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Abstract

Language is an epiphenomenon of human’s

subjective world which is noted as the concep-

tual network. Human beings realized commu-

nication of knowledge, experience, and sym-

bolic entity of subjective psyche, across time

and space by language which included but not

limited to spoken or writing systems. From

the perspective of computational linguistics,

one concept in the conceptual network would

be identically activated despite variations of

modalities (i.e. comprehension, generation or

production). In the current study, we conducted

a semantic-access word reading task (language

comprehension) and a word imagining task

(language generation) in Chinese native speak-

ers during fMRI scanning. Part-of-speech cate-

gory and lexicon of stimuli in word imagining

task were predicted by brain responses in the

word reading task. Significantly, our learning

model, which was trained from brain activa-

tion of word reading, achieved decoding both

imagined words and semantically transferred

imagined words. To our knowledge, this is

the first report of cross-modality and seman-

tics transferring decoding of imagined speech.

Given the huge processing discrepancies be-

tween language comprehension and generation,

our results demonstrated a stable conceptual

network in the human brain and flexible access

from linguistic ways to conceptual network,

which shed light on understanding brain mech-

anisms of the relationship between language

and thought.

1 Introduction

The relationship between language and thought is

a fundamental question in philosophy, linguistics,

psychology, and cognitive science and has been

controversial over centuries. It is proposed that lan-

guage is language itself and separates from thought,

however, experimental and quantitive evidence was

insufficient.
∗ Equal contribution
† Corresponding authors

Human being’s subjective psyche is internalized

as neuron-based conceptual network and external-

ized as symbolic knowledge and experience. With

the blooming development of neural imaging tech-

niques and natural language processing, studies de-

coding linguistic information in the brain yielded

initial results. Brain-Computer Interface (BCI)

studies achieved successful decoding/prediction

for vowels and consonants(Pei et al., 2011), word

classification(Martin et al., 2016), and spoken

phrases(Herff et al., 2015). Remarkably, Chang

et al., utilized invasive high-density multielectrode

EEG and recurrent neural networks to decode corti-

cal articulatory movement representations for spo-

ken sentences and achieved speech synthesis at

sentence level(Anumanchipalli et al., 2019). Sub-

sequently, Chang et al. developed neuroprosthesis

by decoding cortical articulatory representations

and applied it in a patient with anarthria and spastic

quadriparesis, with a real time decoding rate of 15.2

words/min and word error rate of 25.6%(Moses

et al., 2021).

However, limitations were transparent. On one

hand, in previous studies, the decoding model

usually worked poorly, that is, the decoder could

merely distinguish among a few simple words

in one single subject with invasive neuroimaging

methods. Despite of individual variances, low

signal-to-noise ratio and other neurophysiologi-

cal noises, spatial resolution and/or local signals

of EEG/MEG can only reveal partial linguistic

processing information, which was the key short-

coming. What’s more, target decoding linguistic

features ranged from phoneme, vowels and con-

sonants, words, phrases, sentences to imagined

speech, which corresponded to various language

and cognitive processing stages. Thus, it is largely

unknown which linguistic feature/cognitive ma-

nipulation contributed the most to decoding. In

Chang’s study, articulatory movement information

was considered as the main feature to achieve de-



coding. By focusing on an exact stage (mapping

from cortical articulatory movement representa-

tions to speech acoustics in vocal organs), they

obtained better decoding performance and inter-

pretability. Above all, the potential solution would

be globally decoding conceptual networks in hu-

man brains.

A key issue before globally decoding a concep-

tual network lies in testing its stability and flex-

ible access across linguistic ways. Researchers

explored mapping between brain responses and se-

mantic features at the word, phrase and sentence

level respectively and found ‘semantic systems’

located ‘everywhere’ in the brain. Gallant et al.

first depicted globally voxel-wised neural semantic

maps through hours of online narrative stories lis-

tening tasks and data-driven methods(Huth et al.,

2016a). Furthermore, whether semantic feature-

related activation was modality-independent was

explored. Gerven et al. found that prediction of

semantic categories can be performed by brain ac-

tivation in the left inferior temporal cortex and

frontal cortex which is independent of informa-

tion modalities (spoken and written names, pho-

tographs, and natural sounds)(Simanova et al.,

2014). Fedorenko et al. built a universal decoder

which inferred semantic information at all word,

phrase and sentences levels, regardless of the in-

formation form(words v.s. images)(Pereira et al.,

2018). However, semantic and visual properties

of language showed complex dynamics in very

early stages which were modulated by top-down

information from high-order language brain re-

gions. It is insufficient to prove the stability of

conceptual network by information-form indepen-

dent semantic access only in language comprehen-

sion/generation/production.

To bridge the gap, we aimed to predict seman-

tic information in language generation from lan-

guage comprehension. Specifically, in this study,

Chinese native speakers were recruited to partici-

pate in fMRI-based online semantic-access word

reading task (language comprehension) and word

imagining task (language generation). Higher-level

neural linguistic representations (conceptual net-

work) learned from word reading were utilized to

predict 1) read words, 2) imagined words and 3)

semantically transferred imagined words at differ-

ent linguistic levels: 1) part-of-speech(noun/verb)

classification; 2) lexicon decoding across subjects.

Also, two voxel selection algorithms: 1) data-

driven voxel-wise linear regression (VWLR); 2)

hypothesis-driven representational similarity anal-

ysis (RSA) were applied. Results showed that

VWLR worked better in lexicon decoding while

RSA had good performance in POS classification.

Most importantly, our decoder predicted seman-

tically transferred imagined words which were

not present in word reading, indicating success-

ful modality crossing and semantics transferring.

The above results suggest the stability and effec-

tiveness of the conceptual network and the human

brain’s generalization ability to transfer between

thought and language.

2 Methods

2.1 Subjects

In experiment-1, semantic-access reading task, we

recruited 47 native Mandarin speakers (Mean age

= 23.4, 25 males) in the campus of Fudan Univer-

sity with vision/corrected vision over 4.8 and no

history of neurological disease or psychiatric disor-

ders. 41 subjects were evaluated as right-handed by

Edinburgh Handedness Inventory and the remain-

ing subjects were balanced. All subjects provided

informed written consent before the formal exper-

iment. Experiment-1 was approved by the Ethics

Committee of the School of Life Sciences of Fudan

University.

In experiment-2, imagined speech task, we re-

cruited 24 college students (Mean age = 23.6, 10

males) with vision/corrected vision over 4.8 and no

history of neurological disease or psychiatric disor-

ders. All were identified as right-handed. Informed

written consent were required before fMRI scan-

ning. Experiment-2 was approved by the Ethics

Committee of Institute of Science and Technology

for Brain-inspired Intelligence of Fudan University.

2.2 Stimuli and Word Embedding

There were 40 Chinese words(see Appendix C)

used in experiment-1, with 13 of them being nouns,

13 verbs, 13 adjectives and the left one’s POS being

ambiguous(noun/verb). In experiment-2, in addi-

tion to 40 words above, there were 20 new words,

10 of which were verbs and 10 nouns. To make

sure the conceptual network played a key role in

predicting new words, we first selected 160 can-

didate words and then chose 20 new words from

these candidates. These 20 new words should fall

into the semantic space range which was covered

by the above 40 old words as Figure 1 shows.



The semantic space was constructed with word

vectors. Previous studies showed that semantic

vectors can predict human measurements(Murphy

et al., 2018; Pereira et al., 2016). Here we used 300-

dimensional word vectors pre-trained from Chinese

Wikipedia(Li et al., 2018). In detail, the representa-

tion algorithm we set up was skip-gram with neg-

ative sampling(SGNS), while the context features

including word, character and bigram were all used.

All words mentioned above were commonly used

two-character words selected from the Modern Chi-

nese Frequency Dictionary with average frequency

balanced between nouns and verbs(See Appendix

C).

Figure 1: 60 words used in this study. 40 gray words were pre-
sented in both reading and imagining tasks while 20 colored
ones were used only for transferred imagining. Visualization
after T-SNE dimensionality reduction.

2.3 Experimental Designs

In experiment-1, stimuli from Chinese words, En-

glish words, and Chinese pinyin(the latter two were

fillers) were presented on black screen with hori-

zontal visual angle as 4.37°, with pixel, number

of strokes, and word frequency matched and no

semantic equivalent across conditions. There were

40 trials in each category. We applied event-related

design and each stimulus was visually presented

for 1000 ms. Inter stimulus interval was 4000-

6000ms. Presented orders were randomized across

subjects. Participants were required to press 3 dif-

ferent buttons corresponding to stimuli categories

after semantic access. A practice experiment was

performed before fMRI scanning. Only brain re-

sponses to Chinese words were analyzed in the

current study.

In experiment-2, the stimuli set contained 40

Chinese words presented in experiment-1 and 20

new Chinese words and were divided into 30 pairs.

Figure 2: Experiment design

Each pair of words were visually presented on

screen for 2000ms. Subjects were required to do

word selection by button-press during a circle pre-

sented in screen center. After selection, a box was

presented in the screen center for 10s and subjects

were required to do the word imagining task:they

needed to complete semantic associations of the se-

lective word as much as possible, with subtraction

manipulation followed to stop semantic associa-

tions. A practice experiment was performed before

fMRI scanning.

2.4 fMRI Data Collection and Prepossessing

We conducted anatomical and functional mag-

netic resonance imaging (MRI) scanning in 3.0-

T Siemens Prisma scanner at Zhangjiang Interna-

tional Brain Imaging Center (ZIC) of Fudan Uni-

versity, Shanghai. Experiment-1 and experiment-

2 utilized the same sequences with parameters

listed below. Echo planar imaging (EPI): TR =

720ms, TE = 33ms, matrix size = 110*96, num-

ber of slices = 72, slice thickness = 2mm, flip

angle =52°, field of view (FOV) = 220*196 mm,

and T1-weighted imaging: TR =3000ms, TE =

2.56ms, matrix size = 320*320, number of slices

=208, flip angle = 8°, field of view (FOV) =

256*256 mm. Data preprocessing were carried

out by Statistical Parametric Mapping-12 (SPM12,

Wellcome Trust Centre for Neuroimaging, Lon-

don, UK. http://www.fil.ion.ucl.ac.uk/spm). Slice

timing, realignment, co-registration, segmentation,

normalization and smooth were performed.

2.5 Two Voxel Selection Algorithms

The fMRI data is usually highly dimensional and

has a lot of noise. To facilitate effective decoding,

the brain image data will be reduced to a low dimen-

sion before subsequent statistical analysis(Huth

et al., 2016b; Pereira et al., 2018). We investigated

two voxel selection algorithms. One is data-driven

voxel-wise linear regression, the other is representa-

tion similarity analysis, which is hypothesis-driven.



Before these two algorithms were implemented, a

simple non-zero mask was applied to the whole

brain to reduce the computation complexity.

2.5.1 Voxel-wise Linear Regression(VWLR)

Voxel-wise encoding and decoding models have

been used widely in computational cognitive neu-

roscience to relate brain measurements to com-

putational models(Wu et al., 2006; Naselaris

et al., 2011, 2015; Huth et al., 2016a). In

the current study, for each voxel, we performed

L1-regularization linear regression(LASSO) be-

tween its 1-level neural signal values of all

subjects and 300-dimensional embedding vec-

tors of 40 overt reading words using 10-fold

cross-validation. Then we ranked all voxels

according to their average training R2 scores.

Top 1000/1500/2000/2500/5000 informative voxels

would be used for follow-up training and testing.

2.5.2 Representational Similarity Analysis

Representational similarity analysis (RSA) was ini-

tially proposed by Kriegeskorte et al. (2008). RSA

is a computational model that describes the rel-

evance between stimuli and corresponding brain

responses. In addition to analyzing the differences

in the representation of different types of stimuli

in neural signals, the correlation between behavior

and neural measurements can also be constructed.

In general, we want to use the RSA model to local-

ize the most relevant voxels correlating to semantic

word vectors. These voxels would later be used in

decoder training and testing.

Representational Dissimilarity Matrix(RDM)

Before performing RSA, we constructed RDMs

of both neural data and behavioral data. RDM ex-

tracts the information carried by a given represen-

tation, whether in the brain or stimuli. It describes

the geometric distances in multi-dimensional re-

sponse space of different experimental conditions.

The distance or dissimilarity is often computed

as 1 − similarity. In fact, there is no much dif-

ferent statistical impact whether using measure of

similarity or measure of dissimilarity but the lat-

ter seems more popular considering its wide us-

age in other technique(latent semantic analysis,

etc)(Kriegeskorte et al., 2008).

Neural RDM and Searchlight Given a certain

stimulus, for one single voxel of a participant,

there’s a corresponding 1-level neural signal. To en-

hance the generalization of RDM representations,

however, here we used the searchlight algorithm

which was firstly proposed in Kriegeskorte et al.

(2006). Briefly, the searchlight algorithm scans a

spherical region of interest(ROI), rather than a sin-

gle voxel, of a given radius surrounding a given

voxel. The statistics of the entire sphere will be

treated as the statistics of the voxel in the middle

and will be applied to further statistical analysis in-

cluding regression and classification. It can also be

used in RSA to generate neural RDM(Clarke and

Tyler, 2014). In this study, for each subject, given

a word stimulus, there’s an extended 1-level vector

for each voxel. We set the radius of the sphere to

3 voxels, so the vector is of ((3× 2) + 1)3 = 343
dimension. In the POS classification task, there

are 13 nouns and 13 verbs. For either POS, the

neural representation of a voxel in one subject is

of [13, 343] shape. After computing the dissimi-

larity(1 - Spearman’s ρ) pairwise, we can get the

neural RDMs([13, 13]) for both noun and verb con-

ditions. In the lexicon decoding task, the neural

RDMs were constructed similarly while we treated

all the words stimuli as one condition. Therefore,

the neural representation of a voxel is a [40, 343]
matrix, generating [40, 40] neural RDM.

Behavioral RDM In this study, behavioral

RDMs were generated through computing 1 −
cosine similarity between 300-dimensional word

vectors. Just like neural RDMs, in POS classifica-

tion tasks, after performing pairwise comparison

between the 13 nouns and calculating the dissimi-

larity, we got the noun RDM([13, 13]). Verb RDM

([13, 13]) could be obtained by the same way. In

the lexicon decoding task, a [40, 40] word RDM

was constructed.

Representational Similarity Analysis After we

got the neural RDMs and behavioral RDMs, we per-

formed RSA. We took down the triangular matrix

of all RDMs and converted them into one dimen-

sion. In the POS task, for each voxel, we com-

puted the Spearman rank-order correlation coef-

ficient ρ between the flattened noun/verb RDM

and their corresponding neural RDMs of each sub-

ject. Fisher r-z transformation was applied to

the coefficient. We then made a one-sided T-test

(H0 : µ > 0) across subjects. Top N/2 (N ∈
{1000, 1500, 2000, 2500, 5000}) voxels with high-

est z-scores and p < 0.05 were selected in both

noun and verb conditions and were then merged

into top N informative voxels for further analy-

sis. In lexicon decoding task, similar steps were

adopted except for only one condition, and top N



voxels were directly selected.

2.6 Two Decoding Tasks

In order to explore how different voxel selection

methods perform at different linguistic levels, we

designed two decoding tasks.

2.6.1 Part-of-Speech classification

The first one was a coarse-grained part-of-speech

classification task. As previous studies suggested,

the neural substrates of Chinese noun and verb pro-

cessing vary a lot from each other(Yu et al., 2011,

2012, 2013; Yang et al., 2017), while the distinc-

tion between many adjectives and nouns is very

vague and ambiguous. In addition, the size balance

between different labels should also be considered.

Thus, we let the decoder implement a binary classi-

fication just between nouns and verbs. In this task,

a support vector machine(SVM) was selected as

the learning algorithm. The kernel function of the

SVM classification model was radial basis func-

tion(RBF).

2.6.2 Lexicon decoding

Apart from POS classification, we designed a more

fine-granted lexicon decoding task. In this task,

the learning algorithm needed to predict the corre-

sponding 300-dimensional semantic vector(rather

than a label) given a brain image. The predicted

vector would be compared with all other word vec-

tors later. We set the decoder as a lasso linear

regression, which was L1-regularization.

2.7 Decoder Training

In the POS classification task, 1-level signals of

13 nouns and 13 verbs from all subjects in overt

reading(experiment-1) were the training set. Neu-

ral data of 23 nouns(13 of which were the same as

the training set while 10 of which were new imag-

ined words) and 23 verbs from subjects in imag-

ined speech task(experiment-2) were the test set.

In the lexicon decoding task, fMRI data of all overt

reading 40 words were trained while neural signals

from 60 words in imagined speech were tested. In

both decoding tasks, decoders were trained using a

leave-one-subject-out(LOSO) cross-validation pro-

cedure. There were 47 subjects in experiment-1

for decoder training. Hence the overt reading data

set was divided into 47 blocks. Data in each block

came from the same subject. 46 blocks were used

as the training set and the remaining one used for

evaluation in overt reading task.

2.8 Decoding and Evaluation

POS Classification Accuracy For the POS clas-

sification task, we used the accuracy score in the

classification confusion matrix as the test metric.

Lexicon Decoding Rank Accuracy For the lex-

icon decoding task, following the setting in Pereira

et al. (2018), a rank accuracy was defined. More

formally, for a given brain image, the decoder

would predict a 300-dimensional word vector. We

computed the cosine similarity scores between the

predicted vector and all word vectors in the test

set. We then ranked all the words in the test set

according to the cosine similarity scores decreas-

ingly. Suppose the corresponding real word for

this certain image ranks i th, and there are n words

in the test set in total, then the lexicon decoding

evaluation score can be given as rank accuracy:

r = n−i
n−1

Considering we let the learning algorithm de-

code both word reading and imagined speech, there

would be evaluation results for both types of speech,

too.

Reading Words Decoding Decoders’ overt read-

ing performance was quantified as the mean value

of remaining subjects’ test scores in LOSO cross-

validation, in both POS classification and lexicon

decoding tasks.

Imagined Words Decoding Decoders trained

with overt reading data were then used to predict

the same 40 words in the training set, but in imagin-

ing condition. Predicted labels or semantic vectors

were compared with the real ones to compute the

evaluation score using above metrics.

Transferred Imagined Words Decoding Since

there were 20 additional words in imagined speech

not shown in the overt reading presentation, the

training set did not cover these 20 words. Here

we defined the decoding of new imagined words

as transferred imagined speech decoding, which

implied the semantics transferring based on the

conceptual network. We utilized the same decoder

in normal imagined speech decoding, while pre-

dicting 20 different imagined words.

3 Results and Analysis

3.1 POS Classification

As Figure 3 shows, both RSA and voxel-wise LR

feature selection could achieve classifying different

POS tags in all kinds of speeches (cross-validation

T-test, p < 0.05, H0 : µ > 0.5). Significantly,

transferred imagined speech decoding was realized.



The semantics transferring indicates the conceptual

network working.

Figure 3: Decoding accuracy of POS classification. Red bar
is for overt reading decoding, blue one for imagined speech
while yellow one for transferred imagined speech.

In detail, voxel-wise LR worked better than RSA

in decoding read words, while in normal imag-

ined speech and transferred imagined speech,

RSA outperformed. What’s interesting is that

RSA’s decoding performance on both imagined

words(57.4%, 55.0%) was even better than that of

read words(53%). This may suggest that the neural

processing difference between the concepts repre-

sented by ‘verbs’ and ‘nouns’ was greater in the

imaginary modality than in the reading modality,

and this difference was captured by RSA.

Another point worth paying attention to is that

in RSA, transferred imagined words’ decoding

accuracy(0.574) was higher than normal imag-

ined words(0.55). Considering the decoder was

trained with words which didn’t appear in trans-

ferred speech, this result might indicate that these

10 nouns and 10 verbs in transferred speech dif-

fer more from each other than those 26 words in

normal imagined speech, from the perspective of

‘concept’. Once the decoder extracted the differ-

ence information of POS successfully, it performed

better in transferred speech.

Figure 4 and Figure 5 show the effect of the

number of selected voxels on the decoding accu-

racy. With the increase in the number of voxels,

the accuracy of decoders using the RSA voxel se-

lection method doesn’t improve very much. The

best number of voxels for RSA is around 1500 to

2000. This means that in the RSA method, more

voxel might not bring extra information gain. For

a relatively coarse-grained level such as part of

speech，a proper amount of voxel is enough to dig

out the differences in the neural representations of

different POS tags in the conceptual network.

Figure 4: POS performance with different voxel numbers.
RSA voxel selection algorithm focused.

Figure 5: POS performance with different voxel numbers.
Voxel-wise LR voxel selection algorithm focused.

As for the voxel-wise LR, with the number of

voxels growing, the accuracy decreases first, and

then gradually increases, achieving the best perfor-

mance at 5000 voxels. Voxel-wise LR is a data-

driven feature selection algorithm, within the same

modality, more voxels mean more information gain

to some extent. However, when cross-modality is

considered(overt read → imagine), the situation

might be different.

3.2 Lexicon Decoding

Performance of lexicon decoding can be found as

Figure 6 presents. As we can see, the RSA method

didn’t work at all in lexicon decoding while voxel-

wise LR worked quite well. For lexicon decoding

task, all words were considered to be under the

same condition(‘lexicon’) in RSA. RSA localizes

voxels that activate similarly for a certain class of

stimuli, which means it can be used for classifi-



cation between different conditions. So, it’s not

surprised to see that within one condition, RSA

can’t help decode.

Figure 6: Accuracy of lexicon decoding

As for voxel-wise LR, the decoding perfor-

mance for overt reading reached 73.5%. Our work

achieved similar accuracy compared to previous

studies(Pereira et al., 2018). However, different

from the previous work which trained and test on

the same participant, our experiment paradigm was

cross-subject. This result provides reliable evi-

dence for the stability and similarity of the con-

ceptual networks across subjects, which has also

been suggested in other studies(Lu et al., 2021).

On the other hand, voxel-wise LR signifi-

cantly (T-test across all samples for rank scores,

p < 0.05, H0 : µ > 0.5) decoded imagined

words(53.1%). To our knowledge, this is the

first report of achieving decoding imagined speech

at a fine-granted lexicon level. Some previous

works have also explored the decoding of imag-

ined speech, but they were limited to whether the

coarse-grained distinction between concrete words

and abstract words(T et al., 2021); simple yes, no

and a third word(Sereshkeh et al., 2019); or several

simple phrases(Dash et al., 2020). In addition, the

decoders in these studies were all trained on imag-

ined speech, rather than overt speech like in our

work, which was cross-modality.

Most significantly, transferred imagined word

decoding was achieved successfully at 54.9%(p <
0.05). Predicting imagined new words has never

appeared in previous work to our known. This

result suggests that when the conceptual network

was captured by learning algorithm, it could help

predict new imagined words.

Figure 7 and Figure 8 demonstrate the trend of

lexicon decoding performance with the number of

Figure 7: Lexicon decoding accuracy with various reduced
dimensionality. The voxel selection method is RSA.

Figure 8: Lexicon decoding accuracy with various reduced
dimensionality. The voxel selection method is voxel-wise LR.

voxels increasing. RSA didn’t work any the time.

In VWLR, when the voxel number grew up, the

learning model performed better and better in de-

coding reading words. What should be noticed is

that in imagined words decoding, the best perfor-

mance was achieved at 1500 voxels, rather than

5000 voxels in word reading. This indicates that

a larger voxel number might cause the decoder

overfit to the reading modality. Especially, when

transferred word decoding was considered, only the

learning model trained with 1500 voxels performed

statistically significant results(p = 0.006).

3.3 Voxel Selection Results

Figure 9 and Figure 10 show the top 5000 selected

voxel distribution over the whole brain. Informa-

tive voxels in RSA were ranked by z−score, while

in VWLR, R2 metric was used to sort the vox-

els. Figure 9 shows that Chinese nouns activate in

more general area while in Chinese verbs condi-

tion, left inferior frontal gyrus(LIFG) and posterior

superior and middle temporal gyri (LpSTG&MTG)



were activated, which is consistent with Yu et al.

(2012). As shown in Figure 10, in lexicon decoding,

VWLR localized relevant voxels in more widely-

distributed areas than RSA. This result can be sup-

ported by Huth et al. (2016a).

Figure 9: Selected voxels of RSA for nouns and verbs.

Figure 10: Selected voxels for lexicon decoding.

4 Discussion

To explore the neural conceptual network, we con-

ducted prediction of imagined words and trans-

ferred imagined words using brain activation cor-

responding to word reading. Our decoder worked

at both part-of-speech level and lexicon level and

results are robust throughout different number of

voxels selected to prediction model. It indicated

that internal neural conceptual network was the ter-

minal serving for semantic ‘departure’ and ‘arrival’

and language processing (comprehension, genera-

tion and production) played the role of flight carry-

ing semantic information. To our best knowledge,

it is the first time to provide neurobiological evi-

dence for the ancient philosophy issue ‘relationship

between thought and language’.

Another interesting results were prediction of

lexicon only worked based on data-driven VWLR

voxel selection algorithm but predictions of part-of-

speech were successful based on both data-driven

VWLR voxel selection algorithm and hypothesis-

driven RSA voxel selection algorithm. Tracing

back to the nature of these two voxel selection algo-

rithms, RSA aimed to establish links between neu-

ral responses and part-of-speech processing while

VWLR directly reached valid voxels correspond-

ing to lexical semantic vectors. It is reasonable

that fine-grained lexical level brain activation can

predict coarse-grained semantic category level neu-

ral activities. Also, it suggested that semantic in-

formation in neural conceptual network might be

hierarchical organized and clustered into different

semantic dimensions like the real world concep-

tual network depict by natural language processing.

Furthermore, brain regions derived from VWLR

were distributed onto more broad cortical areas,

which is consistent with previous studies describ-

ing semantic dimensions and semantic maps(Wang

et al., 2018; Xu et al., 2018). Brain regions derived

from RSA-noun processing and RSA-verb process-

ing converged in bilateral inferior frontal gyrus one

of which was considered as the hub of general lan-

guage generation and diverged in other valid voxels,

indicating discrepancy anatomical basis underlying

part-of-speech processing. To surmise, the neural

conceptual network characterized by hierarchical

functional organization and its coupling anatomical

basis.

Two questions need to be paid close attention.

First, based on trade-off between research goal and

experimental cost, word sets used in current were

scale-limited. Future research should develop real

world conceptual network based on large corpora,

figure out mapping rules between real world con-

ceptual network and neural conceptual network and

then construct robust and individual neural concep-

tual network. Second, we selected conservative

voxel selection algorithms (data-driven VWLR and

hypothesis-driven RSA) and decoding algorithms

(SVM and LASSO) in our study and state-of-the-

art neural network algorithm was discarded. Neural

network algorithms do achieve higher accuracy of

prediction but aim of current study was to test sta-

bility of conceptual network. Better performance

of neural network algorithm can hardly be inter-

preted as mediations of conceptual network. In

future, neural network algorithms should be uti-

lized to construct conceptual network in brain by

learning brain response for real world conceptual



network and parameters in hidden layers may help

understand linguistic processing.

5 Conclusion

Our study explored plausible conceptual network

by establishing links between neural responses in

language comprehension and generation at part-of-

speech level and lexicon level. Significant predic-

tions of imagined words from word reading suggest

feasibility to construct stable internalized concep-

tual network. More broadly, successful predictions

of transferred imagined speech indicate potential

hierarchical and/or clustered structure of concep-

tual network. Taken together, our study provides

novel evidence to expand understandings of the na-

ture of conceptual network and its relationship with

linguistic processing. Future studies should focus

on construction of the neural conceptual network

which adapt to the real-world conceptual network

and multilevel linguistic processing.
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A Stimuli

Table 1 and 2 show the details of our stimuli.

No. Word Translation POS Frequency

1 生产 Produce verb 0.096

2 告诉 Tell verb 0.042

3 参加 Participate verb 0.029

4 准备 Prepare verb 0.029

5 战斗 Battle verb 0.024

6 创造 Create verb 0.022

7 形成 Form verb 0.020

8 前进 Advance verb 0.020

9 发动 Start verb 0.017

10 相信 Believe verb 0.017

11 改变 Change verb 0.014

12 成立 Found verb 0.014

13 举行 Hold verb 0.013
Mean 0.027

14 经济 Economy noun 0.075

15 国家 Nation noun 0.074

16 眼睛 Eye noun 0.054

17 技术 Techonology noun 0.046

18 情况 Situation noun 0.046

19 资产 Property noun 0.031

20 速度 Speed noun 0.022

21 现象 Phenomenon noun 0.021

22 方向 Direction noun 0.021

23 工程 Engineering noun 0.018

24 利益 Profit noun 0.016

25 妇女 Woman noun 0.015

26 幸福 Happiness noun 0.012
Mean 0.035

27 伟大 Great adj. 0.039

28 正确 Correct adj. 0.029

29 清楚 Clear adj. 0.026

30 容易 Easy adj. 0.026

31 立刻 Instant adj. 0.020

32 认真 Conscientious adj. 0.017

33 巨大 Tremendous adj. 0.016

34 积极 Positive adj. 0.016

35 迅速 Rapid adj. 0.015

36 热情 Enthusiastic adj. 0.014

37 奇怪 Strange adj. 0.012

38 危险 Dangerous adj. 0.011

39 普通 Normal adj. 0.009
Mean 0.019

40 服务 Service n./v.∗ 0.015

Table 1: 40 words used both in overt reading and imagined
speech. ∗ambiguous POS, dropped in the noun/verb classifi-
cation task

B Read Words Decoding Visualization

As Figure 11 shows, here we demonstrate the word

reading decoding results of one subject in LOSO

cross-validation. The left plot was generated by

comparing the original 40 word vectors with them-

selves. The matrix was colored with the rank score

of cosine similarity. The more similar the two word

vectors are, the higher the rank score is. The right

plot was constructed similarly with true word vec-

No. Word Translation POS Frequency

1 方法 Method noun 0.038

2 温度 Temperature noun 0.013

3 工人 Worker noun 0.060

4 矛盾 Contradiction noun 0.021

5 农业 Agriculture noun 0.024

6 感情 Sentiment noun 0.012

7 现代 Modern times noun 0.031

8 世界 World noun 0.076

9 身体 Body noun 0.022

10 队伍 Team noun 0.016
Mean 0.031

11 建设 Construct verb 0.046

12 产生 Generate verb 0.022

13 要求 Demand verb 0.035

14 进攻 Attack verb 0.012

15 解放 Liberate verb 0.049

16 发表 Publish verb 0.013

17 进行 Conduct verb 0.066

18 认为 Consider verb 0.025

19 记得 Remember verb 0.011

20 扩大 Enlarge verb 0.011
Mean 0.029

Table 2: 20 new words used only in imagined speech

tors compared with predicted word vectors. De-

coding accuracy of this subject was 79.8%. As we

can see, the values on the diagonal of the decoded

matrix are relatively high, and some pattern in the

decoded matrix was similar to the original one.

C Imagined Words Decoding

Group-Level Analysis

In order to explore how our decoder performed

under the overall word imagining condition, we

also designed a group-level study. For each imag-

ined word, we averaged the brain activation of

all subjects in the test set. Inspired by the ERP

method in EEG research, this helps reduce indi-

vidual differences and random factors, and capture

the cognitive response of the word imagination

event itself as much as possible. For imagined

words decoding, the group-level decoding perfor-

mance achieved at 53.3%, while the transferred

one achieved at 65.8%, which is much higher than

that of individual-level(54.9%). Like in reading

words decoding, similar comparing matrices were

built for imagined words decoding as Figure 12 and

Figure 13 show but at a group level. As we can see,

for transferred imagined words, the decoded ma-

trix’s pattern(left one in Figure 13) was somewhat

similar to the self-compared matrix on the left.



Figure 11: Ranked cosine similarity correlation for reading words decoding of one subject in the LOSO cross-validation.

Figure 12: Ranked cosine similarity correlation for imagined words decoding of the test group.

Figure 13: Ranked cosine similarity correlation for transferred imagined words decoding of the test group.


