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Hippocampal neurons encode physical variables'” such as space’ or auditory
frequency®in cognitive maps®. In addition, functional magnetic resonance imaging
studies in humans have shown that the hippocampus can also encode more abstract,
learned variables® ™. However, their integration into existing neural representations
of physical variables'" is unknown. Here, using two-photon calcium imaging, we
show that individual neuronsin the dorsal hippocampus jointly encode accumulated
evidence with spatial position in mice performing a decision-making task in virtual

reality’*®. Nonlinear dimensionality reduction® showed that population activity was

well-described by approximately four to six latent variables, which suggests that
neural activity is constrained to alow-dimensional manifold. Within this
low-dimensional space, both physical and abstract variables were jointly mapped in
an orderly manner, creating ageometric representation that we show is similar across
mice. The existence of conjoined cognitive maps suggests that the hippocampus
performs a general computation—the creation of task-specific low-dimensional
manifolds that contain ageometric representation of learned knowledge.

Since the discovery of place cells in the cornu ammonis 1 (CA1)
of the dorsal hippocampus that increased their firing rates when
rats moved through specific locations in a given environment?,
hippocampal neurons have also been shown to encode time'”'8,
auditory frequency®, odours*” and taste’. Together, these studies
support the view that the hippocampus constructs task-dependent
cognitive maps®?, in which hippocampal neurons not only encode
spatial position, but whichever environmental variable is relevant to
the task at hand. Furthermore, functional MRI studies in humans
have shown that the hippocampus can encode more cognitive vari-
ables, such as the sequential nature of a non-spatial task® or social
structures'®", Cognitive variables can be characterized by geometric
properties such as adjacency and distance?* %, suggesting that the
neural encoding of these variables at the cellular level may also have
geometric structure.

Neural activity can be described as a pointin a high-dimensional
coordinate system, in which each coordinate axis represents the
activity of asingle neuron. The underlying properties of the network
anditsinputs can confine neural trajectories to a subregion of this
space—the neural manifold—which has been proposed to underlie
motor movements®?*, head direction cells® and hippocampal maps
of physical variables®. The conceptual ideas in these studies suggest
a general principle of hippocampal computation: the construc-
tion of organized maps of learned knowledge®*? instantiated by
neural manifolds. Here we examine how neurons in the dorsal CAl
integrate neural representations of cognitive and physical
variables and whether low-dimensional manifolds underlie these
representations.

Evidence accumulation in virtual reality

We used transgenic GCaMP6f-expressing mice (n=7) performing an
evidence-accumulation task in virtual reality**?*° (Supplementary
Video 1) and two-photon calcium imaging to record the activity of
neurons in dorsal CAl at cellular resolution (n = 3,144 total neurons;
449 + 64 neurons (mean ts.e.m.) simultaneously recorded per session)
(Fig. 1a). The ‘accumulating towers’ task'* combines navigation with
decision-making, such that position—a physical variable—has to be inte-
grated with accumulated evidence*¢*"32—a cognitive variable that is
notinnate and canbeinferred and calculated only after learning the task
rules. Mice learned to traverse the stem of animmersive virtual-reality
T-maze, while visual cues were presented randomly on the left and right
walls. Turning to the side with more cues at the end of the maze resulted
in the delivery of aliquid reward, while turning to the opposite side
resulted in atime-out. Consistent with previously published results™,
the behaviour showed characteristic psychometric curves (Fig.1b) and
mice used evidence (the number of right towers minus the number of
left towers) from throughout the cue period (Fig. 1c).

Figure 1d, eillustrates two possibilities for how CAl neurons may
behave in the task. If the neurons behave similarly to previously
described place cells that respond differently depending on con-
text>**3**—for example, ‘splitter cells’ that encode turn direction—we
would expect reliable place cell sequences that are specific to right- or
left-turntrials (Fig.1d). However, ifindividual CA1 neurons can encode
acognitive variable, such as the amount of accumulated evidence, in
additionto the positioninthe maze, the cognitive map would comprise
at least two independent axes—a position axis and an accumulated
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Fig.1|Imaging of CAl1 neural activity in mice performing the accumulating
towers task. a, Top, schematic of the task in which head-fixed mice navigate a
virtual-reality evidence-accumulation T-maze task. Insets show example views
fromthe perspective of the mice. Bottom, while mice (n=7) perform the task,
two-photon calciumimagingis used to record hippocampal CAl neural
activity. Scalebars, 200 pm (mainimage) and 20 pm (magnification).

b, Psychometric curves of mice performing the towers task. Grey lines,n=7
mice;blackline, metamouse combining dataacross mice. Dataare

mean + binomial confidence interval. ¢, Logistic regression showing that mice
use evidence (number of right towers minus number of left towers) from
throughout the cue period. Grey lines, n=7 mice; black line, metamouse
combining dataacross mice. Dataare mean +s.e.m.d, Firing fields of
right-choice-selective place cells would not depend on evidence and would
therefore divide ajoint evidence-by-position (E x Y) space into two halves (top).
Tworight-choice trials would generate the same neural sequence (bottom).

e, Alternatively, ifhippocampal neurons encoded evidence jointly with
position, smaller firing fields that divide the evidence dimension would appear
inEx Yspace (top), and tworight-choice trials could have different neural
sequencesthat depend onthe evidence valuestraversed (bottom).

evidence axis®. If so, we would expect each right-choice trial to evoke
different neural sequences, depending on the time courses of evidence
that the mice encountered throughout the maze (Fig. 1e). Notably, in
this second scenario, firing fields evaluated in a single dimension—such
as position—would exist, but would appear unreliable across trials with
different amounts of accumulated evidence (Fig. 1e, bottom). Unreli-
ability could appear as either missing activity in the place field of the
cell or variability in the position at which the cell is active.

Jointencoding of position and evidence

Todistinguish between these two possibilities, we examined how neural
activity depended on known behavioural variables such as position,
choice and evidence. We first calculated AF/F for each identified hip-
pocampal CAl neuron following established methods™>***. We then
measured the mutual information between the neural activity of each
cell and the position of the mouse along the stem of the T-maze (0 to
300 cm) and compared it to a shuffled dataset in which the activity of
each cell was circularly shifted within each trial. CA1 neurons exhib-
ited choice-specific place cell sequences when activity was sorted by
the position of peak activity (Fig. 2a). However, the response of indi-
vidual cells in these sequences was more variable and unreliable on a
trial-by-trial basisin comparison to asimpler alternation task (Extended
DataFig.1a,b). Thisis against the prediction of choice-specific cell maps
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Fig.2|CAlneuronsjointly encode the position of the mice and
accumulated evidencein an evidence-accumulation task. a, Choice-specific
placecellsequences, divided into left-choice-preferring (top), right-choice-
preferring (middle) and non-preferring (bottom) cells. Cells are shownin the
same order within each row group. AF/Fwas normalized within each neuron.

b, CAlneurons have firing fields inaccumulated evidence space (number of
right towers minus number of left towers). ¢, Example of the average neural
activity of asingle neuroninjoint evidence-by-position (£ x Y) space.

d, Twenty-five neurons with significantinformationin £ x Yspace. Each colour
representsonecell, and surfaces represent neural activity that exceeds 20
abovethe shuffled means (Extended Data Fig. 2a). e, Mutual information of
cells found to have significantinformationin £ x Yspaceis significantly greater
than mutualinformationin two-dimensional spacesinwhich either evidence
(Rp) or position (Ry) has beenrandomized. Two-tailed paired Student’s t-tests,
Bonferronicorrection,n=917 neurons; £ x Yversus R x ¥,****P<0.000L; Ex Y
versus E x Ry, ****P<0.0001; R; x Yversus E x Ry:****P<0.0001. For box plots,
boundaries, 25-75th percentiles; midline, median; whiskers, minimum-
maximum.

(Fig. 1d), but is consistent with maps in which evidence and position
are jointly encoded (Fig. 1e). We next measured the mutual informa-
tion between accumulated evidence and the neural activity of each
cell and found that CAl neurons formed firing fieldsin evidence space
that spanned small segments of evidence values (Fig. 2b and Extended
Data Fig. 1c), consistent with Fig. le.

To directly test the hypothesis that CAl neurons encode evidence
and positionjointly (Fig.1e), we measured the amount of mutual infor-
mation between neural activity and occupancy in a two-dimensional
evidence-by-position (£ x Y) space and compared this to the amount
of mutual information if cells encoded position or evidence indepen-
dently. The neural activity of an example neuron with significant mutual
information between activity and occupancyin £ x Yspaceisshownin
Fig.2c,and 25 of these neurons from a single imaging session are shown
in Fig. 2d and Extended Data Fig. 2a. For these neurons that jointly
encode position and evidence, mutual information in £ x ¥ space was
significantly greater than in two-dimensional spaces in which either
evidence or position values were shuffled (Fig. 2e and Extended Data
Fig.2b, c).

Geometricrepresentation by aneural manifold

Although the mutual information metric has historically been used to
measure spatial information in single hippocampal neurons™, it relies
on the manual selection of predetermined behavioural variables. We
therefore turned to the unsupervised extraction of neural manifolds
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using a principled method: manifold inference from neural dynamics
(MIND)® . Whereas most nonlinear dimensionality reduction techniques
focus onthe geometric properties of the cloud of population-state data,
MIND constructs a set of latent variables with a specific emphasis on
incorporating temporal dynamics. Itis therefore particularly suited to
find low-dimensional representations in data with sequential activity.

Wefirst used the distance metricin MIND to estimate the dimension-
ality of the neural manifold in the hippocampus during the accumu-
lating towers task. We calculated distances from estimated transition
probabilities between observed population activity states and counted
the cumulative number of population states that fell within spheres of
growing radii r, where r is an estimate for the inner distance®. If the
manifold has d dimensions, we expect the number of statesto grow as
r“. We found that the number of states grows approximately asd=5.4
(4.8-6.0;95% bootstrapped confidenceinterval), strongly indicating a
low, approximately four-to-six-dimensional latent geometry (Fig. 3a).
Notably, the dimensionality estimate of asimpler task, in which visual
cues appeared only on one side of the maze, was significantly lower
(Extended DataFig. 3).

To validate this estimate, we next embedded the manifold into
d-dimensional Euclidean spaces and assessed how well these embed-
ded manifolds described neural data using cross-validation on held-out
trials (Extended Data Fig. 4). Figure 3b shows a small portion of the
activity from 40 neurons and the reconstruction of that same data
from the five latent variables obtained after embedding the manifold
into a five-dimensional Euclidean space. We measured the average
cross-validated correlation coefficient between the neural data and
the reconstruction of the same data from manifolds embedded into
two- to seven-dimensional Euclidean spaces. Consistent with the
dimensionality estimate in Fig. 3a, we find that the reconstruction
performance saturates at around five to six dimensions (Fig. 3c). Using
alinear dimensionality reduction technique—principal component
analysis—comparable decoding indices for embedding into 4, 5 and
6 dimensions are reached using 29, 40 and 47 principal components,
respectively. This reveals that hippocampal activity is constrained to an
intricately shaped low-dimensional manifold that can only be identified
with nonlinear dimensionality reduction techniques.

If the neural manifold accurately represents the cognitive map of
the task that individual neurons encode, two key predictions should
hold true. First, individual neurons should have firing fields that tile
the latent space and, second, important variables in the task—such
as position and evidence—should be organized in an orderly man-
ner. The activity of arepresentative neuron plotted as a heat map on
a three-dimensional embedding of the manifold is shown in Fig. 3d,
demonstrating alocalized firing field on the manifold. Plotting the
activity of multiple neurons on the same manifold reveals that the
manifoldis tiled with multiple firing fields (Fig. 3e and Supplementary
Video 2). Furthermore, the manifold structure implies the coordinated
activity of the entire neural population, such that activity of a single
neuron can be well-predicted by activity from the rest of the popula-
tion (Extended Data Fig. 4).

The second key prediction of our hypothesisis the orderly organi-
zation of important task variables on the manifold. Figure 3f reveals
that both position and evidence appear organized as gradients in
the latent space, in that the trajectory of the neural state typically
progresses along a position direction in the course of a trial, while
splitting along an independent, but integrated, evidence direction
(Supplementary Video 3)—astructure thatis fundamentally different
fromthe visualinputs that the mouse experiences in the towers task
(Extended Data Fig. 5). We then used Gaussian process regression
to decode position and evidence from the manifold and found that
both variables can be decoded with similar accuracy as from neural
data (Fig.3g).Inaddition, other behavioural variables such as veloc-
ity and view angle could also be decoded from the manifold, as well
as binary task variables such as the choice on the previous trial and
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Fig.3|Geometricrepresentation of task variables onlow-dimensional
neural manifolds. a, The mean cumulative number of neighbouring neural
states as afunction of the geodesic distance. n=7 mice; dataare mean +95%
bootstrapped confidenceintervals. Grey dashed linesillustrate the slope
expected for afive-dimensional manifold. b, Examples of raw (left) and
manifold-reconstructed (right) neural activity from 40 neurons. AF/Fis
normalized to the maximum AF/Fin the window shown. ¢, Reconstruction of
held-out neural datafrom d-dimensional (dim.) embeddings of the neural
manifold. The decodingindex s the correlation coefficient between the
predicted and true AF/Fdatain held-outtrials.d, Each pointis alocationinthe
three-dimensional embedding of the manifold at one time point. Coloured
pointsrepresent AF/Fvalues thatare 3cabove the mean activity for one
examplecell. e, Firing field of five cells plotted on the manifold. f, Position (left)
and evidence (right) plotted on the three-dimensionalembedding of the
manifold. Black arrows represent two hypothetical trajectories that would
traverse through positionand evidence space. g, Decoding position (left) and
evidence (right) from d-dimensional embeddings of the manifold using
Gaussian process regression (GPR). The decodingindexis the correlation
coefficientbetween the predicted and true position or evidence values. The
shadedareaandlinerepresent the meandecodingindex +s.e.m.using GPRon
the top10% of neurons with the highest mutual information for position or
evidence. h, Schematic of the hyperalignment (hyper) procedure (Methods).
i, Decodingindex of position (left) and evidence (right) using the best
hyperaligned manifold from another mouse versus decoding with GPR using
the manifold of the mouse. Five-dimensional embedding; n=7 mice; two-tailed
Wilcoxonsigned-rank test; position, *P=0.016; evidence, P=0.81.NS, not
significant.j, The majority of manifold geometryis shared between the best
pairsof mice.c,g,i,j, Dataare mean +s.e.m.;n=7 mice.

whether the previous trial was correct (Extended Data Fig. 6 and Sup-
plementary Discussion).

If these geometric objects are task-specific, rather than mouse-
specific, there should be a high degree of similarity across mice
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****+P<0.0001.c,Doubletsare asymmetric. Thedirectionality index is defined
asthenumber oftimes cell1fires before cell 2in a trial minus the number of
timescell 2 firesbeforecelllinatrial.n=16,088 doublets; two-tailed paired
Student’s t-test; real versus shuffled data, ****P<0.0001.d, Example showing
how events from cell 1 (orange) and cell 2 (green) of adoublet are separated in
manifold space. Cyan and purple lines each represent atrial trajectory between
when cellland cell2fire. e, Theamount of time between whencell1and cell 2
fire plotted against the distance in manifold space. f, Left-and right-choice-
predictive doublets (blue and red box plots, respectively) are significantly
more predictive of upcoming choice thandoublets generated from shuffled
datainwhich trial IDs were shuffled. Left-predictive, n=922 doublets,
two-tailed paired Student’s t-test, real versus shuffled data, ****P< 0.0001;
right-predictive, n=1,227 doublets, two-tailed paired Student’s t-test, real
versus shuffled data, ****P< 0.0001. For box plots, boundaries, 25-75th
percentiles; midline, median; whiskers, minimum-maximum.

performing the same task™. To test this hypothesis, we trained a model
to predict position and evidence from manifold coordinates in one
mouse and used the model to decode these variables inanother mouse,
afteraligning their manifoldsin the five-dimensional embedding space
(Fig. 3h, i). We found that the majority of the geometric structure was
shared across mice (Fig. 3j).

Sequential neural activity encodes behaviour

Ifthe manifoldisagood representation of hippocampal neural activity,
theneachtrialinthe accumulating towers task has a corresponding tra-
jectory withinthe manifold, leading to the emergence of trial-specific
sequences of active cells. To detect sequences, we identified pairs of
cellsthat consistently fired one after the other without any restrictions
on the time and/or place in the maze that each cell fired (Extended
Data Fig. 7a) and termed a pair of cells as a ‘doublet’ if one cell fired
after the other significantly more often than in a shuffled dataset, in
which the activity of each neuron was circularly shifted within each
trial (Fig. 4a and Extended Data Fig. 7b). To test whether these dou-
blets appear more often than would be expected fromindependently
behaving choice- and position-selective cells, we shuffled the trial IDs
of each cellindependently withinleft- and right-choice trials to remove
pairwise correlations while preserving the place and side structure
seen in Fig. 2a (Extended Data Fig. 8). The number of trials in which

doublets appeared was significantly greater thanin the shuffled dataset
(Fig.4b and Extended Data Fig. 9a). Furthermore, given the mostly uni-
directional trajectories of the task in conceptual £ x Y'space (Extended
DataFig. 8a, b), we found that doublets were asymmetric (Fig. 4c and
Extended Data Fig. 9b).

Next, we used the latent dimensions from the five-dimensional
embedding of the manifold to reconstruct the neural activity of all
cellsand extracted doublets from this reconstructed data. Eventhough
doublets are very rare (on average, a given doublet is only active in
3.6+0.01% (mean £s.e.m.) of trials; n=16,088 doublets), the manifold
predicted the presence of doublets with a 0.87 + 0.02 true-positive rate
and 0.14 + 0.01false-positive rate (n=7 mice; mean +s.e.m.) (Extended
Data Fig. 9d). Furthermore, we found that the manifold could also
predict the precise timing of doublet events—the correlation between
the timing of a doublet and the distance traversed on the manifold
was significantly greater than the correlation in a shuffled dataset in
which manifold path lengths were taken from different trials with the
same time interval (Fig. 4d, e) (two-tailed Wilcoxon signed-rank test,
n=7mice, P=0.031).

As the manifold encodes sequential activity well and given that
behavioural variables are geometrically represented on the manifold
(Fig. 3f, g), we would expect sequences to encode information about
the behaviour of the mouse, specifically the upcoming choice. First,
we identified doublets that were significantly choice-predictive by
comparingthe probability that the mouse turns left or rightintrialsin
which a doublet appears to the same probability in a shuffled dataset
inwhich choicesin each trial were shuffled. Next, we found that these
choice-predictive doublets were significantly more predictive than
the same doublets drawn from the shuffled dataset in which trial IDs
were shuffled (Fig. 4f and Extended Data Fig. 9c). Taken together, these
sequences are informative beyond independently behaving cells, sug-
gesting population activity thatis consistent with movement along the
low-dimensional manifold.

Discussion

By combining large-scale calcium imaging with a behavioural task in
which animals accumulate abstract evidence during navigation, we
show how the coordinated activity of neuronsinthe dorsal CAlregion
ofthe hippocampus gives rise to a task-specific geometric representa-
tion of a cognitive process. The neural population manifests this geo-
metric representation by having firing fields within alow-dimensional
nonlinear manifold, along which key task variables—both continuous
and discrete—have an orderly arrangement. Previous rodent studies
have shown the existence of low-dimensional manifolds in the hip-
pocampus representing spatial position", and functional MRI stud-
iesin humans have shown that more abstract variables, such as social
structures'®", canbe decoded from the hippocampus. One possibility
was that different sets of hippocampal neurons could have encoded
these variables separately, similar to the specialized coding of sensory,
motor and cognitive variables by dopamine neurons in the ventral
tegmental area in the same task'®. However, we found that the major-
ity of task-responsive neurons encoded position and evidence jointly
(Fig.2), leading to population dynamics that also reflect this joint neural
code (Figs. 3, 4).

The formation of a conjoined geometric representation of physical
and abstract task variables, within neural manifolds in the hippocam-
pus, could serve as a common organizing principle across two roles
of the hippocampus—storing declarative memory and generating
cognitive maps—that have historically been studied separately*-*4°,
Low-dimensional manifolds could serve as the substrate on whichrela-
tional networks for both declarative and spatial memories are stored?.
In addition, our work suggests that the fast replay sequences seenin
human non-spatial tasks’ could be organized by the geometric struc-
ture of the neural manifold, analogous to the process by which neural
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sequences during ongoing behaviour are evoked from trajectories
through the manifold (Fig. 4). Finally, recent computational work has
focused on how representations of knowledge in areinforcement learn-
ing*® or predictive coding® context can be used to guide behaviour.
There are intriguing parallels between the latent structure identified
in these models and the latent variable structure we have uncovered
in our studies. However, future work is required to provide a quanti-
tative understanding of how our experimental results relate to these
learning models.
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Methods

Animals and stereotaxic surgery

All procedures performed in this study were approved by the Institu-
tional Animal Care and Use Committee at Princeton University and
were performed in accordance with the Guide for the Care and Use of
Laboratory Animals (National Research Council, 2011). Male and female
mice aged 2-18 months expressing GCaMP6f were used for chronic
expression of the calciumindicator.

n=>5triple transgenic mice expressing GCaMP6funder the CaMK11ax
promoter were obtained by crossing Ai93-D;CaMKlIla-tTA mice
(Igs7mes1teco-GeaMPelizeTo(Camk2a-t TA)IMmay/J, Jackson Laboratories,
024108) and EmxI-IRES-cre mice (B6.129S2-EmxI1™©Xi/] Jackson
Laboratories, 005628). These mice are also referred to as Ai93 x EMXI.

n = 10 Thyl-GCaMP6f mice (C57BL/6)-Tg(Thyl-GCaMPé6f)
GP5.3Dkim/J, Jackson Laboratories, 028280) were used. These mice
arealso referred to as GP5.3.

Behaviourally, no differences have been observed in Ai93 x EMX1
and GP5.3 mice™. In terms of calcium imaging, Ai93 x EMX1 mice have
higher expression levels of GCaMP6f than GP5.3 mice and therefore
higher signal-to-noiseratios, which results in the use of different activ-
ity thresholds to identify calcium events (described in ‘Identification
and analysis of sequences’). Some mice were used in multiple behav-
ioural experiments that we analysed. For example, the one-side cues
taskis atraining stage in the shaping procedure for the accumulating
towers task. For analyses and statistics other than those in Fig. 1b, ¢
(described in ‘Psychometric curves’ and ‘Logistic regression analy-
sis’), one imaging session for each mouse was selected based on the
performance of the mouse in the task during the session, the number
of active cellsidentified by the automated cell-finding algorithm, the
amount of noise in the AF/Fsignal and the quality of motion correction.

Mice underwent surgical procedures as previously described®* to
acquireoptical access tothe hippocampus. Surgery was performed on
mice under aseptic conditions and body temperature was maintained
withaheating pad (Harvard Apparatus). Mice were anaesthetized with
isoflurane (2.5% forinduction, 1-1.5% for maintenance) and given a pre-
operative dose of meloxicam subcutaneously for analgesia (1mgkg™)
andapostoperative dose 24 hlater. After asepsis, the skull was exposed,
and the periosteum was removed.

A custom lightweight titanium headplate was attached to the skull
with adhesive cement (C&B Metabond, Parkell). A craniotomy in the
left hemisphere centred over the CAl (mediolateral, -1.8 mm from
the midline; anteroposterior, 2.0 mm posterior from bregma) was
made using a pneumatic drill. A small volume of overlying cortical
tissue was aspirated to expose the external capsule; superficial fibres
were then removed until the alveus became visible. A thin layer of
Kwik-Sil (WPI) was injected into the resected area, and a metal can-
nula (316 S/S Hypo Tub 12T GA. 0.1080/0.1100 inches outer diameter
% 0.0890/.0930 inches inner diameter x 0.060 inches long; cut and
deburred) witha coverglass (2.5 mm diameter, Erie Scientific) attached
tothebottom (NOAS81adhesive, Norland) wasimplanted ontop of the
Kwik-Sil, so that the Kwik-Sil served as a stabilizing mediumbetween the
glass and brain tissue. Another layer of adhesive cement was added to
attachthe cannulato the skull and the headplate. Mice were allowed to
recover for at least 5 days before starting water restriction for behav-
ioural training. Mice were extensively handled during the restriction
process to familiarize them to experimenters. Mice were allotted daily
volumes of 1-2 ml of liquid per day, delivered either during behavioural
sessions or supplemented after sessions. Mice were examined daily to
ensure that there were no signs of dehydration and that a body mass
of atleast 80% of the initial value was maintained.

Behavioural training
The mice were trained to perform the accumulating towers task in
avirtual-reality environment, as previously described™**, In brief,

mice were headfixed so that they could run comfortably on an 8-inch
(20 cm) Styrofoam ball suspended by compressed air. Ball movements
were measured with optical flow sensors (ADNS3080) via an Arduino
Due, and the virtual-reality environment was projected onto a coated
Styrofoam screen (approximately 270° horizontal and 80° vertical
visual field) using a DLP projector (Mitsubishi). The virtual environ-
ment was generated using VIRMEn software?®. Rewards were delivered
by a solenoid valve (NResearch), controlled by a NI-DAQ card (PCI-
6229, National Instruments). This virtual-reality system has previously
been used*'**? and was designed, by choice of material and size of
the spherical treadmill, to minimize the amount of effort to turn the
floating ball, such that the moment of inertia of amouse pushing back
the ball (2.78 x10™* kg m?) is comparable to the moment of inertia of a
mouse pushingitself (2.68 x10™* kg m?).

Mice were trained to run down a 330-cm virtual T-maze (30-cm
start region, 200-cm cue region and 100-cm delay region). As mice
ranthrough the cue region, tall, high-contrast visual cues (towers, 6 cm
talland 2 cmwide) were shown along either wall. After the delay period,
mice were presented with aliquid reward for turning into the arm on
the side where more towers had been shown (4-8 pl of 10% v/v sweet
condensed milk or 10% w/v sucrose). Rewarded trials were followed
by a 3-sinter-trial interval, and error trials were followed by an audio
errorcueand al2-sinter-trial interval. When rewards or error cues were
delivered, the visual display froze for the first second after which the
display was thenblacked out. The trial length for the seven experimental
micewas 6.3 +0.8s(mean+s.e.m.) (cue,2.4+0.4s;delay,1.9+0.25).

Tower positions were drawn randomly from spatial Poisson pro-
cesses with means of 7.7 and 2.3 towers per metre on the rewarded
and unrewarded sides, respectively. Towers were transient, appear-
ing when mice were 10 cm away from their locations and disappeared
after 200 ms. Each session started with at least 10 trials of a visually
guided version of the task as warm-up before proceeding to the main
task.Behavioural sessions lasted 48:16 + 03:44 (mm:ss; meants.e.m.;
n=7mice). For analyses, trials in which mice turned around 180° or
backtracked to before halfway in the delay region were not included.
Detailed methods for the shaping proceduresinvolved in training mice
to performthetask, as well as performance and behavioural analyses,
have previously been published™.

Adifferent set of mice learned a simplified version of this task (‘alter-
nation task’), in which no towers were presented in the T-maze. In one
version of the alternation task (n =2) (Extended Data Fig. 1), the walls
were textured differently along the long stem and large distal cues
wereadded, as previously described*. The maze itself was also slightly
longer (340 cminstead of 300 cm). Inasecond version (n=7) (Extended
Data Fig. 6), the maze was identical to the accumulating towers task,
except no towers were ever shown. In both cases, mice simply needed
toalternate between left and right turns to be rewarded. Visual guides
were also present in the arm in which the reward would be located.

Two-photon cellular-resolution calcium imaging

The two-photon calcium imaging setup was identical to a previ-
ously published design®. Two-photon illumination was achieved
with a Ti:Sapphire laser (Chameleon Vision I, Coherent) operating
at 920 nm. Fluorescence was acquired using a 40%/0.8 NA objec-
tive (LUMPLFLN40X/W, Olympus) and GaAsP photomultiplier
tubes (H10770PA-40, Hamamatsu) after passing through a dichroic
(FF670-SDi01, Semrock), an infrared filter (FFO1-720sp, Semrock),
reflected by a second dichroic (FF562-Di03, Semrock) and passing
through a final band-pass filter (FF01-520/60, Semrock). The output
signal of the photomultiplier tube was amplified (Variable High Speed
Current Amplifier; 59-179, Edmund Optics) and digitized (PXle-7961R
FlexRIO, National Instruments). The microscope was controlled by
Scanlmage (Vidrio Technologies) software using additional analogue
output units (PXle-6341, National Instruments) for the laser power
control and the control of the scanners. Double-distilled water was



Article

used as the immersion medium for the objective. The average beam
power measured at the front of the objective was 60-160 mW. The
regionbetweenthe objective and imaging site was shielded from exter-
nal sources of light using ablack rubber tube. Horizontal scans of the
laser were achieved using aresonant galvanometer (Thorlabs). Typical
fields of view measured approximately 500 x 500 um and data were
acquired at 30 Hz.

Data processing and cell identification

Allimaging data were corrected for non-rigid brain motion using cus-
tom MATLAB code based on a technique similar to NoRMCorre, in
which the image is divided into multiple overlapping patches and a
rigid translation is estimated for each patch and frame by aligning
againstatemplate”. The set of transitions are then upsampled to create
asmooth motion field that is applied to a set of smaller overlapping
patches, and theregistered frame is then used to update the template
by calculating a running mean of past registered frames.

After correcting for motion, fluorescence traces (downsampled
to 15 Hz) corresponding to individual cells were extracted using a
constrained non-negative matrix factorization algorithm (CNMF)*.
Initialization of the spatial components for CNMF was done as previ-
ously published, as was classification of identified componentsinto
cell-like and non-cell-like categories”. Automated classification was
followed by manual re-classification of a subset of components and
artefactrejection. AF/Ffor each cell was calculated using the modal
value of fluorescence in 3-min long windows as baseline fluores-
cence. Animportant note is that CNMF can only identify cells with
calcium activity during the imaging session, hence cells that were
silent for the entire imaging session were notincluded in reported
cell numbers.

Psychometric curves

Psychometric curves (Fig.1b) were plotted using previously described
methods™. Inbrief, psychometric curves were fit using a four-parameter
sigmoid, p,(A) =p, +B[1+ e‘(A'AO)/"]_l, in which A is the difference
between the number of right and left towers. The binomial confidence
interval was calculated usingJeffrey’s method™".

Logistic regression analysis
Logisticregression (Fig. 1c) was performed using previously described
methods™. In brief, we modelled choices of the mice in each trial with
logistic regression in which the factors are the evidence (number of
right towers minus number of left towers) in five equally sized regions
inthe cue period.

Forboththe psychometric curves (Fig. 1b) and the logistic regression
analysis (Fig. 1c), all sessions in which mice (n=7) performed above
60% correct were included (n=109 total sessions).

Mutual information analysis

For each cell, we evaluated a previously defined mutual information
metriC38,I:_[ Ax) logzyp(x) dx, inwhich/is the mutual information
rate of the cell in bits persecond, xis the spatial location of the mouse,
A(x) is the mean AF/F of the cell at location x, p(x) is the probability
density of the mouse occupyinglocationxand A =L A(x)p(x) dxisthe
overall mean AF/F of the cell.

To obtainA(x), we first denoised AF/F by smoothing with a Gaussian
filter with alength of 5 bins and thresholded the result so that values
less than 2 robust o across the time series were set to 0. A(x) was then
calculated bin-wise by collecting all smoothed and thresholded AF/F
valuesin their respective bins across the entire session and taking the
mean. A(x) was then smoothed by convolution with a Gaussian filter
with alength of 5 bins and a o of 1 bin. p(x) was calculated similarly by
counting the number of frames that the mouse spentin each binacross
trials and normalized to have a sum of 1.

For position data, 10-cm bins from O cm to 300 cm were used. For
evidence data, 31 bins (-15 to 16, number of right towers minus num-
ber of left towers) were used. For multidimensional spaces in which
we randomized one of the dimensions (R; x Yand E x R, in Fig. 2e), the
randomized variables (R; or R,) were created by using uniform ran-
domsampling with replacement from the joint distribution of discrete
evidence (E) and position (Y) values. More specifically, for the Rg x Y
space, inwhich Yis the non-randomized dimension, we first found the
distribution of E values present in the data for each Y value. This cre-
ated 30 separate E distributions with respectto Y. The R value for each
frame was generated by randomly sampling from the sole E distribution
that corresponded to the non-randomized Yvalue for that frame. This
procedure was performed to control for the non-uniformity of the joint
Ex Ydistribution in which specific combinations of £and Y values can
have greatly different probabilities. A similar procedure was followed
for generating the E x Ry variable.

To determine significance, the mutual information value of each cell
was compared with the mean mutual information value of a shuffled
dataset (100 shuffles), in which the AF/F of each cell was circularly
shifted by arandom interval within each trial, which disrupts the rela-
tionship between position and neural activity, but maintains neural
activity patterns. Only cells that had mutual information values greater
than 2o above the average mutual information of the shuffle distribu-
tion were considered statistically significant. Cells with statistically
significant mutual information between neural activity and position
in left-choice trials, but not right-choice trials were categorized as
left-choice preferring, whereas cells with statistically significant mutual
informationbetween neural activity and positioninright-choice trials,
but not left-choice trials were categorized as right-choice preferring.
Those that were significant for both left and right choice trials were
categorized as non-preferring. Similar tests were done for mutual infor-
mation between neural activity and evidence, with the addition that
cells for which training and test sets were not correlated (described
below) were rejected.

For one-dimensional sequence plots (Fig. 2a, b and Extended Data
Figs. 1c, 3¢), A(x) values were sorted and normalized on the basis of
their peak mean AF/F values. For the cross-validation procedure for
evidencefields (Extended DataFig. 1c), trials were ranked on the basis
of the maximum AF/F value of the cellina given trial. Odd-ranked and
even-ranked trials were assigned to the training and test sets, respec-
tively.A(x) wasrecalculated on the training and test sets and smoothed
asdescribed above. Only cells with significantly correlated A(x) between
the training and test sets (P < 0.05) were used in the sequence plots.
The training set was sorted on the basis of the peak mean AF/F values
and plotted. This same sortingindex was then used to plot the test set.

For Extended Data Fig. 2d, cells were considered to encode both
evidence and positionifthey had significant mutual informationin Ex Y
space, asdescribed above. Of the remaining cells, cells were considered
toencode only positionifthey were significantin Ry x Y space (16%) and
onlyevidenceifthey were significant in £ x R, space (6%). For Extended
Data Fig. 2e, distributions of mutual information in R x Yand E x Ry
space were calculated from 50 different shuffles, in which either E or
Ywere shuffled. Of the £ x Y cells described above, 89.9% had mutual
information values in £ x Y space greater than 20 above the mean of
both shuffled distributions, 9.8% had mutual information values that
were greater than only the E x R, distribution and 0.3% had mutual
information values that were greater than only the R, x Y distribution.

Counting the number of place fields

To estimate the number of place fieldsin E x Yspace, we followed a heu-
ristic to count peaks derived from previous studies****, Using the neural
activity maps for each neuronin £ x Y space (Fig. 2c, d and Extended
Data Fig. 2a) obtained as described above (see ‘Mutual information
analysis’), we considered all bins that were 2g above the shuffled mean
as candidate placefieldsinthe E x Yspace. We thenjoined all bins with



adjacent significant bins, and if a connected component exceeded
3x3=9bins, we counted the connected componentasaplacefield. The
distribution of the placefield countsis shownin Extended Data Fig. 2g.
Note that a very small number of cells (3%, n =31 out of 917 cells) had
significant firing fields above the shuffled control that were smaller than
9 bins. These appear in the histogram as ‘0. Cells had approximately
1.7 £ 0.3 (mean + s.e.m.) firing fields, with 53% (n =490 out of 917) of
cells having more than one firing field.

Manifold inference from neural dynamics

To infer latent dimensions from neural dynamics, we adopted a pre-
viously developed procedure® for calcium-imaging data. We first
smoothed the raw AF/F traces with an 11-bin Gaussian filter and thres-
holded at 40, for which we estimated the robust gacross the entire time
series, butindividually for every neuron. We restricted our analysis
to cells that had at least one transient in the recording session, and
imaging frames that had at least one active cell, as well as the portion
of the maze represented by 0-300 cm (cue and delay periods). We
then followed the previously published procedure® to calculate the
distances between pairs of population activity vectors, extracting a
set of latent variables from these distances with multidimensional
scaling, and learning amap between latent space and network activity
with local linear embedding (LLE).

In brief, we first learned a generative model of transition probabili-
ties from population activity s(¢) = [s,(¢), ..., sy(£)] of N neurons at time
0<t<T,totheactivity s(¢+At) using the previously developed random
forest method® with afew modifications. First, when splitting the neural
state spaceinto regions using a set of hyperplanes organized in a deci-
siontree, we assessed 20 random hyperplane orientations at every node
of the tree and selected the orientation that best split the data. This
improved performance with the large numbers of neurons typically
encountered in calciumimaging. Second, we set the minimum number
of leaves in each random tree to 500. Third, to define transitions, we
considered all states At =67 ms apart (one frame atal5-Hz framerate).
Fourth, we fitmanifolds to all data points, not only asubset of landmarks.
Allother hyperparameters were chosen as previously described™. The
random forest model provides us with a set of transition probabilities
p(s(t+At)|s(¢)) thatcanbe translated into alocal distance 6(s(¢ + At), s(t))
under adiffusion approximation, in which the transition probability p
decreases with distance 6 as p =< exp(-62). Similar to isomap*, we then
calculated the global distance between two states as the length of the
shortest path from one to the other via any intermediate, connected
states. The pairwise geodesic distances of [ points p(i,j), in which 0 <i,

Jj <l thenyields a matrix of size [ x [ that was embedded using multidi-
mensional scaling with Sammon’s nonlinear mapping. This yielded
latent variables to describe population data. The mapping from latent
space to neural activity and back was then achieved with LLE®,

Manifold inference on video files

To construct a low-dimensional representation of the task itself,
we applied the algorithm described above (see ‘Manifold inference
from neural dynamics’) to the visual input that the mice received in
atypical experimental session, more specifically to the blue channel
across all RGB pixels in each frame of the video files displaying the
field of view of the mice. This corresponds to a vectorized time series
0f1,792 x1,088 =1,949,696 pixels as a function of time. To make this
analysis computationally viable, we first downsampled the videos
17x from the original 1,792 x 1,088, restricted our analysis to trials
shorter than 30 s and frames with positions between 0 and 350 cm,
and simplified the hyperparameters, in comparison to the analysis of
neural data by using only two random hyperplane orientations and
1,000 landmarks. All other parameters were identical to the analysis
of neural data. The results are shown in Extended Data Fig. 5, where
Extended Data Fig. 5a shows the mean luminance of the blue channel,
after averaging across all pixels.

Dimensionality estimation

To estimate the dimensionality of the latent manifold, we analysed
the geometric properties of the geodesic distance matrix p(i, j). We
specifically studied the statistics of nearest neighbour distances. Sup-
posethat the neural states were confined to atwo-dimensional sheetin
high-dimensional neural state space. Within the sheet, the cumulative
number of points N within distance r will increase quadratically with
distance r, as more points on the sheet will fall within the neighbour-
hood, thus recovering the two-dimensional sheet structure. Using
this variation of the correlation dimension that can also be used for
complex attractor geometries'>*, we found a wide range of values for
which the number of points scaled like a power law.

We fit this power law by minimizing the quadratic error to the model
function N(r) =cr?,inwhich Nis the total number of neighbours, ris the
distance, and cand d are fit parameters. We fit this function over three
orders of magnitude, for 10°> < N <10°. The average across the seven
miceyielded d=5.4 (4.8-6.0;95%bootstrapped confidence intervals).
These numbers are consistent with an approximately 4-6-dimensional
manifold, embedded in an approximately 450-dimensional neural state
space (Fig.3a). For theillustrations in Fig. 3a and Extended Data Fig. 3a,
we normalized the distance by the average length of a trial along the
manifold for each mouse.

Reconstructing neural data from embedded manifolds

To assess the quality of the dimensionality reduction performed with
MIND, we measured how well the neural data can be reconstructed
fromthe dlatent variables after embedding the manifold into d dimen-
sions (Extended Data Fig. 4). This provides us with an estimate of the
minimum number of dimensions required for the reconstruction qual-
ity to saturate. This number should be comparable to the intrinsic
dimensionality of the manifold, and thus provided us with a separate
measurement of the dimensionality of the manifolds.

Measuring how well the coordinated activity of neurons is
predicted by the manifold

To this end, we held out a random trial, fit a manifold to the remain-
ing data, and embedded this manifold into 2-7 dimensions using
the methods described above (see ‘Manifold inference from neural
dynamics’). After fitting the manifold to the training data, we first pro-
jectedthe held-out trial onto the manifold to obtain d coordinates for
every time point and then reconstructed neural activity from these d
numbers in the test dataset using LLE™. We then thresholded the LLE
estimate to capture the thresholding nonlinearity of calcium imag-
ing. The thresholding cut-off was estimated from the training data for
thebest reconstruction. To assess the similarity between the raw data
andthereconstruction, we then measured the correlation coefficient
between the reconstructed neural data and the real data. These data
areavectorized time-series of the form neurons x time. To performan
element-wise comparison, we concatenate all columnsinto asingle vec-
tor and calculate the correlation coefficient. Thisnumber was averaged
across the10 held-out trials to form the decoding index, and the process
was repeated for all seven mice (Extended Data Fig. 4a, b). The data
showninFig.3carethe mean+s.e.m.for the seven mice. InFig. 3b, raw
AF/Fandreconstructed AF/Ftraces have been smoothed withan11-bin
Gaussianfilter and thresholded at 4 robust . For the reconstructed AF/F
traces, baseline subtraction before smoothing and thresholding was
accomplished by subtracting the mean of the reconstructed activity
of each cell from the reconstructed activity of each cell.

Measuring how well the activity of individual neurons is
predicted by the manifold

This analysis is similar to the one above (see ‘Measuring how well
the coordinated activity of neurons is predicted by the manifold’)
but tailored to quantify the predictive power of the manifold on a
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single-cell level (Extended Data Fig. 4c). To this end, we removed
one test neuron from all the N cells in the data and used MIND to fit
amanifold to the remaining N - 1 training neurons*¢. We then used
GPR to learn a map g(x) from manifold coordinates x to the activity
ofthe testneuronin 80% of the trials. We used a squared exponential
kernel function to specify the covariance, making these fits smooth
and differentiable, as expected for aresponse similar to afiring field.
In the remaining 20% of trials, we evaluated g(x) and measured the
correlation coefficient between the predicted and observed data
of the test neuron. This was repeated four more times for fivefold
cross-validation and the correlation coefficient over the five folds was
averaged. This value was calculated for 10 randomly chosen neurons
fromthe 25 most active neuronsin each mouse and averaged to form
thedecoding index (Extended Data Fig.4e).In Extended Data Fig. 4d,
reconstructed AF/Ftraces were baseline-subtracted, smoothed and
thresholdedidentically to the procedure mentioned above for Fig. 3b
(see ‘Measuring how well the coordinated activity of neurons is pre-
dicted by the manifold’).

Comparing MIND with principal component analysis

To compare this nonlinear dimensionality reduction technique with a
linear method, we also calculated the decodingindex (cross-validated
correlation coefficient between predicted and observed datain a
held-out trial) using principal component analysis (PCA). To this end,
weremoved a held-out trial from the data, calculated the principal com-
ponents of the remaining data and identified the d principal compo-
nents with greatest coefficientsin the training data. We then projected
the held-out trial onto these d principal components and used the
obtained coefficients to project back into neural state space. The simi-
larity of the observed held-out trial and the reconstruction from PCA
was assessed with the correlation coefficient and averaged across 10
random held-out trials. To reach the same mean cross-validated decod-
ingindex as MIND for manifolds embeddedind=4, 5and 6 dimensions,
PCArequired d=29,40 and 47 principal components, respectively.

Decoding position and evidence from the manifold and neural
activity

We used GPR to learn a function from latent space or neural activity
(selecting only the top 10% of cells with highest mutual information
for position or evidence to limit overfitting) to position and evidence.
Other nonlinear regression methods such as LLE yielded similar results,
whereas linear decoding methods generally failed. Figure 3g shows
the correlation coefficients between the positionand evidence values
in the behavioural session of each mouse predicted from the learned
regression model (trained on 80% of trials, applied to the test dataset of
20% of'trials, and repeated for five folds) and true position and evidence
values (averaged over the five folds)—the decoding index. To visual-
ize the position and evidence values (Fig. 3f) as well as the luminance
(Extended Data Fig. 5b, c) and view angle (Extended Data Fig. 6a), we
smoothed across the 20 nearest neighbours in latent space.

Similar methods were used in analyses shown in Extended Data
Fig. 6. To assess whether knowledge of variable X adds to how well
variable Y predicts the manifold, we decoded manifold dimensions
with GPR using both X and Y as inputs or X and shuffled Y. To assess
whether correlated and orthogonal components of Xand ¥ could both
be decoded, we used PCA on variables Xand Yto linearly regress out
Yfrom Xand decoded both principal component (PC)1and PC2 from
the manifold dimensions. To evaluate the accuracy of the decoding
for binary variables, such as the upcoming choice, the choice in the
previous trial and whether the previous trial was correct, we aver-
aged the prediction from the GPR across the trial to come up with a
single value, whichwas binarized as asingle prediction—for example,
predictingaleftorright choiceinthetrial-and compared it with the
true value—in this case, whether the mouse actually makes a left or
right choice.

Hyperalignment procedure

Hyperalignment across two mice was performed as follows. We first
fit the neural data of mouse A with MIND to obtain a set of T
d-dimensional latents x,,". We then perform GPR to learn a map from
the d-dimensional latents to abehavioural variable e,’= GPR(x,"). Next,
we perform MIND on the data of mouse B. This yields a different set of
d-dimensional latent vectors x;". From these latents, we predict the
behaviour of mouse B using the GPR trained on mouse A and a
five-dimensional rotation matrix R with e;' = GPR(Rx}"). The rotation
matrix was calculated from a five-dimensional representation of the

specialorthogonalgroup of degree 5(SO(5))sothatR = I'l}f1 expm(g; ¢;)
Here, expm() indicates the matrix-exponential of g; the ten generators
of SO(5), multiplied with a scalar angular parameter c,. These param-
eters were cross-validated by optimizing on the first half of the data
and decoding of position and evidence assessed on the second half.
For each mouse, we decoded position and evidence using the hyper-
aligned five-dimensional manifolds of the six other mice. In Fig. 3i, we
show the maximum decoding that can be done across the six other
mice for each mouse, compared with the cross-validated GPR (Fig. 3g)
for five-dimensional embeddings of the manifold in the same mouse.
Means were then calculated across the seven mice. We estimated the
contribution of shared geometry for each mouse in terms of fractional
variance explained by dividing the r* of position and evidence decod-
ing obtained with hyperalignment by the r of the best decoding that
could be done with either method.

Task trajectories

Tovisualize the sequential patterns of the task (Extended DataFig. 8),
we firstextracted ‘task trajectories’ as smooth splineinterpolations of
the specifictrajectory through £ x Yspace experienced over trials. The
task trajectories for single trials in a behavioural session are plotted
as thin lines in Extended Data Fig. 8a together with fits across all left
or right trials (thick lines). In addition, we also visualized task trajec-
tories as a flow field, for which we binned £ x Y space into 10-cm and
1-tower bins and calculated the trial-averaged gradient in the position
and evidencedirections for every bin. The resulting gradient matrices
were thenindividually smoothed by convolution with a Gaussian filter
with alength of five bins and a o of one bin. Every other bin was plotted
as arrows centred on the respective bin and pointing to the average
direction of the gradient (Extended Data Fig. 8b).

Identification and analysis of sequences

Apair of cellswas classified asadoublet if the number of trialsinwhich
the first cell had a transient event before the second cell was greater
than 20 above the mean of the same value obtained from a shuffled
dataset (100 times) inwhich neural activity was circularly shifted ineach
trial. Doublets that appeared in fewer than three trials were removed. A
transient event was defined as any time AF/F (smoothed with a Gaussian
filter withalength of five bins) for that cell was greater thana threshold
equal to 11x (Ai93 x EMX1) or 5x (GP5.3) the robust o across the entire
imaging session. Different thresholds for event detection were used
for the two mouse strains due to the difference in signal-to-noise ratios.
Triplets were constructed by simply combining doublets without allow-
ing the same cell to appear twice, that is, a cell cannot be the first cell
andthe third cellinthe triplet, and tested using the same significance
test as was used for doublets.

Eveniftwo place cells had activity that was completely independent,
we would still expect, by chance, that they fire in the same trials for a
subset of trials. For example, two place cells with fields at 100 cm and
200 cmthatare eachactive in100 random trials in a session with 200
trialswould, onaverage, show up together in 50 random trials. However,
ifthese two cellsappeared inall 100 trials together, it would be unlikely
that their activity wasindependent. To test whether doublets appeared



more often than chance, trial IDs of each cell were independently shuf-
fled, sothat relationships between cells were disrupted without affect-
ingthe neural activity of each cell (Extended DataFig. 8d), and then we
searched this shuffled dataset for the doublets again to determine the
number of instances adoublet would show upif the activity of the two
cellswere independent (n=100 shuffles).

A doublet was determined to be choice-predictive if the prob-
ability that the mouse was going to turn right in trials in which the
given doublet occurred was greater than 2o above or below the mean
probability of a right turn after shuffling the choices for each trial
(n=1,000 shuffles). The same assessment was made to determine
choice-predictiveness in triplets. Once choice-predictive doublets
and triplets were identified, we compared the predictiveness of real
doublet events to events obtained from datasets in which trial IDs were
shuffled (n=100 shuffles).

Comparison of sequences and the predictions from the
manifold

To show that the manifold can predict the presence of sequences, we
used the manifold to reconstruct the AF/F of each cell in each imag-
ing session with LLE (described above in ‘Manifold inference from
neural dynamics’). We then detected doublet events from this recon-
structed data and compared the trials in which doublet events were
found against thereal datato generate the true-positive rate (TPR) and
false-positive rate (FPR) for doublet events in each mouse.

More specifically, we constructed a Boolean array By, of size
Neeiis X Neens X Nyiais indicating the presence or absence of adoubletina
specific trial. We populated this array with the doublet-finding algo-
rithmdescribed above (see ‘Identification and analysis of sequences’)
using the observed calcium data. This constitutes ground truth. We
then reconstructed all neural activity from the latent dimensions of
the five-dimensional embedding of the manifold. This activity was then
thresholded at an activity level 8, and we considered only transients
that exceed this threshold. By definition, these data are the manifold
prediction. We identified doublet events in these surrogate data with
the same algorithm to construct a Boolean array B,cgiction- COmMparing
this prediction with the ground truth, we can count the number of
true positives (‘'1’in both the ground truth and the surrogate array),
false positives (‘1" in the surrogate array, ‘0’ in the ground truth), false
negatives (‘0”in the surrogate array, ‘1’ in the ground truth) and true
negatives (‘0’in both the ground truth and the surrogate array). TPR
was defined as TP/(TP + FN), in which TP is the number of true posi-
tives, and FN is the number of false negatives. FPR was defined as FP/
(FP+TN), in which FP is the number of false positives, and TN is the
number of true negatives. We then scanned across 6 (1-100, in inter-
vals of 5) to construct areceiver operating characteristic (ROC) curve
(Extended Data Fig. 9d) and calculated the distance d between the
point (0,1) inthe top left corner of ROC space and any point on the ROC
curve, d*=(1- TPR)?+ FPR2 We chose the threshold 8 such that this
distance was minimal to identify a point of best discriminant capacity.
Thevalues of TPRand FPRreportedinthe maintext are averages across
these points for all seven mice.

We next calculated the predictive power of the manifold for the exact
timing of a doublet. For all doublets, we measured the length of the
trajectory between the firing of the first cell and the firing of the sec-
ond cell onthe manifold ineach trialwhen the doublet was active. This
length, plotted against the time between the sequentially active cells,
is shown in Fig. 4e. To test whether the observed correlation of time
elapsed and distance on the manifold was significantly greater than the

correlation between time elapsed and any distance on the manifold,
we compared the observed correlation to the correlation coefficients
obtained from comparing time elapsedin a trial with manifold distances
overthesame timeinterval obtained from a different trial. We averaged
the correlations across 100 random trajectories obtained from other
trials and over all doublets for each mouse and performed a two-tailed
Wilcoxonsigned-rank test onthe average real and random correlation
values of the mice (n =7) to test whether real correlation values were
significantly greater than the random correlation values.

Statistical tests

All statistical tests were performed with MATLAB (2015b,2018a,2018b
and 2020a; Mathworks). Bonferroni correction of P values was per-
formed by multiplying the unadjusted Pvalue by the number of multiple
comparisons made. In cases in which the corrected P value exceeded
1.0, wereported the value as 1.0.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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a

Extended DataFig.1|Characterization of CAl1 neural variability in the
accumulating towers task. a, Each heat map represents one neuronand the
trial-by-trial activity of that neuronin the towers task for left-choice trials. Each
rowineach heat mapis the AF/F (normalized within each neuron) of the neuron
inthattrial.b, Same asina, but for the alternation task. Note that the single-trial
activity appears more variablein the towers task and more reliablein the

Towers task
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alternationtask, consistent with the results thatevidenceis alsobeing
represented by neuronsin the towers task. ¢, Neural activity (Af/F normalized
within each neuron) of cells significantly encoding evidence, sorted by activity

inhalfthetrials (top) and plotted using the same sorting in the other half of the
trials (bottom).
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Extended DataFig.2|Placefieldsinevidence-by-positionspace.a, Each
heat map shows the mean AF/F of aneuron withsignificant mutual information
inExYspace.b,Scatterplot of the mutual informationin R x Yspace versus
ExYspaceforeach cell with significantinformationin £ x Yspace (n=917
neurons). R;israndomized evidence. c,Sameasinb, but for Ex R, space versus
ExYspace.Ryisrandomized position.d, Intotal,29% ofimaged neurons had
significant mutualinformationin £ x ¥ space, whereas 16% had significant
mutualinformation only for positionand 6% had significant mutual
information only for evidence. e, Of the cells with significant mutual

informationin £ x Yspace, 89.9% had significantly more informationin Ex Y
space thanjustplace or evidence information alone, whereas 9.8% could not be
differentiated from place cells and 0.3% could not be differentiated from
evidence cells (Methods). f, The probability of a cell having significant mutual
informationin £ x Yspaceissignificantly greater than the joint probability of a
cellbeingaplace celland acell being an evidence cell. Two-tailed Wilcoxon
signed-ranktest, *P=0.016; n=7 mice; dataaremeants.e.m.g, Cellswith
significant mutual informationin £ x Yspacehad1.7+0.03 (mean +s.e.m.)
firing fields (n=917 cells).
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Extended DataFig. 3 | Dimensionality of an earlier training stage. During
the training of the towers task, mice proceed through various stages of
training.In one of these training stages, mice performatask nearly identical to
the towers task, except that visual cues only show up on one side of the maze.

a, Theintrinsic dimensionality of the one-side cues task is approximately 4.2
(4.0-4.5;95% bootstrapped confidenceinterval). n=4 mice; dataare

mean +95%bootstrapped confidenceintervals. Grey dashed lines illustrate the
slope expected for afour-dimensional manifold. b, Intrinsic dimensionality of
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the one-side cuestaskis significantly lower than the dimensionality of the
towers task. Two-tailed Wilcoxon rank-sum test, *P=0.042; n=7 mice (towers
task) and n=4 mice (one-side cues task); dataare mean+s.e.m. c, Choice-
specific place cellsequencesin the one-side cues task, similar to Fig. 2a.
Sequences are divided into left-choice-preferring (top), right-choice-
preferring (middle) and non-preferring (bottom) cells. Dataare splitbetween
left-choice trials (left) and right-choice trials (right). Cells are shownin the same
orderwithineachrowgroup. AF/Fwas normalized withineach neuron.
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Extended DataFig. 4 |Cross-validation methods and results demonstrating
how neural activity fromsingle neuronsis captured by coordinated
populationactivity. a, Illustration of the cross-validation method to calculate
the decodingindexinFig.3c. Dataaresplit for training (solid colours) and
testing (shaded colours). With the training data, amap is obtained from AF/F to
latent dimensions and back. Thismapis thenevaluated on the test data.b, To
assess the performance of the map, we concatenate the neuron x time datain
thetestblock and reconstructed testblockinto two vectors and calculate the
correlation coefficient from the elementwise pairwise comparison of the
vectors. The correlation coefficient was averaged across 10 individually held-
outtrials toyield the decodingindex. c, lllustration of a similar analysisin which
theactivity of asingle cellis decoded from a manifold fit to therest of the
neural population. One neuron (red) isremoved before using MIND to obtaina
setoflatents. Next, in the training data (solid green), amapis calculated from

the manifold to theactivity of the held-out neuron. The map is then used to
predict the test data (shaded green). The correlation coefficientis calculated
asinbandaveraged over five folds across 10 individually held-out neurons as
the decodingindex.d, Example of neural activity from 40 individually
reconstructed neurons, in which the activity of each neuron was decoded from
the five-dimensional manifold fit to the other cells following proceduresinc
(comparable toFig.3b, for which the methodinaand bwas used). AF/Fis
normalized to the maximum AF/Finthe window shown. e, Cross-validated
correlation coefficients between the activity of individual neuronsin the real
andreconstructed data, in which the reconstruction was accomplished with d-
dimensional embeddings of the neural manifold. The decodingindex is the
correlation coefficientbetween the predicted and real AF/F of the held-out
ROIs.n=7mice; dataaremeants.e.m.
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Extended DataFig. 5| Task manifold and neural manifold encode different MIND reveals alow-dimensional manifold, reflecting the visual sensory
variables. a, The visual space of the accumulating towers task across a structure of the accumulating towers task. Plotting luminance (top) and
representative session. Top, the mean luminance of the virtual-reality visual evidence (bottom) on the manifold reveals that luminanceis represented asa
field as afunction of positionin the T-maze. Bottom, four example frames.Note ~ smooth gradient, whereas evidence requires memory and is thus absenton the
the high variability of luminance during the cue period, where bright towersare  task manifold. ¢, Same asinb, but showing the neural manifold obtained from
randomly presented on the left and right walls. b, Performing dimensionality the mouse that ran the session (Fig. 3f). Note the absence of aluminance
reductiononthetimeseries of the pixel valuesin the raw video stream using representation, but the emergence of evidence.
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Extended DataFig. 6 | Decoding other variables from the neural manifold.
a, Similar to Fig. 3f, the view angle is plotted as colour on the three-dimensional
embedding of the manifold. b, The five latent variables of the neural manifold
embeddedinafive-dimensional Euclideanspace are better predicted by GPR
fromview angle and evidence values than from view angle and shuffled
evidence values. Two-tailed Wilcoxon signed-rank test, *P=0.016; n=7 mice;
dataaremeants.e.m.Decodingindexis the correlation coefficientbetween
the predicted manifold values and true manifold values, averaged over the five
dimensions of the manifold. ¢, Sameasinb, but for decoding manifold values
using position and velocity. The addition of velocity to positioninformation
significantly improves the decoding of manifold values. Two-tailed Wilcoxon
signed-rank test, *P=0.016; n=7 mice; dataaremean+s.e.m.d,Sameasinb,
but for decoding using position and time. The addition of time information
does notsignificantly increase how well manifold values are decoded.
Two-tailed Wilcoxon signed-rank test, P=0.30 (ns, not significant); n=7 mice;
dataaremeants.e.m.e, Weused PCAtoseparatethe correlated and
orthogonal dimensions between evidence and view angle and decoded both
PC1 (correlated) and PC2 (orthogonal) from the five-dimensional embedding

ofthe manifold. n=7mice; dataaremean +s.e.m. The decodingindexis the
correlation coefficientbetween the predicted and true principal component
values.f, The view angle is better decoded from the neural manifold
(five-dimensional embedding) in the towers task (‘Tow’), when evidenceis also
present,thaninthealternation task (‘Alt’) when evidenceis not present.
Two-tailed Wilcoxon rank-sum test, P=0.07;n=7 mice (towers task) andn=7
mice (alternation task); dataare mean +s.e.m. The decodingindexisthe
correlation coefficientbetween the predicted and true view angle values.

g, Average view angle trajectories, separated between left-and right-choice
trials, for the mice in the towers task (n =7 mice; blue, thin lines) and the
alternationtask (n=7 mice; red, thinlines). Thick lines represent averages
acrossmice. h, Average view angle valuesin the towers task (n=7 mice; blue,
thinlines) and the alternation task (n=7 mice; red, thinlines) over all trials.
Thicklines and shaded areaare mean + 95% bootstrapped confidenceinterval.
i, Accuracyin predicting the upcoming choice (left), the choice of the mousein
the previous trial (centre) and whether the previous trial was rewarded (right)
from d-dimensional embeddings of the neural manifold. n=7 mice; dataare
meanzts.e.m.
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mouse. Each panel shows traces for trialsin which the doublet was present.
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Extended DataFig.9|Choice-predictive sequencesin CAl neural activity.
a, Distribution of the values in Fig. 4b. b, Distribution of the values in Fig. 4c.

c, Distribution of the values in Fig. 4f.d, ROC curves for sequential activity
predicted fromthe five-dimensional embedding of the manifold compared to
sequential activity inreal data.n=7 mice.e, Similartoa, but for triplets. Inset
shows that triplets are significantly more likely to appearin the real data than
inthe shuffled datasetin which trial IDs were shuffled. Two-tailed paired
Student’st-test, real versus shuffled data, ****P<0.0001; n=34,737 triplets.

f, Similar to ¢, but for triplets, showing that left- and right-choice-predictive
triplets fromreal dataare more predictive than triplets obtained fromthe
shuffled datasetinwhich trial IDs were shuffled. Leftinset, left-predictive,
n=1,135triplets, two-tailed paired Student’s t-test, real versus shuffled data,
*»**+p<(0.0001; rightinset, right-predictive, n=1,755triplets, two-tailed paired
Student’st-test, real versus shuffled data, ***P<0.0001. g, Left-choice-
predictive triplets are significantly more predictive thaninstances inwhich the

firsttwo cellsinthe triplet fire, but the third does not, or when the third cell
firesalone.n=1,135triplets; two-tailed paired Student’s t-tests, Bonferroni
corrected;1>2->3versus1->2->not3,****P<0.0001;1->2->3versus
notl->not2-3,****P<0.0001;1>2~>not3versusnotl>not2->3,P=0.78.

h, Notably, for left-choice-predictive triplets, intrialsinwhich cellsland 2 fire,
butcell 3does not, significantly more trials end with the mouse turning right
thanthe sameinstancesinthe shuffled dataset.n=1,135triplets, two-tailed
paired Student’s t-test, real versus shuffled data, ****P< 0.0001.i,Sameasing,
butforright-choice-predictive triplets.n=1,755triplets; two-tailed paired
Student’s t-tests, Bonferronicorrected;1>2 >3 versus1->2->not3,
**#4p<(0.0001;1>2~>3versusnotl->not2~>3,****P<0.0001;1>2>not3
versusnotl->not2-3,P=1.0.j,Sameasinh, butforright-choice-predictive
triplets. n=1,755triplets; two-tailed paired Student’s t-test, real versus shuffled
data, ****P<0.0001. For box plots, boundaries: 25-75th percentiles; midline,
median; whiskers, minimum-maximum.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
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|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Imaging data was collected using Scanimage 2015. Behavioral data was collected using Matlab code (Matlab 2015b, Mathworks Inc)
based on the VIRMEn package (https://pni.princeton.edu/pni-software-tools/virmen-virtual-reality-matlab-engine). The CNMF algorithm
was used as published by Pnevmatikakis et al., Neuron 2016 and mildly adapted for manual post-hoc curation. This process is
documented in Koay et al., eLife 2020. MIND is made publicly available, together with all code to reproduce our analyses in the following
Github repository: https://github.com/BrainCOGS/HPC_manifolds. ViRMen was used as published by Aronov et al., Neuron 2014,
together with a custom wrapper that allowed for communication with more recent hardware. This is documented in Pinto*, Koay* et al.,
Frontiers 2018 and publicly available in https://github.com/sakoay/AccumTowersTools. For brevity, refer to these papers for details.

Data analysis Analyses were done using custom Matlab code (Matlab 2018a, Matlab 2018b, Matlab 2020a, Mathworks Inc).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The datasets from this study are available from the corresponding author on reasonable request.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were chosen to allow for sufficient statistical power for our experimental procedures, while reducing the number of animals to
minimize pain and distress. The number of animals we used is typical for a study of this type. As further confirmation, statistical tests were
used in all analyses to demonstrate that the sample sizes used had sufficient statistical power.
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Data exclusions  Only neurons with at least one calcium transient are able to be identified by constrained non-negative matrix factorization (CNMF). Therefore,
cells in the hippocampus that were silent for the entire imaging session were not included.

Replication We trained a total of 15 animals on three behavioral tasks which we analyzed across animals (n=7 accumulating towers task, n=7 across two
types of alternation tasks, n=4 one-side cues task). Some animals were used for multiple tasks, i.e. the one-side cues task was a training stage
in the shaping procedure for the accumulating towers task. Statistical tests were used for all analyses to ensure that the findings were

significant and unlikely to occur by chance on standard significance levels, as indicated in the figures (* for p<0.05, ** for p<0.01, *** for
p<0.001, and **** for p<0.0001).

Randomization  There was only one experimental group, so no randomization was needed.

Blinding There was only one group, so no group allocation blinding was needed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[] Antibodies X[ ] chip-seq
[] Eukaryotic cell lines XI|[ ] Flow cytometry
|:| Palaeontology |Z| |:| MRI-based neuroimaging

[X] Animals and other organisms
|:| Human research participants

|:| Clinical data
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male and female mice aged 2 - 18 months expressing GCaMP6f were used in this study. n=5 triple transgenic crosses expressing
GCaMP6f under the CaMK11a promoter from Ai93-D;CaMKIla-tTA [IgS7tm93.1(tetO-GCaMP6f)Hze Tg(Camk2a-tTA)1Mmay/J,
Jackson Laboratories, stock# 024108] and Emx1-IRES-Cre [B6.129S52-Emx1tm1(cre)Krj/J, Jackson Laboratories, stock# 005628]
and n=10 Thy1-GCaMP6f [C57BL/6J-Tg(Thy1-GCaMP6f)GP5.3Dkim/J, Jackson Laboratories, stock# 028280]. Animals were housed
in reverse light cycle conditions (light cycle: 8PM - 8AM), temperature was 70+2°F, and humidity was 50£10%.

Wild animals No wild animals were used.
Field-collected samples No field-collected samples were used. Q
8
Ethics oversight All procedures performed in this study were approved by the Institutional Animal Care and Use Committee at Princeton E
University and were performed in accordance with the Guide for the Care and Use of Laboratory Animals (National Research E
Council, 2011).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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