-
ship between convolutions over graphs as defined by Shuman et al. and
the edge-to-edge filters we propose in this paper (detailed in Section
2.1.1).

Finally, some recent works have leveraged graph kernels to facil-
itate kernel based learning on connectome data (Jie et al., 2014;
Dodero et al., 2015). In contrast to graph convolutions, graph kernels
do not explicitly extract graph features but instead define an inner
product between graphs. As far as we are aware, however, none of these
works have applied graph kernels to infant structural brain networks
nor incorporated them into a deep learning framework. We know of no
other work, to date, that has adapted CNN s for edge-weighted networks
and applied them to the human connectome.

2. Method

Here, we present our novel CNN layer types, designed specifically
for network data input (Sections 2.1.1-2.1.3), the dataset used in this
study (Section 2.2), the overall architecture of BrainNetCNN (Section
2.3), how we implemented BrainNetCNN (Section 2.4) and finally our
evaluation metrics (Section 2.5).

2.1. CNN layers for network data

A DTI-derived brain network, G = (4, ), is a compact representa-
tion of the white matter connections in a patient's brain, where Q is a
set of nodes representing regions in the brain and A is a weighted
adjacency matrix of edges, representing the connection strength
between each pair of brain regions (typically defined as the number
of white-matter tracts connecting the regions).

One way to apply ANNs to brain network data is to ignore the
structure of the brain network and treat the input edge weights as a
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vector of features (Munsell et al., 2015). This approach, however,
discards the topological relationships between edges that are intrinsic
to the data. An alternative approach is to treat the adjacency matrix as
an image and use established convolutional filters designed to capture
the spatial 2D grid locality of images (e.g., a 5 x 5 filter). However,
spatial locality between entries of the adjacency matrix does not
directly correspond to topological locality in the brain network. For
an entry located at 4, j, only those elements within the i-th row and j-th
column are topologically local and so the typical grid convolutional
filters used for images are not appropriate here.

We consider these topological differences between images and brain
networks as we adapt the CNN paradigm to brain network data. To
leverage the structure found within the adjacency matrix, we introduce
three new layer types: edge-to-edge layers, edge-to-node layers, and
node-to-graph layers. Each layer type consists of one or more simple
convolutional filters of a particular shape and performs a specific
operation on the brain network. A BrainNetCNN layer contains one or
more filters (of the same type). Each filter takes all feature maps from
the previous layer as input and then outputs a distinct feature map for
the next layer. Note that for all equations of the filter types below, we
omit the activation function and the standard bias term for simplicity.

2.1.1. Edge-to-edge Layers

An edge-to-edge (E2E) layer is similar to a standard convolutional
layer in a CNN over grid-like data in that it filters data locally. Whereas
in grid-like data, filters may be defined in terms of spatial locality, the
E2E filter is defined in terms of topological locality, combining the
weights of edges that share nodes together.

Formally, let G¥" = (A% Q) represent the m-th feature map of a
weighted brain network at the #-th layer of the CNN, where ( is the set
of nodes corresponding to brain regions and A" € R is an
adjacency matrix containing the network edge weights. Each layer
takes M? feature maps as input, and for this study we assume that
M' =1 (i.e., the input feature map to the whole CNN is just a single
adjacency matrix describing one connectome). Since the number of
nodes do not change between input and output, Q stays constant and
the output of an E2E layer is a filtered adjacency matrix defined as,
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where [¢/mn, pfmn) = whmn ¢ R29 such that [wh 7, ..., woMn] g R2QIxM
are the learned weights of the nth filter at layer #. Thus, for each pair of
input and output feature maps, (m, n), at layer #, the E2E layer learns a
single vector of weights, w/™" = [w/"™" .. wii"]. The set of all
weights, {w?"™"m € {1, 2,...,M?}}, that contribute to one output
feature map, n, in one layer, ¢, defines a single filter. The E2E filter
is illustrated, for a single input feature map, in Fig. 2 and in entirety as
a block diagram on the left side of Fig. 1.

Intuitively, for some edge (i;j) in an adjacency matrix encoded in
some feature map, m, an E2E filter computes a weighted sum of edge
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weights over all edges connected either to node i or j, like a convolu-
tion. This implies that a single weight, w{*"", is applied to all edges of a
given node. This, however, does not imply that edges from a given node
are all treated with equal importance. A single edge, (i,j), may be highly
weighted if both /" and ¢/"™" are large. Multiple distinct edges may
then be weighted in this way via different network feature maps.

While this study focuses on the application of BrainNetCNN to
undirected graph data, the E2E filter can, more generally, operate on
directed graphs. For symmetric input, A°”, the output of an E2E filter
A+l may be asymmetric since, in general, it is not necessarily true
that r/™" 4 cfmn = pfomn 4 ¢/, The filter may weight the input
asymmetrically. For undirected graphs, however, this is simply the
same as having two output feature maps (one upper triangular, one
lower triangular) and so it is not necessary to enforce symmetric
output. While it might be possible to design a filter similar to the E2E
filter that operates only over the upper (or lower) triangular elements,
it would very likely preclude the use of standard convolutional filters
(i.e., the r and ¢ components of the E2E filter). The proposed
formulation of the E2E filter allows us to leverage these efficient
convolutional filters and implement this filter easily in established CNN
software packages (see below).

The E2E filter is similar to a 3 x 3 x M? convolution filter over a
stack of 2D grid data, in that, for each feature map, it combines the
signal at some point with the signal from the direct neighbours, but
does so with a cross shape filter instead of a box-shaped filter. Note that
unlike a 2D image, the brain network has no topological boundaries
and so the output of the layer can be the same size as the input without
requiring any padding. Another difference, as noted above, is that
whereas a convolution typically acts on a signal defined over the nodes
of the grid (or over a general network as in the case of Shuman et al.
(2012)), here our filter acts on a signal defined over the edges (i.e., edge
weights).

The connection between convolutions over the edges of a graph
versus convolutions over the nodes of a graph can be understood in
terms of the concept of a line graph (Godsil and Royle, 2013): Let £L(G)
represent the line graph of G. Briefly, £(G) is a graph with one node
corresponding to each edge in G and one edge corresponding to each
pair of edges in G that are joined by a node. The nodes of £(G) adopt
the signal over the edges of G (i.e., edge weights) and because there is
no signal over the nodes of G, the topology of £(G) is consistent over
the entire dataset. Thus, by constructing £(G), the definition of
convolution over a graph by Shuman et al. (2012) becomes applicable
to brain network data. It turns out that an E2E filter over G is
equivalent to a filter over £(G) with a K-hop of 1, which, as
demonstrated by Shuman et al. (2013), can be written as a generalized
convolution. Note, however, that for typical sizes of £, in the order
of dozens to hundreds (e.g., 90, as is the case here), L£(G)
contains %IQP - %IQI(IQI —1)=360, 495 edges versus only

%I.QI(IQI — 1) = 4, 005 for G, making operations over £(G) much more
memory intensive. Thus, for efficiency and ease of interpretation, we
chose to define the E2E filter in terms of G rather than £(G).
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Fig. 1. Schematic representation of the BrainNetCNN architecture. Each block represents the input and/or output of the numbered filter layers. The 3rd dimension of each block (i.e.,
along vector m) represents the number of feature maps, M, at that stage. The brain network adjacency matrix (leftmost block) is first convolved with one or more (two in this case) E2E
filters which weight edges of adjacent brain regions. The response is convolved with an E2N filter which assigns each brain region a weighted sum of its edges. The N2G assigns a single
response based on all the weighted nodes. Finally, fully connected (FC) layers reduce the number of features down to two output score predictions.
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valel

Fig. 2. An E2E filter at edge (i) shown, (a) before filtering, (b) after being applied once, and (c) after being applied twice. For simplicity, these examples assume only one input feature
map and one output feature map. Accordingly, the feature map indices and layer indices are omitted.

2.1.2. Edge-to-node layer

An edge-to-node (E2N) filter takes an adjacency matrix, A%,
(representing a, possibly filtered, brain network) from each feature
map as input and outputs a vector of size I©2l. Thus, the output of an
E2N layer is defined as,

Y]
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@

where, similar to an E2E layer, [¢/"", r/""] = w/"" € R?*? such that
[wetn . w’ va“'] € R22xM” are the learned weights of the nth filter at
layer #. However, the n-th output feature map, a’*", of an E2N layer is
a vector in R™!_in contrast to an E2E layer whose output feature map
is in RIXIQ

An E2N filter is equivalent to convolving the adjacency matrix with
a spatial 1D convolutional row filter and adding the result to the
transpose of the output from a 1D convolutional column filter. This
operation can be interpreted as computing a single output value for
each node, i, by taking a weighted combination of the incoming and
outgoing weights of each edge connected to i. Note that if we assume
the input to the E2N filter is a symmetric matrix, we can drop either the
term containing the row weights, r®"", or the term containing the
column weights, ¢/, since the incoming and outgoing weights on
each edge will be equal. In all experiments in this paper, we used E2N
filters with only the 12| row weights in r because we did not empirically
find any clear advantage in learning separate weights for both incoming
and outgoing edges when training over symmetric connectome data.

Similar to the E2E layer, the E2N layer does not necessarily discard
information about distinct edges with particular importance: If weights
rfmn, cfomen, pfmn and ¢f ™" are all relatively large, then edge (i) will
be weighted especially strongly and through multiple feature maps,
many edges may be highly weighted in this way.

2.1.3. Node-to-graph layer

Finally, similar to the E2N layer, a node-to-graph (N2G) layer
reduces the dimensionality of the input, in this case by taking a
weighted combination of nodes to output a single scalar,

Me 1l
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per output feature map, n. The N2G filter, also a 1D spatial convolu-
tion, is applied after an E2N filter and reduces the spatial dimensions of
the original input to single scalar per feature map. In the context of
being applied after an E2N filter, which summarizes the responses of
neighbouring edges into a set of node responses, the N2G filter can be
interpreted as getting a single response from all the nodes in the graph.

2.2. Preterm data

The data for this study is from a cohort of infants born very
preterm, between 24 and 32 weeks PMA, and imaged at BC Children's
Hospital in Vancouver, Canada. The use of this data for this study was
approved by the University of British Columbia Clinical Research
Ethics Board. As detailed in Booth et al. (2016), after excluding images
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for poor scan quality (in short, first by visual inspection of the DTIs and
then by examining tractography results for serious artefacts and
directional bias), scans of 115 infants were used. Roughly half of the
infants were scanned twice (shortly after birth and then again at about
40 weeks PMA), for a total of 168 scans. Full-brain streamline
tractography was performed on each DTI to recover the neuronal
connections in each brain. Using a neonatal atlas of [2 = 90 anatomical
regions from the University of North Carolina (UNC) School of
Medicine at Chapel Hill (Shi et al., 2011), a weighted, undirected
network was constructed from each scan by counting the number of
tracts connecting each pair of anatomical regions. Each network is
represented as a 90 x 90 symmetric adjacency matrix with zeros along
the diagonal and is scaled to [0, 1]. At 18 months of age, adjusted for
prematurity, the cognitive and neuromotor function of each subject was
assessed using the Bayley Scales of Infant and Toddler Development
(Bayley-III) (Bayley, 2006). Cognitive and motor scores from this test
are normalized to a population mean of 100 with standard deviation of
15. See Brown et al. (2015) for further details about assessment
protocol, scanning protocol and connectome construction.

Given the small data set (DTI of preterm infants is not standard
procedure in clinical practice) and the imbalance (low numbers of
preterm infants with high and low neurodevelopmental outcomes) we
adopted the synthetic minority over-sampling technique (SMOTE)
(Chawla et al., 2002) to balance and augment each training set.
Training samples were binned by score (5 bins) and then SMOTE
was run, repeatedly, to generate a synthetic sample from the bin with
the fewest total number of real and synthetic samples, until the training
set was augmented by a factor of 256. Note that in our previous work,
we showed that the proposed LSI method outperformed SMOTE for
improving prediction accuracy (Brown et al., 2015). While LSI worked
well in that context, we were performing 2-class classification rather
than regression. LSI is not applicable here because it augments data in
individual classes, and in this paper we are performing regression over
a single training set.

2.3. BrainNetCNN architecture

We base the architecture of our BrainNetCNN (for connectomes) on
a common CNN (for images) where the first section of the network is
composed of convolutional layers and the last section is composed of
fully connected (FC) layers (e.g., Simonyan and Zisserman, 2015).
Fig. 1 is a block diagram of a representative BrainNetCNN architecture
with at least one layer of each of the proposed filter types.

The input to a BrainNetCNN model is a brain network, G°
represented as a 90 x 90 adjacency matrix. The output layer of the
network has two nodes where each node predicts a different neurode-
velopmental outcome score (motor and cognitive). The second to last
layer in the network of size 1 x 1 x 30 can be interpreted as a set of
high-level features learned by the previous layers. We selected a size of
30 features in order to directly compare the features learned by
BrainNetCNN to the 30 network measure features used by Brown
et al. (2015).

Since E2E layers operate on a whole adjacency matrix (per feature
map), they can only be applied before E2N and N2G, which reduce the
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input dimensionality (to a vector or a scalar per feature map). However,
since E2E layers do not alter the input dimensionality, many E2E
layers can be stacked (with the trade-off of an increased number of
parameters to learn). An E2N layer reduces the 90 x 90 matrix to a
single matrix of 90 x 1 elements and thus must be applied before an
N2G layer. The N2G layer reduces the input dimensionality down to a
single feature (per feature map) and thus cannot be applied before the
E2E or E2N layers.

In the experiments below (Section 3) we test a variety of config-
urations of BrainNetCNN. Each configuration of BrainNetCNN can be
understood as a CNN with a subset of the layers shown in Fig. 1. The
basic configuration (E2Enet) contains one of each type of proposed
layers along with 3 fully connected layers (i.e., layers 1, 3, 4, 5, 6 and 7
in Fig. 1). We also tested configurations with fewer layers: One model
with the E2E layer removed (E2Nnet), and two more models similar to
E2Enet and E2Nnet but with two of the fully connected layers removed
(E2Enet-sml and E2Nnet-sml, respectively). Finding good results with
these FC layers removed, we tested a model with the same layers as
E2Enet-sml but with an additional E2E layer (2E2Enet-sml).

We compare our results from these BrainNetCNN configurations to
one and two layer fully connected neural networks (FC30Onet and
FC90net, respectively), which don't contain any of the proposed
convolutional layers. The input to the FC networks is a 1 x 4005 vector
consisting of the upper triangular values of the symmetric connectome
matrix. FC90net is similar to layers 5, 6 and 7 in Fig. 1 but with only 90
responses between layers 5 and 6 to make the number of learnable
parameters approximately equal to that in E2Nnet-sml and E2Enet-
sml.

Generally, the number of output feature maps from each layer, M,
is independent of other network parameters and can be set freely. In
the BrainNetCNN architecture, we increased the number of feature
maps with each layer to compensate for the reductions along the other
dimensions (i.e., dimensions 7 and j in Fig. 1); a common strategy for
CNNs (e.g., Simonyan and Zisserman, 2015). Precisely, E2Nnet-sml
has an E2N layer with 1301 x 90 filters (layer 3 is increased from 64 to
130 to match the number of parameters with the other models)
producing feature maps of size 1 x 90 x 130. This is followed by an
N2G layer with feature maps of size 1 x 1 x 30 (layer 4) and a fully
connected layer with an output of size 2 (layer 7). E2Enet-sml is
constructed from layers 1, 3, 4, 7 (Fig. 1), with an E2E layer composed
of 321 x 90 and 32 90 x 1 filters (layer 1) producing feature maps of
size 90 x 90 x 32. This is followed by an E2N layer with 641 x 90 x 32
filters (layer 3) producing feature maps of size 1 x 90 x 64, an N2G
layer with feature maps of size 1 x 1 x 30 (layer 4), and a fully
connected layer with an output of size 2 (layer 7) .

Every layer in our network uses very leaky rectified linear units as
an activation function, where a leaky value of x/3 is assigned if
f(x) <0, as done by Graham (2014). For training, we employed
dropout using a rate of 0.5 after the N2G layer and the FC layer of
128 units as shown in Fig. 1 (dropout was found to slightly improve
correlation by ~0.01 for the fully connected model). We used momen-
tum of 0.9, a mini-batch of size 14, a weight decay of 0.0005, and a
learning rate of 0.01. Mini-batch sizes, weight decay and learning rates
were set to values that performed well over the fully connected model
(see Section 3.2). All models minimized the training loss, which is
defined as the Euclidean distance between the predicted and real
outcomes plus a weighted L2 regularization term over the network
parameters.

The ideal number of training iterations for a given model depends
on the model architecture and on the training parameters. Thus, to
minimize overfitting to the training data, and to ensure a fair
comparison across all model types (both proposed and competing),
we trained each model for a variable number of iterations, from 10 K to
100 K (in 10 K increments) and selected the model corresponding to
the number of iterations that yielded the least overfitting (i.e., best
performance on the test data).
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2.4. Implementation

We implemented our BrainNetCNN using the popular deep learn-
ing framework, Caffe Jia et al., 2014. While the E2N and N2G filters
were straightforward to implement using 1D filters, the E2E filter
required a convolution of two 1D filters, ¢ € R“**! and r € R, with
the adjacency matrix, producing responses of dimensions R'*? and
R**! respectively. These response vectors are each replicated 12| times
to produce two R matrices, which are summed element-wise
yielding a single matrix equivalent to Eq. (1).

2.5. Evaluation metrics

In addition to reporting mean absolute error (MAE) and the
standard deviation of absolute error (SDAE) between the predicted
and the true scores, we report the Pearson correlation coefficients
between the predicted and the true scores, and the corresponding p-
values. As our dataset contains many scores close to the mean value,
MAE may be disproportionately low for regressors that frequently
predict nearer to the mean score of the training data, even if they
underfit the data. The Pearson correlation coefficient, however, mea-
sures the linear dependence between predicted and true scores and so
is less affected by the distribution of the inputs. MAE is still important
to report, however, since Pearson's correlation does not expose if a
regressor is biased towards frequently predicting too high or too low.
Thus, the measures are complementary.

3. Experiments
3.1. Simulating injury connectomes for phantom experiments

Before testing BrainNetCNN on real brain networks, we assessed its
ability to learn and discriminate between differing network topologies
using sets of synthetically generated networks. We first examined the
performance of BrainNetCNN on data with increasing levels of noise
and then compared BrainNetCNN to a fully connected neural network
with the same number of model parameters. To simulate realistic
synthetic examples, each example is based on the mean connectome, X,
(Fig. 3-left), of our preterm infant data, perturbed by a simulated focal
brain injury using a local signature pattern S. The symmetric matrix
S € R'>2 has non-zero elements uniformly selected between [0, 0.1]
(i.e., up to 10% of the values of X,) along the same row and column
index. Thus, the simulated injury is to all connections (with varying
intensity) emanating from a single brain region. We created two focal
injury signatures, S and S?, with two corresponding injury regions.
These two regions were chosen as the two rows in X, with the highest
median responses in order to simulate injury to important regions (i.e.,
hubs) of the brain (Fig. 3-right). Mathematically, the i-th synthetic
connectome, X;, is formed as,

X

u

= N
A+ asha + 45

' @
where 1 is a matrix composed of all ones; N; € R*** is composed of
random values simulating noise weighted by y; and, a; and f; are scalar
injury parameters that weight their respective signature matrices. a;
and f; range between 50 and 140 as these are typical neurodevelop-
mental outcome ranges in our dataset. All operations are done element-
wise and the resulting synthetic connectome X; (Fig. 3-center) forms
our observed example.

3.1.1. Predicting injury parameters over varying noise

We first tested our model's ability to predict the injury parameters
(i.e., a; and B;) given the corresponding X; under different level of
noise, y. The model was trained using 1000 synthetic examples and test
over another 1000 examples. We chose 1000 training samples as it
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Fig. 3. (Left) The averaged connectome. An example synthetic connectome (center) used in our focal injury phantom experiments after introducing noise and the two signatures at the

47th and 39th regions (right).

Table 1

Synthetic experiments using E2Enet-sml to predict injury parameters a and f under
different levels of noise measured by the peak-signal-to-peak-noise-ratio (PSPNR = 1/7).
As expected, as the noise levels decrease, the Pearson correlation r increases (1 indicates
correlation with the a parameter), and the mean absolute error (MAE) and the standard
deviation of the absolute error (SDAE) decrease.

PSPNR T MAE, SDAE, 15 MAE; SDAE;
4 (12dB) 0.554  19.949 14497 0588 18356  13.967
8 (18 dB) 0.873  9.732 7.870 0873  9.980 8.259
16 (24dB) 0965  6.458 5.026 0.969  5.008 4.195
I 1.000 1071 0.682 0.999  1.088 0.879

represents a realistic best-case scenario for a large dataset of DTI scans.
As shown in Table 1, under moderate noise, our BrainNetCNN model
(E2Enet-sml) accurately predicts a and S, indicating an ability to
recognize multiple subtle, synthetically induced connectome perturba-
tions.

3.1.2. Predicting focal injury parameters with different models

We also used the phantom data to assess the difference in predictive
ability on a small training set, between a fully connected model
(FC90net) and two models based on our proposed BrainNetCNN layers
(E2Nnet-sml, E2Enet-sml), each with a similar number of model
parameters.

To more closely approximate our real dataset, we used 112
synthetic samples to train, 56 synthetic samples to test and used
relatively high, fixed PSNR of 8 (or 18 dB, where PSPNR = 1/y). The
results are reported in Table 2.

The E2Enet-sml outperformed the FC90net model achieving an
average increase in mean correlation of 15.54% and an average
decrease in MAE of 29.17% over both parameters, and slightly
outperformed E2Nnet-sml across all measures. The E2Nnet-sml also
outperformed FC90net across all measures. As these models all have
nearly the same number of parameters to learn, and E2Nnet-sml has
the same number of non-linear layers as the FC90net model, these tests
indicate that the BrainNetCNN convolutional filters contribute greatly
to the improvements in prediction accuracy on this realistic phantom.

Table 2
Comparison of a fully connected model (top row) with two proposed BrainNetCNN
models (bottom rows), all with similar numbers of parameters on phantom data.

Model Ta MAE, SDAE, g MAEy SDAE;y
FC90net 0.648 20.583 11.609 0.688 20.080 11.513
E2Nnet-sml 0.736 16.380 10.977 0.752 16.492 9.834

E2Enet-sml 0.812 13.760 9.494 0.772 15.021 9.761
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3.1.3. Predicting diffuse injury parameters with different models

It is thought that poorer neurodevelopmental outcomes in many
preterm infants, especially low cognitive scores, may be caused by
diffuse white matter injuries rather than focal lesions (Back and Miller,
2014). Thus, in addition to simulating focal injuries, we also test our
method on a phantom dataset with simulated diffuse injuries, spread
across the whole brain. The diffuse injury synthetic connectomes are
created using the same method described above, in Section 3.1, except
that the focal injury pattern matrices, S* and S? are replaced with
diffuse injury pattern matrices, D' and D?. Diffuse injury patterns are
simulated by selecting a random injury weight (again in [0, 0.1]) for
each region. Given a 90 x 1 vector, d*, of injury weights, a symmetric
diffuse injury pattern is computed as D,-/fj = %(d,-/c + d;‘). Examples of
diffuse injury patterns and a diffuse injury synthetic connectome are
shown in Fig. 4. While the same level of noise (PSPNR of 8) was applied
to this dataset as for the focal injury phantoms, the broader injury
pattern produces a weaker overall connectivity signal, causing the noise
to appear more pronounced.

As with the experiment on focal injury phantoms, here we test the
ability of FC90net, E2Nnet-sml and E2Enet-sml models to predict two
independent injury patterns. On this more challenging phantom data,
the BrainNetCNN models again outperform the FC model in terms of
both MAE and correlation (Table 3). Here, however, the E2Nnet-sml
model slightly outperforms the E2Enet-sml.

3.2. Infant age and neurodevelopmental outcome prediction

To test the BrainNetCNN on the preterm infant data, we performed
3-fold cross-validation. The data was split randomly into three folds of
56 scans with the constraint that scans of the same subject were in the
same fold. We chose three folds because, despite giving a larger
training set size, more folds would require an increased number of
(deep) models to be trained. In each round, two folds were selected as a
training set, augmented (as described in Section 2.2) and then used to
train a model. As ANNs can find different local minima and thus
produce different solutions, for each test involving an ANN, we trained
each model with five different random initializations and averaged the
predicted scores (Ciresan et al., 2012, 2013; Simonyan and Zisserman,
2015).

3.2.1. Model sensitivity to initialization and number of iterations

As was mentioned above, for a fair comparison, the reported
correlation values (i.e., capturing the prediction accuracy) for each
architecture were the best achieved for that architecture across
different numbers of training iterations. Fig. 5 compares the correla-
tion values across increasing numbers of training iterations (from 10 K
to 100 K) for both FC90net and E2Enet-sml architectures. For each
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Fig. 4. (Left and center) Sample diffuse whole brain injury patterns. (Right) Sample diffuse injury synthetic connectome with two diffuse injury patterns and noise applied.

Table 3

Comparison of a fully connected model (top row) with two proposed BrainNetCNN
models (bottom rows), all with similar numbers of parameters on diffuse injury phantom
data.

Model Ta MAE, SDAE, 7] MAEy SDAEy
FC90net 0.129 22.614 11.946 0.217 20.796 13.838
E2Nnet-sml 0.398 19.570 12.476 0.326 19.724 13.223
E2Enet-sml 0.386 19.712 12.483 0.315 19.938 13.531

type of architecture, predicting each neurodevelopmental outcome
type, the correlation values increase rapidly and then roughly plateau
after about 30 K training iterations. So, while we chose the best number
of iterations for each method to be fair to each type of architecture, we
observe that the correlation value is fairly insensitive to this parameter.
Furthermore, Fig. 5 validates that 100 K is a good upper limit for
number of training iterations, as no model appears like it would greatly
improve given more training. In the case of cognitive score prediction
using the E2Enet-sml model, the correlation values appear to slightly
decrease after 80 K iterations, potentially indicating that the model is
beginning to over-fit to the training data past this point. Results for
both E2Enet-sml and FC90net models are reported in Table 4 at the
60 K mark since it is the peak of each of their combined correlations.
Note that the mean correlation value slightly differs from what is
reported in Table 4 since Table 4 averages the predictions together over
the five models before taking the correlation (instead of computing the
mean of the correlations for each model as is displayed in Fig. 5).
Fig. 5 shows the mean and the standard deviation of the correlation
values across the predictions of the five different randomly initialized
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models. Furthermore, the standard deviation decreases with the
number of iterations, meaning that the different independently initi-
alized models converge to similar performance after training.

3.2.2. Age prediction

Before applying BrainNetCNN to the very difficult task of predicting
neurodevelopmental outcomes, we first trained it to predict infant PMA
at the time of scan. We performed this test to establish an upper-bound
on the predictive performance of BrainNetCNN, as there are perhaps
fewer complicating factors in predicting age compared to predicting
neurodevelopmental outcomes (which we discuss in Section 4). Using
E2Enet-sml, we were able to accurately predict PMA, with an MAE of
2.17 weeks (or 11.1% of the total age range) and an SDAE of 1.59
weeks. The correlation between predicted and ground-truth age was
0.864. While the purpose of this test is only to show the ability of our
model to learn some clinical parameters given the connectome data, for
completeness, we also tested the FC90net model and the E2Nnet-sml
model. On this baseline task, the FC90net model performed slightly
worse than E2Enet-sml, achieving an MAE of 2.29 weeks, SDAE of 1.65
weeks and a correlation of 0.858. Similarly, the E2Nnet-sml model
slightly underperformed E2Enet-sml, achieving an MAE of 2.377,
SDAE of 1.72 and a correlation of 0.843.

We found that absolute error of age prediction (using the E2Enet-
sml model) was correlated with PMA (r=0.224), implying that age
predictions were more accurate for younger infants. In Section 3.2.4,
we visualize and discuss which edges and regions of the infant
connectomes BrainNetCNN determined to be most important for
predicting age.
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Fig. 5. The effect of the number of training iterations on correlations between predicted and ground truth outcome scores (on test data) for FC90net (left) and E2Enet-sml (right)
architectures. The standard deviation of each of the five randomly initialized models is shown at each 10K iterations as vertical error bars.

1044



J. Kawahara et al.

Table 4

Neurolmage 146 (2017) 1038—-1049

Correlation, r, corresponding p-values, MAE and standard deviation of absolute error (SDAE) between true and predicted Bayley-IIT motor and cognitive scores. Results for different
configurations of BrainNetCNN (with different subsets of the layers shown in Fig. 1) and for competing models trained on different features. Our proposed, full BrainNetCNN model with
one E2E layer for motor score and two E2E layers for cognitive outperform all other methods in terms of correlation.

Model Layers Motor Cognitive
r P MAE SDAE r p MAE SDAE
competing Clinical - 0.106 0.170 16.139 13.737 0.086 0.271 15.339 12.053
Network . 0.227 0.003 13.345 9.761 0.143 0.064 13.564 9.722
PCA30 - 0.181 0.019 12.186 8.259 0.069 0.374 11.682 8.809
Raw Edges 7 0.176 0.023 27.399 27.273 0.063 0.420 27.502 26.529
FC30net 6,7 0.231 0.003 10.915 8.075 0.158 0.041 10.583 8.572
FC90net 5,6,7 0.237 0.002 11.142 7.986 0.169 0.029 10.545 8.631
proposed E2Nnet 3,4,5,6,7 0.271 0.0004 11.095 7.797 0.154 0.046 10.845 8.902
E2Enet 1,3,4,5,6,7 0.281 0.0002 11.506 7.833 0.182 0.018 11.132 8.964
E2Nnet-sml 34,7 0.263 0.0006 10.640 8.075 0.162 0.0355 10.493 8.459
E2Enet-sml 1,3,4,7 0.310 <0.0001 10.761 7.734 0.174 0.0239 11.231 8.424
2E2Enet-sml 1,2,3,4,7 0.290 0.0001 11.153 7.686 0.188 0.0148 11.077 8.574

3.2.3. Neurodevelopmental outcome prediction

We explored the more challenging outcome prediction task using
different configurations of BrainNetCNN and competing methods (see
Table 4). We compared the ANN models (i.e., FC and BrainNetCNN
models) to linear regressors trained on features from (i) the raw edge
weights (Raw Edges), (ii) 30 principal components of the edge features
using PCA (PCA30), (iii) high-level network features (Network), as
used by Brown et al. (2015), and (iv) 6 clinically relevant metadata
features (Clinical) including age at birth, age at scan, gender and
ratings of brain white matter injury (Miller et al., 2005), ventriculo-
megaly (Cardoza et al., 1988) and intraventricular hemorrhaging
(Papile et al.,, 1978) that are used by clinicians to assess risks to
preterm infants neurodevelopmental outcomes. As with the size of the
last layer of BrainNetCNN, we chose 30 PCA features in order to
provide the most direct comparison to Brown et al. (2015).

Table 4 reports MAE, SDAE, correlations and correlation p-values
between ground-truth and predicted scores. The statistical significance
(p < 0.05), reports the very small likelihood that the positive correlation
obtained is coincidental.

In terms of MAE, many models performed similarly well over motor
and cognitive outcomes. PCA30 performed nearly as well as the neural
network based models which all achieved average absolute errors of
<11% (based on a range of scores between 50 and 155). This result,
alone, appears to suggest that the simplest models can perform with
similar accuracy to more complex models. However, the correlation
results contradict this and suggest that the PCA model has actually
underfit the data, predicting a similar output for every input, resulting
in comparatively low r values.

Different configurations of our BrainNetCNN produce the highest
prediction correlation values for both motor and cognitive scores.
Despite having the same number of trainable model parameters as
FC90net (and significantly less parameters than E2Nnet and E2Enet)
the E2Enet-sml model results in the highest motor correlation.
Similarly for cognitive scores, a model with an additional E2E layer,
2E2net-sml, attains the highest prediction correlation. The E2Nnet-sml
yields the lowest MAE for both motor and cognitive scores.

Paired t-tests were used to check the significance of the improve-
ment of the BrainNetCNN models over FC90net, the next best model.
To do this, 1000 random subsets of 56 instances (i.e., the size of each
fold) were selected. For each model, the correlation between scores
predicted by that model and the ground truth scores were computed
within each subset. (Note that for all models, the distributions of
correlation values across the 1000 subsets were found to be normal
using Kolmogorov—Smirnov tests.) Each paired t-test was performed
between a pair of models with the null hypothesis that the mean of the
distribution of correlation values were equal. The paired ¢-tests showed

that all models with an E2E layer performed significantly better, on
average, than the FC90net model on both prediction tasks with
p < 0.05 except for the E2Enet-sml model which did not perform
significantly better at predicting cognitive scores. For the 2E2Enet-sml
model, correlations improved over FC90net an average of 8.44% for
motor scores and 10.4% for cognitive scores.

To ensure that BrainNetCNN was not consistently predicting too
high or too low (i.e., prediction bias), a t-test on the prediction errors of
E2Enet with respect to each score type was performed. The mean
difference between predicted and ground truth values for cognitive and
motor scores were not found to be statistically significantly different
from zero (p-values of 0.6817 and 0.9731 respectively), meaning that
our model was unbiased.

3.2.4. Maps of predictive edges

In order to uncover which connections were learned by
BrainNetCNN to be predictive of age, cognitive outcome and motor
outcome, we used the method of Simonyan et al. (2013), which
computes the partial derivatives of the outputs of an ANN with respect
to the input features. For each outcome ys (i.e., either age or motor or

cognitive scores), Simonyan et al.'s method computes 2 for every

9)
Al
input edge (i,7). In Fig. 6, the partial derivatives of motor and cognitive
scores, averaged over the entire dataset, are plotted for all connectome
edges, both spatially on line segments connecting centroids of the UNC
atlas regions and schematically in Circos plots (Krzywinski et al.,
2009). A complete list of region names corresponding to the region
codes used in the Circos plots can be found in the Appendix of the
recent paper by Brown et al. (2014).

While many of the partial derivatives are positive (red) indicating
connections that, when strong (i.e., high tract count), contribute to
better outcomes there are also many negative partial derivatives (blue).
We see that many brain connections (edges) from the right middle
frontal gyrus (MFG) are selected as being predictive of positive
outcomes for both motor and cognitive scores. The left precuneus
(PCUN), fusiform gyrus (FFG), superior frontal gyrus (SFGdor) and
right lingual gyrus (LING) also appear to be prominent hubs of
important connections for both scores. For motor scores, the connec-
tion between the two superior frontal gyri appears to be of particular
importance. In contrast, the connection between the left FFG and right
LING is highlighted as being relatively more important for cognitive
scores than for motor scores. However, there is considerable overlap
between the two sets of edges.

Compared to the sets of edges found to be important for predicting
neurodevelopmental outcomes, those found to be important for pre-
dicting age are much more widely distributed across the brain network
(Fig. 6). Only the connection between the right LING and the right FFG
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Fig. 6. Connections learned by BrainNetCNN to be most predictive of outcomes and ages. Top row: Edges with positive (red) and negative (blue) partial derivatives with respect to
motor outcomes (left), cognitive outcomes (middle) and ages (right). Edge thickness and opacity represent the magnitude of each partial derivative. Very small magnitudes ( < 0.001)
were omitted for clarity. Node sizes represent the sum of partial derivative magnitudes of all neighbouring edges with positive derivatives. Bottom row: The same partial derivatives
mapped on to Circos ideograms. Brightness of the color of the regions in each ring denotes the sum of positive partial derivative magnitudes.

appears to stand out as being a particularly strong predictor. We
discuss possible anatomical reasons for these observations below.

4. Discussion

Broadly, the proposed BrainNetCNN performed well, predicting
motor and cognitive scores with the highest correlations to the ground
truth scores. Furthermore, it was found that, with respect to most
accuracy measures, our convolution based models (e.g., E2Enet-sml,
2E2Enet-sml) were able to outperform other models without relying on
the large fully connected layers. This increased accuracy was found for
both real connectome data and carefully controlled phantom data.
These results validate that our novel E2E, E2N and N2G filters, are able
to learn important structures for prediction with a relatively small
number of parameters. As well, it suggests that an alternative to
learning larger models with more layers is to employ convolutional
layers that leverage the topology of the input data.

It was also found that for prediction of cognitive scores, it was
helpful to stack E2E layers as seen by the comparatively high
correlation value for 2E2Enet-sml. This stacking of E2E layers enables
learning of complex structural patterns while requiring the optimiza-
tion of relatively few additional parameters.

When BrainNetCNN was used to predict age, it was found that
prediction was more accurate for the younger infants. One factor that
likely contributed to this result is that there are more scans of younger
infants in our data set (60% of scans are below the age range mid
point), which provided more training data for these cases. If true, it
suggests that larger training sets could further improve prediction
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results.

Despite the discrepancy in prediction error between younger and
older infants, our E2Enet-sml model was able to predict PMA with high
accuracy. However, when predicted with the same model, the correla-
tion values for neurodevelopmental outcome scores were relatively low
(e.g., 0.310 for motor scores versus 0.866 for age). While statistically
significant, these values for prediction of outcome scores entail only
weak to moderate correlations. Nevertheless, note that the correlation
values and relative improvement of BrainNetCNN over FC models were
only slightly lower for this real data than for the simulated diffuse
injury phantoms. Fig. 4 (right), especially as compared to Fig. 3
(center), gives a sense of the level of difficulty of the prediction problem
to result in correlation values in this range.

A number of factors contribute to the increased difficulty of
predicting outcome scores compared to predicting age. Probably the
most significant factor is the ~18 months of intervening time between
scan and Bayley-III assessment. This task of predicting neurodevelop-
mental outcomes of infants 18 months into future is made more
difficult by the fact that, shortly after birth, infants are developing very
rapidly and environmental and genetic factors will affect the course of
this development. The infant brain may also be impacted by preterm
birth and postnatal illness through mechanisms that do not alter DTI
metrics of diffusivity. Furthermore, the amount of available data for
training remains relatively small compared to the dimensionality of the
input networks, especially for the minority of cases with very high and
low outcome scores. While data augmentation can be use to expand
and balance a dataset, it is not a substitute for real data.

In all of the experiments on real connectome data, we trained each
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ANN model on motor and cognitive outcomes jointly. This was done
because the scores are strongly correlated (r=0.68 in our dataset) and
we expected that prediction of two outcomes would help regularize our
underdetermined models. We did explore training motor and cognitive
outcomes separately but found little difference in our metrics compared
to joint training. Given that joint training requires only a single model
trained for both tasks, significantly reducing the computational burden
and training times, it was our adopted choice for all experiments. While
its possible that low cognitive outcomes and low motor outcomes do
not share a common aetiology, the 30 high-level features of the last
layer of the proposed models provides these models with high flexibility
to identify injury patterns of different types.

In comparison to our BrainNetCNN learned features, the network
measure features used in our earlier work (Brown et al.,, 2015)
performed poorly. This was somewhat surprising, as they were shown
to perform well on the similar task of motor classification (Brown et al.,
2015). However, in that work, these network measure features were
combined with several meta-data features, including information about
age, gender and brain white matter injury grade, then dimensionality
reduced using PCA before performing prediction. It is possible then
that the network measures are much more powerful only in combina-
tion with meta-data.

Generally, prediction results were more accurate for motor scores
than for cognitive scores. It is likely that this is mainly due to motor
scores having a higher accuracy of assessment at 18 months of age; our
ability to accurately assess cognitive function improves over time, as
more functions can be assessed with age. The disparity in prediction
accuracy could also be partly due to motor scores having a simpler
dependence on the input features compared to the cognitive scores.
This is plausible since a few particular regions (e. g., primary motor and
premotor cortices) are well known to be responsible for many motor
functions (Meier et al., 2008) whereas cognitive function likely relies on
a complex network of many regions (which may be unique per
cognitive task) (Bressler and Menon, 2010). Furthermore, compared
to motor outcomes, cognitive outcomes may be more sensitive to
environmental factors not captured by imaging such as maternal
education and socioeconomic status (Grunau et al., 2009).

We regard our work as only a proof of concept, showing that filters
designed to leverage the structure of the input brain networks can
outperform other models on this prediction task. Consequently, as with
other non-medical applications of deep learning, given the large
number of parameters to be learned, the full potential of CNNs like
BrainNetCNN would be realized when applied to applications with
much larger neuroimaging datasets, which in turn will require further
time and effort to explore a wide array of architectures and parameter
settings. To accelerate this exploration, we make our BrainNetCNN
publicly available, downloadable at http://www.BrainNetCNN.cs.sfu.
ca. Additionally, here we identify three important avenues for future
investigation.

First, while it was found that our connectome based models
performed better than the models learned from clinical features, it is
likely that these features may contribute complementary information to
that derived from the connectomes. If the features from both sources
could be combined intelligently, the prediction accuracies would likely
increase.

Second, as noted, a lack of training data is a major challenge for
complex models like the ones proposed. However, other works have
shown that transfer learning can occur after pre-training a deep
convolutional neural network over larger, similar datasets (Donahue
et al., 2014). Since diffusion tensor images of preterm infants are
difficult to acquire, perhaps pre-training BrainNetCNN with connec-
tomes from infants born at term or other similar data could improve its
predictive ability.

Finally, how to generate the most realistic synthetic training data is
still an open research question. We were motivated to attempt to
perform data augmentation here because it was clear that even with
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convolutional filters, the number of parameters to learn in a deep
network is high. It is possible that a more advanced data augmentation
strategy than SMOTE could perform better. We plan to extend our
recently proposed LSI method from the context of binary classification
to regression in the hope that it would perform better than SMOTE for
this sparsely sampled, high-dimensional data (Brown et al., 2015). We
expect that by improving our approach in these ways, we will move
towards achieving clinically useful predictive power.

When visualizing which edges BrainNetCNN selected as most
predictive of positive cognitive and motor outcomes, it was found that
many edges were common to both tasks. This is not surprising since, as
mentioned above the two scores are well correlated and since
BrainNetCNN was trained to predict both scores simultaneously.
However, it may also indicate that some of these common connections
in the brain are ones which are at higher risk for damage from the
external factors that can lead to poor neurodevelopmental outcomes
(e.g., white matter injury and infection) and thus are good common
predictors of healthy outcomes. The right middle-frontal gyrus (MFG),
in particular, was connected to many strong predictors of both
outcomes (Fig. 6). This region is known to be associated with spatial
memory (Leung et al., 2002), recognition and recall (Rugg et al., 1996),
among other functions, and so may be of particular importance for high
Bayley-III scores. However, we note that 18 month outcomes have
limited sensitivity to distinguish specific motor and cognitive skills. A
longer term follow-up of this cohort is underway and will be helpful to
examine specificity of these connections.

Fig. 6 also showed that the most predictive connections of both
outcomes had clear laterality. Ratnarajah et al. (2013) found asym-
metric functional specializations in the structure of the neonatal
connectome. Our finding of laterality may then be due to connections
between specific asymmetrical functional regions of the brain that are
important for the Bayley-III cognitive and motor tests.

In terms of motor outcomes specifically, we found that the right
precentral gyri (PreCG) was highly predictive of motor function, which
is expected since the PreCG houses the primary motor cortex. Similarly,
the premotor cortex is located, at least in part, within the superior
frontal gyri (SFGdor), which were found to be connected to many
strongly predictive edges, especially in the left hemisphere. One
connection very predictive of cognitive outcomes and not motor
outcomes was that between the left FFG and right LING. Both regions
have been found to be associated with reasoning about sequences of
events (Brunet et al., 2000), however exactly why this particular link is
important for prediction of the cognitive outcomes, is unclear. Again, a
longer term follow-up may help answer these kinds of questions.

Edges found to be important for prediction of PMA were much
more widespread across the brain network compared to those for
predicting neurodevelopmental outcomes. This is expected since the
whole brain is developing during this early period of development (i.e.,
many connections changing with age) whereas motor or cognitive
functions depend predominantly on specific subnetworks (Betzel et al.,
2013). One connection that stood out as being especially positively
predictive of age was between the right LING and FFG. This result is
consistent with our analysis of the development of healthy preterm
infants (Brown et al., 2014).

Generally, extracting the important features from the trained
network provides candidate regions and connections for further
investigation. This is especially important given the complexity of the
brain and what remains to be fully understood about its function and
development.

5. Conclusions

In this work we presented BrainNetCNN, the first CNN regressor
for connectome data. We introduced three specialized convolutional
layer types, designed to leverage the structure inherent in weighted
brain networks. We first demonstrated the ability of our framework to
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learn multiple independent injury patterns to brain networks by
predicting the input parameters of each instance in a realistic phantom
dataset. We then tested BrainNetCNN on a set of 168 preterm infant
brain networks and showed that our method was able to predict Bayely
cognitive and motor scores 18 months into the future. Cognitive and
motor scores predicted by BrainNetCNN had significantly higher
correlations to the ground truth scores than those predicted by
competing methods. Finally, those edges that were learned by
BrainNetCNN to be important for each neurodevelopmental outcome
were visualized. We found that, as expected, connections from the
premotor and primary motor cortices were found to be predictive of
better motor outcomes. We also found a general asymmetry in the
important connections consistent with other reports in the literature.
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