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Abstract. Recent works explored the possibility of designing physical
robots using evolutionary algorithms. We propose a novel algorithm for
the evolution of morphology and control of autonomous robots controlled
by artificial neural networks. The proposed algorithm is inspired by Neu-
roEvolution of Augmenting Topologies (NEAT) which efficiently evolves
artificial neural networks. All three main components of NEAT algo-
rithm (protecting evolutionary innovation through speciation, effective
crossover of neural networks with different topologies and incremental
growth from minimal structure) are applied to the evolution of both
morphology and control system of a robot. Large-scale experiments with
simulated robots have shown that the proposed algorithm uses signifi-
cantly less fitness evaluations than a standard genetic algorithm on all
four tested fitness functions. Positive contribution of each component of
the proposed algorithm has been confirmed with a series of supplemen-
tary ablation experiments.

1 Introduction

The current technology is capable of automatically designing hardware for au-
tonomous robots using evolutionary methods [3,4,7]. However, the current meth-
ods are limited in the complexity of both control and physical design of evolved
robots. Most of the evolutionary design techniques used today to automatically
design both morphology and control of an autonomous robot do not evaluate
the fitness directly on the physical robot. The primary reason is the technical
difficulty of automatically evaluating different robot morphologies. Instead, the
common approach is to evolve the robot in a simulated environment and to
construct only the evolved champion in reality. This approach is, however, still
very time-consuming. The high demand on the computer resources is one of the
major factors prohibiting the evolution of more sophisticated robots. To allow
evolution of more complex robots, it is necessary to propose methods which are
more effective in evolving robot morphology and control.

Research in the area of evolution of autonomous robots was pioneered by
Karl Sims in 1994 [9]. His virtual creatures inhabit a three-dimensional world
with simulated physical laws and are controlled by a series of neural networks
distributed along the body of each creature. Since its publication in 1994, virtual
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creatures have inspired much research in this area. Several works attempted
to build evolved robots in reality [3], [7]. Others concentrated on the genetic
representation of the robots and associated genetic operators [4], [8]. Bongard et
al. [1] has recently proposed a method of automatic recovery from unexpected
damage for physical robots, through adaptive self-modelling. Physical robot uses
its sensor and actuator values to infer its (possibly damaged) morphology and
then uses this self-model to move forward.

In summary, several works have successfully evolved autonomous robots. How-
ever, the major drawback in evolving autonomous robots is the high demand on
computer resources. Karl Sims performed his experiments on a parallel computer
with 32 processors — Connection Machine CM-5. According to Sims, single evo-
lution has taken three hours to finish [9]. Today, single evolution takes typically
multiple hours (or even days) to complete using a single standard PC computer.
While computer speed is increasing fast, large-scale experiments with simulated
robots are still difficult to carry out without the use of distributed computing.
The algorithm proposed in this paper uses significantly less fitness evaluations
to evolve robots with at least the given fitness value than a standard genetic
algorithm. While not a definitive solution to the problem (distribution is still
required), it is a step towards evolving robots faster than possible today.

The proposed algorithm — Hierarchical NEAT — is inspired by NeuroEvolution
of Augmenting Topologies (NEAT) — a recent successful algorithm for the evo-
lution of neural networks [11]. The proposed algorithm extends NEAT to evolve
both morphology and control of robots. The first part of this paper (Sections 2
and 3) provides background about NEAT and robot representation. The sec-
ond part (Sections 4 and 5) describes the proposed algorithm and experiments
conducted to test its properties along with discussion and directions for future
research (Sections 6 and 7).

2 NeuroEvolution of Augmenting Topologies

NEAT is an algorithm proposed by Stanley and Miikkulainen in 2002 [11]. NEAT
is unique in its ability to evolve topology of a neural network along with weights
of neural connections by introducing three concepts: a method of crossover of net-
works with different topologies using a concept of historical markings, a method
of protecting innovation through speciation and starting the evolution of neural
networks from a minimal topology. This section provides brief overview of key
components of NEAT algorithm. For a more comprehensive description see [11].

2.1 Recombination Using Historical Markings

The concept of historical markings is central to NEAT algorithm. Markings
bring the possibility of tracing individual structure elements (e.g. neurons and
neural connections) throughout the evolution. Each element is assigned a unique
identifier (i.e. a historical marking) upon its creation (e.g. during mutation).
Markings are inherited, so each element can be traced back to its oldest ancestor.
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Recombination of two arbitrary neural networks with different topologies is a
challenging task. Without any additional information, expensive topology match-
ing algorithms must be employed for finding correspondences between neurons
in parents. Historical markings, however, offer a simple solution to this problem.
Parental structures are first scanned for the presence of structure elements with
matching historical markings. An offspring is constructed by first copying the
parent with a higher fitness value, followed by a random exchange of internal
parameters of all matching nodes and connections with another parent.

2.2 Speciation

Speciation in NEAT serves two purposes: it maintains the diversity of the popula-
tion and it protects structural innovation. Neural networks in the population are
divided into species according to their similarity. Each network is compared to a
representative of each species one at a time (representative is chosen randomly,
e.g. as the first member of a species). If the value of compatibility distance is
smaller than the specified compatibility threshold, the network is placed in that
species. If none of the species satisfies the condition, a new species is created.

The compatibility distance measure in NEAT is defined as a linear combina-
tion of the number of non-matching genes (i.e. those without a counterpart in
other parent) and average weight difference in matching neural connections.

Neural networks compete only against networks in the same species (explicit
fitness sharing mechanism is used for reproduction [2]). This allows new struc-
tural innovation (which might initially be disadvantageous) to be optimized in
a separate species, instead of being immediately dominated by currently better
networks in the entire population.

2.3 Minimizing Dimensionality

Many approaches to the evolution of structure start with a population of net-
works with randomly generated structure. However, it has been shown that
starting from a complex randomly-generated structure might decrease the per-
formance of the evolution, because the random generation introduces a lot of
unjustified structure, not tested by a single fitness evaluation [11].

NEAT introduces a concept of starting with a minimal structure (small ran-
dom networks) and increasing complexity of the network as the evolution pro-
ceeds. Starting the search this way minimizes the dimensionality of the search
space during the early stages of the search.

3 Robot Representation

This section presents an overview of the robot representation used in this paper.
Robot simulator has been implemented using ODE physics engine [10]. For a
more comprehensive description, see [5,6]. The genetic representation and mating
operators (grafting and crossover) are inspired by Karl Sims’ virtual creatures [9)].
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Fig. 1. Manually designed examples of a Fig. 2. Transcription example with ter-
transcription of genotype to a physical minal connections (dashed lines). Recur-
robot sive limits are shown inside each node.

3.1 Morphology

A physical robot is represented by a rooted tree of morphological nodes. Each
node corresponds to a single body part (e.g. a box) and each connection corre-
sponds to a physical joint between two body parts (see Figure 1 for examples).

The robot phenotype is created from a corresponding genetic template (i.e.
a genotype). Genotype is a directed graph (not necessarily a tree; cycles are
permitted). Phenotype is created from the genotype by first copying the root
node and then recursively traversing connections in depth-first order, adding
encountered nodes and connections to the phenotype graph. To prevent infinite
recursion, each genotype node has a recursive limit which limits the number of
passes through the given genotype node. Each genotype node can thus be copied
multiple (but finite) times to the phenotype graph. Each genotype connection
also has a terminal flag. Connection with the terminal flag enabled is applied
only when the recursive limit of its source node is reached (see Figure 2).

Both genotype node and genotype connection have various other properties
used for building their phenotype counterparts. Each genotype connection con-
tains information about the position of the child node relative to its parent node.
The position is represented by child and parent anchor points, relative rotation,
scaling factor and a set of three reflection flags, one flag for each major axis.
Each enabled reflection flag causes a mirrored copy of the child node to be added
to the phenotype graph (along with the original non-mirrored child node).

Each genotype node contains information about the shape and the size of the
resulting morphological node (in the case of a box, its dimensions are specified)
and a joint-type. The following joint types are used: fized, hinge, twist, hinge-
twist, twist-hinge, universal and spherical. Each joint type is defined by a set of
rotational constraints imposed on two connected body parts.

3.2 Control

Robot’s control system is distributed over its entire body. Each morpholog-
ical node has its local sensors, effectors and a local controller. Besides local
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controllers, a single global controller (i.e. the “brain”) is also present to allow
global coordination. Local controller in a child node can also communicate with
its parent node controller (neural connections in both directions are allowed).
This way, neural signal can spread through the robot body in a fashion similar
to natural organisms.

In this project, artificial neural network (ANN) controllers are used exclu-
sively. Connection weights are limited to the range [—2, 2]. Feed-forward topology
of the network is used.

Large set of transfer functions is used, as proposed by Sims [9]: abs, atan, cos,
differentiate, exp, integrate, log, memory, osc-saw, osc-wave, sigmoid, sign-of,
sin, smooth-linear, divide, max, min, product, sum, greater-than, if, interpolate,
sum-threshold. Each neuron has one, two or three inputs, depending on the trans-
fer function. Multiple connections can be connected to a neuron input. Neuron
computes its value by summing weighted values of all enabled connections for
each input and computing transfer function value on these inputs.

Each sensor is contained in a specific morphological node. Following sensor
types were used in experiments with the robots: a joint angle sensor, a gyroscopic
sensor, a touch sensor and a photo sensor.

Only one type of effector, a joint effector, is currently used. Each degree of
freedom of a joint is controlled separately, by a single effector output.

3.3 Validity Testing

During the evolution, robots often exploit properties of the physical simulation
to their advantage. However, several pre-simulation tests can be carried out
to discover abusive robots early (e.g. test for self-penetration, excessively small
body parts, excessively large number of body parts). Operators such as mutation,
grafting and crossover are performed repeatedly until a genotype passing the test
is introduced or a specified number of unsatisfactory genotypes is created (in that
case, the last created genotype is returned). Without the testing process, most
of the newly created population contains invalid robots, effectively disabling the
evolution process.

4 The Proposed Algorithm

This section introduces Hierarchical NEAT (hNEAT) — a novel algorithm for
evolving autonomous robots (for a more comprehensive description of the pro-
posed algorithm see [5,6] or visit http://ero.matfyz.cz). The algorithm is an
application of the three main concepts introduced by NEAT to the morphology
and control of evolving robots.

NEAT uses the concept of historical markings to trace individual neurons
and neural connections during the evolution of neural networks. Our algorithm
extends this concept by introducing hierarchical historical markings to trace
structural elements of both morphology and control. Markings on the level of
morphology are managed as in NEAT (see Section 2): each morphological node
and connection is assigned a unique and inheritable historical marking upon
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its creation. In addition to that, historical markings are also assigned to all
newly created neurons. Markings on the morphological level are independent
of markings on the control system level (i.e. they are never compared to each
other). Moreover, markings of neurons in different morphological nodes are also
independent.

4.1 Recombination

Phenotypes are mated hierarchically, based on the correspondence given by his-
torical markings. Morphology graphs of both parents are first searched for the
presence of nodes and connections with the same historical markings. The parent
with higher fitness value is then copied to become the first draft of an offspring.
Values of internal properties of all matching nodes and connections in the off-
spring are then randomly chosen either from the first or from the second parent.

The only exception from this rule is the local neural network contained in
each morphological node. When a pair of corresponding morphological nodes
is found, the neural network of the offspring is not created by copying one of
the parental neural networks. Instead, neural networks themselves are combined
internally, based on the historical markings of individual neurons. Recombination
of neural networks is, again, based on the correspondence given by historical
markings. All internal properties of matching neurons (transfer function) and
neural connections (weight) are chosen from a random parent.

Thanks to the historical markings, mating is capable of recombination of genes
even on the level of individual properties of neurons and neural connections inside
morphological nodes of a robot. This is not possible with other methods such as
crossover, grafting [9] and picking [8].

4.2 Speciation and Compatibility Measure

Mechanism of speciation used in the proposed algorithm is the same as in
NEAT (see subsection 2.2). Method of explicit fitness sharing uses compati-
bility distance measure to assign robots to species. Therefore, for speciation to
work with robots, compatibility distance of two robots needs to be defined.

Robots are represented by a complex data structure composed of a directed
graph representing the morphology, with each node containing a local controller
which is, again, a directed graph. Measuring similarity of two robots represented
by graphs with different topologies without any additional information is a chal-
lenging task. However, hierarchical historical markings offer an easy and effi-
cient solution. Since the hierarchical markings provide a correspondence between
structural elements of two morphological graphs, the compatibility distance can
also be computed hierarchically.

The similarity of two robots is computed using a hierarchy of compatibility
distance measures (CDMs): 4 for robots; d,,, d. for morphological nodes and con-
nections, d, for neural networks, d,,, for neurons and J,. for neural connections.
The range of all CDMs is [0,1]. This constraint is not necessary, but simpli-
fies visualization and hierarchical composition of CDMs. CDMs are constructed
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hierarchically, down to the level of primitive properties (represented by a real
number, boolean value, etc.). CDM for these primitive objects is defined so that
they are zero if their arguments are the same and one if their arguments are
entirely different (valid ranges of all values are known in advance).

The CDM § between two robots is computed as follows:

A= Z 5n(a1,a2), B = Z 6C<b17b2)7

(a1,a2)ENm, (b1,b2)€ECH

IN.|+|Cn|+ A+ B

5= ;
[Np| + | Nm| + [Crl + |Co

where N,,,, C,, are sets of all pairs of matching nodes and connections, respec-
tively and N, C,, are sets of all non-matching nodes and connections from both
parents, respectively. In the case of small morphological graphs, the denominator
can be replaced by a constant.

CDM of two morphological nodes §,, is computed as a weighted average of
CDMs of their recursive limits, geometric shapes, physical joint types and lo-
cal neural controllers (d,). Similarly, CDM of two morphological connections is
computed as a weighted average of CDMs of their anchoring coordinates, three
angles of rotation, the scale factor, the terminal flag, the recursive limit and three
reflection flags. The influence of individual properties on the CDM is controlled
by a set of weights: w, for properties affecting the morphological structure (re-
cursive limits, terminal and reflection flags), w,, for other morphological prop-
erties (such as scale, rotation, shape, joint-type) and w, for the control system.
Values of 2.0, 1.0 and 1.0 have been used for wg, w,, and w. respectively in this
work (giving higher importance to the morphology structure).

The CDM §, between two neural networks is computed using the formula for
morphology §, substituting 04, for §,, and d,. for §.. CDM for neurons (d4y)
is one if they have the same transfer function and zero otherwise. For neural
connections (d,.) it is an average of compatibility distances of their weights.

Compatibility distance defined in this manner is capable of measuring differ-
ences on a very fine level of detail. This allows species to form not only according
to the differences in their morphology, but also according to the differences in
their neural networks.

4.3 Minimizing Dimensionality

Starting from minimal structure has been shown to increase the performance
of the evolutionary search in NEAT algorithm (see subsection 2.3 for details).
The same approach has been taken here. The initial population is filled with
randomly generated robots with small number of nodes in the genotype (size
of the generated robots is further discussed in subsection 5.2). Neural network
inside each morphological node starts without neurons, with the inputs randomly
connected to the outputs of the network.
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5 Experiments and Results

This section presents two sets of experiments conducted with hNEAT. First
set compares the performance of hNEAT and the performance of a standard
genetic algorithm with grafting and crossover [9]. The second set shows how
each component of hNEAT contributes to the performance of the search.

In order to compare performance of different configurations of evolution, the
winning fitness is first defined for each fitness function. Algorithms are compared
based on the number of fitness evaluations necessary to find an robot with at least
the winning fitness value. Failed validity tests (as described in subsection 3.3)
are also included in the number of fitness evaluations. Fitness values for all
four fitness functions used for experiments in this section have been chosen so
that the large majority of the evolutionary runs are able to find the winner within
the first 30000 evaluations. In case when the search fails to find the winner, the
number of evaluations of 30000 is used. Fitness functions for light following,
swimming, walking and jumping have been defined as proposed by Sims [9].

Population size of 300 was used. New population in standard GA was com-
posed of one champion from the previous population, 75% robots created by
mating (half by crossover and half by grafting) and the rest created by muta-
tion. Each offspring had an 80% probability of being mutated. Surviving robots
have been selected uniformly from the elite 20% robots of the previous popula-
tion. The same setup has been used for populating species in hNEAT algorithm
except for the mating method — recombination based on historical markings was
used instead of grafting and crossover.

Each configuration of the evolutionary algorithm was tested 30 times for 100
generations. A single evolution took on average 70 minutes to finish using 7 PC
computers. Computation of all experiments has taken more than 8 months of
CPU time. Using distributed computation on 70 computers (divided into groups
of 7), all experiments have been computed in under a week of real time.

All p-values have been computed using Welch two sample t-test for unequal
variances with significance level of 5%.

5.1 Measuring Performance

The goal of experiments presented in this section is to show whether hNEAT
improves the performance of the evolutionary search compared to the standard
GA. Four sets of experiments have been performed, each set with one of the
following fitness functions: light following, walking, jumping and swimming. For
each fitness function, two algorithms have been tested:

1. hNEAT algorithm. The initial population has been generated randomly;
each robot having three nodes and three connections.

2. Standard GA with grafting and crossover. Speciation and historical
markings have been disabled. Grafting and crossover have been used as mat-
ing methods. Otherwise, all parameters (including the initial population)
have been set to the same values as in hNEAT.
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Table 1. Comparison of hNEAT and the standard GA. Columns show mean number
of fitness evaluations along with the standard deviation and the percentage of failed
evolutions. Standard GA is represented by dark color and hNEAT by light color.

Behavior|Config.| Mean Std|Failed  number of
Following |hNEAT |16704.53]6339.75| 8% °valations
GA 27873.94/5002.57| 2%
Walking |hNEAT |11033.09|3419.77 0%

T T
=
GA 27230.64(4128.62| 63%
Jumping |hNEAT |19221.51|7966.50[ 22% 1 m |

25000

GA 29159.23(2068.91| 80%
Swimming| hNEAT |10425.67|2707.13 0%
GA 22438.95(5507.82| 16%

|

Following Walking Jumping Swimming

o

Results of the performed experiments are presented in Table 1. Standard GA
with grafting and crossover is outperformed by hNEAT in all tested scenar-
ios (p < 10~7). hNEAT is faster than standard GA by the factors of 1.67, 2.47,
1.52 and 2.15 respectively and also fails much less frequently. A large diversity
of successful robots has been discovered for each fitness function. Examples of
robots evolved using hNEAT are shown in Figure 3.

5.2 Ablation Experiments

Ablation experiments are designed to show the contribution of individual hANEAT
components to the overall performance of the algorithm:

Non-mating hNEAT. Mating is disabled. Otherwise as hNEAT.
Non-speciated hNEAT. Speciation is disabled. Otherwise as hNEAT.
hNEAT with randomly created initial population. Three different
configurations have been tested, each with different size of robots in the
initial population (robots were generated with the same number of nodes
and connections — 2, 3 and 4).

AN

F_oy

\s

Gy o
L

P

Fig. 3. Examples of robots evolved using the proposed algorithm for light following
(top left), jumping (top right), walking (bottom left) and swimming (bottom right)
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Table 2. Results of ablation experiments. Second and third column show mean and
standard deviation for the number of fitness evaluations performed until the winner
has been found. Fourth column shows the percentage of failed evolutions.

Configuration Mean Std|Failed
Full hLNEAT 16704.53|6339.75 8%
Non-mating hNEAT |22441.38|6146.31| 20%
Non-speciated hNEAT[20456.40(6313.65| 20%
Random - 2 nodes 11503.77|5871.19 3%
Random - 3 nodes 16704.53|6339.75 8%
Random - 4 nodes 29920.69| 387.05| 93%
Uniform - 2 nodes 16811.39|8190.81| 21%

6. hNEAT with uniform initial population. All robots in the initial
population are copies of a single hand-designed robot with two nodes and
one connection.

Because of the high demand on the computational resources, all of the ablation
experiments were carried out using only the light following fitness function. Fit-
ness function for the light following behavior has been chosen, because it is the
only fitness function, which explicitly requires robots to use their sensory input
and to evolve their neural network controllers.

Results of ablation experiments are presented in Table 2. Full hANEAT is 1.34
times faster in finding the winner and fails less frequently than non-mating
hNEAT (rows 1 and 2). Difference is statistically significant (p < 0.0001). This
confirms the positive effect of recombination based on historical markings.

Experiments with various methods of generating the initial population have
shown, that starting with small randomly generated robots increases the per-
formance of the search. When evolution starts with population of robots with
two body parts, random initialization (row 4) is 1.46 times faster than uniform
population (row 7; p < 0.005). Experiments with random initialization show
that the performance of the search decreases with increasing size of generated
robots (rows 4-6; p < 0.001 in all cases). This fact supports the hypothesis that
starting minimally helps the search by minimizing the dimensionality of the
search space’.

In summary, it can be concluded that starting the evolution with small
randomly generated robots is more beneficent than starting either with hand-
designed uniform population or with a population of robots with larger genomes.

The positive effect of speciation has also been confirmed. Results of experiments
show, that full NEAT is 1.22 times faster than non-speciated NEAT (rows 1 and 3;
p < 0.02). The failure rate is also significantly higher in the non-speciated version
of the algorithm.

! Experiments show that generating robots with three nodes and three connec-
tions in hNEAT was suboptimal. This, however, does not affect conclusions of the
experiments.
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Fig. 4. Fitness values of all robots in an evolution. Robots were evolved for light-

following using hNEAT. Threads of black color correspond to individual species.

6 Discussion

The proposed algorithm performs better than the standard GA consistently over
all four fitness functions. Moreover, ablation experiments have shown, that each
component improves its performance. There are two main reasons for this.

First, speciation in hNEAT increases the robustness of the search. With stan-
dard GA, maximum fitness value of a population often gets stuck in a local
optimum. In hNEAT, however, if one species stops improving, another species
can take its place. For example, evolution in Figure 4 is dominated by a single
species from generation 30 to generation 140. This species starts to stagnate
around generation 100. As a result of that, it is outperformed by another species
in generation 140 (and by a different one in generation 170).

Second, recombination in hNEAT uses information offered by historical mark-
ings to find correspondences between parts of different robots. Therefore, advan-
tageous features discovered by different robots can be better combined in their
offspring. Since structural elements in different robots with the same value of
historical marking are descendants of the common ancestral element, it is very
likely that both elements serve the same purpose in both parents. Therefore, it
is reasonable to expect that the recombination of their internal properties mixes
genetic information without introducing destructive changes. This is a major
difference from operators such as grafting, crossover and picking, which often
generate an invalid offspring.

7 Future Works and Conclusions

The next direction of research is to construct robots evolved using hNEAT in
reality. Morphology of evolving robots can be constrained to the parameters of
available hardware components (e.g. fixed-size body parts, servo-joints). This
way, all evolved robots would be constructible in reality.
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The contribution presented in this paper is the proposal of a novel algo-
rithm for the evolution of autonomous robots. The proposed algorithm is in-
spired by NEAT — an algorithm for the evolution of neural networks. Large-
scale distributed experiments (taking over 8 months of CPU time) conducted
to measure various properties of the algorithm have shown that the algorithm
significantly increases the performance of the evolution on the tasks of swim-
ming, walking, jumping and light-following. Ablation experiments have shown,
that each individual component of hNEAT improves the search performance.
For more information about the project and examples of evolved robots, visit
http://ero.matfyz.cz.
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