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Studies of human exploration frequently cast people as serendipitously
stumbling upon good options. Yet these studies may not capture the

richness of exploration strategies that people exhibit in more complex

environments. Here we study behaviour in a large dataset of 29,493 players
of therichly structured online game ‘Little Alchemy 2". In this game, players
start with four elements, which they can combine to create up to 720
complex objects. We find that players are driven not only by external reward
signals, such as an attempt to produce successful outcomes, but also by an

intrinsic motivation to create objects that empower them to create even
more objects. We find that this drive for empowerment is eliminated when
playing agame variant that lacks recognizable semantics, indicating that
people use their knowledge about the world and its possibilities to guide
their exploration. Our results suggest that the drive for empowerment may
be apotent source of intrinsic motivation inrichly structured domains,
particularly those that lack explicit reward signals.

Exploration—seeking out potentially usefulinformation—is prevalent
in our everyday lives. From choosing a restaurant to finding a suit-
able workplace, we need to explore our options to be able to make
good decisions. A fundamental tension in all these scenarios exists
between exploring unknown options and exploiting known options.
Analgorithmicaccount of human exploration must explain both what
to explore and when to explore.

Psychologists and neuroscientists have extensively studied human
exploration insimple and highly controlled multi-armed bandit tasks*.
In these tasks, participants choose between a set of options (‘arms’),
each associated with an unknown reward distribution. It is the par-
ticipants’ goal to maximize rewards by repeatedly sampling arms and
collecting the resulting rewards. Ideal agents should explore by com-
bining the immediate reward and the value of information for each
action; they can do so by thinking through all possible future actions
and calculatinghow much rewards would increase if more knowledge
about the reward distributions was collected. However, such optimal
exploration strategies are computationally intractable. Researchers
have therefore focused on the heuristic strategies of exploration that

humans might employ**. Some evidence suggests that people use
sophisticated uncertainty-based heuristics®”".

In this Article, we propose that human exploration strategies
are richer than what has previously been described. In particular, we
believe that current models of human exploration do not capture the
intrinsically motivated exploration strategies observed in the real
world®°. Asanexample, consider how children play with their environ-
ment, curiously trying out new things to understand and learn about
the world, or how scientists explore and arbitrate between different
hypotheses to advance our collective knowledge. In many of these
settings, direct rewards are very sparse and it is often not even clear
what the reward is. Yet people can spend time on activities without
such rewards; these preferences reflect intrinsic exploratory drives.
Current laboratory tasks are not rich enough to study these types
of behaviour quantitatively. We, therefore, propose to study human
exploration in more complex and richly structured environments.
One such environment is the online game ‘Little Alchemy 2’, in which
players start out with four basic elements: water, fire, earth and air.
They can then use their intuitive semantic understanding and always
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combine two elements, which sometimesleads to new elements. Each
created elementisaddedto aninventory for use in future combinations
(Fig. 1a). The combination results are semantically meaningful (for
example, combining water with fire produces steam, and can lead to
increasingly complex elements, such as humans; Fig. 1b). Gameplay is
not random: people selectively choose which elements to combine, and
thereby follow particular paths through the vast state space of element
inventories. Importantly, players do notreceive any extrinsic rewards
during the game, yet may play for several hours. Thus, we believe that
‘Little Alchemy 2’ offers a better and more realistic testbed to inves-
tigate intrinsic exploration strategies than many current laboratory
tasks. Inthe current paper, we analysed a large dataset 0f 29,493 players
who collectively produced more than 4 million trials.

We show that players’ exploration behaviour is best described
not only by a model grounded in external reward signals, as well as
uncertainty-guided and recency-guided exploration, but also by an
exploration as empowerment model that we propose in this paper.
Uncertainty-guided explorationis awell-known strategy that can be for-
malized as the tendency to combine elements that have not frequently
beenusedbefore. Exploration asempowermentis anovel description of
human exploration that can be formalized as the attempt to create ele-
ments that canbe used to create even more elements. This is similar to
how scientists explore when they are trying to gaininsights that enable
them to gain even further insights and therefore explore even more.
Using two simpler versions of the ‘Little Alchemy 2’ testbed, we show
that our previous results can be replicated in an experimental setting
andthat the effect of empowerment on participants’exploration strate-
gies vanishesif we remove the semantics of the game. These results push
our understanding of human exploration strategies away from simple
strategies of explorationinsimple tasks and towards the rich repertoire
of intrinsic exploration strategies found in rich environments.

Extending models of human exploration

Previous studies onhumanexploration have coalesced around two strate-
gies:random and directed exploration. Both use uncertainty about the
available options to guide exploration behaviour but differin how uncer-
tainty is assumed to guide behaviour'. Whereas directed exploration
applies aninformationbonus toseek out options with higher uncertainty,
random exploration predicts that choice stochasticity increases with
higher uncertainty across all available options. While earlier studies did
not produce consistent empirical evidence for uncertainty-guided explo-
rationin human decision making (for example, refs. 3,11), recent studies
have provided converging evidence in favour of such strategies ",

What many of the previous studies on human exploration havein
common, is that they used the fairly simple paradigm of multi-armed
bandits and only collected data from a small number of participants.
Although these tasks have contributed to a deeper understanding of
human exploration behaviour, their simplicity might have masked
moresophisticated strategies that people could apply inricher settings.
Indeed, the strategies humans can employ in exploration tasks—and
which canbe found empirically—are clearly limited by the complexity
of the used experimental paradigms®. The study of empowerment, for
example, requires a change of influence on future options, whichis not
possible to assess in multi-armed bandits without changing rewards or
dynamic states, as well as anintuitive understanding of which actions
can be empowering, for example by using an intuitive understanding
of which objectsin agame can be combined.

To set the stage for our analyses of people’s playing behaviour, we
first describe the ‘Little Alchemy 2’ game in more detail before then
explaining the algorithmic ideas behind uncertainty-guided explora-
tion and exploration asempowerment.

A quintessential game of exploration
In the present work, we look at the game ‘Little Alchemy 2’, created
and released by Jakub Koziol in 2017. By August 2021, the game had

been downloaded over ten million times™. The idea of the game is sim-
ple: players start with an inventory of only four elements: earth, fire,
water and air. Players can create new elements by always combining two
already existing elements. The resulting elements are added perma-
nently totheinventory and can be used from then onward (Fig.1a). The
successful combinations and their results are semantically meaningful.
Forexample, the combination of fire and earth leads to lava, which can
be combined with seato create primordial soup. These can be the first
stepstocreate lifeand—eventually—humanin the further course of the
game (Fig. 1b). ‘Little Alchemy 2’ offers a total of 720 elements, ranging
frombasicitems like energy or glass to extremely specific elements like
cookie dough or Frankenstein’s Monster. Between these elements, there
are 3,452 combinations (out 0f 259,560; Supplementary Information)
that successfully create other elements. The game has a few additional
rules, but they are not relevant for our analysis (for more details, see
Supplementary Information). We believe that ‘Little Alchemy 2’ is a
quintessential game of exploration because players do not play for
rewards butinstead areintrinsically motivated to explore the game tree
and create new elements. It offers a rich and semantically meaningful
structure, which probes humans’ intuitions about the combinability
of its elements. Similar games have been used as a paradigm to study
artificial agents’ commonsense knowledge when trained on natural
language corpora®.

Uncertainty-guided exploration

How can and should people explore element combinations in ‘Little
Alchemy 2'? We compare two different strategies in terms of how well
they describe players’ behaviour in the game: uncertainty-guided
exploration and exploration as empowerment.

One class of heuristics is to use one’s uncertainty about
different options to guide one’s exploration behaviour. For
example, one way to implement simple uncertainty-guided explo-
ration is to assume an uncertainty bonus that encourages the sam-
pling of options that have not been sampled frequently in the past.
Models of human exploration using this type of uncertainty-guidance
have been very prolific, describing behaviour in simple multi-
armed bandits’, bandits with correlational structures', as well as
real-world decision-making problems”. Uncertainty-guided explo-
ration, therefore, constitutes a good candidate model to describe
human exploration in more complex paradigms as well. In ‘Little
Alchemy 2’, an uncertainty-guided strategy would correspond to
tracking how often one has used particular elements before and then
using the elements more that have not been used frequently. It can

be formalized as
_ [log(D
U, = e ()

where the uncertainty value U of each element e depends on the total
number of trials Tso far and the number of times ¢, the element has been
choseninthe past. The higher the uncertainty value of acombination
(the sum of the individual values of the two respective elements), the
higher the probability of choosing that combination.

Exploration asempowerment

Other exploration strategies could also be at play in more complex sce-
nariossuch as ‘Little Alchemy 2. One such strategy is empowerment's,
Exploration as empowerment centres around the idea of exploring
options that enable the generation of as many more options as pos-
sible. This idea is also at the centre of many examples of real-world
exploration. For example, inthe pharmaceutical sciences, researchers
attempt to find new methods to produce vaccines even faster in the
future. Children at play might also exhibit thiskind of intrinsic drive to
exploreactions that train them to explore even more actions”. Empow-
erment differs from uncertainty-guided strategies, in that it focuses
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Fig.1|‘Little Alchemy 2’. a, Game interface. Players can use the workspace to
combine two elementsin an attempt to create new elements, which get added
to theinventory and can be used for future combinations. b, Creating human.
‘Little Alchemy 2’ is arichly structured game in which semantically meaningful
combinations can create up to 720 unique elements. ¢, Dataset of 29,493 players
attempting a total of 4,691,033 combinations. Participants played for 158 trials
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and found 51 elements on average. d, Example of empowerment algorithm.
Combininglife with clay creates human, which can lead to 83 other elements
intotal, such as hacker, love and ninja. Combining life with space creates alien,
which can only lead to one other element, UFO. Thus, combining life with clay is
the more empoweringaction.

less on reducing uncertainty about the environment and more on the
intrinsic drive towards a state of maximum influence®. It would not be
easily possible to study exploration as empowerment in multi-armed
bandits as the influence on future options cannot be changed during
the experiment. Nonetheless, we believe thatempowerment captures a
quintessential component of intrinsic exploration such asin children’s
play and scientificinvestigations: the attempt to do things that enable
one to do even more things in the future.

Inthe context of ‘Little Alchemy 2’, empowerment translatesinto
the players’ intrinsic desire to create elements that offer many new
successful combinations. We therefore call an element empowering
the more distinct elementsit canlead to by combination with all other
possible elements in the game, provided that the true game tree is
known. For example, the element humanin combination with other ele-
ments leads to 83 new elements, while alienleads to only 1 new element
(Fig.1d). Thus, the element human is more empowering than the ele-
mentalien. Theempowerment value of acombinationis the empower-
ment value of the resulting element—so the number of elementsit can
create. In our example, the combination of space and life has a lower
empowerment value (1) than clay and life (83). Without knowledge of
the true game tree, empowerment requires both a semantic under-
standing of what elements could come out of a particular combination
aswellasanintuitive understanding of how potent, thatis combinable,
theresulting elements could be. Thus, studyingempowerment requires
arichly structured and semantically meaningful game tree such asthe
one afforded by ‘Little Alchemy 2".

Results

We look for signatures of uncertainty-guided exploration and empow-
erment in a dataset of online players of the game ‘Little Alchemy 2’
using statistical and cognitive modelling. Additionally, we change the
structure of the game to investigate whether a simpler paradigm and
aversion without rich game semantics could lead to similar results.
Further details can be found in Methods, as well as in Supplementary
Information. In the first section of Results, we present the online dataset
and some descriptive analyses. In the following two sections, we show
that humans incorporate the empowerment value in their behaviour
and look at the performance of different models playing the game.
Afterwards, we address people’s intuitive semantic understanding
of the game and how an approximation of this understanding can be
integrated into the empowerment model. Inthe following section, we
show that humans use a mixture of exploration asempowerment and
uncertainty-guided exploration when playing the game. Finally, we
extend our results by gathering two similar datasets from online experi-
ments, omitting the semantic structure of the game in one of them.

Online game data

We collected data from anonymous online players of the game over a
duration of 3 weeks, resulting in a dataset of 29,493 players who tried
over four million combinations. From each player, we know the whole
course of their gameplay, thatis, the order of tried combinations, start-
ing with the basic inventory of four elements. Players played for an
average of 158 trials and discovered an average of 51 elements (Fig. 1c;
mean number of trials 158.06, standard deviation (s.d.) 695.38; mean
number of elements 50.91,s.d. 76.42). A total of 563 players even played
forlonger than1,000 trials, with 16 of them playing over 10,000 trials.
Atotal of 3,206 players managed to have aninventory with more than
100 elements; 9 players managed to find all possible 720 elements.

Drivers of exploration behaviour
What strategies do humans use to explore the space of possible ele-
ments? Playersimmediately used elements that they had just created
very frequently (Fig. 2a). We therefore further analysed what drove
players to immediately use a new element after it had just been cre-
ated. The idea of this analysis was that if people have a good intuition
aboutempowerment, then they shouldimmediately use empowering
elementsassoonasthey have been created. This analysis showed that
playershad a preference to use anelementimmediately after creating
itif the element had a higher empowerment value, that is the actual
number of elementsit could lead to. We assessed the size of the effect by
comparingtheir choices with asimulated random performance, which
revealed that they differed meaningfully (8=0.43, t=6.59, P<0.001;
human: f=0.47,t=12.26,P<0.001;random: 8= 0.04,¢t=0.76, P= 0.45—
for details, see Supplementary Information). This suggests that people
incorporate theempowerment value of the different elementsin their
decision toimmediately use a newly created element.
Anotheraspect of people’s playing behaviouris the pointintime at
which they stop playing the game. What motivates playersto continue
combining elements? We analysed whether continuation of play is
more influenced by the recent creation of successful combinations,
or by the recent creation of empowering elements. We regressed the
decision of continuation of the players in the current trial onto the
value of the previous two trials (average number of successful trials
inthe success model and average empowerment values of all created
elements in the empowerment model). We found that the empower-
ment value of discovered elements had a positive effect on continua-
tion of play (8=0.41,z=42.62, P<0.001), while the success value had
anegative effect (8=-0.31,z=-33.18,P< 0.001, Fig. 2b). These effects
remained robust when controlling for the number of trials and the size
of the inventory, as well as when using the previous one to five trials
for this analysis (for further details, see Supplementary Information).
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Fig.2| Empowermentresults. a, Percentage of immediately used newly
discovered elements depending on their empowerment value—how many
elements they can produce. Players were more likely to immediately use more
empowering elements than would be expected under arandom performance.

b, Probability of continuing the game. While the empowerment value of recently
discovered elements had a positive influence on participants’ probability of
continuing the game, the success of combinations did not. ¢, Performance

of different models when playing ‘Little Alchemy 2". The uncertainty model
performed marginally better than chance, while the empowerment model
performed better than humans. The oracle model indicates the performance

of an optimal agent. d, Regression coefficients of best-performing model.

A combination of empowerment and uncertainty described human behaviourin
‘Little Alchemy 2’ best. Error bars indicate the standard error of the mean.

This means that players’ decisions to continue the game were mostly
influenced by how empowering recently created elements were. The
negative effect of success indicates that players might like to ‘end on
ahigh’, meaning they would rather quit the game shortly after finding
a (non-empowering) element, than after not finding an element for
multiple trials.

Model performance in playing the game

We assessed the performance of different models by letting them
play the game from the beginning. We tested the performance of the
empowerment approach by creating a model based on the empow-
erment values of the actual underlying game tree of the original
game and compared this model to arandom choice, an oracle, and an
uncertainty-based exploration model.

The random model picks the elements of the next combination
randomly from the current inventory. The oracle model knows the
actual game tree and chooses combinations that always result in the
discovery of anew element, thus simulating the behaviour of a perfect
agent. The uncertainty model picks elements based on how often they
have been used so far (equation (1)). The more often an element has
beenchosen, thelesslikelyitis tobe chosen again. Theempowerment
model bases its decisions on the empowerment value of the possible
combinations.

The values of the latter two models were converted into prob-
abilities using a softmax function before a combination was selected
according to these probabilities. Each model also had a perfect mem-
ory, that is, they never tried past combinations again. We ran each
model 1,000 times over 200 trials. In Fig. 2c, we plotted the average
inventory size over time while also comparing to human players. The
oracle model and the empowerment model outperformed human
players. This was expected because both of these models knew the
true underlying game tree of the actual game, while people did not.
The uncertainty-based and the random model performed worse than
humans. Since human performance was between these two kinds of
models, it is conceivable that players were using a mixed strategy,

similar to other theories of human learning and decision making®”.

Approximating the intuitive semantics of the game

We believe that players have an intuitive understanding of which ele-
ments are combinable and empowering and which are not, which we
operationalized in our empowerment model. However, the empow-
erment model must be based on a game tree to calculate the values
of the different combinations. Our focus lies on comparing how the
different models describe human behaviour, but the human players

do notknow the true underlying game tree. Therefore, we had to find
another reasonable semantic basis for the empowerment model,
which captures people’s intuitive understanding of which elements
can be combined and which cannot. Clearly, it would not be feasible
to ask players about their intuitions about all possible 720 x 720 ele-
ment combinations (see also Supplementary Information). Thus, we
decided to approximate human semantic understanding using neural
networks trained on parts of the underlying game tree. To represent
the elementsin a vector space, we used a word representation model
of vector embeddings pre-trained on a large English language corpus
of Wikipediaarticles®. Similar models have been used to model human
judgement and decision makingin other domains®. The elements’ word
vectors were used as inputs to two feedforward neural networks. The
first model was a link prediction model, which predicted which ele-
ment combinations were likely to succeed. The second model was an
element prediction model, which assigned probabilities to each of the
720 possible elements, stating how likely the respective element was to
resultfrom the given combination. Both neural networks were trained
onsubparts of the true underlying game tree, by dividing the possible
259,560 combinations into a training, validation and test dataset. We
used ten-fold cross-validation such that each element combination
was partof atestsetatleastonce. For all further analysis, we only used
the predicted probabilities of combinations that were not part of the
training set. These probabilities were used to form a new basis for our
empowerment model. We created new empowerment values for each
possible combination by multiplying its success probability with the
outcome probabilities of all elements times their specific empow-
erment values—how many unique elements it is likely to create (for
more details, see Supplementary Information). Thus, combinations
that had a high probability to succeed and a high probability to result
inan element that can create more elements in the future had a high
empowerment value, predicted by the two models in unison. These
values are naturally still based on the underlying true game tree. There-
fore, there exists asubstantial correlation between the empowerment
values of each element according to the model and according to the
true underlying game tree (r = 0.83, P < 0.001; for a visualization, see
Supplementary Information). However, the model’s predictions seem
tomatch people’sintuitions according to our additional experiments
(for details, see Supplementary Information).

Regression analysis

We compared how well the different models described the actual
behaviour of all players. Because players’ inventory grows over time,
itbecomes difficult to compare across all possible choices. Therefore,
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we decided to use asimpler method to compare the different models’
predictions, which was to create a dataset comparing the value of a
combination chosen by a player according to the current model with
the value of arandomly sampled combination that the player could
have chosenbut did notbased on his currentinventory. We then fed the
differences of these two value predictions into a logistic mixed-effects
regression®, allowing us to regress participants’ choices onto model pre-
dictions (for further details onincluding potential confounding factors,
aswellas multiple recovery analyses, see Supplementary Information).

We compared several models of players’ gameplay, while also
controlling for the number of trials different players played, as well as
interaction effects between the models and the trial number. We found
thatthe modelbest describing choices was acombination of empower-
ment (8=0.38,z=369.22, P < 0.001) and uncertainty-guided (8= 0.22,
z=204.44, P<0.001) exploration (Fig. 2d; for fullmodel comparison,
see Supplementary Information). Importantly, the effect of empow-
erment was larger than the effect of uncertainty-guided exploration
(8=0.118,z=86.46, P < 0.001). Although there was a positive effect of
uncertainty-guided exploration, our model recovery results showed
that we cannot fully distinguish between uncertainty-guided and ran-
domexploration. Thus, participants were driven mostly by the attempt
tocreate elements thatempowered themto create even more elements.

Recency model

An additional factor that could have an influence on people’s playing
behaviour is recency—the number of trials since an element was last
chosen. We checked whether players displayed arecency bias in their
decisions by constructing a recency model. This model chooses ele-
ments based onthe number of trials since their last usage. The value of
acombinationintherecency modelis calculated by taking the negative
value of the sum of the individual recency values, which are defined as
the number of trials since the element was last used, divided by the total
number of trials played so far. We found that recency had a significant
positive effect (8=1.76,z=508.93, P< 0.001). This means that players
preferred to use elements theyjust used again. This result can be partly
explained by the interface design—elements that have just been used
unsuccessfully stay in the play area—which pushes players into the
direction of re-usingjust used elements. However, even when running
anexperiment thatis similar to the original game (see ‘Tiny Alchemy’in
Supplementary Information), but does notinclude a play area, recency
still shows a significant positive effect (8=0.68,z=44.00, P< 0.001).
Therefore, it seems like players were more likely to choose elements that
they recently used. This effect has been observed in multiple experi-
ments*. However, even when including the recency model, as well as
itsinteraction effect with the number of trials, empowerment still had
asignificant effect on players’ behaviour in the original regression
model (8=0.40, z=354.14, P< 0.001; for full regression results, see
Supplementary Information).

Empowerment versus success only
Since our model formalizing exploration as empowerment consists of
two components—alink predictionand an element prediction com-
ponent—one might ask if the link prediction component alone might
already be enough to explain human behaviour in ‘Little Alchemy 2",
This would correspond to players only caring about whether or not
a combination can successfully create new elements. However, the
link prediction component is not straightforwardly comparable with
our empowerment model, as the empowerment model contains a
link prediction component. Because unsuccessful combinations
cannot be empowering, the two models are correlated in their pre-
dictions. To further tease apart the two concepts, we performed two
additional analyses.

In the first analysis, we manipulated our regression analysis by
matching the success of the randomly sampled combination with the
combination chosen by the player. For the main regression reported,

Game interface
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? + 7?2 = 7

Try to create a new element.

Let’s find out

Inventory:

Earth
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Fig.3 | Experiment setup of ‘Tiny Alchemy’ and ‘Tiny Pixels”. ‘Tiny Alchemy’
isan experimental version of ‘Little Alchemy 2". ‘Tiny Pixels’ is based on ‘Tiny
Alchemy’ but does not contain any semantic information.

we had simply matched the chosen pairs with randomly sampled pairs.
Here, we manipulated this sampling by matching the sampled pair such
thatit was successful if the chosen pair was successful and unsuccess-
ful if the chosen pair was unsuccessful. This essentially nullified the
contribution of success to this regression. Our oracle model, which was
based onthe true game tree, was therefore—by design—not capable of
predicting human decisions. However, the empowerment model based
on the true game tree was still able to significantly explain variance
in human behaviour (=0.08, z=61.54, P< 0.001), even when add-
ing the uncertainty (empowerment: 8= 0.07, z=49.37, P< 0.001) or
the recency component to the regression analysis (empowerment:
£=0.06,z=37.17,P < 0.001; for full regression results, see Supplemen-
tary Information).

Inasecond analysis, we created anew empowerment model, which
was directly trained on the empowerment values of the successful
combinations accordingtothe underlying gametree (see Supplemen-
tary Information for further details). As this method does not use the
link prediction component to calculate the empowerment value, this
reduced the correlation between the two models. In the correspond-
ing regression analysis, in which we included the new empowerment
model, as well as the link prediction component —correspondingtoa
success-only model based on the neural network approximations—we
found that empowerment explained asignificant amount of variancein
humanbehaviour when controlling for the link prediction component
(8=0.12,z=126.49, P< 0.001), even when additionally controlling for
the uncertainty (empowerment: f=0.13, z=131.37, P< 0.001) or the
recency component (empowerment: 8= 0.13,z=119.91, P< 0.001; for
full regression results, see Supplementary Information).

Taken together, we conclude that while the expected success of a
combinationinfluenced people’s choices, it was not the only strategy
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Fig. 4 |Importance of richly structured game semantics. a, In ‘Tiny Alchemy’,
97 participants played for 466 trials and created 89 elements on average. In ‘Tiny
Pixels’, 98 participants played for 159 trials and created 28 elements on average.
b, While participants were more likely toimmediately use empowering elements
in‘Tiny Alchemy’, this was not the case for participants in ‘Tiny Pixels’. ¢, While
the empowerment value of recently discovered combinations had aninfluence

on participants’ continuation behaviour in ‘Tiny Alchemy’, this was not the case
in‘Tiny Pixels’. d, Regression coefficients of empowerment plus uncertainty
model. Whereas empowerment and uncertainty both significantly related to
participants’ choicesin ‘Tiny Alchemy’, only uncertainty-guided exploration—
and notempowerment—did for ‘Tiny Pixels”. Error bars indicate the standard
error of the mean.

they used. Rather, it is very likely that players additionally took the
empowerment value of elements into account.

Theimportance of semantic structure

Weargued thatrichly structured environments should be used to study
more sophisticated exploration strategies than are typically found in
simpler paradigms such as multi-armed bandit tasks. In particular, we
believe that ‘Little Alchemy 2’ is richer than multi-armed bandits on
two axes. First, multi-armed bandits are flat with only very few options,
while our game has many possible nodes and ways inwhich an explor-
ing player can go.Second, multi-armed bandits are also blank because
they do not assume any prior knowledge, while our game requires
arich semantic understanding of how different elements could be
combined. We hypothesized that people explore by trying to empower
themselves in the game, not only because the game contains arich
gametree, butalso because of the rich semantics underlying the tree.
To further probe this hypothesis, we checked if stripping away the
semantics of the game changed players’ exploration strategies. For
that purpose, we created our own two versions of the game which we
termed ‘Tiny Alchemy’ and ‘Tiny Pixels’. Both versions are based on the
gametree of ‘Little Alchemy1’, the predecessor of ‘Little Alchemy 2. The
game ‘Tiny Alchemy’ contains 540 elements and has a similarly rich
semantic structure as the original game. We simplified the game even
further, resulting in 345 discoverable elements. The game ‘Tiny Pixels’
has the same underlying game tree but we eliminated the semantics by
randomly repositioning the pixels in the pictures of the elements and
adding uninformative names usually used in memory tasks (Fig. 3).
With the semantic structure removed, the gameis still rich (because it
isnot flat), but we expected it not toberichin the right way (because it
was now blank). We also expected this manipulation to make the game
more difficult for the participants, as they would not be able to use
theirintuition to make decisions. We collected data for both games on
Amazon Mechanical Turk, gathering 97 participants for ‘Tiny Alchemy’
and 98 participants for ‘Tiny Pixels’. The resulting dataset allowed us
to assess how much our finding of exploration as empowerment was
indeed driven by the semantics of the game.

Behavioural differences

Wefirstinvestigated simple behavioural differences between the two
games under the assumption that ‘Tiny Pixels’ would be more difficult
for playersthan ‘Tiny Alchemy’. We found that players of the game ‘Tiny
Alchemy’ played on average longer (¢(193) =7.12, P< 0.001, d =1.02)
and discovered more elements (¢(193) =7.21, P< 0.001, d =1.03) than
players of the game ‘Tiny Pixels’ (Fig. 4a; ‘Tiny Alchemy’: mean number
oftrials 465.55,s.d.397.71; mean number of elements 89.07, s.d. 83.76;

‘Tiny Pixels’: mean number of trials 159.44, s.d. 150.99; mean number
of elements 27.5,s.d.11.67).

Next, we compared the frequency of immediately using a newly
created element based onits empowerment value—the ability to create
new elements later on. In ‘Tiny Alchemy’, players were more likely to
use empowering elements immediately than in ‘Tiny Pixels’ (Fig. 4b;
L=0.47,t=4.73, P<0.001; ‘Tiny Alchemy” human: $=0.42, t=8.51,
P<0.001; ‘Tiny Pixels’ human: f=-0.05, t =- 0.55, P= 0.58; random:
£=0.11,¢t=1.83,P=0.07; for details, see Supplementary Information).

We again compared the influence of success and empowerment
values of recent combinations on players’ probability of continuing the
game. In‘Tiny Alchemy’, players were more likely to continue the game
when they had recently discovered empowering elements (3= 0.64,
z=2.69,P=0.007), but were not whenwe just looked at the success of
recent combinations (=~ 0.12, z= 0.14, p = 0.39). We also found no
evidence of the success value asin the original dataset. In ‘Tiny Pixels’,
we found no evidence of either model on participants’ decision to
continue the game (Fig. 4c, empowerment: f=0.27,z=0.78, P=0.43;
success: f=0.52,z=1.80,P=0.07).

Regression analysis for experimental data

We conducted asimilar regression analysis as for the online datafrom
before. However, we combined the ‘Tiny Alchemy’ and ‘Tiny Pixels’ data-
setsandincludedavariableindicating which version a player played. We
againincluded the number of trials and the interactions of model pre-
dictions withthe number of trials in our regression analysis to account
for theunequallength of the datasets. For ‘Tiny Alchemy’, players were
best explained by acombination between exploration asempowerment
(8=0.30,2=29.68, P<0.001) and uncertainty-guided exploration
(8=0.09,z=8.86, P<0.001), with the effect of empowerment being
stronger than the effect of uncertainty-guided exploration (= 0.28,
z=19.91,P<0.001).For ‘Tiny Pixels’, players’ choices were only signifi-
cantly positively influenced by uncertainty (8= 0.09,z=4.26, P < 0.001),
but we found no evidence for empowerment (Fig. 4d, §=-0.05,
z=-2.71,P=0.007), leading to a higher effect of uncertainty-guided
exploration over empowerment (5 =-0.21,z=-9.31,P< 0.001). These
results further strengthen our idea that rich environments are neces-
sary tostudy complex explorations strategies such as success-oriented
orempowerment strategies and that players’ exploration looks more
like what has been frequently found in traditional multi-armed bandits
paradigms when the rich structure of the game is removed.

Discussion
We have studied human explorationinarichly structured online game
using a large dataset of human playing behaviour. We showed that
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players’behaviour appears to be driven by more than previously shown
motivations grounded in external reward signals—such as an attempt
to produce successful outcomes—or well-researched internal reward
signals—such as uncertainty and recency. Their behaviouris also driven
by anintrinsic motivation forempowerment—people seemto take into
account how empowering the outcomes of their actions are. Detailed
computational modelling showed that these patterns could be captured
quantitatively. Our results suggest that people use richly structured and
semantically meaningful explorationstrategiesin the game, resembling
other strategies observed in the real world such as children’s playing
behaviour or scientific methods of discovery.

As mentioned in the results, a success-only model, based on the
link prediction component of the empowerment model, described
human play behaviour well. However, we were able to show with mul-
tiple extra analyses that players additionally took the empowerment
value of combinationsinto account. Nevertheless, in future investiga-
tions, we would like to compare both models in more detail using other
paradigmes, to further study the value of empowerment.

Of course, our current empowerment model is just one formal-
ization of exploration in richly structured environments such as
games. Even though we found our model to match well with both
people’s actual gameplaying behaviour and their intuitions in a vali-
dation experiment, other strategies of exploration could also be
assessed using our data. One such strategy is powerplay?, which
attempts to train one’s model of the world as much as possible and
would predict that players not only create elements to empower
themselves, but also to learn more about the game mechanics in
general. Another strategy is goal-conditioned exploration®, which is
setting yourself goals to accomplish within the game. For example,
in ‘Little Alchemy 2’, having the goal of creating a solar cell would
probably lead to a different exploration path through the game tree
than the goal of creating chicken soup. There have also been several
other studies on both the algorithmic”?° and behavioural***' under-
pinnings of more sophisticated exploration strategies. All these
exploration strategies have the potential to explain human behaviour
inthis datasetinaddition toempowerment. In future investigations,
we will attempt to further identify signatures of human behaviour
in this dataset and use it to compare more elaborate strategies
of exploration.

Relatedly, our current model does notincorporate any learning of
theunderlying structure and solely focuses onthe exploration aspect of
people’s play. We believe that thisis agood first step tounderstanding
exploration as empowerment because people probably already have
detailed intuitions about the different element pairs before the start of
the game. Nonetheless, one of our future goals is to build models that
update their intuitions while playing the game and thereby simulate
people’s learning progress.

Another concernisthe fact that the underlying semantic structure
ofthe game tree was designed by just one person, that is the creator of
the game. Thus, one could argue that the game might not tellus much
about people’s general intuitions and exploration behaviour. We do
not believe this to be the case for two reasons. First, we were able to
show that these intuitions are shared among the players within our
validation study. Second, games are generally designed to be natural
for people—meaning they have to be learnable and are calibrated to
people’sintuitive theoriesinthefirst place. Thus, we believe that games
suchas‘Little Alchemy’ canbe used to reverse-engineer people’s intui-
tive semantics and use them to model human exploration.

Finally, even though players participated in the online game ‘Little
Alchemy 2’ without any external rewards, participants of our experi-
mental versions of the game, ‘Tiny Alchemy’ and ‘Tiny Pixels’, were
rewarded for generating new elements. This means that participants
exploring the game intrinsically behaved similarly to participants
who participated in our online experiments for monetary rewards. We
used the experimental versions of the game to establish that stripping

away the semantics of the game changed participants exploration
strategies after having established intrinsic exploration strategies
using data from the online game already. However, as we do not have
anon-rewarded version of the game without semantics, we were not
abletolookatany behavioural changes external rewards mightinduce
in the non-semantic case. Therefore, in future studies, we would like
to further disentangle the effects of rewards on players’ behaviour by
also removing the semantics of the online game.

Takentogether, our results advance our understanding of human
intrinsicexplorationbehaviour and extend current research paradigms
by using a large, complex, and richly structured dataset of an online
game. One implication of our results could be that empowerment—or
other more elaborate exploration strategies—may often drive people’s
decisions but are masked by the simple paradigms used inresearch on
human exploration strategies. Perhaps more sophisticated strategies
cansimply not be found in easier paradigms or look like simpler strate-
gies, such as uncertainty-guided exploration, when studied in reduced
forms. Thus, we believe that our work demonstrates that using games
as experimental paradigms can increase the complexity, robustness
and ecological validity of psychological research.

Conclusion

We investigated the exploration behaviour of 29,493 players in the
richly structured online game ‘Little Alchemy 2. We have shown that
exploration is driven by multiple factors, some of which are familiar
and well studied in behaviour, such as a drive for predictable success
andrecency, but one of whichis novel and potentially a crucial factorin
innovative discovery: adrive forempowerment. Using two additional
games, we replicated our results in a controlled setting and showed
that participants resorted to simpler exploration strategies when the
semantic structure of the game was removed. Our results point to
the necessity to use more complex experimental paradigms to study
elaborate strategies of human exploration. We hope that our findings
and model are a first step towards empowering our own theories of
human exploration.

Methods

Allexperiments were approved by the Harvard internal review board.
All statistical tests applied were two-sided. The modelling and data
analysis were conducted in Rand Python.

‘Little Alchemy 2’ dataset

The Little Alchemy 2’ dataset was gathered over aduration of 3 weeks
from1June to 21June 2019 with the help of the game’s developer. For
allour analyses, we only included players who started to play the game
withinthattime period andfiltered out all repeated trials. Thisledtoa
dataset containing 29,493 players who tried 4,691,033 combinationsin
total. All included players consented to their anonymized data being
used for scientific purposes.

‘Tiny Alchemy’ and ‘Tiny Pixels’

For the experimental versions of the game, that is ‘“Tiny Alchemy’
and ‘Tiny Pixels’ we recreated the game with standard JavaScript
using the game tree of ‘Little Alchemy 1. Whereas players of ‘Tiny
Alchemy’ played the game with normal element pictures and names,
‘Tiny Pixels” used element pictures with randomly positioned pixels
and unrecognizable yet distinct names (Fig. 3). Players were paid
US$0.10 for every discovered element and could play for as long
as they wanted but only up to 2 h. We recruited participants from
Amazon’s Mechanical Turk. For ‘Tiny Alchemy’, we recruited 97 par-
ticipants (48 females, mean age 32.68, s.d. 7.97). For ‘Tiny Pixels’, we
recruited 98 participants (45 females, mean age 30.83, s.d. 8.78).
All participants consented to their anonymized data being used for
scientific purposes. All experiments were approved by Harvard’s
institutional review board.
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Empowerment model

The empowerment model is based on how many distinct elements
an element can produce by combination with any other element. As
humans play according to their semantic intuitions, we attempted to
recreate these and use them as abasis for our empowerment values. This
process consisted of four steps: pre-processing the words by turning
them into word vectors, prediction of the link probability, prediction
oftheresulting element, and the actual empowerment calculationstep.

First, we used a pre-trained word representation model of word
vector embeddings called fasttext™. Thereby, we got 300-dimensional
word vectors for each of the elements. For each combination, we then
concatenated the two vectors of theinvolved elements to use them as
one combination vector.

Second, we used the vectors asinput combinations foralink pre-
diction model, which consisted of a fully connected neural net with
one hidden layer. This model returned a link probability for the input
combination vector. It was trained on subparts of the true game tree—all
259,560 possible combinations were splitintoatraining, validation and
test dataset. We used ten-fold cross-validation such that each element
combinationwas part of atestsetatleastonce. For our further analysis,
we only used combinations’ predicted probabilities that were not used
intraining. Ifacombination had a predicted value of higher than 50%,
itwas classified as alink.

Third, we used the concatenated word vectors as inputs for the
element prediction model, which was another fully connected neural
network with two hidden layers. This model returned the probability
of being the resulting element for each of the 720 possible elements,
based on the cosine similarity of the word vector. As before, training
was conducted using ten-fold cross-validation.

Fourth, the resulting values of each combination were merged
into an empowerment value by multiplying the predicted probability
of'success withthe sumof the probabilities of each element multiplied
with the expected empowerment value of an element—the number of
distinctelements resulting from combinationsinvolving the element
with a predicted success greater or equal to 0.5.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Anonymized participant data of the experiments and model simu-
lation data are available at https://github.com/franziskabraendle/
alchemy_empowerment (ref. 32). Third party data of participants
playing the original game may be shared upon reasonable request
(franziska.braendle@tuebingen.mpg.de).

Code availability

The code used for all experiments, models and analyses is available
at https://github.com/franziskabraendle/alchemy_empowerment
(ref. 32).
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.
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Data exclusions | Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization | Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible,
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We studied human choices in the online game "Little Alchemy 2", which could be accessed via a website and an app.
We also ran several additional experiments using Amazon Mechanical Turk. In all experiments, we gathered quantitative data based
on the participants' choices in each trial.

Research sample The data sample of 29.493 participants were choices of players of the game "Little Alchemy 2".
The participants of our additional experiments were recruited via Amazon Mechanical Turk. For “'Tiny Alchemy", we recruited 97
participants. For “'Tiny Pixels'", we recruited 98 participants. For the Model validation experiment we recruited 104 participants.
Participants were required to be from North America, as well as to have a past HIT completion rate of at least 99% with a minimum
of 100 past completed HITs.

Sampling strategy We used the data of all players of the online game over a period of three weeks in June 2019. We used random sampling for the
experiments on the Amazon Mechanical Turk platform, with each sample size around 100 participants. The sample size was
determined based on similar studies.

Data collection The data of the game was gathered by the developer of "Little Alchemy 2" and sent to us already anonymized. Data was saved via
javascript onto a local database. No researchers were present while gathering the data, as participants played the game /
participated in the expeirments remotely from their own devices.

Timing The data of players of the game was gathered over a period of three weeks from June 1st to June 21st 2019. The experiments on
Amazon Mechanical turk took approximately one day each. The data of "Tiny Alchemy" was gathered in April 2019, of "Tiny Pixels" in
August 2021 and of the Model validation experiment in November 2021.

Data exclusions We excluded data of players who already started the game before their behavior was recorded.
Non-participation Did not happen.
Randomization There were no experimental groups.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.




Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.

Did the study involve field work? [ ] Yes [ Ino

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

XXOXXNXX &
OOXOOOO

Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics Main dataset: Players of the game "Little Alchemy 2"
Three additional experiments: Amazon Mechanical Turk participants
Tiny Alchemy: 97 participants, 48 females, mean age=32.68, SD=7.97
Tiny Pixels: 98 participants, 45 females, mean age=30.83, SD=8.78
Model Validation experiment: 103 participants, 86 females, mean age=37.1, SD=8.00

Recruitment Players were recruited via the game website / app as well as on Amazon Mechanical Turk. Amazon Mechanical Turk
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Recruitment participants were required to be from North America, as well as to have a past HIT completion rate of at least 99% with a
minimum of 100 past completed HITs.

Ethics oversight Harvard Internal Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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