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SUMMARY

Our visual experience is a result of the concerted activity of neuronal ensembles in the sensory hierarchy. Yet,

how the spatial organization of objects influences this activity remains poorly understood. We investigate

how inter-laminar information flowwithin the primary visual cortex (V1) is affected by visual stimuli in isolation

or with flankers at spatial configurations that are known to cause non-uniform degradation of perception. By

employing dimensionality reduction approaches to simultaneous, layer-specific population recordings, we

establish that information propagation between cortical layers occurs along a structurally stable communi-

cation subspace. The spatial configuration of contextual stimuli differentially modulates inter-laminar

communication efficacy, the balance of feedforward and effective feedback signaling, and contextual

signaling in the superficial layers. Remarkably, these modulations mirror the spatially non-uniform aspects

of perceptual degradation. Our results suggest a model of retinotopically non-uniform cortical connectivity

in the output layers of V1 that influences information flow in the sensory hierarchy.

INTRODUCTION

Spatial vision is the ability to perceive visual objects within three-

dimensional space, and its dysfunction is detrimental to our abil-

ity to interact with the visual world. Our visual experience relies

on the coordinated activity of neuronal ensembles in the sensory

hierarchy of the cortex.1 Yet, how the spatial organization of ob-

jects influences information flow between neuronal populations

in this hierarchy remains incompletely understood.

Visual perceptual performance varies as a function of visual

field location, which is best at the center of gaze, degrades

with eccentricity, and varies with radial angle. This asymmetry

is paralleled by the asymmetric neural organization at multiple

stages of the visual system (see Himmelberg et al.2 for a review).

Thus, a comprehensive characterization of the neural correlates

of spatial vision requires empirical investigations without the

assumption of spatial isotropy. Phenomena such as visual

crowding—the inability to recognize objects among clutter—

offer a powerful framework for such investigations. Visual crowd-

ing is thought to be the primary limitation on object perception in

peripheral vision.3 The crowding zone, which refers to the spatial

extent over which flankers affect target identification, shows

distinct spatially non-uniform characteristics, as identified by

psychophysical studies.4,5 This suggests non-uniform informa-

tion processing along the visual hierarchy.

Understanding the neural basis of spatially non-uniform

context integration requires identification of where the effects

arise in the visual hierarchy and how information flow along

this hierarchy is modulated by context. Neuronal spiking activity

recorded from anesthetized monkeys indicates that visual

crowding impairs feature representations as early as the primary

visual cortex (area V1).6,7 Human imaging studies show modula-

tion of activity in V18,9 as well as in higher visual areas.10–13More

importantly, inter-areal correlations are disrupted by spatial

context integration,14 suggesting modulation of information

flow along the hierarchy. Despite extensive psychophysical
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Figure 1. Characterization of inter-laminar information flow in V1

(A) Illustration of electrophysiological recordings with high-density 2-shank laminar probes.

(B) Example receptive field contours along the two shanks on the laminar probe. Top: vertical view. Dva, degrees of visual angle.

(C) Example current source density (CSD).

(D) Visual stimulation protocol. (D1) Schematic of visual stimulation for the passive fixation task. eprobe, parafoveal eccentricity of probe presentation; De, center-

to-center distance between the probe and flankers. D2: summary of stimulus conditions. In subsequent results, ‘‘tangential’’ refers to one of the two tangential

locations shown in (D1), indicated by a common symbol shown here.

(E) Normalized peri-stimulus time histograms (PSTHs; see STAR Methods) of recorded units in the superficial (top) and input (bottom) layers under various visual

conditions. Top: visual stimulation protocol.

(F) Illustration of a low-dimensional communication subspace between cortical layers. The activity of each neuron in the superficial layer (illustrated by green

circles) is predicted as a linear combination of the population activity in the input layer (illustrated by gray circles), which is equivalent to its projection onto a certain

axis (shown as a green line/superficial neuron) in the activity space of input layer population. The axes for prediction either span the entire input layer activity space

(bottom row) or are constrained in a low-dimensional subspace (top row), referred to as ‘‘communication subspace.’’ The activity along the subspace is sufficient

(legend continued on next page)
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studies and computational modeling,15–26 the neural basis of the

perceptual asymmetry of spatial context integration remains

incompletely understood. Understanding how the organization

of objects influences information flow along the visual hierarchy

is thus critical to our understanding of spatial vision.

Information flow in the visual hierarchy is both inter-areal as

well as inter-laminar because the laminar organization of

neuronal populations,1,27 with their stereotypical patterns

of intra- and inter-areal projections,28–30 is a canonical motif of

cortical organization. The neurophysiological aspects of these

lamina-specific circuits have been extensively characterized in

the context of surround modulation, namely the change in

neuronal activity in response to visual stimulation of classical

and extra-classical receptive fields.31–40Geniculate feedforward

connections, intra-V1 horizontal connections, and inter-areal

feedback connections to V1 have all been shown to contribute

to surround modulation in V1 at different spatiotemporal scales

(see Angelucci et al.41 for a review). However, a prevailing

assumption in most of these studies has been the spatially uni-

form nature of the surrounding context. In V1, receptive field

sizes and spatial frequency preference vary with eccentricity.

In addition, the distribution of cortical tissue devoted to visual

space varies with polar angle (see Himmelberg et al.2 for a re-

view). Such asymmetric neural organization suggests the possi-

bility of non-uniform processing within V1 acting as a substrate

for the non-uniform psychophysical effects observed in phe-

nomena such as visual crowding.4,5 In this study, we investi-

gated how the spatial configuration of visual stimuli modulates

inter-laminar information flow in V1 by analyzing functional

communication between neuronal populations. We specifically

focused on communication between two populations: input-

layer neurons that receive geniculate inputs and project locally

to superficial layers and superficial-layer neurons that project

to higher-order visual areas as well as to local deep layers.

We performed laminar recordings from awake macaque V1

with visual stimuli presented either in isolation or with a flanking

stimulus at various locations known to cause non-uniform

perceptual impairment in peripheral vision. We characterized in-

formation flow from the input to the superficial layer, which is a

key pathway in the feedforward propagation of sensory informa-

tion. Using dimensionality reduction techniques to identify

communication subspaces,42 we found that the information

flow from the input to superficial layers occurs along a structur-

ally stable communication subspace under different visual con-

ditions. Flanking stimuli modulated the efficacy of inter-laminar

information flow in a location-specific manner by changing

both its efficacy and the balance of feedforward and effective

feedback signaling. Moreover, our analysis revealed a non-uni-

form contextual signal in the superficial layers triggered by

flankers.

RESULTS

To characterize inter-laminar information flow in V1, we simulta-

neously recorded the spiking activity in the input layer (unit count:

27.9 ± 3.2 SEM) and in the primary downstream target, the super-

ficial layer (unit count: 21.9 ± 5.0 SEM) in two awake macaque

monkeys (Figure 1A; 14 sessions from monkey M, 8 sessions

frommonkey D). The recorded neurons consisted of well-isolated

single units and multi-unit clusters, which had retinotopically

aligned receptive fields (Figure 1B), implying a high probability

of direct interactions. Laminar identity was established using cur-

rent source density (CSD) analysis43 (Figure 1C). Monkeys were

trained to fixate on the center of the screen and passively view

a probe stimulus (100 ms stimulus duration, 200–250 ms inter-

stimulus interval) at the receptive field of the recording site, either

in isolation (probe condition) or with a flanking stimulus (flanked

condition) at one of four spatial locations relative to the probe (Fig-

ure 1D1), based on which three flanked conditions were defined

(Figure 1D2). In both the radial-in and radial-out flanked condi-

tions, the flanker was positioned on the radial axis connecting

the probe and the fixation point, either between the probe and

the fixation point or past the probe, respectively. In the tangential

flanked condition, the flanker was positioned on either side of the

probe along the axis orthogonal to the radial axis.

Given the rich temporal dynamics of the V1 units (Figure 1E), we

hypothesized that the dynamics of inter-laminar information flow

were also time variant and therefore conducted analysis on a

moment-by-moment basis. Neuronal activity was measured as

spike counts in 50-ms bins during the appropriate stimulus pro-

cessing range of V1 neurons, which we refer to as the responsive

period (see STAR Methods). Leveraging trial-to-trial response

variabilities to repeated stimuli, we characterized inter-laminar in-

formation flow by assessing the extent to which variability of

mean-subtracted neuronal activity in the superficial layer could

be predicted by the correponding activity in the input layer.

Information propagation between cortical layers occurs

along a communication subspace

Information propagation across cortical areas has been shown

to occur along a ‘‘communication subspace.’’42,44 That is, only

a low-dimensional subspace of the upstream area neural

to capture the inter-laminar communication. Any perturbation of input layer activity orthogonal to this subspace (black dotted line) will not change the predicted

population activity of the superficial layer.

(G) Predicting superficial layer population activity (16 units) from input layer population activity (34 units) using reduced-rank regression (RRR)with varying number

of predictive dimensions (blue curve) or a full regression model (gray circle) for an example session. Error bars indicate the standard error acrossmultiple draws of

trials and the corresponding cross-validation folds. For all prediction analyses presented, the RRR model performs as well as the full model (Figure S1).

(H) Temporal evolution of the optimal dimensionality (red) and its prediction accuracy (black) computed by RRR for the example session used in (G) (see

STARMethods). Blue asterisk: time around which the window analyzed in (G) was centered. Error bars indicate the standard error across multiple draws of trials.

(I) The ratio between Dimopt and Dimmax under various visual conditions for an example session (black) or across all sessions (blue) from monkey M. Error bars

indicate the 95% confidence interval for the mean ratio averaged across the responsive period.

(J) Same as (I) for results from monkey D.

(K and L) The ratio between Dimopt and the dimensionality of the population activity (Dimpopulation ) in the superficial layer (green) or the input layer (gray) across all

sessions from monkey M (K) and monkey D (L).
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population activity space is informative of the downstream area

activity (illustrated in Figure 1F). It is important to note that a sub-

space of neural activity is different from a subnetwork. Whereas

a subnetwork comprises a subset of neurons, a subspace of

neural activity corresponds to a subset of population activity pat-

terns, whichmay involve non-trivial activities of all neurons within

the network. The dimensionality of the communication subspace

from V1 to V2 has been shown to be consistently lower than the

dimensionality of the target population activity.42Based on these

results, we hypothesized that inter-laminar information propaga-

tion also occurs along subspaces and that this is not simply due

to the low dimensionality of either the source or target population

activity. Specifically, we testedwhether the inter-laminar interac-

tion between the input and superficial layers in V1 was limited to

a subspace of the neural activity space of the input layer by em-

ploying reduced-rank regression (RRR),45,46 a multivariate linear

regression model with a constraint enforcing a small number of

latent predictive factors (see STAR Methods). For an example

session under the radial-in condition (Figure 1G), only 6 dimen-

sions (Dimopt) were needed to achieve prediction performance

that is as good as a full linear regression model (ridge regression;

see STARMethods), which was lower than the maximal possible

prediction dimensionality (Dimmax) determined by the minimum

between the number of units in the source and target popula-

tions. Moment-by-moment analysis for this session revealed

that this result held throughout the responsive period of V1 (Fig-

ure 1H). Furthermore, this result was consistent across visual

conditions, sessions, and monkeys (Figures 1I and 1J), implying

that inter-laminar information flow in V1 shared the low-dimen-

sional property exhibited by inter-areal information flow. We

next tested whether this signature of inter-laminar information

flow was due to a low complexity of population activity either

in the source population (the input layer) or in the target popula-

tion (the superficial layer). We used factor analysis to assess the

complexity of population activity in either layer (see STAR

Methods). The analysis revealed that the dimensionality of activ-

ity in either population was consistently higher than the number

of predictive dimensions (Figures 1K and 1L). Thus, the observed

low dimensionality of inter-laminar interactions cannot be ex-

plained by the complexity of population activity in the input or

superficial layer but rather reflected the nature of inter-laminar in-

formation flow.

We next investigated the impact of stimulus configuration on

the structure and efficacy of the communication subspace un-

derlying inter-laminar information flow. Potentially, inter-laminar

information flow can be modulated by the spatial configuration

of stimuli in two ways that are not mutually exclusive: (1) the

structure of the communication subspace is changed, which

would be observable as the degraded prediction performance

under a given visual condition when the corresponding input

layer data were projected onto the communication subspace

identified from a different visual condition, and (2) the efficacy

of the communication subspace is changed, which would be

observable as differential prediction accuracies across visual

conditions. To test these possibilities, we performed RRR to

characterize the communication subspace and computed its

prediction accuracy on a moment-by-moment basis for each vi-

sual condition.

Structure of communication subspace is preserved

across flanker locations

Testing whether the structure of inter-laminar information flow

is changed requires characterizing the difference between

communication subspaces identified from different visual con-

ditions. To ensure a fair comparison across visual conditions,

populations in the input and the superficial layers used to

conduct prediction analysis were fixed and the sample sizes

were matched across visual conditions. These protocols pre-

vented the number of analyzed neurons and trials from differen-

tially affecting the analysis result.42,47 We first investigated the

relative alignment between the subspaces across different vi-

sual conditions by using the measure of principal angle (Fig-

ure 2A), which computes angles between sequentially aligned

pairs of basis vectors, each within one of the subspaces. The

smallest principal angle is referred to as the ‘‘leading principal

angle.’’ Small principal angles indicate a similar orientation of

subspaces and imply that much of the structure of the commu-

nication subspace is preserved across visual conditions. By

performing RRR using data from a sliding time window of

50 ms, we identified the communication subspace for each vi-

sual condition and computed the principal angles between all

possible pairs. To assess whether the obtained principal angles

were significantly small, we compared them with the principal

angles between randomly generated subspaces while preser-

ving the dimensionalities of the computed communication sub-

spaces (see STAR Methods). The leading principal angles be-

tween the communication subspaces identified from the

probe and any of the flanked conditions were consistently

below chance level (Figure 2B). The result held for all other vi-

sual condition comparisons (Figure S2A). Because the regres-

sion could be prone to overfitting, we calculated within-condi-

tion principal angles (see STAR Methods), which provided an

estimate of the minimal principal angle that could be realisti-

cally obtained, and compared these with the cross-condition

principal angles. The levels of the within-condition principal an-

gles (Figure 2B, black curves) were consistently comparable

with the cross-condition principal angles (Figure 2B, colored

curves), providing further evidence for similar communication

subspaces across visual conditions.

To characterize the influence of the relative alignment be-

tween communication subspaces across visual conditions on

the strength of interaction, we performed cross-prediction anal-

ysis using the projection of the data from the source (input

layer) population for a given visual condition onto the commu-

nication subspaces identified across different visual conditions

using a multivariate linear regression model (Figure 2A).

Throughout the responsive period, the projected data gave

similar prediction performance across all visual conditions

from which the communication subspace was identified, and

these were significantly above what would be expected by

chance (Figures 2C and S2B). Thus, the extent to which the

input layer activity was informative of the superficial layer activ-

ity was similar among the communication subspaces identified

from different visual conditions. Taken together, these two re-

sults indicate that the structure of inter-laminar information

flow in a linear framework is preserved across different spatial

configurations of visual stimuli.
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Efficacy of inter-laminar information flow is degraded in

the presence of flankers

Wenext investigated how the spatial configuration of visual stim-

uli influenced the efficacy of inter-laminar information flow, as

characterized by inter-laminar prediction accuracies. We started

by comparing the probe condition against the flanked condition

(data pooled across all possible locations of flankers). Temporal

dynamics of prediction accuracy were obtained as the predictive

performance at optimal dimensionality under RRR employed on

a moment-by-moment basis. As shown in Figure 3A for a repre-

sentative session, under either visual condition, the inter-laminar

prediction accuracy initially increased and then decayed during

the responsive period. To quantify the difference in the predic-

tion accuracies across visual conditions for each session, we

introduced a prediction modulation index (PMI; see STAR

Methods). For the example session in Figure 3A, the correspond-

ing PMI was significantly negative during the entire responsive

period (Figure 3B), indicating that the prediction accuracy was

weakened in the presence of flankers. Despite an inter-subject

difference in the initial temporal profile of the PMI, the degrada-

tion of inter-laminar prediction accuracy was consistent across

sessions for both monkeys (Figure 3C), implying a weaker effi-

cacy of information flow.

Degradation in the efficacy of inter-laminar information

flow is mediated by layer-specific signals

We tested two non-mutually exclusive hypotheses about how

the presence of flankers might weaken inter-laminar prediction

accuracy (schematized in Figure 4A): hypothesis I, the flanked

condition causes the activation of a novel signal targeting the

input layer, or hypothesis II, the flanked condition causes the

activation of a novel signal targeting the superficial layer. To

disentangle these possibilities, we investigated the temporal

relationship between layer-specific activity and the degradation

in prediction accuracy. On a moment-by-moment basis, we per-

formed the RRR analysis using data from the two layers at

different temporal delays (Figure 4B1) and thereby determined

the temporal evolution of PMI as a function of delay. It is impor-

tant to note here that delays associated with both inter-laminar

signal conduction and intra-laminar recurrent processing would

factor into this temporal analysis. If hypothesis I were true, the

timing of the degradation and hence the temporal profile of the

PMI would be independent of the inter-laminar delay being

considered (Figure 4B2, left). In contrast, if hypothesis II were

true, i.e., if the novel signal targeted the superficial layer, the

timing of the degradation would depend on the offset of the su-

perficial layer data analyzed and therefore shift earlier with

increasing temporal delay (Figure 4B2, right). Based on these ob-

servations, we estimated the time of degradation of prediction

accuracy by determining the decrease onset time (DOT) of PMI

followed by persistently negative components and related it

with the temporal delay being considered. As shown in Figure 4C,

for two representative sessions from the twomonkeys, the DOTs

of PMI became earlier with increasing temporal delay. Across

sessions, the correlation between the DOTs of PMI and the tem-

poral delay was consistently negative and close to �1 for both

monkeys (Figure 4D), indicating a dependence as predicted by

hypothesis II. This result suggests that the degradation of predic-

tion accuracy in the presence of flankers was mainly due to a

novel signal targeting the superficial layer.
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Figure 2. Similarity of inter-laminar communi-

cation subspace across visual conditions

(A) Illustration of principal angle measure and cross-

prediction analysis for comparing two subspaces.

Each axis represents the activity of an input layer

neuron used to predict superficial layer activity. Green

lines represent input-to-superficial communication

subspaces identified from two visual conditions.

(B) Temporal evolution of leading principal angle be-

tween the communication subspaces identified for

all visual conditions (averaged across all sessions).

Gray: chance level alignment between subspaces

(see STAR Methods). Black: within-condition leading

principal angles (see STAR Methods).

(C) Cross-prediction analysis for neural activity in

probe condition, using projection onto subspaces

identified from one of the four visual conditions. Error

bars indicate the 95% confidence interval for the

mean. Difference between conditions was inferred

using estimation statistics framework (see STAR

Methods). Black: within-condition prediction. Yellow,

purple, magenta: across-condition prediction. Gray:

chance level (see STAR Methods). Also shown in

(B) and (C) on the right, are the results calculated using

the activities from the full responsive period (a 100-ms

time bin starting from response onset). For other

visual condition comparisons, see Figure S2.
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Degradation in the efficacy of inter-laminar information

flow is sensitive to flanker location

Two robust characteristics of visual crowding identified by psy-

chophysical studies are the asymmetry and anisotropy of crowd-

ing zones, the spatial extent over which flankers affect target

recognition. First, a flanker more eccentric than the target stim-

ulus (radial-out condition) has a greater perceptual crowding ef-

fect than an equally spaced inward (less eccentric) flanker

(radial-in condition).5 Second, the crowding zone is elongated

along the radial axis so that radially positioned flankers produce

a stronger crowding effect than tangential ones (tangential con-

dition).4 We reasoned that these perceptual asymmetries could

be due to asymmetries in inter-laminar prediction accuracy in

V1. To investigate this possibility, we first compared the inter-

laminar prediction accuracies between the probe and the

different flanked conditions. The degradation due to the pres-

ence of flankers was consistent across all flanker locations, yet

the extent of degradation varied (Figure 5A). To further charac-

terize this, we compared the prediction accuracy under the

flanked condition associated with the strongest perceptual

crowding effects (the radial-out condition) against the other

flanked conditions (the radial-in and the tangential conditions).

To ensure a fair comparison across visual conditions, we addi-

tionally aligned the temporal prediction accuracy data to ac-

count for different response latencies across conditions. We

found that the prediction accuracy degraded in the radial-out

condition compared with the radial-in (Figure 5B) and the

tangential conditions (Figure 5E) over most of the responsive

period. Despite an inter-subject variability in the temporal profile

of the prediction degradation caused by the radial-out condition

relative to the radial-in condition, such degradation was consis-

tent across all sessions for both monkeys. Moreover, applying

the inter-laminar temporal delay analysis as above, we found

that the prediction degradation with radial-out flankers emerged

earlier with increasing temporal delay (Figures 5C, 5D, 5F,

and 5G), consistent with a hypothesis of a superficial-layer-tar-

geting signal that is dominant in the radial-out condition.

Bi-directional information flow depends on flanker

location

Prediction analysis using RRR was motivated by the anatomical

model of lamina-specific circuits, and thus assumed a direction

of information flow from the input layer (source) to the superficial

layer (target). We next sought to understand how information

flow in either direction was affected by the spatial configuration

of visual stimuli. We investigated this by employing canonical

correlation analysis (CCA; see STARMethods) to relate the pop-

ulation activities in the input and superficial layers at different

time delays on a moment-by-moment basis (Figure 6A), which

we refer to as population correlation. Positive or negative delays

between the population activities from each layer allowed a bi-

directional analysis of inter-laminar information flow. This meth-

odology has been previously applied48 to study the structure of

interactions between cortical areas, finding that the balance

was feedforward dominated shortly following stimulus onset

and then became feedback dominated. For each visual condi-

tion, we calculated the population correlation between activities

in the two layers as a function of time and time delay between

layers (Figure 6B). To quantify the strength of interaction in

each direction, we computed a ‘‘feedforward correlation’’ by tak-

ing the mean over correlations for all positive delays (input layer

leading superficial layer; STARMethods) and similarly for ‘‘effec-

tive feedback correlation’’ for negative delays (superficial layer

leading input layer). For a representative example session under

the probe condition (Figure 6B), whereas the feedforward corre-

lation increased steadily from the time of response onset and

then gradually decayed, the effective feedback correlation was

consistently lower than the feedforward correlation, indicating

a feedforward-dominant interaction throughout the responsive

period.

We quantified the degree to which the inter-laminar interaction

was dominant in either direction of signaling by defining a direc-

tion dominance index (DDI; see STAR Methods), where a posi-

tive DDI indicates the dominance of feedforward signaling and

a negative DDI indicates the dominance of effective feedback

Monkey D, exampleMonkey D, example

0010

Time (ms)

-0.25

0

P
re

d
ic

ti
o

n
 m

o
d

. 
in

d
e

x

(P
M

I)

A B C

flanked – probe 

flanked + probe  

0010

Time (ms)

-0.2

0

0.1

All sessions

Monkey M (n=4)

Monkey D (n=4)

P
M

I

All

probe

 flanked 

0010

Time (ms)

0

0.3

P
re

d
. 
a

c
c
u

ra
c
y

response onset

full 

responsive 

period

Figure 3. Efficacy of inter-laminar information flow across visual conditions

(A) The temporal evolution of input-superficial prediction accuracies under the probe (black) and the flanked conditions (orange) for an example session from

monkey D. Error bars indicate the standard error across multiple draws of trials. Results calculated using the activities from the full responsive period (a 100-ms

time bin starting from response onset) are shown on the right.

(B) The temporal evolution of the prediction modulation index (PMI; see STAR Methods). Error bars indicate 95% confidence interval for the mean. Difference

between conditions was inferred using estimation statistics framework (see STAR Methods).

(C) Same as (B) for results across sessions from each monkey (gray: monkey M; black: monkey D) or across the two monkeys (blue).
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signaling. The larger the magnitude of DDI, the more biased the

interaction was toward one direction. To investigate the impact

of stimulus configuration on the balance of the inter-laminar

feedforward and effective feedback signaling, we determined

the temporal evolution of DDI separately for each visual condi-

tion. In the same example session as above, under both the

probe and the flanked conditions, the DDI increased steadily

and gradually decayed, remaining significantly positive

throughout the responsive period (black and orange curves in

Figure 6C). Thus, the interaction became more feedforward

dominated in the early phase of the responsive period and

then returned to a more balanced interaction. Remarkably, the

DDI was less positive under the flanked condition, indicating

that the balance was shifted away from the feedforward direction

in the presence of a flanker. This result was robust across ses-

sions for each monkey (Figure 6D). Furthermore, similar analysis

revealed that this modulation was flanker-position dependent. In

the visual condition associated with the strongest perceptual

crowding effect (the radial-out condition), the balance was

shifted away from the feedforward direction compared with

both the radial-in and tangential conditions (Figure 6E). Thus,

the non-uniformity in stimuli-specific prediction accuracy anal-

ysis (Figure 5) was mirrored by the modulation of the interplay

between inter-laminar feedforward and effective feedback

signaling. Interestingly, the inter-subject difference in the tempo-

ral profile of the difference in DDI across visual conditions (probe

vs. flanked and radial-out vs. radial-in) was similar to that in PMI

obtained from the prediction analysis, such that both the shift of

balance (Figures 6D and 6E) and the degradation of inter-laminar

prediction accuracy (Figures 3C and 5B) emerged later during

the responsive period for monkey M compared with monkey D.

Strength of contextual drive to the superficial layer is

location specific

To test the hypothesis that our observations are a reflection of a

signal that targets the superficial layers and is sensitive to flanker

locations, we next examined the relative strength of this signal

evoked by flanker-only stimuli at different locations. For each

flanker-only condition, we determined the level of charge sinks

by integrating over time the early current sinks in the superficial

B1 B2

C D

A

Figure 4. Mechanism of degradation in the efficacy of inter-laminar information flow

(A) Illustration of two possible mechanisms: flanker causes the activation of a novel signal (orange arrow) targeting the input (mechanism I) or superficial layer

(mechanism II).

(B) Delay analysis protocol and potential outcomes. (B1) RRRwas conducted on amoment-by-moment basis using input (at t) and superficial layer activity at non-

negative temporal delays (t + delay). (B2) Illustration of delay-induced changes in PMI dynamics, as implied bymechanisms I and II. Orange arrows: the timewhen

the hypothetical novel signal caused by the flanker arrived at the input (mechanism I) or superficial (mechanism II) layer.

(C) Temporal evolution of inter-laminar PMI under the probe and the flanked conditions at various inter-laminar temporal delays for example sessions from two

monkeys. PMIs that are neither significantly positive nor negative are colored in white (the corresponding 95% confidence interval for the mean PMI includes

zero). Black circles: decrease onset times (DOTs) of PMI at each level of delay.

(D) Correlation between inter-laminar temporal delay and the DOTs of PMI across all sessions from each monkey. Error bars indicate 95% confidence interval for

the mean.
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layer obtained from the CSD response (Figures 7A–7C; see

STAR Methods), which reflected the subthreshold integrated

input to local neurons.43,49 For both monkeys, flankers at the

radial-out position evoked stronger charge sinks compared

with flankers at the radial-in or tangential positions (Figure 7D),

thus providing direct evidence for a location-dependent superfi-

cial-layer-targeting signal that differentially impacts the repre-

sentation of the probe. Similar results were obtained from

spike-based analysis, such that the radial-out flanker-only con-

dition evoked higher levels of activity (Figure 7E). This provides
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Figure 5. Efficacy of inter-laminar information flow as a function of flanker location

(A) Same as Figure 3C, comparing the prediction accuracy under the probe condition against each flanked condition (from left to right: radial-in, radial-out, and

tangential).

(B) Temporal evolution of RRR PMI comparing the radial-out and radial-in conditions for example sessions (left) or across all sessions (right), from monkeys M

(gray), D (black), or both (blue). Negative PMIs imply a degradation of prediction accuracy in the radial-out condition compared with the radial-in condition. Error

bars indicate 95% confidence interval for the mean.

(C) Example sessions showing temporal evolution of PMI as a function of inter-laminar delay (see Figures 4B and 4C) for the visual conditions compared in (B).

(D) Correlation between inter-laminar temporal delay and the DOTs of PMI across all sessions from each monkey.

(E–G) Same as (B)–(D), comparing the modulation of inter-laminar prediction accuracy under the radial-out and tangential conditions. For comparison between

the radial-in and tangential conditions, see Figure S3A.
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further evidence for stronger inputs to the superficial layer as a

potential mechanism underlying the observed non-uniformity.

These results support a hypothesis that the observed degrada-

tion in the efficacy of inter-laminar information flow and the shift

in feedforward-feedback signaling balance are mediated by ret-

inotopically non-uniform cortical connectivity in the output layers

of V1 (Figure 7F).

DISCUSSION

We leveraged simultaneous laminar recordings to understand

how the spatial configuration of visual contextual stimuli affected

inter-laminar information flow in V1 of the macaque. V1 activity

has been extensively studied as a locus of surround modula-

tion34–41 and, more recently, has been implicated as a bottleneck

impairing perception under visual crowding.6–9,13 We established

that information flowacross V1 laminar populations is constrained

to a communication subspace. We demonstrated that the effi-

cacy of inter-laminar information flow was degraded in the pres-

ence of contextual stimuli. This degradation was not accompa-

nied by changes in the structure of the subspace of neural

activity along which the information flow occurs. Furthermore,

we found that the balance between the inter-laminar feedforward

and effective feedback signaling was non-uniformly shifted in the

presence of flankers. Strikingly, these modulations matched the

spatially non-uniform aspects of perceptual degradation, such

that a greater degree of modulation was associated with a flanker

at the visual location that is known to exert a stronger perceptual

impairment. Finally, we found that the spatial configuration of

contextual stimuli differentially modulated contextual signaling

in the superficial layers. Our results suggest a model in which

degraded information flow along the sensory hierarchy, mediated

by retinotopically non-uniform connectivity in the output layers of

V1, underlies the perceptual impairments in spatial vision.

Contextual modulation of information flow

Despite decades of research at the level of perception, investiga-

tion into the neural mechanisms of non-uniform perceptual
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(A) Canonical correlation analysis (CCA) protocol for estimating temporal evolution of population correlations.

(B) CCA-based population correlation as a function of time and inter-laminar delay during the visually responsive period. Overlaid solid and dotted traces (white)

show the average correlation at positive and negative sides of delay, respectively. Error bars indicate the standard error across multiple draws of trials.

(C) Temporal evolution of the direction dominance index (DDI; see STAR Methods) under the probe and the flanked conditions for an example session. Also

shown is the difference between DDIs across conditions (gray trace).

(D) Temporal evolution of the difference in the DDIs under the probe and the flanked conditions for all sessions from each monkey.

(E and F) Same as (D) for results comparing DDIs separately under different types of flanked stimuli (E: radial-out vs. radial-in; F: radial-out vs. tangential). In

(B)–(E), corresponding visually responsive periods estimated as 100 ms from the response onsets are marked by horizontal bars. In (C)–(E), error bars indicate

95% confidence interval for the mean.
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Figure 7. Retinotopically non-uniform context integration in V1

(A) An example of estimated CSD across V1 layers evoked by flanker presented by itself at the radial-out position. Dotted white lines indicate laminar boundaries

(see STAR Methods). Traces on the right show temporal evolution of the CSD signal at two recording sites on the example shank, marked by the green dashed

lines. Red shade: the earliest charge sink.

(B and C) Same as (A), with the flanker presented at the radial-in and tangential positions, respectively.

(D) Top: level of early charge sinks under different flanker-only conditions across all sessions from each monkey. Bottom: within-shank difference in the level of

early charge sinks between the radial-out and radial-in conditions (left) and the radial-out and tangential conditions (right). Error bars indicate 95% confidence

interval for themean. Difference between conditions was inferred using estimation statistics framework (see STARMethods). For comparison between the radial-

in and tangential conditions, see Figure S3B.

(E) Difference in the normalized PSTH of superficial layer units between the radial-out flanker-only and radial-in flanker-only conditions (left) and the radial-out

flanker-only and tangential flanker-only conditions (right). Error bars indicate 95% confidence interval for the mean difference (see STAR Methods). Normalized

PSTHs for each condition are shown in Figure S4.

(F) Summary of findings.
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degradation in peripheral vision has received limited attention.

The most studied hypothesis is that the perceptual degradation

is mediated by changes in the tuning properties of neurons and

therefore leads to information loss about target features as early

as the input and superficial layers of V1.6,7,50 The observed

impairment of information encoding has been shown to be

greater with flankers positioned at visual configurations that

exert stronger crowding effects, either with shorter target-flanker

distance or at a radial-out location relative to the target stimulus.

However, modulation of neural responses and changes in infor-

mation coding do not necessarily imply changes in signaling

efficacy along processing stages in the visual hierarchy. Our re-

sults demonstrate that inter-laminar information flow in V1, a key

mechanism of hierarchical signaling, is disrupted by spatial

context, which may account for the accumulation of information

loss along the visual hierarchy.

Although we address degraded inter-laminar information flow

in V1, our results do not rule out the possibility of additional

mechanisms responsible for visual crowding in higher visual

areas. A stronger information loss in area V4 has been observed

with crowding due to the summation of signals within the larger

receptive fields of V4 neurons compared with V1.7Other relevant

studies relying on coarser measures of neural activity, such as

fMRI, found that inter-areal temporal correlations (between V1,

V2, V3, V4, and the visual word form area) are lower with

crowded letters compared with uncrowded letters.14 Such dete-

rioration in the extrastriate cortex can only compound the degra-

dation of signaling that we identified within V1, as higher visual

areas ultimately rely on V1 inputs for their computations.1 Given

reports of the similar extents of anatomical horizontal (recurrent

within V1) and feedback (from V2 to V1) projections in the visual

cortex,51 cortical magnification can partially explain the inward-

outward asymmetry of perceptual degradation due to crowding

but not the full extent of the radial-tangential anisotropy.21 This

suggests the existence of additional ‘‘functional’’ non-unifor-

mities in the peri-columnar network.

Source of non-uniform context signal

The dependence of the PMI temporal profile on the inter-laminar

delay suggested that the degradation of prediction accuracy in

the presence of flankers was mainly due to a novel signal target-

ing the superficial layer. This result is broadly consistent with a

recent study37 that examined the laminar profile of current sinks

in the CSD upon stimulation of the receptive field surround with

isotropic annular gratings and found, based on onset latency

measurements, that the processing of such spatial context initi-

ates in the superficial and deep layers. Our results significantly

extend this prior work by (1) characterizing the effect of such a

mechanism on information propagation along the intra-V1 hier-

archy and (2) showing that such a mechanism could also be a

template for non-uniform contextual modulation. Further exper-

iments are needed to be able to pinpoint the source of this impli-

cated input, which could non-exclusively be horizontal connec-

tions from superficial-layer neurons outside the recorded V1

column or feedback connections from higher visual areas.

Both possibilities are supported by previous studies in the

context of surround modulation where optogenetic inactivation

of horizontal connections in mouse L2/3 V152 or marmoset V2

feedback connections to V153 reduced the amplitude of sur-

round modulation. Moreover, each type of connection was

shown to contribute to the processing of spatial context at

different spatiotemporal scales.37,41 It is important to note that

our results do not conflict with previous work suggesting the

contribution of geniculate feedforward connections, which pri-

marily terminate in the input layer of V1, to the processing of

contextual stimuli,34,40,54–57 but imply a weaker effect of such

connections on the efficacy of input-superficial information

flow compared with connections terminating in the superficial

layers. Interestingly, our observation of an intermediate level of

negative correlation (close to neither 0 nor �1) between the

time when degradation emerged and the temporal delay being

considered for the comparison between the tangential and

radial-out conditions from one monkey (Figure 5G), suggests

the influence of potentially both types of connections on the

anisotropy. Thus, the mechanism underlying the non-uniform

aspect of the modulation of inter-laminar information flow by

contextual stimuli could vary with the specific locations of

flankers being compared.

Features of inter-laminar information flow

Our study has identified two signatures of inter-laminar flow in

V1: low-dimensionality and effective feedback signaling. By em-

ploying RRR, we demonstrated that the interaction between the

input and superficial layers occurred through a low-dimensional

communication subspace, akin to inter-areal interactions42,44

but in contrast to interactions within the superficial layer of

V1.42 The low-dimensional structure could confer the computa-

tional benefit of flexible and selective routing of activity to down-

stream targets.

The interplay of feedforward and feedback signaling is a hall-

mark of cortical information processing.58–60 Such interplay is

not only prominent at the inter-areal level but is also implicated

at the local circuit level within V1.40,53,61 Extensive studies

have attempted to infer feedback interactions between brain

areas by relating activities between areas with temporal

delay,48,62–66 computing phase delays in local field potentials

(LFPs) or multi-unit neuronal activity (MUA)61,67–69 and

comparing the timing of neuronal response onsets70–72 as well

as the emergence of certain neuronal response properties73–76

across areas. Yet, feedback interactions among within-area

laminar circuits in general, and between the input and superficial

layers in particular, remain unknown. Here, we characterized in-

ter-laminar interactions along both feedforward and feedback di-

rections by applying CCA with varying temporal delay between

layers. Notably, we observed substantial levels of correlation

over a range of negative delays, especially at the initial and late

phases of the responsive period, implying an effective feedback

component (superficial leading input) in the inter-laminar interac-

tion. This result is consistent with the implication of a previous

study that examined the laminar profile of the MUA for the alpha

rhythm and found that MUA in the superficial and deep layers

preceded MUA in the input layer.61 Given that the dendritic ar-

bors of the input layer (L4C) neurons are locally confined, and

the descending axons of the superficial-layer neurons mainly

pass through the input layer with very weak branching,28,29,77

the identified effective feedback signaling is less likely to be
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relayed via a direct superficial-input anatomical connection.

Instead, certain types of neurons in the deep layer, the primary

target of projections from neurons in the superficial layer, have

been shown to send extensive axonal projections into the input

layer,28,78,79 which form an indirect superficial-input pathway

via the deep layer and could serve as an anatomical substrate

for the identified effective feedback signaling.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Twomale rhesusmacaques (Macaca mulatta, D: age 6 years, M: age 8 years) were used as subjects in this study. Animals were pair-

housed on a 12:12 h light-dark cycle. Water intake was controlled during the experimental period. All experimental procedures were

approved by the Institutional Animal Care and Use Committee at Yale University and conformed to NIH guidelines.

METHOD DETAILS

Surgical procedures

Surgical procedures were similar to those described previously.80–82 We placed low-profile titanium recording chambers in two rhe-

sus macaques so that the chambers allowed access to V1 (both left and right hemispheres in monkey M, right hemisphere in

monkey D). Chambers were targeted based on sulcus reconstructions created using preoperative structural MRI. After chamber im-

plantation, we removed the native dura mater and replaced it with a transparent silicone artificial dura (AD). The AD allowed for the

visualization of cortical sites in V1 for probe targeting. All procedures were approved by the Yale University Institutional Animal Care

and Use Committee and conformed to NIH guidelines.

Electrophysiology

Prior to a series of recordings, we electroplated (nanoZ, White Matter LLC) 64-channel electrode arrays (‘‘laminar probes,’’

NeuroNexus Technologies, Inc., 2 shanks, 32 channels/shank, 70 mm spacing between sites, 200 mm between shanks) with

PEDOT (poly(3,4-ethylene dioxythiophene)). At the beginning of each recording session, we inserted a laminar probe in V1. Laminar

probes were attached to a titanium mounting stage that was screwed into the chamber. We positioned the laminar probes using an

electronic micromanipulator (Narishige Inc.) and ensured that the probes were orthogonal to the surface of the cortex by visual in-

spection through a surgical microscope (Leica Microsystems). To position the probe within the brain, we first penetrated the AD,

arachnoid, and pia by moving the probe downward at a high speed (>100 mm/s). After the tip of the probe entered the cortex, we

inserted the remainder of the probe at a slow speed (2 mm/s). Once the entire probe was in the brain, we slowly (2mm/s) relieved

the pressure on the brain by retracting the probe upward, relieving pressure on the brain but not moving the probe relative to the

cortex.

Electrical signals from the laminar probe were collected at 30 kHz and digitized on a 64-channel digital headstage and sent to the

recording system (RHD Recording System, Intan Technologies). Action potential waveforms were extracted offline using Kilo-

sort283,84 and manually sorted into single and multi-unit clusters using Phy.83,84 Clusters with peaks preceding the trough were

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus Macaques (Macaca mulatta) Worldwide Primates N/A

Chemicals, peptides, and recombinant proteins

PEDOT:PSS Sigma-Aldrich 655201

Deposited data

Figure data This paper https://doi.org/10.6084/m9.figshare.27055252

Software and algorithms

MATLAB Mathworks R2021b

Kilosort2 Pachitariu & MouseLand https://github.com/MouseLand/Kilosort

phy (spike curation GUI) Rossant & cortex-lab https://github.com/cortex-lab/phy

Custom code This paper https://doi.org/10.6084/m9.figshare.27055252

Other

Silicon probes NeuroNexus a2x32_6mm35_200_177

RHD 512 channel recording controller Intan C3004

64 channel recording headstages Intan C3115

nanoZ White Matter LLC N/A
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identified as axonal spikes and excluded. Recordings were collected over the course of 22 sessions (14 in monkey M, 8 in monkey D)

with hundreds of units recorded in each subject (693 single units and 430 multi-unit clusters in monkey M, 400 single units and 277

multi-unit clusters in monkey D).

Behavioral control and eye tracking

We controlled behavioral experiments using NIMH MonkeyLogic.85 Eye position and pupil diameter were sampled at 120Hz

(ETL-200, ISCAN Inc.) and sent to the behavioral control system. Stimuli were presented on amonitor positioned 57cm from themon-

key with a 60 Hz refresh rate. Trials were aborted if the eye position deviated more than 1.2-1.5 degrees of visual angle (dva; 1.2 for

monkey D, 1.5 for monkey M) from the central fixation point.

Receptive field mapping

We mapped RFs of the column by presenting Gabor patch stimuli (2-4 cycles/degree, 0.25-1 degree Gaussian half-width, 100%

luminance contrast) on a square grid spanning the lower visual quadrant of interest (both left and right in monkey M, left in

monkey D) while the monkey maintained fixation on the center of the screen. Grid spacing parameters were optimized each session

and ranged from 0.25-1 dva. A stimulus was presented at a random location and orientation on the grid during each frame.We calcu-

lated the LFP power for each recording channel 40-200 ms after stimulus presentation in each location. The LFP power at each loca-

tion was smoothed using a Gaussian kernel (sigma = 0.75 dva), and the peak location averaged across all recording sites was defined

as the receptive field center. Spatial receptive field maps for each channel were plotted as stacked contours for each shank for

visualization.

Current source density mapping

We used CSD mapping43 to identify laminar boundaries in our recordings and estimated the relative strength of the signal targeting

the superficial layer across visual conditions.

While monkeys maintained fixation on the screen, 100% luminance contrast white annular stimuli were flashed for 32 ms, posi-

tioned at the center of the RF. The LFP signal following the stimulus onset was averaged across trials and spatially smoothed using

a Gaussian kernel (sigma = 140 mm). The CSD was calculated as the second spatial derivative of the LFP:

CSDðx; tÞ = � s �
vðx+h; tÞ � 2vðx; tÞ+vðx � h; tÞ

h2

where x is the position in the extracellular medium at which CSD is calculated, t the time following the stimulus onset (advancing in

1 ms), h the spacing between recording sites on the linear probe (here 70 mm), v the voltage, s the conductivity of the cortical tissue

(0.4 S/m). We interpolated the CSD every 7 mm. The input layer was identified by the boundaries of the early current sink character-

izing feedforward input into layer IV. Channels above and below this sink were classified as superficial and deep, respectively.

CSD provides a link between LFP and neuronal ensemble activities by approximating the net local transmembrane currents that

generate the local LFP. The identified current sinks (negative deflections, visualized in red in Figures 7A–7C) in the extracellular me-

dium reflect integrated subthreshold input to neuronal ensembles.43,49 We used CSD response to flanker-only stimuli (radial-out,

radial-in, tangential) to estimate the relative strength of the signal targeting the superficial layer evoked by contextual stimuli at

different locations. In particular, for each shank on the laminar probe, we first identified the early current sink (within 200 ms following

stimulus onset) in its CSD response. At each depth along the superficial layer, we calculated the level of charge sinks by integrating

the current sink over time and then averaged the result across the depth of the superficial layer. We compared the level of charge

sinks evoked by flankers-only stimuli at different locations to quantify the relative strength of contextual signals targeting the super-

ficial layer.

Experimental task

While monkeys maintained fixation on a point at the center of the screen, stimulus arrays were presented on the screen for 100ms. In

between stimulus presentations, there was a 200-250 ms inter-stimulus interval in which the screen was blank other than the fixation

point. The arrays consisted of a probe stimulus in the receptive field center either in isolation (probe condition) or together with a flank-

ing stimulus (flanked condition). There were four different conditions (probe, tangentially flanked, radially inward flanked, and radially

outward flanked) of stimulus arrays presented during a trial. This was repeated 4-6 times during each trial depending on themonkey’s

ability to hold fixation. The stimulus conditions were randomly interleaved from flash to flash. The center of the probewas alignedwith

the center of the average of the RFs of each recording site. The four flanker locations were positioned on the radial or tangential axes.

The radial axis was defined as the axis connecting the probe (and RF) center and the fixation point at the center of the monitor. The

tangential axis was defined as the line orthogonal to the radial axis and passing through the probe center. The tangential flanked con-

dition occurred when the probe was presented along with a flanker on the tangential axis, either in the clockwise or counterclockwise

direction. The radial-in flanked condition occurred when the probe was presented along with a flanker on the radial axis and between

the probe center and the fixation point. The radial-out condition was similar to the radial-in condition, except the flanker was placed

on the radial axis further from the fixation point than the probe. Probe-flanker spacing was identical across stimulus conditions.
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The probe condition was presented on 10%of flashes. On 80%of flashes, flanked stimuli were presented. In the flanked condition,

the flanker was positioned at a tangential, radial-in, or radial-out locationwith equal probability. If the flanker was presented tangential

to the probe, it was positioned clockwise or counterclockwise to the probe with equal probability. In the remaining 10% of trials, a

stimulus was presented exclusively at one of the four flanker locations. Probe stimuli were sine Gabor patches (25% luminance

contrast, 3.5 cycles/degree, 0.5-1.0 degree Gaussian half-width) presented at 6 evenly spaced orientations and 2 opposing phases.

Flankers were presented at 100% luminance contrast but were otherwise identical to the probe stimuli. The center-to-center distance

between the probe and flankers (De, Figure 1D1) was 0.6 (monkey D) or 0.85 dva (monkey M) depending on eprobe. Target and flanker

stimuli were 0.5 (monkey D) or 0.75 dva (monkey M) in diameter. The ratio between De and eprobe was 0.46 ± 0.02 SEM, which

matched the spatial scaling of crowding zones (critical spacing for crowding in the visual field z 0.5 x target eccentricity).86,87

The edge-to-edge gap between probe and flanker was 0.1-0.2 deg depending on eprobe. In the flanked condition, flankers were pre-

sented at the same orientation as the probe or orthogonal to the probe with equal probability. When flankers were presented alone,

they were shown with the same orientation distribution as the probes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Wherever possible, instead of relying on null-hypothesis testing, we show bootstrapped estimations of differences between condi-

tions using the estimation statistics framework,88,89 which provides a principled way to measure effect sizes coupled with estimates

of uncertainty, yielding interval estimates of uncertainty. The experiment assigned substantially different presentation probabilities for

the probe (10%) and each of the flanked conditions (26.7%). On average, our dataset contained 504.5 ± 29.1 SEM, 1348.8 ± 77.9

SEM, 1306.6 ± 87.6 SEM, 1321.5 ± 90.9 SEM trials for the probe, radial-in, radial-out, and tangential conditions, respectively.

When comparing inter-laminar information flows for a pair of visual conditions, we drew the same number of trials under each con-

dition multiple times and conducted the prediction analysis with 20-fold cross-validation. Consequently, when comparing the prop-

erties of inter-laminar information flow under the probe condition against any of the flanked conditions (Figures 2, 3, 4, 5A, 6C, and

6D), the number of trials from each drawwas capped by the number of trials under the probe condition, which led to the exclusion of a

large fraction of trials under each of the flanked conditions. When calculating the properties for individual conditions (Figures 1G–1L)

without comparison across conditions, we did not match the number of trials.

Normalized peri-stimulus time histograms (PSTHs)

PSTHs were generated based on spike counts in 30 ms bins shifted by 10 ms. The PSTH for each neuron was calculated separately

for each visual condition and normalized between the maximal PSTH over time under the probe condition and the baseline firing rate

taken as the PSTH from -30 ms to 30 ms relative to stimulus onset. Neurons whose PSTHs never surpassed the 95% confidence

interval of their baseline firing rates were excluded. The averaged normalized PSTH exhibits a maximum less than 1 because of

the variability in the peak time across neurons.

Response onset estimation

For every recorded unit, we estimated its response onset for each visual condition.We took the PSTH from -30ms to 30ms relative to

stimulus onset as the baseline firing rate. The response onset was identified as the time when the PSTH surpassed the 95% confi-

dence interval of the baseline firing rate. Units whose PSTH never crossed the threshold were taken as non-responsive units. For

each session, the response onset of the simultaneously recorded population in a specific layer was estimated by taking the average

of response onsets of all responsive units. An interval of 100 ms following the response onset of the input layer population was

considered as the stimulus processing range (referred to as ‘responsive period’) of V1 for the purpose of characterizing the inter-

laminar information flow between the input and superficial layers.

Unit selection for regression analysis

For comparison of the inter-laminar prediction accuracy across visual conditions, we only included those units in the superficial layer

well predicted by the recorded population in the input layer, which were identified by employing a Lasso regression with 20-fold

cross-validation to each recorded unit in the superficial layer within the estimated responsive period. The prediction performance

was calculated under the largest l value such that the normalized squared error (NSE) was within one standard error of the minimum

NSE across l parameters. Units in the superficial layer with a normalized squared error smaller than 1 were identified as being well

predicted.

Data preparation for regression analysis

We counted spikes in a sliding window of 50 ms within the estimated responsive period. We investigated how the neuronal activities

in the input and superficial layers were related by assessing the extent towhich trial-to-trial fluctuations of population responses in the

superficial layer could be predicted by that in the input layer of V1. Therefore, for each type of visual stimuli (orientation, spatial config-

uration, orientation difference between probe and flanker), we subtracted the appropriate peri-stimulus time histogram (i.e., average
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time-varying signal; PSTH) from each single-trial response and z-scored the residual. For all analyses, we excluded units with low

firing rates (less than 0.2 spikes/s on average). Our results are qualitatively similar for larger 100 ms bins, which corresponded to

the stimuli duration in the experiment.

Regression

To assess the extent towhich trial-to-trial fluctuations of population responses in the superficial layer could be predicted by that in the

input layer of V1, we first applied a linear model of the form Y = XB using ridge regression, which was referred to as the full regression

model. To test whether the inter-laminar information propagation occurred through a ’communication subspace’, we used reduced-

rank regression (RRR), which constrains the linear weight matrix B to be of a given rank. The optimal dimensionality (Dimopt) was

defined as the lowest number of predictive dimensions for which prediction performance was within one SEM of peak performance.

The details of this analysis can be found in Semedo et al.42

Both ridge regression and RRR were applied to a sliding window of 50 ms (advancing in 2 ms) in both layers with 20-fold cross-

validation. The prediction accuracy was calculated as 1 � NSE, where NSE is the mean normalized squared error between the test

data and the predictions across folds. For RRR, we took the smallest number of dimensions for which predictive performance was

within one SEMof the peak performance as the optimal dimensionality. To study the effect of the spatial configuration of visual stimuli

on prediction accuracy, we analyzed the temporal evolution of the prediction accuracies at optimal dimensionality across visual con-

ditions. For each pair of visual conditions, we first aligned the temporal evolutions of corresponding prediction accuracies to

compensate for the difference in the response onsets across visual conditions and computed a prediction modulation index, which

was calculated as:

PMIðtÞ =
P1ðtÞ � P2ðtÞ

P

t

ðP1ðtÞ+P2ðtÞÞ=Nt

Where P1ðtÞ and P2ðtÞ are the prediction accuracies at optimal dimensionalities obtained by RRR at time t after response onset under

visual conditions 1 and 2, respectively. Nt is the number of time points involved in the analysis.

Factor analysis

We quantified the complexity of neural activity in the superficial layer of V1 by using factor analysis (FA), a dimensionality reduction

technique which allows spiking variability to vary across neurons and calculates the dimensionality of covariance. The details of this

analysis can be found in Williamson et al.,47 Everitt et al.,90 and Yu et al.91 We followed the same steps as previously published

work42,44 to estimate the dimensionality: We first determined the number of dimensions mpeak that maximized the cross-validated

log-likelihood of the observed residuals. Then we fitted an FA model withmpeak dimensions and chosem, by the eigenvalue decom-

position, as the smallest dimensionality that captured 95% of the variance in the shared covariance matrix. These population dimen-

sions (m) and predictive dimensions as determined from RRR are based on different techniques.

Principal angle

We characterized the relative alignment of two communication subspaces identified from different visual conditions by using the

measure of principal angle, which computes angles between sequentially aligned pairs of basis vectors, each within one of the sub-

spaces, so as to minimize the angle between them. Notably, this measure does not require the compared subspaces to have the

same rank. The smallest angle obtained was taken as the ‘leading principal angle’. The details of this method can be found in Björck

and Golub92 and Gallego et al.93 A small leading principal angle implies similar orientations of the communication subspaces iden-

tified from different conditions. To verify that the experimentally obtained leading principal angles were significantly different from

chance, we compared them to a null distribution of principal angles. These were obtained from 5000 pairs of subspaces that

were generated randomly but with preserved ranks (as that of the empirical communication subspaces under different visual con-

ditions). The confidence intervals of the null distribution were obtained from estimation statistics. Moreover, to efficiently assess

the extent of similarity in the measure of the principal angle between communication subspaces identified from different visual con-

ditions, we constructed an estimate of the minimal principal angle that could be obtained. This was achieved by computing the prin-

cipal angle between subspaces identified from pairs of disjoint sets of trials within the same visual condition. To ensure a fair com-

parison with the cross-condition principal angles, each set was composed of the same number of trials as those used to identify

cross-condition communication subspaces. This number was capped by the number of trials under the probe condition, as the

experiment assigned a significantly smaller presentation probability to the probe condition (10%) compared to any of the flanked

conditions (26.7%). Consequently, the ratio of the number of trials in any of the flanked conditions and the probe condition exceeded

2, which allowed us to compute the within-condition principal angle for the radial-in, radial-out, and tangential conditions when

compared with the probe condition. In Figure S2A where we computed the principal angle between any pair of flanked conditions,

the number of trials used to identify communication subspaces was only capped by the smallest number of trials across all flanked

conditions, which was larger than the half of number of trials under any flanked condition. We were therefore unable to construct an

estimate of within-condition principal angles that could be fairly compared with existing curves.
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Cross-prediction analysis

An additional analysis to compare the communication subspaces was based onmeasuring the inter-laminar prediction performance

under a given visual condition when the corresponding input layer data was projected onto the communication subspace identified

from a different visual condition. We computed the prediction performance for when projecting the input layer data from the commu-

nication subspace identified from condition A onto that identified from condition B (across-condition prediction performance). Then

we compared it to the prediction performance when the input layer data was projected onto the original communication subspace of

condition A (within-condition prediction performance; obtained from RRR by definition). Comparable cross-condition and within-

condition prediction performance implies a similarity between the structure of communication subspaces identified from different

conditions. To verify whether the computed cross-condition and within-condition prediction performances were significantly close

to each other, we compared them to the prediction performance obtained by chance, where the input layer data in a given condition

was projected onto subspaces randomly generated as in the principal angle analysis. Note that this analysis was performed twice for

each pair of visual conditions, considering either condition as the within-condition communication subspace.

Population correlation analysis

We used canonical correlation analysis (CCA)94 to capture the population correlation between the input and superficial layers at

different time delays on a moment-by-moment basis. CCA finds pairs of dimensions, one each in the neuronal activity space in

each layer, such that the correlation between the projected activity onto these dimensions is maximally correlated. The exact

description and formulation of CCA can be found in Semedo et al.48 We took two windows of activity, one in each layer. Window

length was 50 ms and the window was advanced in 10 ms steps. The activity within each window was then binned using 10 ms

bins. The reported results were robust over a reasonable range of window and binning lengths chosen.We reported correlation asso-

ciated with the first two canonical pairs (correlations associated with the third were on average 60% lower and close to chance level).

The correlations along the feedforward (FF) and the effective feedback (FB) signaling pathways were calculated as the mean cor-

relation at positive and negative delays, respectively:

CFFðtÞ =

P

dt > 0

Cðt;dtÞ

Ndt > 0

CFBðtÞ =

P

dt < 0

Cðt;dtÞ

Ndt < 0

where t is the time following response onset, dt is the inter-laminar delay involved between windows from two layers, Cðt;dtÞ is

the corresponding correlation. Ndt > 0 is the number of positive delays investigated, which is equal to the number of negative delays,

Ndt < 0.

The direction dominance index was calculated as:

DDIðtÞ =
CFFðtÞ � CFBðtÞ

P

t

P

dt

Cðt;dtÞ

�

Ndt

�

Nt

where Nt and Ndt are the number of time points and delay involved in the analysis, respectively. A positive DDI indicates the domi-

nance of feedforward signaling and a negative DDI indicates the dominance of effective feedback signaling.
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Figure S1. Comparing prediction accuracies calculated using reduced-rank regression 

(RRR) against the full regression model (ridge), related to Figure 1-3 

(A) Temporal evolution of prediction accuracy as shown in Fig. 1H computed by RRR (solid curve) or the 

full regression model (dashed curve). (B) Temporal evolution of within-condition prediction accuracy as 

shown in black in Fig. 2C computed by RRR (solid curve) or the full regression model (dashed curve). (C)  

Temporal evolution of prediction accuracy under the probe and flanked conditions as shown in Fig. 3A 

computed by RRR (solid curves) or the full regression model (dashed curves). The full regression model 

always gives comparable predictive performance as RRR.  

  



 

Figure S2. Comparing communication subspace across visual conditions, related to 

Figure 2 

(A) The temporal evolution of leading principal angles between the communication subspaces identified 

from different types of flanked conditions during the corresponding visually responsive period (averaged 

across all sessions) and between random subspaces of comparable dimensions (grey; see Methods). 

(B)  Cross-prediction analysis for input layer predicting superficial layer activity during a given flanked 

condition (shown at the top) and using subspaces identified for various conditions (as shown in the 

legend). Error bars indicate the 95% confidence interval for the mean.  

 

 

 



Figure S3. Comparing prediction accuracy 

across visual conditions, related to Figure 5, 7 

(A) Same as Fig. 5B, comparing inter-laminar prediction 

accuracy under the radial-in condition to that under the 

tangential condition. Negative PMIs imply a degradation 

of prediction accuracy in the radial-in condition 

compared to the tangential condition. (B) The within-

shank difference in the level of early charge sinks in the 

superficial layer, when compared between the radial-in 

and tangential conditions for all shanks from each 

monkey. Error bars indicate 95% confidence interval for 

the mean. 

 

 

 



Figure S4. Comparing PSTH across flanker-only conditions, related to Figure 7 

Normalized peri-stimulus time histograms (PSTHs; see Methods) for superficial layer units (separately for 

each monkey) under various flanker-only conditions. Error bars indicate the standard error across neurons. 

This analysis only included neurons that were visually responsive (see Methods) in the probe condition and 

exhibited significantly higher rates compared to all flanker-only conditions.  
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SUMMARY

Our visual experience is a result of the concerted activity of neuronal ensembles in the sensory hierarchy. Yet,

how the spatial organization of objects influences this activity remains poorly understood. We investigate

how inter-laminar information flowwithin the primary visual cortex (V1) is affected by visual stimuli in isolation

or with flankers at spatial configurations that are known to cause non-uniform degradation of perception. By

employing dimensionality reduction approaches to simultaneous, layer-specific population recordings, we

establish that information propagation between cortical layers occurs along a structurally stable communi-

cation subspace. The spatial configuration of contextual stimuli differentially modulates inter-laminar

communication efficacy, the balance of feedforward and effective feedback signaling, and contextual

signaling in the superficial layers. Remarkably, these modulations mirror the spatially non-uniform aspects

of perceptual degradation. Our results suggest a model of retinotopically non-uniform cortical connectivity

in the output layers of V1 that influences information flow in the sensory hierarchy.

INTRODUCTION

Spatial vision is the ability to perceive visual objects within three-

dimensional space, and its dysfunction is detrimental to our abil-

ity to interact with the visual world. Our visual experience relies

on the coordinated activity of neuronal ensembles in the sensory

hierarchy of the cortex.1 Yet, how the spatial organization of ob-

jects influences information flow between neuronal populations

in this hierarchy remains incompletely understood.

Visual perceptual performance varies as a function of visual

field location, which is best at the center of gaze, degrades

with eccentricity, and varies with radial angle. This asymmetry

is paralleled by the asymmetric neural organization at multiple

stages of the visual system (see Himmelberg et al.2 for a review).

Thus, a comprehensive characterization of the neural correlates

of spatial vision requires empirical investigations without the

assumption of spatial isotropy. Phenomena such as visual

crowding—the inability to recognize objects among clutter—

offer a powerful framework for such investigations. Visual crowd-

ing is thought to be the primary limitation on object perception in

peripheral vision.3 The crowding zone, which refers to the spatial

extent over which flankers affect target identification, shows

distinct spatially non-uniform characteristics, as identified by

psychophysical studies.4,5 This suggests non-uniform informa-

tion processing along the visual hierarchy.

Understanding the neural basis of spatially non-uniform

context integration requires identification of where the effects

arise in the visual hierarchy and how information flow along

this hierarchy is modulated by context. Neuronal spiking activity

recorded from anesthetized monkeys indicates that visual

crowding impairs feature representations as early as the primary

visual cortex (area V1).6,7 Human imaging studies show modula-

tion of activity in V18,9 as well as in higher visual areas.10–13More

importantly, inter-areal correlations are disrupted by spatial

context integration,14 suggesting modulation of information

flow along the hierarchy. Despite extensive psychophysical

Neuron 112, 1–15, December 18, 2024 ª 2024 Elsevier Inc. 1
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Figure 1. Characterization of inter-laminar information flow in V1

(A) Illustration of electrophysiological recordings with high-density 2-shank laminar probes.

(B) Example receptive field contours along the two shanks on the laminar probe. Top: vertical view. Dva, degrees of visual angle.

(C) Example current source density (CSD).

(D) Visual stimulation protocol. (D1) Schematic of visual stimulation for the passive fixation task. eprobe, parafoveal eccentricity of probe presentation; De, center-

to-center distance between the probe and flankers. D2: summary of stimulus conditions. In subsequent results, ‘‘tangential’’ refers to one of the two tangential

locations shown in (D1), indicated by a common symbol shown here.

(E) Normalized peri-stimulus time histograms (PSTHs; see STAR Methods) of recorded units in the superficial (top) and input (bottom) layers under various visual

conditions. Top: visual stimulation protocol.

(F) Illustration of a low-dimensional communication subspace between cortical layers. The activity of each neuron in the superficial layer (illustrated by green

circles) is predicted as a linear combination of the population activity in the input layer (illustrated by gray circles), which is equivalent to its projection onto a certain

axis (shown as a green line/superficial neuron) in the activity space of input layer population. The axes for prediction either span the entire input layer activity space

(bottom row) or are constrained in a low-dimensional subspace (top row), referred to as ‘‘communication subspace.’’ The activity along the subspace is sufficient

(legend continued on next page)
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studies and computational modeling,15–26 the neural basis of the

perceptual asymmetry of spatial context integration remains

incompletely understood. Understanding how the organization

of objects influences information flow along the visual hierarchy

is thus critical to our understanding of spatial vision.

Information flow in the visual hierarchy is both inter-areal as

well as inter-laminar because the laminar organization of

neuronal populations,1,27 with their stereotypical patterns

of intra- and inter-areal projections,28–30 is a canonical motif of

cortical organization. The neurophysiological aspects of these

lamina-specific circuits have been extensively characterized in

the context of surround modulation, namely the change in

neuronal activity in response to visual stimulation of classical

and extra-classical receptive fields.31–40Geniculate feedforward

connections, intra-V1 horizontal connections, and inter-areal

feedback connections to V1 have all been shown to contribute

to surround modulation in V1 at different spatiotemporal scales

(see Angelucci et al.41 for a review). However, a prevailing

assumption in most of these studies has been the spatially uni-

form nature of the surrounding context. In V1, receptive field

sizes and spatial frequency preference vary with eccentricity.

In addition, the distribution of cortical tissue devoted to visual

space varies with polar angle (see Himmelberg et al.2 for a re-

view). Such asymmetric neural organization suggests the possi-

bility of non-uniform processing within V1 acting as a substrate

for the non-uniform psychophysical effects observed in phe-

nomena such as visual crowding.4,5 In this study, we investi-

gated how the spatial configuration of visual stimuli modulates

inter-laminar information flow in V1 by analyzing functional

communication between neuronal populations. We specifically

focused on communication between two populations: input-

layer neurons that receive geniculate inputs and project locally

to superficial layers and superficial-layer neurons that project

to higher-order visual areas as well as to local deep layers.

We performed laminar recordings from awake macaque V1

with visual stimuli presented either in isolation or with a flanking

stimulus at various locations known to cause non-uniform

perceptual impairment in peripheral vision. We characterized in-

formation flow from the input to the superficial layer, which is a

key pathway in the feedforward propagation of sensory informa-

tion. Using dimensionality reduction techniques to identify

communication subspaces,42 we found that the information

flow from the input to superficial layers occurs along a structur-

ally stable communication subspace under different visual con-

ditions. Flanking stimuli modulated the efficacy of inter-laminar

information flow in a location-specific manner by changing

both its efficacy and the balance of feedforward and effective

feedback signaling. Moreover, our analysis revealed a non-uni-

form contextual signal in the superficial layers triggered by

flankers.

RESULTS

To characterize inter-laminar information flow in V1, we simulta-

neously recorded the spiking activity in the input layer (unit count:

27.9 ± 3.2 SEM) and in the primary downstream target, the super-

ficial layer (unit count: 21.9 ± 5.0 SEM) in two awake macaque

monkeys (Figure 1A; 14 sessions from monkey M, 8 sessions

frommonkey D). The recorded neurons consisted of well-isolated

single units and multi-unit clusters, which had retinotopically

aligned receptive fields (Figure 1B), implying a high probability

of direct interactions. Laminar identity was established using cur-

rent source density (CSD) analysis43 (Figure 1C). Monkeys were

trained to fixate on the center of the screen and passively view

a probe stimulus (100 ms stimulus duration, 200–250 ms inter-

stimulus interval) at the receptive field of the recording site, either

in isolation (probe condition) or with a flanking stimulus (flanked

condition) at one of four spatial locations relative to the probe (Fig-

ure 1D1), based on which three flanked conditions were defined

(Figure 1D2). In both the radial-in and radial-out flanked condi-

tions, the flanker was positioned on the radial axis connecting

the probe and the fixation point, either between the probe and

the fixation point or past the probe, respectively. In the tangential

flanked condition, the flanker was positioned on either side of the

probe along the axis orthogonal to the radial axis.

Given the rich temporal dynamics of the V1 units (Figure 1E), we

hypothesized that the dynamics of inter-laminar information flow

were also time variant and therefore conducted analysis on a

moment-by-moment basis. Neuronal activity was measured as

spike counts in 50-ms bins during the appropriate stimulus pro-

cessing range of V1 neurons, which we refer to as the responsive

period (see STAR Methods). Leveraging trial-to-trial response

variabilities to repeated stimuli, we characterized inter-laminar in-

formation flow by assessing the extent to which variability of

mean-subtracted neuronal activity in the superficial layer could

be predicted by the correponding activity in the input layer.

Information propagation between cortical layers occurs

along a communication subspace

Information propagation across cortical areas has been shown

to occur along a ‘‘communication subspace.’’42,44 That is, only

a low-dimensional subspace of the upstream area neural

to capture the inter-laminar communication. Any perturbation of input layer activity orthogonal to this subspace (black dotted line) will not change the predicted

population activity of the superficial layer.

(G) Predicting superficial layer population activity (16 units) from input layer population activity (34 units) using reduced-rank regression (RRR)with varying number

of predictive dimensions (blue curve) or a full regression model (gray circle) for an example session. Error bars indicate the standard error acrossmultiple draws of

trials and the corresponding cross-validation folds. For all prediction analyses presented, the RRR model performs as well as the full model (Figure S1).

(H) Temporal evolution of the optimal dimensionality (red) and its prediction accuracy (black) computed by RRR for the example session used in (G) (see

STARMethods). Blue asterisk: time around which the window analyzed in (G) was centered. Error bars indicate the standard error across multiple draws of trials.

(I) The ratio between Dimopt and Dimmax under various visual conditions for an example session (black) or across all sessions (blue) from monkey M. Error bars

indicate the 95% confidence interval for the mean ratio averaged across the responsive period.

(J) Same as (I) for results from monkey D.

(K and L) The ratio between Dimopt and the dimensionality of the population activity (Dimpopulation ) in the superficial layer (green) or the input layer (gray) across all

sessions from monkey M (K) and monkey D (L).
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population activity space is informative of the downstream area

activity (illustrated in Figure 1F). It is important to note that a sub-

space of neural activity is different from a subnetwork. Whereas

a subnetwork comprises a subset of neurons, a subspace of

neural activity corresponds to a subset of population activity pat-

terns, whichmay involve non-trivial activities of all neurons within

the network. The dimensionality of the communication subspace

from V1 to V2 has been shown to be consistently lower than the

dimensionality of the target population activity.42Based on these

results, we hypothesized that inter-laminar information propaga-

tion also occurs along subspaces and that this is not simply due

to the low dimensionality of either the source or target population

activity. Specifically, we testedwhether the inter-laminar interac-

tion between the input and superficial layers in V1 was limited to

a subspace of the neural activity space of the input layer by em-

ploying reduced-rank regression (RRR),45,46 a multivariate linear

regression model with a constraint enforcing a small number of

latent predictive factors (see STAR Methods). For an example

session under the radial-in condition (Figure 1G), only 6 dimen-

sions (Dimopt) were needed to achieve prediction performance

that is as good as a full linear regression model (ridge regression;

see STARMethods), which was lower than the maximal possible

prediction dimensionality (Dimmax) determined by the minimum

between the number of units in the source and target popula-

tions. Moment-by-moment analysis for this session revealed

that this result held throughout the responsive period of V1 (Fig-

ure 1H). Furthermore, this result was consistent across visual

conditions, sessions, and monkeys (Figures 1I and 1J), implying

that inter-laminar information flow in V1 shared the low-dimen-

sional property exhibited by inter-areal information flow. We

next tested whether this signature of inter-laminar information

flow was due to a low complexity of population activity either

in the source population (the input layer) or in the target popula-

tion (the superficial layer). We used factor analysis to assess the

complexity of population activity in either layer (see STAR

Methods). The analysis revealed that the dimensionality of activ-

ity in either population was consistently higher than the number

of predictive dimensions (Figures 1K and 1L). Thus, the observed

low dimensionality of inter-laminar interactions cannot be ex-

plained by the complexity of population activity in the input or

superficial layer but rather reflected the nature of inter-laminar in-

formation flow.

We next investigated the impact of stimulus configuration on

the structure and efficacy of the communication subspace un-

derlying inter-laminar information flow. Potentially, inter-laminar

information flow can be modulated by the spatial configuration

of stimuli in two ways that are not mutually exclusive: (1) the

structure of the communication subspace is changed, which

would be observable as the degraded prediction performance

under a given visual condition when the corresponding input

layer data were projected onto the communication subspace

identified from a different visual condition, and (2) the efficacy

of the communication subspace is changed, which would be

observable as differential prediction accuracies across visual

conditions. To test these possibilities, we performed RRR to

characterize the communication subspace and computed its

prediction accuracy on a moment-by-moment basis for each vi-

sual condition.

Structure of communication subspace is preserved

across flanker locations

Testing whether the structure of inter-laminar information flow

is changed requires characterizing the difference between

communication subspaces identified from different visual con-

ditions. To ensure a fair comparison across visual conditions,

populations in the input and the superficial layers used to

conduct prediction analysis were fixed and the sample sizes

were matched across visual conditions. These protocols pre-

vented the number of analyzed neurons and trials from differen-

tially affecting the analysis result.42,47 We first investigated the

relative alignment between the subspaces across different vi-

sual conditions by using the measure of principal angle (Fig-

ure 2A), which computes angles between sequentially aligned

pairs of basis vectors, each within one of the subspaces. The

smallest principal angle is referred to as the ‘‘leading principal

angle.’’ Small principal angles indicate a similar orientation of

subspaces and imply that much of the structure of the commu-

nication subspace is preserved across visual conditions. By

performing RRR using data from a sliding time window of

50 ms, we identified the communication subspace for each vi-

sual condition and computed the principal angles between all

possible pairs. To assess whether the obtained principal angles

were significantly small, we compared them with the principal

angles between randomly generated subspaces while preser-

ving the dimensionalities of the computed communication sub-

spaces (see STAR Methods). The leading principal angles be-

tween the communication subspaces identified from the

probe and any of the flanked conditions were consistently

below chance level (Figure 2B). The result held for all other vi-

sual condition comparisons (Figure S2A). Because the regres-

sion could be prone to overfitting, we calculated within-condi-

tion principal angles (see STAR Methods), which provided an

estimate of the minimal principal angle that could be realisti-

cally obtained, and compared these with the cross-condition

principal angles. The levels of the within-condition principal an-

gles (Figure 2B, black curves) were consistently comparable

with the cross-condition principal angles (Figure 2B, colored

curves), providing further evidence for similar communication

subspaces across visual conditions.

To characterize the influence of the relative alignment be-

tween communication subspaces across visual conditions on

the strength of interaction, we performed cross-prediction anal-

ysis using the projection of the data from the source (input

layer) population for a given visual condition onto the commu-

nication subspaces identified across different visual conditions

using a multivariate linear regression model (Figure 2A).

Throughout the responsive period, the projected data gave

similar prediction performance across all visual conditions

from which the communication subspace was identified, and

these were significantly above what would be expected by

chance (Figures 2C and S2B). Thus, the extent to which the

input layer activity was informative of the superficial layer activ-

ity was similar among the communication subspaces identified

from different visual conditions. Taken together, these two re-

sults indicate that the structure of inter-laminar information

flow in a linear framework is preserved across different spatial

configurations of visual stimuli.
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Efficacy of inter-laminar information flow is degraded in

the presence of flankers

Wenext investigated how the spatial configuration of visual stim-

uli influenced the efficacy of inter-laminar information flow, as

characterized by inter-laminar prediction accuracies. We started

by comparing the probe condition against the flanked condition

(data pooled across all possible locations of flankers). Temporal

dynamics of prediction accuracy were obtained as the predictive

performance at optimal dimensionality under RRR employed on

a moment-by-moment basis. As shown in Figure 3A for a repre-

sentative session, under either visual condition, the inter-laminar

prediction accuracy initially increased and then decayed during

the responsive period. To quantify the difference in the predic-

tion accuracies across visual conditions for each session, we

introduced a prediction modulation index (PMI; see STAR

Methods). For the example session in Figure 3A, the correspond-

ing PMI was significantly negative during the entire responsive

period (Figure 3B), indicating that the prediction accuracy was

weakened in the presence of flankers. Despite an inter-subject

difference in the initial temporal profile of the PMI, the degrada-

tion of inter-laminar prediction accuracy was consistent across

sessions for both monkeys (Figure 3C), implying a weaker effi-

cacy of information flow.

Degradation in the efficacy of inter-laminar information

flow is mediated by layer-specific signals

We tested two non-mutually exclusive hypotheses about how

the presence of flankers might weaken inter-laminar prediction

accuracy (schematized in Figure 4A): hypothesis I, the flanked

condition causes the activation of a novel signal targeting the

input layer, or hypothesis II, the flanked condition causes the

activation of a novel signal targeting the superficial layer. To

disentangle these possibilities, we investigated the temporal

relationship between layer-specific activity and the degradation

in prediction accuracy. On a moment-by-moment basis, we per-

formed the RRR analysis using data from the two layers at

different temporal delays (Figure 4B1) and thereby determined

the temporal evolution of PMI as a function of delay. It is impor-

tant to note here that delays associated with both inter-laminar

signal conduction and intra-laminar recurrent processing would

factor into this temporal analysis. If hypothesis I were true, the

timing of the degradation and hence the temporal profile of the

PMI would be independent of the inter-laminar delay being

considered (Figure 4B2, left). In contrast, if hypothesis II were

true, i.e., if the novel signal targeted the superficial layer, the

timing of the degradation would depend on the offset of the su-

perficial layer data analyzed and therefore shift earlier with

increasing temporal delay (Figure 4B2, right). Based on these ob-

servations, we estimated the time of degradation of prediction

accuracy by determining the decrease onset time (DOT) of PMI

followed by persistently negative components and related it

with the temporal delay being considered. As shown in Figure 4C,

for two representative sessions from the twomonkeys, the DOTs

of PMI became earlier with increasing temporal delay. Across

sessions, the correlation between the DOTs of PMI and the tem-

poral delay was consistently negative and close to �1 for both

monkeys (Figure 4D), indicating a dependence as predicted by

hypothesis II. This result suggests that the degradation of predic-

tion accuracy in the presence of flankers was mainly due to a

novel signal targeting the superficial layer.
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Figure 2. Similarity of inter-laminar communi-

cation subspace across visual conditions

(A) Illustration of principal angle measure and cross-

prediction analysis for comparing two subspaces.

Each axis represents the activity of an input layer

neuron used to predict superficial layer activity. Green

lines represent input-to-superficial communication

subspaces identified from two visual conditions.

(B) Temporal evolution of leading principal angle be-

tween the communication subspaces identified for

all visual conditions (averaged across all sessions).

Gray: chance level alignment between subspaces

(see STAR Methods). Black: within-condition leading

principal angles (see STAR Methods).

(C) Cross-prediction analysis for neural activity in

probe condition, using projection onto subspaces

identified from one of the four visual conditions. Error

bars indicate the 95% confidence interval for the

mean. Difference between conditions was inferred

using estimation statistics framework (see STAR

Methods). Black: within-condition prediction. Yellow,

purple, magenta: across-condition prediction. Gray:

chance level (see STAR Methods). Also shown in

(B) and (C) on the right, are the results calculated using

the activities from the full responsive period (a 100-ms

time bin starting from response onset). For other

visual condition comparisons, see Figure S2.
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Degradation in the efficacy of inter-laminar information

flow is sensitive to flanker location

Two robust characteristics of visual crowding identified by psy-

chophysical studies are the asymmetry and anisotropy of crowd-

ing zones, the spatial extent over which flankers affect target

recognition. First, a flanker more eccentric than the target stim-

ulus (radial-out condition) has a greater perceptual crowding ef-

fect than an equally spaced inward (less eccentric) flanker

(radial-in condition).5 Second, the crowding zone is elongated

along the radial axis so that radially positioned flankers produce

a stronger crowding effect than tangential ones (tangential con-

dition).4 We reasoned that these perceptual asymmetries could

be due to asymmetries in inter-laminar prediction accuracy in

V1. To investigate this possibility, we first compared the inter-

laminar prediction accuracies between the probe and the

different flanked conditions. The degradation due to the pres-

ence of flankers was consistent across all flanker locations, yet

the extent of degradation varied (Figure 5A). To further charac-

terize this, we compared the prediction accuracy under the

flanked condition associated with the strongest perceptual

crowding effects (the radial-out condition) against the other

flanked conditions (the radial-in and the tangential conditions).

To ensure a fair comparison across visual conditions, we addi-

tionally aligned the temporal prediction accuracy data to ac-

count for different response latencies across conditions. We

found that the prediction accuracy degraded in the radial-out

condition compared with the radial-in (Figure 5B) and the

tangential conditions (Figure 5E) over most of the responsive

period. Despite an inter-subject variability in the temporal profile

of the prediction degradation caused by the radial-out condition

relative to the radial-in condition, such degradation was consis-

tent across all sessions for both monkeys. Moreover, applying

the inter-laminar temporal delay analysis as above, we found

that the prediction degradation with radial-out flankers emerged

earlier with increasing temporal delay (Figures 5C, 5D, 5F,

and 5G), consistent with a hypothesis of a superficial-layer-tar-

geting signal that is dominant in the radial-out condition.

Bi-directional information flow depends on flanker

location

Prediction analysis using RRR was motivated by the anatomical

model of lamina-specific circuits, and thus assumed a direction

of information flow from the input layer (source) to the superficial

layer (target). We next sought to understand how information

flow in either direction was affected by the spatial configuration

of visual stimuli. We investigated this by employing canonical

correlation analysis (CCA; see STARMethods) to relate the pop-

ulation activities in the input and superficial layers at different

time delays on a moment-by-moment basis (Figure 6A), which

we refer to as population correlation. Positive or negative delays

between the population activities from each layer allowed a bi-

directional analysis of inter-laminar information flow. This meth-

odology has been previously applied48 to study the structure of

interactions between cortical areas, finding that the balance

was feedforward dominated shortly following stimulus onset

and then became feedback dominated. For each visual condi-

tion, we calculated the population correlation between activities

in the two layers as a function of time and time delay between

layers (Figure 6B). To quantify the strength of interaction in

each direction, we computed a ‘‘feedforward correlation’’ by tak-

ing the mean over correlations for all positive delays (input layer

leading superficial layer; STARMethods) and similarly for ‘‘effec-

tive feedback correlation’’ for negative delays (superficial layer

leading input layer). For a representative example session under

the probe condition (Figure 6B), whereas the feedforward corre-

lation increased steadily from the time of response onset and

then gradually decayed, the effective feedback correlation was

consistently lower than the feedforward correlation, indicating

a feedforward-dominant interaction throughout the responsive

period.

We quantified the degree to which the inter-laminar interaction

was dominant in either direction of signaling by defining a direc-

tion dominance index (DDI; see STAR Methods), where a posi-

tive DDI indicates the dominance of feedforward signaling and

a negative DDI indicates the dominance of effective feedback
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Figure 3. Efficacy of inter-laminar information flow across visual conditions

(A) The temporal evolution of input-superficial prediction accuracies under the probe (black) and the flanked conditions (orange) for an example session from

monkey D. Error bars indicate the standard error across multiple draws of trials. Results calculated using the activities from the full responsive period (a 100-ms

time bin starting from response onset) are shown on the right.

(B) The temporal evolution of the prediction modulation index (PMI; see STAR Methods). Error bars indicate 95% confidence interval for the mean. Difference

between conditions was inferred using estimation statistics framework (see STAR Methods).

(C) Same as (B) for results across sessions from each monkey (gray: monkey M; black: monkey D) or across the two monkeys (blue).
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signaling. The larger the magnitude of DDI, the more biased the

interaction was toward one direction. To investigate the impact

of stimulus configuration on the balance of the inter-laminar

feedforward and effective feedback signaling, we determined

the temporal evolution of DDI separately for each visual condi-

tion. In the same example session as above, under both the

probe and the flanked conditions, the DDI increased steadily

and gradually decayed, remaining significantly positive

throughout the responsive period (black and orange curves in

Figure 6C). Thus, the interaction became more feedforward

dominated in the early phase of the responsive period and

then returned to a more balanced interaction. Remarkably, the

DDI was less positive under the flanked condition, indicating

that the balance was shifted away from the feedforward direction

in the presence of a flanker. This result was robust across ses-

sions for each monkey (Figure 6D). Furthermore, similar analysis

revealed that this modulation was flanker-position dependent. In

the visual condition associated with the strongest perceptual

crowding effect (the radial-out condition), the balance was

shifted away from the feedforward direction compared with

both the radial-in and tangential conditions (Figure 6E). Thus,

the non-uniformity in stimuli-specific prediction accuracy anal-

ysis (Figure 5) was mirrored by the modulation of the interplay

between inter-laminar feedforward and effective feedback

signaling. Interestingly, the inter-subject difference in the tempo-

ral profile of the difference in DDI across visual conditions (probe

vs. flanked and radial-out vs. radial-in) was similar to that in PMI

obtained from the prediction analysis, such that both the shift of

balance (Figures 6D and 6E) and the degradation of inter-laminar

prediction accuracy (Figures 3C and 5B) emerged later during

the responsive period for monkey M compared with monkey D.

Strength of contextual drive to the superficial layer is

location specific

To test the hypothesis that our observations are a reflection of a

signal that targets the superficial layers and is sensitive to flanker

locations, we next examined the relative strength of this signal

evoked by flanker-only stimuli at different locations. For each

flanker-only condition, we determined the level of charge sinks

by integrating over time the early current sinks in the superficial

B1 B2

C D

A

Figure 4. Mechanism of degradation in the efficacy of inter-laminar information flow

(A) Illustration of two possible mechanisms: flanker causes the activation of a novel signal (orange arrow) targeting the input (mechanism I) or superficial layer

(mechanism II).

(B) Delay analysis protocol and potential outcomes. (B1) RRRwas conducted on amoment-by-moment basis using input (at t) and superficial layer activity at non-

negative temporal delays (t + delay). (B2) Illustration of delay-induced changes in PMI dynamics, as implied bymechanisms I and II. Orange arrows: the timewhen

the hypothetical novel signal caused by the flanker arrived at the input (mechanism I) or superficial (mechanism II) layer.

(C) Temporal evolution of inter-laminar PMI under the probe and the flanked conditions at various inter-laminar temporal delays for example sessions from two

monkeys. PMIs that are neither significantly positive nor negative are colored in white (the corresponding 95% confidence interval for the mean PMI includes

zero). Black circles: decrease onset times (DOTs) of PMI at each level of delay.

(D) Correlation between inter-laminar temporal delay and the DOTs of PMI across all sessions from each monkey. Error bars indicate 95% confidence interval for

the mean.
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layer obtained from the CSD response (Figures 7A–7C; see

STAR Methods), which reflected the subthreshold integrated

input to local neurons.43,49 For both monkeys, flankers at the

radial-out position evoked stronger charge sinks compared

with flankers at the radial-in or tangential positions (Figure 7D),

thus providing direct evidence for a location-dependent superfi-

cial-layer-targeting signal that differentially impacts the repre-

sentation of the probe. Similar results were obtained from

spike-based analysis, such that the radial-out flanker-only con-

dition evoked higher levels of activity (Figure 7E). This provides
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Figure 5. Efficacy of inter-laminar information flow as a function of flanker location

(A) Same as Figure 3C, comparing the prediction accuracy under the probe condition against each flanked condition (from left to right: radial-in, radial-out, and

tangential).

(B) Temporal evolution of RRR PMI comparing the radial-out and radial-in conditions for example sessions (left) or across all sessions (right), from monkeys M

(gray), D (black), or both (blue). Negative PMIs imply a degradation of prediction accuracy in the radial-out condition compared with the radial-in condition. Error

bars indicate 95% confidence interval for the mean.

(C) Example sessions showing temporal evolution of PMI as a function of inter-laminar delay (see Figures 4B and 4C) for the visual conditions compared in (B).

(D) Correlation between inter-laminar temporal delay and the DOTs of PMI across all sessions from each monkey.

(E–G) Same as (B)–(D), comparing the modulation of inter-laminar prediction accuracy under the radial-out and tangential conditions. For comparison between

the radial-in and tangential conditions, see Figure S3A.
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further evidence for stronger inputs to the superficial layer as a

potential mechanism underlying the observed non-uniformity.

These results support a hypothesis that the observed degrada-

tion in the efficacy of inter-laminar information flow and the shift

in feedforward-feedback signaling balance are mediated by ret-

inotopically non-uniform cortical connectivity in the output layers

of V1 (Figure 7F).

DISCUSSION

We leveraged simultaneous laminar recordings to understand

how the spatial configuration of visual contextual stimuli affected

inter-laminar information flow in V1 of the macaque. V1 activity

has been extensively studied as a locus of surround modula-

tion34–41 and, more recently, has been implicated as a bottleneck

impairing perception under visual crowding.6–9,13 We established

that information flowacross V1 laminar populations is constrained

to a communication subspace. We demonstrated that the effi-

cacy of inter-laminar information flow was degraded in the pres-

ence of contextual stimuli. This degradation was not accompa-

nied by changes in the structure of the subspace of neural

activity along which the information flow occurs. Furthermore,

we found that the balance between the inter-laminar feedforward

and effective feedback signaling was non-uniformly shifted in the

presence of flankers. Strikingly, these modulations matched the

spatially non-uniform aspects of perceptual degradation, such

that a greater degree of modulation was associated with a flanker

at the visual location that is known to exert a stronger perceptual

impairment. Finally, we found that the spatial configuration of

contextual stimuli differentially modulated contextual signaling

in the superficial layers. Our results suggest a model in which

degraded information flow along the sensory hierarchy, mediated

by retinotopically non-uniform connectivity in the output layers of

V1, underlies the perceptual impairments in spatial vision.

Contextual modulation of information flow

Despite decades of research at the level of perception, investiga-

tion into the neural mechanisms of non-uniform perceptual
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(A) Canonical correlation analysis (CCA) protocol for estimating temporal evolution of population correlations.

(B) CCA-based population correlation as a function of time and inter-laminar delay during the visually responsive period. Overlaid solid and dotted traces (white)

show the average correlation at positive and negative sides of delay, respectively. Error bars indicate the standard error across multiple draws of trials.

(C) Temporal evolution of the direction dominance index (DDI; see STAR Methods) under the probe and the flanked conditions for an example session. Also

shown is the difference between DDIs across conditions (gray trace).

(D) Temporal evolution of the difference in the DDIs under the probe and the flanked conditions for all sessions from each monkey.

(E and F) Same as (D) for results comparing DDIs separately under different types of flanked stimuli (E: radial-out vs. radial-in; F: radial-out vs. tangential). In

(B)–(E), corresponding visually responsive periods estimated as 100 ms from the response onsets are marked by horizontal bars. In (C)–(E), error bars indicate

95% confidence interval for the mean.
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Figure 7. Retinotopically non-uniform context integration in V1

(A) An example of estimated CSD across V1 layers evoked by flanker presented by itself at the radial-out position. Dotted white lines indicate laminar boundaries

(see STAR Methods). Traces on the right show temporal evolution of the CSD signal at two recording sites on the example shank, marked by the green dashed

lines. Red shade: the earliest charge sink.

(B and C) Same as (A), with the flanker presented at the radial-in and tangential positions, respectively.

(D) Top: level of early charge sinks under different flanker-only conditions across all sessions from each monkey. Bottom: within-shank difference in the level of

early charge sinks between the radial-out and radial-in conditions (left) and the radial-out and tangential conditions (right). Error bars indicate 95% confidence

interval for themean. Difference between conditions was inferred using estimation statistics framework (see STARMethods). For comparison between the radial-

in and tangential conditions, see Figure S3B.

(E) Difference in the normalized PSTH of superficial layer units between the radial-out flanker-only and radial-in flanker-only conditions (left) and the radial-out

flanker-only and tangential flanker-only conditions (right). Error bars indicate 95% confidence interval for the mean difference (see STAR Methods). Normalized

PSTHs for each condition are shown in Figure S4.

(F) Summary of findings.
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degradation in peripheral vision has received limited attention.

The most studied hypothesis is that the perceptual degradation

is mediated by changes in the tuning properties of neurons and

therefore leads to information loss about target features as early

as the input and superficial layers of V1.6,7,50 The observed

impairment of information encoding has been shown to be

greater with flankers positioned at visual configurations that

exert stronger crowding effects, either with shorter target-flanker

distance or at a radial-out location relative to the target stimulus.

However, modulation of neural responses and changes in infor-

mation coding do not necessarily imply changes in signaling

efficacy along processing stages in the visual hierarchy. Our re-

sults demonstrate that inter-laminar information flow in V1, a key

mechanism of hierarchical signaling, is disrupted by spatial

context, which may account for the accumulation of information

loss along the visual hierarchy.

Although we address degraded inter-laminar information flow

in V1, our results do not rule out the possibility of additional

mechanisms responsible for visual crowding in higher visual

areas. A stronger information loss in area V4 has been observed

with crowding due to the summation of signals within the larger

receptive fields of V4 neurons compared with V1.7Other relevant

studies relying on coarser measures of neural activity, such as

fMRI, found that inter-areal temporal correlations (between V1,

V2, V3, V4, and the visual word form area) are lower with

crowded letters compared with uncrowded letters.14 Such dete-

rioration in the extrastriate cortex can only compound the degra-

dation of signaling that we identified within V1, as higher visual

areas ultimately rely on V1 inputs for their computations.1 Given

reports of the similar extents of anatomical horizontal (recurrent

within V1) and feedback (from V2 to V1) projections in the visual

cortex,51 cortical magnification can partially explain the inward-

outward asymmetry of perceptual degradation due to crowding

but not the full extent of the radial-tangential anisotropy.21 This

suggests the existence of additional ‘‘functional’’ non-unifor-

mities in the peri-columnar network.

Source of non-uniform context signal

The dependence of the PMI temporal profile on the inter-laminar

delay suggested that the degradation of prediction accuracy in

the presence of flankers was mainly due to a novel signal target-

ing the superficial layer. This result is broadly consistent with a

recent study37 that examined the laminar profile of current sinks

in the CSD upon stimulation of the receptive field surround with

isotropic annular gratings and found, based on onset latency

measurements, that the processing of such spatial context initi-

ates in the superficial and deep layers. Our results significantly

extend this prior work by (1) characterizing the effect of such a

mechanism on information propagation along the intra-V1 hier-

archy and (2) showing that such a mechanism could also be a

template for non-uniform contextual modulation. Further exper-

iments are needed to be able to pinpoint the source of this impli-

cated input, which could non-exclusively be horizontal connec-

tions from superficial-layer neurons outside the recorded V1

column or feedback connections from higher visual areas.

Both possibilities are supported by previous studies in the

context of surround modulation where optogenetic inactivation

of horizontal connections in mouse L2/3 V152 or marmoset V2

feedback connections to V153 reduced the amplitude of sur-

round modulation. Moreover, each type of connection was

shown to contribute to the processing of spatial context at

different spatiotemporal scales.37,41 It is important to note that

our results do not conflict with previous work suggesting the

contribution of geniculate feedforward connections, which pri-

marily terminate in the input layer of V1, to the processing of

contextual stimuli,34,40,54–57 but imply a weaker effect of such

connections on the efficacy of input-superficial information

flow compared with connections terminating in the superficial

layers. Interestingly, our observation of an intermediate level of

negative correlation (close to neither 0 nor �1) between the

time when degradation emerged and the temporal delay being

considered for the comparison between the tangential and

radial-out conditions from one monkey (Figure 5G), suggests

the influence of potentially both types of connections on the

anisotropy. Thus, the mechanism underlying the non-uniform

aspect of the modulation of inter-laminar information flow by

contextual stimuli could vary with the specific locations of

flankers being compared.

Features of inter-laminar information flow

Our study has identified two signatures of inter-laminar flow in

V1: low-dimensionality and effective feedback signaling. By em-

ploying RRR, we demonstrated that the interaction between the

input and superficial layers occurred through a low-dimensional

communication subspace, akin to inter-areal interactions42,44

but in contrast to interactions within the superficial layer of

V1.42 The low-dimensional structure could confer the computa-

tional benefit of flexible and selective routing of activity to down-

stream targets.

The interplay of feedforward and feedback signaling is a hall-

mark of cortical information processing.58–60 Such interplay is

not only prominent at the inter-areal level but is also implicated

at the local circuit level within V1.40,53,61 Extensive studies

have attempted to infer feedback interactions between brain

areas by relating activities between areas with temporal

delay,48,62–66 computing phase delays in local field potentials

(LFPs) or multi-unit neuronal activity (MUA)61,67–69 and

comparing the timing of neuronal response onsets70–72 as well

as the emergence of certain neuronal response properties73–76

across areas. Yet, feedback interactions among within-area

laminar circuits in general, and between the input and superficial

layers in particular, remain unknown. Here, we characterized in-

ter-laminar interactions along both feedforward and feedback di-

rections by applying CCA with varying temporal delay between

layers. Notably, we observed substantial levels of correlation

over a range of negative delays, especially at the initial and late

phases of the responsive period, implying an effective feedback

component (superficial leading input) in the inter-laminar interac-

tion. This result is consistent with the implication of a previous

study that examined the laminar profile of the MUA for the alpha

rhythm and found that MUA in the superficial and deep layers

preceded MUA in the input layer.61 Given that the dendritic ar-

bors of the input layer (L4C) neurons are locally confined, and

the descending axons of the superficial-layer neurons mainly

pass through the input layer with very weak branching,28,29,77

the identified effective feedback signaling is less likely to be
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relayed via a direct superficial-input anatomical connection.

Instead, certain types of neurons in the deep layer, the primary

target of projections from neurons in the superficial layer, have

been shown to send extensive axonal projections into the input

layer,28,78,79 which form an indirect superficial-input pathway

via the deep layer and could serve as an anatomical substrate

for the identified effective feedback signaling.
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Twomale rhesusmacaques (Macaca mulatta, D: age 6 years, M: age 8 years) were used as subjects in this study. Animals were pair-

housed on a 12:12 h light-dark cycle. Water intake was controlled during the experimental period. All experimental procedures were

approved by the Institutional Animal Care and Use Committee at Yale University and conformed to NIH guidelines.

METHOD DETAILS

Surgical procedures

Surgical procedures were similar to those described previously.80–82 We placed low-profile titanium recording chambers in two rhe-

sus macaques so that the chambers allowed access to V1 (both left and right hemispheres in monkey M, right hemisphere in

monkey D). Chambers were targeted based on sulcus reconstructions created using preoperative structural MRI. After chamber im-

plantation, we removed the native dura mater and replaced it with a transparent silicone artificial dura (AD). The AD allowed for the

visualization of cortical sites in V1 for probe targeting. All procedures were approved by the Yale University Institutional Animal Care

and Use Committee and conformed to NIH guidelines.

Electrophysiology

Prior to a series of recordings, we electroplated (nanoZ, White Matter LLC) 64-channel electrode arrays (‘‘laminar probes,’’

NeuroNexus Technologies, Inc., 2 shanks, 32 channels/shank, 70 mm spacing between sites, 200 mm between shanks) with

PEDOT (poly(3,4-ethylene dioxythiophene)). At the beginning of each recording session, we inserted a laminar probe in V1. Laminar

probes were attached to a titanium mounting stage that was screwed into the chamber. We positioned the laminar probes using an

electronic micromanipulator (Narishige Inc.) and ensured that the probes were orthogonal to the surface of the cortex by visual in-

spection through a surgical microscope (Leica Microsystems). To position the probe within the brain, we first penetrated the AD,

arachnoid, and pia by moving the probe downward at a high speed (>100 mm/s). After the tip of the probe entered the cortex, we

inserted the remainder of the probe at a slow speed (2 mm/s). Once the entire probe was in the brain, we slowly (2mm/s) relieved

the pressure on the brain by retracting the probe upward, relieving pressure on the brain but not moving the probe relative to the

cortex.

Electrical signals from the laminar probe were collected at 30 kHz and digitized on a 64-channel digital headstage and sent to the

recording system (RHD Recording System, Intan Technologies). Action potential waveforms were extracted offline using Kilo-

sort283,84 and manually sorted into single and multi-unit clusters using Phy.83,84 Clusters with peaks preceding the trough were

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus Macaques (Macaca mulatta) Worldwide Primates N/A

Chemicals, peptides, and recombinant proteins

PEDOT:PSS Sigma-Aldrich 655201

Deposited data

Figure data This paper https://doi.org/10.6084/m9.figshare.27055252

Software and algorithms

MATLAB Mathworks R2021b

Kilosort2 Pachitariu & MouseLand https://github.com/MouseLand/Kilosort

phy (spike curation GUI) Rossant & cortex-lab https://github.com/cortex-lab/phy

Custom code This paper https://doi.org/10.6084/m9.figshare.27055252

Other

Silicon probes NeuroNexus a2x32_6mm35_200_177

RHD 512 channel recording controller Intan C3004

64 channel recording headstages Intan C3115

nanoZ White Matter LLC N/A
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identified as axonal spikes and excluded. Recordings were collected over the course of 22 sessions (14 in monkey M, 8 in monkey D)

with hundreds of units recorded in each subject (693 single units and 430 multi-unit clusters in monkey M, 400 single units and 277

multi-unit clusters in monkey D).

Behavioral control and eye tracking

We controlled behavioral experiments using NIMH MonkeyLogic.85 Eye position and pupil diameter were sampled at 120Hz

(ETL-200, ISCAN Inc.) and sent to the behavioral control system. Stimuli were presented on amonitor positioned 57cm from themon-

key with a 60 Hz refresh rate. Trials were aborted if the eye position deviated more than 1.2-1.5 degrees of visual angle (dva; 1.2 for

monkey D, 1.5 for monkey M) from the central fixation point.

Receptive field mapping

We mapped RFs of the column by presenting Gabor patch stimuli (2-4 cycles/degree, 0.25-1 degree Gaussian half-width, 100%

luminance contrast) on a square grid spanning the lower visual quadrant of interest (both left and right in monkey M, left in

monkey D) while the monkey maintained fixation on the center of the screen. Grid spacing parameters were optimized each session

and ranged from 0.25-1 dva. A stimulus was presented at a random location and orientation on the grid during each frame.We calcu-

lated the LFP power for each recording channel 40-200 ms after stimulus presentation in each location. The LFP power at each loca-

tion was smoothed using a Gaussian kernel (sigma = 0.75 dva), and the peak location averaged across all recording sites was defined

as the receptive field center. Spatial receptive field maps for each channel were plotted as stacked contours for each shank for

visualization.

Current source density mapping

We used CSD mapping43 to identify laminar boundaries in our recordings and estimated the relative strength of the signal targeting

the superficial layer across visual conditions.

While monkeys maintained fixation on the screen, 100% luminance contrast white annular stimuli were flashed for 32 ms, posi-

tioned at the center of the RF. The LFP signal following the stimulus onset was averaged across trials and spatially smoothed using

a Gaussian kernel (sigma = 140 mm). The CSD was calculated as the second spatial derivative of the LFP:

CSDðx; tÞ = � s �
vðx+h; tÞ � 2vðx; tÞ+vðx � h; tÞ

h2

where x is the position in the extracellular medium at which CSD is calculated, t the time following the stimulus onset (advancing in

1 ms), h the spacing between recording sites on the linear probe (here 70 mm), v the voltage, s the conductivity of the cortical tissue

(0.4 S/m). We interpolated the CSD every 7 mm. The input layer was identified by the boundaries of the early current sink character-

izing feedforward input into layer IV. Channels above and below this sink were classified as superficial and deep, respectively.

CSD provides a link between LFP and neuronal ensemble activities by approximating the net local transmembrane currents that

generate the local LFP. The identified current sinks (negative deflections, visualized in red in Figures 7A–7C) in the extracellular me-

dium reflect integrated subthreshold input to neuronal ensembles.43,49 We used CSD response to flanker-only stimuli (radial-out,

radial-in, tangential) to estimate the relative strength of the signal targeting the superficial layer evoked by contextual stimuli at

different locations. In particular, for each shank on the laminar probe, we first identified the early current sink (within 200 ms following

stimulus onset) in its CSD response. At each depth along the superficial layer, we calculated the level of charge sinks by integrating

the current sink over time and then averaged the result across the depth of the superficial layer. We compared the level of charge

sinks evoked by flankers-only stimuli at different locations to quantify the relative strength of contextual signals targeting the super-

ficial layer.

Experimental task

While monkeys maintained fixation on a point at the center of the screen, stimulus arrays were presented on the screen for 100ms. In

between stimulus presentations, there was a 200-250 ms inter-stimulus interval in which the screen was blank other than the fixation

point. The arrays consisted of a probe stimulus in the receptive field center either in isolation (probe condition) or together with a flank-

ing stimulus (flanked condition). There were four different conditions (probe, tangentially flanked, radially inward flanked, and radially

outward flanked) of stimulus arrays presented during a trial. This was repeated 4-6 times during each trial depending on themonkey’s

ability to hold fixation. The stimulus conditions were randomly interleaved from flash to flash. The center of the probewas alignedwith

the center of the average of the RFs of each recording site. The four flanker locations were positioned on the radial or tangential axes.

The radial axis was defined as the axis connecting the probe (and RF) center and the fixation point at the center of the monitor. The

tangential axis was defined as the line orthogonal to the radial axis and passing through the probe center. The tangential flanked con-

dition occurred when the probe was presented along with a flanker on the tangential axis, either in the clockwise or counterclockwise

direction. The radial-in flanked condition occurred when the probe was presented along with a flanker on the radial axis and between

the probe center and the fixation point. The radial-out condition was similar to the radial-in condition, except the flanker was placed

on the radial axis further from the fixation point than the probe. Probe-flanker spacing was identical across stimulus conditions.
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The probe condition was presented on 10%of flashes. On 80%of flashes, flanked stimuli were presented. In the flanked condition,

the flanker was positioned at a tangential, radial-in, or radial-out locationwith equal probability. If the flanker was presented tangential

to the probe, it was positioned clockwise or counterclockwise to the probe with equal probability. In the remaining 10% of trials, a

stimulus was presented exclusively at one of the four flanker locations. Probe stimuli were sine Gabor patches (25% luminance

contrast, 3.5 cycles/degree, 0.5-1.0 degree Gaussian half-width) presented at 6 evenly spaced orientations and 2 opposing phases.

Flankers were presented at 100% luminance contrast but were otherwise identical to the probe stimuli. The center-to-center distance

between the probe and flankers (De, Figure 1D1) was 0.6 (monkey D) or 0.85 dva (monkey M) depending on eprobe. Target and flanker

stimuli were 0.5 (monkey D) or 0.75 dva (monkey M) in diameter. The ratio between De and eprobe was 0.46 ± 0.02 SEM, which

matched the spatial scaling of crowding zones (critical spacing for crowding in the visual field z 0.5 x target eccentricity).86,87

The edge-to-edge gap between probe and flanker was 0.1-0.2 deg depending on eprobe. In the flanked condition, flankers were pre-

sented at the same orientation as the probe or orthogonal to the probe with equal probability. When flankers were presented alone,

they were shown with the same orientation distribution as the probes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Wherever possible, instead of relying on null-hypothesis testing, we show bootstrapped estimations of differences between condi-

tions using the estimation statistics framework,88,89 which provides a principled way to measure effect sizes coupled with estimates

of uncertainty, yielding interval estimates of uncertainty. The experiment assigned substantially different presentation probabilities for

the probe (10%) and each of the flanked conditions (26.7%). On average, our dataset contained 504.5 ± 29.1 SEM, 1348.8 ± 77.9

SEM, 1306.6 ± 87.6 SEM, 1321.5 ± 90.9 SEM trials for the probe, radial-in, radial-out, and tangential conditions, respectively.

When comparing inter-laminar information flows for a pair of visual conditions, we drew the same number of trials under each con-

dition multiple times and conducted the prediction analysis with 20-fold cross-validation. Consequently, when comparing the prop-

erties of inter-laminar information flow under the probe condition against any of the flanked conditions (Figures 2, 3, 4, 5A, 6C, and

6D), the number of trials from each drawwas capped by the number of trials under the probe condition, which led to the exclusion of a

large fraction of trials under each of the flanked conditions. When calculating the properties for individual conditions (Figures 1G–1L)

without comparison across conditions, we did not match the number of trials.

Normalized peri-stimulus time histograms (PSTHs)

PSTHs were generated based on spike counts in 30 ms bins shifted by 10 ms. The PSTH for each neuron was calculated separately

for each visual condition and normalized between the maximal PSTH over time under the probe condition and the baseline firing rate

taken as the PSTH from -30 ms to 30 ms relative to stimulus onset. Neurons whose PSTHs never surpassed the 95% confidence

interval of their baseline firing rates were excluded. The averaged normalized PSTH exhibits a maximum less than 1 because of

the variability in the peak time across neurons.

Response onset estimation

For every recorded unit, we estimated its response onset for each visual condition.We took the PSTH from -30ms to 30ms relative to

stimulus onset as the baseline firing rate. The response onset was identified as the time when the PSTH surpassed the 95% confi-

dence interval of the baseline firing rate. Units whose PSTH never crossed the threshold were taken as non-responsive units. For

each session, the response onset of the simultaneously recorded population in a specific layer was estimated by taking the average

of response onsets of all responsive units. An interval of 100 ms following the response onset of the input layer population was

considered as the stimulus processing range (referred to as ‘responsive period’) of V1 for the purpose of characterizing the inter-

laminar information flow between the input and superficial layers.

Unit selection for regression analysis

For comparison of the inter-laminar prediction accuracy across visual conditions, we only included those units in the superficial layer

well predicted by the recorded population in the input layer, which were identified by employing a Lasso regression with 20-fold

cross-validation to each recorded unit in the superficial layer within the estimated responsive period. The prediction performance

was calculated under the largest l value such that the normalized squared error (NSE) was within one standard error of the minimum

NSE across l parameters. Units in the superficial layer with a normalized squared error smaller than 1 were identified as being well

predicted.

Data preparation for regression analysis

We counted spikes in a sliding window of 50 ms within the estimated responsive period. We investigated how the neuronal activities

in the input and superficial layers were related by assessing the extent towhich trial-to-trial fluctuations of population responses in the

superficial layer could be predicted by that in the input layer of V1. Therefore, for each type of visual stimuli (orientation, spatial config-

uration, orientation difference between probe and flanker), we subtracted the appropriate peri-stimulus time histogram (i.e., average
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time-varying signal; PSTH) from each single-trial response and z-scored the residual. For all analyses, we excluded units with low

firing rates (less than 0.2 spikes/s on average). Our results are qualitatively similar for larger 100 ms bins, which corresponded to

the stimuli duration in the experiment.

Regression

To assess the extent towhich trial-to-trial fluctuations of population responses in the superficial layer could be predicted by that in the

input layer of V1, we first applied a linear model of the form Y = XB using ridge regression, which was referred to as the full regression

model. To test whether the inter-laminar information propagation occurred through a ’communication subspace’, we used reduced-

rank regression (RRR), which constrains the linear weight matrix B to be of a given rank. The optimal dimensionality (Dimopt) was

defined as the lowest number of predictive dimensions for which prediction performance was within one SEM of peak performance.

The details of this analysis can be found in Semedo et al.42

Both ridge regression and RRR were applied to a sliding window of 50 ms (advancing in 2 ms) in both layers with 20-fold cross-

validation. The prediction accuracy was calculated as 1 � NSE, where NSE is the mean normalized squared error between the test

data and the predictions across folds. For RRR, we took the smallest number of dimensions for which predictive performance was

within one SEMof the peak performance as the optimal dimensionality. To study the effect of the spatial configuration of visual stimuli

on prediction accuracy, we analyzed the temporal evolution of the prediction accuracies at optimal dimensionality across visual con-

ditions. For each pair of visual conditions, we first aligned the temporal evolutions of corresponding prediction accuracies to

compensate for the difference in the response onsets across visual conditions and computed a prediction modulation index, which

was calculated as:

PMIðtÞ =
P1ðtÞ � P2ðtÞ

P

t

ðP1ðtÞ+P2ðtÞÞ=Nt

Where P1ðtÞ and P2ðtÞ are the prediction accuracies at optimal dimensionalities obtained by RRR at time t after response onset under

visual conditions 1 and 2, respectively. Nt is the number of time points involved in the analysis.

Factor analysis

We quantified the complexity of neural activity in the superficial layer of V1 by using factor analysis (FA), a dimensionality reduction

technique which allows spiking variability to vary across neurons and calculates the dimensionality of covariance. The details of this

analysis can be found in Williamson et al.,47 Everitt et al.,90 and Yu et al.91 We followed the same steps as previously published

work42,44 to estimate the dimensionality: We first determined the number of dimensions mpeak that maximized the cross-validated

log-likelihood of the observed residuals. Then we fitted an FA model withmpeak dimensions and chosem, by the eigenvalue decom-

position, as the smallest dimensionality that captured 95% of the variance in the shared covariance matrix. These population dimen-

sions (m) and predictive dimensions as determined from RRR are based on different techniques.

Principal angle

We characterized the relative alignment of two communication subspaces identified from different visual conditions by using the

measure of principal angle, which computes angles between sequentially aligned pairs of basis vectors, each within one of the sub-

spaces, so as to minimize the angle between them. Notably, this measure does not require the compared subspaces to have the

same rank. The smallest angle obtained was taken as the ‘leading principal angle’. The details of this method can be found in Björck

and Golub92 and Gallego et al.93 A small leading principal angle implies similar orientations of the communication subspaces iden-

tified from different conditions. To verify that the experimentally obtained leading principal angles were significantly different from

chance, we compared them to a null distribution of principal angles. These were obtained from 5000 pairs of subspaces that

were generated randomly but with preserved ranks (as that of the empirical communication subspaces under different visual con-

ditions). The confidence intervals of the null distribution were obtained from estimation statistics. Moreover, to efficiently assess

the extent of similarity in the measure of the principal angle between communication subspaces identified from different visual con-

ditions, we constructed an estimate of the minimal principal angle that could be obtained. This was achieved by computing the prin-

cipal angle between subspaces identified from pairs of disjoint sets of trials within the same visual condition. To ensure a fair com-

parison with the cross-condition principal angles, each set was composed of the same number of trials as those used to identify

cross-condition communication subspaces. This number was capped by the number of trials under the probe condition, as the

experiment assigned a significantly smaller presentation probability to the probe condition (10%) compared to any of the flanked

conditions (26.7%). Consequently, the ratio of the number of trials in any of the flanked conditions and the probe condition exceeded

2, which allowed us to compute the within-condition principal angle for the radial-in, radial-out, and tangential conditions when

compared with the probe condition. In Figure S2A where we computed the principal angle between any pair of flanked conditions,

the number of trials used to identify communication subspaces was only capped by the smallest number of trials across all flanked

conditions, which was larger than the half of number of trials under any flanked condition. We were therefore unable to construct an

estimate of within-condition principal angles that could be fairly compared with existing curves.
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Cross-prediction analysis

An additional analysis to compare the communication subspaces was based onmeasuring the inter-laminar prediction performance

under a given visual condition when the corresponding input layer data was projected onto the communication subspace identified

from a different visual condition. We computed the prediction performance for when projecting the input layer data from the commu-

nication subspace identified from condition A onto that identified from condition B (across-condition prediction performance). Then

we compared it to the prediction performance when the input layer data was projected onto the original communication subspace of

condition A (within-condition prediction performance; obtained from RRR by definition). Comparable cross-condition and within-

condition prediction performance implies a similarity between the structure of communication subspaces identified from different

conditions. To verify whether the computed cross-condition and within-condition prediction performances were significantly close

to each other, we compared them to the prediction performance obtained by chance, where the input layer data in a given condition

was projected onto subspaces randomly generated as in the principal angle analysis. Note that this analysis was performed twice for

each pair of visual conditions, considering either condition as the within-condition communication subspace.

Population correlation analysis

We used canonical correlation analysis (CCA)94 to capture the population correlation between the input and superficial layers at

different time delays on a moment-by-moment basis. CCA finds pairs of dimensions, one each in the neuronal activity space in

each layer, such that the correlation between the projected activity onto these dimensions is maximally correlated. The exact

description and formulation of CCA can be found in Semedo et al.48 We took two windows of activity, one in each layer. Window

length was 50 ms and the window was advanced in 10 ms steps. The activity within each window was then binned using 10 ms

bins. The reported results were robust over a reasonable range of window and binning lengths chosen.We reported correlation asso-

ciated with the first two canonical pairs (correlations associated with the third were on average 60% lower and close to chance level).

The correlations along the feedforward (FF) and the effective feedback (FB) signaling pathways were calculated as the mean cor-

relation at positive and negative delays, respectively:

CFFðtÞ =

P

dt > 0

Cðt;dtÞ

Ndt > 0

CFBðtÞ =

P

dt < 0

Cðt;dtÞ

Ndt < 0

where t is the time following response onset, dt is the inter-laminar delay involved between windows from two layers, Cðt;dtÞ is

the corresponding correlation. Ndt > 0 is the number of positive delays investigated, which is equal to the number of negative delays,

Ndt < 0.

The direction dominance index was calculated as:

DDIðtÞ =
CFFðtÞ � CFBðtÞ

P

t

P

dt

Cðt;dtÞ

�

Ndt

�

Nt

where Nt and Ndt are the number of time points and delay involved in the analysis, respectively. A positive DDI indicates the domi-

nance of feedforward signaling and a negative DDI indicates the dominance of effective feedback signaling.
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Figure S1. Comparing prediction accuracies calculated using reduced-rank regression 

(RRR) against the full regression model (ridge), related to Figure 1-3 

(A) Temporal evolution of prediction accuracy as shown in Fig. 1H computed by RRR (solid curve) or the 

full regression model (dashed curve). (B) Temporal evolution of within-condition prediction accuracy as 

shown in black in Fig. 2C computed by RRR (solid curve) or the full regression model (dashed curve). (C)  

Temporal evolution of prediction accuracy under the probe and flanked conditions as shown in Fig. 3A 

computed by RRR (solid curves) or the full regression model (dashed curves). The full regression model 

always gives comparable predictive performance as RRR.  

  



 

Figure S2. Comparing communication subspace across visual conditions, related to 

Figure 2 

(A) The temporal evolution of leading principal angles between the communication subspaces identified 

from different types of flanked conditions during the corresponding visually responsive period (averaged 

across all sessions) and between random subspaces of comparable dimensions (grey; see Methods). 

(B)  Cross-prediction analysis for input layer predicting superficial layer activity during a given flanked 

condition (shown at the top) and using subspaces identified for various conditions (as shown in the 

legend). Error bars indicate the 95% confidence interval for the mean.  

 

 

 



Figure S3. Comparing prediction accuracy 

across visual conditions, related to Figure 5, 7 

(A) Same as Fig. 5B, comparing inter-laminar prediction 

accuracy under the radial-in condition to that under the 

tangential condition. Negative PMIs imply a degradation 

of prediction accuracy in the radial-in condition 

compared to the tangential condition. (B) The within-

shank difference in the level of early charge sinks in the 

superficial layer, when compared between the radial-in 

and tangential conditions for all shanks from each 

monkey. Error bars indicate 95% confidence interval for 

the mean. 

 

 

 



Figure S4. Comparing PSTH across flanker-only conditions, related to Figure 7 

Normalized peri-stimulus time histograms (PSTHs; see Methods) for superficial layer units (separately for 

each monkey) under various flanker-only conditions. Error bars indicate the standard error across neurons. 

This analysis only included neurons that were visually responsive (see Methods) in the probe condition and 

exhibited significantly higher rates compared to all flanker-only conditions.  
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