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Adaptive information seeking is critical for goal-directed behavior.
Growing evidence suggests the importance of intrinsic motives such
as curiosity or need for novelty, mediated through dopaminergic
valuation systems, in driving information-seeking behavior. How-
ever, valuing information for its own sake can be highly suboptimal
when agents need to evaluate instrumental benefit of information
in a forward-looking manner. Here we show that information-
seeking behavior in humans is driven by subjective value that is
shaped by both instrumental and noninstrumental motives, and
that this subjective value of information (SVOI) shares a common
neural code with more basic reward value. Specifically, using a task
where subjects could purchase information to reduce uncertainty
about outcomes of a monetary lottery, we found information pur-
chase decisions could be captured by a computational model of
SVOI incorporating utility of anticipation, a form of noninstrumental
motive for information seeking, in addition to instrumental bene-
fits. Neurally, trial-by-trial variation in SVOI was correlated with
activity in striatum and ventromedial prefrontal cortex. Fur-
thermore, cross-categorical decoding revealed that, within these
regions, SVOI and expected utility of lotteries were represented
using a common code. These findings provide support for the com-
mon currency hypothesis and shed insight on neurocognitive
mechanisms underlying information-seeking behavior.
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Adaptive information seeking is critical in goal-directed be-
havior in humans. Collecting too little information, paying

too much for information, not discriminating relevant information
from irrelevant ones, or acting on unreliable or false information,
can all result in failure to achieve desired goals. Understanding
neurocognitive mechanisms of adaptive information seeking is not
only important in neuroscience, psychology, and economics, but
also has wide real-world applications, such as policymaking, public
health, and artificial intelligence.
Information-seeking behavior is frequently viewed as reflect-

ing agents’ curiosity, i.e., motive to collect information for its
own sake (1–3). This, however, poses a challenge for decision-
making models such as reinforcement learning (RL) because
information seeking by itself is not directly reinforced by explicit,
tangible rewards. To incorporate curiosity-driven information
seeking, decision-making models often postulate that information
is intrinsically rewarding, and more specifically, exploratory ac-
tions are encouraged by some forms of bonus utility (4–6). Various
forms of utility bonus have been proposed, such as surprise (7),
novelty (8–10), perceived information gap (2), and anticipatory
utility from savoring and dread (11–14). At the neural level, do-
paminergic reward system may multiplex utility bonus with signals
on extrinsic reward (14–20). Multiplexing extrinsic reward signals
and utility bonus would help otherwise myopic agents to achieve
appropriate balance of exploration (seeking more information)
and exploitation (acting on available information).
Relying solely on curiosity, however, can be detrimental to

adaptive goal-directed information seeking. Most importantly,
motivation to acquire information should be sensitive to in-
strumental benefits that can be gained from accruing said in-
formation. For instance, our interest in weather forecast would
likely be greater if we are trying to decide whether to go hiking
or read indoors, compared with if we have already decided to
stay indoors. Such goal-driven information seeking is particularly

challenging when agents need to acquire information that they
have never acquired before (e.g., a morning TV show in a foreign
country we have never seen), where the bonus utility may not be
adaptively formed based on the reward history.
Maximizing the instrumental benefits of information acquisition

instead requires forward-looking simulation of agents’ own actions
and outcomes under different possible informational states (“I’ll go
hiking if it will be sunny, but read indoors if rainy.”) If agents are
driven solely by curiosity but do not explicitly evaluate instrumental
benefits, they may fail to discern relevant and useful pieces of in-
formation from irrelevant ones. At the neural level, aforementioned
curiosity-related dopaminergic activity may not be sufficient for
maximization of instrumental benefits, and little is known regarding
how dopaminergic reward system represents and integrates infor-
mation’s instrumental benefits and noninstrumental curiosity signals.
The importance to evaluate forward-looking instrumental

benefit has long been recognized in economic and ethological studies
of decision-making, owing to abundance of information seeking in
problems ranging from comparison shopping to job/mate search (21,
22). Normative economic accounts presume that agents acquire in-
formation only as a consequence of utility maximization. Specifically,
instrumental benefit of information is measured as value of infor-
mation (VOI), i.e., howmuch it would improve choices and expected
utility (EU); agents acquire the information only if its VOI out-
weighs its cost. Although normative VOI calculation may be com-
putationally more complex than basic rewards (e.g., food or money),
subsequent processes of cost-benefit analysis and action selection can
be similar to other types of value-driven choices.
That the motivation to acquire information may be indexed by a

single value measure, such as VOI, opens up a number of interesting
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hypotheses. First, dopaminergic reward system may drive in-
formation seeking not only by encoding noninstrumental utility
bonus but also instrumental benefits. While it is yet to be estab-
lished whether normative VOI alone is represented or is multi-
plexed with noninstrumental motives to constitute subjective value
of information (SVOI), the reward system may represent that
informational value in the same way as conventional reward sig-
nals; for example, monetary reward. Second, individual neurons
may encode both informational value and conventional rewards in
the same way—the neural common currency hypothesis—which is
advantageous for computing trade-offs guiding choice (23, 24).
Common currency may particularly provide an elegant solution to
the exploration-exploitation dilemma by allowing agents to directly
compare action value of respective options (4, 25). Although
common currency across reward categories has been observed in
humans and monkeys (24, 26–28), it has not been tested with in-
strumental information value.
To address these questions, we conducted an fMRI study

where subjects made choices on costly, but directly actionable, in-
formation. Subjects were presented with a lottery with two mone-
tary outcomes (a gain and a loss) and asked to choose whether to
accept or reject it. The outcome probability was initially hidden and
described as fair, but subjects could purchase the information to
reveal the true probability. This information has direct instru-
mental benefit because subjects could change their choice flexibly
based on the revealed probability. For instance, a subject may play
a fair lottery with a large gain and a small loss, but reject it if the
loss turns out to be more likely. Although there is a chance that the
loss probability turns out to be smaller and she retains her original
choice, she may purchase the information if the benefit of avoiding
the loss is large enough to justify the cost.
We observed that subjects’ information-seeking behavior was

indeed largely driven by instrumental benefit. Subjects’ in-
formation purchase choice was systematically sensitive to lotteries’
outcomes and possible probabilities, consistently with the nor-
mative VOI prediction. We further examined the contribution of
additional noninstrumental motives. While we found no evidence
for simplistic utility bonus, information-seeking choices were bet-
ter explained by a SVOI model that involves anticipatory utility in
addition to instrumental benefit. Next, using support vector re-
gression (SVR) on voxel-wise BOLD signals, we tested a key
prediction of the common currency hypothesis—common code
between SVOI and reward values at the level of voxel-wise BOLD
signals. We found that SVOI was represented in striatum and
ventromedial prefrontal cortex (VMPFC), traditional valuation
regions. Lastly, cross-categorical decoding revealed that these
representations shared a common coding scheme with more basic
values, consistent with the neural common currency hypothesis.

Results
Information Seeking Is Sensitive to Instrumental Benefits. To char-
acterize the extent to which human information seeking is sen-
sitive to instrumental benefits, we used a two-stage task (Fig.
1A). Subjects were first asked whether to accept or reject a lot-
tery with two outcomes (one positive outcome x1 and one neg-
ative outcome x2), assuming they would not receive further
information (under the initial informational state s0: P(x1) = 0.5).
Next, two possible probability distributions were presented, one
where the positive outcome is more likely (s+; P(x1) = π) and the
other where the positive outcome is less likely (s−; P(x1) = 1 − π).
One of them would be true but revealed only if subjects pur-
chased the information (Fig. 1B). Thus, π determines informa-
tion’s diagnosticity (predictability of outcome) and was randomly
chosen on each trial from {2/3, 5/6, 1}. Subjects were then pre-
sented with the monetary cost of the information and indicated
whether they would purchase it. Even though the true probability
(s+ or s−) was not revealed during the scanning to prevent
learning, subjects were instructed beforehand that they would
receive the information and could change their original choices
after the scanning. We verified using model-free logistic regression
that subjects made information purchase decisions based on all

experimental variables (x1, x2, π, and cost; all Ps < 0.01; SI
Appendix, Figs. S1–S3).
Under normative economic accounts, agents accept the lottery

if its EU under the current informational state (s0, s+, or s−) is
higher than the utility of status quo u(0), and reject otherwise
(Fig. 1B). Furthermore, they purchase the information if its in-
strumental benefit is higher than the cost, and forgo otherwise.
The information provides the instrumental benefit by improving
the overall EU, which happens only if EU-maximizing choices
differ between informational states. Specifically, instrumental
benefit is present if the lottery is preferable under s0 but turns
not to be preferable after unfavorable information (s−), or if it is
not preferable initially but changes to be preferable after fa-
vorable information (s+). Instrumental benefit is nonexistent if
the EU-maximizing choice would be the same irrespective of
informational state (e.g., if the potential loss is extremely huge
and gain is extremely small).
Normative VOI captures this marginal improvement of action

utility, i.e., the difference in the expected utilities between the
decision with the information and the decision without (Fig. 2A).
Note that, because agents cannot predict the true probability a
priori, they need to simulate their own choices under s+ and s−,
average their EUs (i.e., overall EU of the informed choice), and
compare it against EU under s0. VOI computed as such is
strongly sensitive to size of potential gains and losses; VOI is
large if both the potential gain and loss are large, and small if the
potential gain is very large and the loss is trivial (or vice versa),
because the agent would not change its choice irrespective of the
true probability in the latter cases.
We numerically derived instrumental normative VOI predic-

tions based on outcomes (x1, x2) and diagnosticity (π) (SI Ap-
pendix, SI Methods). We then compared the predicted VOI against
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Fig. 1. Experimental task. (A) Subjects were presented with lotteries with two
possible monetary outcomes, gain and loss, shown as a roulette wheel. When
played, a green dot appeared at a random location on the perimeter, and its
position determined the outcome (left or right). Outcomes were initially de-
scribed as equally likely. Subjects indicated whether to accept or reject it, as-
suming they would not receive any further information. Potential information
was then presented as a magenta partition line; if purchased, it would reveal
which side of the partition the green dot would appear. Information diag-
nosticity, π, was determined by the partition angle. Subjects indicated whether
to purchase it given the information cost. (B) If subjects did not purchase in-
formation, they made a choice under the initial informational state (s0). If
subjects purchased information, it revealed which of the two possible proba-
bility distributions, s+ or s−, was true, based on which subjects made a choice.
Because subjects could not predict the true probability (s+ or s−) in advance,
they need to stimulate their actions and EU in both states to compute in-
strumental benefit (VOI). Note that costless information is assumed here for
illustration purposes; see SI Appendix, SI Methods for details on how our
models deal with sunk cost of information.
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the probability that subjects purchased the information. Subjects
purchased the information more often when the predicted nor-
mative VOI was higher (Kendall’s tau = 0.62; Fig. 2B), and such
relationship was driven by both lotteries (x1, x2) and diagnosticity
(π) (SI Appendix, Fig. S2). More formally, using a softmax choice
rule that relates choices to the difference between normative VOI
and the information cost, we found the VOI was able to explain a
substantial portion of the variation in information purchase
choices (P < 0.0005; SI Appendix, Fig. S4A), consistent with the
normative prediction that information acquisition should be
sensitive to its instrumental benefit, and in particular the
magnitudes of future possible outcomes.
To further evaluate the goodness-of-fit of normative VOI

model, we compared it against two popular nonforward-looking,
noninstrumental motives: a constant utility bonus (fixed utility
for information) (4), and a utility bonus scaled by entropy re-
duction, which is sensitive to π but still not to outcomes (2, 5, 6).
We found that normative VOI provided drastically better model
fit than both accounts (P < 10−3; Fig. 2E).

Coexistence of Instrumental and Noninstrumental Motives.Although
we found that the instrumental benefit is a critical driver of in-
formation purchase in our task, it is possible that noninstrumental
motives also contribute to the behavior. Accordingly, we tested the
extent to which subjective value of information (SVOI), which
would consist of instrumental VOI and noninstrumental motives,
improves model fit. Specifically, we tested a prominent model of
noninstrumental motives from the literature: anticipatory utility.
Anticipatory utility, often referred to as savoring and dread, has
been used in economics to explain people’s nonnormative pref-
erence for information, and in particular timing of information
delivery (e.g., many prefer to know if they win a raffle prize earlier
because of savoring, while they prefer not to know the results of
their cancer diagnosis because of dread) (11, 13, 29–32).
We constructed a model of SVOI that integrates anticipatory

utility VOI using a recursive utility approach (11, 33). Recursive
utility, as the normative VOI theory, assumes forward-looking, utility-
maximizing agents. However, it relaxes the VOI theory by allow-
ing utility functions to change depending on the availability of
information; the mere presence of information may increase
or decrease the overall utility, which cannot be explained by
conventional expected utility theories that assume consistency of
utility functions. Specifically, the theory evaluates the lotteries in
our task based on expected second-order utility, which aggre-
gates first-order EUs under the possible informational states (s0,
s+, and s−) in a nonlinear manner (Fig. 2C). A convex (concave)
aggregator function amplifies (diminishes) the difference in the
overall expected second-order utility between informed and un-
informed choices compared with the standard prediction. There-
fore, subjects are more (less) information seeking under SVOI
than normative VOI if the aggregator function is convex (concave).
We found that our subjects’ behavior was consistent with this

SVOI composed of instrumental benefit and anticipatory utility.
The correlation between information purchase probability and
SVOI with anticipatory utility is significantly higher than the
normative VOI (Kendall’s tau = 0.87 vs 0.62, P < 0.001; Fig. 2D).
Furthermore, trial-by-trial information purchase choices were
predicted better by SVOI with anticipatory utility than normative
VOI (P < 0.001; Fig. 2E and SI Appendix, Fig. S4B).
One important feature of anticipatory utility is its outcome

dependence. Since the contribution of anticipatory utility de-
pends on the convexity of the aggregator function, it is naturally
allowed to be dependent on the possible outcomes, nicely
echoing the widespread notions savoring on reward and dread on
punishment. As a direct support for its outcome dependence, we
noticed that subjects over-purchased information, compared
with the normative VOI prediction, more often in higher valued
lotteries than in lower valued ones (median split according to
EU, P < 10−3; Fig. 2B and SI Appendix, Fig. S4A). Since VOI
computation already incorporates subjects’ nonlinear utility func-
tion, this outcome-dependent over-purchase cannot be explained
by factors such as risk preference (SI Appendix, SI Methods). The
outcome-dependent over-purchase disappeared when the behav-
ior was compared against the prediction of SVOI with anticipatory
utility (P > 0.05; Fig. 2D and SI Appendix, Figs. S4B and S5).
We also tested two alternative models of noninstrumental

motives, in which VOI is combined with aforementioned utility
bonus term (constant bonus or entropy reduction bonus), which
lacks sensitivity to possible outcomes. Neither of the utility bonus
models improved the normative VOI model (P > 0.30), and both
were outperformed by SVOI with anticipatory utility (P < 0.001;
Fig. 2E). These further support that noninstrumental motive is
sensitive to possible outcomes, consistent with anticipatory utility.

Neural Representation of SVOI. The above results suggest that
subjects acquired information based on SVOI, which consists of
forward-looking instrumental benefit and anticipatory utility. We
next sought to investigate whether SVOI shapes subjective value
function at the neural level. In particular, we asked whether
SVOI was represented in valuation regions, and if so, whether
that representation employs a common code with more conventional
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Fig. 2. Behavioral results. (A) Under normative VOI prediction, instrumental
benefit is captured by the difference between the average EU of informed
choices (s+, s−) and EU of uninformed choice (s0). Note that costless in-
formation is assumed here for illustration purposes. (B) Information purchase
probability was correlated with VOI predictions, but subjects over-purchased
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ticipatory utility deviates from VOI due to nonlinearity of the second-order
utility’s aggregator function. (D) SVOI model outperformed normative VOI
and was able to account for over-purchase of information in high-EU lotteries.
(E) Normative VOI model achieved better behavioral fit than alternative
models of utility bonuses. SVOI with anticipatory utility achieved even better
fit, while alternative accounts that combine VOI with utility bonuses did not.
***: P < 0.001, n.s.: P > 05.
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reward values. To this end, we asked subjects to make two value-
based choices: whether to gamble on a lottery, and whether to
purchase information regarding the said lottery, allowing us to
compare encoding of the lottery EU and SVOI.
We first looked for SVOI representation during the presenta-

tion of the information’s diagnosticity. Combined with potential
outcomes, which had been already presented, the diagnosticity is
sufficient for subjects to compute subjective benefit of the in-
formation. We asked if we could decode trial-by-trial SVOI from
voxel-wise BOLD signals in a searchlight (10-mm radius) using
one-run-leave-out five-hold cross-validation and SVR (Fig. 3; see
SI Appendix, SI Methods for details). Prediction accuracy was
measured as a partial correlation between the predicted and ac-
tual SVOIs controlling for diagnosticity π. This is to ensure that we
detect regions engaged in valuation, rather than information-
theoretic processing (e.g., entropy reduction) or visual processing
(π was visually presented by the partition’s angle).
Consistent with the hypothesis that dopaminergic reward sys-

tem is involved in value-driven information seeking, we found
that SVOI was decodable from striatum and VMPFC (P < 0.05,
voxel-wise FWE corrected). SVOI representation was addition-
ally found in lateral prefrontal cortex (middle frontal gyrus;
MFG), right superior frontal gyrus, posterior cingulate cortex,
right angular gyrus, and cerebellum (Fig. 4A and SI Appendix,
Figs. S6 and S7 and Table S1). Since we evaluated decoding
accuracy while controlling for diagnosticity, this successful
decoding cannot be attributed to mere representation of diag-
nosticity (SI Appendix, Figs. S6 and S7). Striatum and VMPFC
receive dopaminergic inputs and are the two regions that are the
most associated with valuation in fMRI literature. Indeed, we
found that lottery’s EU was represented in striatum during the
presentation of lottery (P < 0.05; Fig. 4A and SI Appendix, Fig.
S8 and Table S1), suggesting the involvement of traditional
valuation processing in SVOI.
Since SVOI is correlated with the lotteries’ EU (r = 0.62),

some of our SVOI decoding performance might have been at-
tributable to signals related to EU rather than SVOI. This issue
is particularly important because our EU cluster and SVOI
cluster overlapped in striatum (Fig. 4A). However, SVOI
decoding could not be explained by the possible presence of EU
signals; SVOI decoding accuracy in all clusters was above chance
even when EU was controlled for (P < 0.05, Bonferroni cor-
rected; Fig. 4B and SI Appendix, Figs. S6 and S7). This supports
that these regions use both outcomes and information diag-
nosticity to calculate SVOI, as normatively predicted.

Common Code of SVOI and EU Representations. Having character-
ized representations of SVOI and EU, we next investigated their
relationship, and in particular whether they are represented us-
ing a common code. Although we observed overlap of SVOI and
EU clusters, this is not a strong evidence for a common code,
because these representations could be distinct at a more fine-
grained level. As a more direct test, we adopted cross-categorical
decoding approach.
Specifically, if EU and SVOI are indeed represented on a

common code in striatum at the voxel level, SVR trained based on
EU in striatum should be able to predict SVOI (Fig. 3). We found
that the decoder trained by EU could indeed predict SVOI above
the chance level, compared with the permutation-based null-
hypothesis distribution (P < 0.05; Fig. 5A and SI Appendix, Figs.
S6 and S8). This holds when information diagnosticity was con-
trolled for, and more critically, even when EU was controlled for.
This provides a clear evidence that striatum did not just maintain
or reactivate EU representation; rather, it flexibly switched the
content of representation within each trial from EU and SVOI,
presumably in preparation for the upcoming choices.
Lastly, to seek for further evidence for common neural code,

we examined if decoders trained by SVOI could be used to de-
code EU. To control for FWE over eight SVOI clusters, we
constructed null-hypothesis distribution based on the highest
accuracy (t-statistics) over ROIs in each permutation iteration.
EU prediction accuracy was above chance in striatum, VMPFC,
and right MFG (P < 0.05, Fig. 5B and SI Appendix, Fig. S9).
Although EU was not decodable from VMPFC and right MFG
in the within-categorical decoding analysis above, it may be be-
cause we had used a more stringent statistical threshold. To-
gether, these results show that human brains use a common code
to represent SVOI and EU.

Discussion
A substantial portion of our daily actions pertains to information
seeking. Particularly in the digital age where a tremendous
amount of information is available at our fingertips, acquiring
relevant information to an appropriate degree is as important as
making use of acquired information. Going back at least to
Berlyne (3), psychologists studying functions, causes, and con-
sequences of motivation and interests have hypothesized the
relationship between exploratory and information-seeking be-
havior and reward system. More recently, since Kakade and
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(green), overlapping with SVOI (white). (B) SVOI representation found in A
cannot be explained by reinstantiation of EU representation. Prediction ac-
curacy was significantly higher than zero even when EU was controlled for
(blue; all P < 0.05, Bonferroni corrected). Black: accuracy without controlling
for EU. Str: striatum; VMPFC: ventromedial prefrontal cortex; MFG: middle
frontal gyrus; SFG: superior frontal gyrus; PCC: posterior cingulate cortex;
AnG: angular gyrus; CE: cerebellum.
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Dayan’s influential proposal (15), neuroscientists have provided
evidence that putative noninstrumental motives are represented
in dopaminergic reward system in monkeys (16, 20) and humans
(8–10, 14, 17–19), as if they shape subjective value function that
favors information seeking. However, because existing studies
have largely focused on instances of noninstrumental information
seeking, it remains unclear how subjective preference for forward-
looking, instrumental information is formed, and to what extent
dopaminergic reward system is involved in that process.
Behaviorally, our study provides evidence that subjective value

of information (SVOI) consists of (at least) two motives:
forward-looking instrumental benefit, consistent with normative
economic VOI theories, and anticipatory utility, an example of
noninstrumental motives. Other models on noninstrumental
motives that are independent of reward value of outcomes, such
as constant utility bonus (4), were insufficient in explaining the
observed behavior. Particularly, consistent with the notion of
savoring, we found outcome-dependent over-purchase of in-
formation. Our results extend the findings from the past studies
on anticipatory utility, which focused mostly on noninstrumental
information and did not quantitatively capture concurrent con-
tribution of instrumental and anticipatory value for information
(14, 31, 32). That both motives we identified are strongly sensi-
tive to future possible outcomes highlight the involvement of
valuation systems in information-seeking behavior in general,
which is sometimes overlooked in curiosity literature.
The possibility that anticipatory utility is an important com-

ponent of information seeking opens up several important
questions. One particular issue concerns the effect of dread, or
utility of anticipating negative outcomes (34). The effect of dread
may be large enough for some people to avoid potentially neg-
ative information even when its instrumental benefit is critical,
such as medical conditions, but more studies are needed to
empirically quantify its relative contribution in instrumental in-
formation settings. Our study could not measure its effect quite
reliably because our subjects could reject unfavorable lotteries.
Second, anticipatory utility provides a possible explanation for
the phenomenon of ambiguity aversion. Intuitively, the desire for
information may be causally linked to aversion to the lack thereof
(12). It may thus be not a coincidence that nonlinearity of the
aggregator function that determines second-order utility, a critical
part of recursive utility theory, is also central to some theories on
ambiguity and compound lotteries (35). Future studies may be
able to use our experimental paradigm to quantify anticipatory
utility at the individual level and correlate with ambiguity attitude.

Neurally, if information seeking is driven by subjective value
signals in dopaminergic reward system, we should expect such
responses to exhibit two features; first, they should be scaled
according to subjective preference for information, which would
reflect both instrumental and noninstrumental motives, and
second, they should be on a common currency with extrinsic
reward. Our results that SVOI and EU share the common code
in BOLD from striatum and VMPFC are highly consistent with
these predictions, because these regions receive massive dopa-
minergic projection (36) and represent various kinds of values
(37, 38), with some evidence for common currency (24, 26–28).
In particular, our findings expand existing knowledge by showing
that striatum also represents forward-looking instrumental ben-
efits. Our decoding approach is suitable to test common code
because it characterizes localized fine-grained representation,
while typical brain mapping studies only examine spatially
smoothed signals and whole-brain approaches such as elastic net
examine representations distributed across the brain. Moreover,
our results yield an additional prediction that, when monkeys act
on forward-looking instrumental benefit of information, rather
than merely receive noninstrumental information (16, 20, 39), it
may also be encoded by their midbrain dopamine neurons.
We found SVOI representation in other brain regions as

well, but with limited evidence for common code, where cross-
categorical decoding was observed only in the right MFG. As
SVOI computation requires the simulation of agents’ own
choices and outcomes under possible informational states, this
may reflect the higher need of neurocognitive recourses than
basic rewards, particularly working memory and planning. Re-
latedly, although encoding of noninstrumental information value
was reported in orbitofrontal cortex (OFC) in monkeys, it was
distinct from reward encoding (39), contrary to midbrain dopa-
minergic neurons (16). A recent human fMRI study corroborated
this distinction, reporting that striatum and midbrain dopaminergic
regions represent subjective value of noninstrumental informa-
tion, which is influenced by possible outcome valence, while
OFC merely represents availability of information regardless of
valence (14). These suggest that, while OFC may encode signals
relevant to information valuation, they seem not to use a common
code with other types of values (40, 41). Taken together, infor-
mation valuation may be supported by multiple neurocognitive
processes, and it may converge with other values in striatum
and/or VMPFC.
Our evidence for voxel-level common code is consistent with

the neural common currency hypothesis. However, due to the
nature of fMRI, it still leaves open the possibility that distinct
neuron populations represent EU and SVOI but are sampled by
overlapping voxels. More direct evidence for common currency
at the neural level would come from electrophysiological re-
cording while subjects acquire instrumental information. Our
findings also raise an important question regarding the “common
scale”; i.e., whether neural responses to SVOI and other reward
values are scaled to be in the same range, thereby allowing direct
comparison between information and rewards (23). To directly
test the common scale, it would be ideal to use experimental
paradigms in which subjects choose between information and
noninformational goods and examine if cross-categorically decoded
values predict such choices (27). Such an approach would also
bridge the conceptual gap between one-shot information acqui-
sition and exploration-exploitation dilemma, in which agents
choose between myopic reward and information.
Further investigations are also needed on how humans adopt

different strategies on information seeking under various goals,
from stable to dynamic environments, and from short to long
temporal horizons (1, 25). Although we found little support for
utility bonus accounts in our experimental paradigm, it is entirely
possible that they are responsible for exploratory behavior in
more dynamic settings with longer temporal horizon (4, 42).
Moreover, other proposed motives we did not study here, such as
novelty or surprise (1, 7–10), might be necessary or more suited
to ensure the adequate degree of information seeking in certain
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Fig. 5. Evidence for common code. Cross-categorical decoding accuracies
(black vertical line) are compared against permutation-based null-hypothesis
distributions. (A) In striatum (green in Fig. 4A), decoders trained on EU-
predicted SVOI. (B) In striatum, VMPFC, and right MFG (magenta in Fig.
4A), decoders trained on SVOI-predicted EU.
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circumstances, particularly outside value-based decision-making
domains. Our results raise an interesting possibility that such
difference in motives may be partly caused by whether reliable
SVOI signals from dopaminergic system are available, depending
on factors such as the difficulty or cognitive load of model-based
SVOI computation (43). Potential motives of information seeking
have been long studied separately, and the current study marks
an important step, both theoretically and empirically, toward
integrative understanding.

Methods
All subjects provided informed consent; all protocols were approved by UC
Berkeley Committee for the Protection of Human Subjects and Virginia Tech
Institutional Review Board. Detailed method descriptions are available in SI
Appendix, SI Methods.

Task Design. In each trial, a lottery with two outcomes (x1, x2) was presented
as a roulette wheel, and subjects chose whether to play it assuming no
further information (s0). Then the information was presented as a magenta
partition on the wheel, which defined the two possible probability distri-
butions, P(x1) = π (s+) or 1 − π (s−). π, the information’s diagnosticity, was
determined by the orientation of the magenta partition; π = 1, 5/6, or 2/3
when the partition was vertical, slanted by 30°, or slanted by 60°, re-
spectively. The cost of the information was presented after the delay, and
subjects chose whether to purchase it. The purchased information was de-
livered after the scanning. When the information was delivered, one side of
the magenta partition was brightened, indicating the posterior probability

(s+ or s−), and subjects could change their original lottery choice. Subjects
were told that the brighter side would be chosen randomly.

Behavioral Modeling. The predictions of VOI and SVOI with anticipatory utility
were obtained as the sunk cost for the information at which agents that
maximize EU (or expected second-order utility in the case of SVOI model)
would be indifferent between informed and uninformed choices. The
aggregator function that maps the first-order to second-order utility in SVOI
model was estimated by likelihood maximization of information purchase
choices. Models were compared by cross-subject cross validation.

fMRI Decoding Analysis. Voxel-wise activation from the two epochs in each
trial, lottery presentation (for EU decoding), and information presentation
(for SVOI decoding), were used as features of leave-one-run-out cross-
validation SVR. Within-categorical decoding took a whole-brain search-
light approach. SVOI decoding accuracy was evaluated by Pearson partial
correlation between predicted and actual SVOI labels while controlling for π.
Accuracy of cross-categorical decoding was evaluated within the ROIs de-
fined by the within-categorical decoding. Null-hypothesis distribution was
obtained by permuting labels across trials while maintaining the trial-wise
pairing of SVOI and EU.
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