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First return, then explore

Adrien Ecoffet1,2,3 ✉, Joost Huizinga1,2,3 ✉, Joel Lehman1,2, Kenneth O. Stanley1,2 & Jeff Clune1,2 ✉

Reinforcement learning promises to solve complex sequential-decision problems 

autonomously by specifying a high-level reward function only. However, 

reinforcement learning algorithms struggle when, as is often the case, simple and 

intuitive rewards provide sparse1 and deceptive2 feedback. Avoiding these pitfalls 

requires a thorough exploration of the environment, but creating algorithms that can 

do so remains one of the central challenges of the field. Here we hypothesize that the 

main impediment to effective exploration originates from algorithms forgetting how 

to reach previously visited states (detachment) and failing to first return to a state 

before exploring from it (derailment). We introduce Go-Explore, a family of 

algorithms that addresses these two challenges directly through the simple principles 

of explicitly ‘remembering’ promising states and returning to such states before 

intentionally exploring. Go-Explore solves all previously unsolved Atari games and 

surpasses the state of the art on all hard-exploration games1, with orders-of- 

magnitude improvements on the grand challenges of Montezuma’s Revenge and 

Pitfall. We also demonstrate the practical potential of Go-Explore on a sparse-reward 

pick-and-place robotics task. Additionally, we show that adding a goal-conditioned 

policy can further improve Go-Explore’s exploration efficiency and enable it to  

handle stochasticity throughout training. The substantial performance gains  

from Go-Explore suggest that the simple principles of remembering states,  

returning to them, and exploring from them are a powerful and general approach  

to exploration—an insight that may prove critical to the creation of truly intelligent 

learning agents.

Recent years have yielded impressive achievements in reinforcement 

learning, including world-champion-level performance in Go3, Starcraft 

II4, and Dota II5, as well as autonomous learning of robotic skills such 

as running, jumping and grasping6,7. Many of these successes were 

enabled by carefully designed, highly informative reward functions. 

However, for many practical problems, defining a good reward func-

tion is non-trivial; to guide a robot to a refrigerator, one might provide 

a reward only when the refrigerator is reached, but doing so makes the 

reward ‘sparse’ if many actions are required to reach the refrigerator. 

Unfortunately, a denser reward (for example, the Euclidean distance 

to the refrigerator) can be ‘deceptive’; naively following the reward 

function may lead the robot into a dead end and can also produce unin-

tended (and potentially unsafe) behaviour (for example, the robot not 

detouring around obstacles like pets)8–10.

These challenges motivate designing reinforcement learning algo-

rithms that better handle sparsity and deception. A key observation 

is that sufficient exploration of the state space enables discovering 

sparse rewards and avoiding deceptive local optima11,12. We argue that 

two major issues have hindered the ability of previous algorithms to 

explore. The first is detachment, wherein the algorithm prematurely 

stops returning to certain areas of the state space despite having evi-

dence that those areas are promising (Supplementary Information sec-

tion 4.1). Detachment is especially likely when (as is common) there are 

multiple areas to explore because the algorithm may partially explore 

one area, switch to a second area, and forget how to visit the first area. 

The second is derailment, wherein the exploratory mechanisms of 

the algorithm prevent it from returning to previously visited states, 

preventing exploration directly and/or forcing practitioners to make 

exploratory mechanisms so minimal that effective exploration does 

not occur (Supplementary Information section 4.2). For example, if a 

long string of correct actions is required to reach a particular area, a 

high probability of exploratory actions prevents the area from being 

reached while a low probability of exploratory actions results in lit-

tle exploration in general. We present Go-Explore, a family of algo-

rithms designed to explicitly avoid detachment and derailment, and 

demonstrate that it thoroughly explores environments. Go-Explore 

surpasses human performance on (solves) all previously unsolved 

games in the Atari 2600 benchmark provided by the Arcade Learning 

Environment13 (ALE), which has been posited as a major milestone in 

previous work14–16. Concurrent work14 similarly reached this milestone 

(Supplementary Information section 18), but under easier, mostly 

deterministic conditions that do not meet community-defined stand-

ards17 for evaluation on Atari. Our descriptions of prior results include 

only evaluations meeting these standards, unless explicitly mentioned 

(Methods section ‘State-of-the-art performance on Atari’). Go-Explore 

also surpasses the state of the art on all hard-exploration Atari games 

(that is, where obtaining rewards requires long sequences of correct 

actions, meaning randomly sampling actions rarely produces rewards 
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and thus more-intelligent ‘exploration’ is needed). Additionally, we 

demonstrate that it can solve a practical simulated robotics problem 

with an extremely sparse reward. Finally, we show that its performance 

can be greatly increased by incorporating minimal domain knowl-

edge and examine how harnessing learned skills during exploration 

can improve exploration efficiency, highlighting the versatility of the 

Go-Explore family.

The Go-Explore family of algorithms

To avoid detachment, Go-Explore builds an ‘archive’ of the different 

states it has visited in the environment, thus ensuring that states cannot 

be forgotten. Starting from an archive containing only the initial state, 

it builds this archive iteratively: first, it probabilistically selects a state 

to return to from the archive (Fig. 1a), returns to that state (the ‘go’ step; 

Fig. 1b), then explores from that state (the ‘explore’ step; Fig. 1c) and 

updates the archive with all novel states encountered (Fig. 1e). The 

overall process is reminiscent of classical planning algorithms (for 

example, the archive can be considered a frontier, the ‘explore’ step 

represents expanding a node, and so on), the potential of which have 

been relatively unappreciated within deep reinforcement learning 

research. However, for problems focused on by the reinforcement 

learning community (such as hard-exploration Atari games), which 

are high-dimensional with sparse rewards and/or stochasticity, no 
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Fig. 1 | Overview of Go-Explore. a, Probabilistically select a state from the 

archive, preferring states associated with promising cells. b, Return to the 

selected state, such as by restoring a simulator state or by running a 

goal-conditioned policy. c, Explore from that state by taking random actions or 

sampling from a trained policy. d, Map every state encountered during 

returning and exploring to a low-dimensional cell representation. e, Add states 

that map to new cells to the archive and update other archive entries.
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known planning method works17,18. Among other reasons (Supplemen-

tary Information section 9), such state spaces are too large to search 

exhaustively (requiring hard-to-define heuristics to prune search) and 

stochastic transitions make it impossible to know whether a node has 

been fully expanded. Go-Explore can be seen as porting the principles 

of planning algorithms to these challenging problems.

Previous reinforcement learning algorithms do not separate return-

ing from exploring, and instead mix in exploration throughout an epi-

sode, usually by adding random actions a fraction of the time15,19 or 

by sampling from a stochastic ‘policy’—a function that decides which 

action to take in each state, often a neural network20,21. By first return-

ing before exploring, Go-Explore avoids derailment by minimizing 

exploration when returning (thus minimizing failure to return) after 

which it can focus purely on exploration.

Because non-trivial environments have too many states to store 

explicitly, Go-Explore groups similar states into ‘cells’, and states are 

only considered novel if they are in a cell that does not yet exist in the 

archive (Fig. 1d, e). The archive stores one state per cell, and to maximize 

performance, if a state maps to an already known cell, but is associated 

with a better trajectory (higher-performing or shorter; Methods), that 

state and its associated trajectory will replace the state and trajectory 

currently associated with that cell. Go-Explore selects states to return 

to (Fig. 1a) proportionally to weights that it assigns to their associated 

cells in the archive (Methods).

Although returning to a previously found state can be done with a 

trained policy (demonstrated in ‘Policy-based Go-Explore’), Go-Explore 

provides a unique opportunity to leverage the availability and wide-

spread use of simulators in reinforcement learning tasks7,22–24. Simu-

lators are ‘restorable environments’ because previous states can be 

saved and instantly returned to, thus completely negating derailment.

When exploiting this property of restorable environments, 

Go-Explore thoroughly explores the environment during its ‘explora-

tion phase’ by continually restoring (and subsequently taking explora-

tory actions from) one of the states in its archive (Fig. 1). It eventually 

returns the highest-scoring trajectory (sequence of actions) it found. 

Such trajectories are not robust to stochasticity or unexpected out-

comes (for example, a robot may slip and miss a crucial turn, invali-

dating the entire trajectory). To resolve this issue, Go-Explore trains 

a robust policy by ‘learning from demonstrations’ (LFD)25, where 

the exploration phase trajectories replace the usual human expert 

demonstrations (similar to a previous work)26, in a variant of the 

environment featuring sufficient stochasticity to ensure robustness.  
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Fig. 2 | Performance of robustified Go-Explore on Atari games.  

a, Go-Explore produces substantial improvements over previous methods on 

Montezuma’s Revenge, a grand challenge that has been the primary focus of 

hard-exploration research for many years. Different methods use different 

amounts of computing power. Go-Explore processed a similar number of 

frames (30 billion) as other distributed reinforcement learning algorithms like 

Ape-X (22 billion) and NGU (35 billion). b, Go-Explore exceeds the average 

human score in each of the 11 hard-exploration and unsolved games in the Atari 

suite, and matches or beats (often by a factor of two or more) the state of the art 

in each of these games. Bold indicates the best scores with stochastic 

evaluation. Score differences between the exploration and robustification 

phases are discussed in Supplementary Information section 17. A video of 

high-performing runs can be found at https://youtu.be/u6_Ng2oFzEY. For 

citations to the listed algorithms, see Supplementary Information section 2.

https://youtu.be/u6_Ng2oFzEY
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The exploration-phase trajectories will be informative in the stochastic 

environment as long as following a close approximation to the exam-

ple trajectory still leads to a high cumulative reward (Supplementary 

Information section 10). Because it produces robust policies from 

open-loop (that is, predetermined) trajectories, we call this LFD process 

the ‘robustification phase’ (Fig. 1).

Learning Atari with state restoration

The Atari benchmark suite13, a prominent benchmark for reinforcement 

learning algorithms15,27,28, is an appropriate test-bed for Go-Explore 

because it contains a diverse set of games with varying levels of reward 

sparsity and deceptiveness. The following experiment highlights the 

benefit of a ‘go’ step that directly restores the state of the simulator. In 

this experiment, the ‘explore’ step happens through random actions, 

meaning that the exploration phase operates entirely without a trained 

policy, which assumes that random actions have a sufficiently high 

probability of discovering new cells; more complex problems may 

require policy-based exploration (explored below). The state-to-cell 

mapping for Go-Explore’s archive consists of downscaling the current 

game frame from the original 210 × 160 colour frame to a much smaller 

greyscale image, which—in contrast to most reinforcement learning 

preprocessing that reduces dimensionality to save computational 

resources while minimizing conflation15—aggregates similar-looking 

frames into the same cell (Fig. 1d). This mapping does not require 

game-specific knowledge and proves to be efficient across the entire 

Atari benchmark, though more complex environments may require 

more sophisticated (for example, learned) representations. Good 

state-to-cell-mapping parameters result in a representation that strikes 

a balance between two extremes: lack of aggregation (for example, 

one cell for every frame, which is computationally inefficient) and 

excessive aggregation (for example, assigning all frames to a single 

cell, which prevents exploration). Because appropriate downscaling 

parameters (width, height, and number of possible greyscale values) 

vary across Atari games (Supplementary Information section 3.2) as 

well as when exploration progresses within a given game, these param-

eters are optimized dynamically at regular intervals (Methods section 

‘Downscaling on Atari’). The hyperparameters of this optimisation 

procedure are robust and generalize to unseen games (Supplementary 

Information section 3).

Here the robustification phase consists of a modified version of the 

‘backward algorithm’29 that is currently the highest-performing LFD 

algorithm on Montezuma’s Revenge. Owing to the large computational 

expense of the robustification process, this work focuses on the set of 

11 games that have been considered hard-exploration challenges by 

the community1 or for which the state-of-the-art performance was still 

below average human performance (Methods section ‘State-of-the-art 

performance on Atari’). To ensure the trained policy becomes robust to 

environmental perturbations, during robustification stochasticity is 

added to these environments following current community standards17. 

The demonstrations provided by the exploration phase provide enough 

information about available rewards to allow Go-Explore to eschew 

standard reward clipping—which overemphasizes small rewards30—

in favour of automatically scaling rewards to an appropriate range 

(Methods).

At test time, the mean performance of Go-Explore is both superhu-

man and surpasses the state of the art in all 11 games (except in Freeway 

where both Go-Explore and the state of the art reach the maximum 

score; Fig. 2b). These games include the grand challenges of Monte-

zuma’s Revenge, where Go-Explore quadruples the state-of-the-art 

score, and Pitfall, where Go-Explore surpasses the average human 

performance, whereas previous algorithms were unable to score any 

points. The number of frames processed in these experiments is 30 bil-

lion (Extended Data Figs. 2, 4), similar to that of recent distributed 

reinforcement learning algorithms14,27,31. Although older algorithms 

often processed fewer frames, many of them show signs of convergence 

(meaning no further progress is expected), and for many of these algo-

rithms, it is unclear whether these algorithms would be able to process 

billions of frames in a reasonable amount of time.

The ability of the exploration phase to find high-performing trajec-

tories is not limited to hard-exploration problems; it finds trajecto-

ries with superhuman scores for all of the 55 Atari games provided by  

OpenAI gym32, a feat that has not been performed before (save con-

current work)14. In 85.5% of these games the trajectories reach scores 

higher than those achieved by state-of-the-art reinforcement learning 

algorithms (Fig. 3). Go-Explore’s performance also exceeds that of 

planning algorithms (which similarly restore simulator states) that 

were evaluated on Atari17,18.

In practical applications, it is often possible to define helpful fea-

tures based on domain knowledge. Go-Explore can harness such 

easy-to-provide domain knowledge to substantially boost perfor-

mance by constructing a cell representation (for the archive, not pol-

icy inputs) that contains only features relevant for exploration. The 

domain-knowledge features are the discretized position of the agent 

and relevant items held (Methods). With this domain-knowledge cell 

representation, Go-Explore produces robustified policies that achieve 

a mean score of over 1.7 million on Montezuma’s Revenge, surpassing 

the state of the art by a factor of 150, and also surpassing the human 
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Fig. 3 | Human-normalized performance of the exploration phase and 

state-of-the-art algorithms on all Atari games. The exploration phase of 

Go-Explore exceeds average human performance in every game, often by 

orders of magnitude, and outperforms the prior state of the art in most games 

(details in Extended Data Fig. 2a, Extended Data Table 3).
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world record of 1.2 million33 (Fig. 2a). On Pitfall, the addition of domain 

knowledge produces robustified policies with a mean score of 102,571, 

close to the maximum possible of 112,000 and far above the state of 

the art of 0. The exploration phase explores both games extensively 

(Extended Data Fig. 3b), in effect discovering every unique location 

in each game (Supplementary Information section 5). Previous work 

suggests that intrinsic motivation algorithms benefit far less from 

domain knowledge; a count-based exploration algorithm with the same 

domain-knowledge representation scores 12,240 on Montezuma’s 

Revenge34.

A hard-exploration robotics environment

Although robotics is a promising application for reinforcement learn-

ing and it is often easy to define the high-level goal of a robotics task 

(for example, to put a cup in a cupboard), it is much more difficult to 

define a sufficiently dense reward function10 (for example, reward 

all of the low-level motor commands to move towards the cup, grasp 

it, and so forth). Go-Explore enables forgoing such a dense reward 

function in favour of a sparse reward function that only considers the 

high-level task. Additionally, robot policies are usually trained in simula-

tion before being transferred to the real world7,22–24, making robotics a 

natural domain to demonstrate the usefulness of harnessing the ability 

to restore simulator states.

The following experiment, featuring a realistic simulation of a 

real-world robot35, demonstrates that Go-Explore can solve a practi-

cal hard-exploration task where a robot arm must pick up an object 

and put it inside of one of four shelves, two of which are behind latched 

doors (Fig. 4a). A reward is given only when the object is put into a 

specified target shelf. A state-of-the-art reinforcement learning algo-

rithm for continuous control (proximal policy optimization, PPO)21 

does not encounter a single reward after training in this environment 

for a billion frames, showcasing the hard-exploration nature of this 

problem. Go-Explore’s ‘explore’ step takes random actions and states 

are assigned to cells with an easy-to-provide domain-knowledge-based 

mapping (Methods).

The exploration phase quickly and reliably discovers trajectories 

for putting the object in each of the four shelves (Fig. 4b, Extended 

Data Fig. 5a). Go-Explore succeeds because it thoroughly explores its 

environment without suffering from detachment (for example, once 

each cupboard is opened, Go-Explore never forgets about those states) 

or derailment (Go-Explore can directly restore to difficult-to-reach 

states like grasping). By contrast, a count-based intrinsic motivation 

algorithm with the same representation as the exploration phase is 

incapable of discovering any reward (Fig. 4c), and discovers only a frac-

tion of the cells discovered by the exploration phase after two billion 

frames of training, 100 times more than the exploration phase (Fig. 4b). 

Despite receiving intrinsic rewards for touching the object, this control 
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Fig. 4 | Go-Explore can solve a challenging, sparse-reward, simulated 

robotics task. a, A simulated Fetch robot needs to grasp an object and put it in 

one of four shelves. b, The exploration phase substantially outperforms an 

intrinsic motivation (IM) control using the same cell representation. The 

‘Approx. solved’ line gives a rough indication of the number of cells that need to 

be discovered to find a successful trajectory. It corresponds to the mean 

number of cells contained in the archive of the exploration phase runs when 

they first found a successful trajectory. c, Across the four different target 

locations, including the two with a door, the robot is able to learn to pick the 

object up and place it on the shelf in 99% of trials (Methods section 

‘Evaluation’). Lines show the mean over 50 runs for Go-Explore and 10 runs for 

the PPO + IM control. Shaded areas show 95% bootstrap confidence intervals 

(CIs) of the mean with 1,000 samples.
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was incapable of learning to reliably grasp objects. Evidence suggests 

that this failure to grasp is due to the problem of ‘derailment’ (Sup-

plementary Information section 7), which Go-Explore is specifically 

designed to solve. Robustifying the trajectories found by Go-Explore 

produces robust policies in 99% of cases (Fig. 4c).

Policy-based Go-Explore

Leveraging the ability of simulators to restore to states increases 

Go-Explore’s efficiency, but it is not a requirement. When returning, 

instead of restoring a simulator state, it is possible to execute a policy 

conditioned on (that is, told to go to) the cell to return to, which we call 

‘policy-based Go-Explore’. There are advantages to doing so. First, it 

enables sampling from the policy during the ‘explore’ step, which can 

substantially increase exploration efficiency versus taking random 

actions, because the policy can generalize to new situations—for exam-

ple, it need only learn to overcome a type of obstacle once, instead 

of solving that problem again each time via random actions. To test 

this hypothesis, our implementation commits with equal probability 

to either taking random actions or sampling from the policy for the 

duration of the ‘explore’ step, making it possible to compare random 

and policy-based exploration (Methods). Second, training a policy in 

the exploration phase obviates the need for robustification and thus 

removes its associated additional complexity, hyperparameters, and 

overhead. Finally, policy-based Go-Explore can explore directly in a 

stochastic environment (which we do in our experiments) and can 

potentially handle forms of stochasticity not explored in our experi-

ments (for example, stochastic rewards; Supplementary Information 

section 11).

The goal-conditioned policy is trained during the exploration phase 

with a common reinforcement learning algorithm (PPO)21. Because 

goal-conditioned policies often struggle to reach distant states36 (Sup-

plementary Information section 3.9), the policy is guided towards the 

selected state by being presented with intermediate goals along the 

best trajectory that previously led to the selected state (Methods). 

Policy-based Go-Explore includes additional innovations to promote 

exploration and stabilize learning, the most important of which are 

self-imitation learning37 (Supplementary Information section 3.8), 

dynamic entropy increase, soft-trajectories and dynamic episode limits, 

all discussed in detail in Methods.

Policy-based Go-Explore was tested on Montezuma’s Revenge and Pit-

fall with the domain-knowledge cell representation for the archive (and 

to represent the goal to the policy; the game state is input as pixels). It 

beats the state-of-the-art and average human performance with a mean 

reward of 97,728 points on Montezuma’s Revenge and 20,093 points 

on Pitfall (Fig. 5), demonstrating that Go-Explore’s performance is 

not merely a result of its ability to leverage simulator restorability, 

but is a function of its overall design. Policy-based Go-Explore also 

outperforms a concurrently developed, similar algorithm34 in terms 

of performance and sample efficiency (Supplementary Information 

section 12). Furthermore, confirming our hypothesis, sampling from 

the policy is more effective at discovering new cells than taking random 

actions, and becomes increasingly effective across training because 

the policy gains new, generally useful skills, ultimately resulting in the 

discovery of over four times more cells than random actions on both 

Montezuma’s Revenge and Pitfall (Extended Data Fig. 7), highlighting 

the potential of goal-conditioned, policy-based exploration over the 

usual random actions used in reinforcement learning.

Conclusion

The effectiveness of the Go-Explore family of algorithms presented in 

this work suggests that it will enable progress in many domains that 

can be framed as sequential-decision-making problems, including 

robotics7,22–24, language understanding38 and drug design39. However, 

these instantiations represent only a fraction of the possible ways in 

which the Go-Explore paradigm can be implemented, opening up many 

exciting possibilities for future research. A key direction for future work 

is to learn cell representations, such as through compression-based 

methods40,41, contrastive-predictive encodings42 or auxiliary tasks43, 

which would allow Go-Explore to generalize to even more complex 

domains. Other future extensions could learn to choose which cells to 

return to, learn which cells to try to reach during the exploration step, 

learn a specialized policy for exploration in the ‘explore’ step, learn 

to explore safely in the real world by mining diverse catastrophes in 

simulation, maintain a continuous density-based archive rather than a 

discrete cell-based one, improve sample efficiency by leveraging multi-

ple trajectories (or even all transitions) from a single exploration-phase 

run or improve the robustification phase to work from a single dem-

onstration, and so on. Furthermore, the planning-like nature of the 

Go-Explore exploration phase highlights the potential of porting other 

powerful planning algorithms like MCTS44, RRT45, A*46 or conformant 

planning47 to high-dimensional state-spaces. These new directions offer 

rich possibilities to improve the generality, performance, robustness 

and efficiency of algorithms inspired by Go-Explore. Finally, the insights 

presented in this work extend broadly; the simple decomposition of 

remembering previously found states, returning to them, and then 

exploring from them appears to be especially powerful, suggesting it 

may be a fundamental feature of learning in general. Harnessing these 

insights, either within or outside of the context of Go-Explore, may be 

essential to improve our ability to create generally intelligent agents.
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Methods

State-of-the-art performance on Atari

With new work on reinforcement learning for Atari being published 

on a regular basis, and with reporting methods often varying greatly, 

it can be difficult to establish the state-of-the-art score for each Atari 

game. At the same time, it is important to compare new algorithms 

with previous ones to evaluate progress.

For determining the state-of-the-art score for each game, we con-

sidered a set of notable, recently published papers that cover at 

least the particular subset of games this paper focuses on, namely 

hard-exploration games. Community guidelines advocate ‘sticky 

actions’, which approximate the minor lack of precision in control 

that a human might have (for example, continuing to tilt the joystick 

for a fraction of a second longer than intended), as a way to evaluate 

agents on Atari17. There is substantial evidence to show that sticky 

actions can decrease performance substantially compared to the now 

deprecated ‘no-ops’ (no-operations) evaluation strategy17,48,49. As a 

result, we exclude work that was only evaluated with no-ops from our 

definition of state of the art. Figure 2a includes works tested only with 

no-ops as they help bring context to the amount of effort expended by 

the community on solving Montezuma’s Revenge. We did not include 

work that does not provide individualized scores for each game. To 

avoid cherry-picking lucky rollouts that can substantially bias scores 

upward, we also exclude work that only provided the maximum score 

achieved in an entire run as opposed to the average score achieved by 

a particular instance of the agent.

In total, state-of–the-art results were extracted from the following 

papers: Burda et al.50, Castro et al.48, Choi et al.51, Fedus et al.52, Taiga 

et al.53, Tang et al.54 and Toromanoff et al.49. Because these works them-

selves report scores for several algorithms and variants, including 

reproductions of previous algorithms, a total of 23 algorithms and 

variants were included in the state-of-the-art assessment. For each 

game, the state-of-the-art score was the highest score achieved across 

all algorithms.

Downscaling on Atari

In the first variant of Go-Explore presented in this work (‘Learning Atari 

with state restoration’), the cell representation is a downscaled version 

of the original game frame, which can be applied in any domain where 

the state is a visual observation (Supplementary Information section 6).

To obtain the downscaled representation, (1) the original frame is 

converted to greyscale, (2) its resolution is reduced with pixel-area 

relation interpolation to a width w ≤ 160 and a height h ≤ 210, and (3) 

the pixel depth is reduced to d ≤ 255 using the formula dp/255⌊ ⌋, where 

p is the value of the pixel after step (2). A fixed set of values for the 

parameters w, h and d would not generalize across games because 

visuals (for example, the amount of detail shown on screen and how 

much it varies across frames) vary substantially between games (Sup-

plementary Information section 3). Therefore these parameters are 

updated dynamically by proposing different values for each, calculat-

ing how a sample of recent frames would be grouped into cells under 

these proposed parameters, and then selecting the values that result 

in the best cell distribution (as determined by the objective function 

defined below).

The objective function for candidate downscaling parameters is 

calculated on the basis of a target number of cells T (where T is a fixed 

fraction of the number of cells in the sample, 12.5% in our experiment, 

although the algorithm is robust to different values of T, see Supple-

mentary Information section 3.4), the actual number of cells produced 

by the parameters currently considered n, and the distribution of sam-

ple frames over cells p. Its general form is

O n
H

L n T
( , ) =

( )

( , )
. (1)np

p

L(n, T) measures the discrepancy between the number of cells under 

the current parameters, n, and the target number of cells, T. It pre-

vents the representation that is discovered from aggregating too many 

frames together, which would result in low exploration, or from aggre-

gating too few frames together, which would result in an intractable 

time and memory complexity, and is defined as

L n T
n

T
( , ) = − 1 + 1 . (2)

Hn(p) is the ratio of the entropy of how frames were distributed across 

cells to the entropy of the discrete uniform distribution of size n, that 

is, the normalized entropy. In this way, the loss encourages frames to 

be distributed as uniformly as possible across cells, which is impor-

tant because highly non-uniform distributions may suffer from the 

same lack of exploration that excessive aggregation can produce or 

the same intractability that lack of aggregation can produce. Unlike 

unnormalized entropy, normalized entropy is comparable across dif-

ferent numbers of cells, allowing the number of cells to be controlled 

solely by L(n, T). Its form is

p ∑H
p p

n
( ) = −

log

log
. (3)n

i

n
i i

=1

At each step of the randomized search, new values of each parameter 

w, h and d are proposed by sampling from a geometric distribution 

whose mean is the current best-known value of the given parameter. 

If the current best-known value is lower than a minimum mean (set to 

approximately 1/20th of the maximum value of each parameter: 8 for 

w, 10.5 for h and 12 for d), the minimum mean is used as the mean of the 

geometric distribution (Supplementary Information section 3.3 shows 

that the algorithm is not overly sensitive to the particular setting of 

the minimum means). New parameter values are resampled if they fall 

outside of the valid range for that parameter. In our implementation, 

the randomized search runs for 3,000 iterations.

The recent frames that constitute the sample over which param-

eter search is done are obtained by maintaining a set of recently seen 

sample frames as Go-Explore runs: each time a frame not already in 

the set is seen during the explore step, it is added to the running set 

with a probability of 1%, ensuring that the set contains a diverse set 

of frames rather than just the most recent frames (Supplementary 

Information section 3.5 shows that the algorithm is not overly sensi-

tive to the value of this parameter). If the resulting set contains more 

than 10,000 frames, the oldest frame it contains is removed. This set 

is reminiscent of a first-in, first-out replay buffer, except that, because 

it is not used for training the network, it only stores individual frames, 

rather than complete state transitions.

The first downscaling parameters are computed after running with 

a single-cell representation for 40,000 frames. To handle changes in 

frame distribution as exploration progresses and to avoid being stuck 

with a bad representation, the search for a new representation is per-

formed every 40 million frames. To avoid excessive memory usage, the 

representation is also recomputed if the number of cells in the archive 

exceeds 50,000. When switching to a new representation, a new archive 

is created and initialized by converting all previous archives to the 

new representation using the frames corresponding to each state in 

the previous archives (the number of cells in the archive on Atari over 

time can be seen in Extended Data Fig. 3a).

Hyperparameter values were found by an initial randomized 

sweep on Montezuma’s Revenge, with the 10 best combinations then 

tested on Gravitar to ensure their generalizability (it is the norm in 

hard-exploration work to include Montezuma’s Revenge as part of the 

tuning set1,14,31,34,50,51,53,55–57, although which other games are included, 

if any, varies). Aside from the hyperparameters examined in Sup-

plementary Information section 3 (the target proportion, minimum 



Article

means and buffer sampling rate), the hyperparameters control the 

trade-off between computational and memory efficiency and the 

quality of downscaling parameters obtained (for example, increasing 

the number of search iterations is likely to produce better parameters 

at the cost of more time spent searching for parameters), and should 

thus be set according to the computational constraints of the user. 

In our experiments, approximately 25% of the computation spent 

on the exploration phase was spent searching for new downscaling 

parameters.

Domain-knowledge representations

The domain-knowledge representation for Pitfall consists of the current 

room (out of 255) the agent is currently located in, as well as the discre-

tized x, y position of the agent. In Go-Explore without a return policy, the 

x, y position is discretized in 8 by 16 pixel cells. Policy-based Go-Explore 

uses the coarser-grained 18 by 18 pixel cell representation from Guo 

et al.34, which reduces training time (there are fewer cells the policy 

needs to learn how to reach) without hindering exploration. In Mon-

tezuma’s Revenge, the representation also includes the keys currently 

held by the agent (including which room they were found in) as well as 

the current level. Most of these features (level, room, and x, y position) 

serve to specify the location of the agent, capturing the intuition that 

exploration requires discovering the different available locations within 

a space, and the keys held by the agent are important affordances that 

allow the agent to reach new locations. Although this information can 

in principle be extracted from the Atari RAM (random-access memory), 

in this work it was extracted from pixels through small hand-written 

classifiers, showing that domain-knowledge representations need not 

require access to the inner state of a simulator. For practical applica-

tions, the features that help with exploration are often easier to identify 

and obtain than the features that are necessary for a policy to success-

fully execute a task. For example, in a task where a robot has to pick up 

an object, it is clear that the robot should explore different positions for 

its end effector in order to find a good grip on the object and the end 

effector position is generally easy to obtain58,59, but a policy executing 

such a task will also need to recognize the object itself under a wide 

range of circumstances, which may require advanced image processing 

that benefits from being learned60.

In robotics, the domain-knowledge representation is extracted from 

the internal state of the MuJoCo61 simulator. However, similar informa-

tion has been extracted from raw camera footage for real robots by 

previous work7. It consists of the current three-dimensional position 

of the robot’s gripper, discretized in voxels with sides of length 0.5 m, 

whether the robot is currently touching (with a single grip) or grasping 

(touching with both grips) the object, and whether the object is cur-

rently in the target shelf. In the case of the two target shelves with doors, 

the positions of the door and its latch are also included. The discretiza-

tion for latches and doors follows the following formula, given that d 

is the distance of the latch/door from its starting position in metres: 

⌊ ⌋d( + 0.195)/0.2 .

Exploration phase

During the exploration phase (Supplementary Algorithm 1), the selec-

tion probability of a cell at each step is proportional to its selection 

weight, which unless otherwise specified is calculated as:

W
C

=
1

+ 1
, (4)

seen

where Cseen is the number of exploration steps in which that cell is visited 

(that is, the Cseen count of a cell is increased by one when it is visited in the 

exploration step, even if the cell was visited multiple times in that step). 

This reciprocal square-root weight is similar to the exploration bonus 

used in algorithms such as UCT62 and count-based intrinsic-motivation 

algorithms1,63.

One advantage of introducing domain knowledge into cell represen-

tations is that we can leverage our semantic understanding of domain 

features to improve cell selection. We demonstrate this advantage on 

Montezuma’s Revenge with domain knowledge but without a return 

policy, where we define the cell selection weight based on: (1) the num-

ber of horizontal neighbours to the cell present in the archive (h); (2) a 

key bonus: for each location (defined by level, room, and x, y position), 

the cell with the largest number of keys at that location gets a bonus 

of k = 1 (k = 0 for other cells); (3) the current level. The first two values 

contribute to the location weight,

W
h

k=
2 −

10
+ . (5)location

This value captures the intuitive notion that a cell that lacks neighbours 

in the archive is likely to be at the current frontier of search (vertical 

neighbours do not have the same effect as it is often more difficult to 

move from one vertical level to another, requiring for example, a ladder 

to be present), and that an agent has more exploration capacity (that 

is, affordances) if it is holding more keys. Wlocation is then combined with 

W above as well as the level of the given cell l and the maximum level in 

the archive L to obtain the final weight for Montezuma’s Revenge with 

domain knowledge:

W W W= 0.1 ( + ). (6)L l
mont_domain

−
location

This level-weighting puts a much stronger weight on cells in the highest 

level reached so far, thus focusing exploration on the frontier of search. 

These domain-knowledge features substantially improve sample com-

plexity in Montezuma’s Revenge relative to the default selection weight 

W defined above, but Go-Explore with the default selection weight is 

still able to get to the end of level 3, and thus still finds trajectories 

that traverse Montezuma’s Revenge in its entirety (Supplementary 

Information section 3.6). Although it is possible to produce an analo-

gous domain-knowledge cell-selection weight for Pitfall with domain 

knowledge, no such weight produced any substantial improvement 

over W alone.

Unless otherwise specified, once a cell is returned to, exploration 

proceeds with random actions for a number of steps (100 in Atari, 30 in 

robotics), or until the end-of-episode signal is received from the envi-

ronment. In Atari, where the action set is discrete, actions are chosen 

uniformly at random. In robotics, each of the nine continuous-valued 

components of the action is sampled independently and uniformly 

from the interval from −1 to 1. To help explore in a consistent direc-

tion, the probability of repeating the previous action is 95% for Atari 

and 90% for robotics. The effect of action repetition is investigated in 

Supplementary Information section 3.1.

For increased efficiency, the exploration phase is processed in par-

allel by selecting a batch of return cells and exploring from each one 

of them across multiple processes. In all runs without a return policy, 

the batch size is 100.

All reported experiments, except those involving policy-based 

Go-Explore, return by directly restoring a simulator state. This method 

of returning is available whenever a simulator is available, which is the 

case for most reinforcement learning experiments; owing to the large 

number of training trials current reinforcement learning algorithms 

require, as well as the safety concerns that arise when running reinforce-

ment learning directly in the real world, simulators have played a key 

role in training the most compelling applications of reinforcement 

learning, and will likely continue to be harnessed for the foreseeable 

future.

The backward algorithm

The ‘backward algorithm’29 places the agent close to the end of the 

trajectory and runs PPO (Supplementary Information section 14) until 



the performance of the agent matches that of the demonstration. Once 

that is achieved, the agent’s starting point is moved closer to the trajec-

tory’s beginning and the process is repeated.

The algorithm was modified to support multiple (10, in our experi-

ments) demonstrations by selecting a demonstration uniformly at 

random at the start of each episode, which stabilizes learning. The 

demonstrations can be obtained cheaply by running the exploration 

phase multiple times. In Atari, the agent may be able to find rewards 

from the starting position before it has worked backwards all the way 

to the start in a way that matches the demonstration performance. To 

track such partial progress, a virtual ‘demonstration’ corresponding 

to starting the agent at the true starting point was added (Supplemen-

tary Information section 15.1). This process was not performed in the 

robotics environment as there is only one point to score, making partial 

success impossible. Self-imitation learning37 was performed on the 

demonstrations provided to the backward algorithm (Supplementary 

Information section 14). In Atari, we normalize the rewards based on the 

mean absolute returns found in the demonstrations to allow a single 

set of hyperparameters to be used across all games, including those 

with widely varying reward magnitudes (Supplementary Information 

section 15.2). The pseudocode that includes the modifications above 

is shown in Supplementary Algorithm 2, and the neural-network archi-

tectures that were trained are shown in Extended Data Fig. 1.

Evaluation

In Atari, the score of an exploration-phase run is measured as the high-

est score ever achieved at episode end (Supplementary Information 

section 16). For the 11 focus games, exploration-phase scores are aver-

aged across 50 exploration-phase runs. For the other games, they are 

averaged across five runs. For domain knowledge, they are averaged 

across 100 runs.

On Atari, only the 11 focus games are robustified and evaluated in 

a stochastic setting. Modern reinforcement learning algorithms are 

already able to adequately solve the games not included in the 11 focus 

games in this work, as demonstrated by previous work (Extended Data 

Table 3). Thus, because robustifying these already solved games would 

have been prohibitively expensive, we did not perform robustification 

experiments for these 44 games.

During robustification, a checkpoint is produced every 100 training 

iterations (13,926,400 frames). A subset of checkpoints corresponding 

to points during which the rolling average of scores seen during training 

was at its highest are tested by averaging their scores across 100 test 

episodes. Then the highest-scoring checkpoint found is retested with 

1,000 new test episodes to eliminate selection bias. For the downscaled 

representation, robustification scores are averaged over five runs. For 

domain knowledge, they are averaged across 10 runs. All testing is 

performed with sticky actions (see Methods section ‘State-of-the-art 

performance on Atari’). To accurately compare against the human world 

record of 1.2 million33, we patched an ALE bug that prevents the score 

from exceeding 1 million (Supplementary Information section 19).

The exploration phase for robotics was evaluated across 50 runs 

per target shelf, for a total of 200 runs. The reported metric is the pro-

portion of runs that discovered a successful trajectory. Because the 

outcome of a robotics episode is binary (success or failure), there is no 

reason to continue robustification once the agent is reliably successful 

(unlike with Atari where it is usually possible to further improve the 

score). Thus, robustification runs for robotics are terminated once they 

keep a success rate greater than 98.5% for over 150 training iterations 

(19,660,800 frames), and the runs are then considered successful. To 

ensure that the agent learns to keep the object inside the compartment, 

a penalty of −1 is given for removing the object from the compartment, 

and during robustification the agent is given up to 54 additional steps 

after successfully putting the object in the shelf (‘Extra frame coef’ in 

Extended Data Table 1a), forcing it to ensure the object doesn’t leave 

the shelf. Out of 200 runs (50 per target shelf), two runs did not succeed 

after running for over 3 billion frames (whereas all other runs succeeded 

in fewer than 2 billion) and were thus considered unsuccessful (one for 

the bottom left shelf and the other for the bottom right shelf), resulting 

in a 99% overall success rate.

The robotics results are compared to two controls. First, to confirm 

the hard-exploration nature of the environment, five runs per target 

shelf of ordinary PPO21 with no exploration mechanism were run for 

1 billion frames. At no point during these runs was any reward found, 

confirming that the robotics problem in this paper constitutes a 

hard-exploration challenge. Second, we ran 10 runs per target shelf for 

2 billion frames of ordinary PPO augmented with count-based intrinsic 

rewards, one of the best modern versions of intrinsic motivation1,53,63,64 

designed to deal with hard-exploration challenges. The representation 

for this control is identical to the one used in the exploration phase, so 

as to provide a fair comparison. Similar to the exploration phase, the 

counts for each cell are incremented each time the agent enters a cell 

for the first time in an episode, and the intrinsic reward is given by n1/ , 

similar to W. Because it is possible (though rare) for the agent to place 

the object out of reach, a per-episode time limit is necessary to ensure 

that not too many training frames are wasted on such unrecoverable 

states. In robustification, the time limit is implicitly given by the length 

of the demonstration combined with the additional time described 

above and in Extended Data Table 1a. For the controls, a limit of 300 time 

steps was given as it provides ample time to solve the environment 

(Extended Data Fig. 5b), while ensuring that the object is almost always 

in range of the robot arm throughout training. As shown in Fig. 4b, this 

control was unable to find anywhere near the number of cells found 

by the exploration phase, despite of running for considerably longer, 

and as shown in Fig. 4c, it also was unable to find any rewards in spite 

of running for longer than any successful Go-Explore run (counting 

both the exploration phase and robustification phase combined).

Hyperparameters

Hyperparameters are reported in Extended Data Table 1. Extended 

Data Table 1b reports the hyperparameters specific to the Atari envi-

ronment. Of note are the use of sticky actions as recommended by 

Machado et al.17, and the fact that the agent acts every four frames, 

as is typical in reinforcement learning for Atari15. In this work, sample 

complexity is always reported in terms of raw Atari frames, so that the 

number of actions can be obtained by dividing by four. In robotics, 

the agent acts 12.5 times per second. Each action is simulated with a 

timestep granularity of 0.001 s, corresponding to 80 simulator steps 

for every action taken.

Although the robustification algorithm originates from Salimans & 

Chen29, it was modified in various ways (Methods section ‘The backward 

algorithm’). Extended Data Table 1a shows the hyperparameters for this 

algorithm used in this work, to the extent that they are different from 

those in the original paper, or were added due to the modifications in 

this work. Extended Data Table 2a, b shows the state representation 

for robotics robustification.

With the downscaled representation on Atari, the exploration phase 

was run for 2 billion frames before extracting demonstrations for robus-

tification. Because exploration-phase performance was slightly below 

average human performance on Pitfall, Skiing and Private Eye, the 

exploration phase was allowed to run longer on these three games 

(5 billion for Pitfall and Skiing, 15 billion for Private Eye) to demonstrate 

that it can exceed human performance on all Atari games. The demon-

strations used to robustify these three games were still extracted after 

2 billion frames, and the robustified policies still exceeded average 

human performance thanks to the ability of robustification to improve 

upon demonstration performance. With the domain-knowledge repre-

sentation on Atari, the exploration phase ran for 1 billion frames. Robus-

tification ran for 10 billion frames on all Atari games except Solaris 

(20 billion) and Pitfall when using domain-knowledge demonstrations 

(15 billion). In the robotics experiment, the exploration phase ran for 
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20 million frames and details for the robustification phase are given 

in Methods section ‘Evaluation’.

Policy-based Go-Explore details

The idea of policy-based Go-Explore is to learn how to return (rather 

than to restore archived simulator states to return). The algorithm 

builds off the popular PPO algorithm21 (Supplementary Information 

section 14) and pseudocode for the algorithm is shown in Supplemen-

tary Algorithm 3. At the heart of policy-based Go-Explore lies a 

goal-conditioned policy πθ(a|s, g) (Extended Data Fig. 1c), parameter-

ized by θ, that takes a state s and a goal g and defines a probability dis-

tribution over actions a. Policy-based Go-Explore includes all PPO loss 

functions described in Supplementary Information section 14, except 

that instances of the state s are replaced with the state-goal tuple (s, g). 

The total reward rt at time t is the sum of the trajectory (τ) reward r t
τ 

(defined below) and the environment (e) reward r t
e, where r t

e is clipped 

to the [−2, 2] range. Because most rewards in Atari have an absolute 

value greater than 2, this clip range effectively sets the magnitude of 

in-game rewards to 2. Given that trajectory rewards are 1 (see below), 

this clipping implements the intuition that in-game rewards should be 

more important than following the trajectory. We implement this 

intuition in the form of clipping so as to not increase the importance 

of the smallest Atari rewards. Policy-based Go-Explore also includes 

self-imitation learning37 (Supplementary Information section 14), where 

self-imitation learning actors follow the same procedure as regular 

actors, except that they replay the trajectory associated with the cell 

they select from the archive. Hyperparameters are listed in Extended 

Data Table 1a.

To fit the batch-oriented paradigm, policy-based Go-Explore updates 

its archive after every mini-batch (Extended Data Fig. 6). In addition, 

the ‘go’ step now involves executing actions in the environment (as 

explained below), and each actor independently tracks whether it is 

in the ‘go’ step or the ‘explore’ step of the algorithm. For the purpose 

of updating the archive, no distinction is made between data gathered 

during the ‘go’ step and data gathered during the ‘explore’ step, mean-

ing policy-based Go-Explore can discover new cells or update existing 

cells while returning.

For the experiments presented in this paper, data are gathered in 

episodes. Whenever an actor starts a new episode, it selects a state 

from the archive with a cell-selection weight of:

W
C

=
1

0.5 + 1
, (7)

steps

where Csteps is the total number of steps the agent has spent in the cell. 

This equation is different from the one in the exploration phase with-

out a policy (0.5Csteps grows much faster than Cseen ) because 

policy-based Go-Explore benefits from focusing more strongly on the 

most recently discovered cells for two reasons: (1) after a new cell is 

discovered in policy-based Go-Explore, the policy may first need to 

learn how to return there reliably; focusing on new cells helps the agent 

collect the necessary experience to do so, and (2) policy-based 

Go-Explore will visit many cells along the way to a target cell, enabling 

it to explore from those intermediate cells without selecting them 

explicitly (Extended Data Fig. 7). After a cell is selected, policy-based 

Go-Explore runs its goal-conditioned policy to reach the selected state, 

which enables it to be applied without assuming access to a determin-

istic or restorable environment during the exploration phase. It is 

exceedingly difficult and in practice unnecessary to reach a particular 

state exactly, so instead, the policy is conditioned to reach the cell 

associated with this state, referred to as the ‘goal cell’, which is provided 

to the policy in the form of a concatenated one-hot encoding for every 

attribute characterizing the cell. Directly providing the goal cell to the 

goal-conditioned policy did not perform well (Supplementary Informa-

tion section 3.9), presumably because goal-conditioned policies tend 

to falter when goals become distant36. Instead, the actor is iteratively 

conditioned on the successive cells traversed by the archived trajectory 

that leads to the goal cell.

Here we allow the agent to follow the archived trajectory in a soft 

order, a method similar to the one described in Guo et al.34. To prevent 

the soft trajectory from being affected by the time an agent spends in 

a cell, the algorithm first constructs a trajectory of non-repeated cells, 

collapsing any consecutive sequence of identical cells into a single cell. 

Then, given a window size Nw = 10, if the agent is supposed to reach a 

specific goal cell in this trajectory and it reaches that or any of the sub-

sequent nine cells in this trajectory, the goal is considered met. When 

a goal is met, the agent receives a trajectory reward r t
τ of 1 and the sub-

sequent goal in the non-repeated trajectory (that is, the goal that comes 

after the cell that was actually reached) is set as the next goal. When 

the cell that was reached occurs multiple times in the window (indicat-

ing cycles) the next goal is the one that follows the last occurrence of 

this repeated goal cell.

When an agent reaches the last cell in the trajectory, it receives a 

trajectory reward r t
τ of 3, which is higher than the intermediate trajec-

tory reward of 1 to implement the general practice of having a higher 

reward for reaching a desired final state than for completing any inter-

mediate objectives65,66: this practice improved performance (Supple-

mentary Information section 3.10). Then the agent executes the 

‘explore’ step, either through policy exploration or random exploration. 

With policy exploration, the agent will select a goal for the policy 

according to one of three rules: (1) with 10% probability, randomly 

select an adjacent cell (see Methods section ‘Exploration phase’) not 

in the archive, (2) with 22.5% probability, select any adjacent cell, 

whether already in the archive or not, and (3) in the remaining 67.5% of 

cases, select a cell from the archive according to the standard 

cell-selection weights. If the first rule does not apply because all adja-

cent cells are already in the archive, rules 2 and 3 are selected with 

proportionally scaled probabilities. Note that, in the exploration step, 

the agent is presented directly with the goal, rather than with a trajec-

tory. Whenever the current exploration goal is reached, or if the goal 

is not reached for some number of steps (here 100), a new exploration 

goal is chosen. With random exploration, the agent takes random 

actions according to the random-exploration procedure described in 

Methods section ‘Exploration phase’. All gathered data are ignored 

with respect to calculating the loss of the policy.

While following a trajectory or during exploration, it is possible for 

the agent to fail to make progress towards the current goal cell because 

the policy has converged towards putting all its probability mass on a 

small set of actions, meaning the policy performs insufficient explora-

tion to discover the goal and observe its reward. To alleviate this issue, 

in addition to having the entropy bonus ℒENT, the policy is extended 

with an entropy term et that divides the logits (inputs to the softmax 

activation function) of the policy. If the agent fails to reach the current 

goal for some number of steps et
T  (defined below), this entropy term is 

increased following:

e t t e e(^) = 1 + [max(0, ^ − ) ] , (8)t t
T e

f
p

where t̂  is the number of steps the agent has taken since it last reached 

a goal (for returning) or discovered a new cell (for exploring), ef = 0.01 

is the entropy increase factor and ep = 2 is the entropy increase power. 

While executing the ‘explore’ step, the threshold et
T  has a fixed value 

of 50. While returning, the threshold et
T  equals the number of actions 

that the followed trajectory required to move from the previously 

reached goal cell to the current goal cell. Here, the previously reached 

goal cell refers to the first cell in the soft-trajectory window that 

matched the cell occupied by the agent at the time the previous goal 

was considered met.

Lastly, to prevent actors from spending many time steps without 

making any progress (possibly because the agent reached a state from 



which further progress is impossible), we terminate the episode early if 

the current goal is not reached within 1,000 steps after we have started 

to increase entropy (while returning), or if no new cells are discov-

ered for 1,000 steps (while exploring). For Montezuma’s Revenge with 

policy-based Go-Explore only, we also terminate the episode upon 

death to deal with an ALE bug (Supplementary Information section 19).

Robotics environment

The robotics environment, from https://github.com/vikashplus/fetch, 

features a realistic model67 of the Fetch Mobile Manipulator35 and was 

minimally modified to implement a sparse-reward pick-and-place task. 

The modified environment is included with the Go-Explore code.

Data availability

The data that support the findings of this study (including the raw 

data for all figures and tables in the manuscript, Extended Data, Sup-

plementary Information, as well as the demonstration trajectories 

used in robustification) are available from the corresponding authors 

upon reasonable request.

Code availability

The Go-Explore code is available at https://github.com/uber-research/

go-explore.
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Extended Data Fig. 1 | Neural network architectures. a, The Atari 

architecture is based on the architecture provided with the backward 

algorithm implementation. The input consists of the RGB channels of the last 

four frames (rescaled to 80 by 105 pixels) concatenated, resulting in 12 input 

channels. The network consists of three convolutional layers (C), two fully 

connected layers (FC), and a layer of gated recurrent units (GRUs)68. The 

network has a policy head πt(st|at) and a value head Vt(st). b, For the robotics 

problem, the architecture consists of two separate networks, each with two 

fully connected layers and a GRU layer. One network specifies the policy 

πt(st|at) by returning a mean µt and variance σt for the actuator torques of the 

arm and the desired position of each of the two fingers of the gripper (gripper 

fingers are implemented as Mujoco position actuators61 with kp = 104 and a 

control range of [0, 0.05]). The other network implements the value function 

Vt(st). c, The architecture for policy-based Go-Explore is identical to the Atari 

architecture, except that the goal representation gt is concatenated with the 

input of the first fully connected layer. Activation functions (Act.) are: the 

rectified-linear unit (Relu), the exponential function (Exp) and the softmax 

function (Softmax). Layers can also include layer normalization (Layer norm), 

which transforms the output of the layer by subtracting the mean and dividing 

by the standard deviation of the layer.



Extended Data Fig. 2 | Maximum end-of-episode score found by the 

exploration phase on Atari. a, Exploration phase without domain knowledge. 

b, Exploration phase with domain knowledge, compared to downscaled. 

Because only scores achieved at the episode end are reported, the plots for 

some games (for example, Solaris) begin after the start of the run, when the 

episode end is first reached. In a, averaging is over 50 runs for the 11 focus 

games and five runs for other games. In b, averaging is over 100 runs. Shaded 

areas show 95% bootstrap CIs of the mean with 1,000 samples. Avg. Human, 

average human performance; SOTA, state-of-the-art performance; M, ×106;  

K, ×103.
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Extended Data Fig. 3 | Number of cells in archive during the exploration 

phase on Atari. a, Exploration phase without domain knowledge.  

b, Exploration phase with domain knowledge. In a, archive size can decrease 

when the representation is recomputed. Previous archives are converted to the 

new format when the representation is recomputed, possibly leading to an 

archive with a size larger than 50,000. In this case, one iteration of the 

exploration phase runs and the representation is recomputed again. In a, 

averaging is over 50 runs for the 11 focus games and five runs for other games. 

In b, averaging is over 100 runs. Shaded areas show 95% bootstrap CIs of the 

mean with 1,000 samples.



Extended Data Fig. 4 | Progress of robustification phase on Atari.  

a, Exploration phase without domain knowledge. b, Exploration phase with 

domain knowledge. Shown are the scores achieved by robustifying agents 

across training time for the exploration phase without domain-knowledge 

representations (a) and with representations informed by domain 

knowledge (b). In particular, the rolling mean is shown for performance across 

the past 100 episodes when starting from the virtual demonstration (which 

corresponds to the domain’s traditional starting state). Note that in a, 

averaging is over five independent runs, whereas in b, averaging is over 10 runs. 

Because the final performance is obtained by testing the highest-performing 

network checkpoint for each run over 1,000 additional episodes, rather than 

directly extracted from the curves above, the performance reported in Fig. 2b 

does not necessarily match any particular point along these curves (Methods). 

Shaded areas show 95% bootstrap CIs of the mean with 1,000 samples.
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Extended Data Fig. 5 | Progress of the exploration phase in the robotics 

environment. a, Runs with successful trajectories. b, Length of the shortest 

successful trajectory. In a, the exploration phase quickly achieves 100% 

success rate for all shelves in the robotics environment. However, b shows that 

although success is achieved quickly it is useful to keep the exploration phase 

running longer to reduce the length of the successful trajectories, thus making 

robustification easier. Lines show the mean over 50 runs. Shaded areas show 

95% bootstrap CIs of the mean with 1,000 samples.



Extended Data Fig. 6 | Policy-based Go-Explore overview. With respect to 

their practical implementation, the main difference between policy-based 

Go-Explore and Go-Explore when restoring a simulator state is that in 

policy-based Go-Explore there exist separate actors that each have an internal 

loop switching between the ‘select’, ‘go’, and ‘explore’ steps, rather than one 

outer loop in which the ‘select’, ‘go’, and ‘explore’ steps are executed in 

synchronized batches. This structure allows policy-based Go-Explore to be 

easily combined with popular reinforcement learning algorithms like A3C20, 

PPO21 or DQN15, which already divide data-gathering over many actors.
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Extended Data Fig. 7 | Method by which cells are found. a, b, In both 

Montezuma’s Revenge (a) and Pitfall (b), sampling from the goal-conditioned 

policy results in the discovery of roughly four times more cells than when 

taking random actions. At the start of training there is effectively no difference 

between random actions and sampling from the policy, supporting the 

intuition that sampling from the policy only becomes more efficient than 

random actions after the policy has acquired the basic skills for moving 

towards the indicated goal. Lastly, the number of cells that are discovered while 

returning is about twice that of the cells discovered when taking random 

actions after returning, indicating that the frames spent while returning to a 

previously visited cell are not just overhead required for moving towards the 

frontier of yet-undiscovered states and training the policy network, but 

actually provide a substantial contribution towards exploration as well. Lines 

show the mean over 10 runs. Shaded areas show 95% bootstrap CIs of the mean 

with 1,000 samples.



Extended Data Table 1 | Hyperparameters

a, Parameters above the dividing line are applicable to PPO with self-imitation learning, whereas parameters below the line are specific to the backward algorithm. ‘Allowed lag’ is the number of 

frames the agent may lag the demonstration before being considered unsuccessful. When the agent matches the demonstration, it runs for additional frames, controlled by ‘Extra frame coef’, 

c: ecX⌊ ⌋ (X ~ U(0, 1)), where e is Euler’s number and U refers to the uniform distribution. Window size is the number of starting points below the maximum starting point of the demonstration that 

the algorithm may start from. b, For the exploration phase when restoring a simulator state, only ‘Length limit’, ‘End of episode’, and ‘Action repeat’ apply. 

*OpenAI Gym default. 

†Except for Montezuma’s Revenge with a return policy (Methods section ‘Policy-based Go-Explore details’). 

‡4 for Gravitar and Venture. 

SIL, self-imitation learning; Num., number; coef., coefficient, max., maximum.
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Extended Data Table 2 | Robotics state representation

a, Position and velocities of the objects in a are included in the state representation for robotics. b, Collisions between any two objects in b as well as whether each object is currently inside the 

bounding boxes for the table and shelves are also included in the state representation. Objects are given by their MuJoCo61 entity names in the source code for the environment. Door-related 

objects ending with a 1 correspond to the lower door while door-related objects not ending with anything correspond to the upper door. The frame objects are the unmovable wooden blocks 

situated on either side of the movable part of the door. L and R correspond to left and right, whereas L and U correspond to lower and upper. The difference between ‘door’ and ‘DoorUR’ as well 

as ‘door1’ and ‘DoorLR’ is that in each case the latter object corresponds to the entire door structure, including the frames, while the former corresponds only to the movable part of the door. A 

link to the original source code for the MuJoCo description files defining these entities is given in Acknowledgements, and a link to the Go-Explore codebase containing our modified version is 

provided in Methods section ‘Code availability’.



Extended Data Table 3 | Full scores on Atari

Go-Explore outperforms the state of the art on all focus games (Freeway’s score is at its maximum). The exploration phase similarly finds trajectories that frequently exceed state-of-the-art 

scores. Finally, Go-Explore outperforms Agent57 on seven of the 11 focus games, despite Go-Explore being evaluated in a harder environment. Agent57 was included because it is the only 

other algorithm that has achieved superhuman scores on all unsolved and hard-exploration games, but it is listed separately because it was evaluated under easier, mostly deterministic 

conditions (Methods section ‘State-of-the-art performance on Atari’). Expl. phase, Exploration phase; Robust. phase, Robustification phase; Avg. human, Average human.
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