
Appl Intell (2013) 39:345–353
DOI 10.1007/s10489-012-0416-2

Monte-Carlo tree search for Bayesian reinforcement learning

Ngo Anh Vien · Wolfgang Ertel · Viet-Hung Dang ·
TaeChoong Chung

Published online: 22 February 2013
© Springer Science+Business Media New York 2013

Abstract Bayesian model-based reinforcement learning
can be formulated as a partially observable Markov decision
process (POMDP) to provide a principled framework for
optimally balancing exploitation and exploration. Then, a
POMDP solver can be used to solve the problem. If the prior
distribution over the environment’s dynamics is a product of
Dirichlet distributions, the POMDP’s optimal value function
can be represented using a set of multivariate polynomials.
Unfortunately, the size of the polynomials grows exponen-
tially with the problem horizon. In this paper, we examine
the use of an online Monte-Carlo tree search (MCTS) algo-
rithm for large POMDPs, to solve the Bayesian reinforce-
ment learning problem online. We will show that such an
algorithm successfully searches for a near-optimal policy. In
addition, we examine the use of a parameter tying method
to keep the model search space small, and propose the use
of nested mixture of tied models to increase robustness of
the method when our prior information does not allow us
to specify the structure of tied models exactly. Experiments
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show that the proposed methods substantially improve scal-
ability of current Bayesian reinforcement learning methods.
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1 Introduction

Reinforcement learning (RL) [33] provides a framework
for simultaneously acting and learning in unknown environ-
ments. To act well in such situations, a reinforcement learn-
ing algorithm has to handle the exploration-exploitation
trade-off—it needs to balance actions that reduce its uncer-
tainty about the environment with actions that exploit what
it already knows. RL has had some remarkable practical suc-
cesses in various areas, including learning to play checkers
[28], backgammon [35–37], job-scheduling [42], chess [4],
dynamic channel allocation [30, 38], and others [14, 15, 17,
22, 23].

Traditionally, RL algorithms can be divided into two
major approaches: model-free and model-based. Model-
free approaches attempt to directly learn the optimal pol-
icy by approximating the cost-to-go of each state, called
a value function. These methods often have large variance
and poor trade-off between exploration/exploitation. On the
other hand, model-based approaches attempt to learn a
model of the environment, then compute the optimal policy
based on that learnt model. These approaches normally have
better trade-off between exploration/exploitation. However
both of them are impractical to learn online due to in-
tensive computation and poor trade-off ability. One ap-
proach to mitigate this problem is to use Bayesian model-
based RL [6, 8, 24–26, 41]. Because it will trade-off explo-
ration/exploitation, and uses less data required.
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Bayesian reinforcement learning can be represented as
a partially observable Markov decision process (POMDP)
problem [8]. Its policy is a mapping from the posterior
distribution (or history of observations) to an action. This
POMDP problem can be solved by an online planning algo-
rithm. In addition, its policy at each step can be considered
as a suggestion of the appropriate action for online Bayesian
reinforcement learning. When representing Bayesian rein-
forcement learning as a POMDP, the posterior distribution
of parameters given an observation is often conveniently
represented in closed form as a product of Dirichlet distri-
butions. Under this condition, it was shown in [24] that the
optimal value function in Bayesian reinforcement learning
can be represented using a set of multivariate polynomials.
Unfortunately, the size of the polynomial set grows expo-
nentially with the problem horizon, severely limiting the ap-
plicability of the method.

In order to exploit this closed representation, the BEE-
TLE algorithm was proposed in [24] which is a belief-
lookahead approach allowing to derive an offline policy
by doing approximate policy optimization, then learns the
model online using the offline policy. More precisely, the
offline optimization task is to solve the planning problem
of the POMDP formulation. Nevertheless, this method still
lacks scalability of Bayesian RL algorithms because it suf-
fers from a source of intractability. The intractability source
is mostly from the exponential growth of the number of
monomials in α-functions’ representation. In [24], the au-
thors also proposed one approximation method to mitigate
this critical intractability. This method tries to initialize one
set of monomial basis function, then projects α-functions
onto a linear combination of the elements in that set. The
fixed basis set only accelerated the policy computation, but
it yielded a poor sub-optimal policy.

In this paper, we examine an application of the partially
Observable Monte-Carlo Planning (POMCP) method [29]
as an online solver for Bayesian reinforcement learning.
POMCP uses Monte-Carlo sampling to overcome the curse
of dimensionality during look-ahead planning, and it uses
particle filters to approximate beliefs in very large or con-
tinuous state spaces. However, we exploit properties of the
Dirichlet distribution to maintain the belief for Bayesian re-
inforcement learning in closed form and propose the use
of nested mixtures of such distributions to provide robust-
ness. For action selection, POMCP uses the bandit algo-
rithm UCB1 [3] for selective sampling of actions during
rollout. On the other hand, POMCP solves the exploration-
exploitation dilemma by doing Monte-Carlo tree search
(MCTS) from the current belief node. The Bayesian RL’s
POMDP has a continuous and highly-dimensional state
space which makes its belief space have a large covering
number, a measure of the size of the belief space [16]. To
achieve a small covering number, parameter tying, where

the transition functions for different states are assumed to
be the same, is often used. This requires strong assumption
on which states have the same parameter values. To reduce
the need for such strong assumptions, we propose the use
of nested mixture of tied models so that good results can
be obtained if our assumptions are correct, but robust per-
formance can still be obtained if our assumptions are not
perfect. The nested mixtures also have closed form belief
representation, if the tied models are products of Dirichlets.
Experiments show that the algorithm scales better than the
existing state of the art method and that the nested mixture
model is able to provide robust performance when the model
structures are not known exactly. The experimental results
report both ways of applying POMCP: using particle filter
and Dirichlet distribution to maintain the belief. The results
of nested mixture models is only for the way using Dirichlet
distribution.

In the following, we describe some related works. Then,
we start with the POMDP formulation of Bayesian RL in
Sect. 3. Next, we describe the POMCP algorithm, and its ap-
plication for the Bayesian RL in Sect. 4 and Sect. 5, respec-
tively. The nested mixtures of tied models are presented in
Sect. 6. Then, experimental results are presented in Sect. 7.
Finally, we conclude with some discussions on the future
research in Sect. 8.

2 Related work

Bayesian reinforcement learning has been studied inten-
sively in many works such as [2, 7–10, 12, 13, 24, 32, 39,
41]. Of these, the BEETLE [24] and BFS3 [2] algorithms
are the closest to ours. BEETLE uses an offline point-based
POMDP solver to find a policy that can then be used on-
line as a reinforcement learning algorithm. BEETLE’s rep-
resentation of the value function grows exponentially with
the planning horizon, while we provide an online approach
which does not need to explicitly represent a value function
and policy. Furthermore, our algorithm scales up efficiently
with problems having larger transition matrices.

Bayesian Sparse Sampling [41] is a modification of
the Sparse Sampling method [19] that applies only in the
Bayesian setting. At each belief node, an action is chosen
by solving an MDP model sampled from the posterior. This
action-selection strategy done by the exact-solve step would
slow down the algorithm and limit its applicability for large
domains. Another approach (BFS3) [2], also inspired from
Sparse Sampling method [19], uses Forward Search Sparse
Sampling [40], which is one particular Monte-Carlo tree
search (MCTS) algorithm. It also preferentially expands the
search tree by maintaining hard upper and lower bounds on
the values for each state and action so as to direct the roll-
outs: action is chosen greedily according to the upper bound,
and the next state is chosen based on the uncertain.
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There is an alternative approach in RL, called PAC-
MDP, efficient in dealing with the trade-off between ex-
ploration/exploitation [5, 18, 19, 31, 34]. PAC-MDP algo-
rithms use exploration actions gathering necessary infor-
mation, then later exploit this information to choose opti-
mal or near-optimal actions, which maximize the cumulative
reward. Recently, Bayesian methods combined with PAC-
MDP approach were also developed to build a better explo-
ration model [1, 21]. These methods were proved to give
lower sample complexity bounds.

The algorithm that we use in this paper is a modification
of the partially Observable Monte-Carlo Planning (POMCP)
method in [29]. POMCP uses particle filtering to approxi-
mate beliefs for solving continuous or very large POMDPs
in [29]. In this paper, we exploit properties of the Dirichlet
distribution to maintain the belief for Bayesian reinforce-
ment learning in closed form and propose the use of nested
mixtures of such distributions to provide robustness.

3 POMDP formulation of Bayesian RL

3.1 POMDP formulation

In this paper, we assume to only consider a RL prob-
lem whose environment is formulated as a discrete Markov
decision process (MDP). A discrete MDP is defined by
〈S, A, T , R〉, where S is a discrete state space, A is a dis-
crete action space, T (s, a, s′) = P(s′|s, a) defines the prob-
ability of a next state, R(s, a, s′) defines an immediate re-
ward. RL algorithms try to find an optimal policy π : S → A
with an assumption of unknown environment dynamics in
order to maximize the expected total discounted reward
E(

∑∞
t=0 γ tR(st , at , s

′
t )), where st , at , s′

t , and γ denote a
state, an action, a next state, and a discount factor respec-
tively.

Bayesian RL learning algorithm can be formulated into
a POMDP 〈SP , A, TP , RP , O, Z〉 [8, 24] in which its state
space SP consists of the underlying MDP’s state space S as
well as the parameter space (unknown environment dynam-
ics), and its observation space O is the state space S of the
underlying MDP. Specifically, if each unknown transition
probability is parameterized by a parameter θa

s,s′ ∈ [0,1],
then the new state space is SP = S × {θa

s,s′ }. The action
space A is kept similarly, the observation space O = S
which is the observable MDP state space. The transition
TP (s, θ, a, s′, θ ′) is defined as in Eq. (1)

TP

(
s, θ, a, s′, θ ′) = Pr

(
s′, θ ′∣∣s, θ, a

)

= Pr
(
s′∣∣s, θs,s′

a , a
)

= θs,s′
a δθ

(
θ ′) (1)

where δ is the Kronecker delta. The observation function
Z(s′, a, o) = Pr(o|s′, a) is defined as Pr(o|s′, a) = δs′(o).
The reward function RP (s, θ, a, s′, θ ′) = R(s, a, s′) as in the
original MDP’s reward function. Thus, we obtained a con-
tinuous state, discrete observation POMDP problem.

The POMDP state is partially observable and monitored
as a belief. Let the prior belief over all unknown parame-
ters θs

a be b(θ) = Pr(θ). Assuming that the prior belief is a
product of Dirichlets, then the posterior is also a product of
Dirichlets. More specifically, the belief is written as

b(θ) =
∏

s,a

D
(
θs
a ;ns

a

)
(2)

where each unknown distribution θs
a per one pair (s, a) is

represented by one Dirichlet D(θs
a ;ns

a) = k
∏

s′ θ
n

s,s′
a −1

s,a,s′ ; and

ns
a is a vector of parameters {ns,s′

a }. Then, the closed form
of the belief update operator after observing a transition
(s̄, ā, s̄′) is

bs,s′
a (θ) = kθs,s′

a

∏

s,a

D
(
θs
a ;ns

a

)

=
∏

s,a

D
(
θs
a ;ns

a + δs̄,ā,s̄′
(
s, a, s′)) (3)

Thus, the effect of a belief update is just to increase the count
corresponding to the observed transition.

3.2 BEETLE algorithm

In this section, we will describe briefly one analytic al-
gorithm to the discrete Bayesian RL which is called the
BEETLE algorithm and introduced in [24]. Recall that the
POMDP has a state space of partly observable discrete com-
ponent (current observable MDP state s) and partly unob-
servable continuous component (parameter θ ). Then, the
Bellman’s update can be written in the form of

V t+1
s (b) = max

a

∑

o

Pr(o|b, a)
[
R(b, a) + γV t

(
bo
a

)]
(4)

where bo
a defines the next belief at a current belief b taking

action a and observing o. In POMDP formulation, o is the
observation which is in the state space of the original MDP,
thus we can rewrite Eq.(4) as

V t+1
s (b) = max

a

∑

s′
Pr

(
s′∣∣s, b, a

)[
R

(
s, a, s′) + γV t

s′
(
bs,s′
a

)]

(5)

The optimal value function can be represented by a set Γ

of α-functions, and each α-function is a multivariate polyno-
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mial. For more detail, assuming that the optimal value func-
tion is a piecewise-linear convex function and written as

V t+1
s (b) = max

α∈Γ

∫

θ

αs(θ)b(θ)dθ

= max
α∈Γ t+1

αs(b) (6)

where α ∈ Γ t+1 is a function over parameter space of θ , and
has the following Bellman update from Γ t

αt+1
b,s (θ) =

∑

s′
Pr

(
s′∣∣s, θ, a

)[
R

(
s, a, s′) + γ α

s,s′
b,a (θ)

]
(7)

where α
s,s′
b,a = arg maxα∈ Γ t αs′(bs,s′

a ).

If Γ 0 is an initial set of α-functions consisting of an
unique element, such that α(θ) = 0 for all θ , which is triv-
ially a multivariate polynomial. Using induction and Eq. (7),
then αt is a multivariate polynomial, if αt−1 is a multivariate
polynomial. This is the major result of BEETLE algorithm
[24].

However, we observe that the number of monomials
in this representation increase in a factor of O(|S|) (see
Eq. (7)). Thus, this representation causes the main in-
tractability in Bayesian RL. In the next section, we will
introduce one approximation algorithm which has the ca-
pability of efficiently dealing with this problem. We will
implicitly represent α-functions as a finite state controller.

4 Partially observable Monte-Carlo planning (POMCP)

The POMCP algorithm [29] is an online planning method
that extends the Monte-Carlo tree search (MTCS) method
[20] to POMDPs. Each node of the tree search is repre-
sented by a pair of the value of history h and the count of
times that history h has been visited T (h) = 〈V (h),N(h)〉;
where V (h) is estimated by the mean return of Monte-
Carlo simulations starting from h. The tree is considered
as a search tree of visited histories, whose root is the ini-
tial belief b0. For each possible action a, a value Q(h,a)

is estimated also by Monte-Carlo simulations, and associ-
ated with a visit count N(h,a). Clearly, the total count must
be N(h) = ∑

a N(h, a). Each simulation starts from a state
sampled from the belief b(h), chooses actions based on the
multi-armed bandit algorithm UCB1 [3]. If child nodes for
all actions of the current node are added into the tree, actions
are selected to maximize an upper confidence bound on the
action value,

Q
⊕

(h, a) = Q(h,a) + c

√
logN(h)

N(h,a)

π(h) = argmax
a

Q
⊕

(h, a)

where c is a bias parameter which defines the proportion
of exploitation and exploration. If c = 0, the UCB1 policy
becomes a greedy policy.

Otherwise, if not all child nodes for all actions of the cur-
rent node are added into the tree, the rollout action is used
to select actions. The POMCP policy consists of two stages.
Initially, it exploits the knowledge contained in the search
tree. Once the simulation leaves the scope of the search tree,
it must select actions according to a rollout policy. After
each simulation, one new node, corresponding to the first
new updated history hao (assume action a is taken at h, then
observing an o), is added into the search tree, with initial
value 〈V0(h

ao),N0(h
ao)〉. As more simulations are taken,

the POMCP policy improves with more added nodes, and
the Monte-Carlo estimates become more accurate.

5 Monte-Carlo planning for Bayesian RL

Partially Observable Monte-Carlo Planning (POMCP) was
introduced in [29] for solving continuous or large POMDPs.
It uses particle filter for belief representation and a UCT
search method [20] to select actions online. Instead of using
a particle filter, we represent the belief in a closed form using
a Dirichlet distribution. The POMCP algorithm uses a ran-
dom policy for the rollout policy, because it has no knowl-
edge beyond the scope of the search tree. Our algorithm is
Monte-Carlo Bayesian Reinforcement Learning (MCBRL)
as described in Algorithm 1. Each node of the search tree
is labeled with a pair of a current MDP state and a history
T (s,h) = 〈V (s,h),N(s,h)〉, the belief state is B(θ, s, h).
Each simulation starts from the MDP state s and is simu-
lated with a MDP model θ sampled from B(·, s, h).

For one estimation step, MCBRL algorithm will query
the oracle (POMDP model of the unknown MDP) at most
N ×d times comparing to t ×d ×|A|2 ×C2 times of Sparse
Sampling methods such as Bayesian Forward Search Sparse
Sampling (BFS3) [40]; where t is the number of trajectories
that will be simulated, d is the maximum depth of any simu-
lated trajectories, |A| is the number of actions available, and
C is the number of times each action is tried for a given node
in the tree. The parameter t and C of BFS3 are considered
as the number of simulations N of MCBRL. On the other
hand, the method like Bayesian Sparse Sampling [41] even
has to solve exactly a sampled MDP at each action-selection
step within the inner loop. This shows that the computational
power required makes BFS3 and Bayesian Sparse Sampling
methods of limited applicability for larger domains.

Our MCBRL algorithm also converges to the optimal
value function like POMCP. We now provide the way to de-
rive a MDP with histories as states as in [29]. Lemma 1 is
a straightforward derivation from [29]. By this Lemma, the
convergence analysis of MCBRL is equivalent to POCMP
[29] and UCT [20].



Monte-Carlo tree search for Bayesian reinforcement learning 349

Algorithm 1 Monte-Carlo online planning Algorithm for
Bayesian RL
procedure ONLINESEARCH(s, h)

1: for i = 1 to N do
2: Sample a model θ ∼ B(h).
3: SIMULATE(s, θ, h,0).
4: end for
5: return argmax

a
Q(s,h, a).

procedure SIMULATE(s, θ, h, d)

1: if (γ d < ε) then
2: return 0
3: end if
4: if (h /∈ T ) then
5: for all a ∈ A do
6: Add a node (s, θ, ha, d) into the tree T .
7: end for
8: return ROLLOUT(s, θ, h, d)
9: end if

10: Select an action a ← argmaxb{Q(hb) + c

√
logN(h)
N(hb)

}.
11: Take action a, and observe (o, r) ∼ θ .
12: R ← r + γ.SIMULATE(o, θ,hao, d + 1)

13: N(h) ← N(h) + 1, N(ha) ← N(ha) + 1
14: Q(ha) ← Q(ha) + R−Q(ha)

N(ha)

15: return R

procedure ROLLOUT(s, θ, h, d)

1: if (γ d < ε) then
2: return 0
3: end if
4: Select an action a ∼ πrollout (s, h, ·)
5: Take action a, and observe (o, r) ∼ θ .
6: return r + γ.ROLLOUT(o, θ,hao, d + 1)

Lemma 1 Given a POMDP 〈SP , A, TP , RP , O, Z〉 which
is the derived POMDP of a Bayesian RL problem. The
derived MDP of this POMDP with histories as states is
M̃ = (H, A, T̃ , R̃), where

T̃ a
h,hao =

∫

s∈SP

∫

s′∈SP

B(s, h)TP

(
s′∣∣s, a

)
Z

(
o
∣
∣s′, a

)
dsds′

and,

R̃a
h =

∫

s∈SP

B(s, h)RP (s, a)ds

Then the value function of the derived MDP is equivalent to
the value function of the derived POMDP of a Bayesian RL
problem, Ṽ π (h) = V π(h),∀π .

6 Nested mixtures of tied models

In practice, the parameters θs
a are often the same for many

states and can be tied together to reduce the number of pa-
rameters. Sometimes we do not have enough knowledge to
know the correct states to tie together. In such cases, we
may still be able to specify a nested sequence of tied models
M1 ⊆ M2 ⊆ · · · ⊆ Mn, where Mn is the model without any
tied parameters. Each tying model Mi is presumably prede-
fined as in [24]. We then use a mixture of model

p(θ) =
n∑

i

βip(θ |Mi) (8)

as the prior, where βi = p(Mi) is the respective weight of
each model Mi . If the true model is in a tied model Mi with
a small i, we would like to do well. Otherwise, we would
still like to have adequate performance. Assuming that θ is
the parameter of a multinomial distribution and each mixture
component p(θ |Mi) is a tied model drawn from the product
of Dirichlets.

We need to keep track of the posterior distribution as

p(θ |data) =
∑

i

p(Mi |data)p(θ |Mi,data). (9)

The term p(θ |Mi,data) can be computed as before. In order
to compute the model’s weight posterior distribution

p(Mi |data) ∝ p(Mi)p(data|Mi) (10)

we need compute p(data|Mi) by marginalization over pa-
rameters as

p(data|Mi) =
∫

θ

p(data, θ |Mi)dθ

=
∫

θ

p(data|θ)p(θ |γMi
)dθ

=
∏

c

∫

θc

∏

s∈c

∏

a

p
(
o(s,a)

∣
∣θc

)
p
(
θc

∣
∣γMi

)
dθc

where o(s,a) is the observed outcome counts for action a in
state s, γMi

is the Dirichlet distribution parameter and c is a
cluster within Mi , then

p(data|Mi) =
∏

c,a

Γ (
∑

j γj )
∏

j Γ (γj )

×
∏

s Γ (
∑

j o
s,a
j + 1)

∏
j,s Γ (o

s,a
j + 1)

∏
j Γ (

∑
s o

s,a
j + γj )

Γ (
∑

j,s o
s,a
j + γj )

(which is a multivariate Polya distribution).
We know that the belief B(h) over a history h is equiv-

alent to the posterior distribution of the model’s parameters
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p(θ |data = h) as computed in Eq. (9). Thus, in order to ap-
ply this nested mixture model for the MCBRL algorithm,
the model sampling step (line 2 of ONLINESEARCH pro-
cedure in Algorithm 1) changes as following: We first sam-
ple a model as Mi ∼ p(Mi |data) as computed in Eq. (10),
then sample the dynamics from θs′

s,a ∼ p(θ |Mi,data) as be-
fore in Sect. 5.

7 Experiments

In this section, we evaluate the performance of MCBRL on
two simple problems from the previous works: “Chain” [1,
7, 24] and 6 × 6 maze [1, 27], and compare with BEETLE
[24], BOSS [1], and BFS3 [2] algorithms.

7.1 Chain problem

Figure 1(a) shows the Chain problem which has five states
and two actions, A = {a, b}. The actions usually causes an
agent to move along the direction shown in the figure, but
the agent slips (move in the other direction) with probability
0.2.

The experiments are implemented with 3 structural pri-
ors: Tied, Semi-tied, and Full. The Full version means that
the dynamics are completely unknown. The transition dy-
namics are known except for the slip and behavior probabil-
ities, which are state and action independent in the Tied ver-
sion, while action dependent in the Semi-tied version. For all
experiments, MCBRL uses the exploration constant c set as
in [29], the search horizon is computed by setting a discount

Fig. 1 Chain problem showing action, reward for each transition

factor γ = 0.95 and an accuracy ε = 0.01. The number of
simulation is set to 1000.

Table 1 shows the results of MCBRL compared to other
algorithms from the chain problem. The default policy is
the Exploit policy which is the MDP policy for the average
model from the current belief [24]. The results without dis-
counting are averaged over 500 runs with standard deviation
for the first 1000 steps. The results show that MCBRL is as
effective as BFS3, BOSS and BEETLE in Tied and Semi set-
ting. Exploit policy is myopic and does not implement any
exploration, so its performance is worse than MCBRL’s in
Semi and Full settings. Moreover, MCBRL can also be ef-
fective in Full setting in which BEETLE fails to do more
careful exploration due to the large parameter space (40-
dimensional parameter space). However, MCBRL still does
exploration less effectively than BOSS and BFS3 due to
the large parameter space. BFS3 performs better because it
uses a sparse sampling algorithm and directs the rollouts by
maintaining upper and lower bounds on the values for each
state and action. So it searches more efficiently, especially in
large state spaces. The continuous and high-dimensional pa-
rameter space is still one of most challenging problems for
any POMDP solvers. We have tried the Exploit policy [11]
to replace the rollout policy (with informed rollout policy),
but the performance decreases. The poorer performance of
MCBRL with informed rollout policy is consistent with the
discovery in [11].

We also test MCBRL with the use of a particle filter,
which does not need a closed form representations of be-
lief. The model belief is updated approximately using an un-
weighted particle filter, which is similar to the POMCP algo-
rithm [29]. The performance of MCBRL with particle filter
is near the performance of MCBRL with exact belief update
(however with a constrained prior assumption) in Tied and
Semi-Tied settings. However its performance in Full setting
degrades, because the parameters space is very large when
using a small sample size (1000 particles) for the particle
filter.

In order to evaluate the mixture of parameter tyings in
Sect. 6, we use a variant of the chain problem as in [1],
named Chain2. Chain2 problem includes one more cluster.

Table 1 Cumulative reward for
Chain problem Tied Semi Full

BEETLE 3650 ± 41 3648 ± 41 1754 ± 42

Exploit 3642 ± 43 3257 ± 124 3078 ± 49

BOSS 3657 3651 3003

BFS3 3655 ± 27 3652 ± 27 3055 ± 29

MCBRL 3653 ± 32 3650 ± 34 2675 ± 35

MCBRL (informed policy) 3579 ± 35 3571 ± 34 2498 ± 41

MCBRL (particle filter) 3613 ± 31 3520 ± 35 1579 ± 44
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Cluster 1 (states 1, 3, 5) is similar to the only cluster in
the original Chain. Cluster 2 (states 2,4) is with distribu-
tion 0.3/0.7 for action a, and reverse for action b. Chain2 is
following to the Semi-tied setting. Moreover, we manually
build 3 mixtures: Tied (has one parameter, two clusters are
considered the same), Semi-tied (has two parameters in or-
der to separately capture two clusters), and Full setting for
Chain2. We also use three mixtures (Tied, Semi, Full) for the
Chain problem. The value of the optimal policy for Chain2
is 3301. The result tells that the mixture model works well
when the Tied model fails in Chain2 whose true model is
Semi-tied. The cumulative reward of the mixture model for
Chain2 is 3164. And, if we use Semi-tied model, we ob-
tain 3241. To summarize, we put the results of two prob-
lems in Table 2. The results show that MCBRL with nested

Table 2 Results for Chain & Chain2

Chain Chain 2

Tied 3653 ± 32 1673 ± 34

Semi 3650 ± 34 3241 ± 34

Full 2675 ± 53 2475 ± 41

Mixture 3650 ± 39 3164 ± 45

mixture models can quickly find and learn the correct tied
model as described in Fig. 2. The performance of MCBRL
with nested mixture models is near optimal because there is
a true model in the mixture model set. However, if there is
no true model in the set, MCBRL can still find the closest
model in the set to the true one.

7.2 Maze problem

In this section, we experiment with the 6 × 6 maze problem
as in [1] and [27]. In this problem, shown in Fig. 3, there are
4 possible actions {N, S, E, W}. The agent starts at the cell
labeled S, and has to find the goal cell labeled G. The shaded
cells are pits. Each action has 80 % intended effect and 20 %
noisy effect which makes the agent move in one of the two
perpendicular directions. Each step receives −0.001 reward,
and terminal rewards of −1.0 and 1.0 for falling into a pit or
reaching the goal, respectively.

We run MCBRL with 1000 sampling simulations, a dis-
count factor γ = 0.997, the horizon accuracy ε = 0.0001
(about 3065 steps). All results are averaged over 50 trials of
500 episodes. We observe that if we cluster the maze prob-
lem based on the behavior of each pair (s, a), we obtain op-
timally only 5 clusters among 16 possible ways (based on

Fig. 2 The probabilities of each tied model in (left) Chain and (right) Chain2 problems. The error bars are standard deviations

Fig. 3 6 × 6 maze problem
with an optimal policy (on the
left) and 16 clusters (on the
right)
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Fig. 4 Cumulative training
reward vs. trials for 6 × 6 maze

combinations of walls around one pair) of clustering them.
The right panel on Fig. 3 depicts the configuration of the
clustering of 16 clusters. The 5 clustering model can be ob-
tained if we do a partition as {1}, {2,3,4,5}, {6,7,9,11},
{8,10}, {12,13,14,15} and not use 16. First, we evaluate
the performance of MCBRL without nested mixture models.
The MCBRL is experimented with three manually built ty-
ing models: 5 clusters, 16 clusters, and full setting (without
clustering). Second, MCBRL is experimented with a nested
mixture model of those tying models.

The cumulative rewards obtained by BOSS [1], BFS3 [2],
MCBRL with three separate models, and MCBRL with the
nested mixture model (Sect. 6) are shown in Fig. 4. Our
MCBRL algorithm with the nested mixture model performs
better than BOSS (with nonparametric model clustering),
which is able to find only about 10 clusters, and BFS3. This
is because the MCBRL algorithm uses a fixed set of tying
models which makes it quickly find and learn the best one
(in terms of capturing the problem’s correct dynamics) with
only 5 clusters. BFS3 uses sparse sampling, so it uses more
memory than our method. Unfortunately, our computer does
not have enough memory to construct such a large tree with
BFS3. We used Student’s t-test to verify the hypothesis that
the performance of MCBRL with nested mixture models
is better than BOSS and BFS3. The test’s results guaran-
tee that the performance of MCBRL is significantly better
than BOSS until the 100th episode and BFS3 until the 50th
episode, with a confidence level greater than 99.5 %

8 Conclusion

We examined the use of partially observable Monte-Carlo
planning for online solving of Bayesian reinforcement learn-

ing problems. The use of online Monte-Carlo simulation
avoids one source of intractability in offline Bayesian re-
inforcement learning methods—the exponential growth of
the value function representation with time horizon. We fur-
ther propose the use of a nested mixture of tied models as a
method for increasing the robustness of the method when the
structure of the parameter space is not known well. Experi-
ments show that the method performs well and substantially
increases the scalability of current solvers.

We have only studied the use of the method for learn-
ing MDPs. It would be interesting to extend the method to
learning POMDPs. The lack of a compact representation of
beliefs appears to be one obstacle for extending the method
to POMDPs. It may be interesting to examine approximate
methods such as particle filters for belief representation in
these problems.
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