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Brain mechanisms underlying creativity are largely unknown and few studies have involved exception-
ally creative individuals. We examined functional MRI (fMRI) connectivity in a “smart comparison
group” (SCG; n = 24), and in exceptionally creative (“Big C”) visual artists (VIS; n = 21) and scientists
(SCI; n = 21). Groups were matched on age, sex, and estimated IQ. FMRI scans were acquired during
the resting-state and performance of two tasks: (a) alternative uses test (AUT), putatively measuring di-
vergent thinking; and (b) remote associates test (RAT), putatively engaging convergent thinking. Graph
theory measures of functional connectivity were compared across groups using generalized linear mixed
models. Global connectivity measures included small-worldness (indexing efficiency), clustering coeffi-
cient, and characteristic path length. Local connectivity measures included local efficiency and cluster-
ing coefficients within default mode, dorsal attention, frontoparietal, salience, ventral attention, and
visual networks. During the resting-state, global small-worldness was lower for SCI than SCG; VIS had
intermediate values. Relative to SCG, the Big C groups had higher local clustering coefficients during
the resting-state conditions but lower local clustering during the AUT condition. No significant differen-
ces were found during the convergent thinking test (RAT). These findings suggest that Big C creativity
is associated with more “random” rather than more “efficient” global network functional architecture,
with condition-dependent variations in local clustering and efficiency. Large condition-dependent corre-
lations between global and local clustering measures deserve further examination in exceptionally crea-
tive and other groups to more fully characterize the functional topology of brain networks most relevant
to creativity.
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Seven decades of research have led to theories about creative
achievement, but there are limited empirical data about its biological
bases (K. S. Knudsen et al., 2015). Evidence about brain mechanisms
underlying exceptional, or “Big C,” creativity is even rarer. Converg-
ing hypotheses suggest that creative cognition is mediated by balanced

engagement of complementary systems involved in focused/diffuse,
convergent/divergent, and stabilizing/novelty-biased processing (Beaty
et al., 2019; Bilder, 2012; Bilder & Knudsen, 2014; Dietrich, 2004;
Dietrich & Kanso, 2010; Heilman, 2005), but there is no consensus
about the specific patterns of brain network organization that facilitate
creative expression, and major questions remain about what specific
domains of problem solving and creative expression are most impor-
tant for creativity (Abraham, 2013).

Neuroimaging studies using tasks that putatively demand divergent
thinking have revealed inconsistent findings, including increased acti-
vation in the frontal (Chávez-Eakle et al., 2007; Goel & Vartanian,
2005; Guilford, 1967; Howard-Jones et al., 2005; Simonton, 2011),
right temporoparietal, medial frontal, and posterior cingulate (Fink et
al., 2010), and occipitotemporal cortices (Chrysikou & Thompson-
Schill, 2011). Other paradigms focused on novelty detection (Mashal
et al., 2007) or convergent thinking (Dietrich & Kanso, 2010) have
shown activation of the superior temporal and anterior cingulate cor-
tex. Meta-analyses suggested that posterior prefrontal regions may
generate creative ideas while more rostral prefrontal cortex may be
activated when integrating ideas (Gonen-Yaacovi et al., 2013).
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Divergent thinking also has been linked to increased resting-
state functional connectivity between the medial PFC and poste-
rior cingulate cortex, which are major nodes within the default
mode network (DMN; Takeuchi et al., 2011, 2012). The DMN has
been suggested to underlie “blind variation” in the generation of
creative ideas, while executive control (EC) networks have been
associated with evaluation and purposeful selection of ideas
(Beaty et al., 2016; Beaty et al., 2014; Fink et al., 2010; Fink et
al., 2012; Jung et al., 2013). The blind variation and selective
retention (BVSR) hypothesis suggests these complementary proc-
esses are biological substrates of creative thinking (Campbell,
1960; Simonton, 1999, 2010), and that coupling of default mode
and salience networks might explain the dynamic interplay of idea
generation and idea selection (Beaty et al., 2015).
A study using connectome-based predictive modeling identified

“high-creative” and “low-creative” networks on fMRI scans in a
sample comprising mostly university students, and showed that these
network models could predict creative task performance and achieve-
ment; the high creative network involved predominantly fronto-parie-
tal connectivity with engagement of default, executive, and salience
systems, while the low-creative network emphasized connectivity of
sensorimotor with subcortical, cerebellar and brainstem nodes (Beaty
et al., 2018). These findings have led investigators to propose that
coupling between the DMN and executive control or frontoparietal
networks is critical to increase creative output (Beaty et al., 2015;
Beaty et al., 2017; Heinonen et al., 2016; Shi et al., 2018).
The work cited above focused mostly on identifying specific brain

regions or functional networks of regions-of-interest (ROIs). Another
perspective is provided by analysis of the topological properties of net-
works using methods derived from graph theory, which represent
ROIs as “nodes” and connections between nodes as “edges.” Graph
theory metrics enable examination of global network properties,
including the “small world” property that reflects the balance between
network segregation and integration, and is considered an “efficient”
organizational state in which most nodes are not directly intercon-
nected, but have connections via short path lengths (Farahani et al.,
2019; Rubinov & Sporns, 2010). The topology of graph networks can
be conceptualized as a progression from a completely “regular” net-
work (where randomness or r = 0) to a network in which all nodes are
connected randomly (where r = 1).
Only a few studies have assessed graph theory metrics in rela-

tion to creativity. Greater global efficiency was found on rest state
fMRI (rsfMRI) scans of undergraduate students identified as being
of “high” creativity based on results from the figural Torrance
Tests of Creative Thinking (TTCT; Gao et al., 2017). Beaty et al.
(2015) showed that greater global efficiency, assessed on fMRI
scans during divergent thinking, was correlated with higher crea-
tivity ratings of divergent thinking task performance among under-
graduates (Beaty et al., 2015). In another study, Beaty et al. (2016)
showed that efficiency within the default network was correlated
with self-report measures of openness to experience and intellect
(Beaty et al., 2016). Another study examining structural connec-
tivity using graph theory metrics reported a sexual dimorphism
with males showing weak positive correlations of efficiency with
creativity, while females showed the opposite effect, with less effi-
ciency being associated with higher creativity (Ryman et al.,
2014). These studies leave open questions about individual differ-
ences in brain connectional topologies that may support creative
cognition both across and within specific functional networks, and

whether different patterns of organization may be found at rest rel-
ative to task-activated conditions.

Most neuroscientific research on creativity has involved conven-
ience samples of the general population, with much research on uni-
versity students, and very few studies have recruited people
specifically for high levels of creative achievement. Eminent creative
achievers showed differences in the DMN and executive thinking brain
regions compared with “smart control” individuals during a variation
of the alternative uses test (AUT; Chrysikou et al., 2020). Near infrared
spectroscopy (NIRS) showed increased prefrontal activation in trained
musicians relative to demographically matched nonmusicians during a
divergent thinking task (Gibson et al., 2009), but the musician group
had a significantly higher full-scale IQ than the comparison group. A
related study tied resting-state fMRI connectivity changes in the
default mode, salience network, executive control, and motor planning
to musicality (Bashwiner et al., 2020); but brain regions associated
with musical creativity may differ depending on whether convergent
or divergent thinking is being recruited (Slayton et al., 2019). Another
study showed higher coupling of EC with DMN networks, along with
lower connectivity within EC but higher connectivity within DMN, in
a group of professional visual artists compared to an education-
matched comparison group (De Pisapia et al., 2016). Another study of
undergraduate student artists showed medial temporal (possibly DMN)
engagement during idea generation and joint recruitment of executive-
DMN engagement during idea selection (Ellamil et al., 2012). This
emerging literature, while it has focused on connectivity of the DMN
with other functional networks, does not yet lead to clear conclusions.

Several literature reviews have identified many inconsistencies
that further limit prior work interpretation (Arden et al., 2010; Die-
trich, 2004). A primary confounding variable is the relationship
between creative cognition and intelligence (Benedek et al., 2014).
The correlation between creativity and intelligence has been esti-
mated as r = .20 (Silvia, 2015), with some suggesting that above-
average intelligence is necessary but not sufficient for creativity.
Our prior work showed that exceptionally creative “Big C” artists
and scientists showed less activation relative to an IQ-matched
comparison group in task-positive networks during a divergent
thinking task, underscoring the possible value of controlling for
intelligence (Japardi et al., 2018). Creative thinking in different
domains also may take different forms. Recent research supports
this view by showing domain-specific associations of creativity
with personality (Feist, 2010) and subclinical psychopathology
(Baer, 2015; Knudsen et al., 2017; Knudsen et al., 2019; Simon-
ton, 2006; Vartanian et al., 2019; Zabelina et al., 2014).

In the present study, we aimed to address multiple challenges
noted above by: (a) studying exceptionally creative (Big C) indi-
viduals; (b) using an IQ-matched comparison group; (c) examining
individuals representing two different domains of creativity (visual
arts and sciences) that may differ in cognitive and personality
characteristics; (d) examining functional connectivity using fMRI
in both divergent and convergent thinking task-activated activation
conditions, and during the resting-state; and (e) using graph theory
to calculate both global and local measures of functional network
connectivity. Our primary hypotheses were that the two Big C
groups would differ from the smart comparison group, or from
each other, on global graph theory measures, and more specifically
sigma, the index of small-worldness, which varies along a dimen-
sion from “regular” (highly ordered), through the “small-world”
state, to “random” (Watts & Strogatz, 1998). Small-worldness
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reflects a combination of higher clustering and shorter path
lengths, and thus is computed as the ratio of gamma (clustering
coefficient) divided by lambda (characteristic path length), so we
planned to look at these measures if there were significant group
differences on sigma. Modularity (“Q”) was also examined as a
secondary hypothesis, given that small world networks are not
necessarily modular (Meunier et al., 2010). We further tested sec-
ondary hypotheses about whether group differences might be spe-
cific to task conditions, or to specific brain networks, using local
graph theory metrics. Given the paucity of prior research address-
ing this manifold of questions, along with conflicting results from
prior research, we did not specify a priori hypotheses about the
directions of group differences.

Method

Inclusion and Exclusion

We studied visual artists and scientists because previous factor
analytic work on the Creative Achievement Questionnaire (CAQ)
suggested that visual arts and science/invention comprise rela-
tively distinct creative domains (Bilder & Knudsen, 2014; Carson
et al., 2005). Recruitment and selection for this study are described
briefly here; more details are published elsewhere (Japardi et al.,
2018), and the selection process for this study is detailed in a
STROBE diagram (Supplemental Figure S1).
Exceptionally creative visual artists (VIS) and scientists (SCI)

were nominated by panels comprised of experts within their re-
spective domains. These nominations were then validated as
exceptional based on objective field-specific metrics, including
scores on the CAQ (which had to be in the top 2% for their do-
main relative to a sample of 300 community volunteers not ex-
plicitly selected for creative achievement, who were included in
a separate study of creativity; the “UCLA 300 Project”; Bilder &
Knudsen, 2014), scientific publications (for scientists, as indi-
cated by the h-index or other bibliometric statistics indicating
outstanding achievement for their domain and age), and exhibi-
tions/award (for visual artists). The “smart” comparison group
was recruited from participants in the UCLA-300 Project who
had agreed to be recontacted for participation in future studies
and had high levels of education and estimated IQ, and from
advertisements in the community for individuals with graduate

degrees, with efforts made to assure age, sex, race, and ethnicity
comparable with those of participants in the Big C groups.

Participant Characteristics

The participants in this study overlap with those reported
previously (Japardi et al., 2018; Knudsen et al., 2019). Among
107 enrolled participants, only 92 received fMRI scans (15
were excluded and due to claustrophobia, limited availability,
or participant refusal for other reasons). Forty-one had missing
data or at least one unusable fMRI scans based upon quality
control analyses, leaving 66 participants with complete fMRI
data for analyses: 24 smart comparison group individuals
(SCG), 21 Big-C visual artists (VIS), and 21 Big-C scientists
(SCI; for details about exclusions see STROBE diagram in sup-
plemental materials, Figure S1). These analyses differ from the
report by Japardi et al. (2018) by including only individuals
with usable fMRI scans across all three conditions (i.e., with
data from both AUT and remote associates test [RAT] tasks,
and rest state), to enable direct examination of the condition
effect across all participants. The included participants did not
differ significantly on any demographic variables from the 41
who were excluded. The Big C groups did not differ signifi-
cantly from the SCG or each other on age, sex, race, ethnic
group, and estimated IQ using the Wechsler Adult Intelligence
Scale, 4th Edition (WAIS-IV, Wechsler, 2008) age-corrected
scaled scores on vocabulary and matrix Reasoning subtests (see
Table 1).

As expected, the groups differed significantly on CAQ scores,
with both VIS and SCI groups possessing much higher scores (see
Table 1). Given marked deviations from normality, we used the
Independent-Samples Kruskal-Wallis test to examine group differ-
ences. These tests confirmed that VIS and SCI groups had higher
CAQ total scores than SCG, with Bonferroni-corrected p-values
,.001, while VIS and SCI did not differ significantly from each
other. Additional analyses confirmed that the VIS group had
higher scores than both other groups on the visual art domain of
the CAQ, and that the SCI group had higher scores than both other
groups on the science and invention domain (we summed scores
for these domains as our SCI group had a higher score on both
domains). These analyses helped to validate the inclusion criteria
that aimed to identify exceptionally creative achievers; indeed, the
Big C groups’ CAQ scores are outliers with respect to the

Table 1
Demographics

Group

Covariate SCG VIS SCI Test statistic DF p Post hoc

Age 42.8 6 9.2 41.2 6 6.9 44.7 6 7.5 F = 0.99 2, 65 .38 NA
Sex 11M, 13F 12M, 9F 12M, 9F F = 0.39 2, 65 .69 NA
CAQ 93.5 6 261.4 571.5 6 1,034.5 205.7 6 263 v2 = 21.87 2 p , 0.001 VIS, SCI . SCG
Estimated IQ 115 6 10.7 113.8 6 8.6 116.4 6 11.4 F = 0.33 2, 59 .72 NA
Education 19.2 6 1.1 18.8 6 0.5 21.0 6 0.0 KW = 39.4 2 .001 SCI . VIS, SCG
Race (W, B, other) 20, 2, 2 13, 6, 2 17, 1, 3 X2 = 10.7 8 .22 NA
Ethnicity (H, NH, Other) 22, 1, 1 21, 0 19, 2 2.17 2 .34 NA

Note. KW = Kruskal-Wallis (nonparametric test of differences between independent groups); SCG = smart comparison group; VIS = visual artists; SCI = sci-
entists; CAQ = Creative Achievement Questionnaire; W = White; B = Black; H = Hispanic; NH = Non Hispanic. Education was assessed on a continuous scale
where 18 is a bachelor’s degree, 19 is a master’s degree, 20 is a professional school degree (e.g., MD, JD), and 21 is a doctoral degree (e.g., PhD).
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distribution of scores in the smart comparison group. While the
groups were all highly educated, everyone in the SCI group had
advanced (doctoral or similar) degrees. Because there was no var-
iance on this variable, the SCI group had significantly higher edu-
cation. Although the groups did not differ on other demographic
variables, age and gender were included in the generalized linear
mixed model (GLMM) as covariates of interest.

Functional MRIMethods

MRI Acquisitions

Participants were scanned on a Siemens Magnetom Trio head-
only 3 T scanner with a 12-channel head coil. For each participant,
a high-resolution T1-weighted sagittal magnetization-prepared
rapid acquisition gradient-echo (MPRAGE) structural image was
obtained (repetition time [TR] = 2,530 ms, echo time [TE] = 3.31
ms, matrix size = 256 3 256, field-of-view = 256 mm, flip angle =
7°, 176 slices with 1 mm isometric voxels). Functional blood oxy-
genation level-dependent (BOLD) images were acquired using an
echo-planar imaging (EPI) sequence (TR = 2,000 ms, TE = 30 ms,
matrix size = 64 3 64, field-of-view = 192 mm, 34 slices with 3-
mm isometric voxels). An additional high-resolution T2-weighted
segmented spin-echo structural image (TR = 5,000 ms, TE = 34
ms, matrix size = 128 3 128, field-of-view = 192 mm, 36 slices,
1.5 mm in-plane resolution, 3 mm thick) in the same anatomical
planes as the BOLD images was acquired to improve alignment to
a standard coordinate system.

FMRI Preprocessing

FMRI data were preprocessed using FMRIB Software Library
(FSL) using a standard pipeline (e.g., motion correction, brain extrac-
tion, spatial smoothing at 5 mm full width at half maximum
[FWHM], and temporal filtering). All participant data were registered
to a standard space using a three-stage registration procedure: Prepro-
cessed images were first registered to the high-resolution T2-
weighted structural scan via a rigid body linear registration using 6 °
F of freedom (three rotational, three translational), then to the
MPRAGE using FSL’s Boundary-Based Registration, and finally
normalized to standard space (Montreal Neurological Institute
[MNI]) using a linear affine transform with 12 °F of freedom.

FMRI Conditions and Behavioral Assessments

Subjects were studied using fMRI in three different conditions:
resting-state, the AUT, and the remote associates test (RAT). The
AUT requires participants to propose alternative uses of common
objects. These stimuli are described in full in a previous article
(Japardi et al., 2018), which we briefly summarize here. The RAT
requires participants to identify words that connect to three seemingly
unrelated words (Mednick, 1968; e.g., “sick” connects with the sea,
home, and stomach). A practice test was provided prior to MRI scan-
ning, which contained AUT and RAT questions not included during
the scanning tests. Each task consisted of two runs, each containing
unique counterbalanced stimuli. Stimuli were presented using MRI-
compatible stereoscopic goggles, with responses collected using a
button box, positioned in the participant’s dominant hand.
The AUT lasted approximately 10 min, consisting of eight alter-

nating blocks of alternative uses (AU) and TQ trials. Each AU and
TQ block consisted of four items displayed for 20 s each. Control

blocks, in which participants were cued to make five button
presses over 20 s, were presented after every two AU or TQ trials.
The task also included an interstimulus interval between 2 s and
5 s. Participants were instructed to think of as many different alter-
native uses or typical qualities for the presented word and to
respond with a button press for each distinct thought that came to
mind. For example, a typical quality of an “umbrella” may be that
it is “waterproof,” but an unusual use would be “a hat.” We cap-
tured the numbers of button presses in each block, and separately
analyzed the postscan recall of responses during the AU condition,
generating measures of both fluency and originality (see Japardi et
al., 2018 for further details).

The RAT lasted approximately 14 min and consisted of three dif-
ferent stimulus blocks where subjects were provided different word
rules to apply to stimuli, described previously (Japardi et al., 2018).
In the “association” condition, after the presentation of three stimulus
words, subjects pressed a button to indicated on a four-button
response device when they had identified a word common to three
stimulus words among the four possible answers presented on the
response screen (e.g., for the stimulus set including the three words:
“sea,” “rocking,” and “shoe,” the correct response was “horse”).
Control conditions included a “perceptual” (character matching) and
“synonym” identification tasks. Task presentation included a jittered
interstimulus interval before the start of the next trial. Behavioral out-
comes included the number of correct responses in each of the per-
ceptual, synonym, and association conditions.

Additionally, subjects were scanned in the resting state. During the
6-min scan, subjects were instructed to lie still with their eyes open
and to view a white fixation cross on a black background. All func-
tional scans used identical acquisition parameters and differed only in
the number of acquisitions. We reported behavioral results of the tasks
during fMRI activation procedures in Japardi et al. (2018); because
there were no significant between-group differences in performance,
we did not consider those results in the current set of analyses.

Functional Connectivity Analyses

Preprocessing of fMRI data used a 333 ROI atlas (Gordon et al.,
2016) following methods similar to those detailed in Power et al.
(2014) and Cole et al. (2014). Graph theory metrics, extracted within
each condition using the Brain Connectivity Toolbox (Rubinov &
Sporns, 2010) in MATLAB, evaluated changes among networks
(global) and within networks depending on group and task. Connec-
tivity measures were calculated over a sparsity range (12%32% by
2% intervals) using the area under the curve approach. The following
graph theory measures were considered: modularity (Q), small-
worldness (sigma), clustering coefficient (gamma), characteristic
path length (lambda), and local efficiency and clustering (Rubinov &
Sporns, 2010). For the AUT and RAT, stimulus times were used to
extract portions of the scans where specific tasks were being per-
formed, leaving only data within task trials.

Following the extraction of global and local (network) graph
theory measures for each scan, statistical analyses were conducted
using the R lme4 statistical package to test the hypothesis that global
connectivity may differ by groups and that local connectivity may
show network-dependent connectivity changes depending on group
membership. Global and local models were run within each condition
(resting state, AUT, RAT) using a GLMM to control for repeated
measures and unequal variances in model residuals seen across
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conditions. Analyses were duplicated with and without “outlier” re-
moval using the R package LMERConvenienceFindings.

Global Connectivity Analyses

The GLMM, testing the hypothesis that global connectivity may
differ between groups, was run within each of the three conditions.
A random effect for subject ID was included to account for
within-subject repeated measures. Global dependent variables
included modularity (Q), small-worldness (sigma), clustering coef-
ficient (gamma), and characteristic path length (lambda; Rubinov
& Sporns, 2010). The fixed effects used to explain these metrics
included measure type (Q, sigma, gamma, lambda), stimulus, age,
gender, and group (SCI, VA, SCG). Our primary hypothesis was
that small-worldness (sigma) would differ between groups, with-
out specifying the direction of possible differences.

Local Connectivity Analyses

To test hypotheses about local network connectivity, a GLMM
was used to examine the effects of group, network, and group by
network interaction and account for repeated measures. A random
effect for subject ID was included to account for within-subject
repeated measures. Similar to the global analyses, these models
were run separately within each of the three conditions.
Local connectivity metrics included local efficiency and cluster-

ing coefficient, computed within six networks: default mode, dor-
sal attention, frontoparietal, salience, ventral attention, and visual.
The visual network was set as the reference for the GLMM given
that prior hypotheses have not invoked it specifically (in contrast
to the default mode network, and selected other elements of work-
ing memory, salience, and attentional networks that have been the
focus of prior hypotheses), but our interpretations remained agnos-
tic, and we did examine the values of this reference condition
across all combinations of group and condition. Fixed effects
included the local connectivity measure type (local efficiency,
clustering coefficient), age, gender, brain network, group, and
stimulus. An interaction effect between group and brain network
was included to test the hypothesis that brain network connectivity
metrics may differ between groups. This was an exploratory analy-
sis without a priori specification of the direction of group differen-
ces as a function of specific metrics or networks.

Intercorrelations of Global and Local Graph Theory
Measures and Correlations With Covariates

Possible associations between global and local graph theory
measures were explored, as were correlations with other partici-
pant characteristics, using Pearson product–moment correlations,
and significance was tested using the Hmisc package in R. The
null hypothesis was that the correlations were zero.

Results

Behavioral Results

General linear models (GLMs) on behavioral results of perform-
ance during the AUT and RAT tasks (with condition treated as a
within-subjects repeated measure) revealed expected main effects
of conditions but no interactions of condition with group, indicat-
ing that the groups did not differ significantly in their performance

of the fMRI tasks (see Supplemental Table S1). As expected, the
number of responses during the AU condition was lower than the
number of responses during the TQ condition. The AUT control
condition (simple cued button pressing during 20 s blocks) showed
that participants were all relatively attentive to task demands with
average response rates (4.88 to 4.97) very close to the actual num-
ber of stimuli shown (five). In addition to the GLM on the RAT
accuracy scores with condition as a within-subject variable,
because there was heterogeneity of variance, we conducted sepa-
rate analyses to test for group differences on each condition sepa-
rately using robust tests (IBM SPSS Statistics Version 27), and
these additional analyses did not reveal significant group effects in
any condition (Brown-Forsythe statistics, 1.185, p. .32).

Global Connectivity Analyses

Estimated marginal means for all connectivity measures (Figure 1;
Supplemental Table S8) showed consistent trends with regression
analyses. During the resting state, scientists showed reduced small-
world functional connectivity compared with the SCG, holding con-
stant all else (p , .05; see Supplemental Table S2). Small-worldness
(sigma) was lower in the SCI relative to SCG, and the VIS group had
intermediate values, as shown in Figure 2. Given that sigma (small-
worldness) is computed as gamma (clustering coefficient) divided by
lambda (characteristic path length), the figure further illustrates that
the differences in small-worldness are primarily due to lower global
clustering in the SCI and VIS groups, rather than differences in char-
acteristic path length, which was similar across groups and only
slightly larger in SCI and VIS groups. No global connectivity differ-
ences were found during the AUT for group or stimulus
(Supplemental Table S3). For the RAT, reduced functional connectiv-
ity was observed during the char stimulus relative to other conditions
of this task (p , .001; Supplemental Table S4), but there was no sig-
nificant effect of group nor a group by condition interaction effect.

Local Connectivity Analyses

Compared with the SCG, the Big C groups showed increased
local efficiency and clustering coefficients within most resting-
state networks (p , .05; Figure 3; Supplemental Figure S2;
Supplemental Table S5). The opposite local connectivity pattern
was observed during the AUT, where both local efficiency and
clustering coefficients were lower among the Big C groups relative
to SCG across almost all brain networks (Figure 3; Supplemental
Figure S2; Supplemental Table S6). During the RAT, significant
differences between groups were not observed (Figure 3,
Supplemental Figure S2; Supplemental Table S7). Estimated mar-
ginal means for all connectivity measures similarly illustrate these
patterns (Figure 1; Supplemental Table S8).

Correlations Between Global and Local Clustering
Metrics

During the resting state, global clustering was negatively corre-
lated with local clustering. We examined these correlations during
each condition, and then within each group separately. The results
are shown in Supplemental Figure S3, demonstrating that during
resting state, the global clustering is anticorrelated with local
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clustering within most networks, across all three groups. These
correlations were statistically significant (p, .05).
We examined correlations of the global graph theory metrics with

estimated IQ. Estimated IQ was positively correlated at a nominal
level (p , .05) with gamma and sigma metrics obtained during the
RAT condition (see Supplemental Table S9) but not during the other
conditions. The effect sizes of these correlations were small to me-
dium (maximum r , .36), and none of these would be considered
statistically significant after correcting for multiple (24) tests. Figure

1 shows the estimated marginal means of the graph theory metrics,
adjusted for gender. All analyses were replicated with and without
outlier removal, with equivalent findings.

Discussion

These functional connectivity analyses showed that exception-
ally creative “Big C” groups had more random patterns of global
functional connectivity. More specifically, among the global graph

Figure 1
Estimated Marginal Means for All Brain Connectivity Measures, After Controlling for Other Covariates

Note. SCG = smart comparison group; VIS = visual artists; SCI = scientists. Relative to SCG, the Big C groups had higher local clustering coefficients during
the resting-state conditions but lower local clustering during the AUT condition. No significant differences were found during the convergent thinking test (RAT).
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theory metrics, exceptionally creative scientists had significantly
lower “small-worldness” relative to the SCG. The Big C visual
artist group had intermediate values. Given that the pooled Big C
groups (scientists and artists together) showed lower small-world-
ness than the SCG, this offers evidence that reduced small-world-
ness may characterize exceptional creativity across creative
domains. Small worldness is a property thought to increase effi-
ciency in many networks, generally by increasing the clustering of
nearby nodes into “cliques” or “hubs” where the average path
between nodes is short. Further inspection of the global graph
theory metrics confirmed that the small-worldness property reduc-
tion was due to decreased global clustering rather than differences
in path length in the Big C groups. Therefore, these analyses of
global graph theory metrics suggest that the Big C groups possess
less “efficient” global networks, technically reflecting a more ran-
dom pattern of global functional connectivity relative to the smart
comparison group. This pattern is consistent with the idea that Big

C individuals may possess a capacity to connect widely separated
regions in the brain, spanning individual networks, to support crea-
tive cognition.

Analyses of local connectivity demonstrated a different pattern.
The Big C groups tended to show increased local clustering and
efficiency during the resting state but decreased local clustering
and efficiency during task-activated conditions, particularly in the
AUT condition. We previously documented relatively less activa-
tion in task-positive networks during the AUT in this sample,
while there were no apparent differences among groups during the
RAT (Japardi et al., 2018). The current findings may be seen as
extending the prior results and suggest that during tasks like the
AUT that may be less demanding for our Big C participants, they
do not show the same degree of local clustering as do the compari-
son group members.

It is intriguing that we observed the opposite pattern during the
rest state, with Big C groups showing greater local clustering, despite

Figure 2
Global Functional Connectivity Measures During Resting State Demonstrate Group-Specific Changes

Note. SCG = smart comparison group; VIS = visual artists; SCI = scientists. Small-worldness reflects a combination
of higher clustering and shorter path lengths, and thus is computed as the ratio of gamma (clustering coefficient) divided
by lambda (characteristic path length). During the resting-state, global small-worldness was lower for SCI than SCG;
VIS had intermediate values.
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lower global clustering. Indeed, the magnitude of the negative corre-
lation between local and global clustering in the rest state is so high
(with correlation coefficients in the range .6 to .8) that a mechanistic
explanation of their covariation seems likely. Thus, the organization
of functional networks during the rest state appeared to depend on
the scale of our analysis. Increased randomness was observed in Big
C groups on global metrics that indicate functional connectivity
across networks, while decreased randomness was seen at the local
level during rest, with more clustering within multiple individual net-
works. It is conceivable that a shared process drives increases in local
clustering locally at the “expense” of global clustering, or that a more
random pattern of associations on a global level “leads to” local clus-
tering. Across groups, the lower global clustering and higher local
clustering was observed in the rest state relative to the AUT condi-
tion, and this tradeoff was most extreme in the Big C groups (see
Supplemental Table 8 for estimated marginal means and a graphical
representation of this tradeoff in Supplemental Figure S4). Further
work may serve to identify the “sweet spot” on the brain connectome
landscape that provides the optimal balance of global and local effi-
ciency that best supports an increased capacity for creative cognition,
by optimizing the “costs” of more extensive wiring with efficiency of
small-world networks (van den Heuvel & Sporns, 2019).
It is possible that these findings about local connectomics during

the rest state may in part replicate prior work showing increased
efficiency, particularly within the DMN, being associated with
openness to new experience (e.g., Beaty et al., 2016). In the cur-
rent study, however, we found the higher levels of local efficiency
were found across all networks without specificity to the DMN.
Our results thus suggest this may be a more generalized topologi-
cal property of local networks during the rest state in Big C indi-
viduals. On the other hand, our results appear to conflict with the
finding of less efficient global networks in our Big C groups, com-
pared with the findings of Beaty et al. (2015), that showed higher
global efficiency is related to divergent thinking ability. The expla-
nation of this inconsistency may have to do with the samples (Big
C and smart comparison groups vs university sample), or experi-
mental design and methods used to define what nodes to include in
the graph metrics (we used GLMM to identify group effects across

three conditions, while Beaty et al., 2015 used a four-step process
focused on rest-state images and divergent thinking).

Activity within the DMN) or changes in connectivity between the
DMN and other networks, particularly the executive and salience net-
works, have been linked to creativity (Beaty et al., 2015; Beaty et al.,
2017; Heinonen et al., 2016; Heinonen et al., 2016; Kühn et al., 2014;
Shi et al., 2018). These hypotheses are attractive and in some ways
superficially compatible with our prior work (Japardi et al., 2018),
which showed less engagement of “task-positive” networks during di-
vergent thinking in the Big C groups. The findings reported here, how-
ever, do not highlight the unique role of the DMN, which showed the
same overall pattern of results on graph theory measures that character-
ized other local networks. Instead, our findings suggest that there may
exist broader differences in how exceptionally creative individuals
coordinate activity across and within functional networks, depending
on task demands.

We did not find significant functional connectivity differences
in the RAT using global or local measures. One criticism of the
RAT has been that it tests verbal recall (Worthen & Clark, 1971),
associated with crystallized intelligence. The absence of functional
connectivity differences during the RAT in our study is consistent
with the proposition that RAT performance depends heavily on
convergent thinking abilities that are often closely linked with
overall intellectual ability. This effect may have been eliminated
because our Big-C individuals were IQ-matched with our compari-
son group. The only difference in the RAT was found for the ven-
tral attention network of visual artists. We note that patients with
schizophrenia (Jimenez et al., 2016; Smucny et al., 2016) have
shown this pattern, and also that visual artists in our study had
increased expression of subclinical psychopathology (Knudsen et
al., 2019). These results may support the hypothesis that these
groups share differences in the ventral attention network’s func-
tional organization, resulting in unique approaches to perceptual
classifications.

It may be valuable to consider our findings of exceptionally cre-
ative individuals in the context of research on clinical syndromes.
Functional connectivity differences during the resting state have
been observed in neuropsychological disorders, ranging from Alz-
heimer’s disease (Zhao et al., 2012) to schizophrenia (Anderson &

Figure 3
Local Connectivity Analyses Demonstrate that Compared With the Scg, the Big C Groups Showed Increased Local Efficiency and
Clustering Coefficients Within Most Resting State Networks (p ,.05)

Note. SCG = smart comparison group; VIS = visual artists; SCI = scientists; AUT = alternative uses test.
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Cohen, 2013; Liu et al., 2008; Whitfield-Gabrieli et al., 2009) and
attention deficit hyperactivity disorder (ADHD; Anderson et al.,
2014). People with Alzheimer’s disease showed a pattern of rest-
ing-state decreased global but increased local efficiency. In con-
trast, people with schizophrenia showed a pattern of reduced
small-worldness that was interpreted as a “disruption” of the
healthy pattern. Our findings suggest that there may be both advan-
tageous and harmful effects of different functional connectivity
architectures. Prior work, including our results in this sample,
shows that individuals with exceptional artistic creativity also show
elevations on selected scales associated with subthreshold psycho-
pathology (Knudsen et al., 2017; Knudsen et al., 2019; Simonton,
2006). The current findings may be seen as further evidence that
creativity reflects brain functioning “on the edge of chaos” (Bilder
& Knudsen, 2014). Functional connectivity patterns that balance
“efficiency” with “randomness” may be valuable for creative cogni-
tion but also associated with functional risks if the departures from
norms are more severe (i.e., detrimental to mental and physical
health and safety). The idea that there may be “healthy” and
“unhealthy” connectome landscapes (van den Heuvel & Sporns,
2019) is compatible with this idea, and deserves further exploration
in diverse clinical syndromes as well as individuals who differ in
creative expression.
There are multiple limitations to this study. It is challenging to

recruit and conduct extensive studies of exceptionally creative
individuals, so sample sizes are necessarily modest, and this means
we risk making Type II errors by failing to detect true group dif-
ferences. Post hoc power estimates show that with this sample
size, and three groups, we only had power greater than 80%, with
a = .05, to detect differences between groups of Cohen’s f . .35,
which is a large effect size. Thus, more subtle but possibly mean-
ingful effects may have been missed by our analyses.
There are further questions about the best methods to classify

creative individuals as “Big C” relative to “Proc” or professional-
level expertise (Kaufman & Beghetto, 2009), without the benefit
of historical perspective. Who knows how many of our “Big C”
artists and scientists will still be recognized in 100 years? Support-
ing the assertion that they should be considered “Big C” rather
than “Proc,” the CAQ scores of our Big C group appear to sub-
stantially higher than most other groups reported in the literature
(indeed our comparison group has higher CAQ scores than some
other groups considered exceptionally creative in the literature).
Further, our Big C group were not only professionals in their
domains, but they were also among the highest-achieving profes-
sionals within these domains, and further commended by their
peers specifically for making creative contributions to these
domains; thus, they occupy a territory above the threshold identi-
fied by Kaufman and Beghetto for Proc, but only over time will
we know who may satisfy the most stringent criteria that demand
demonstration of lasting, transformative genius. As Kaufman and
Beghetto stated, following the most rigorous criteria for Big C cre-
ativity makes research on the topic “nearly impossible.” A few
landmark studies (Andreasen & Ramchandran, 2012; Levitin &
Grafton, 2016)1 attempt to prove that it is possible, yet so far we
are only aware of a handful of individuals who are widely recog-
nized for such genius that have been investigated using the labor-
intensive tools of neuroimaging. Rather than attempting to add to
Kaufman and Beghetto’s model yet another level in between Proc
and Big-C, we believe it is appropriate to refer to our sample as

“Big C,” given the clear specification of our inclusion-exclusion
criteria.

Additional limitations include the possible differences
between activation and rest conditions. While we were able to
examine these participants at rest and during two distinct task
activation conditions, it would be valuable to examine functional
connectivity under a range of additional task conditions, and to
relate functional connectivity measures to indicators of structural
connectivity. Further, the brain networks that we examined were
predefined based on prior studies of healthy “normal” individu-
als, limiting our ability to identify possible differences not repre-
sented in these specific networks. Perhaps exceptionally creative
individuals use functional networks that differ from those widely
used by healthy people and those with clinical syndromes. De-
spite these limitations, we hope our results provide evidence that
will be useful for those seeking a deeper understanding of the
brain mechanisms underlying exceptional creativity, and that
these findings will promote future research on the neural sub-
strates of exceptional abilities.
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