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ADVANCED FORECASTING METHODS FOR GLOBAL CRISIS WARNING AND MODELS OF INTELLIGENCE* 

Paul J. Werbos 

I. APPLICATIONS AS GOALS 

FOR COMPUTER FORECASTING 

The Maryland Crisis Warning and Management project 
{1] has tried to develop and organize a broad set of tools 
for coping with crises, among which are computer forecast- 
ing methods. A complete crisis-management system must 
exploit a wide variety of forecasting methods, involving 
man-machine interaction, human intuition, etc. However, 
like the» economists, we still have need of computer 
forecastipg in the classical sense, in which the computer 

“itself fits a quantitative model to a well-structured numen- 
cal databank, 

(i) to help us unify and make precise our knowledge 
of the dynamics of large-scale social trends. In politics, as 
in economics, there are many key phenomena which result 
from continuous changes within a large population. To 
understand these phenomena, it is not enough to fall back 
on our intuition about the behavior of individual people; 
we need to use methods which can exploit the available 
knowledge about hundreds of political societies in the 
past. Current trends in Mexico present a clear example of 
the relevance of this approach to national security: if we 
wait until Mexico’s population/economic problems grow 
into a political threat to the US, before paying sufficient 
attention to them, it may be too late for us; also, we need 
to have a feeling for how the trends work in order to act 
constructively, to get at the roots of the conflicts instead 
of increasing contradictions. 

(ii) to stimulate a higher level of relevance in human 
political analysis. High-level decision makers need to have 
assessments of the probabilities of what will happen in the 
future, if they exercise a given set of policy options. In 
other words, they need the best available answers to very 
difficult questions, But, in government and in academia, 
there are incentives for people to focus on easier questions, 
on questions which ‘‘can be answered.” Thus there is a 
tendency for political analysts to compete with the 
newspapers in providing passive, factual background infor 
mation, which can become quickly obsolete; a decision- 
maker then may prefer to read the New York Times 
instead of an official intelligence report. 

Computer forecasting methods can help overcome 
these negative incentives. If computer forecasts must be 
passed up to decision-makers on a regular basis, human 
pohtical analysts can be encouraged to comment on these 
forecasts. In effect, the analyst can “blame the computer” 
if the computer offers a frightening, “alarmist” prediction 
of conflict. When the analyst evaluates the computer’s 
prediction, and points to factors which the computer 

cannot account for, he is applying his human knowledge to 
the problem of prediction; he is allowing himself to 
become more relevant. (This reminds us of traditional 
Mandarin China, where there was a high level of cultural 
creativity despite a stifling belief that no modem scholar 

.could improve on the Great Classics; creativity came from 
“commentaries” and “explanations” of the Classics which 
went far beyond what was really in the Classics.) 

(iii) to alert us to the unexpected. Computer forecast- 
ing probably does a better job of prédicting trends than of 

. predicting anomalous events suchas crises. How can it be ~ 
used then to help us with the short-term warning problem? 
If it predicts the normal routine flow of events from day 
to day, how can it help predict a crisis? 

Computer models can alert us to any “improbable” 
discrepancy between their predictions and the current flow 
of events. After all, we cannot say that the flow of events 
is “out of the ordinary” until we have a good idea of what 
“ordinary” means. The computer can give us this baseline. 
Once the alert is given, a different set of analyses can be 
called into play. Among these may be computer models 
fitted to daily event data from previous crisis or anomalous 
situations. Even if human analysts are skeptical about the 
alert, it would be wise to pass on the information as part 
of routine daily reports to policy makers. To make all this 
work, however, one will need to use regular high-frequency 
data, such as daily satellite data or FBIS condensations. 
Also, there is a serious problem of security: we consider it 
unwise even to discuss certain possibilities for indicators, 
when we know that they could be “jammed” by an 
aggressor who knows about them. We doubt that this prob- 
lem would be reduced very much even if a portion of this 
work were conducted under the usual terms of industrial 
top secret. For now, the goal is to develop the methods 
themselves, not the models which would be used for alerts. 

Further applications may also exist in the areas of 
artificial intelligence and learning theory; some of these 
possibilities will become apparent in Section III. 

I]. A REVIEW OF PRIOR 

CONCEPTS AND EMPIRICAL RESULTS 

H-a, The Classical “Econometric’’ Approach to Political 
Forecasting 

Despite twenty years or so of quantitative work in 
international relations, the three “needs” above have not 
been fully satisfied. Why not? Until recently, it seemed as 
if we could still point to a simple lack of substantive 
Knowledge. It took many years to build up adequate data 
sources and to pinpoint key variables and interactions. 
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Very little work had been done in putting the various 

studies together, to build up unified, dynamic models. 

Nevertheless, with a bit more work, we could hope to 

imitate the success of econometrics. Above all, we could 

hope to fit models to data by trying to minimize least 

square error. In other words, we could make use of 

existing computer software which performs multiple 

regression or nonlinear regression. These methods, at least, 

seemed highly reliable; the two dominant schools of 

thought in statistics—“‘Bayesians’” and ‘maximum 

likelihood” people--have agreed on this. 

In particular, we expected to formulate models which 
predict the future value of each political variable, Y; as 
some function, f; of the present (or past) values of other 
political variables and of external (policy) variables, Mj. If 
we use “yi * to denote “‘the predicted value of Yj,” as in 
engineering, we could write such a model as 

¥ (tea) = £ (Y(t), V(t) 0 ¥ (6), MC) M(t) (for d= 1 tom) 
i iol 2 n 1 birt 

Here t means the current time, and t+ 1 means the next 

period of time for which data is available. We use human 

judgement to guess what the formulas f; should be. More 

precisely, we pick a whole set of plausible models where 

each “model” is a guess for what all these functions f, 

should be for good predictions. In each model, the 

functions f involve unknown parameters which we don’t 

feel we can guess a priori. The computer will treat each 

function fj in isolation from the other functions; it will 

estimate the parameters of f; by minimizing square error: 

2 - 2 
Doe (ttl) = = (y (+1) - ¥ (t+1)) 
toi toi i 

= © (¥ (ttl) - f(y (t) 0. M (t)) , 
t i bok n 

where, in the last expression, we use the measured, 

available databanks to get the values for Y,(t + 1), Y, (t), 

etc. Finally, in order to choose the best guess for the 
function fj, we simply pick the function which leads to the 
least square error in predicting Yj(t+ 1). (However, if 

‘there is another guess for f; which is almost as successful 
but much simpler, we prefer it, by Occam’s Razor; this is 
usually interpreted as “deleting terms which are statisti- 

. cally insignificant,”’)” ° sme coe 
After this estimation work is done, we could hope to 

go on to use the model for long-range forecasting. If there 
are no M; terms, we could start out with the available data 
for Y; ... Y, at the present time t; we can use this data in 
calculating the values of f(Y,(t)... Y,(t)) to generate 
predictions for Y(t+ 1), ie., for Y,(t+ 1) through Yu 
(t+ 1); we can calculate f(Y(t+ 1)... Y,(t+ 1)), using 
our previous predictions as if they were actual data, to 
predict Y(t + 2); we can predict Y,(t + 3) similarly; etc. 
With Mj; terms present, we can make long-range forecasts 
conditional upon given future policies. 

This kind of forecasting would be justified, according 
to Bayesian statistics, because we have chosen the model 
which has the highest probability of being true in light of 
the existing data. In other words, we have maximized: 

Pr(model and parameters | databank) 

= Pr(databank | model and parameters) Pr(model and parameters) 
TTA: Pr(databank) 
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Minimizing square error is known to be the same as 
maximizing this conditional probability, so long as we have 
a “flat prior’ (we assume that the a priori probability 
Pr(model) is essentially the same for all models), and so 
long as we interpret our original model to mean that 

where e; is a random “error” disturbance which follows a 

normal distribution. These two assumptions are generally 

interpreted as reasonable simplifying assumptions; even 

though the assumptions are not perfectly true, they, like 

the equations of the model themselves, may be close 

enough to be reasonable. 

The best long-range predictions would always be given 

by the “true” model. Given that we have picked the model 

with the highest probability of truth, we expect that this 

model will also give the best long-range predictions. Any 

political model which calculates predictions from numeri- 

cal data would be subject to fine-tuning and evaluation by 
this approach. 

IL-b. The Failure of Regression and of Advanced Classical 
Methods 

Initially, we hoped that the ‘econometric’ approach 

would work. However, in a number of regressions run on a 

variety of models or sub-models, we have confirmed the 
suspicion that there are some serious difficulties [2, 3]. 
First, we used the “econometric” method to estimate the 
rates of population growth and national assimilation in 
Karl Deutsch’s model of nationalism and social communi- 
cations [4]. The results seemed very encouraging; the R? 
scores indicated 99-99.9% accuracy in prediction. How- 
ever, when these parameter estimates were used in long- 
range prediction, the results were quite bad. ‘“‘Long-range”’ 
prediction error was defined as the mean square error in 
predicting from an initial time period through to about 
30-40 years in the future; we used more than twenty 
sample national time-series, each treated as a separate case. 
(For the technical details and graphs of the results, see 
[2]; the dataset was collected by Karl 1 Deutsch, Sheldon 
Kravitz, Raymond Hopkins, et al.) Median error across 
different cases was only’a bit larger than 10% , but’ in many 
cases rose to as high as 20%, and ina number of cases was 
absurd, Even if we were interested in short-term dynamics, 
the parameter estimates were absurd, in terms of Deutsch’s 
model. Often there were negative rates of national assimila- 
tion (including whites apparently turning into blacks in the 
US); also the rates were far too large in absolute size, 
especially in cases where the supposed “‘statistical signifi- 
cance” was good. Certainly there was no “99.9%” accu- 
racy in prediction! 

At first we hoped we could interpret this failure in 
terms of the usual Bayesian. or maximum likelihood 
philosophies. In particular, we noted that the correlation 
of each variable with prior values of itself fell off very 
slowly as we considered longer time intervals between the 
present and past values. From our past work, we recog- 
nized this as a sign of measurement error. The conven- 
tional reasoning, (cf. H-a) assumes that the measured 
values of the data are identical with the trve values; it
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assumes that model “errors” are the result of random 

disturbances which affect the true values. 

However, measurement error produces a different 

situation, and in order to account for it we have to 

acknowledge that the true values of the variables, Y;, are 

different from the measured values, Z;. Two kinds of 

random disturbance must be recognized: (i) “process 

noise,” which affects the true values; (ii) “»measurement 

noise,” which makes the measured date, Z;, differ from the 

true value. With the regression approach, we could write 

our model as 

Z (t+1) = ¥ (ttl) = ¥ (t+1) +e (t+1), 
1 1 L 1 

where e; refers to process noise. To account for the effect 

of measurement noise, we have a more complex model: 

4, (oH) = ¥, (te2) + e, (t+2) 

* _ Ben) = YG) + a eb, 

where a; refers to measurement noise. As part of our 

reported work, we found new methods—perfectly “‘effi- 

cient”? methods, in statistical and numerical senses—for 

estimating the parameters of such a model; these methods 

are related to methods discussed by the statisticians Box 

and Jenkins [5], and by the engineer Kashyap (‘‘Vector 

ARMAX processes’). We also set this up to allow for the 

possibility of cross-correlations between e; and e; or a; and 

aj, where i=j. 

It was hoped that this strategy would validate the 

basic philosophy of maximum likelihood statistics. With a 

better (but still simplified) model, we hoped to get better 

predictions. Measurement error is not purely “random,” as 

we assumed, but we hoped that allowing for some 

measurement error would make a big difference in a 

situation where measurement error seemed to be the major 

source of difficulty,in forecasting. Perhaps we could urge 

political scientists to use this kind of model, instead of the 

regression model, in political analysis. 

However, this approach also failed. It led to a 

reduction in long-range prediction errors by 10% or less of 

the orginal error, from regression; the errors were large in 

the same countries; the slight improvement appeared to be 

a random result due to the addition of more parameters in 

the model. Furthermore, when the comparison against 

regression was also tried in a study of more sophisticated 

models of nationalism, tested against a high-grade dataset 

with more than 1000 observations across approximately 

30 years (from the various provinces of Norway), again, 

the new methods did little to improve long-range predic- 

tions. 

Early in 1977 we extended our analysis to consider 

the long-range “‘econometric”’ models developed by CACI, 

Inc., for the Joint Long-Range Strategic Survey. Here, as 

with the Deutsch model, we found the parameter estimates 

to be highly unreliable [3], despite the quality of the data 

and the substantive complexity of the updated world 

model. In our previous work, we also noted similar 

difficulties faced by economists; standard econometric 

forecasting is not an unqualified success, even when 

judicious fudging is artfully used. 

Il-c. The Success of a Robust Method <P 

A successful method was found, almost by accident, 

in this model: 

XY, (t+1) = Y¥_(t+1) 
1 © 

2 (ttl) = ¥ (ttl) + a (t+1) 
1 a 1 

{t is identical to our more complex model, except that the 

possibility of “process noise’ has been removed; i.e., it 

assumes that the real world is governed by deterministic 

laws; all appearances of prediction error are due to 

incorrect measurements of the data. We called this the 

“measurement-noise-only”” model. This method led to 

median long-range prediction errors of 4% in predicting the 

Deutsch variables—less than half that of the other meth- 

ods. In predicting the percentage of population assimilated 

to the dominant nationality, it wasgoff by 2% or more in 
only four of the twenty-odd cases, in long range predic-- 

tion. 

To check our conclusions about the new method, we 

set up twelve different sample ‘“‘processes” to be studied 

by three statistical methods: regression, complex classical, 

and measurement-noise-only; for each process, we simu- 

lated ten different sample time series of length 100 and 

evaluated each of our statistical methods in two ways: (1) 

if we look at the average estimate across all ten examples, 

how close is it to the true value of the parameter (bias)?; 

(ii) how close are the individual estimates, in each 

example, to the average estimate to which they would 

converge if more data were available (statistical effi- 

ciency)? These processes generally involved random proc- 

ess noise, measurement noise, and! occasional outliers. The 

measurement-noise-only method was distinctly superior 

(less bias and more efficiency) for all processes but two; in 

these, the three methods were approximately equal. 

(Again, see [2] for details. ‘Distinctly superior’ meant 

that errors in parameter estimates were roughly half as 

much, or less.) 

To a well-indoctrinated Bayesian, these results would 

seem extremely strange. Our simple measurement-noise- 

only model is just a special case of the complex model 

discussed above in II-b. It cannot be “true” unless the 

complex model is also “‘true.’”” When we let the computer 

pick any form of the complex model, it is certain to come 

up with something which has a higher probability of truth 

than it would if it has to limit itself to a special case. How, 

then, can a model with lower probability of truth 

consistently lead to berter long-range predictions? 

Our explanation is that this is a case of robust 

estimation—a relatively new philosophy which Mosteller of 

Harvard and Tukey of Princeton have promoted to suggest 

that “least square error’ is an inadequate concept. Their 

specific suggestions are totally different from what we are 

considering in this paper; our ‘“‘measurement-noise-only” 

method can be carried out either in terms of least-squares 

error or in terms of the Tukey jack-knife, with equal ease. 

Their basic philosophy, however, is essential to under- 

standing our results. The fundamental assumption in 

robust estimation is this: We really don’t expect any of our
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mathematical models to be ‘‘true” in an absolute sense. At 
best, we hope they may be useful representatives of a 
whole set of very complex models, one of which is true 
but far too complex to handle directly. The true expected 
value of a future quantity is not the same as the expected 
value given by the most probable model. The true 
expected value is computed by averaging the expected 
values given by all possible models, weighted by the 
models’ probabilities of truth. 

In the maximum likelihood approach, we concentrate 
on the goal of absolute statistical efficiency, we make total 
use of all the data, at the price of assuming that the model 
is perfectly “true” in some form. An alternative goal is 
that of absolute consistency: we can require that our 
estimates will converge to exactly what we want them to 
be, as the quantity of data goes to infinity. In the case of 
long-range forecasting, what we want are the parameter 
estimates which minimize long-range prediction error. In 
order to be certain that our estimates will converge to 
these values, with infinite data, we may simply minimize 
directly what we want to minimize—long-range prediction 
error itself. 

Looking again at the ““measurement-noise-only”’ 
model, we can see that fitting this model is teally the same 
as minimizing long-range errors directly: 

¥,(t1) = ¥ (t42) 

2 (t+1) = ¥_ (t+1) + a (t+1) 
i ai a 

In order to “fit” this model, we must somehow estimate 
the true values Y, since we only have data for the 
measured values Z. We estimate the true values of Y;(0) 
(i.e., for the different variables Y; at the initial time). Then 
we calculate the later values simply by calculating 
Yit + 1 = £,C¥;(t)...) over and over again, for values of t 
from 0 to the end of the data. This must be done to make 
sure that the upper equation is satisfied exactly, as this 
method demands. But this is exactly what we do in making 
long-range predictions. The Y;(t) are essentially long-range 
predictions, projected forwards from the data at the initial 

_ time 0. wee , 
In minimizing the sum of a?, we are minimizing the 

difference between the actual measured values Z; and the 
long-range predictions; we are minimizing directly the 
long-range prediction errors. With regression, however, we 
were minimizing errors in predicting time t+ 1 from data 
at time t; in other words, minimizing prediction errors over 
the shortest possible period of time. It should be no 
surprise, then, that the “measurement-noise-only” method 
leads to better long-range forecasts, Also, if key “‘feed- 
back” terms are estimated badly, or other parameters are 
grossly misestimated, we would expect very large cumula- 
tive errors in long-range prediction: when we minimize the 
long-range prediction errors themselves, we may expect 
fewer random estimation errors of this type. 

The robust method was proposed in 1973 and 
reported in 1974. Recent work on “smoothing,” in 
engineering, has echoed similar mathematics. Hartley, in 
economics, is said to have proposed a similar method, but 
with features that make it impractical to estimate. Our 

  

   own report discusses new numerical procedures which 
make it feasible to estimate these models even in cases of 
enormous complexity and nonlinearity. 

The forecasting problems cited above have existed for 
decades, Therefore, people doing practical studies have 
invented dozens of ad hoc fixes for trying to reduce the 
problems. Space prevents our discussing here all the 
complexities of these many methods. By adhering to the 
“robust” strategy of minimizing directly the long-range 
predictions, from the beginning to the end of our dataset, 
we may be sure of two key things: (i) the procedure is 
general and can be applied to any predictive model, not 
just to special cases, such as linear models: (ii) we know 
that we are directly minimizing the errors we want to 
minimize, instead of something else which has a vague or 
muddled. relation to these errors. 

One ad hoc alternative may come to mind for those 
who have relied heavily on regression: “If you want to 
predict 30 years in the future, why not simply set up a 
model with 30-year time lags in it? What you are doing is 
really minimizing the average prediction errors for predic- 
tion intervals from the minimum time interval in the data 
up to the maximum; you are trying to predict all the 
future history of a system from data at the first time 
interval, or at least from an estimate at the first time 
interval. But to minimize least squares error for a 30-year 
prediction, directly, you would use regression with a 
30-year time lag.” 

Problems in crisis management present a dramatic 
example of what is wrong with this approach. Suppose 
that we want to have 30-day advance warnings of likely 
crises, As noted in Section I, the real world crisis dynamic 
is likely to require a knowledge of day-to-day changes in 
events in order to achieve such warnings. Thus we are 
saying that the crisis evolves dynamically through the 
30-day period. McClelland’s work with WEIS indicators 
strongly supports this conclusion [6]. If we use one month 
lags, there is no way to tap these day-to-day processes. We 
would simply bypass any changes (or predicted changes) 
which occur between time ty and tz. If we do not get at 
those dynamics, we can only expect to provide reasonable 
one month advance warnings under special cirguinstances. 
For example, there might be systematic, real “world, one 
month time lag between the precipitating circumstances 
and the resultant event because of built-in bureaucratic 
delays. 

The mathematical statistician would consider this an 
example of obvious, general limitations of the ad hoc 
approach: a low level of statistical efficiency and a 
model-specification problem. The robust method, how- 
ever, does try to account for the day-to-day fluctuation of 
events; it tries to predict tomorrow as a function of today, 
but to do it in such a way that our model is good for 
30-day forecasting. (For the present, it is more realistic to 
talk about yearly data and 30-year forecasts, but the same 
principles apply.) Also, because the usual random errors 
in regression estimates lead to large cumulative errors in 
long-range prediction, the robust method may even be 
more reliable in estimating the parameters appropriate for 
short-term prediction. Our simulation studies support this 
expectation.



  

    

    

   

Compromise Method: A Generalization of the 

pproach “pe cee —_ 
ure robust method, in its original form, is still 

ght tool to use in crisis management. 

  

POP (t), Population at time t 

Fig. 1 

In order to get a better feeling for its strengths and 

weaknesses, consider the example shown in Figure 1 on 

the left. What we are really doing with the pure robust 

method is fitting the curve as close as possible to the dots. 

(in Il-c, the dots were called Z, the ‘measured values”; the 

curve represents a set of values for the Y.) With regression, 

one also tries to fit a curve to dots, as in the graph on the 

tight. However, with regression, the dots represent only 

the relations between pairs of measured data, at time t 

versus time t+ 1; knowledge about longer-range regulari- 

ties in the data has simply been thrown away when we plot 

these dots. But with the robust method, on the left, we are 

plotting against time, and we retain the whole time 

history. This is not the same as simple “trend analysis,” 

where we might try to regress population against time; we 

are trying to pick the best possible curve from the set of 

curves which represent possible histories of the true values 

of the variables, assuming that our model is exactly correct 

for the true values. We are trying to pick the “‘solution 

trajectory” as close as possible to the actual, measured 

history (dots) of the process. We pick parameters for our 

model which make the solution trajectory as close as 

possible to the measured history. (For certain simple 

models, it is feasible to find these trajectories by doing a 

complex nonlinear regression against time; however, that 

approach is unnecessarily difficult, confusing and limited 

to special cases.) 

In the example of Figure 1, the curve (left) and the 
dots stay reasonably close together. This was also possible 

in the more complex examples we have studied empiri- 

cally. So long as this remains true, the goal of minimizing 

square error (the distance between dots and the curve, in 

the vertical direction) will involve a real consideration of 

the dots as individuals; the ordinary fluctuations between t 

and t + | are significant in size, compared with the average 

distance between the dots and the curve, so that they have 

not been “drowned out.” In effect, al/ the data is being 

accounted for; we should not be surprised that our 

empirical tests have shown a high level of ‘“‘statistical 

efficiency” in this kind of situation. 

There is another way of looking at this: the curve in 

Figure | has really ‘“‘captured’’ the big shifts, over time, in 

the process being studied; the remaining errors in “‘long- 

range prediction,” between the dots and the curve, are 

small enough to be compared with the small fluctuations 

and error between one time period and the next. If our 
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curve and model describe the past history of thg,process so 

well, it is reasonable for us to project this curve ahead into 

the future. 

On the other hand, consider Figure 2. What if none of 

the possible solution trajectories can get close to the 

historical data? A flippant answer would be, “If you can’t 

even explain the past, how can you expect to predict the 

future? In a case like this, you know that your model is 

grossly inadequate. There is no way you can make good 

forecasts with a bad model, no matter how good your 

estimation technique.” Still, in Figure 2, we can see that a 

simple exponential model for population growth makes 

sense most of the time; the model breaks down only in the 

middle, where an external factor (World War II) produces 

unexpected changes. In such cases, a flippant answer is not 

good enough. A perfect model of population growth 

should predict such things as World War II; however, in the 

real world, as we try to move from ignorance to better 

models on.our way to far-distant perfection, we need to 

have techniques which work well on imperfect models. If 

we use the pure robust method on the example in Figure 2 

and try to fit an exponential growth model, we would 

wind up with the curve C,, which really does not represent 

the normal rate of population increase. 

POP     Cy 

  

19ke 
TIME 

Fig. 2 

Figure 2 illustrates a basic paradox which our 

research has sought to resolve. It is an example of a 

situation where “‘process noise’—real random factors in 

the real world—are too important to be ignored. The 

impact of this noise does not die out with time; it does not 

“average out’ enough to let us use the pure robust 

method. This paradox is vital to long-range strategic 

planning [7], where we need models which meet two tests 

at once: (i) they must allow for real-world uncertainties 

and assess the probabilities involved; (ii) they must “‘hold 

up” over time so that they will be valid for both long-range 

forecasting and planning. We have noted that classical 

methods do mot hold up well enough over time. On the 

other hand, the pure ‘“‘robust”” method does not account 

for real uncertainties; in situations such as in Figure 2, it 

loses its statistical efficiency, because the gap between the 

curve and the dots is very large and depends only on gross 

characteristics of past history. When both methods are 

inadequate, what do we do? 

In 1974 we suggested a “compromise method” to 

generate forecasts in this kind of situation. The “‘compro- 

mise method” is based on the concept of filtering. In 

ordinary regression, we tried to generate “‘good”’ predic- 

tions of the measured values Z;(t + 1) by minimizing: 

e (tel) = 2 (tel) - 2. (t+1) = 2 (tel) - £ (2, (t)...M (4). 
i i i i iol m
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In other words, we plugged in the measured values at time 
t in order to generate predictions. On the other hand, with 
the pure robust method we minimized: 

e@ (t+l) = Z (t42) - 2 (t+1) = z (t+1) - £, (4 (t)...m (t)). 
i i i i iol mn 

In other words, we plugged in the Yj, long-range predic- 
tions of the values at time t, in order to generate new 
predictions. These two methods can be considered as two 
ways of estimating what the trve values (X;(t)) were at 
time t. The measured value is one clue to the true value, 
but we can also get a clue from what we would predict at 
time t from our estimates of the true values at earlier 
times, Instead of choosing one clue or the other, we can 
achieve a synthesis by accounting for both sources of 
information: 

X(t) = Ler)’, (t) + 22, (t). 

In other words, we can estimate the true value at time t by 
taking a weighted sum of Z (what we predict from 
previous information) and of Z (what we measure at time 
t). We can expect that the X; will be a better estimate of 
the true values at time t than efther Y or Z, because they 
account for more information. We may go on to estimate 
the parameters in our model by trying to minimize the 
square of errors defined as 

eg (trl) = y(t) - 2, (41) = 25 (te1) - FL Ont). my (tD). 

(Note that we can estimate probabilities by assuming that 
the e; represent random normal noise.) If the constant r is 
very small, this will be close to the pure robust method. 
However, the curves we fit to the data are the curves of XG; 
like the curve C, in Figure 2, these curves will move back 
towards the measured data Z whenever the predicted 
values start to be far away from the actual values for a 
moderately long period of time. The constant r may be 
thought of as a “relaxation constant,” which represents 
how far we are willing to “relax” the curve. 

Another way of interpreting the ‘compromise 
method” is that we are trying to figure out what to do 
when we are forced to abandon our goal of deterministic 
long-range forecasting. In the pure robust. method, we were 
sumiming-up errors f6®®prediction errors across all time- 
intervals t; each time interval contributed equally. Here we 
are effectively discounting the importance of prediction 
error over longer intervals of time; we are applying a kind 
of interest rate, r, to reduce the emphasis on more distant 
times, because the errors over longer time intervals have 
been too large and erratic to cope with. (Note that r may 
be different for different variables.) 

But how do we decide what value of ‘+’ to pick? 
This is a basic problem considered in our research. There 
are dozens of ad hoc methods one might think of. For 
example, our filtering equation above is exactly like the 
Kalman filtering equation [8] for the case of one variable. 
We cannot use the Kalman equation to tell us what the 
filtering constant should be until we already have esti- 
mated a white-noise model of the process under study; 
however, we might try to fit such a model, then filter, then 
refit, etc. Unfortunately, that strategy takes us directly 
back “totie white-noise maximum-likelihood approach, 

    discussed in Il-b; we already know that that Strategy 
“relaxes” too much and fails to be robust. Thus, to Pick 
“r” correctly, is a difficult problem. Somehow, we want to 
make sure that we reduce the impact of longer time 
intervals to the point where shorter time intervals are not 
totally drowned out; also, in improving the quality of our 
model, we want to reduce prediction errors, but we also 
want to be able to live with lower values for r: the level of 
foresight is a measure of the success of the model. 

lil. NEW METHODS 

Ill-a. A New Context for Estimation 

At the start, we knew that we had only one method in 
hand—the “compromise method” or “filtering method”— 
capable of meeting the basic demands of crisis manage- 
ment. Yet, even this method was not rigorously complete, 
because there was no explicit procedure for choosing the 
filtering constant, r. Moreover, from a previous work in 
artificial intelligence, we strongly suspected that one could 
do better than the “compromise method” itself in any 
form. Even though these forecasting problems are practi- 
cal, empricial problems, we felt that we should avoid 
approaching them with a naive “fishing expedition”: 
therefore, we began the project with a thorough review of 
the theoretical possibilities and vicissitudes of robust 
estimation and we considered a wide number of questions: 

1, Can we come up with a procedure for picking r which 
makes general intuitive sense? 

2. How can we extend the notion of “robustness” here to 

involve utility in decision-making instead of just accuracy in 
forecasts? 

3. How can we be sure these procedures give us good 
probabilities instead of just forecasts? 

4, How do we cope with the interdependences among 
the “error” terms in a complex nonlinear situation? 

5. How should our computers deal with the old problem 
of “symmetry”: whether to treat different nations as different 
processes, or as different examples of the same general process, 
or something in-between? (This is related to the old problems 
of “object identity” and ‘“‘object permanence” in psychology.) 

6. How can we imagine the human brain copes with 
these problems? (Recall that the “minimum time unit” with 
the human brain is a tenth of a second, at most, afid yet the 
human brain can easily and naturally think hours into the 
future without being deterministic. If it weren’t for this 
example, we might have given up this research, at certain 
times, as an impossible task.) 

7. Can our forecasting abilities be improved if we try to 

mimic the human faculty of “syncretism,” of prediction by 
analogy to individual past experiences of a similar nature? 

8. How can we maximize the reliability of the numerical 

convergence methods we use, in estimating the parameters? 
9. What is necessary to translate all this into practical 

computer software, either for general use or to carry out 
further empirical special studies? 

10. Can we use the concept of “entropy” (i.e., “informa- 
tion content”) to help us “drain” from the available databank 
all the information of interest to us? 

11. Does it help to conceive of forecasting as the 

problem of trying to predict an entire future history (or 
calculate probabilities for possible future histories) conditional 
upon a given past history? 

Some of these questions clearly cannot be answered if we 
think of “‘forecasting’’ as a problem in isolation, independ-
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ent of how we plan to use the forecasts and independent 
of where we get our data. For example, we cannot talk 
about “utility” without expanding our problem definition. 
The human brain provides us with an example to show 
that these forecasting problems basically can be solved. It 
does not matter whether the forecasts are generated by 
algebraic “models,” by (neuron) network circuits which 
implement the same mathematics, or even by networks of 
human beings in a political institution; the problem of 
forecasting requires a reliable way to set up correct 
relations between our past input (independent variables) 
and predictions, which are output somewhere in the 
system. Nevertheless, the human brain performs forecast- 
ing in the context of pursuing external goals and recogniz- 
ing patterns. We have no assurance that forecasting can be 
done this well in isolation. 

In trying to organize the different strands of thought 
ed with robust forecasting, it became clear that we 

‘Mave to establish a more general context’ before 
going further. Our goal in “forecasting” is really just 
“estimation”: to estimate the parameters of models and to 
choose models in such a way that they are useful in 
decision making. “Estimation” may be thought of as one 
element or subsystem of the more general problem of 
intelligent decision making A decision-making system 
needs three interrelated subsystems: 

1. a pattern recognition system, to select the variables 
which will be available to the models: 

2. an estimation system, to make models of the world 
and forecasts; 

3. an optimization subsystem, which uses these 
models to help it calculate the best choice of actions to 
maximize some utility function provided from elsewhere. 
(Often, we subdivide this into two smaller subsystems, one 
to choose a measure of strategic utility and one to pick 
actions to maximize that.) 

In the beginning of this Tesearch, we developed two 
new techniques to help define the context for forecasting: 
“pattern analysis,” to perform pattern recognition; and 
“dual heuristic programming,” to help perform optimiza- 
tion in a complex, nonlinear stochastic environment. Also, 
we documented “heuristic dynamic programming,” a 
related optimization method. 

By “pattern recognition,” we do not refer to the 
myriad things this word sometimes means im artificial 
intelligence. Our goal is simply to provide variables for use 
in the “forecasting” or “estimation” system, which in turn 
will be useful to the optimization system. In ordinary 
regression analysis, for example, one often finds that the 
raw data are unsuitable as inputs to one’s model. Usually, 
there are simply too many variables available and they 
seem to be somewhat redundant. A separate body of 
methods—“factor analysis” or “principal components 
analysis’’—is used to reduce the number of variables, prior 
to forecasting proper. We interpret this as a way of 
accounting for the interdependence of the different 
variables for which we have data; in other words, it is a 
way of answering question 4 above. “Pattem analysis’ is a 
more general way of accounting for such interdependence, 
within the context of ordinary econometric forecasting 
approaches. It allows us to merge the pattern recognition 

   

and estimation tasks into a single analytic procédure. In 
particular, it allows for the possibility of nonlinear 
relations between the raw data and the processed variables. 
It may sometimes increase the number of variables, in the 
nonlinear case, but decrease the apparent information 
content, by singling out variables which equal zero 
(“pattern not present” or “pattern not changed”’) about 
90% of the time. 

The mathematics of pattern analysis is summarized in 
Appendix A. Applications of the two optimization 
methods in strategic planning are discussed in [7]. 
Appendix B reviews only the mathematics. 

Il-b. Three Strategies for Robustness in the New Context 
This new context provided a dramatic change in our 

approach to robust estimation. Estimation, like pattern 
recognition, is now subordinated to pattern analysis, a 
single overarching technique. Bet pattern analysis in its, 
original form is strictly an econometric-style, maximum - 
likelihood method. It pays very close attention to proba- 
bilities and entropy scores. This makes it easy to get good 
probabilities out of pattern analysis, but it takes us back to 
the old problems of robustness: how can it be brought 
back, in the context of pattern analysis? Most approaches 
to improving forecasts here have turned out to be either 
invalid or secondary to more powerful approaches. Al- 
though we could hope that a better choice of higher-level 
variables, as in pattern analysis, would itself increase 
“robustness,” we have singled out only three strategies 
which are appropriate to achieving robustness in the 
general context. From a formal point of view, these are 
not really alternative, but complementary, strategies; we 
would expect that a complex, well-rounded forecasting 
system (like that in the human brain) would use al! three 
together. 

1. Bias: weighing the importance of different target 
variables in prediction according to their relevance and 
their actual variance instead of the variance in prediction 
error. Maximum likelihood tells us to weigh them accord- 
ing to the variance of current prediction errors. However, 
the reasoning above (II-c) pushes us towards minimizing 
errors as weighted by our interest in the variables or by 
their dynamic importance, if we want to achieve robust- 
ness. 

Within pattern analysis, the filtered version of a 
measured variable is itself another variable in our system. 
With “bias,” we may shift attention to the filtered variable 
instead of the original variable. This produces an effect as 
if trying to minimize the sum of the squares of the original 
prediction errors (as in the robust “compromise method’’) 
multiplied by the square of the filtering constant, r. 
Strictly speaking, we may multiply by r? + 1/T?, where T 
is the length of the average time-series in our data; this 
keeps us away from the rather anomalous minimum at 
r=0, except in cases where the pure robust method is 
strongly favored. Thus we deduce one possible strategy for 
picking r in our original compromise method: pick r, and 
all other model parameters, to minimize this product. This 
will be the standard version of the “robust method” for 
our next round of'iempirical tests. A conservative strategy 
along the same lines is to multiply error by r itself, not 1’,
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as a kind of 50-50 compromise between an r? multiplica- 

tion and no multiplication. Note that these procedures 

would lead to the same estimates for the other parameters 

in our model as we would have had before, for a given 

value of r; the novelty is that we now know how to pick r. 

Minimizing (1? + 1/T?)-times-long-range-prediction- 
error also has a more intuitive argument in its favor. If we 
picked r so as to minimize prediction error itself, we would 
in effect be penalizing more ambitious models. For 
example, if model A predicts tomorrow with an error rate 
of 10%, while model B predicts the next century with an 
error tate of 12%, model B would probably be a better 
model on all counts; it is unfair to compare 10% against 
12% unless we can find a way to weight these numbers to 
indicate how much more difficult is the task attempted by 
model B. (Recall that a different choice of r gives us a 
different effective definition of what long-range-predic- 
tion-error to pick. A standard definition, a priori, is 
equivalent to picking r a priori, without regard to the 
properties of the system being studied.) 

How then can we find a fair way to weight these 
numbers? How can we measure the ‘‘ambitiousness” of a 
model? The constant r is supposed to measure the 
rate of decay of the value of past information; if the 
value of past information decays by a factor of (1 - r) per 
time period, then, over all future times, the sum of the 
value of past information should be proportional to 
l+Q-n+(1-9r?+ = 1/r, a measure of how much 
our model is trying to do. (Again, it is assumed that the 
time-series is long enough for the sum to converge 
normally; if not, with r= 0, the sum comes out to T, and it 
can be seen why we add a factor of 1/T. Fancier 
procedures are possible for the r = 0 limit, but they require 
a different kind of analysis to fine-tune them and are 
probably not worth the effort.) We can evaluate the 
significance of the standard deviation of the long-range 
prediction error by asking how large it is as a fraction of 
“potential error,” assumed to equal I/r times some 
constant. This leads us to rtimes-error-variance as a 
weighted measure of relative error variance. Again, this 
“derivation” is purely intuitive, but it helps to assure that 
the more formal “bias. concepts with pattern analysis 
make sense. me 

Put in the terminology of Il-d, we will pick r and all 
the parameters of our model by minimizing: 

  

(27+ 1/1") Zo aP(t) = (2% af") (ate) - 26)", 
t 

in the univariate case. In the multivariate case, we will 
initially try to use the same r for all variables and 
minimize: 

(x? + 1/1*) El z (z,(t) ~ 2,( is)”. 
t of t 

This differs from the standard ‘“‘multinormal” approach, 
but it better reflects the ‘“‘bias’* approach suggested above. 

A more general measure of the relevance of a target 
variable in pattern analysis is the mean square of the 
derivative of error with respect to that variable, plus the 
mean square of the derivative (lambda) of “strategic 
utility” with tespect to that variable (see Appendix B and 

74), plus the usual reciprocal of the error variance if the 
variable represents raw data. This has the right dimensional - 
properties for a measure to multiply square error: dimen- 
sional analysis indicates that there are few alternatives. 

2. “Multiple filtering’: the use of two or more 
filtered versions of the same variable, to sort out long-term 
versus Short-term fluctuations. Within the context of 

pattern analysis, or the human brain, it is not natural to 
think of our simple filtering procedure (the “compromise 
method’’) as a built-in special system. Rather, it is natural 
to think of the filtered version of a variable as a new, 
abstract variable, whose value is calculated as a weighted 
sum of the present value of the raw data and of some 
function of the past values of the filtered variable and 
others. “Filtering” is just one application of our ability to 
set up recursive models, in which internal variables may be 
affected by their own past values. Filtering constants may 
be treated like any other parameters in our model itself; 
we may pick them to minimize some measure of global 
error, so long as we pick a global measure which leads us in 
the direction of “robustness.” (If we did not pick a 
“biased”? measure of global error, then our ‘‘compromise 
method” would lead us back to the maximum likelihood 
white-noise model, which failed our empirical tests. The 
calculations to show this explicitly are straightforward but 
tedious.) If we are allowed to pick any recursive model, we 
can just as easily have two filtered versions of any variable, 
or three, or more. Even without any bias factor in our 
global error measure, we can hope that this procedure will 
lead to greater and greater effective foresight; with luck, 
our time horizon may grow exponentially with the number 
of filters. We are not talking about classical filters as in 

.electronics, which are designed to respond to predeter- 
mined frequencies; all the filtering constants are to be 
estimated by econometric-style procedures. Also note that 

our earlier work [2] already shows how to compute the 
derivatives needed in estimating the parameters of a 
recursive model. Strictly speaking, multiple filtering is not 
a new mathematical method, but a secondary strategy, a 
natural corollary of pattern analysis. 

3. Syncretism: a special system to exploit memory of 
“unique events. Questions 5 and 6 above are’ extremely 
subtle and difficult, but we have concluded that-2svstem 
of “syncretism” is ‘enough to close the major gap in our 
system of methods, as a kind of theory of intelligence. In 
principle, a system of syncretism is necessary (if we wish 
to achieve maximal “‘statistical efficiency’’) to exploit all 
the relevant information from our historical databank. The 
system which finally emerges, for computer forecasting, is 
much simpler than the logic which points towards it. 

In artificial intelligence, it is common to try to 
predict a dependent variable (“pattern classification’) by 
comparing the present values of the independent variables 
against past sets of values; one’s prediction is simply a 
weighted sum of what the dependent variable turned out 
to be in the past, weighted according to the closeness of 

the sets of values for the independent variables [9]. In 
effect, this carries our notion of “absolute consistency” 
even further than was done with the pure robust method. 
Here, we do not even assume the truth of the predictive 
part of a model; instead of producing a curve or 
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   predictions from a model, we produce it by smoothing off 

the curve of actual recorded data. Thus we may hope to 

achieve an even higher level of robustness than before. 

However, as with the pure robust method, this method 

used in pure form would create a serious problem with 

efficiency. 

‘There is an obvious compromise between the pure 

syncretic method (as above) and the modelling approach. 

After we fit our model, we can keep our original data 

available and add a record of what the prediction error of 

the model was in each case. When encountering a new 

situation, we can make our prediction by calculating the 

prediction of our model and then adding a prediction for 

the error of the model, as based on the syncretic method 

with modelerror as the dependent variable. This can be 

done for every dependent variable in our system, both raw 

data and abstract “pattern” variables. This means that we 

think of: our historical records as forming separate datasets, 

~ one sét for each ‘dependent variable and the independent 

variables used in predicting that dependent variable. ! 

Before we can use “syncretism” to predict model 

errors, we need to figure out what weight to place ona 

given past experience. The choice of weights is usually 

fairly arbitrary in artificial intelligence. Here, if we havea 

measure of “distance”’ between the past and present sets of 

values for the independent variables, we can start out by 

saying that the weight will equal e~k4, where d is the 
distance and k is some constant; then we can adjust the 

weights by dividing each one by the sum of all the weights, 

so that they add up to one. Initially, we can pick k so that, 

on the average, we expect a constant, small handful of 

other experiences with initial weights larger than e~! 

“Distance” is measured, formally, by taking the square 

root of the sum of squares of the differences between the 

two situations along each independent variable. However, 

here we may weight each independent variable according 

to the square of the regression coefficient, if our predic- 

tion is made on a linear basis; if it is not linear, we can use, 

instead, the mean square of the derivative of the prediction 

of the model with respect to the independent variable. 

These procedures work fairly well when there is little past 

experience available to choose k and the weights of the 

components of d; with more experience, the obvious 

procedure is to adjust these constants as if they were 

model parameters: i.e., to minimize the overall error in 

predicting the dependent variable we are concerned with. 

Note that this general procedure introduces a new func- 

tional relation, at every time, between the independent 

variables and the overall prediction; therefore, when we 

independent variables, we may defime-the primary error as 

ADVANCED FORECASTING METHODS 33 

evaluate the derivative of the prediction with respect to 
the independent variables, theory tells us to account for a// 

these aspects of our prediction procedure. 

This kind of procedure may be a bit too expensive, at 

present, in its original form. Certainly, in a device like the 

human brain, one would expect severe approximations 

(such as clustering chemical records of past experience into 

cells which represent the entire cluster as if it were one 

experience) to reduce costs; we may be forced to use 

approximations in order to use syncretism. Anothe 

problem is that, in pattern analysis, we do not just predict 

the expected value of the dependent variables; we also 

create a measure of uncertainty in its value. Certainly, ifa 

new event reminds us of an unexpected past trauma, it 

may increase our feeling of uncertainty, not just our 

expectations of what is most likely to happen. 

For each past record of dependent variable and 

the actual value of the dependent véiible minus the value 

which would have been predicted by our general model in 

its current form. We may define the secondary error as the 

primary error, minus the value for the primary error which 

we would have predicted by syncretism, if we used our 

other data records in making this prediction. The second- 

ary error corresponds to the actual error in predicting the 

dependent variable, when the model and the past records 

are both used, as they normally would be. The variance in 

the actual error may be predicted as the sum of (i) the 

mean variance of the secondary error, historically; (ii) the 

weighted sum of the square of the secondary error minus 

the mean variance of the secondary error, across similar 

past cases, using the same weights as before. The existence 

of arbitrary parameters in this kind of procedure may be 

related to the existence of interpersonal differences in the 

operation of human brains. 

To reduce the cost of such a system, one may simply 

throw out past data-records which meet two tests: they 

involve relatively little primary error; they are not very 

similar to other records which involve a high level of 

primary error. In such case, one would then normalize the 

weights above by accounting for both the explicit weights 

and the weights one might have expected for the “‘silent 

majority”’ of experiences which have been virtually assimi- 

Ilf-c, Research Strategy in Using the New Methods 

If our theoretical analysis is as complete as we like to 

believe, the application and refinement of the tools 

described here should be sufficient for as long as we are 

  

       

   

1. The generalized predictive model here may be compared with the “ego” of Freudian psychology; the specific records and their 

influence may be compared with the “id’’. In econometric analysis, we try to fit our general model better and better to the data, by going 

over complete, global records of the past. When such records do not exist, or even when they do, one might try to fit the “ego” to simulated 

data, which essentially reconstructs the past, generated by the ego and id together in the absence of external stimuli. This could be done as 

part of the simulations which we need anyway as part of optimization (see Appendix B). The analogy to dreaming should be obvious. 

2. Analogies with the human brain go further than one might imagine. It would be inappropriate to discuss the details here, but a few 

points may be of interest. The state of “‘deep sleep” could be interpreted as a time when clusters of many experience-records are updated and 

even transferred between nearby cells; on the other hand, it could be interpreted as a time when individual prediction functions are updated 

to reflect their own local records, without reference to the global consistency of these adjustments. The specifically human “trance state” 
could be interpreted as a state in which social stimuli are joined with an individual’s memory to produce simulated experience which is then 

remembered as if it were real (e.g., tribal dances after the hunt). This would allow the transfer of experience from individual to individual, 

more than would be possible if other individuals were perceived solely as noise-producing objects. The human brain may not yet be fully 

adapted to further possibilities in this direction.   
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requires human effort in formulating, comparing, and upgrading 

altemative models. Still, it is much better than treating each 

contingency as totally unique.° It is possible in principle, to allow 

computers to scan a wide variety of algebraic forms as possible 

models. This may be worse than human quality control, but it is 

probably a lot better than treating each contingency as unique. 

We can follow a similar procedure in dealing with dynamic 

programming. We construct a “model’’ of J. More precisely, we can 

set up computer programs designed to input a model of J as an 

algebraic expression with certain parameters in it identified as 

requiring estimation. As in nonlinear regression, we can allow the 

user to put in his or her own initial values as a matter of choice. 

Also, we can print out the “degree of fit” for the final model, as in 

regression. (Here, the ‘degree of fit” is measured as the expected 

value of U across future time which would result from trying to 
maximize the user’s version of J.) 

In Howard’s version of dynamic programming [I1], we 
generate J by successive approximations. In each step, we reset 

J(x(t)) to equal U(x(t)) + MaxE(J(x(t + 1))) - U, where the latter 

value of J is determined by the.old estimate of J. In each. step, we 

also pick,a new-set of actions, to maximize the expected value of 
I(x(t + 133 
can fit the parameters of J(x(t)), as in statistics, to be as close as 

possible to our previous estimate of U(x(t)) + MaxE(J(x(t + 1)))- U. 
In theory, we could attempt to find the optimal set of actions in 
each step for each x(t) tried out or simulated. In practice, we would 

probably derive the actions from an “action model,” whose 

parameters may also be estimated as part of this process. With the 

latter strategy, we can afford to use simple simulation to give us the 
equivalent of a carefully-computed expectation value. (Note that the 

constant U is not too critical here. In each iteration, scale factors for 

J can be stored, both additive and multiplicative, to make sure that 

nothing diverges. This will handle the kind of crossroads problems 
discussed in [7].) 
. In theory, this system can only look ahead one extra unit of 

time per iteration. However, if we estimate these parameters by 

computing the gradient in each iteration and plug it into a 

conservative version of Broyden’s sparse quasilinear numerical 

method, convergence will be much faster in practice, yet still 

practical in cases with many parameters in one problem. To compute 

this gradient inexpensively, with a complex network model, we 

recommend the use of the “dynamic feedback” algorithm, discussed 

in [2, Ch. II]. The above method we would call “heuristic dynamic 
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highly complex situations. It is similar in some respects to 

differential dynamic programming, developed by Jacobson and 

Mayne [12]. Instead of estimating J(x) for a raw input vector x, we 
first derive a vector y which is a function of x. We also make sure 

that U itself is included as one of the components of y. Then, for 

each component of y, yj, we estimate \,(x) as a function. Aj(x) 

represents the derivative of J with “respect to yj. In effect, it 

- This procedure can be adapted easily to our purpose. We’ 

represents the “shadow price” of yj. Since there are many yj, this 

would mean many functions to estimate, and it coudd mean many 
parameters. However, since these ); are really interdependent, we 

could formulate “network” models in which different A; share man 
parameters and terms. 

In each time cycle, our method proceeds as follows. From a 

given situation x(t), we carry out a simulation of x(t + 1) by first 

simulating the set of random numbers w(t) required by our 

stochastic model of reality. Then, for those values of w(t), we get a 

sample value of the gradient of likelihood with respect to the 

parameters of A;(t) by trying to fit each function Aj(t) to match our 
estimate of 

aty (t+) 
aye Aj (tn) (plus 1 if "y," refers to "U") 

This computation can be done inexpensively, with complex network 

models, by the dynamic feedback method mentioned above. Note 
that we added a plus sign in the derivative, to indicate that we wish 

to measure influence forward in time, as formalized by our concept 

of “ordered derivative,’ the mathematical basis of the dynamic 

feedback method. Once again, we can#update or optimize action 

strategies, and use a variant of Broyden’s method to estimate all the 
parameters. 

This method, which we call “dual heuristic programming,”’ is 
particularly suited to complex dispersed systems like the human 

brain; also, it is capable of supporting action models which are 

slightly faster to react than those with heuristic dynamic program- 

ming, at least for a real-time system, because one does not have to 

wait for feedback to trickle down from the highest levels. 

It is extremely important that y; may be a very complex 

function, itself to be estimated in this process. In principle, y; itself 

could equal J, if this estimate were highly successful. In the human 

brain, we would speculate that the “dynamic feedback” calculations 
are performed by the well-known “retrograde” chemical trans- 

missions, flowing back from cell to cell along small tubes inside the 
brain cells. 

Note that two competing strategic models can be weighted in 
either of these schemes by plugging in a weighted sum of the two J 

candidates (with the weight itself a parameter to be estimated) into 
the computer. In this respect, “heuristic dynamic programming” and 

“dual heuristic programming” are again comparable to regression 
methods in modelling. 

The practical use of these methods [7] requires the prior 
availability of stochastic predictive models of the global environ- 

ment, Such models could come either from statistics or from 

“judgmental models” on Bayesian lines. However, the development 

of good judgmental models will require the development of Bayesian 

techniques to a higher level than has been considered in the past. 

This will require careful studies of the effectiveness of variants of 

these techniques in cases where the measures of performance have a 
high variance. 
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interested in any kind of forecasting, by machine or by 
mind. For the time being, the key fact is that we have a 
method (1? bias) for picking our filtering constant with the 
compromise robust method. This gives.us something 
immediately useable to re-evaluate conflict models, like 
the CACI model [3], with a better methodology. As in 
working with the Deutsch model, we may fit the para- 
meters of various models to the first half of our time- 
series, using classical and robust methods, and then see 
which does better in predicting the second half. At 
present, we have set up a 20-year databank covering most 
nations of the world, suitable for interactive computer 
analysis. 

Our own numerical methods could perform these 
analyses efficiently, in theory [2]. However, because of 
the difficulties and development costs involved in trying to 
write general software in a university department, we 
borrowed from existing nonlinear programming [10]. 
According to the authors, this program works better on 
dynamic control problems than do the complex Riccati 
equation and matrix methods which dominate most of the 
literature. It can be used to fit parameters to minimize our 
“robust” measure of model error if it is generalized in 
certain ways: (i) a ““model compiling” routine is needed to 
translate a simple, user-specified model into an object 
subroutine which calculates model error as a function of 
parameter values; (ii) there must be provision for “multiple 
sector” estimation, to allow estimating the material values 
for endogenous variables in different countries, without 
waiting for computer time: (iii) certain contingencies must 
be planned for which the NASA routine did not consider. 
We have now reprogrammed most of the NASA routine in 
ANSI PL/1, with their additional features, so that it can 

? 

was suggested as a new approach to the problem of pattem 

recognition. In this approach, pattern recognition is treated as a 

system to help support prediction and optimization. ‘Pattern 

analysis” attempts to extricate the key variables which underly the . 

' dynamics of the environment ogStis trying to analyze: it is necessary, 
as pari of effective forecasting,‘ because the original raw data 
contains nonlinear interdependence which cannot be analyzed 
efficiently or explicitly by conventional direct rnethods. Figure 3 
indicates the difference between conventional econometric ap- 

proaches and pattern analysis. In pattern analysis, we construct three 

systems of formulas, each of which looks like an econometric model. 
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Tun interactively on the MIT Multics, which we are using 
over the ARPANET. These routines, like the whole of our 
project, are in the “‘government-related public domain.” 

Unfortunately, this routine uses only the Fletcher. 
Powell method for convergence; a similar method, the 
“Broyden method,” would have allowed the use of a 
“sparse information matrix,” which in turn would allow 
the use of more parameters.? in the present situation, we 
will have to use human labor, to pick groups of about 
twenty parameters in the model, fine-tune them, then pick 
another group, and so on, until all the parameters are 
optimized. Regression analysis should provide adequate 
initial values for these parameters. (The ‘“‘r? bias” method 
should eliminate the convergency problems one might 
otherwise expect with these initial values, if we set r 
initially to 1, which corresponds with regression.) 

After initial work with the r? bias method, we intend 
to investigate the r bias method, multiple filtering, and 
then perhaps other possibilities suggested above. The 
choice between alternatives suggested here cannot be 
sorted out on a purely theoretical basis, because “robust- 
ness”’ is essentially an empirical issue, as-is the choice of 
models. When more empirical examples are available, 
and when we have an idea of what an adequate theory 
would show, perhaps than we can start to figure out how 
we might have guessed our results before doing any tests. 
At this stage, however, it would be dangerous to make too | 
many a pnori assumptions about what works and what 
doesn’t. Indeed, the specific combination of filters and 
models which works best in crisis warning may turn out to 
be unique to that subject. A jong period of strictly 
experimental work lies ahead. 

SEDP iper APPENDIX A G~ SDP idea 

PATTERN ANALYSIS AS A MAXIMUM LIKELIHOOD METHOD 

1. The “prediction model’ gives probablistic forecasts of the 
underlying patterns in the furure, as a function of past and present 
conditions. 

2. The “interpretation model” gives a probabilistic description 
of what the underlying patterns are. in. the present, as a function of 
direct observations in the present and of general conditions@authe 

past. . ~ 
3. The “decoding model” gives a probabilistic description of 

what direct observations to expect at any time, asa function of the 
underlying patterns at that time, and also as a function of 
observations or patterns for earlier times. 

This technique is oriented towards dynamic systems; however, 
depending on how the model is specified, and depending on what 
we call “past” information (e.g., nothing?), it can be applied in 
situations with a different dimensional structure. 

Our hope was to blend the advantages of control theory, 
nonlinear regression, and maximum likelihood factor analysis into a 
single technique, which would contain none of the arbitrary aspects 
of classical artificial intelligence methods. In’ particular, all of the 
parameters of the three models (the three subsystems) were to be 
estimated by maximum likelihood methods, with perfect “statistical 
efficiency”: no information from our past experience weuld be 

3. We have carefully studied the possiblity of more advanced convergence methods, building on those we have already suggested [2], as 
they would be plugged into a Broyden-style “front-end.” However, major changes would come only by allowing explicit models of the 
convergence process itself, models with internal estimation and convergence requirements. It would seem better just to alter Broyden’s methods in 
minor, ad hoc ways (e.g., size cutoffs in responsiveness changes and fractional powers of the changes recommended by Broyden), while stating 
that an intelligent system may attempt to treat some of its internally-generated derivatives as explicit variables for explicit study. This is like 
Deutsch’s idea of “self-consciousness.” 
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_....a. {t would be interesting to see what capabilities would 
lost thereby. Below, we will use the assumption of variable 

dance, for the sake of generality.) Then, for each underlying 
‘iable Rj, we simulate a value Q; by computing gj plus| oW times a 

idom number. (A random number of unit variance, mean Zero.) 

» plug in the simulated value of Rj(t + 1), plus the real values of 

-vious direct observations, into the decoding model. This gives us 

>dictions of the oa + » Overall, we try to minimize the sum of 

     
Blog (x. - h.(Q))*; 
i t + i 

  

(ii) the sum, over all underlying varia sles, of the prediction 
t defined as the correction entropy from the predicted   
ribution to the interpreted distribution. We compute this integral 

  

  

  
e general case of variable variance may allow some non-uniqueness 

the final solution but may upgrade the quality of solutions over 

iat we would expect with fixed-variance models. 

For the decoding parameters Hj, the first of these two error 
ms is the only one which is operational. The simulation process 
scribed above is a valid Monte Carlo procedure for estimating the 
pected value of 

the following reasons. Let p;(x|R) be the probability distribution 
x(t +1), given R(t +1), implied by the decoding model. Let 

R) be the probability distribution for R(t+1), given past 
ormation, as per the prediction model. Let p3(R{x) be the 
srpretation model. From our definition above, 

-E, = fp(x) log p(x) dx,    


