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Learning can be made more efficient if we can actively select particu- 
larly salient data points. Within a Bayesian learning framework, objec- 
tive functions are discussed that measure the expected informativeness 
of candidate measurements. Three alternative specifications of what 
we want to gain information about lead to three different criteria for 
data selection. All these criteria depend on the assumption that the 
hypothesis space is correct, which may prove to be their main weak- 
ness. 

1 Introduction 

Theories for data modeling often assume that the data are provided by a 
source that we do not control. However, there are two scenarios in which 
we are able to actively select training data. In the first, data measure- 
ments are relatively expensive or slow, and we want to know where to 
look next so as to learn as much as possible. According to Jaynes (19861, 
Bayesian reasoning was first applied to this problem two centuries ago 
by Laplace, who in consequence made more important discoveries in ce- 
lestial mechanics than anyone else. In the second scenario, there is an 
immense amount of data and we wish to select a subset of data points 
that is most useful for our purposes. Both these scenarios will benefit 
if we have ways of objectively estimating the utility of candidate data 
points. 

The problem of "active learning" or "sequential design" has been ex- 
tensively studied in economic theory and statistics (El-Gamal 1991; Fe- 
dorov 1972). Experimental design within a Bayesian framework using the 
Shannon information as an objective function has been studied by Lind- 
ley (1956) and by Luttrell (1985). A distinctive feature of this approach is 
that it renders the optimization of the experimental design independent 
of the "tests" that are to be applied to the data and the loss functions 
associated with any decisions. This paper uses similar information-based 
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objective functions and discusses the problem of optimal data selection 
within the Bayesian framework for interpolation described in previous 
papers (MacKay 1992a,b). Most of the results in this paper have direct 
analogs in Fedorov (19721, though the quantities involved have different 
interpretations: for example, Fedorov’s dispersion of an estimator be- 
comes the Bayesian’s posterior variance of the parameter. This work was 
directly stimulated by a presentation given by John Skilling at Maxent 
91 (Skilling 1992). 

Recent work in the neural networks literature on active data selection, 
also known as “query learning,” has concentrated on slightly different 
problems: The work of Baum (1991) and Hwang et al. (1991) relates to 
perfectly separable classification problems only; in both these papers a 
sensible query-based learning algorithm is proposed, and empirical re- 
sults of the algorithm are reported; Baum also gives a convergence proof. 
But since the algorithms are both human designed, it is not clear what 
objective function their querying strategy optimizes, nor how the algo- 
rithms could be improved. In contrast, this paper (which discusses noisy 
interpolation problems) derives criteria from defined objective functions; 
each objective function leads to a different data selection criterion. A fu- 
ture paper will discuss the application of the same ideas to classification 
problems (MacKay 1992~). 

Plutowski and White (1991) study a different problem from the above, 
in the context of noise-free interpolation: they assume that a large amount 
of data has already been gathered, and work on principles for selecting 
a subset of that data for efficient training; the entire data set (inputs and 
targets) is consulted at each iteration to decide which example to add to 
the training subset, an option that is not permitted in this paper. 

1.1 Statement of the Problem. Imagine that we are athering data 
in the form of a set of input-output pairs DN = { ~ ( ~ ) , t ( ~ ~ ) ,  where m = 
1 . . . N. These data are modeled with an interpolant y(x; w, A). An in- 
terpolation model H specifies the “architecture” A, which defines the 
functional dependence of the interpolant on the parameters wi, i = 1 . . . k. 
The model also specifies a regularizer, or prior on w, and a cost function, 
or noise model N describing the expected relationship between y and t. 
We may have more than one interpolation model, which may be linear 
or nonlinear in w. Two previous papers (MacKay, 1992a,b) described 
the Bayesian framework for fitting and comparing such models, assum- 
ing a fixed data set. This paper discusses how the same framework for 
interpolation relates to the task of selecting what data to gather next. 

Our criterion for how informative a new datum is will depend on 
what we are interested in. Several alternatives spring to mind: 

1. If we have decided to use one particular interpolation model, we 
might wish to select new data points to be maximally informative 
about the values that that model’s parameters w should take. 
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2. Alternatively, we might not be interested in getting a globally well- 
determined interpolant; we might only want to be able to predict 
the value of the interpolant accurately in a limited region, perhaps 
at a point in input space that we are not able to sample directly. 

3. Lastly, we might be unsure which of two or more models is the best 
interpolation model, and we might want to select data so as to give 
us maximal information to discriminate between the models. 

This paper will study each of these tasks for the case in which we wish 
to evaluate the utility as a function of xN+', the input location at which 
a single measurement of a scalar tN+' will be made. The more complex 
task of selecting multiple new data points will not be addressed here, but 
the methods used can be generalized to solve this task, as is discussed in 
Fedorov (1972) and Luttrell (1985). The similar problem of choosing the 
x N + ]  at which a vector of outputs tN+' is measured will not be addressed 
either. 

The first and third definitions of information gain have both been 
studied in the abstract by Lindley (1956). All three cases have been 
studied by Fedorov (1972), mainly in non-Bayesian terms. In this paper, 
solutions will be obtained for the interpolation problem by using a gaus- 
sian approximation and in some cases assuming that the new datum is a 
relatively weak piece of information. In common with most other work 
on active learning, the utility is evaluated assuming that the probability 
distributions defined by the interpolation model are correct. For some 
models, this assumption may be the Achilles' heel of this approach, as 
discussed in Section 6. 

1.2 Can Our Choice Bias Our Inferences? One might speculate that 
the way we choose to gather data might be able to bias our inferences 
systematically away from the truth. If this were the case we might need 
to make our inferences in a way that undoes such biases by taking into 
account how we gathered the data. In orthodox statistics many estimators 
and statistical tests do depend on the sampling strategy. 

However, the likelihood principle states that our inferences should de- 
pend on the likelihood of the actual data received, not on other data that 
we might have gathered but did not. Bayesian inference is consistent 
with this principle; there is no need to undo biases introduced by the 
data collecting strategy, because it is nut possible for such biases to be 
introduced-as long as we perform inference using all the data gathered 
(Berger 1985; Loredo 1989). When the models are concerned with esti- 
mating the distribution of output variables t given input variables x, we 
are allowed to look at the x value of a datum, and decide whether or not 
to include the datum in the data set. This will not bias our inferences 
about the distribution P(t 1 x). 



Objective Functions for Data Selection 593 

2 Choice of Information Measure 

Before we can start, we need to select a measure of the information gained 
about an unknown variable when we receive the new datum tN+'. Hav- 
ing chosen such a measure we will then select the xN+' for which the 
expected information gain is maximal. Two measures of information have 
been suggested, both based on Shannon's entropy, whose properties as a 
sensible information measure are well known. Let us explore this choice 
for the first task, where we want to gain maximal information about the 
parameters of the interpolant, w. 

Let the probability distributions of the parameters before and after we 
receive the datum tN+' be PN(w) and PN+'(w). Then the change in entropy 
of the distribution is AS = S N  - &+I, where 

(2.1) 

where rn is the measure on w that makes the argument of the log dimen- 
sionless.' The greater AS is, the more information we have gained about 
w. In the case of the quadratic models discussed in (MacKay 1992a1, if 
we set the measure m(w) equal to the prior F'"(w)' the quantity S N  is 
closely related to the log of the "Occam fa~tor ."~ 

An alternative information measure is the cross entropy between PN(w) 
and PN+'(w): 

Let us define G' = -G so as to obtain a positive quantity; then G' is a 
measure of how much information we gain when we are informed that 
the true distribution of w is J"+'(W), rather than PN(w). 

These two information measures are not equal. Intuitively they differ 
in that if the measure m(w) is flat, AS only quantifies how much the 
probability "bubble" of P(w) shrinks when the new datum arrives; G' 
also incorporates a measure of how much the bubble moves because of 
the new datum. Thus according to G', even if the probability distribution 
does not shrink and become more certain, we have learned something if 
the distribution moves from one region to another in w-space. 

The question of which information measure is appropriate is poten- 
tially complicated by the fact that G' is not a consistent additive mea- 
sure of information: if we receive datum A then datum B, in general, 
GkB # GA + GL. This intriguing complication will not, however, hin- 
der our task: we can only base our decisions on the expectations of AS 

2This measure rn will be unimportant in what follows but is included to avoid com- 
mitting dimensional crimes. Note that the sign of AS has been defined so that our 
information gain corresponds to positive AS. 

'If the Occam factor is O.F. = (2~)~/~det - ' ' *A exp(-crE$p)/Z~(a), then SN = 
log O.F. + y/2, using notation from MacKay (1992a). 
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and G'; we will now see that in expectation AS and G' are equal, so 
for our purposes there is no distinction between them. This result holds 
independent of the details of the models we study and independent of 
any gaussian approximation for P(w). 
Proof. E(AS) = E(G'). To evaluate the expectation of these quantities, 
we have to assume a probability distribution from which the datum fN+l 

(hence abbreviated as t) comes. We will define this probability distribu- 
tion by assuming that our current model, complete with its error bars, is 
correct. This means that the probability distribution of t is P(t I D N , Z ) ,  
where 'H is the total specification of our model. The conditioning vari- 
ables on the right will be omitted in the following proof. 

We can now compare the expectations of AS and G'. 

where m is free to be any measure on w; let us make it the same measure 
m as in equation 2.1. Then the first term in equation 2.3 is -&+I. So 

E(G') = -E(SN+l )  + /dtP(t) /dkwP(w 1 t)log- m(w) 
P(W) 

= E ( - S N + ~  + S N )  = E(AS) 

Thus the two candidate information measures are equivalent for our pur- 
poses. This proof also implicitly demonstrates that E(AS) is independent 
of the measure m(w). Other properties of E(AS) are proved in Lindley 
(1956). The rest of this paper will use AS as the information measure, 
with m(w) set to a constant. 

3 Maximizing Total Information Gain ___ 

Let us now solve the first task: how to choose xN+l so that the expected 
information gain about w is maximized. Intuitively we expect that we 
will learn most about the interpolant by gathering data at the x location 
where our error bars on the interpolant are currently greatest. Within the 
quadratic approximation, we will now confirm that intuition. 

3.1 Notation. The likelihood of the data is defined in terms of a noise 
level 0: = B-' by P({t} I w,,B,N) = exp[-PE~(w)]/Z,, where ED(w) = 
C,  $ [t"' - y(x("); w)]', and ZD is the appropriate normalizing constant. 
The likelihood could also be defined with an x-dependent noise level 
@-'(x), or correlated noise in multiple outputs (in which case P-' would 
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be the covariance matrix of the noise). From here on y will be treated 
as a scalar y for simplicity. When the likelihood for the first N data-is 
combined with a prior P(w I a , R )  = exp[-aEw(w)]/Zw, in which the 
regularizing constant (or weight decay rate) cy corresponds to the prior 
expected smoothness of the interpolant, we obtain our current probability 
distribution for w, F"(w) = exp[-M(w)]/ZM, where M(w) = nEw + ,BED. 
The objective function M(w) can be quadratically approximated near to 
the most probable parameter vector, W M ~ ,  by 

1 
2 

M(w) 21 W(W) = M ( w M ~ )  + -AW'AAW (3.1) 

where Aw = w - W M ~  and the Hessian A = VVM is evaluated at the 
minimum wMP. We will use this quadratic approximation from here on. 
If M has other minima, those can be treated as distinct models as in 
MacKay (199213). 

First we will need to know what the entropy of a gaussian distribution 
is. It is easy to confirm that if P(w) 0: ecM (w), then for a flat measure 
m(w) = m, 

1 S =  -(1+log2s)+-log(m2detA-') k 
2 2 (3.2) 

Thus our aim in minimizing S is to make the size of the joint error bars 
on the parameters, det A-l, as small as possible. 

Expanding y around wMP, let 

where g, = l?yy/awj is the (x-dependent) sensitivity of the output variable 
to parameter wj, evaluated at W M ~ .  

Now imagine that we choose a particular input x and collect a new 
datum. If the datum t falls in the region such that our quadratic approx- 
imation applies, the new Hessian AN+* is 

AN+I 5 A f PggT (3.4) 

where we have used the approximation VVi[t - y(x;w)I2 N gg'. This 
expression neglects terms in d2y/dw,dwk; those terms are exactly zero for 
the linear models discussed in MacKay (1992a), but they are not necessar- 
ily negligible for nonlinear models such as neural networks. Notice that 
this new Hessian is independent of the value that the datum t actually 
takes, so we can specify what the information gain AS will be for any 
datum, because we can evaluate  AN+^ just by calculating g. 

Let us now see what property of a datum causes it to be maximally 
informative. The new entropy SN+I is equal to -1/2 log (m2 det AN+l), 
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neglecting additive constants. This determinant can be analytically eval- 
uated (Fedorov 1972), using the identities 

and 

det [A + &gT] = (detA)(l + PgTA-’g) (3.5) 

from which we obtain: 
1 
2 

Total information gain = -A log (mZ det A) 

1 
2 = - lOg(1 + ,OgTA-’g) (3.6) 

In the product PgTA-’g, the first term tells us that, not surprisingly, we 
learn more information if we make a low noise (high /I) measurement. 
The second term gTA-’g is precisely the variance of the interpolant at 
the point where the datum is collected. 

Thus we have our first result: to obtain maximal information about 
the interpolant, take the next datum at the point where the error bars 
on the interpolant are currently largest (assuming the noise C T ~  on all 
measurements is the same). This rule is the same as that resulting from 
the “D-optimal” and ”minimax” design criteria (Fedorov 1972). 

For many interpolation models, the error bars are largest beyond the 
most extreme points where data have been gathered. This first criterion 
would in those cases lead us to repeatedly gather data at the edges of 
the input space, which might be considered non-ideal behavior; but we 
do not necessarily need to introduce an ad hoc procedure to avoid this. 
The reason we do not want repeated sampling at the edges is that we 
do not want to h o w  what happens there. Accordingly, we can derive 
criteria from alternative objective functions which only value information 
acquired about the interpolant in a defined region of interest. 

4 Maximizing Information about the Interpolant in a Region of Interest 

Thus we come to the second task. First assume we wish to gain maxi- 
mal information about the value of the interpolant at a particular point 
x ( ~ ) .  Under the quadratic approximation, our uncertainty about the in- 
terpolant y has a gaussian distribution, and the size of the error bars is 
given in terms of the Hessian of the parameters by 

where g(u) is i3y/dw evaluated at x(”). As above, the entropy of this 
gaussian distribution is 1/2 logg: + const. After a measurement t is 
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made at x where the sensitivity is g, these error bars are scaled down by 
a factor of 1 - p2, where p is the correlation between the variables f and 
y'")', given by p2 = [gTA-'g(u)]2/[~i(~2 + u:)],  where 0,' = gTA-'g. Thus 
the information gain about y(") is 

I 
Marginal information gain = -A log 02 

2 

The term gTA-'giU) is maximized when the sensitivities g and g(u) are 
maximally correlated, as measured by their inner product in the metric 
defined by A-'. The second task is thus solved for the case of extrap- 
olation to a single point. This objective function is demonstrated and 
criticized in Section 6. 

4.1 Generalization to Multiple Points. Now imagine that the objec- 
tive function is defined to be the information gained about the interpolant 
at a set of points {x'")}. These points should be thought of as represen- 
tatives of the region of interest, for example, points in a test set. This 
case also includes the generalization to more than one output variable 
y; however, the full generalization, to optimization of an experiment in 
which many measurements are made, will not be made here (see Fedorov 
1972 and Luttrell 1985). The preceding objective function, the informa- 
tion about y("), can be generalized in several ways, some of which lead 
to dissatisfactory results. 

4.1.1 First Objective Function for Multiple Points. An obvious objective 
function is the joint enfropy of the output variables that we are interested 
in. Let the set of output variables for which we want to minimize the 
uncertainty be {y(")},  where u = 1 . .  . V runs either over a sequence of 
different input locations .("I, or over a set of different scalar outputs, 
or both. Let the sensitivities of these outputs to the parameters be g(,). 
Then the covariance matrix of the values {y'")} is 

Y = G ~ A - ~ G  (4.2) 
where the matrix G = [gfl)g(2) . . . gcv)]. Disregarding the possibility that 
Y might not have full rank, which would necessitate a more complex 
treatment giving similar results, the joint entropy of our output variables 
S[P({y(")})] is related to logdet Y-'. We can find the information gain for 
a measurement with sensitivity vector g, under which A -+ A + PggT, 
using the identities (equation 3.5). 

1 
2 Joint information gain = -A log det Y-' (4.3) 

1 [ (gTA-'G)Y-'(GTA-' 
= --log 1 - 

2 u2, + u,2 
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The row vector v = gTAP1G measures the correlations between the sensi- 
tivities g and gf,). The quadratic form vY-'vT measures how effectively 
these correlations work together to reduce the joint uncertainty in {y'")}. 
The denominator cz + 0,' moderates this term in favor of measurements 
with small uncertainty. 

4.1.2 Criticism. I will now argue that actually the joint entropy 
S[P(  {y(")})] of the interpolant's values is not an appropriate objective 
function. A simple example will illustrate this. 

Imagine that V = k, that is, the number of points defining our region 
of interest is the same as the dimensionality of the parameter space w. 
The resulting matrix G = [g(l)g(Z). . .g(v)] may be almost singular if the 
points x(') are close together, but typically it will still have full rank. 
Then the parameter vector w and the values of the interpolant {y'")} 
are in one to one (locally) linear correspondence with each other. This 
means that the change in entropy of P({y(")}) is identical to the change in 
entropy of P(w) (Lindley 1956). This can be confirmed by substitution of 
Y-' = G-'AG-IT into (equation 4.3), which yields (equation 3.6). So if 
the datum is chosen in accordance with equation 4.3, so as to maximize 
the expected joint information gain about {y(")}, exactly the same choice 
will result as is obtained maximizing the first criterion, the expected total 
information gain about w (Section 3.1)! Clearly, this choice is independent 
of our choice of {y'")}, so it will have nothing to do with our region of 
interest. 

This criticism of the joint entropy is not restricted to the case V = k.  
The reason that this objective function does not achieve what we want 
is that the joint entropy is decreased by measurements which introduce 
correlations among predictions about {y'")') as well as by measurements 
that reduce the individual uncertainties of predictions. However, we do 
not want the variables {y'")} to be strongly correlated in some arbitrary 
way; rather we want each y(") to have small variance, so that if we are 
subsequently asked to predict the value of y at any one of the us, we will 
be able to make confident predictions. 

4.1.3 Second Objective Function for Multiple Points. This motivates an 
alternative objective function: to maximize the average over u of the 
information gained about y(") alone. Let us define the mean marginal 
entropy, 

1 sM = C P, s[P(Y("))] = - C P, log 0: + const 
U 2 ,  

where P, is the probability that we will be asked to predict ~ ( " 1 ,  and 
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2 -  T A-1 
0, - g(,,) 
from (equation 4.1): 

g [ u ) .  For a measurement with sensitivity vector 

The mean marginal information gain is demonstrated and 
Section 6. 

g, we obtain 

(4.4) 

criticized in 

Two simple variations on this objective function can be derived. If 
instead of minimizing the mean marginal entropy of our predictions y@), 
we minimize the mean marginal entropy of the predicted noisy variables 
t('), which are modeled as deviating from y'") under additive noise of 
variance a:, we obtain equation 4.4 with u,' replaced by u,' + 0;. This 
alternative may lead to significantly different choices from equation 4.4 
when any of the marginal variances 0,' fall below the intrinsic variance 
0: of the predicted variable. 

If instead we take an approach based on loss functions, and require 
that the datum we choose minimizes the expectation of the mean squared 
error of our predictions {y'")}, which is EM = C,  Pug:, then we obtain as 
our objective function, to leading order, AEM N C,  P,(gTA-'g(u))2/(0: + 
0:); this increases the bias in favor of reducing the variance of the vari- 
ables y(") with largest 02. This is the same as the "Q-optimal" design 
(Fedorov 1972). 

4.2 Comment on the Case of Linear Models. It is interesting to note 
that for a linear model [one for which y(x; w) = C Wh4h(X)] with quadratic 
penalty functions, the solutions to the first and second tasks depend 
only on the x locations where data were previously gathered, not on the 
actual data gathered {t}; this is because g(x) = $(x) independent of w, so 
A = aVVEw+/3 C, ggT is independent of {t}. A complete data-gathering 
plan can be drawn up before we start. It is only for a nonlinear model 
that our decisions about what data to gather next are affected by our 
previous observations! 

5 Maximizing the Discrimination between Two Models 

Under the quadratic approximation, two models will make slightly dif- 
ferent gaussian predictions about the value of any datum. If we measure 
a datum t at input value x, then 

P ( t  I F f f )  = Normal(pi, 0;) 

where the parameters pi, u: are obtained for each interpolation model Xi 
from its own best fit parameters wMF(i), its own Hessian Ai, and its own 
sensitivity vector g,: 
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Intuitively, we expect that the most informative measurement will be at 
a value of x such that p1 and p2 are as separated as possible from each 
other on a scale defined by 0 1 , 0 2 .  Further thought will also confirm that 
we expect to gain more information if 0: and 0: differ from each other 
significantly; at such points, the "Occam factor" penalizing the more 
powerful model becomes more significant. 

Let us define the information gain to be AS = S N  - S N + ~ ,  where 
S = - C, P ( X , )  logP('FI,). Exact calculations of AS are not analytically 
possible, so I will assume that we are in the regime of small information 
gain, that is, we expect measurement of f to give us a rather weak likeli- 
hood ratio P ( f  I 'FI,)/P(f I 8 2 ) .  This is the regime where Ip, - p2/ << 01,02. 

Using this assumption we can take the expectation over t, and a page 
of algebra leads to the result: 

E(AS) N p('F11)p(X2) 2 [ ($ f $) (pi - ~ 2 ) ~  + (=)*I (5.1) 

These two terms correspond precisely to the two expectations stated 
above. The first term favors measurements where pl and p2 are well 
separated; the second term favors places where 0: and 0; differ. Thus 
the third task has been solved. 

Fedorov (1972) makes a similar derivation but he uses a poor approx- 
imation that loses the second term. 

6 Demonstration and Discussion 

A data set consisting of 21 points from a one-dimensional interpolation 
problem was interpolated with an eight-hidden-unit neural network. The 
data were generated from a smooth function by adding noise with stan- 
dard deviation CJ,, = 0.05. The neural network was adapted to the data 
using weight decay terms ac, which were controlled using the methods 
of MacKay (1992b) and noise level p fixed to l/& The data and the 
resulting interpolant, with error bars, are shown in Figure la. 

The expected total information gain, that is, the change in entropy 
of the parameters, is shown as a function of x in Figure lb. This is 
just a monotonic function of the size of the error bars. The same figure 
also shows the expected marginal information gain about three points of 
interest, {x'")} = {-1.25,0.0,1.75}. Notice that the marginal information 
gain is in each case peaked near the point of interest, as we would expect. 
Note also that the height of this peak is greatest for x(') = -1.25, where 
the interpolant oscillates rapidly, and lower for x( ' )  = 1.75, where the 
interpolant is smoother. At each x = x('),  the marginal information gain 
about x(" )  and the total information gain are equal. 

Figure l c  shows the mean marginal information gain, where the points 
of interest, {d")}, were defined to be a set of equally spaced points on 
the interval [-2.1,4.1] (the same interval in which the training data lie). 
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Figure 1: Demonstration of total and marginal information gain. (a) The data 
set, the interpolant, and error bars. (b) The expected total information gain 
and three marginal information gains. (c) The mean marginal information gain, 
with the region of interest defined by 300 equally spaced points on the interval 
[-2.1,4.1]. The information gains are shown on a scale of nats (1 nat = log2e 
bits). 
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The mean marginal information gain gradually decreases to zero away 
from the region of interest, as hoped. In the region to the left where the 
characteristic period of the interpolant is similar to the data spacing, the 
expected utility oscillates as x passes through the existing data points, 
which also seems reasonable. The only surprising feature is that the esti- 
mated utility in that region is lower on the data points than the estimated 
utility in the smooth region toward the right. 

6.1 The Achilles' Heel of These Methods. This approach has a po- 
tential weakness: there may be models for which, even though we have 
defined the region of interest by the points {x'")}, the expected marginal 
information gain for a measurement at x still blows up as x + f m ,  like 
the error bars. This can occur because the information gain estimates the 
utility of a data point assuming that the model is correct; if we know that 
the model is actually an approximation tool that is incorrect, then it is 
possible that undesirable behavior will result. 

A simple example that illustrates this problem is obtained if we con- 
sider modeling data with a straight line y = wlx,  where w1 is the un- 
known parameter. Imagine that we want to select data so as to obtain a 
model that predicts accurately at ,("I. Then if we assume that the model 
is right, clearly we gain most information if we sample at the largest 
possible 1x1, since such points give the largest signal-to-noise ratio for 
determining wl. If, however, we assume that the model is actually not 
correct, but only an approximation tool, then common sense tells us we 
should sample closer to d"). 

Thus if we are using models that we know are incorrect, the marginal 
information gain is really the right answer to the wrong question. It is a 
task for further research to formulate a new question whose answer is ap- 
propriate for any approximation model. Meanwhile, the mean marginal 
information gain seems a promising objective function to test further. 

6.2 Computational Complexity. The computation of the suggested 
objective functions is moderately cheap once the inverse Hessian A-' 
has been obtained for the models concerned. This is a O(Nk2) + O(k3) 
process, where N is the number of data points and k is the number of 
parameters; this process may already have been performed in order to 
evaluate error bars for the models, to evaluate the "evidence," to evaluate 
parameter "saliencies," and to enable efficient learning. This cost can be 
compared with the cost of locating a minimum of the objective function 
M, which in the worst case scales as O(Nk3) (taking the result for a 
quadratic function). Evaluation of the mean marginal information gain 
at C candidate points x then requires O(Ck2) + O(CVk) time, where V is 
the number of points of interest x(") [O(k2) to evaluate A-'g for each x, 
and O(Vk) to evaluate the dot product of this vector with each g(,)]. So 
if C = O(k)  and V = O(k) ,  evaluation of the mean marginal information 
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gain will be less computationally expensive than the inverse Hessian 
evaluation. 

For contexts in which this is too expensive, work in progress is ex- 
ploring the possibility of reducing these calculations to O(k2) or smaller 
time by statistical methods. 

The question of how to efficiently search for the most informative x 
is not addressed here; gradient-based methods could be constructed, but 
Figure lc shows that the information gain is locally nonconvex, on a scale 
defined by the interdatum spacing. 

7 Conclusion 

For three specifications of the information to be maximized, a solution 
has been obtained. The solutions apply to linear and nonlinear interpo- 
lation models, but depend on the validity of a local gaussian approxima- 
tion. Each solution has an analog in the non-Bayesian literature (Fedorov 
19721, and generalizations to multiple measurements and multiple output 
variables can be found there, and also in Luttrell (1985). 

In each case a function of x has been derived that predicts the infor- 
mation gain for a measurement at that x. This function can be used to 
search for an optimal value of x (which in large-dimensional input spaces 
may not be a trivial task). This function could also serve as a way of re- 
ducing the size of a large data set by omitting the data points that are 
expected to be least informative. And this function could form the basis 
of a stopping rule, that is, a rule for deciding whether to gather more 
data, given a desired exchange rate of information gain per measurement 
(Lindley 1956). 

A possible weakness of these information-based approaches is that 
they estimate the utility of a measurement assuming that the model is 
correct. This might lead to undesirable results. The search for ideal 
measures of data utility is still open. 
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