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Using temperature to analyze the neural 
basis of a time-based decision

Tiago Monteiro    1,3,6, Filipe S. Rodrigues1,6, Margarida Pexirra1,4,6, 
Bruno F. Cruz1,5, Ana I. Gonçalves1, Pavel E. Rueda-Orozco    2 & 
Joseph J. Paton    1 

The basal ganglia are thought to contribute to decision-making and motor 
control. These functions are critically dependent on timing information, 
which can be extracted from the evolving state of neural populations in 
their main input structure, the striatum. However, it is debated whether 
striatal activity underlies latent, dynamic decision processes or kinematics 
of overt movement. Here, we measured the impact of temperature on 
striatal population activity and the behavior of rats, and compared the 
observed effects with neural activity and behavior collected in multiple 
versions of a temporal categorization task. Cooling caused dilation, and 
warming contraction, of both neural activity and patterns of judgment in 
time, mimicking endogenous decision-related variability in striatal activity. 
However, temperature did not similarly affect movement kinematics. These 
data provide compelling evidence that the timecourse of evolving striatal 
activity dictates the speed of a latent process that is used to guide choices, but 
not continuous motor control. More broadly, they establish temporal scaling 
of population activity as a likely neural basis for variability in timing behavior.

Much of behavior is dependent on time. Humans and other animals 
must extract temporal structure from the environment to learn to 
anticipate events, to understand relationships between actions and 
consequences, and estimate time, implicitly or explicitly, to plan 
and properly sequence and coordinate action. For tasks as varied as 
waiting at a stoplight to a hummingbird foraging for nectar, time is 
fundamental.

Timing mechanisms seem to be distributed across the nervous 
system, reflecting the importance of time information for much of 
brain function1. However, one common requirement among diverse 
functions is the need to create an index, ordering and spacing infor-
mation along the temporal dimension such that useful relations can 
be extracted and outputs appropriately coordinated. On the scale 
of seconds to minutes at which much of behavior unfolds, neuronal 
population dynamics represent a candidate means of both encoding 
and generating temporal patterns. Artificial neural network models 

have explored evolving population activity as a basis for timing sen-
sory events2 and movements3, and correlations between behavior and 
the timecourse of population activity have lent some support to the 
hypothesis that time-varying patterns of activity within a population 
perform temporal computations4–7. However, correlations do not 
imply causation. The critical prediction of these ‘population clock’ 
hypotheses is that interventions capable of slowing or speeding the 
temporal evolution of activity should cause a corresponding dilation 
or contraction of the temporal functions performed using that activity.

One brain system where time information seems to be critical 
is the basal ganglia (BG), an evolutionarily ancient set of brain struc-
tures thought to contribute to appropriate action selection based on 
experience. A dominant view holds that the BG embed core features 
of reinforcement learning (RL) algorithms8. In mammals, inputs from 
a diverse set of territories in cortex, thalamus and limbic brain struc-
tures convey information about the state of the world that converges 
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not provide moment-by-moment motor command-related signals  
required for continuous control. Instead of the BG providing 
high-dimensional continuous control signals, overall level of  
activity seems to provide a low-dimensional gain signal applied to 
motor programs executed elsewhere, consistent with the role of BG 
circuits in modulating movement vigor.

Results
Striatal temperature modified neural population speed 
monotonically and baseline activity levels nonmonotonically
Temperature has been shown in some systems to alter the speed of neural  
population activity while maintaining its general pattern24,25. Thus, 
we first examined the effect of temperature on striatal neural activity.

First, we developed a TED31 (Fig. 1a) based on the Peltier effect and 
used it to achieve closed-loop control over the temperature of silver 
metal probes implanted in brain tissue. To characterize the spatio
temporal profile of temperature changes in the brain, we measured 
temperature at different distances from the tip of a probe implanted 
in dorsal striatum (DS; Extended Data Fig. 1), setting our TED to either 
a control level approximating normal body temperature, a warm 
condition or two levels of cooling (Fig. 1b). We applied temperature 
manipulations using a block design of control-manipulation-control 
with transitions occurring at regular 3-min intervals (Fig. 1b). Manipu-
lation temperatures were drawn at random and without replacement 
from the aforementioned set until its exhaustion, at which point the 
set was replenished and the sampling process resumed. We found 
that temperature near the tips of the probes tracked block changes, 
reaching asymptote within ~60 s of transitions (Fig. 1b and Extended 
Data Fig. 1b,c), and that temperature changes fell off to minimal levels 
within 6 mm of the probe tip (Extended Data Fig. 1e,f). This in vivo 
characterization of the implant confirmed that temperature manipu-
lations were localized largely to striatal tissue and that manipulation 
blocks of 3-min duration would allow for assessing effects of striatal 
temperature on neural activity and behavior.

Next, we characterized the features of neural activity that were 
affected by temperature, adapting a paradigm for optogenetically 
inducing patterns of striatal activity under anesthesia12. This approach 
allowed us to generate large numbers of highly reproducible bouts of 
population activity free from neural variability related directly to ongo-
ing behavior, and was thus well-suited for studying the direct effects 
of temperature on striatal activity. Briefly, we used a viral strategy  
to express Channelrhodopsin-2 (ChR-2) in the ventrobasal (VB) com-
plex (Fig. 1c), a somatosensory thalamic area that projects directly to 
the striatum, and indirectly may influence striatal activity through 
thalamocortical projections (Supplementary Information Text). At 
3 weeks postinfection, under urethane anesthesia, we implanted an 
optic fiber over VB, a single insulated silver probe of our TED into DS 
and an adjacent Neuropixels32 silicon probe (Fig. 1c and Extended Data 
Fig. 2a). We then delivered 50-ms trains of blue light pulses at 100 Hz 
once every 1.5 s and recorded DS neural activity (Fig. 1d,e). Stimulation 
caused a brief volley of striatal activity, followed shortly thereafter by 
reproducible patterns of firing across the population over hundreds of 
milliseconds after the last light pulse had been delivered (Fig. 1e). For 
assessing the effect of temperature on neural responses we focused 
on this longer lasting activity because, unlike the initial volley, later 
responses reflected autonomous dynamics of the system as it settles 
as opposed to the initial direct response to stimulation.

While the general patterning of individual-neuron responses over 
time was maintained across different temperatures, the timecourse 
of this pattern varied systematically depending on temperature,  
advancing more slowly the colder the temperature, and more quickly 
when temperature was raised above baseline (Fig. 1f). To quan-
tify temperature-dependent warping in the timecourse of neural  
responses, we computed a scaling factor for each neuron in each of the 
four temperature conditions (Extended Data Fig. 3a; Methods). Temporal 

with dense dopaminergic innervation in the main input area of the BG, 
the striatum. The input from dopamine neurons is thought to teach 
striatal circuits about the value of taking particular actions in a given 
state, information that can ultimately be conveyed to downstream 
brainstem and thalamocortical motor circuits to bias selection or 
otherwise specify features of actions9. To accomplish such a function, 
the BG would need access to information about ordering and spacing 
along the temporal dimension, either implicitly or explicitly, both to 
extract meaningful relations between the environment, actions and 
outcomes that drive learning10, and to coordinate the production of 
actions in time11,12. Interestingly, data from people with BG disorders13,14 
and human functional magnetic resonance imaging (fMRI)15,16 have 
consistently identified the BG as being involved in timing behavior. In 
addition, lesions and pharmacological manipulations of the striatum 
can cause deficits in temporal estimation and reproduction17,18. Lastly, 
recordings from striatal populations have demonstrated that time 
information can be decoded from neural activity, and this information 
correlates with variability in timing behavior6,19–22. Specifically, the state 
of striatal population activity continuously changes along reproduc-
ible trajectories during behavioral tasks that require time estimation, 
advancing more quickly when animals report long judgments, and 
more slowly when they report short judgments3,6,18,22.

To test whether variability in the speed of BG population dynam-
ics merely correlates with, or directly regulates, timing function, we 
sought to experimentally manipulate dynamics as animals reported 
temporal judgments. Interestingly, despite being composed of  
elements with differing temperature dependencies (for example, ion 
channel conductances and synaptic transmission)23, neural circuits in at 
least some systems can produce patterns of activity that systematically 
slow down or speed up with decreasing or increasing temperature24,25. 
For this reason, temperature manipulations offer a potential method 
to test hypotheses regarding the relationship between the speed of 
neural dynamics and function26. Indeed temperature manipulations 
in the zebra finch have been used to identify area HVC (proper name) 
as a locus within the song production circuit that contributes to the 
temporal patterning of bird song27. Similar temperature manipulations 
have identified a subregion of human motor cortex that regulates the 
speed of speech28, and a region of rodent medial frontal cortex that 
controls the timing of a delayed movement29. However, temperature 
can have distinct effects on neural activity depending on cellular and 
circuit-level characteristics of the area in question27,30.

Here, we used a custom thermoelectric device (TED) to systemati-
cally vary the temperature of striatal tissue, both warming and cooling 
relative to a baseline condition. We found that temperature affected 
overall activity levels nonmonotonically, with both warming and cool-
ing relative to a control temperature producing lower baseline firing 
rates overall. In contrast, temperature manipulations caused mono-
tonic and graded changes in the temporal scaling of neural activity, 
mimicking decision-related variability in activity observed during 
multiple versions of a temporal judgment task. Temperature manipula-
tions also caused bidirectional and graded changes in animals’ timing 
judgments, mirroring the temperature-dependent modification of 
temporal scaling of neural activity as well as the observed relation-
ship between temporal scaling of activity and animals’ judgments. 
Strikingly, these results were not accompanied by similar effects of 
temperature on movement execution. Instead, although more modest 
than the effects of temperature on animals’ judgments, the pattern 
of average speed of animals’ movements was a nonmonotonic func-
tion of temperature, similar to the observed nonmonotonic effect of  
temperature on baseline firing rate. Together, these findings imply that 
distinct aspects of behavior may be controlled by temporal evolution 
of population activity and the overall levels of activity. Such distinc-
tions suggest that continuously evolving patterns of activity in the 
striatum support the placement of discrete behavioral transitions  
in time, as required for action selection and decision-making, but do 
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scaling as opposed to shifting of responses provided a significantly 
better explanation of the effect of temperature on firing rates across 
the population (Extended Data Fig. 3). Across all recorded neurons, 
distributions of response dilation were ordered inversely as a function 
of temperature (Fig. 2a,b), with most cells exhibiting time-contracted 
firing profiles (dilation <0%) under warming, and time-dilated firing 
profiles (dilation >0%) under cooling conditions. At a population level, 
this led to systematic differences in the speed with which population 
state advanced along its typical trajectory in principal component (PC) 
space (Fig. 2c). Temperature also modified baseline firing rate of striatal 
neurons; however, this effect was distinct from the effect on temporal 
scaling. Whereas temperature produced a monotonic effect on temporal 
scaling across the sampled temperatures (Figs. 1f and 2a–c), baseline 
firing rates varied nonmonotonically as a function of temperature, with 
both warming and cooling of striatal tissue relative to a physiologically 
normal control value resulting in lower firing rates (Fig. 2d).

Previous studies have shown that estimates of elapsed time 
decoded from striatal populations can predict timing judgments21,22. 
To assess whether temperature effects resembled endogenous, 
decision-related variability in population activity during behavior 
and its impact on the readout of decision variables, we decoded elapsed 
time from the population under different temperatures. Briefly, we first 

characterized the ‘typical’ temporal profiles of striatal responses using 
a subset of control trials, and then applied a probabilistic decoding 
approach to estimate elapsed time based only on the observed state 
of the recorded population in remaining trials (Methods). Estimates of 
elapsed time derived from ongoing population activity systematically 
led ahead and lagged behind true time during warming and cooling 
blocks, respectively. This can be observed by sampling the output of the 
decoder at discrete delays from stimulation onset (Fig. 2e), and more 
continuously by subtracting decoder output during control blocks 
from that during the three different manipulation conditions (Fig. 2f). 
Relative to control, cooler temperatures gradually shifted decoded 
estimates of time earlier, and the warmer temperature shifted decoded 
estimates of time later. These data demonstrate that, under anesthesia, 
the temporal scaling of neural response profiles by temperature can 
reproduce features of endogenous variability in the timecourse of 
population activity and time encoding shown in previous studies to 
correlate with timing judgments.

Striatal population speed predicts temporal judgments across 
tasks with different immobility requirements
A number of studies have observed that ongoing behavior may correlate 
with timing performance33–38. This raises the possibility that previously 
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Fig. 1 | Temperature rescaled single striatal neuron responses monotonically 
in time. a, Schematic of the implantable TED. The diagram is split into two 
differently scaled subregions (see 5 mm scale bars). The top region is subdivided 
in the middle between a front view (left half) and a cutaway through the center 
of the implant (right half). b, Temperature manipulation protocol. Top, target 
setpoint of the TED device over a representative session. Bottom, representative 
segment of thermistor readings (black trace) at the lower plate of the TED 
module shown in a; gradient-colored trace indicates the temperature estimated 
from in vivo calibration experiments (Extended Data Fig. 1). c, Schematic of 
the preparation used to elicit, record and manipulate striatal activity dynamics 
under different temperatures. d, VB thalamic stimulation protocol overlaid 

with five single-trial examples of evoked striatal activity recorded under the 
control temperature condition. e, Normalized peristimulus time histograms 
(PSTHs) of recorded striatal neurons (n = 335, before enforcing the minimum 
firing rate selection criterion; Methods), under the control temperature. Units 
were ordered by their angular position in the subspace defined by the first 
two PCs, describing dynamics between 150 ms and 750 ms from stimulation 
onset. Arrowheads indicate example units shown in f. f, Activity of three 
putative striatal units aligned to the onset of VB stimulation. Top, PSTHs split 
by temperature (mean ± s.e.m.). Bottom, spike raster plots, wherein trials are 
ordered chronologically. The superimposed gradient-colored trace indicates 
temperature setpoint over the course of the recording session.
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observed correlations between the speed of neural population activity 
and timing judgments might reflect the encoding of kinematic features 
by striatal populations39,40 combined with the adoption of embodied 
strategies for timing38. Such a scenario may indicate a more indirect role 
for striatal population dynamics in the decision process. To examine 
this possibility, we studied DS population dynamics during behavior 
in two versions of a temporal discrimination task (Fig. 3a and Extended 
Data Fig. 2c,d) that differed in the degree to which animals were free to 
move around the behavioral box during interval estimation.

We trained rats, in both versions of the task, to report intervals of 
time as either shorter or longer than a 1.5-s category boundary (Fig. 3a).  
Briefly, rats were placed in a rectangular behavioral box with three 
nose ports positioned at head level. Trials began with an auditory 
tone triggered by the subjects’ entry into the central ‘initiation’ nose 
port. After an interval of silence during which subjects were either 
free to move about the box (no-fixation)22 or required to maintain 
their snout positioned in the central port (fixation)41, a brief second 
tone was delivered. This second tone acted both as stimulus offset, 
defining the duration of the interval subjects were asked to judge,  
and a ‘go’ cue, freeing subjects to report their choice at one of two  
equidistant ports on either side of the initiation port. Choices reported 

at one of the lateral nose ports following short stimuli (<1.5 s) and at 
the opposite lateral nose port after long stimuli (>1.5 s) were defined as 
‘correct’ and resulted in delivery of a water reward at the choice port. 
‘Incorrect’ and premature choices (in the no-fixation version of the 
task) or premature departures from the central port (in the fixation 
version), were punished with an error tone and a time penalty added 
to the intertrial-onset interval (ITOI).

Accuracy of timing judgments (Fig. 3b,c) and several key features 
of the recorded striatal population activity in relation to behavior 
were similar in the two paradigms. First, in both task variants, striatal 
population state continuously evolved through a set of nonrepeat-
ing states during interval presentation (Fig. 3d,e). Furthermore, the 
timecourse of this evolution was systematically related to animals’ 
judgments—a relationship we examined using several approaches 
that facilitated comparison with the effect of temperature on neural 
activity described above.

Given previous observations that the timecourse of striatal 
responses covaries with duration judgments, conditioning trials of a 
given interval on animals’ judgments should result in distributions of 
neural population responses with systematically different temporal 
scaling (Fig. 3f). To test this prediction, we focused on intervals where 
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timepoints used in e. The identity line is shown in dashed black.
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long and short judgments were most balanced, corresponding to the 
two intervals nearest to 1.5 s. Because rats correctly categorized most 
trials, even for these ‘difficult’ stimuli, we expect the greater part of 
any hypothetical distribution of population speeds across trials to 
result in population states at interval offset that lie on the ‘correct’ 
side of the animal’s internal representation of the decision boundary. 
Thus, conditioning neural data on whether the animal judged 1.38 s as 
‘long’ or ‘short’ should create two distributions of trials with respect 
to population speed: one with an average speed that is slightly slower 
than the overall average in the case of correct, ‘short’ judgments (Fig. 3f,  
right panel, top left), and another with an average that is shifted to 
an even larger extent above the overall average toward faster speeds 
in the case of incorrect, ‘long’ judgments (Fig. 3f, right panel, top 
right). Conversely, conditioning neural data on judgment of the 1.62-s  
interval should create one distribution of trials with an average speed 
that is slightly faster than the overall average in the case of correct, 

‘long’ judgments (Fig. 3f, right panel, bottom right), and another with 
an average that is shifted to an even larger extent below the overall 
average toward slower speeds in the case of incorrect, ‘short’ judgments  
(Fig. 3f, right panel, bottom left). Using the temporal scaling metric 
applied to recordings under anesthesia above, we found that response 
dilation of individual neurons systematically varied in accordance with 
these predictions (Fig. 3g,h). As with manipulation of temperature, this 
led to systematic differences in the speed with which population state 
advanced along its typical trajectory in neural state space (Fig. 3i,j), and 
systematic differences in the speed of decoded time estimates derived 
from the population (Fig. 3k,l). Lastly, to gain a sense of how population 
speed might relate to choices across a broader range of stimuli, instead 
of conditioning neural activity on behavior, we conditioned behavior 
on the speed with which neural population activity evolved along its 
typical trajectory during the interval period in the two tasks. In both 
behavioral scenarios, rats were systematically biased toward making 
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Fig. 3 | Conditioning striatal activity on behavior produced monotonic 
modulation of population speed and decoded estimates of elapsed time.  
a, Schematic of behavioral setup (left) and event diagram illustrating a correct 
trial (right) in both the ‘no-fixation’ (orange) and ‘fixation’ (blue-green) versions 
of the interval discrimination task. b, Psychometric performance in the no-
fixation version of the task (n = 3, mean ± s.e.m.). c, Same as b, for the fixation 
task variant (n = 3). d, Normalized PSTHs of all striatal neurons (n = 441) recorded 
during presentations of the longest stimulus in our set (2.4 s) in the no-fixation 
task variant. Units are ordered by their angular position in the subspace defined 
by the first two PCs describing firing dynamics. e, Same as d, for the fixation task 
variant (n = 483). f, Left, schematic of hypothetical relationship between trial to 
trial variability in the speed of striatal dynamics, and the resulting distributions 
of internal time estimates at each interval offset. Assuming a fixed internal 
decision boundary, long or short judgments are indicated in the distributions. 
Right, schematic depicting hypothetical, graded shifts in average internal 
timing speeds when conditioning on choice for the two intervals nearest to the 
decision boundary. Specifically, short (long) stimuli incorrectly categorized 
as long (short) should reflect pronounced biases towards faster (slower) than 

usual dynamics, and correctly categorized short (long) stimuli should reflect 
milder biases towards relatively slower (faster) dynamics. g, Left, distributions 
of neuronal response dilations for each near-boundary stimulus-choice pair 
introduced in f. Markers represent response dilations for each cell and stimulus-
choice condition. Boxplots show population medians (horizontal thick lines) 
and IQR (colored bars). Right, distribution of stretch in neuronal responses 
(one-sample two-tailed t test, t(440) = −7.21, P = 2.45 × 10–12). h, Same as g, for the 
fixation task variant (one-sample two-tailed t test, t(482) = −5.28, P = 1.93 × 10–7).  
i, Average population activity from d projected onto its first three PCs (solid 
black line), and averages (colored markers) from each stimulus-choice pair 
projected onto that reference trajectory at the time of stimulus offset for the 
short near-boundary stimulus (1.38 s). Ghosted versions of these visualizations 
show their 2D projections onto all possible combinations of PCs 1, 2 and 3. The 
dashed black arrow indicates the direction of time. j, Same as i, for the fixation 
task variant. k, Average decoded maximum a posteriori (MAP) estimates for each 
stimulus-choice condition defined in f for the no-fixation task version. Colored 
solid lines and patches represent medians and IQR across 512 concatenations 
(Methods). l, Same as k for the fixation task variant.
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‘short’ judgments the more slowly the population state progressed on 
single trials, particularly for stimuli closer to the 1.5-s decision bound-
ary, leading to a monotonic relationship between population speed 
and psychometric threshold (Fig. 4a and Extended Data Fig. 5a,b)—the 
stimulus duration at which the sigmoid crosses 50% probability of the 
animal making either a long or short choice. Thus, variability in timing 
judgments was associated with the same features of neural activity 
that were modified by temperature in the first set of experiments. 
Furthermore, this was true whether or not subjects were required 
to maintain their position in the initiation port during the interval 
stimuli, suggesting that decision-related variability in the timecourse 
of striatal responses did not result from encoding of detailed kinematic 
information alone. Next, having established that temperature provides 
a means of manipulating decision-related variability in striatal activity, 
we tested whether and how striatal temperature modified subjects’ 
decisions, movement parameters, or both.

Striatal temperature produced monotonic effects on 
temporal judgments
We implanted two additional groups of rats previously trained in either 
the version of the interval discrimination task not requiring (n = 4) 
or requiring (n = 7) fixation, with a TED targeting its probe tips to DS 
(Extended Data Figs. 2e and 4). Critically, the no-fixation cohort and 
one rat in the fixation cohort were implanted with a predecessor of the 
TED we described above, which was unsuited for prolonged extreme 
cooling and incapable of warming. As such, for those animals tem-
perature manipulations were restricted to a single mild cooling level.

In advance of temperature manipulations, and for both task 
variants, rats’ performance was virtually perfect for easy stimuli, 
progressively more variable as stimuli approached the categorical 

boundary and well described by a sigmoid psychometric function with 
a threshold close to the experimentally imposed decision boundary 
of 1.5 s (Extended Data Fig. 4). Strikingly, at the onset of temperature 
manipulations, all 11 subjects across the two task versions displayed a 
systematic shift towards short judgments when the striatum was cooled 
(Fig. 4b–d and Extended Data Fig. 5; Supplementary Information Text). 
Furthermore, subjects implanted with the latest TED version (Fig. 1a) 
exhibited bidirectional and monotonic changes in their discrimina-
tion behavior as a function of temperature: rats were more likely to 
report short judgments during cooling blocks, and long judgments 
during warming blocks (Fig. 4b–d), particularly for intervals nearer 
to the 1.5 s categorical boundary (Fig. 4b). Importantly, the larger the 
magnitude of the cooling manipulation, the larger the change in choice 
behavior. The systematic changes in the subjects’ judgments caused 
by temperature were captured most reliably by shifts in the thresh-
old parameter of the psychometric function (Fig. 4b, top left inset). 
Thresholds tracked differences between control and manipulation 
temperatures in both sign and magnitude for all individual animals  
(Fig. 4c,d). Additionally, the circuit mechanism underlying the behav-
ioral effects of temperature did not seem to involve overlying primary 
motor cortex (M1), through which the insulated portion of the probes 
passed, because direct manipulation of M1 temperature in an additional 
set of four rats performing the fixation version of the task produced sig-
nificantly smaller effects on choice behavior (Fig. 4d (right panel) and 
Extended Data Figs. 2e and 6). Moreover, the timecourse of any trend of 
an effect seemed delayed relative to that of the effect on the DS cohort 
(Extended Data Figs. 6d and 9g), consistent with volume conduction of 
cortical temperature manipulations down to the striatum (Extended 
Data Fig. 1). Thus, striatal temperature manipulations, shown above 
to produce changes in the population response under anesthesia that 
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produced monotonic modulation of temporal judgments. a, Performance in 
the fixation version of the interval discrimination task conditioned on striatal 
population speed (n = 3, Methods): fast (red), typical (black), slow (dark blue) 
or slowest (light blue). Psychometric curves fit to cross-animal averages of 
psychophysical data split by neural speed, respectively shown as solid lines 
and markers of matching color (mean ± s.e.m.). Bottom right inset, differences 
in proportion of long choices from each atypical speed condition to the 
typical speed condition (mean ± propagated s.e.m.). Top left inset, marginal 
posterior distributions of the threshold parameter for each speed condition’s 
psychometric fit. Solid black lines represent MAP point estimates. b, Analogous 
to a, but conditioned on striatal temperature (n = 6): warm (red), control (black), 
cool (teal) or coolest (cyan). c,d, Effect of temperature on psychophysical 
thresholds. c, Markers represent MAP estimates and transparent patches the 
corresponding 95% confidence intervals (CIs) of threshold parameters fit to 
individual animals’ performance on control (vertical axis) versus manipulation 
blocks (horizontal axis). Each animal contributes one data point of each 
color. The identity line is plotted as a diagonal line, with its thick solid portion 

highlighting the region of the main axes that is shown in the bottom right inset 
axes. Top right inset, distribution of threshold differences between manipulation 
and control conditions (mean ± s.e.m.). Bottom right inset, same as main axes, 
but with data pooled from two pilot experiments using a single cooling dose 
in either the fixation (n = 1) or the no-fixation (n = 4) task variants (Extended 
Data Fig. 5; Methods). d, Left, distributions of threshold dilation as a function 
of induced temperature changes (one-sample two-tailed t tests, all significant 
|ts(5)| = (3.25, 5.17), P = (4.01 × 10–3, 2.31 × 10–2); repeated measures ANOVA 
followed by post hoc contrasts with Tukey correction for multiple comparisons, 
F(2, 15) = 17.30, P = 1.22 × 10–4; smallest qs(10) = 4.45, P = 1.52 × 10–2). Markers 
represent individual animals. Boxplots show animal means (horizontal thick 
lines) and s.e.m. (colored bars). Right, distribution of threshold stretch split by 
manipulation target (DS, n = 6; M1: n = 4; Extended Data Fig. 6; Methods). Markers 
represent individual animals, and their size and color denote bootstrapped 
significance (one-sample two-tailed t tests, tDS(5) = −4.37, P = 7.19 × 10–3; 
tM1(3) = −1.79, P = 0.17; two-sample two-tailed t test, t(8) = −2.62, P = 3.14 × 10–2; 
Methods). Boxplots show animal means (horizontal thick lines) and s.e.m. 
(colored bars).
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mimic decision-related temporal scaling of firing patterns (Figs. 1f  
and 2a–c,e,f), caused highly reproducible, parametric variation in a 
decision variable used by rats to guide duration judgments during the 
task. As in the recordings during behavior (Figs. 3 and 4a and Extended 
Data Fig. 5a,e), this effect was robust to differences in task design with 
respect to the degree that animals were free to move during interval 
presentation. These data suggest that the systematic changes in timing 
judgments induced by temperature in the striatum are thus due to the 
effect of temperature on the temporal scaling of neuronal responses 
within populations of neurons that contribute to the decision.

Striatal temperature produced nonmonotonic effects on 
movement kinematics
What can these results tell us about the nature of the functional involve-
ment of striatal circuits in behavior? One of the most commonly 
observed effects of dysfunction in BG circuits is a change in the speed 
of movement, such as bradykinesia in the case of Parkinson’s disease. 
Indeed, inhibiting direct pathway striatal projection neurons has been 
shown to slow movement without affecting other aspects of its execu-
tion41,42. Since the anesthetized recordings described above revealed 
qualitatively distinct effects of striatal temperature on population 
speed (monotonic), and baseline activity levels (nonmonotonic), we 
wondered whether there were any correlates of either or both effects to 
be found in measures of animals’ movements. We focused on fixation 
sessions, where both warming and cooling were applied, as bidirec-
tional manipulation of temperature was observed under anesthesia to 
differentiate temperature’s effects on temporal scaling and baseline 

firing rate. We first tracked the position of the TED in video using a mark-
erless tracking algorithm43. We then asked how temperature affected 
position over time either during the interval period (Extended Data 
Fig. 7a) or during choice movements (Fig. 5a–c).

We did not observe any significant monotonic effect of tempera-
ture in any case. Rats were positioned similarly during the interval 
period, and followed similar paths from the fixation port to the choice 
ports across the different temperatures (Fig. 5b,c). In addition, the 
speed profiles with which rats executed their choices were not scaled 
monotonically in time as a function of temperature (Fig. 5d,e). However, 
we did observe a modest nonmonotonic effect in average movement 
speeds as a function of temperature (Fig. 5f, left), such that absolute 
temperature change was a better predictor of average speed over  
animals than signed temperature change (Fig. 5f, right). This was in 
stark contrast to the clearly monotonic effect of temperature on deci-
sions (Fig. 4) and temporal scaling of population activity (Fig. 2c,e,f). 
Next we analyzed animals’ time to react to stimulus offset and the 
time taken to move to the choice port. We did not observe significant 
differences in either reaction times or movement times depending on 
temperature across rats (Extended Data Fig. 7d–i); however, we again 
observed a trend wherein both warming and cooling seemed to delay 
movement initiation following stimulus offset (Extended Data Fig. 7f,j),  
similar to the observed effects of temperature on both average  
movement speed (Fig. 5f) and baseline striatal firing under anesthesia 
(Fig. 2d). Lastly, endogenous variability in baseline firing rates recorded 
in the fixation version of the interval discrimination task also cova-
ried with reaction times (Extended Data Fig. 8). These observations 
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control trials ghosted in the background, and condition-split averages on top 
(mean ± s.e.m.). Filled and open markers show average position at reaction and 
choice, respectively. c, Same as b, split into x (top) and y (bottom) coordinates. 
d, Same as c, combined into an overall speed metric. e, Left, implant speed 
profile dilation for DS animals (one-sample two-tailed t tests, NS ts(5) = (0.44, 
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and the population (mean ± s.e.m.). The β coefficient was constrained to only 
have positive (negative) values in the monotonic (nonmonotonic) model.
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suggest that the temporal evolution of striatal population state con-
trols the timecourse of decision variables used by rats to determine 
‘when’ to do ‘what’ action, but that this feature of neural activity is not  
what determines the moment-by-moment kinematics of movement 
execution. Instead, we find evidence that the striatum may provide  
a lower dimensional gain signal that controls overall vigor41,42,44.

Discussion
Previous work has demonstrated that the speed of neural population 
activity along reproducible trajectories in neural space can correlate 
with variability in the timing of actions3,45,46 and time-dependent deci-
sions5,22,47. Indeed, there is growing evidence that this may represent a 
general principle for temporal processing in the brain1. Here we provide 
additional causal evidence for this principle, by showing that experi-
mental temperature manipulations in the striatum can be used to slow 
down or speed up both patterns of neural activity under anesthesia 
and the temporal evolution of latent decision variables that rats use 
to guide behavior, specifically their categorical judgments of dura-
tion. These results seemed to reflect a direct impact of temperature on 
decision-related (or action selection-like) and not moment-by-moment 
movement execution-related (or continuous control-like) processes, 
because the effects of temperature on timing judgments and movement 
kinematics were qualitatively distinct. It has long been appreciated in 
fields as diverse as neuroscience, robotics, and artificial intelligence 
that control of movement is likely facilitated by a hierarchy of control 
mechanisms48. Even relatively simple nervous systems must both switch 
between distinct motor pattern generators, as well as continuously 
control their output. The observation that an intervention capable 
of modulating striatal population speed differentially impacts the 
evolution of decision variables, and those required for the continuous  
control of movement, is consistent with the proposal that the BG act 
as a midlevel controller, important for selecting among8, linking11  
or modulating different actions, but provides evidence against their 
issuing moment-by-moment commands required for movement execu-
tion. One caveat of this interpretation is that any potential movements 
occurring during the interval period, when animals’ judgments were 
presumably forming, were below our threshold for detection. Thus, 
we analyzed the kinematics of choice movements, which necessarily  
occurred after the temporal judgment had concluded. It is thus  
possible that temperature produced similar effects on judgments, and 
the kinematics of putative, undetected movements during the decision 
process, and that its effects on movement kinematics changed quali-
tatively when it came to executing choice movements a few hundred 
milliseconds later. We consider this possibility less likely for both parsi-
mony, and because of existing data that would seem inconsistent with 
the BG providing detailed moment-by-moment kinematic information 
for use in behavioral control. For example, dorsal striatal lesions have 
been shown to disrupt the sequencing of behavioral motifs, without 
affecting their execution49. Even data demonstrating that striatal lesions 
can impact detailed kinematics of learned stereotyped movements can 
be reconciled with a more specific role for the BG in discrete control, 
as learned movements seem to involve the concatenation of motor 
elements, or sequencing, implying that discrete transitions must be 
placed appropriately within the overall timecourse of the behavior40. 
Observations that kinematic information can be decoded from the 
striatum during tasks that involve timing39,40 are consistent with this 
view as well, because BG circuits would likely benefit from, while poten-
tially not depending exclusively on, access to continuous information 
about the state of commands that are sent to effector systems to guide 
when to produce particular actions, even if they are not responsible 
for sending detailed kinematic control signals to downstream circuits.

Our results are reminiscent of the observation that cooling an 
orofacial region of motor cortex in singing mice slows certain aspects 
of the song timing while leaving individual note durations unchanged50. 
Interestingly, tonic inhibition of the direct feedforward pathway of 

the BG at its initiation point in the striatum can produce a slowing 
of movement42, suggesting that the influence of the BG on control 
parameters related to vigor may not be through dynamics in the 
higher-dimensional space of population firing, but rather through a 
low-dimensional, gain-like, modulation of motor programs that are 
implemented largely by circuitry elsewhere. Consistent with this we 
found that endogenous variability in the baseline firing rate of striatal 
neurons covaried with reaction times, and that the nonmonotonic 
effect of striatal temperature on this feature resembled a pattern in 
rats’ behavior where both warmer and cooler temperatures produced 
delayed and slower choice movements.

During behavior, animals continuously interact with the environ-
ment, and this interaction drives substantial amounts of neural activity 
across many brain areas. Pinpointing features of neural activity that 
underlie latent processes, such as aspects of cognition, in the face of 
behavior-driven neural activity is a difficult problem requiring multiple 
approaches. One approach involves studying neural activity across 
behavioral tasks that vary along dimensions that are orthogonal to the 
process of interest. For example, signals related to a decision and not 
its report should be invariant to movement conditions of the task51. 
In the current study, we found that variability in the speed of striatal 
population responses correlated with subjects’ temporal judgments 
across two task variants that differed in the degree that subjects were 
free to move about during stimulus presentation. This consistency 
argues against a scenario where movement is the principal driver of 
the correlation between neural variability and temporal judgment. A 
priori, it is impossible to determine whether such correlations reflect a 
causal relationship from that neural activity to behavior, an unobserved 
source of neural activity elsewhere that directly causes both striatal 
neural activity and behavior, or potentially behavior that causes stri-
atal neural activity through reentrant sensory input. Previous analysis 
of high speed video during the no-fixation version of the temporal 
judgment task we study here demonstrated that decision-related 
information appeared in striatal activity several hundred milliseconds 
before it appeared in outward behavior, arguing against decision sig-
nals being driven by the sensory consequences of behavior alone22. 
Nonetheless, the existence of such varied possibilities underlies the 
need for so-called causal interventions to help determine whether 
neural activity is a cause, corollary or a consequence of behavior. Here, 
to examine the impact of a temperature intervention on population 
dynamics, we studied dynamics elicited by optogenetic activation of 
VB thalamus under anesthesia, and not the endogenous patterns of 
activity observed during behavior. This approach has the drawback 
of not allowing for 1) simultaneous assessment of the impact of tem-
perature on neural activity and behavior, and 2) neural activity being 
generated via circuit mechanisms that are distinct from those at play 
during behavior. However, it possesses advantages as well. Specifi-
cally, behavioral sources of neural variability are removed altogether, 
allowing for a much more direct assessment of temperature’s effects on 
features of neural population dynamics that were independently seen 
to correlate with timing judgments in multiple sets of experiments. 
In terms of delineating the nature of the causal influences between 
the various potential factors at play, technically this independence 
strengthens our confidence that the causal chain runs from tempera-
ture, to population dynamics, to animals’ temporal judgments52.

What circuit mechanisms might give rise to task-relevant stri-
atal population activity studied here? Previous views have suggested 
that the BG largely inherit their patterns of activity from inputs, often 
hypothesized to originate in cortex3,53. However, if time-varying striatal 
activity underlying temporal judgment were simply inherited from 
some other brain area, striatal temperature manipulations would be 
expected to produce a minimal shift and not a significant rescaling of 
behavior27. As in the vocal control circuit of songbirds, our data thus 
seem to be inconsistent with a mechanism where the relevant dynamics  
are simply inherited by the brain area targeted for temperature 
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manipulations, in our case the DS. In songbirds, there is evidence that 
a combination of local circuit mechanisms in pallial area HVC54 and a 
larger reentrant circuit involving HVC and multiple other brain areas 
are involved in generating the temporally patterned activity underlying 
song timing25,27. A similar scenario may underlie the mechanisms for 
generating temporally patterned striatal activity involved in temporal 
judgments. First, while most network modeling efforts that use neural 
dynamics for computation have relied, at least in part, on recurrent 
excitation, recent work suggests that it may be possible for a largely 
inhibitory, striatum-like circuit to produce complex spatiotemporal 
dynamics given sustained excitatory input55. The striatum may also 
represent one stage in a larger reentrant circuit involving multiple brain 
systems, where the larger circuit contributes to generation of dynamic 
patterns of activity that govern the evolution of decision variables. In 
this view, delays or advances induced by cooling or warming would 
accumulate with each cycle through the circuit, resulting in temporal 
rescaling with temperature. Such a circuit could, in principle, involve 
cortex, BG structures and thalamus9, or subcortical areas such as down-
stream BG structures, superior colliculus and thalamus56. However, our 
data suggest that any reentrant circuit mechanism involving cortex 
did not involve primary motor cortex, as temperature manipulations 
there had negligible effects on choice behavior, consistent with previ-
ous studies demonstrating that manipulating motor cortex does not 
affect expert behavior in motor timing tasks29,35. However, orbitofrontal 
and medial frontal cortical areas have been shown to encode temporal 
information during both motor timing and temporal judgment tasks, 
albeit less accurately than the striatum5,6, and cooling of medial frontal 
cortical structures has been shown to delay movements29, potentially 
indicating involvement of frontal cortical structures. In addition, the 
activity of midbrain dopamine neurons correlates with, and can directly 
cause, changes in timing judgments57, suggesting that dopaminergic 
neuromodulation may additionally tune the timecourse of network 
activity through its action on striatal circuits.

It has been proposed that timing processes are distributed in the 
brain1, and that networks of neurons implicitly possess a rich capacity 
to act as timekeeping mechanisms through the time-varying patterns 
of activity they tend to produce during behavior, sometimes termed a 
‘population clock’2. While the data presented here strongly support this 
hypothesis, in principle the kinds of computations performed by earlier 
more algorithmic, information processing accounts58 of timing might 
well be embedded in the type of population activity we describe here. 
This possibility is reflected in a growing belief that the brain performs 
many of its computations through dynamics59.

Our percepts, thoughts, and actions are continuously inter-
twined and regulated in time, and understanding the neural basis of  
temporal processing has been argued to be a necessary prerequisite for  
general models of cognition60. Yet understanding how the brain 
appropriately orders and spaces information along the temporal 
dimension to encode signals that are functions of time has been an 
enduring challenge for neuroscience. Here we provide compelling 
evidence that the timecourse of activity in populations of striatal 
neurons directly influences the timecourse of a timing process used to 
guide decision-making. The data not only imply a causal link between 
temporal scaling of a population response and a temporal basis for 
computation in the brain, but argue that, in the hierarchy of behavioral 
control, striatal dynamics may act at an interface between cognition 
and motor function to help guide whether and when to produce what 
actions, but not to provide the moment-by-moment, continuously 
evolving motor commands required for movement execution. Under-
standing the precise circuit mechanisms responsible for establishing 
and modulating the timescale of neural activity in these circuits, and 
which specific computations this activity subserves, represent impor-
tant future directions toward understanding how the brain flexibly 
operates on internally computed information to produce adaptive 
and intelligent behavior.
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maries, source data, extended data, supplementary information, 
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Methods
All experimental procedures were in accordance with the European 
Union Directive 2010/63/EU and approved by the Champalimaud 
Foundation Animal Welfare Body (Protocol Number: 2017/013) and the 
Portuguese Veterinary General Board (Direcção-Geral de Veterinária, 
project approval 0421/000/000/2018).

Subjects
A total of 32 adult Long-Evans hooded rats (Rattus norvegicus) between 
the ages of 6 and 24 months were used in this study. Two rats were 
used in an acute experiment aimed at characterizing the spatiotem-
poral profile of our temperature manipulation. Another four animals 
were used in an acute experiment combining electrophysiological 
recordings, temperature manipulation and optogenetic stimulation. 
A total of 26 wild-type males were trained in the interval discrimination 
task (across the fixation and no-fixation variants), of which 15 were 
chronically implanted with a custom TED that allowed for temperature 
manipulation experiments; 6 were implanted with 32-channel tungsten 
microwire moveable array bundles (Innovative Neurophysiology):  
3 unilaterally (previously published data22) and 3 bilaterally. Five were 
used in behavioral manipulation experiments. Before surgery (where 
applicable), animals were kept in pairs in transparent cages with HEPA 
(high-efficiency particulate air) filters on a 12-h light-dark cycle (with 
lights ON at 8:00 am), at 21 °C and relative humidity of 50%. All experi-
mental procedures were performed during the light phase of the cycle. 
Animals used in behavioral experiments had ad libitum access to food 
and were water-deprived.

Behavioral setup
The behavioral apparatus consisted of a 36 cm tall, 22.5 cm wide and 
35 cm long plastic storage box (TROFAST, Ikea) with three floor-level cus-
tom nose ports, a speaker (LS00532, Pro Signal) nearing the top of the 
opposite wall and a custom-made lid that provided uniform lighting and 
allowed for overhead video recordings (Flea3 FL3-U3-13S2, Point Grey 
Research Inc.) through an aperture. Each cylinder-shaped nose port 
was made up of three-dimensional (3D) printed components housing  
a white light emitting diode (LED), an infrared (IR) emitter-sensor pair 
that enabled the detection of port entries and exits and the accompany-
ing printed circuit board (PCB) (Champalimaud Foundation Scientific 
Hardware Platform). Additionally, the two lateral ports (positioned 
symmetrically around the central one) were each equipped with a 
metallic spout connected to a 20 ml water syringe via a solenoid valve 
(LHDA1231215H, Lee Company). All sensors, actuators and peripherals 
were respectively monitored, controlled and kept in the same temporal 
reference frame using a custom finite state machine implemented by a 
microcontroller I/O board (Arduino Mega 2560, Arduino) and an inter-
facing PCB (Champalimaud Foundation Scientific Hardware Platform). 
Finally, detected port events and other task-relevant behavioral data 
were timestamped, serially communicated to a Windows 10 desktop 
computer and stored as a parseable text file using a custom Python 
script. Video was acquired at 60 frames per second with a resolution 
of 1280 × 960 pixels in 8-bit grayscale using Bonsai61.

Behavioral training
Leading up to the experimental sessions reported in this paper, animals 
were first trained in two hour-long daily sessions five times a week in 
various ‘tasks’ of increasing complexity. During this stage, termed 
Poking101, rats were progressively introduced to the following rules: 
(un)lit ports are (un)responsive, meaning that nose-poking into a lit 
port will cause it to turn off and trigger some task event, whereas doing 
so at an unlit port is inconsequential; entering a lit lateral port results 
in a reward delivery of 25 μl of water paired with a brief secondary  
reinforcer (auditory tone, 1,750 Hz, 150 ms); entering the central port 
when it is illuminated initiates a trial and can lead to both lateral ports 
lighting up. This is contingent on the animal’s snout continuing to 

interrupt the IR beam at the center port for the entirety of a ‘fixation 
delay’ (fixation version), or the animal not making a premature entry 
at either lateral port during the ‘withhold delay’ (no-fixation version). 
Whichever the task variant, this imposed delay starts off at 0 s and is 
adaptively marched up towards 3 s (within and across sessions) and 
consists of an interval of silence demarcated by two brief auditory tones 
(7,500 Hz, 150 ms). Failure to withhold premature departures from the 
central port (fixation version) or choices (no-fixation version) causes 
the current trial to be aborted, eliciting an error tone (150 ms of white 
noise) and adding a timeout of 15 s to the already ticking 9-s ITOI. Once 
animals were able to reliably maintain fixation at the central port (fixa-
tion version) or defer choices (no-fixation version) for 3 s, training on 
the interval discrimination task began22,34. In it, instead of waiting for a 
fixed amount of time and collecting a reward at either lateral port once 
it elapsed, rats were asked to wait for a variable delay on each trial and 
to then categorize it as either shorter or longer than a 1.5-s boundary. 
‘Short’ judgments were registered at one of the lateral nose ports and 
‘long’ judgments at the opposite one. Rewards were contingent on 
stimulus and judgment categories being the same. When this was not 
the case, an error tone (150 ms of white noise) was played and a time 
penalty of 10 s was added to the ITOI. Pairs of stimuli symmetric about 
the categorical boundary were gradually introduced (from easiest 
to hardest) into the discrete sampling set that animals experienced, 
until reaching I = (0.6, 1.05, 1.38, 1.62, 1.95, 2.4) s (fixation version)  
or I = (0.6, 1.05, 1.26, 1.38, 1.62, 1.74, 1.95, 2.4) s (no-fixation version). A 
correction-loop procedure was used such that, following three incorrect 
categorizations of any given stimulus, only that stimulus was presented 
to the animal until its associated error count dropped below three. This 
training mechanism was disabled during manipulation and recording 
sessions. It took ~3 months for rats to reach asymptotic performance.

Thermoelectric device
Design. We used a custom-made implantable TED (weighing ~30 g) 
based on the Peltier effect to manipulate temperature in neural tissue. 
The implant consisted of a heat dissipation module, a thermoelectric 
cooling (TEC) module (01801-9A30-12CN, Custom Thermoelectrics), 
a 10 kΩ thermistor (9707204, Farnell) and two 15-mm long sharpened 
silver probes. These were insulated down to, but excluding, the tips 
with a thin layer of polytetrafluoroethylene low density thread seal 
tape (00686081520745, Gasoila) and polyimide tubing. The main dis-
tinguishing factors between the implant’s initial prototype (used in 
the single cooling dose pilot experiments) and its final version (used 
on the DS and M1 bidirectional manipulation cohorts performing 
the fixation task variant), were that the former was constructed with 
a passive aluminum heatsink (ICKS25X25X18,5, Fischer Elektronik) 
and 0.5-mm thick probes insulated with 1-mm wide polyimide tubing 
(95820-11, Cole-Parmer), whereas the latter had active heat dissipation 
via a water block (WBA-1.00-0.49-AL-01, Custom Thermoelectrics) 
and 1-mm thick probes insulated with 2-mm wide polyimide tubing 
(95820-13, Cole-Parmer). This water block was used in tandem with a 
peristaltic pump (200-SMA-150-050, Williamson), male and female Luer  
adapters (WZ-45504-00, Cole-Palmer) and the required interfacing 
tubing (WZ-06407-71, Cole-Palmer), allowing for a continuous flow 
(~15 ml min–1) of room temperature water through the water block’s 
inner chambers. The upper plate of the TEC was glued to the bottom of 
the heatsink using thermal glue (TBS20S, TBS), which was also used to 
secure the thermistor at the center of this module’s lower plate. Finally, 
the two sharpened silver probes were soldered onto the TEC’s lower plate  
(one on each side of the thermistor) using a mixture of lead (419424, 
Farnell) and silver solder (SDR-9703-030, Custom Thermoelectrics), 
at a distance of 5 mm from each other. This interprobe spacing corres
ponds to two times the ML stereotaxic coordinate of all our DS-targeted 
implants. Lastly, an RJ45 (85513-5014, Molex) connector was added  
on top of the heatsink and a custom 3D-printed spacer was mounted on 
its bottom, both secured using epoxy resin (2022-1, Araldite).
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Closed-loop control. The implant was plugged into a custom-made 
PCB (developed by the Champalimaud Foundation Scientific Hardware 
Platform and available upon request) via an ethernet cable. This PCB 
implemented a proportional-integrative-derivative (PID) controller 
that was designed to bring the implant’s thermistor measurement to 
any experimenter-defined target temperature (within the range of 
operation of the TEC). Briefly, the thermistor readout was continu-
ously compared with the current temperature setpoint to compute 
an absolute error term (proportional channel), a cumulative error 
(integrative channel) and an instantaneous change in error (deriva-
tive channel). These three error terms were then combined linearly, 
with weights set by the resistive and capacitive components of the 
hardware modules that implemented them, and used to modulate the 
control current driving the TEC. This negative feedback mechanism was 
optimized so that the target temperature could be reached with negli-
gible delays, steady-state errors and over/undershoots. The resulting 
closed-loop control allowed for stable, safe and transient temperature 
manipulations, as it required less user intervention, monitorization and 
arbitration than open loop alternatives. The setpoint of the PID was 
communicated through a serial communication pin from an additional 
Arduino Mega 2560 board that implemented the temperature manipu-
lation protocol per se, meaning it controlled both when to transition 
into a new block and which temperature to transition to. All block types 
lasted for 3 min, except for control ones in our single cooling dose 
experiment, which were twice as long to accommodate slower heat 
dissipation due to this initial experiment’s characteristic passive heat-
sink. In all cases, block transition times and target temperatures were 
respectively signaled via a brief digital pulse and an additional serial 
communication port to the task-implementing Arduino board. Both 
the PID-implementing PCB and the block-controlling Arduino were 
connected to a computer running Windows 10, where a LabView-based 
(National Instruments) graphical user interface (TEC visualizer, Cham-
palimaud Foundation Scientific Hardware Platform) enabled online 
visualization and saving of digitized thermistor temperature meas-
urements (sampled at 100 Hz). Finally, to prevent irreversible tissue 
damage in the eventuality of a partial compromise of the closed-loop 
system leading to its ‘opening’, an additional failsafe mechanism was 
implemented in the PCB’s firmware, ensuring that the TED was auto-
matically disabled if the registered thermistor temperature ever dipped 
below 0 °C or rose above 55 °C.

Calibration. A calibration curve between different set temperatures 
at the lower plate of the TED module and temperature measurements 
at the tip of the silver probes was derived from an acute preparation 
with an anesthetized rat. Lower plate temperature was set to each value 
in T = (5, 15, 20, 25, 30, 45) °C, in blocks of 4 min, always preceded and 
followed by a control block of the same duration (T = 36 °C). Tempera-
ture at one of the tips of the implant’s probe was measured by a second 
thermistor glued along the probe axis to the polyimide insulation layer. 
In a separate acute experiment, we positioned a thermistor probe 
angled at 30° at different distances to the implant’s tip (D = (0.3, 0.5, 
0.9, 2, 5.75) mm), and for each of them repeated the aforementioned 
blocked calibration procedure (but with manipulation temperatures 
drawn from the reduced set T = (15, 25, 42, 45) °C). Finally, all implants 
were tested individually postassembly to ensure their respective TED 
modules were functioning steadily and properly calibrated, using the 
same 4-min block protocol in warmed agarose gel (1.5%), which has 
similar thermal properties to brain tissue62.

Surgical procedures
Acute temperature measurements and calibration. Rats were anes-
thetized with 2.0–4.5% isoflurane. The animals’ body temperatures 
were continuously monitored and maintained at 35 °C by a rectal probe 
connected to a closed-loop heating system (FHC, https://www.fh-co.
com). After being anesthetized and before making the first incision, we 

administered dexamethasone (2 mg kg–1), carprofen (5 mg kg–1) and a 
saline solution of atropine (0.05 mg kg–1) subcutaneously (SC). We 
stereotaxically targeted the DS unilaterally (+0.84 mm AP, +2.5 mm ML 
from Bregma63). Immediately following temperature calibration  
procedures, animals were perfused for histological confirmation of 
the measurements’ location.

Viral injections. Following the same procedure for induction and 
maintenance of anesthesia used for acute temperature measurements 
and calibration, we stereotaxically targeted the VB of the thalamus for 
viral delivery (−2.3 mm AP, ±2.8 mm ML, 6.6 mm DV from Bregma63). 
We injected 300 nl of rAAV5-CamKII-hChR2(H134R)-EYFP (titer ~1012 
GC%; University of Pennsylvania Vector Core) using an automated 
microprocessor-controlled microinjection pipette with micropipettes 
pulled from borosilicate capillaries (Nanoject II, Drummond Scientific). 
Injections were performed at 0.2 Hz with 2.3 nL injection volumes per 
pulse. For all injections, the micropipette was kept at the injection 
site 10 min before withdrawal. Craniotomies were then covered with 
Kwik-Cast (WPI) and the skin was closed with sutures (Vicryl, Ethicon 
Inc.). Animals were allowed to fully recover on a warming pad and 
returned to the home cage when fully alert. During the 3 days following 
surgery, animals were given carprofen (5 mg kg–1, SC).

Acute optogenetic stimulation, extracellular recordings and tem-
perature manipulation. Following 3–6 weeks for viral expression, four 
rats were anesthetized with two doses of urethane, the first at 0.7 g kg–1 
of body weight and the second at 0.35 g kg–1 20 min after. Additionally, 
we administered dexamethasone (2 mg kg–1), carprofen (5 mg kg–1) and 
a saline solution of atropine (0.05 mg kg–1) SC. Animals were then kept 
with isoflurane at 0.5–1% until at least 30 min before electrophysiological  
recordings began. Animals’ body temperature was continuously 
monitored and maintained at 35 °C by a rectal probe connected to a 
closed-loop heating system (FHC, https://www.fh-co.com) throughout 
the experiments. We opened a large rectangular craniotomy over the 
left hemisphere (4 mm AP by 3 mm ML from Bregma63), centered in the 
same target location as the chronic implants. A 300 µm diameter and 
0.37NA optic fiber (Doric) was targeted to VB (−2.3 mm AP, ±2.8 mm ML, 
6.2 mm DV from Bregma63), inserted at a 39° angle and secured with blue 
light cured self-adhesive resin cement (RelyX Unicem 2 Self-Adhesive 
Resin Cement, 3M). A small silver ground wire was inserted under 
the skull of the opposite hemisphere. A TED similar to the one used 
for chronic implants (with a single silver probe at a 90° angle relative 
to the heatsink, to accommodate the geometrical demands of the 
experimental preparation) was lowered to the same DS target location 
(+0.84 mm AP, −2.5 mm ML, 4 mm DV from Bregma63). This modi-
fied device was calibrated and behaved similarly to the ones used for 
chronic manipulations. Finally, a Neuropixels probe (Phase 3 A Option 
3, IMEC32) was placed caudally relative to the temperature probe, and 
slowly lowered to target (5–6.5 mm DV) and allowed to stabilize in the 
tissue for at least 30 min before starting recordings and stimulation 
protocols. Seldomly, and for longer recording protocols, an additional 
dose of urethane was necessary to maintain anesthesia (0.2 g kg–1). A 
473 nm LED source (Doric) was connected to the implanted optical 
fiber using a patch cord (400 μm core, 0.48 NA) and set to 3.5–5.5 mW 
at the end of the fiber and controlled using a dedicated arduino that was 
also responsible for switching the block temperature identity through 
a serial communication with the TED controller. Each stimulation trial 
consisted of a single train of five, 1-ms long, pulses at 100 Hz (each train 
lasting 50 ms in total). Each trial was separated by a period of 1.5 s. Elec-
trophysiological and peripheral synchronization (LED and temperature 
probe) data were acquired simultaneously using SpikeGLX software 
(https://billkarsh.github.io/SpikeGLX/) at 30 kHz. Local-field potential 
gain and action potential gain were set at 250 and 500, respectively, 
and split at 300 Hz. Each block at a specific temperature lasted 3 min. 
Temperature identities were drawn, without replacement, from the 
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available set of three temperatures and were always intercalated with 
a control block. This protocol was repeated twice for a total of two 
blocks for each manipulation condition. Immediately following these 
procedures, animals were perfused for histological confirmation of the 
measurements’ location.

Chronic TED implantation. Rats (n = 15; 5 in the single cooling dose 
pilot experiment, 6 and 4 in the bidirectional DS and M1 temperature 
manipulation experiments, respectively) underwent surgery around 
3 months after they started training. During the implantation of the 
TED rats were anesthetized with 2.0–4.5% isoflurane. Animals’ body 
temperatures were continuously monitored and maintained at 35 °C 
by a rectal probe connected to a closed-loop heating system (FHC, 
https://www.fh-co.com). After being anesthetized and before making 
the first incision, we administered dexamethasone (2 mg kg–1), carpro-
fen (5 mg kg–1) and a saline solution of atropine (0.05 mg kg–1) SC. We 
stereotaxically targeted the DS bilaterally (+0.84 mm AP, ±2.5 mm ML 
from Bregma63). Two craniotomies and durotomies matching the diam-
eter of the silver probes were made. Five support screws were placed: 
one in the occipital plate, two posterior and two anterior to the location 
of the craniotomies. The cranial bone was covered with self-curing 
dental adhesive resin cement (Super-Bond, C&B) to improve adher-
ence to the dental acrylic used to secure the implant. The TED was then 
slowly lowered perpendicular to the brain surface to a depth of 4 mm 
from cortical surface. The craniotomies were covered with Kwik-Cast 
(WPI) and the implant was fitted into place and secured with several 
layers of dental acrylic (the first of which mixed with gentamicin). The 
procedure ended with suturing (Vicryl, Ethicon Inc.) the skin anterior 
and posterior to the implant. Animals were allowed to fully recover on 
a warming pad and returned to the home cage once fully alert. Animals 
were then housed individually to minimize implant damage. During 
the 3 days following surgery, animals were injected once a day with 
carprofen (5 mg kg–1, SC). Animals were allowed to recover for a week 
after the surgery with food and water ad libitum.

Chronic electrophysiology implantation. These procedures followed 
a protocol similar to the one used for the implantation of the chronic 
TED implants. For a detailed description, see Gouvêa et al.22.

Temperature manipulation protocol
Following 1 week of recovery from surgery, all animals were again 
water-deprived and gradually resumed behavioral training. Once they 
were performing at approximately presurgical levels in their assigned 
version of the interval discrimination task, they were subjected to 
temperature manipulation sessions. These 2-h sessions consisted of 
6- or 3-min control blocks (for the pilot and bidirectional temperature 
manipulation experiments, respectively), in which the TED was set to 
body temperature (~36 °C), always interleaved with 3-min manipulation 
blocks, in which the TED was either set to 25 °C in the single cooling 
dose pilot experiments, or one of three manipulation doses (15, 25 and 
42 °C) in all bidirectional manipulation experiments. Manipulation 
temperatures were drawn at random and without replacement from 
the aforementioned set until its exhaustion, at which point the set was 
replenished and the sampling process resumed. Sessions invariably 
started and ended with a control block and animals were not explicitly 
cued to block transitions. Manipulation sessions were interleaved with 
washout sessions, in which the controller of the TED was disabled, and 
correction-loop training was reinstated.

Implant placement confirmation
Rats were sacrificed with transcardiac perfusion with PBS, followed by 
4% (wt/vol) paraformaldehyde (PFA). Following perfusion, brains were 
left in 4% PFA for 24 h and then moved to a 30% sucrose solution (wt/vol) 
in PBS for 2–3 days. For chronic electrophysiology, single cooling dose 
and acute experiments, a vibratome was used to section the brain into 

50 μm coronal or 40 μm sagittal slices, respectively. Coronal slices were 
stained with Nissl stain and sagittal slices series were alternated with 
Nissl or immunostained with a primary antibody against GFP (A-6455, 
Invitrogen) and a secondary antibody conjugated with AlexaFluor 
488 (ab150077), and finally, incubated in DAPI. Images were acquired 
with a stereoscope (Lumar V12, Zeiss) or a slide scanner (Axio Scan Z1, 
Zeiss). For animals subjected to bidirectional chronic temperature 
manipulations, a 1 T magnetic resonance imaging scanner (ICON, 
Brucker) was used to collect MRI data. A T2-weighted structural image of 
the brains was collected using a Rapid Imaging with Refocused Echoes 
(RARE) pulse sequence. The sequence used had a repetition time of 
2,800 ms, echo time of 90 ms and a RARE factor of 12. The field of view 
was set to 28 × 15 × 20 mm2, the spatial resolution of the images was 
150 × 150 × 150 μm3 or 80 × 80 × 80 μm3 and a matrix of 187 × 100 × 133 
voxels was acquired after eight averages during a 7-h scanning.

Data analysis
Unless otherwise stated, all data were analyzed using custom MATLAB 
(https://www.mathworks.com) scripts.

Psychophysical data analysis
Preprocessing. Trials with reaction times greater than 1 s or movement 
times greater than 2 s were labeled as outliers and excluded from all 
reported analyses. This resulted in less than 5% of all trials being removed. 
To make balanced comparisons across animals and temperature condi-
tions, data from the first two manipulation sessions of every chronically 
implanted animal were pooled together chronologically up to the point 
where there were 10 trials per stimulus for each manipulation condition 
and 40 trials per stimulus for the control temperature condition. The 
same pooling procedure was applied in reverse for the last two tempera-
ture and boundary manipulation sessions (Supplementary Information).

Psychometric function. We used the Psignifit64 toolbox to fit  
the following four-parameter psychometric function to all interval 
discrimination data:

Ψ (x;m,w(α), λ, γ) = γ + (1 − λ − γ) × S(x;m,w(α))

Slogistic(x;m,w(α)) =
1

1 + exp−2ln(1/α−1)×(x−m)/w
,α = 0.05

In this parameterization, a strictly monotonic sigmoid function S 
from the stimulus level x onto the unit interval (0,1), is specified by 
m = S−1(0.5)  and w = S−1(1 − α) − S−1(α) , namely the threshold and  
width parameters. This is independent of the choice of S, which, in our 
case, is the logistic function. The hyperparameter α, which sets the 
span of w along the vertical axis, was set to 0.05. To account for stimulus- 
independent choices, S is scaled by two additional free parameters,  
λ and γ, which respectively control the upper and lower asymptotes  
of the psychometric function Ψ. The λ and γ parameters were fixed 
across temperatures at values found through fitting the corresponding 
control temperature data.

Dilation and stretch metrics. We adopted the dilation and stretch defi-
nitions from Long and Fee27. Briefly, dilation (D) of any scalar metric x  
(for example, threshold MAP), was calculated as the percent difference 
from unity in the ratio of a given temperature’s estimate (indexed by 
its corresponding temperature change, ΔT) over that of the control 
(indexed by ΔT = 0).

D = ( xΔT
xΔT=0

− 1) × 100

Stretch (S) was defined as the slope coefficient in a least squares 
linear regression using dilation as the response variable and the 
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magnitude of our temperature manipulation (induced temperature 
differences around the implant’s tip) as the sole predictor, assuming 
normally distributed errors (ε).

D = S × ΔT + ϵ

Electrophysiological data analysis
Unless otherwise stated, what follows applies to all three electrophysi-
ology datasets analyzed in this paper: acute DS recordings (n = 335 neu-
rons, across four animals), chronic DS recordings during the no-fixation 
(n = 441 neurons, across three animals)22, and the fixation (n = 483, 
across three animals) versions of the interval discrimination task. We 
use the generic term condition to refer to striatal temperature in the 
acute dataset, and to stimulus-choice pairs in the two chronic datasets. 
The reference condition corresponds either to control temperature 
(acute) or to correct categorizations of the 2.4-s stimulus (chronic). 
Finally, trial onset refers to the onset of VB stimulation (acute) or  
stimulus onset (chronic).

Preprocessing. In the case of the acute recordings, we focused  
on contiguous periods of stable activity (without abrupt changes in  
firing profile/rate), which in practice meant trimming the very  
beginning and/or end sessions where needed. For the three animals  
we recorded chronically and unilaterally in the DS during performance 
in the no-fixation required version of the interval discrimination  
task, preprocessing was done as described when this dataset was  
first published22. For the remaining animals, we used a semiauto-
mated offline approach to detect and sort recorded action potentials  
into well-isolated units and clusters of multi-unit activity. Detection, 
sorting and inference of the relative depth of each unit, were done 
using KiloSort2 (http://github.com/MouseLand/Kilosort2), whereas 
curation of the resulting clusters was performed using Phy (http://
github.com/cortex-lab/phy). Before any of the analyses shown in  
the main figures, we further selected validated units with an inter
sectional approach that used firing rate and recording depth in  
the case of the acutely recorded data. Briefly, to survive this selec-
tion step, units had to have a mean firing rate of 0.5 Hz or higher and  
in the case of the acute recordings, have been recorded at a contact  
that was later inferred to be in the DS, by comparing its position 
along the Neuropixels probe to a dip in the distribution of recorded  
cell depths—likely corresponding to a characteristic ‘silence’ when 
transitioning from gray (cortex) to white (corpus callosum) to gray 
(striatum) matter.

Single-neuron responses. Spike density functions were built on a 
trial-by-trial basis by first counting spike times in 2-ms bins and then 
convolving the resulting histogram with a causal kernel specified by 
a gamma distribution with shape and scale parameters of k = 2 and 
θ = 75 ms, respectively. Baseline firing rates in the acute recordings 
were computed in a 500-ms window preceding VB stimulation. To 
compute temporal scaling factors for each unit-condition pair, we 
first upsampled reference spike density functions by a factor of 10 and 
then warped them in time using 1,000 scale factors, linearly spaced in 
the range (0.625, 1.75). Both the upsampling and time-warping steps 
were performed using linear interpolation. Next, we linearly regressed 
all time-warped templates against the spike density function of each 
condition and stored the corresponding coefficient of determination 
(R2). The scale factor that maximized this template-matching metric is 
what we operationally defined as the temporal scaling factor for that 
unit-condition pair. In the case of control scaling factors, we split data 
into two random nonoverlapping sets of trials and arbitrated which 
one was used to construct templates and which one was the target. To 
account for an edge artifact where the scaling factors of a small percent-
age of neurons were estimated to be at the lower and upper bounds of 

our scaling range (0.625, 1.75), these neurons were excluded from the 
analysis in Fig. 2b. Regarding response dilation and stretch, we used the 
same definitions from the psychophysical analysis section, except that 
scaling factors (f) replaced ratios of temperature over control estimates 
when calculating dilation:

D = (f − 1) × 100

Low-dimensional representations of population state. We used 
principal component analysis (PCA) to enable visualization of striatal 
population trajectories in representative 3D subspaces. Briefly, we 
first averaged spike density functions across trials of a given condition  
and concatenated them into N × (T × K) matrices, where N is the number 
of neurons for that dataset, T the number of 2-ms time bins relative  
to trial onset and K the number of experimental conditions. After 
normalizing these data to have zero mean and unit standard deviation 
along the temporal dimension, we used trial-averages corresponding 
to the reference condition to find the three orthogonal directions 
that maximally captured variance in said data. Finally, each condi-
tion’s trial-averaged population activity was then projected onto  
the subspace defined by these principal components (PCs), with  
reference trajectories plotted for all timepoints, and nonreference 
trajectories plotted only for arbitrary timepoints and projected  
onto the corresponding reference trajectory so as to prevent  
visual clutter.

Psychometric curves split by population state at stimulus offset. 
This analysis was adapted from its original introduction22, and was 
applied only to the two chronic datasets in the current paper. Briefly, 
for all individual trials in each session with five or more simultaneously 
recorded units, we projected population activity at stimulus offset 
onto the median trajectory traversed by that striatal ensemble during 
the entire stimulus presentation period. We then normalized these 
projections by the length of that median trajectory. In addition to this 
temporal scaling metric, we computed an outlierness metric as the 
average point-by-point minimum distance between each trial’s trajec-
tory and its session’s median trajectory (the 5% most extreme trials in 
these ‘outlierness’ distributions were removed from the subsequent 
analyses). After pooling all normalized projections over all sessions 
and animals, we then partitioned, for each stimulus, the resulting 
distributions into Q groups. For ease of comparison, Q was chosen 
to match the number of conditions in the temperature manipulation 
experiments during behavior in the single cooling dose pilot (Q = K = 2) 
and the bidirectional temperature manipulation (Q = K = 4) experi-
ments. Psychometric curves were then fit to trials from each group as 
described above.

Decoding time from ongoing population activity. We used a naïve 
Bayes decoder (flat prior) to continuously compute probability  
distributions over elapsed time using multisession concatenations  
of putative striatal population activity aligned to trial onset.

Briefly, we:

	(1)	 Discretized time t into B 2-ms bins, such that b ∈ [1,B] and 
tb ∈ [0,T] ms, with T = 1,500 ms for the acute recordings and 
T = 2,400 ms for the chronic recordings.

	(2)	 Fit an encoding model to each neuron n ∈ [1,N] at each point in 
experimental time tb:

p(rn|tb),

which we determined empirically by querying cell-specific single-trial 
spike density functions rn at the time interval [tb, tb+1], and smoothing 
the resulting rate histograms with a Gaussian kernel (μ = 0, σ = 10 Hz). 
This was done using a subset of trials making up half of all reference 
trials.
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	(3)	 Made conditional independence assumptions about neurons,  
regardless of whether or not they were recorded simultaneously:

p(tb|R) ∝
N
∏
n=1

p(rn|tb)

Where R = (r1, r2,… , rN) is a novel, to-be-decoded instance of concate-
nated population activity recorded at a known condition and point in 
time since trial onset.
	(4)	 Used Bayes’ rule in creating a decoding model that linearly 

combined all individual-neuron encoding models with a uniform 
prior over decoded time p(tb) =

1
B

:

p(tb|R) =
p(tb)

N
∏
n=1

p(rn|tb)

p(R)

Where the probability p(R) for the population vector R to occur does 
not have to be estimated explicitly, as it indirectly follows from normal-
izing the posterior distribution p(tb|R) such that it sums to 1 over all 
possible decoder outcomes, that is, elapsed time as decoded from 
striatal ongoing activity.

Once the time-dependence in the responses of striatal cells 
recorded during a set of training trials is known, this Bayesian approach 
directly addresses the inverse problem: given the firing rates of the 
same cells, now recorded during previously unseen test trials, how 
likely is it for any and all b units of time to have passed.

Continuous behavioral data analysis
Preprocessing. Full session 2-h videos recorded during the fixation 
version of the task were first cut into 15-s long clips (one per trial) 
aligned on stimulus onset ((−5, 10) s). Offline tracking of the position 
of several implant features was performed using DeepLabCut43. Con-
tiguous low confidence position estimates (likelihood <0.85) of six 
samples or fewer were interpolated linearly and tracking timeseries 
were subsequently smoothed with a six-sample median filter. To stand-
ardize units of distance across animals and sessions, we computed 
session-wise background frames by taking the median pixel intensities 
from a random sample of 3,000 frames from each session’s full video. 
Next, we arbitrarily picked one background frame from a particular 
session of a particular animal as a reference, and computed the affine 
transformations that would best align each session’s background 
frame to that reference. These transforms were then applied to both 
the x and y coordinates of each tracked feature’s position and finally, 
converted to approximately SI units of distance by exploiting knowl-
edge of the behavioral box’s dimensions and assuming no nonlinear 
optical distortions.

Implant speed. Instantaneous implant speed (s) was computed by 
taking the one-step forward difference of the average (across three 
implant features) displacement (r) with respect to sampling time (Δt).

s = Δr
Δt =

√Δx2 + Δy2
Δt

To compute speed profile dilation and stretch, we used the same 
template-matching approach described above for single-neuron 
responses, but using average condition-split speed across time instead 
of condition-split spike density functions. Lastly, average speed dilation 
was calculated in the same way as threshold dilation, with each condi-
tion’s average—the mean across single-trial median speeds computed 
between reaction (the first detected exit time from the initiation port 
following stimulus offset) and 350 ms (roughly the time animals took 
to settle into a nose port) after choice (the first detected entry time at 
a choice port)—replacing threshold point estimates.

Statistics and reproducibility
No statistical method was used to predetermine sample size but our 
sample sizes are similar to previous studies recording and/or perturb-
ing neural activity18,22,29,65. When conditions contained fewer than five 
animals, results were confirmed to be significant within each animal. 
Data exclusion criteria are specified in the relevant methods sections. 
Trained animals were assigned randomly to the various experimen-
tal groups. Temperature manipulation sessions consisted of control 
blocks interleaved with blockwise randomized manipulation doses. 
In both variants of the interval discrimination task, stimuli were drawn 
at random from trial to trial. Data collection and analysis were not 
performed blind to the conditions of the experiments.

Data distribution was assumed to be normal but this was not formally  
tested. Unless otherwise stated, we used one-sample two-tailed t tests 
whenever assessing the statistical significance of shifts in distributions, 
which we visually afforded with vertical solid black lines connecting 
the distribution’s mean to zero. When examining differences across 
distributions, we used either two-sample two-tailed t tests when com-
paring striatal and motor–cortical stretch distributions, paired-sample 
two-tailed t tests when comparing models of dilation as a function 
of temperature change, or repeated measures analysis of variance 
(ANOVA) followed by post hoc contrasts with Tukey correction for 
multiple comparisons when comparing dilation distributions across 
conditions but within cohorts. We visually afforded these two- and 
paired-sample tests with horizontal solid black lines connecting the 
two underlying distributions, offset vertically for clarity. In all cases, 
we denote test outcomes near the respective visual affordance with the 
following notation: *P < 0.05, **P < 0.01, not significant (NS). In the case 
of single animal stretch estimates, we assessed their statistical signifi-
cance at a 5% level by bootstrapping. Specifically, we computed these 
point estimates for 1,000 random samples per manipulation condition, 
constructed by sampling equal numbers of trials with replacement 
from the control condition while preserving stimulus identity. For 
each iteration, we then performed linear regression on bootstrapped 
dilations and stored the respective slope coefficient as that iteration’s 
stretch. Bootstrapped significance was consistently denoted by larger 
dark-filled markers, as opposed to smaller white ones.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw data are available in a Figshare public repository66.

Code availability
Analysis code that supports the findings of this study are available from 
the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Spatiotemporal characterization of thermoelectric 
device (TED). (a) Schematic of the preparation in which we set our TED to one  
of several manipulation temperatures (T = {5, 15, 20, 25, 30, 45} °C) while 
measuring temperature at its lower plate and probe tip simultaneously.  
(b) Temperature measured at the TED plate and probe tip thermistors.  
(c) Temperature traces measured at the probe tip thermistor during manipu
lation blocks aligned to block transitions. Solid lines represent model fits. 

(d) Schematic of the preparation in which we set our TED to one of several 
manipulation temperatures (T = {15, 25, 42, 45} °C) while measuring temperature 
at its lower plate a movable temperature probe simultaneously. (e) Decay 
parameters for models fit to manipulation temperatures (as shown in (C)) 
across the 2 experiments (manipulation temperatures that are common to both 
experiments are connected with solid colored lines). (f) Same as (E), but for the 
gain / offset parameter across all model fits.
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Extended Data Fig. 2 | Histological reconstruction of TED, optical fiber  
and recordings probe placements for acute and chronic experiments.  
(a) Intermediate medial-lateral (ML) locations of TED probes (black markers), 
optical fibers (blue markers) and Neuropixels probes (white triangles) projected 
onto a reference sagittal slice (ML = 2.62 mm from Bregma). (b) Distributions 
of relative recording depths for all animals (N = 4) and recorded units (N = 335, 
before enforcing the minimum firing rate selection criterion, see methods). 
Horizontal dashed line depicts corpus callosum. Putative motor cortical and 
striatal neurons in gray and black, respectively. Histograms’ relative depth is 

overlaid in (A) using the same color scheme. We were unable to clearly identify 
the Neuropixels tract for animal I. (c–e) Intermediate anterior posterior (AP) 
location of microwire recording bundles in the no-fixation (C, orange, N = 3 
animals implanted unilaterally), fixation version (D, petrol blue, N = 3 animals 
implanted bilaterally) and TED (E) probes for striatal (black markers, N = 6) 
and cortical (gray markers, N = 4) targets projected onto target coronal slice 
(AP = +0.84 mm from Bregma). White markers show implant locations for the 
no-fixation cohort (N = 5).
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Extended Data Fig. 3 | Temporal scaling as opposed to shifting provided a 
better account of temperature’s effect on neural activity. (a) Top: Simulated 
spike density functions exhibiting bidirectional and dose-dependent temporal 
scaling with temperature. Middle: Templates built by warping a control spike 
density function (thicker black line) in time by scale factors ranging from 0.625 
(maximum contraction) to 1.75 (maximum dilation). Note that when applying 
this method to data, this control response is not the same as the one shown in 
the top panel, as the two are built using two non-overlapping random sets of 
control trials. Bottom: Thick lines represent the coefficient of determination 
(R2) for all scaled templates in the middle panel regressed against each of the 
target spike density functions shown at the top. We computed this objective 
function for each neuron-temperature condition pair and took its global 
maximum as the corresponding temporal scaling factor, highlighted here 
by the larger markers. Thinner lines and smaller markers depict R2 values for 
a similar regression procedure applied to a series of shifted, as opposed to 
scaled, templates. (b) Same as (A), except that for artificially temporally shifted 
responses relative to control (top), temporally shifted templates (middle), and 
their regression outcomes (bottom). The thinner lines and smaller markers 
respectively represent the R2 curves and maxima resulting from regressing 
the scaled templates from A (middle) against the shifted targets in B (top). 
Conversely, the result of regressing shifted templates against scaled targets 
is plotted in the same manner in (A, bottom). (c) To assess whether the effects 
of temperature on individual striatal responses were better accounted for by 
temporal scaling or shifting, we built two separate spiking models in which we 

either injected one effect or the other. Briefly, we modeled 500 control firing 
rate functions as gaussian bumps defined over 1.5 s with means spanning the 
interval from 150 ms to 750 ms (Fig. 1e) and a standard deviation of 50 ms. The 
amplitudes of the resulting probability density functions were rescaled so that 
their distribution of mean firing rates matched that of striatal data. Next, we 
created one additional rate function per neuron per manipulation condition 
by either shifting or scaling its control response in time. Again, the distribution 
of generative temporal scaling factors and shifts used was informed by the 
empirical distributions of these metrics extracted from striatal data. We then 
generated 150 spike trains of each condition per neuron by sampling spike 
times from inhomogeneous Poisson point processes with the aforementioned 
condition-specific responses as their time-dependent rate parameters. From this 
point on, we proceeded to analyze the resulting surrogate spike data in the exact 
same way we did for the striatal data, by first averaging trials within condition, 
generating libraries of templates and then computing temporal scaling factors 
and shifts. Finally, for each ‘neuron’-condition pair within each model, we stored 
the R2 values corresponding to the best-matching scaled and shifted templates 
and subtracted the former from the latter to build the distributions shown here at 
the top (scaling model) and middle (shifting model) panels. Thick solid sigmoidal 
lines represent the CDFs of each condition’s R2 difference. Thin vertical black 
lines denote control mean differences. Small horizontal colored lines link the 
respective means of the corresponding manipulation and control distributions. 
(d) Same as (C), but for striatal data.
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Extended Data Fig. 4 | Discrimination performance in both task variants was 
qualitatively similar before and after TED implantation. (a) Discrimination 
performance of rats trained on the no-fixation variant of the interval discrimi
nation task and implanted with the initial version of our custom TED targeting the 
DS (N = 4) on the last day of training before surgery. Gray lines are psychometric 
fits to individual animals. The black line is a fit to the average across animals. The 
underlying choice data is shown for the cohort average (± s.e.m.). (b) Same as 
(A), but for rats that trained on the fixation task variant and implanted with the 

initial (N = 1) or final version of our custom TED targeting the DS (N = 6). (c) Same 
as (B), but for rats implanted with the final version of our custom TED targeting 
M1 (N = 4). (d) Schematized timeline for a typical experimental rat. Elongated 
bars illustrate long periods of time, whereas squares represent individual daily 
sessions, which, with the exception of surgeries, lasted for 2 hours. (e-g) Same 
as (A-C), but for the last post-surgery training session in advance of starting 
temperature manipulation sessions.
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Extended Data Fig. 5 | An initial TED capable of a single mild cooling 
temperature produced qualitatively similar effects on timing judgments 
in both variants of the interval discrimination task. (a) Performance in 
the no-fixation version of the interval discrimination task conditioned on 
neural population speed (N = 3). Psychometric curves split by whether activity 
progressed more slowly (blue) or at a typical speed (black, see methods). Bottom 
right inset: Differences in proportion of long choices from the slow speed 
condition to the typical speed condition (mean ± propagated s.e.m.). Top-left 
inset: Marginal posterior distributions of the threshold parameter for each 
speed condition’s psychometric fit. Solid black lines represent the M.A.P. point 
estimates. (b) Analogous to (A), but conditioned on whether striatal temperature 
was set to control (black) or a mild cooling (teal) dose (N = 4). Psychometric 
functions fit to cross-animal averages (± s.e.m.) of temperature-split 
psychophysical data, respectively shown as solid lines and markers of matching 
color. Bottom right inset: Average differences in proportion of long choices 
from the mild cooling condition to control (± propagated s.e.m.). Top-left inset: 
Marginal posterior distributions of the threshold parameter for each condition’s 

psychometric fit. Solid black lines represent the M.A.P. point estimates. (C-D) 
Effect of temperature on psychophysical thresholds. (c) Markers represent 
M.A.P. estimates and transparent patches the corresponding 95% confidence 
intervals of threshold parameters fit to individual animals’ performance on 
control (vertical axis) versus mild cooling blocks (horizontal axis). Single animals 
contribute one data point of each color. Top-right inset: Distribution of threshold 
differences between the mild cooling and control conditions (mean ± s.e.m.).  
(d) Left: Distributions of threshold dilation as a function of induced temperature 
changes (one-sample two-tailed t-test, t(3) = 5.67, P = 0.01). Markers linked 
by solid black lines represent individual animal threshold dilations. Boxplots 
show animal means (horizontal thick lines) and s.e.m. (colored bars). Right: 
Distribution of threshold stretch (one-sample two-tailed t-test, t(3) = −5.67, 
P = 0.01). Markers represent individual animals, and their size and color denote 
bootstrapped significance. Boxplots show animal means (horizontal thick 
lines) and s.e.m. (colored bars). (e) Same as (A), but in the fixation task variant. 
(f-h) Analogous to (B-D), but in the fixation task variant (N = 1 animal, mean ± 
propagated s.e.m. across trials instead of animals in (F)).
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Extended Data Fig. 6 | Manipulating M1 temperature did not produce 
discernible effects on timing judgments. (a) Average discrimination 
performance in the fixation version of the interval discrimination task at the 
onset of M1 temperature manipulations. Psychometric functions fit to cross-
animal averages (N = 4) of temperature-split psychophysical data, respectively 
shown as solid lines and markers of matching color (mean ± s.e.m.). Bottom 
right inset: Average differences in proportion of long choices from each 
manipulation condition to control (mean ± propagated s.e.m.). Top-left inset: 
Marginal posterior distributions of the threshold parameter for each condition’s 
psychometric fit. Solid black lines represent the M.A.P. point estimates implicit 
in the fits shown in the main axes. (b) Animal-split discrimination behavior. 
Markers represent M.A.P. estimates and transparent patches the corresponding 
95% confidence intervals of threshold parameters fit to individual animals’ 
performance on control (vertical axis) versus manipulation blocks (horizontal 
axis). Inset: Distribution of threshold differences between manipulation 

and control conditions. Markers represent individual animal differences 
(mean ± s.e.m.). (c) Effect of motor cortical temperature manipulations on 
psychophysical threshold (all non-significant |ts(3)| = [0.93, 2.90], P = [0.06, 
0.42]; repeated measures ANOVA, F(2, 9) = 1.93, P = 0.20). Markers represent 
individual threshold dilations, linked within animals by thin solid black lines. 
Boxplots show animal means (horizontal black lines) and s.e.m. (colored bars). 
(d) Threshold dynamics aligned to and across block transitions. Condition-split 
cross-animal average thresholds (mean ± s.e.m.) were computed using trials that 
fell into a sliding window lasting 90 s (half the block duration) that was swept 
from the preceding to the succeeding control blocks in increments of 9 s. Each 
marker corresponds to one sweep, and its color shading denotes the fraction 
of that sweep’s window that was inside a control block (with black markers 
corresponding to 100% control trials), and by extension its complement that fell 
in a manipulation block (with pure manipulation colors corresponding to 100% 
manipulation trials).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Striatal temperature did not produce monotonic 
effects on movement during stimulus presentation, latency to initiate, or 
time to execute choice movements. (a) x (top) and y (bottom) coordinates 
of implant position aligned to stimulus onset (representative DS-implanted 
animal). Dashed (solid) lines correspond to short (long) choices with individual 
control trials ghosted in the background, and condition-split averages on top 
(mean ± s.e.m.). Filled and open markers show average position at reaction and 
choice, respectively. (b) Same data as in (A), combined into an overall speed 
metric (see Methods). (c) Left: Distributions of median implant speed dilation 
for DS animals (one-sample two-tailed t-tests, t(5) = [0.11, 0.87], P = [0.43, 0.92]; 
repeated measures ANOVA, F(2, 15) = 0.11, P = 0.89). Right: Distribution of median 
implant speed stretches for DS (N = 6) and M1 (N = 4) animals (one-sample 
two-tailed t-tests, tDS(5) = −0.07, P = 0.95; tM1(3) = −0.76, P = 0.51; two-sample two-
tailed t-test, t(8) = 0.56, P = 0.59). Markers represent individual animals, and their 
size and color denote bootstrapped significance. (d) Schematics highlighting the 
task epoch in between stimulus offset and the initiation of the choice movement 
(reaction time). (e) Markers represent the median and transparent patches the 
corresponding i.q.r. of individual animals’ reaction times on control (vertical 
axis) versus manipulation blocks (horizontal axis). Single animals contribute  
one data point of each color. Top-right inset: Distribution of reaction time 
differences between manipulation and control condition. Markers represent 
individual animal differences, bars and error bars are animal means and s.e.m.  
(f) Same as (C), but for median reaction times (left: one-sample two-tailed t-tests, 
t(5) = [1.31, 2.01], P = [0.10, 0.25]; repeated measures ANOVA, F(2, 15) = 1.43, 
P = 0.27; right: one-sample two-tailed t-tests, tDS(5) = −1.84, P = 0.12; tM1(3) = −0.52, 

P = 0.64; two-sample two-tailed t-test, t(8) = −0.94, P = 0.37). (g-i) Same as (D-F), 
but for the task epoch in between the initiation of the choice movement and  
the moment that choice is registered (movement time; I-left: one-sample two- 
tailed t-tests, t(5) = [0.28, 1.04], P = [0.35, 0.79]; repeated measures ANOVA,  
F(2, 15) = 0.60, P = 0.56; I-right: one-sample two-tailed t-tests tDS(5) = −1.01, P = 0.36; 
tM1(3) = −1.04, P = 0.38; two-sample two-tailed t-test, t(8) = −0.30, P = 0.77).  
(j) Comparison between two one-parameter models of how DS temperature 
affected all movement-related metric dilations reported (speed profile of choice 
movements: one-sample two-tailed t-tests tβ-∆T(5) = 1.78, P = 0.13; tβ+|∆T|(5) = 3.72, 
P = 1.38e-2; paired-sample two-tailed t-test, t(5) = −0.25, P = 0.82; average 
speed of choice movements: one-sample two-tailed t-tests, tβ+∆T(5) = −1.19, 
P = 0.29; tβ-|∆T|(5) = 3.21, P = 2.36e-2; paired-sample two-tailed t-test, t(5) = −2.72, 
P = 4.16e-2; speed profile during stimulus period: one-sample two-tailed t-tests, 
tβ-∆T(5) = −0.77, P = 0.48; tβ+|∆T|(5) = 0.58, P = 0.59; paired-sample two-tailed t-test, 
t(5) = −1.27, P = 0.26; reaction time: one-sample two-tailed t-tests tβ-∆T(5) = 3.30, 
P = 2.14e-2; tβ+|∆T|(5) = 6.86, P = 1.21e-3; paired-sample two-tailed t-test, t(5) = −1.50, 
P = 0.19; movement time: one-sample two-tailed t-tests, tβ-∆T(5) = 0.64, P = 0.55; 
tβ+|∆T|(5) = 1.48, P = 0.20; paired-sample two-tailed t-test, t(5) = −1.46, P = 0.20).  
On each panel, the goodness of fit of the monotonic (left) and the non-monotonic 
(right) model, as measured by its coefficient of determination (R2), is shown for 
individual animals (open markers) and the population (mean ± s.e.m.). Note that 
the β coefficients were constrained to positive or negative values, as indicated 
by their subscripts. The highlighted panel (dashed gray rectangle) is reproduced 
from Fig. 5f (right panel).
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Extended Data Fig. 8 | Baseline DS firing rate correlates with reaction but 
not movement times in the fixation version of the interval discrimination 
task. (a) Average TED implant speeds aligned to stimulus onset recorded during 
control blocks in the fixation version of the interval discrimination task (DS 
cohort, N = 6 animals). Solid black lines and shaded gray patches represent 
individual animal medians and interquartile ranges, respectively. (b) Distribution 

of correlation coefficients between baseline firing rates of individual striatal 
neurons (N = 483) and subsequent reaction (top; one-sample two-tailed t-test, 
t(482) = −8.56, P = 1.55e-16) or movement times (bottom; one-sample two-tailed 
t-test, t(482) = 0.15, P = 0.88) for the DS-recorded animals trained on the fixation 
variant of the interval discrimination task (N = 3).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Animals adapted their behavior to both temperature 
and category boundary manipulations. (a) Threshold dilation across the 
first three temperature manipulation sessions for the striatal cohort shown in 
Figs. 4 and 5 (N = 6). Small markers and thin lines linking them refer to threshold 
dilations for individual animals. Larger markers correspond to cross-animal 
averages (mean ± s.e.m.), and their facecolor being any other than black indicates 
that the underlying dilation distribution was significantly shifted from zero 
(p < 0.05, one-sample two-tailed t-test). The gradient bar and arrow symbolize 
the uneven contribution of the last two sessions to the data pool shown in (D), 
with the last session contributing the most. (b) Time course of the boundary 
manipulation experiment. The thin horizontal dotted lines represent the four 
categorical boundaries animals experienced in these sessions (that is, boundary 
changes followed the same rules as the temperature manipulation experiments: 
a control-manipulation-control 3-min block design with boundaries drawn at 
random and without replacement from the set B = {1.32, 1.5, 1.68, 1.85} s until 
exhaustion, at which point the set was replenished and the sampling process 
resumed). The color scheme introduced in this panel is preserved throughout 
the figure. (c) Same as (A), but for the first five boundary manipulation sessions 
(N = 5). (d) Average discrimination performance on the last and second to last 
sessions of striatal temperature manipulations. Psychometric functions fit to 
cross-animal averages of temperature-split psychophysical data, respectively 
shown as solid lines and markers of matching color (mean ± s.e.m.). Bottom 
right inset: Average differences in proportion of long choices from each 
manipulation condition to control (mean ± propagated s.e.m.). Top-left inset: 

Marginal posterior distributions of the threshold parameter for each condition’s 
psychometric fit. Solid black lines represent the M.A.P. point estimates implicit 
in the fits shown in the main axes. (e) Distributions of percentage change 
in threshold relative to control (dilation) as a function of which categorical 
boundary was enforced (N = 5; one-sample two-tailed t-tests, significant 
ts(4) = [−7.21; 2.89], P = [0.04; 2e-3], non-significant t(4) = 2.61, P = 0.06; repeated 
measures ANOVA followed by post-hoc contrasts with Tukey correction for 
multiple comparisons, F(2, 12) = 15.64, P = 5e-4; smallest significant qs(8) = 5.18, 
P = 0.01, non-significant qs(8) = 2.43, P = 0.15). Markers represent individual 
threshold dilations, linked within animals by thin solid black lines. Boxplots 
show animal means (horizontal black lines) and s.e.m. (colored bars). (f) Same 
as (D), but for the last two days of boundary manipulations, with all boundaries 
in our manipulation set as dotted vertical dashed lines. (g) Threshold dynamics 
aligned to and across block transitions early and late during DS temperature 
manipulations (left and right, respectively), and late during boundary 
manipulations (middle). Condition-split cross-animal average thresholds (mean 
± s.e.m.) were computed using trials that fell into a sliding window lasting 90 s 
(half the block duration) that was swept from the preceding to the succeeding 
control blocks in increments of 9 s. Each marker corresponds to one sweep, and 
its color shading denotes the fraction of that sweep’s window that was inside 
a control block (with black markers corresponding to 100% control trials), 
and by extension its complement that fell in a manipulation block (with pure 
manipulation colors corresponding to 100% manipulation trials).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection We used Bonsai (version 2.4) for video recordings and custom Matlab (versions 2019b and 2020b) and Python (version 2.7) code for collecting 

data from the peripheral devices contained in the behavioral apparatus. For temperature control and temperature data acquisiton, we used a 

LabView-based (version 2014) graphical user interface (TEC visualizer, Champalimaud Hardware Platform). For acute experiments, 

electrophysiological and peripheral synchronization (LED and temperature probe) data were simultaneously acquired using SpikeGLX software 

(version 3.0, https://billkarsh.github.io/SpikeGLX/).

Data analysis We used custom Matlab code for all analysis, except for psychometric function fitting, where we used the Matlab toolbox Psignifit (version 

3.0). Detection, sorting and inference of the relative depth of neural recordings were done using KiloSort (version 2.5, github.com/

MouseLand/Kilosort2), whereas curation of the resulting clusters was performed using Phy (version 2.0, github.com/cortex-lab/phy). 

Markerless video tracking was done using DeepLabCut (version 2.1.10, https://github.com/DeepLabCut/DeepLabCut).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The raw data that support the findings of this study are available as as a figshare repository (https://doi.org/10.6084/m9.figshare.22341265.v2).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample size. Animals were extensively trained over months (>3 months). Our sample sizes are 

similar to previous studies recording and/or perturbing neural activity during behavior (e.g. Xu et al. 2014, Gouvêa et al. 2015, Mello et al. 

2015 and Jurado-Parras et al. 2020). When conditions contained less than 5 animals, results were confirmed to be significant within each 

animal. 

Data exclusions Trials with reaction times greater than 1 s, or movement times greater than 2 s were labeled as outliers and excluded from all reported 

analyses. This resulted in less than 5% of all trials being removed. 

Cells with response rate of 0.5 Hz or lower and not stable throughout the recording session were excluded from further analysis.

Replication We did not replicate the findings using a new cohort of rats for each experiment. However, experiments were performed in different cohorts 

of rats (2-4 at a time). These different batches produced qualitatively similar results to the ones reported across the population. All relevant 

effects were present in the majority of individual animals in each condition, in addition to being significant at the appropriate group level.

Randomization Trained animals were randomly assigned to the various experimental groups. Temperature manipulation sessions were divided in fixed-time 

blocks: control blocks interleaved with block-wise randomized manipulation doses. Interval stimuli were drawn at random from trial to trial. 

Blinding Researchers were not blind to the implants' target locations. Given that temperature manipulations involved a difficult behavioral task 

requiring many months of training and challenging surgical procedures, to guarantee that we had sufficient numbers of animals in each 

condition researchers needed to know their site of implantation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Antibody against GFP (A-6455, 1:1000, Invitrogen).

Validation All the data and references pertaining to the antibodies’ validation was provided by the manufacturer company ThermoFisher 

(https://www.thermofisher.com/antibody/product/GFP-Antibody-Polyclonal/A-6455).

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Long-Evans hooded rats (Rattus norvegicus) between the ages of 6 and 24 months were used in this study.

Wild animals The study did not involve wild animals.

Reporting on sex The study only used male subjects.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight The study protocol was approved by the Champalimaud Foundation Animal Welfare Committee, the Portuguese national veterinary 

agency, and in accordance with current European Union law. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Whole brain post-mortem scan for confirmation of implants' location.

Design specifications Whole brain post-mortem scan for confirmation of implants' location.

Behavioral performance measures n/a

Acquisition

Imaging type(s) Structural

Field strength 1T

Sequence & imaging parameters A T2-weighted structural image of the brains was collected using a Rapid Imaging with Refocused Echoes (RARE) pulse 

sequence. The sequence used had a repetition time of 2800 ms, echo time of 90 ms and a RARE factor of 12.

Area of acquisition Whole brain post-mortem scan to locate areas of interest. The field of view was set to 28 x 15 x 20 mm2, the spatial 

resolution of the images was 150 x 150 x 150 μm3 or 80 x 80 x 80 μm3 and a matrix of 187 x 100 x 133 voxels was 

acquired after 8 averages during a 7 hour scanning.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Data was preprocessed using a Bruker Matlab  function for reconstruction of the raw signal and custom Matlab code for 

preprocessing. MRIcroGL was used to visualize the raw data. 

Normalization The data were not normalized. MRI scans were used for post-mortem implant location confirmation.
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Normalization template The data were not normalized.

Noise and artifact removal As we used fixed tissue, there were no artifacts during acquisition. 

Volume censoring No volume censoring. MRI scans were used for post-mortem implant location confirmation.

Statistical modeling & inference

Model type and settings MRI scans were used for post-mortem implant location confirmation.

Effect(s) tested MRI scans were used for post-mortem implant location confirmation.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

MRI scans were used for post-mortem implant location confirmation.

Correction MRI scans were used for post-mortem implant location confirmation.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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