
Hierarchical Learning of Robot Skills by Reinforcement 

Long-Ji Lin 
School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 
e-mail: ljl@cs.cmu.edu 

Ahtract- 
Because learning from delayed reinforcement is 

hard and generally a slow process, a straightfor- 
ward application of reinforcement learning would 
be generally impractical for complex problems in 
which state spaces are huge and reinforcement sig- 
nals are sparse. This paper shows how we can 
make reinforcement learning practical for com- 
plex problems by introducing hierarchical learn- 
ing: The agent at first learns elementary skills for 
solving elementary problems. To learn a new skill 
for solving a complex problem later on, the agent 
can ignore the low-level details and focus on the 
problem of coordinating the elementary skills it 
has developed. A physically-realistic mobile robot 
simulator is used here to demonstrate the success 
and importance of hierarchical learning. For fast 
learning, artificial neural networks are used to gen- 
eralise experiences, and a teaching technique is 
employed to save many learning trials of the sim- 
ulated robot. 

I. INTRODUCTION 

Reinforcement learning is an unsupervised learning 
method for sequential decision making. In this learning 
paradigm, the learning agent receives a scalar performance 
feedback called reinforcement or payoff after each action 
execution. The objective of learning is to construct a con- 
trol policy so as to maximize the discounted cumulative 
reinforcement in the future or, for short, utility: 

where & is the discounted cumulative reinforcement start- 
ing from time t throughout the future, r: is the reinforce- 
ment received after the transition from time t to t + 1, 
and 0 _< 7 _< 1 is a discound factor, which adjusts the 
importance of long-term consequences of actions. 

Q-learning is a widely-used reinforcement learning 
method [12, 5 ,  41. The idea of Q-learning is to construct 

vt = EEork P t + k  

an evaluation function called Q-function: 
Q(s ta t e ,  action) -+ uti l i ty  

The Q-function is used to predict the discounted cumula- 
tive reinforcement (i.e., utility) for each state-action pair 
given that the agent is in that state and executes that 
action. Given an optimal Qfunction and a state 2, the 
optimal control policy is simply to choose the action a for 
which Q(t,a) is maximal over all actions. 

For generalization, the Q-function can be represented 
by multi-layer neural networks called 9-nets ,  and incre- 
mentally trained by a combination of the error back- 
propagation algorithm and temporal diflerence (TD) 
methods [8]. Given a state transition (t, a, y ,  r) mean- 
ing that an action a in response to a state 2 results in a 
new state y and reinforcement r,  the Q-nets can be ad- 
justed as follows: 

1. U t Q(2,a); U' + r+y-Maz{Q(y, k)lk E actions); 
2. Adjust the network corresponding to Q(t ,a)  by 

back-propagating the error (U' - U) through it; 
Given a sequence of state transitions, the agent simply ap- 
plies the above learning procedure to every two successive 
states along the sequence. Note that the above proce- 
dure uses the simplest form of T D  methods, TD(0). This 
research in fact uses TD(A > 0), which was found more 
effective than TD(0). See [3, 41 for further details. 

Reinforcement learning has been successfully applied 
solving nontrivial learning problems [5,  lo]. A serious 
problem, however, is that learning from sparse reinforce- 
ment signals is hard and generally a slow process. There 
are several ways to speed up reinforcement learning, such 
as generalization [l, 3,4,  6, lo], using action models [9,5], 
teaching [5, 31, etc. 

This paper describes another way to speed up reinforce- 
ment learning; that is, hierarchical learning. It is well 
known that no planning system can scale up well without 
hierarchical planning. Similarly, no learning agent can 
successfully cope with the complexity of the real world 
without hierarchical learning of skills. This paper dis- 

0-7803-0999-5/!l3/$03.00 01993 IEEE 181 

. . . . . ,.",...I " , .. ". ..,,I , I_ .... " 

mailto:ljl@cs.cmu.edu


CUB a way of doing hierarchical reinforcement learning, 
and presents a case study using a physically-realistic m e  
bile robot simulator. The task of the robot is to learn a 
control policy for finding a battery charger and electrically 
connecting to  it. The task is so complex that without us- 
ing hierarchical learning, the robot was unable to learn a 
good control policy within a reasonable time. By decom- 
posing the task into subtasks and solving them separately, 
the robot was able to  solve the learning task effectively. 

11. HIERARCHICAL REINFORCEMENT LEARNING 
The primary virtue of hierarchical learning/planning is the 
great reduction in the complexity of problem solving. The 
essential idea is based on problem decomposition and the 
we of aktnaction. To efficiently solve a complex learn- 
ing problem, humans often decompose the problem into 
simpler subproblems. Once we have learned skills to solve 
each subproblem, solving the original problem becomes 
easier, because we now can concentrate on the high-level 
features of the problem and ignore the low-level details, 
which presumably will be filled in when the previously 
learned skills are actually applied. This idea can gener- 
alize to  multiple levels of abstraction. At each level, we 
focus on a different level of details. Another virtue of 
hierarchical learning is that subproblems shared among 
high-level problems need be solved just once and their so- 
lutions can be reused. Basically three steps are involved 
in hierarchical reinforcement learning: 

1. Task Decomposition. A complex task is decom- 
posed into multiple elementary tasks. The original 
complex taak is thus reduced to the task of integrat- 
ing the solutions to the elementary tasks to form 
the solution to the original task. Note that task 
decomposition involves designing a reward function 
for each elementary task. 

2. Learning elementary skills. An elementary 
skill needs to be learned to solve each elemen- 
tary task. Here Q-learning can be used, and 
each elementary skill corresponds to a Q-function: 
Q(state, action) -+ ut i l i t y .  

3. Learning a high-level skill. A high-level skill 
for coordinating the elementary skills needs to be 
learned in order to solve the original task. Learning 
a high-level skill is conceptually similar to learning 
an elementary skill. Again, Q-learning can be used, 
and the high-level skill corresponds to a &-function: 
Q(state, skill) -+ ut i l i t y .  

A good task decomposition often demands either lots of 
domain knowledge or lots of experience of solving related 
problems. This research assumes that task decomposition 
is performed by human designers. A formal model of hi- 
erarchical reinforcement learning can be found in [4], in 

w I + 

Figure 1: (a) A simulated robot and its environment. The 
radius of the robot is 12 inches. The size of the envi- 
ronment is 360 inches by 420 inches. (b) Sonar readings 
received at  L3. (c) Light readings at L2. 

which a complexity analysis for deterministic and discrete 
domains is also presented. The analysis shows a theoreti- 
cal complexity reduction by using hierarchical learning. 

111. THE DOMAIN: A SIMULATED MOBILE ROBOT 
The domain used in this research wm a mobile robot sim- 
ulator (Figure l ) ,  which was intended to mimic a real 
robot called Hero and a real office environment. The sim- 
ulated environment consists of three rooms, A, B and C, 
and two narrow doorways connecting Room C to Rooms 
A and B. A battery charger is located in the left-bottom 
corner of Room A. A light is placed on top of the charger 
so that the robot can distinguish the charger from other 
obstacles. The robot has 6 actions: turn f15O, turn f60°, 
and move f 1 2  inches. I t  has a sonar sensor and a light 
intensity sensor mounted on its top. Both sensors can 
rotate and collect 24 readings (separated by 15 degrees) 
per rotation. The sonar sensor returns a distance reading 
between 0 and 127 inches, with a resolution of 1 inch. In 
addition, the robot has a compass and four collision sen- 
sors placed around its body. To be realistic, about 8% 
control error is added to the robot’s actuators and about 
10% sensing error added to the sensors. 

The robot’s task is to learn a control policy for finding 
the battery charger and connecting to  it. It may start with 
any orientation and from any location in the environment. 
The robot begins with no knowledge about its effectors, 
sensors, and the environment. The reward function for 

182 



the task is 100 when the robot successfully connects to the 
charger and 0 otherwise. This battery recharging task is 
hard for several reasons: (1) The state space is continuous 
and large, (2) the optimal control policy is complex, and 
(3) the reward delay is long. It takes the robot approx- 
imately 100 steps to reach the battery charger starting 
from Location L1 (Figure 1). 

IV. TASK DECOMPOSITION 
In this work, the battery recharging task is decomposed 
into four elementary tasks: 

following walls while keeping them on the robot’s 

passing a door starting from places near the door 

docking on the charger starting from the light area 

For instance, to connect to the battery charger from L- 
cation L1 (Figure l ) ,  the robot simply executes WFR to 
get to the vicinity of the right door, executes DP to get 
out of Room B, executes WFL to reach the left door, exe- 
cutes DP again to get into Room A, executes WFR again 
to get close to the charger, and finally executes DK to get 
connected to the battery charger. 

right/left hand side (WFR/WFL), 

(DPh and 

where the robot can sense the light (DK). 

To define an elementary task, we need to specify: 
a reward function specifying the goal, and 
an application space specifying the portion of the 

For example, the reward function used here for docking 
is: -10 if collision occurs, 100 if the robot successfully 
connects to the charger, and 0 otherwise. Note that the 
application space of a skill can be thought of as the pre- 
condition of the skill. For example, here I want to train 
a robot to dock on the charger as long as the robot can 
detect the light source on top of the charger, therefore I 
define the application space of docking to roughly corre- 
spond to the light area. Similarly, I define the application 
space of door passing to roughly correspond to the loca- 
tions where a door opening can be detected. The appli- 
cation space for wall following is simply the whole state 
space. Since a skill is only trained for its own application 
space, if a skill is executed when the agent is not in the 
application space, the agent may never achieve the goal of 
the skill. For instance, a door passing skill is not expected 
to achieve its goal, if there is no door nearby. 

state space for which a skill will be trained. 

V. LEARNING ELEMENTARY SKILLS AND TEACHING 
Here let us consider in detail how the robot could learn a 
docking skill; other elementary skills can be learned sim- 
ilarly. The state representation for the docking task in- 
cludes 24 real-valued sonar readings, 24 binary light read- 
ings, and 4 binary collision readings. The learning process 

consisted of many trials. In each trial, the robot started 
with a random orientation and a random position mostly 
in the light area (i.e., the application space of docking). 
For the purpose of exploration, the robot chose actions 
randomly, but preferred to choose actions having high 
utilities. Each trial ended when the robot achieved the 
goal or else after 30 steps. The experience of each trial 
was recorded, and the learning procedure mentioned in 
Section Iwas applied to train the Q-function, which was 
represented by multi-layer neural networks. 

In the first attempt, the performance of the robot was 
found poor: In 2 out of 7 runs, the robot was unable to 
dock after 300 learning trials. In the other 5 runs, the 
robot took 250 trials on average to learn an acceptable 
docking skill. The poor performance waa due to two diffi- 
culties. First, reinforcement learning agents learn by trial 
and error. If the agent is lucky, it may learn quickly. If it 
is not lucky, the trial and error process may take a long 
time. Second, docking and obstacle avoidance are kind of 
contradictory; docking requires the robot to collide with 
the charger. Once the robot learns to avoid obstacles, it 
may never learn to dock- it is stuck in a local optimum. 

A possible solution to both difficulties is to teach the 
robot. By teaching, we take control over the robot, and 
demonstrate a few times how the target task can be solved 
from different initial states. The demonstrated solutions 
are used to train the Q-function by using the learning 
procedure described in Section I. This teaching technique 
was found very effective. With just 10 teaching examples, 
the robot generally could learn a very good docking skill 
within 150 trials. Using this technique, the robot could 
also learned the door passing and wall following skills ef- 
fectively. See [4] for details. 

VI. LEARNING HIGH-LEVEL SKILLS 
During learning the elementary skills, the robot assumes 
that all primitive actions terminate automatically. Thus, 
if the robot wants to see the effect of an action, it simply 
executes that action and waits to see the outcome. If 
each elementary skill has a termination condition and can 
terminate just like primitive actions, then learning a high- 
level skill is just like learning an elementary skill, and 
the learning technique used to learn the docking skill can 
be directly applied to learning a high-level skill for the 
battery recharging task. 

A .  Never-ending Skills 
Unfortunately, in practice there is often a complication: 
Once activated, a skill may not terminate automatically. 
For example, a wall following skill has no termination con- 
dition at all and can last forever once it is activated. Even 
though the door passing skill has a termination condition 
(i.e., getting into another room), it also may never stop 

183 



under certain circumstances. For example, the robot’s 
sensors may mistakenly detect a non-existing door (due 
to noise), causing an inappropriate activation of the skill. 
Or the skill may not have been trained well enough to deal 
with every situation that the skill is supposed to  take care 
of. Under either circumstance, the door passing skill may 
never achieve its goal and terminate. 

Since skills may not terminate on their own, the agent 
has to decide when to switch skills as well as which skill to 
apply next. Because optimal timings for switching skills 
may occur at any time, the agent must check to see which 
skill to choose frequently such that optimal timings will 
not be missed. For example, while following walls, the 
robot needs to  check frequently to see if a door opening 
suddenly comes into sight such that it will not miss the 
doorway it wants to enter. Another reason that frequent 
checks may be necessary is this: The robot may mistak- 
enly detect a non-existing door opening and activate the 
door passing skill. If the robot checks frequently, it may 
quickly find that the skill is no longer appropriate and 
stop it right away. 

This work took an e x t r e m e  the decision about which 
skill to apply is made by the robot on each primitive step. 
In other words, the robot checks to see which skill is most 
appropriate; applies it for one single step; determines the 
next appropriate skill; applies that skill for another step; 
and 80 on. In the worst case, the robot needs a high-level 
control policy to decide the optimal skill for each state. In 
other words, the agent needs to learn an evaluation func- 
tion of Q ( s t a t e ,  sk i l l ) .  If hierarchical learning is not used, 
the robot has to learn Q ( s t a t e ,  act ion) .  Is Q(sta te ,  skil l)  
much easier to learn than Q(state ,act ion)? The answer 
seems positive, because the former Q-function is less com- 
plex than the latter, which is easily seen by noting that 
the robot need switch actions much more frequently than 
switch skills. 

B. Effective Ezploration 
To learn Q ( s t a t e ,  skill) effectively, the agent needs a good 
strategy to explore the state space, which may be large. 
Fortunately, the agent has knowledge (i.e., Q-functions) 
about the elementary skills it has learned previously. It 
can use this knowledge for effective exploration. Two ex- 
ploration rules are discussed below. Although the discus- 
sion of both rules is specific to the battery recharging task, 
they seem quite general and applicable to many other do- 
mains as well. 

Applicability Rule. Choose only applicable skills. 
A skill is applicable only if its application space covers the 
current state. But since the robot is not provided with a 
procedure for determining the application spaces, how can 
the robot decide if a skill is applicable? For the wall fol- 
lowing skill, the answer is quite simple- they are always 

applicable. Whether the door passing skill is applicable 
can be determined by examining the Q-function (called 
Q+) that defines the door passing skill. There are basi- 
cally two circumstances where the output (i.e., Q-value) 
of &af is low: either the robot is far away from any door 
or the skill is unable to  handle the given situation. In 
either case, it is inappropriate to apply the skill. But, 
what Q-values should be considered low or high? In this 
work, a simple thresholding was used. A proper threshold 
could be learned, but here it was chosen off-line after the 
skill was learned. Similarly, by examining the Qfunction 
of the docking skill, we can determine whether it makes 
sense to  apply the skill- low Q - d u e s  often correspond 
to situations where the robot does not detect the light on 
top of the charger. Note that because it is fine to  activate 
an inapplicable skill, the selection of the threshold values 
was not found critical as long as they were not too high 
to rule out the optimal skill. 

Persistence Rule: Do not switch skills unless some 
significant change to  the robot’s situation has occurred. 

The following two changes can be considered significant: 
(1) The goal of the docking or door passing skill is 
achieved. (2) A previously inapplicable skill becomes ap- 
plicable (for instance, a door opening suddenly comes into 
sight, making the door passing skill become applicable). 
The basic idea behind this rule is the following: To make 
good progress, the robot should avoid switching skills fre- 
quently. Imagine that the robot is close to a door. The 
door passing skill and both wall following skills are all 
applicable at the moment. The robot can choose any of 
them for experimentation, but it should either keep fol- 
lowing the wall until another doorway comes into sight or 
dedicate itself to door passing until the door is completely 
passed. If the robot keeps changing skills, it will often end 
up being stuck in the same place [4]. 

VII. EXPERIMENTAL RESULTS 
This section reports two simulation experiments. In the 
first experiment, hierarchical learning was not used; the 
robot learned a monolithic &-function, Q ( s t a t e ,  action), 
for the battery recharging task. The second experiment is 
about learning a high-level control policy, Q(sta te ,  skill), 
for battery recharging. The elementary skills (includ- 
ing wall following, door passing, and docking) had been 
trained beforehand. Again, the learning process consisted 
of many trials. In each trial, the robot started with a ran- 
dom orientation and location in the %room environment, 
and was allowed to take 200 primitive steps at  a maxi- 
mum. See [4] for detailed descriptions of the exploration 
rules, the input representations, and the experiments. 

Non-hierarchical learning. The robot was provided 
with 10 teaching examples to start with. The same learn- 
ing technique used to train the docking skill was employed 

184 



RelnUStq, 

1.5 .. 

0.0 1 + 

to train the recharging skill. Figure 2.a shows the mean 
performance of the robot over 7 runs. After 300 learning 
trials, the robot was generally unable to accomplish the 
task starting from Rooms B and C. Besides, it collided 
with obstacles very often (more than 5% of the time). 
In this experiment, the robot was not punished when it 
collided with obstacles. Slightly better performance was 
observed when the robot was punished for collisions, but 
it still performed poorly. The robot in fact never learned 
a systematic way to  carry out the recharging task within 
300 trials no matter what reward function was used. 

Hierarchical learning. The robot was not provided 
with any teaching example except those for training the 
elementary skills. The two exploration rules described in 
Section Bsvere used. Figure 2.b shows the robot’s mean 
performance over 7 runs. Within 20 trials, the robot gen- 
erally had developed a good high-level skill for connecting 
to the charger from most of locations in Rooms A and 
C. A nearly optimal skill for all situations was generally 
learned within 60 trials. The learned skills could adapt 
to small unexpected environmental changes without addi- 
tional training [4]. (The robot’s performance was poor 
when the Persistence Rule was not used [4].) 

Although the numbers of teaching steps (about 500) in- 
volved in both experiments are approximately equal, it  is 
unfair to  make a point-by-point comparison between the 
two learning curves in Figure 2, because in the case of 
hierarchical learning, the robot had already taken many 
action executions to  learn the elementary skills before it 
started to  learn the high-level skill. However, when both 
experiments ended, the robot executed approximately the 
same number of actions (about 40000) in both cases (tak- 
ing into account the action executions during learning the 
elementary skills). Given a similar number of teaching 
steps and a similar number of experimental actions, the 
one using hierarchical learning was apparently superior to 
the one without hierarchical learning. 

VIII. DISCUSSION 

Why did the robot perform significantly better with hier- 
archical learning than without it? Two explanations: 

Better state representations. Good input represen- 
tations are crucial to efficient learning, because better rep- 
resentations support better generalization and thus faster 
learning. One criterion for being a good representation is 
that it includes only the information relevant to the task. 
When the recharging task was not decomposed, the robot 
had to use a large state representation that described the 
robot state in sufficient detail, even though not all of the 
detailed information would be needed at the same time 
during carrying out the task. Such a state representa- 
tion is less desirable. When the task was decomposed, 
the robot only needed to use a small state representation 
during solving each subtask, resulting in efficient learn- 
ing. For example, the light readings, which were needed 
for docking, would not be needed for door passing and 
thus could be excluded from the state representation for 
the door passing skill. The high-level skill also used a 
small state representation, which carried abstract infor- 
mation derived from the low-level sensory inputs. See [4] 
for details. 

Easier-to-learn Q-nets. Training multiple simple 
networks is often easier than training a single complex 
network [ll]. Without task decomposition, the optimal 
Q-net for the recharging task is so complex that it could 
hardly be trained to the desired accuracy at all. With task 
decomposition, the optimal &-nets for the elementary and 
high-level tasks are simple and can be learned rapidly. 

Being able to do hierarchical learning, the robot has 
been provided with additional domain-specific knowledge, 
including a proper selection of elementary tasks and a 
proper selection of a reward function and an application 
space for each elementary task. I t  seems inevitable that 
we need domain knowledge to buy great learning speed. 

185 



IX. RELATED WORK 
Mahadevan and Connell [6] presented a box-pushing 
robot, which learned elementary skills from delayed re- 
wards. Their approach was based on Q-learning. In their 
case, the skill coordination policy was not learned but 
hard-wired by humans beforehand. 

Lewis et al. [2] studied a six legged insect robot, which 
successfully learned to walk, The robot was controlled 
by neural networks with weights determined by genetic 
algorithms. The robot developed its walking skill in two 
stages: It developed first an oscillation behavior for each of 
the six legs, and then a walking behavior that coordinates 
the six oscillation behaviors. The robot might not have 
developed a successful walking skill without dividing the 
learning process into such two stages. Except that we used 
different optimization techniques (genetic algorithms vs. 
reinforcement learning), we have shared the same idea of 
hierarchical learning. 

Singh [q described an efficient way to construct a com- 
plex Q-function from elementary Q-functions. However, 
to use his technique requires a few strong assumptions to 
be met. For example, it could not handle skills that do 
not have termination conditions (e.g., wall following). On 
the other hand, Singh has demonstrated for a simple case 
that his architecture could learn a new elementary skill 
that was not explicitly specified. This suggests a possible 
way for robots to discover on their own a proper way to 
decompose a task. 

X. CONCLUSION 
This paper has demonstrated that it is possible for robots 
to acquire complex skills by reinforcement learning. How- 
ever, it would be impractical to apply reinforcement learn- 
ing in a straightforward manner, because it would be too 
slow for solving very complex tasks. By introducing hier- 
archical learning, the complexity of reinforcement learning 
can be greatly reduced. Indeed, the simulation experi- 
ments have demonstrated that the robot with hierarchical 
learning was able to solve a complex problem, which oth- 
erwise waa hardly solvable within a reasonable time. 

Learning to choose optimal elementary skills is con- 
ceptually similar to learning to choose optimal primitive 
actions, but there is one complication: A skill may not 
terminate automatically once it is activated. This paper 
discussed two effective exploration rules for learning to 
coordinate skills that may not have a termination condi- 
tion. By taking advantage of previously acquired knowl- 
edge (i.e., the Q-functions for the elementary skills), the 
exploration rules allowed the simulated robot to acquire a 
nearly optimal high-level skill effectively. 

Hierarchical learning relies on a careful decomposition 
of tasks. To decompose a task properly often requires 

some domain-specific knowledge, which may come from 
humans or the agent’s own experiences of solving related 
problems before. In this paper, task decomposition was 
done by a human. A great challenge would be to let the 
robot discover a proper task decomposition on its own. 

Acknowledgments. I thank Tom Mitchell, Se- 
bastian Thrun, Ryusuke Masuoka, and Chi-Ping Tsang 
for their valuable comments on a draft of this paper. 

REFERENCES 
[l] D. Chapman and L.P. Kaelbling. Input generalization 

in delayed reinforcement learning: An algorithm and 
performance comparisons. In Proceedings of IJCAI- 
91, pages 726-731, 1991. 

[2] M.A. Lewis, A.H. Fagg, and A. Solidum. Genetic pro- 
gramming approach to the construction of a neural 
network for control of a walking robot. In Proceed- 
ings of the 1992 IEEE International Conference on 
Robotics and Automation, pages 2618-2623,1992. 

[3] Long-Ji Lin. Programming robots using reinforce- 
ment learning and teaching. In Proceedings of AAAI- 
91, pages 781-786, 1991. 

[4] Long-Ji Lin. Reinforcement Learning for  Robots Us- 
ing Neural Networks. PhD thesis, Carnegie Mellon 
University, School of Computer Science, 1993. 

[5] Long-Ji Lin. Self-improving reactive agents based on 
reinforcement learning, planning and teaching. Ma- 
chine Learning, 8:293-321,1992. 

[SI S .  Mahadevan and J. Connell. Scaling reinforcement 
learning to robotics by exploiting the subsumption 
architecture. In Proceedings of the Eight Intema- 
tional Workshop on Machine Leaming, pages 328- 
332, Evanston, Illinois, 1991. Morgan Kaufmann. 

[7] S.P. Singh. Transfer of learning by composing solu- 
tions of elemental sequential tasks. Machine Leam- 
ang, 8~323-339, 1992. 

Learning to predict by the methods 
of temporal differences. Machine Leaming, 3:944, 
1988. 

[9] R.S. Sutton. Integrated architectures for learning, 
planning, and reacting based on approximating dy- 
namic programming. In Proceedings of the Sev- 
enth International Conference on Machine Learning, 
pages 216-224, Austin, Texas, 1990. 

[lo] G. Tesauro. Practical issues in temporal difference 
learning. Machine Learning, 8:257-277, 1992. 

[ l l ]  A. Waibel. Modular construction of timedelay neu- 
ral networks for speech recognition. Neural Compu- 
tation, 1:3946, 1989. 

[12] C.J.C.K. Watkins. Learning from Delayed Rewards. 
PhD thesis, King’s College, Cambridge, 1989. 

[SI R.S. Sutton. 

186 


