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Abstract We describe and explore a new perspective on the sample complexity of active

learning. In many situations where it was generally believed that active learning does not

help, we show that active learning does help in the limit, often with exponential improve-

ments in sample complexity. This contrasts with the traditional analysis of active learning

problems such as non-homogeneous linear separators or depth-limited decision trees, in

which �(1/ǫ) lower bounds are common. Such lower bounds should be interpreted care-

fully; indeed, we prove that it is always possible to learn an ǫ-good classifier with a number

of samples asymptotically smaller than this. These new insights arise from a subtle variation

on the traditional definition of sample complexity, not previously recognized in the active

learning literature.
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1 Introduction

Machine learning research has often focused on the problem of learning a classifier from a

fixed set of labeled examples. However, for many contemporary practical problems such as

classifying web pages or detecting spam, there is often an abundance of unlabeled examples

available, from which only a relatively small subset may be labeled and used for learning.

In such scenarios, the natural question that arises is how to best select a useful subset of

examples to be labeled.

One possibility, which has recently generated substantial interest, is active learning. In

active learning, the learning algorithm itself is allowed to select the subset of available exam-

ples to be labeled. The algorithm may request labels one at a time, using the requested label

information from previously selected examples to inform its decision of which example to

select next. The hope is that by only requesting the labels of “informative” examples, the

algorithm can learn a good classifier using significantly fewer labels than would typically be

required to learn a classifier from randomly chosen examples.

A number of active learning analyses have recently been proposed in a PAC-style set-

ting, both for the realizable and for the agnostic cases, resulting in a sequence of impor-

tant positive and negative results (Balcan et al. 2006, 2007; Cohn et al. 1994; Dasgupta

2004, 2005; Dasgupta et al. 2007, 2005; Hanneke 2007a, 2009). These include several

general sample complexity bounds in terms of complexity parameters (Dasgupta 2005;

Hanneke 2007a, 2007b; Dasgupta et al. 2005; Hanneke 2009), thus giving general sufficient

conditions for significant improvements over passive learning. For instance, perhaps the

most widely-studied concrete positive result for when active learning helps is that of learning

homogeneous (i.e., through the origin) linear separators, when the data is linearly separable

and distributed uniformly over the unit sphere (Balcan et al. 2006, 2007; Dasgupta 2005;

Dasgupta et al. 2007, 2005). However, in addition to these known positive results, there

are simple (almost trivial) examples, such as learning intervals or non-homogeneous linear

separators, where these analyses of sample complexity have indicated that perhaps active

learning does not help at all (Dasgupta 2005; Hanneke 2007b).

In this work, we approach the analysis of active learning algorithms from a different

angle. Specifically, we point out that traditional analyses have studied the number of label

requests required before an algorithm can both produce an ǫ-good classifier and prove that

the classifier’s error is no more than ǫ. These studies have turned up simple examples where

this number is no smaller than the number of random labeled examples required for pas-

sive learning. This is the case for learning certain nonhomogeneous linear separators and

intervals on the real line, and generally seems to be a common problem for many learning

scenarios. As such, it has led some to conclude that active learning does not help for most

learning problems. One of the goals of our present analysis is to dispel this misconception.

Specifically, we study the number of labels an algorithm needs to request before it can pro-

duce an ǫ-good classifier, even if there is no accessible confidence bound available to verify

the quality of the classifier. With this type of analysis, we prove that active learning can

essentially always achieve asymptotically superior sample complexity compared to passive

learning when the VC dimension is finite. Furthermore, we find that for most natural learning

problems, including the negative examples given in the previous literature, active learning

can achieve exponential1 improvements over passive learning with respect to dependence

on ǫ. This situation is characterized in Fig. 1.

1We slightly abuse the term “exponential” throughout the paper. In particular, we refer to any polylog(1/ǫ)

as being an exponential improvement over 1/ǫ.
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Fig. 1 Active learning can often

achieve exponential

improvements, though in many

cases the amount of improvement

cannot be detected from

information available to the

learning algorithm. Here γ may

be a target-dependent constant

To our knowledge, this is the first work to address this subtle point in the context of

active learning. Though several previous papers have studied bounds on this latter type of

sample complexity (Dasgupta et al. 2005, 2007; Castro and Nowak 2007), their results were

no stronger than the results one could prove in the traditional analysis. As such, it seems this

large gap between the two types of sample complexities has gone unnoticed until now.

1.1 A Simple Example: Intervals

To get some intuition about when these types of sample complexity are different, consider

the following example. Suppose that C is the class of all intervals over [0,1] and D is a

uniform distribution over [0,1]. If the target function is the empty interval, then for any

sufficiently small ǫ, in order to verify with high confidence that this (or any) interval has

error ≤ ǫ, we need to request labels in at least a constant fraction of the �(1/ǫ) intervals

[0,2ǫ], [2ǫ,4ǫ], . . . , requiring �(1/ǫ) total label requests.

However, no matter what the target function is, we can find an ǫ-good classifier with

only a logarithmic sample complexity via the following extremely simple 2-phase learning

algorithm. The algorithm will be allowed to make t label requests, and then we will find a

value of t that is sufficiently large to guarantee learning. We start with a large set of unla-

beled examples. In the first phase, on each round we choose a point x uniformly at random

from the unlabeled sample and query its label. We repeat this until we either observe a +1

label, at which point we enter the second phase, or we use all t label requests. In the second

phase, we alternate between running one binary search on the examples between 0 and that

x and a second on the examples between that x and 1 to approximate the end-points of the

interval. Once we use all t label requests, we output a smallest interval consistent with the

observed labels.

If the target is an interval [a, b] ⊆ [0,1], where b − a = w > 0, then after roughly

O(1/w) queries (a constant number that depends only on the target), a positive example will

be found. Since only O(log(1/ǫ)) additional queries are required to run the binary search to

reach error rate ǫ, it suffices to have t ≥ O(1/w+ log(1/ǫ)) = O(log(1/ǫ)). This essentially

reflects the “two-phases” phenomenon noted by Dasgupta (2005), where improvements are

often observable only after some initial period, in this case the 1/w initial samples. On the

other hand, if the target h∗ labels every point as −1 (the so-called all-negative function),

the algorithm described above would output a hypothesis with 0 error even after 0 label

requests, so any t ≥ 0 suffices in this case. So in general, the sample complexity is at worst

O(log(1/ǫ)). Thus, we see a sharp distinction between the sample complexity required to
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find a good classifier (logarithmic) and the sample complexity needed to both find a good

classifier and verify that it is good.

This example is particularly simple, since there is effectively only one “hard” target func-

tion (the all-negative target). However, most of the spaces we study are significantly more

complex than this, and there are generally many targets for which it is difficult to achieve

good verifiable complexity.

1.2 Our results

We show that in many situations where it was previously believed that active learning cannot

help, active learning does help in the limit. Our main specific contributions are as follows:

− We distinguish between two different variations on the definition of sample complexity.

The traditional definition, which we refer to as verifiable sample complexity, focuses on

the number of label requests needed to obtain a confidence bound indicating an algorithm

has achieved at most ǫ error. The newer definition, which we refer to simply as sample

complexity, focuses on the number of label requests before an algorithm actually achieves

at most ǫ error. We point out that the latter is often significantly smaller than the former,

in contrast to passive learning where they are often equivalent up to constants for most

nontrivial learning problems.

− We prove that any distribution and finite VC dimension concept class has active learning

sample complexity asymptotically smaller than the sample complexity of passive learn-

ing for nontrivial targets. A simple corollary of this is that finite VC dimension implies

o(1/ǫ) active learning sample complexity.

− We show it is possible to actively learn with an exponential rate a variety of concept

classes and distributions, many of which are known to require a linear rate in the tradi-

tional analysis of active learning: for example, intervals on [0,1] and non-homogeneous

linear separators under the uniform distribution.

− We show that even in this new perspective, there do exist lower bounds; it is possible to

exhibit somewhat contrived distributions where exponential rates are not achievable even

for some simple concept spaces (see Theorem 6). The learning problems for which these

lower bounds hold are much more intricate than the lower bounds from the traditional

analysis, and intuitively seem to represent the core of what makes a hard active learning

problem.

2 Background and notation

Let X be an instance space and Y = {−1,1} be the set of possible labels. Let C be the

concept class, a set of measurable functions mapping from X to Y , and assume that C has

VC dimension d . We consider here the realizable setting in which it is assumed that the

instances are labeled by a target function h∗ in the class C. There is a distribution D on X ,

and the error rate of a hypothesis h is defined as er(h) = PD(h(x) �= h∗(x)).

We assume the existence of an infinite sequence x1, x2, . . . of examples sampled i.i.d.

according to D. The learning algorithm may access any finite prefix x1, x2, . . . , xm of the

sequence. Essentially, this means we allow the algorithm access to an arbitrarily large, but

finite, sequence of random unlabeled examples. In active learning, the algorithm can select

any example xi , and request the label h∗(xi) that the target assigns to that example, observing

the labels of all previous requests before selecting the next example to query. The goal is to

find a hypothesis h with small error with respect to D, while simultaneously minimizing the

number of label requests that the learning algorithm makes.



Mach Learn (2010) 80: 111–139 115

2.1 Two definitions of sample complexity

The following definitions present a subtle but significant distinction we refer to throughout

the paper. Several of the results that follow highlight situations where these two definitions

of sample complexity can have dramatically different dependence on ǫ.

Definition 1 A function S(ǫ, δ,h∗) is a verifiable sample complexity for a pair (C,D) if

there exists an active learning algorithm A(t, δ) that outputs both a classifier ht,δ and a value

ǫ̂t,δ ∈ R after making at most t label requests, such that for any target function h∗ ∈ C,ǫ ∈
(0,1/2), δ ∈ (0,1), for any t ≥ 0, PD(er(ht,δ) ≤ ǫ̂t,δ) ≥ 1 − δ and for any t ≥ S(ǫ, δ,h∗),

PD(er(ht,δ) ≤ ǫ̂t,δ ≤ ǫ) ≥ 1 − δ.

Definition 2 A function S(ǫ, δ,h∗) is a sample complexity for a pair (C,D) if there exists

an active learning algorithm A(t, δ) that outputs a classifier ht,δ after making at most t

label requests, such that for any target function h∗ ∈ C,ǫ ∈ (0,1/2), δ ∈ (0,1), for any t ≥
S(ǫ, δ,h∗),

PD(er(ht,δ) ≤ ǫ) ≥ 1 − δ.

Let us take a moment to reflect on the difference between these two definitions, which

may appear quite subtle. Both definitions allow the sample complexity to depend both on

the target function and on the input distribution. The only distinction is whether or not there

is an accessible guarantee or confidence bound on the error of the chosen hypothesis that is

also at most ǫ. This confidence bound can only depend on quantities accessible to the learn-

ing algorithm, such as the t requested labels. As an illustration of this distinction, consider

again the problem of learning intervals. As described above, there exists an active learning

algorithm such that, given a large enough initial segment of the unlabeled data, if the target

h∗ is an interval of width w, then after seeing O(1/w + log(1/ǫ)) labels, with high proba-

bility the algorithm outputs a classifier with error rate less than ǫ and a guarantee that the

error rate is less than ǫ. In this case, for sufficiently small ǫ, the verifiable sample complex-

ity S(ǫ, δ,h∗) is proportional to log(1/ǫ). However, if h∗ is the all-negative function, then

the verifiable sample complexity is at least proportional to 1/ǫ for all values of ǫ because

a high-confidence guarantee can never be made without observing �(1/ǫ) labels; for com-

pleteness, a formal proof of this fact is included in Appendix A. In contrast, as we have seen,

there is an algorithm that, given a large enough initial segment of the unlabeled sequence,

produces a classifier with error rate less than ǫ after a number of label requests O(log(1/ǫ))

for every target in the class of intervals; thus, it is possible to achieve sample complexity

O(log(1/ǫ)) for every target in the class of intervals.

Any verifiable sample complexity function is also a sample complexity function, but we

study a variety of cases where the reverse is not true. In situations where there are sample

complexity functions significantly smaller than any achievable verifiable sample complexi-

ties, we sometimes refer to the smaller quantity as the true sample complexity to distinguish

it from the verifiable sample complexity.

A common alternative formulation of verifiable sample complexity is to let A take ǫ

as an argument and allow it to choose online how many label requests it needs in order

to guarantee error at most ǫ (Dasgupta 2005; Balcan et al. 2006, 2007; Hanneke 2007a,

2007b). This alternative definition is almost equivalent, as the algorithm must be able to

produce a confidence bound of size at most ǫ on the error of its hypothesis in order to decide

when to stop requesting labels anyway. In particular, any algorithm for either definition



116 Mach Learn (2010) 80: 111–139

can be modified to fit the other definition without significant loss in the verifiable sample

complexity values. For instance, given any algorithm for the alternative formulation, and

given a value of t , we can simply run the algorithm with argument 2−i for increasing values

of i (and confidence parameter δ/(2i2)) until we use t queries, and then take the output of

the last run that was completed; for a reasonable algorithm, the sample complexity should

increase as ǫ decreases, and we typically expect logarithmic dependence on the confidence

parameter, so the increase in sample complexity due to these extra runs is at most a factor

of Õ(log(1/ǫ)). Similarly, given any algorithm for Definition 1, and given ǫ as input, we

might simply double t until ǫ̂t,δ/(2t2) ≤ ǫ, giving an algorithm for the alternative formulation;

again, for reasonable algorithms, the sample complexity of the converted algorithm will be

at most a factor of O(log(1/ǫ)) larger than the original.

Generally, there is some question as to what the “right” formal model of active learning

is. For instance, we could instead let A generate an infinite sequence of ht hypotheses (or

(ht , ǫ̂t ) in the verifiable case), where ht can depend only on the first t label requests made

by the algorithm along with some initial segment of unlabeled examples (as in Castro and

Nowak 2007), representing the case where we are not sure a priori of when we will stop

the algorithm. However, for our present purposes, this alternative too is almost equivalent in

sample complexity.

2.2 The verifiable sample complexity

To date, there has been a significant amount of work studying the verifiable sample complex-

ity (though typically under the aforementioned alternative formulation). It is clear from stan-

dard results in passive learning that verifiable sample complexities of O((d/ǫ) log(1/ǫ) +
(1/ǫ) log(1/δ)) are easy to obtain for any learning problem, by requesting the labels of ran-

dom examples. As such, there has been much interest in determining when it is possible

to achieve verifiable sample complexity smaller than this, and in particular, when the ver-

ifiable sample complexity is a polylogarithmic function of 1/ǫ (representing exponential

improvements over passive learning).

One of the earliest active learning algorithms in this model is the selective sampling al-

gorithm of Cohn et al. (1994), henceforth referred to as CAL. This algorithm keeps track

of two spaces—the current version space Ci , defined as the set of hypotheses in C con-

sistent with all labels revealed so far, and the current region of uncertainty Ri = {x ∈ X :
∃h1, h2 ∈ Ci s.t. h1(x) �= h2(x)}. In each round i, the algorithm picks a random unlabeled

example from Ri and requests its label, eliminating all hypotheses in Ci inconsistent with

the received label to make the next version space Ci+1. The algorithm then defines Ri+1 as

the region of uncertainty for the new version space Ci+1 and continues. Its final hypothesis

can then be taken arbitrarily from Ct , the final version space, and we use the diameter of

Ct for the ǫ̂t error bound. While there are a small number of cases in which this algorithm

and others have been shown to achieve exponential improvements in the verifiable sample

complexity for all targets (most notably, the case of homogeneous linear separators under

the uniform distribution), there exist extremely simple concept classes for which �(1/ǫ)

labels are needed for some targets.

Recently, there have been a few quantities proposed to measure the verifiable sample

complexity of active learning on any given concept class and distribution. Dasgupta’s split-

ting index (Dasgupta 2005), which is dependent on the concept class, data distribution, and

target function, quantifies how easy it is to make progress toward reducing the diameter

of the version space by choosing an example to query. Another quantity to which we will

frequently refer is Hanneke’s disagreement coefficient (Hanneke 2007a), defined as follows.
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Definition 3 For any set of classifiers H , define the region of disagreement of H as

DIS(H) = {x ∈ X : ∃h1, h2 ∈ H : h1(x) �= h2(x)}.

For any classifier h and r > 0, let B̃(h, r) be a ball of radius r around h in C. Formally,

B̃(h, r) = {h′ ∈ C̃ : PD(h(x) �= h′(x)) ≤ r},

where C̃ denotes any countable dense subset of C.2 For our purposes, the disagreement

coefficient of a hypothesis h, denoted θh, is defined as

θh = sup
r>0

P(DIS(B̃(h, r)))

r
.

The disagreement coefficient for a concept class C is defined as θ = suph∈C θh.

The disagreement coefficient is often a useful quantity for analyzing the verifiable sample

complexity of active learning algorithms. For example, it has been shown that the algorithm

of Cohn, Atlas, and Ladner described above achieves a verifiable sample complexity at most

θh∗d ·polylog(1/(ǫδ)) when run with hypothesis class C̃ for target function h∗ ∈ C (Hanneke

2007a, 2009). We will use it in several of the results below.

To get a feel for how to calculate this quantity, it may be helpful to see some exam-

ples (taken from Hanneke 2007a). For instance, consider D uniform on [0,1], and the

concept space of threshold classifiers C = {hz : z ∈ [0,1], hz(x) = +1 iff x ≥ z}. In this

case, we have B̃(hz, r) ⊆ {hz′ : |z′ − z| ≤ r}, so DIS(B̃(hz, r)) ⊆ {x : |x − z| ≤ r}, and thus

P(DIS(B̃(hz, r))) ≤ 2r . Therefore, the disagreement coefficient of hz is ≤ 2, and in fact so

is the disagreement coefficient for the entire concept class.

On the other hand, consider the same D, but this time take the concept class of intervals:

C = {ha,b : a, b ∈ [0,1], ha,b(x) = +1 iff a ≤ x ≤ b}. In this case, for ha,b with |a − b| =
w > 0, we have two cases. If r > w, {ha′,b′ ∈ C̃ : |a′ − b′| ≤ r − w} ⊆ B̃(ha,b, r), so that

P(DIS(B̃(ha,b, r))) = 1. In the second case, if r < w we have B̃(ha,b, r) ⊆ {ha′,b′ : |a −
a′| ≤ r, |b − b′| ≤ r}, so that DIS(B̃(ha,b, r)) ⊆ {x : min{|x − a|, |x − b|} ≤ r}, and thus

P(DIS(B̃(ha,b, r))) ≤ 4r . Combining the two cases, we have 1/w ≤ θha,b
≤ max{1/w,4}.

However, for the intervals with |a − b| = 0, the first case holds for arbitrarily small r values,

implying θha,b
= ∞.

We will see that both the disagreement coefficient and splitting index are also useful

quantities for analyzing true sample complexities, though their use in that case is less direct.

2.3 The true sample complexity

This paper focuses on situations where true sample complexities are significantly smaller

than verifiable sample complexities. In particular, we show that many common pairs (C,D)

have sample complexity that is polylogarithmic in both 1/ǫ and 1/δ and linear only in some

finite target-dependent constant γh∗ . This contrasts sharply with the infamous 1/ǫ lower

2That is, C̃ is countable and ∀h ∈ C,∀ǫ > 0,∃h′ ∈ C̃ : P(h(X) �= h′(X)) ≤ ǫ. Such a subset exists, for

example, in any C with finite VC dimension. We introduce this countable dense subset to avoid certain

degenerate behaviors, such as when DIS(B(h,0)) = X . For instance the hypothesis class of classifiers on the

[0,1] interval that label exactly one point positive has this property under any density function.
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bounds mentioned above, which have been identified for verifiable sample complexity (Han-

neke 2007b; Dasgupta 2005, 2004; Freund et al. 1997). The implication is that, for any fixed

target h∗, such lower bounds vanish as ǫ approaches 0. This also contrasts with passive

learning, where 1/ǫ lower bounds are typically unavoidable (Antos and Lugosi 1998).

Definition 4 We say that (C,D) is actively learnable at an exponential rate if there exists

an active learning algorithm achieving sample complexity

S(ǫ, δ,h∗)=γh∗ · polylog (1/(ǫδ))

for all h∗ ∈ C, where γh∗ is a finite constant that may depend on h∗ and D but is independent

of ǫ and δ.

3 Strict improvements of active over passive

In this section, we describe conditions under which active learning can achieve a sample

complexity asymptotically superior to passive learning. The results are surprisingly gen-

eral, indicating that whenever the VC dimension is finite, any passive learning algorithm is

asymptotically dominated by an active learning algorithm on all targets.

Definition 5 A function S(ǫ, δ,h∗) is a passive learning sample complexity for a pair

(C,D) if there exists an algorithm A(((x1, h
∗(x1)), (x2, h

∗(x2)), . . . , (xt , h
∗(xt ))), δ) that

outputs a classifier ht,δ , such that for any target function h∗ ∈ C,ǫ ∈ (0,1/2), δ ∈ (0,1), for

any t ≥ S(ǫ, δ,h∗), PD(er(ht,δ) ≤ ǫ) ≥ 1 − δ.

Thus, a passive learning sample complexity corresponds to a restriction of an active learn-

ing sample complexity to algorithms that specifically request the first t labels in the sequence

and ignore the rest. In particular, it is known that for any finite VC dimension class, there is

always an O(1/ǫ) passive learning sample complexity (Haussler et al. 1994). Furthermore,

this is often (though not always) tight, in the sense that for any passive algorithm, there exist

targets for which the corresponding passive learning sample complexity is �(1/ǫ) (Antos

and Lugosi 1998). The following theorem states that for any passive learning sample com-

plexity, there exists an achievable active learning sample complexity with a strictly slower

asymptotic rate of growth. Its proof is included in Appendix E.

Theorem 1 Suppose C has finite VC dimension, and let D be any distribution on X . For

any passive learning sample complexity Sp(ǫ, δ, h) for (C,D), there exists an active learn-

ing algorithm achieving a sample complexity Sa(ǫ, δ, h) such that, for all δ ∈ (0,1/4) and

targets h∗ ∈ C for which Sp(ǫ, δ, h∗) = ω(1),3

Sa(ǫ, δ, h
∗) = o(Sp(ǫ/4, δ, h∗)).

3Recall that we say a non-negative function φ(ǫ) = o(1/ǫ) iff limǫ→0 φ(ǫ)/(1/ǫ) = 0. Similarly, φ(ǫ) =
ω(1) iff limǫ→0 1/φ(ǫ) = 0. Here and below, the o(·), ω(·), �(·) and O(·) notation should be interpreted

as ǫ → 0 (from the + direction), treating all other parameters (e.g., δ and h∗) as fixed constants. Note that

any algorithm achieving a sample complexity Sp(ǫ, δ, h) �= ω(1) is guaranteed, with probability ≥1 − δ,

to achieve error zero using a finite number of samples, and therefore we cannot hope to achieve a slower

asymptotic growth in sample complexity.
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In particular, this implies the following simple corollary.

Corollary 1 For any C with finite VC dimension, and any distribution D over X , there

is an active learning algorithm that achieves a sample complexity S(ǫ, δ,h∗) such that for

δ ∈ (0,1/4),

S(ǫ, δ,h∗) = o(1/ǫ)

for all targets h∗ ∈ C.

Proof Let d be the VC dimension of C. The passive learning algorithm of Haussler et al.

(1994) is known to achieve a sample complexity no more than (kd/ǫ) log(1/δ), for some

universal constant k < 200. Applying Theorem 1 now implies the result. �

Note the interesting contrast, not only to passive learning, but also to the known results

on the verifiable sample complexity of active learning. This theorem definitively states that

the �(1/ǫ) lower bounds common in the literature on verifiable samples complexity can

never arise in the analysis of the true sample complexity of finite VC dimension classes.

4 Decomposing hypothesis classes

Let us return once more to the simple example of learning the class of intervals over [0,1]
under the uniform distribution. As discussed above, it is well known that the verifiable sam-

ple complexity of the all-negative classifier in this class is �(1/ǫ). However, consider the

more limited class C ′ ⊂ C containing only the intervals h of width wh strictly greater than

0. Using the simple algorithm described in Sect. 1.1, this restricted class can be learned with

a (verifiable) sample complexity of only O(1/wh + log(1/ǫ)). Furthermore, the remaining

set of classifiers C ′′ = C \ C ′ consists of only a single function (the all-negative classifier)

and thus can be learned with verifiable sample complexity 0. Here we have that C can be

decomposed into two subclasses C ′ and C ′′, where both (C ′,D) and (C ′′,D) are learnable

at an exponential rate. It is natural to wonder if the existence of such a decomposition is

enough to imply that C itself is learnable at an exponential rate.

More generally, suppose that we are given a distribution D and a hypothesis class C such

that we can construct a sequence of subclasses Ci with sample complexity Si(ǫ, δ, h), with

C =
⋃∞

i=1 Ci . Thus, if we knew a priori that the target h∗ was a member of subclass Ci , it

would be straightforward to achieve Si(ǫ, δ, h
∗) sample complexity. It turns out that it is pos-

sible to learn any target h∗ in any class Ci with sample complexity only O(Si(ǫ/2, δ/2, h∗)),
even without knowing which subclass the target belongs to in advance. This can be accom-

plished by using a simple aggregation algorithm, such as the one given below. Here a set

of active learning algorithms (for example, multiple instances of Dasgupta’s splitting algo-

rithm (Dasgupta 2005) or CAL) are run on individual subclasses Ci in parallel. The output

of one of these algorithms is selected according to a sequence of comparisons. Specifically,

for each pair of hypotheses, say hi and hj (where hi is produced by running the algorithm

for Ci and hj is produced by running the algorithm for Cj ), we find a number of points x on

which hi(x) �= hj (x), and request their labels. With only a few such labels, we get quite a

bit of information about whether er(hi) < er(hj ) or vice versa. We then select the hi making

the smallest number of mistakes in the worst of these comparisons, and can conclude that

its error rate cannot be much worse than any other hj .

Using this algorithm, we can show the following sample complexity bound. The proof

appears in Appendix B.
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Algorithm 1 The Aggregation Procedure. Here it is assumed that C =
⋃∞

i=1 Ci , and that

for each i, Ai is an algorithm achieving sample complexity at most Si(ǫ, δ, h) for the pair

(Ci,D). Both the main aggregation procedure and each algorithm Ai take a number of labels

t and a confidence parameter δ as parameters

Let k be the largest integer s.t. k2⌈72 ln(4k/δ)⌉ ≤ t/2

for i = 1, . . . , k do

Let hi be the output of running Ai(⌊t/(4i2)⌋, δ/2) on the sequence {x2n−1}∞
n=1

end for

for i, j ∈ {1,2, . . . , k} do

if PD(hi(x) �= hj (x)) > 0 then

Let Rij be the first ⌈72 ln(4k/δ)⌉ elements x in {x2n}∞
n=1 with hi(x) �= hj (x)

Request the labels of all examples in Rij

Let mij be the number of elements in Rij on which hi makes a mistake

else

Let mij = 0

end if

end for

Return ĥt = hi where i = argmini∈{1,2,...,k} maxj∈{1,2,...,k} mij

Theorem 2 For any distribution D, let C1,C2, . . . be a sequence of classes such that for

each i, the pair (Ci,D) has sample complexity at most Si(ǫ, δ, h) for all h ∈ Ci . Let C =
⋃∞

i=1 Ci . Then (C,D) has a sample complexity at most

min
i:h∈Ci

max

{

4i2⌈Si(ǫ/2, δ/2, h)⌉,2i2

⌈

72 ln
4i

δ

⌉}

,

for any h ∈ C. In particular, Algorithm 1 achieves this when given as input the algorithms

Ai that each achieve sample complexity Si(ǫ, δ, h) on class (Ci,D).

A particularly interesting implication of Theorem 2 is that the ability to decompose C into

a sequence of classes Ci with each pair (Ci,D) learnable at an exponential rate is enough

to imply that (C,D) is also learnable at an exponential rate. Since the verifiable sample

complexity of active learning has received more attention and is therefore better understood,

it is often useful to apply this result when there exist known bounds on the verifiable sample

complexity; the approach loses nothing in generality, as suggested by the following theorem.

The proof of this theorem. is included in Appendix C.

Theorem 3 For any (C,D) learnable at an exponential rate, there exists a sequence

C1,C2, . . . with C =
⋃∞

i=1 Ci , and a sequence of active learning algorithms A1,A2, . . . such

that the algorithm Ai achieves verifiable sample complexity at most γipolylogi(1/(ǫδ)) for

the pair (Ci,D), where γi is a constant independent of ǫ and δ. In particular, the aggrega-

tion algorithm (Algorithm 1) achieves exponential rates when used with these algorithms.

Note that decomposing a given C into a sequence of Ci subsets that have good verifiable

sample complexities is not always a simple task. One might be tempted to think a simple

decomposition based on increasing values of verifiable sample complexity with respect to

(C,D) would be sufficient. However, this is not always the case, and generally we need to

use information more detailed than verifiable complexity with respect to (C,D) to construct
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a good decomposition. We have included in Appendix D a simple heuristic approach that

can be quite effective, and in particular yields good sample complexities for every (C,D)

described in Sect. 5.

Since it is more abstract and allows us to use known active learning algorithms as a

black box, we frequently rely on the decompositional view introduced here throughout the

remainder of the paper.

5 Exponential rates

The results in Sect. 3 tell us that the sample complexity of active learning can be made

strictly superior to any passive learning sample complexity when the VC dimension is finite.

We now ask how much better that sample complexity can be. In particular, we describe a

number of concept classes and distributions that are learnable at an exponential rate, many

of which are known to require �(1/ǫ) verifiable sample complexity.

5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situations in which exponential rates

are trivially achievable; in fact, in each of the cases mentioned in this subsection, the sample

complexity is actually O(1).

Clearly if |X | < ∞ or |C| < ∞, we can always achieve exponential rates. In the former

case, we may simply request the label of every x in the support of D, and thereby perfectly

identify the target. The corresponding γ = |X |. In the latter case, the CAL algorithm can

achieve exponential learning with γ = |C| since each queried label will reduce the size of

the version space by at least one.

Less obvious is the fact that a similar argument can be applied to any countably infinite

hypothesis class C. In this case we can impose an ordering h1, h2, . . . over the classifiers

in C, and set Ci = {hi} for all i. By Theorem 2, applying the aggregation procedure to

this sequence yields an algorithm with sample complexity S(ǫ, δ,hi) = 2i2 ⌈72 ln(4i/δ)⌉ =
O(1).

5.2 Geometric concepts, uniform distribution

Many interesting geometric concepts in R
n are learnable at an exponential rate if the un-

derlying distribution is uniform on some subset of R
n. Here we provide some examples;

interestingly, every example in this subsection has some targets for which the verifiable

sample complexity is �(1/ǫ). As we see in Sect. 5.3, all of the results in this section can be

extended to many other types of distributions as well.

Unions of k intervals under arbitrary distributions Let X be the interval [0,1) and let

C(k) denote the class of unions of at most k intervals. In other words, C(k) contains functions

described by a sequence 〈a0, a1, . . . , aℓ〉, where a0 = 0, aℓ = 1, ℓ ≤ 2k + 1, and a0, . . . , aℓ

is the (nondecreasing) sequence of transition points between negative and positive segments

(so x is labeled +1 iff x ∈ [ai, ai+1) for some odd i). For any distribution, this class is

learnable at an exponential rate by the following decomposition argument. First, define C1

to be the set containing the all-negative function along with any functions that are equivalent

given the distribution D. Formally,

C1 = {h ∈ C(k) : P(h(X) = +1) = 0}.
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Clearly C1 has verifiable sample complexity 0. For i = 2,3, . . . , k + 1, let Ci be the set

containing all functions that can be represented as unions of i − 1 intervals but cannot be

represented as unions of fewer intervals. More formally, we can inductively define each Ci

as

Ci =
{

h ∈ C(k) : ∃h′ ∈ C(i−1) s.t. P(h(X) �= h′(X)) = 0
}

\
⋃

j<i

Cj .

For i > 1, within each subclass Ci , for each h ∈ Ci the disagreement coefficient is bounded

by something proportional to k + 1/w(h), where w(h) is the weight of the smallest positive

or negative interval. Note w(h) > 0 by construction of the Ci sets. Thus running CAL with

C̃i achieves polylogarithmic (verifiable) sample complexity for any h ∈ Ci . Since C(k) =
⋃k+1

i=1 Ci , by Theorem 2, C(k) is learnable at an exponential rate.

Ordinary binary classification trees Let X be the cube [0,1]n, D be the uniform distribu-

tion on X , and C be the class of binary decision trees using a finite number of axis-parallel

splits (see e.g., Devroye et al. 1996, Chap. 20). In this case, in the same spirit as the previous

example, we let Ci be the set of decision trees in C distance zero from a tree with i leaf

nodes, not contained in any Cj for j < i. For any i, the disagreement coefficient for any

h ∈ Ci (with respect to (Ci,D)) is a finite constant, and we can choose C̃i to have finite VC

dimension, so each (Ci,D) is learnable at an exponential rate (by running CAL with C̃i ).

By Theorem 2, (C,D) is learnable at an exponential rate.

5.2.1 Linear separators

Theorem 4 Let C be the concept class of linear separators in n dimensions, and let D be

the uniform distribution over the surface of the unit sphere. The pair (C,D) is learnable at

an exponential rate.

Proof There are multiple ways to achieve this. We describe here a simple proof that uses

a decomposition as follows. Let λ(h) be the probability mass of the minority class un-

der hypothesis h. Let C1 be the set containing only the separators h with λ(h) = 0, let

C2 = {h ∈ C : λ(h) = 1/2}, and let C3 = C \ (C1 ∪ C2). As before, we can use a black box

active learning algorithm such as CAL to learn within the class C3. To prove that we indeed

get the desired exponential rate of active learning, we show that the disagreement coeffi-

cient of any separator h ∈ C3 with respect to (C3,D) is finite. Hanneke’s results concerning

the CAL algorithm (Hanneke 2007a, 2009) then immediately imply that C3 is learnable at

an exponential rate. Since C1 trivially has sample complexity 1, and (C2,D) is known to

be learnable at an exponential rate (Dasgupta 2005; Balcan et al. 2007; Hanneke 2007a;

Dasgupta et al. 2005), combined with Theorem 2, this would imply the result. Below, we

will restrict the discussion to hypotheses in C3, which will be implicit in notation such as

B(h, r), etc.

First note that, to show θh < ∞, it suffices to show that

lim
r→0

P(DIS(B(h, r)))

r
< ∞, (5.1)

so we will focus on this.

For any h, there exists rh > 0 s.t. ∀h′ ∈ B(h, r),P(h′(X) = +1) ≤ 1/2 ⇔ P(h(X) =
+1) ≤ 1/2, or in other words the minority class is the same among all h′ ∈ B(h, r).
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Fig. 2 Projection of h̄ and h̄′
into the plane defined by w

and w′

Now consider any h′ ∈ B(h, r) for 0 < r < min{rh, λ(h)/2}. Clearly P(h(X) �= h′(X)) ≥
|λ(h) − λ(h′)|. Suppose h(x) = sign(w · x + b) and h′(x) = sign(w′ · x + b′) (where, with-

out loss, we assume ‖w‖ = 1), and α(h,h′) ∈ [0,π] is the angle between w and w′. If

α(h,h′) = 0 or if the minority regions of h and h′ do not intersect, then clearly P(h(X) �=
h′(X)) ≥ 2α(h,h′)

π
min{λ(h),λ(h′)}. Otherwise, consider the classifiers h̄(x) = sign(w ·x + b̄)

and h̄′(x) = sign(w′ ·x+ b̄′), where b̄ and b̄′ are chosen s.t. P(h̄(X) = +1) = P(h̄′(X) = +1)

and λ(h̄) = min{λ(h),λ(h′)}. That is, h̄ and h̄′ are identical to h and h′ except that we ad-

just the bias term of the one with larger minority class probability to reduce its minority

class probability to be equal to the other’s. If h �= h̄, then most of the probability mass of

{x : h(x) �= h̄(x)} is contained in the majority class region of h′ (or vice versa if h′ �= h̄′), and

in fact every point in {x : h(x) �= h̄(x)} is labeled by h̄ according to the majority class label

(and similarly for h′ and h̄′). Therefore, we have P(h(X) �= h′(X)) ≥ P(h̄(X) �= h̄′(X)).

We also have that P(h̄(X) �= h̄′(X)) ≥ 2α(h,h′)
π

λ(h̄). To see this, consider the projection

onto the 2-dimensional plane defined by w and w′, as in Fig. 2. Because the two deci-

sion boundaries must intersect inside the acute angle, the probability mass contained in

each of the two wedges (both with α(h,h′) angle) making up the projected region of dis-

agreement between h̄ and h̄′ must be at least an α(h,h′)/π fraction of the total minor-

ity class probability for the respective classifier, implying the union of these two wedges

has probability mass at least 2α(h,h′)
π

λ(h̄). Therefore, we must have P(h(X) �= h′(X)) ≥
max{|λ(h) − λ(h′)|, 2α(h,h′)

π
min{λ(h),λ(h′)}}, and thus

B(h, r) ⊆
{

h′ : max

{

|λ(h) − λ(h′)|, 2α(h,h′)

π
min{λ(h),λ(h′)}

}

≤ r

}

.

The region of disagreement of this set is at most

DIS

({

h′ : 2α(h,h′)

π
(λ(h) − r) ≤ r ∧ |λ(h) − λ(h′)| ≤ r

})

⊆ DIS({h′ : w′ = w ∧ |λ(h′) − λ(h)| ≤ r})

∪ DIS({h′ : α(h,h′) ≤ πr/λ(h) ∧ |λ(h) − λ(h′)| = r}),

where this last relation follows from the following reasoning. Take ymaj to be the ma-

jority class of h (arbitrary if λ(h) = 1/2). For any h′ with |λ(h) − λ(h′)| < r , the h′′

with α(h,h′′) = α(h,h′) having P(h(X) = ymaj ) − P(h′′(X) = ymaj ) = r disagrees with

h on a set of points containing {x : h′(x) �= h(x) = ymaj }; likewise, the one having

P(h(X) = ymaj ) − P(h′′(X) = ymaj ) = −r disagrees with h on a set of points contain-

ing {x : h′(x) �= h(x) = −ymaj }. So any point in disagreement between h and some h′

with |λ(h) − λ(h′)| < r and α(h,h′) ≤ πr/λ(h) is also disagreed upon by some h′′ with

|λ(h) − λ(h′′)| = r and α(h,h′′) ≤ πr/λ(h).
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Some simple trigonometry shows that DIS({h′ : α(h,h′) ≤ πr/λ(h) ∧ |λ(h) − λ(h′)| =
r}) is contained in the set of points within distance sin(πr/λ(h)) ≤ πr/λ of the two hyper-

planes representing h1(x) = sign(w · x + b1) and h2(x) = sign(w · x + b2) defined by the

property that λ(h1) − λ(h) = λ(h) − λ(h2) = r , so that the total region of disagreement is

contained within

{x : h1(x) �= h2(x)} ∪ {x : min{|w · x + b1|, |w · x + b2|} ≤ πr/λ(h)}.

Clearly, P({x : h1(x) �= h2(x)}) = 2r . Using previous results (Balcan et al. 2006; Hanneke

2007a), we know that P({x : min{|w · x + b1|, |w · x + b2|} ≤ πr/λ(h)}) ≤ 2π
√

nr/λ(h)

(since the probability mass contained within this distance of a hyperplane is maximized

when the hyperplane passes through the origin). Thus, the probability of the entire region of

disagreement is at most (2 + 2π
√

n/λ(h))r , so that (5.1) holds, and therefore the disagree-

ment coefficient is finite. �

5.3 Composition results

We can also extend the results from the previous subsection to other types of distributions

and concept classes in a variety of ways. Here we include a few results to this end.

Close distributions If (C,D) is learnable at an exponential rate, then for any distribution

D′ such that for all measurable A ⊆ X , λPD(A) ≤ PD′(A) ≤ (1/λ)PD(A) for some λ ∈
(0,1], (C,D′) is also learnable at an exponential rate. In particular, we can simply use the

algorithm for (C,D), filter the examples from D′ so that they appear like examples from D,

and then any t large enough to find an ǫλ-good classifier with respect to D is large enough to

find an ǫ-good classifier with respect to D′. This general idea has previously been observed

for the verifiable sample complexity (Dasgupta 2005; Hanneke 2007a).

Mixtures of distributions Suppose there exist algorithms A1 and A2 for learning a class C

at an exponential rate under distributions D1 and D2 respectively. It turns out we can also

learn under any mixture of D1 and D2 at an exponential rate, by using A1 and A2 as black

boxes. In particular, the following theorem relates the sample complexity under a mixture to

the sample complexities under the mixing components.

Theorem 5 Let C be an arbitrary hypothesis class. Assume that the pairs (C,D1)

and (C,D2) have sample complexities S1(ǫ, δ, h
∗) and S2(ǫ, δ, h

∗) respectively, where

D1 and D2 have density functions PD1
and PD2

respectively. Then for any α ∈ [0,1],
the pair (C,αD1 + (1 − α)D2) has sample complexity at most 2⌈max{S1(ǫ/3, δ/2, h∗),
S2(ǫ/3, δ/2, h∗)}⌉.

Proof If α = 0 or 1 then the theorem statement holds trivially. Assume instead that

α ∈ (0,1). As we are only interested in proving the existence of an algorithm achieving

the desired sample complexity, we can describe a method in terms of α, D1, and D2, and in

particular it can depend on these items in essentially arbitrary ways.

Suppose algorithms A1 and A2 achieve the stated sample complexities under D1 and D2

respectively. At a high level, the algorithm we define works by “filtering” the distribution

over input so that it appears to come from two streams, one distributed according to D1, and

one distributed according to D2, and feeding these filtered streams to A1 and A2 respectively.

To do so, we define a random sequence u1, u2, . . . of independent uniform random variables
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Fig. 3 Illustration of the proof of Theorem 5. The dark gray regions represent BD1
(h1,2r) and BD2

(h2,2r).

The function h that gets returned is in the intersection of these. The light gray regions represent BD1
(h1, ǫ/3)

and BD2
(h2, ǫ/3). The target function h∗ is in the intersection of these. We therefore must have r ≤ ǫ/3, and

by the triangle inequality er(h) ≤ ǫ

in [0,1]. We then run A1 on the sequence of examples xi from the unlabeled data sequence

satisfying

ui <
αPD1

(xi)

αPD1
(xi) + (1 − α)PD2

(xi)
,

and run A2 on the remaining examples, allowing each to make an equal number of label

requests.

Let h1 and h2 be the classifiers output by A1 and A2. Because of the filtering, the ex-

amples that A1 sees are distributed according to D1, so after t/2 queries, the current error

of h1 with respect to D1 is, with probability 1 − δ/2, at most inf{ǫ′ : S1(ǫ
′, δ/2, h∗) ≤ t/2}.

A similar argument applies to the error of h2 with respect to D2.

Finally, let

r = inf{r : BD1
(h1, r) ∩ BD2

(h2, r) �= ∅},
where

BDi
(hi, r) = {h ∈ C : PDi

(h(x) �= hi(x)) ≤ r}.
Define the output of the algorithm to be any h ∈ BD1

(h1,2r) ∩ BD2
(h2,2r). If a total of

t ≥ 2⌈max{S1(ǫ/3, δ/2, h∗), S2(ǫ/3, δ/2, h∗)}⌉ queries have been made (t/2 by A1 and t/2

by A2), then by a union bound, with probability at least 1 − δ, h∗ is in the intersection of

the ǫ/3-balls, and so h is in the intersection of the 2ǫ/3-balls. By the triangle inequality, h

is within ǫ of h∗ under both distributions, and thus also under the mixture. (See Fig. 3 for

an illustration of these ideas.) �

5.4 Lower bounds

Given the previous discussion, one might suspect that any pair (C,D) is learnable at an

exponential rate, under some mild condition such as finite VC dimension. However, we

show in the following that this is not the case, even for some simple geometric concept

classes when the distribution is especially nasty.

Theorem 6 For any positive function φ(ǫ) = o(1/ǫ), there exists a pair (C,D), with the

VC dimension of C equal 1, such that for any achievable sample complexity S(ǫ, δ,h) for

(C,D), for any δ ∈ (0,1/4),

∃h ∈ C s.t. S(ǫ, δ,h) �= o(φ(ǫ)).
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Fig. 4 A learning problem where exponential rates are not achievable. The instance space is an infinite-depth

tree. The target labels nodes along a single infinite path as +1, and labels all other nodes −1. For any

φ(ǫ) = o(1/ǫ), when the number of children and probability mass of each node at each subsequent level

are set in a certain way, sample complexities of o(φ(ǫ)) are not achievable for all targets

In particular, taking φ(ǫ) = 1/
√

ǫ (for example), this implies that there exists a (C,D) that

is not learnable at an exponential rate (in the sense of Definition 4).

Proof If we can prove this for any such φ(ǫ) �= O(1), then clearly this would imply the

result holds for φ(ǫ) = O(1) as well, so we will focus on φ(ǫ) �= O(1) case. Let T be a

fixed infinite tree in which each node at depth i has ci children; ci is defined shortly below.

We consider learning the hypothesis class C where each h ∈ C corresponds to a path down

the tree starting at the root; every node along this path is labeled 1 while the remaining

nodes are labeled −1. Clearly for each h ∈ C there is precisely one node on each level of

the tree labeled 1 by h (i.e. one node at each depth). C has VC dimension 1 since knowing

the identity of the node labeled 1 on level i is enough to determine the labels of all nodes on

levels 0, . . . , i perfectly. This learning problem is depicted in Fig. 4.

Now we define D, a “bad” distribution for C. Let {ℓi}∞
i=1 be any sequence of positive

numbers s.t.
∑∞

i=1 ℓi = 1. ℓi will bound the total probability of all nodes on level i according

to D. Assume all nodes on level i have the same probability according to D, and call this pi .

We define the values of pi and ci recursively as follows. For each i ≥ 1, we define pi as any

positive number s.t. pi⌈φ(pi)⌉
∏i−2

j=0 cj ≤ ℓi and φ(pi) ≥ 4, and define ci−1 = ⌈φ(pi)⌉. We

are guaranteed that such a value of pi exists by the assumptions that φ(ǫ) = o(1/ǫ), meaning

limǫ→0 ǫφ(ǫ) = 0, and that φ(ǫ) �= O(1). Letting p0 = 1 −
∑

i≥1 pi

∏i−1
j=0 cj completes the

definition of D.

With this definition of the parameters above, since
∑

i pi ≤ 1, we know that for any

ǫ0 > 0, there exists some ǫ < ǫ0 such that for some level j , pj = ǫ and thus cj−1 ≥ φ(pj ) =
φ(ǫ). We will use this fact to show that ∝ φ(ǫ) labels are needed to learn with error less than

ǫ for these values of ǫ. To complete the proof, we must prove the existence of a “difficult”

target function, customized to challenge the particular learning algorithm being used. To

accomplish this, we will use the probabilistic method to prove the existence of a point in

each level i such that any target function labeling that point positive would have a sample

complexity ≥ φ(pi)/4. Furthermore, we will show that we can find such a point at each

level in a recursive manner, so that the point at level i is among the children of the point at

level i − 1. Then the difficult target function simply strings these points together.

To begin, we define x0 = the root node. Then for each i ≥ 1, recursively define xi as

follows. Suppose, for any h, the set Rh and the classifier ĥh are, respectively, the random

variable representing the set of examples the learning algorithm would request, and the clas-

sifier the learning algorithm would output, when h is the target and its label request budget

is set to t = ⌊φ(pi)/2⌋. For any node x, we will let Children(x) denote the set of chil-

dren of x, and Subtree(x) denote the set of x along with all descendants of x. Additionally,
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let hx denote any classifier in C s.t. hx(x) = +1. Also, for two classifiers h1, h2, define

er(h1;h2) = PD(h1(X) �= h2(X)). Now note that

max
x∈Children(xi−1)

inf
h∈C:h(x)=+1

P{er(ĥh;h) > pi}

≥ 1

ci−1

∑

x∈Children(xi−1)

inf
h∈C:h(x)=+1

P{er(ĥh;h) > pi}

≥ 1

ci−1

∑

x∈Children(xi−1)

P{∀h ∈ C : h(x) = +1,Subtree(x) ∩ Rh = ∅ ∧ er(ĥh;h) > pi}

= E

[

1

ci−1

∑

x∈Children(xi−1):
Subtree(x)∩Rhx =∅

I
[

∀h ∈ C : h(x) = +1, er(ĥh;h) > pi

]

]

≥ E

[

min
x′∈Children(xi−1)

1

ci−1

∑

x∈Children(xi−1):
Subtree(x)∩Rhx =∅

I
[

x ′ �= x
]

]

≥ 1

ci−1

(ci−1 − t − 1) = 1

⌊φ(pi)⌋
(⌊φ(pi)⌋ − ⌊φ(pi)/2⌋ − 1)

≥ 1

⌊φ(pi)⌋
(⌊φ(pi)⌋/2 − 1) ≥ 1/4.

The expectations above are over the unlabeled examples and any internal random bits used

by the algorithm. The above inequalities imply there exists some x ∈ Children(xi−1) such

that every h ∈ C that has h(x) = +1 has S(pi, δ, h) ≥ ⌊φ(pi)/2⌋ ≥ φ(pi)/4; we will take

xi to be this value of x. We now simply take the target function h∗ to be the classifier that

labels xi positive for all i, and labels every other point negative. By construction, we have

∀i, S(pi, δ, h
∗) ≥ φ(pi)/4, and therefore

∀ǫ0 > 0,∃ǫ < ǫ0 : S(ǫ, δ,h∗) ≥ φ(ǫ)/4,

so that S(ǫ, δ,h∗) �= o(φ(ǫ)). �

Note that this implies that the o(1/ǫ) guarantee of Corollary 1 is in some sense the

tightest guarantee we can make at that level of generality, without using a more detailed

description of the structure of the problem beyond the finite VC dimension assumption.

This type of example can be realized by certain nasty distributions, even for a variety of

simple hypothesis classes: for example, linear separators in R
2 or axis-aligned rectangles

in R
2. We remark that this example can also be modified to show that we cannot expect

intersections of classifiers to preserve exponential rates. That is, the proof can be extended

to show that there exist classes C1 and C2, such that both (C1,D) and (C2,D) are learnable

at an exponential rate, but (C,D) is not, where C = {h1 ∩ h2 : h1 ∈ C1, h2 ∈ C2}.

6 Discussion and open questions

The implication of our analysis is that in many interesting cases where it was previously

believed that active learning could not help, it turns out that active learning does help as-

ymptotically. We have formalized this idea and illustrated it with a number of examples and
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general theorems throughout the paper. This realization dramatically shifts our understand-

ing of the usefulness of active learning: while previously it was thought that active learning

could not provably help in any but a few contrived and unrealistic learning problems, in this

alternative perspective we now see that active learning essentially always helps, and does so

significantly in all but a few contrived and unrealistic problems.

The use of decompositions of C in our analysis generates another interpretation of these

results. Specifically, Dasgupta (2005) posed the question of whether it would be useful to

develop active learning techniques for looking at unlabeled data and “placing bets” on cer-

tain hypotheses. One might interpret this work as an answer to this question; that is, some of

the decompositions used in this paper can be interpreted as reflecting a preference partial-

ordering of the hypotheses, similar to ideas explored in the passive learning literature (Vap-

nik 1998; Shawe-Taylor et al. 1998; Balcan and Blum 2006). However, the construction of a

good decomposition in active learning seems more subtle and quite different from previous

work in the context of supervised or semi-supervised learning.

It is interesting to examine the role of target- and distribution-dependent constants in this

analysis. As defined, both the verifiable and true sample complexities may depend heavily

on the particular target function and distribution. Thus, in both cases, we have interpreted

these quantities as fixed when studying the asymptotic growth of these sample complexities

as ǫ approaches 0. It has been known for some time that, with only a few unusual excep-

tions, any target- and distribution-independent bound on the verifiable sample complexity

could typically be no better than the sample complexity of passive learning; in particular,

this observation lead Dasgupta to formulate his splitting index bounds as both target- and

distribution-dependent (Dasgupta 2005). This fact also applies to bounds on the true sam-

ple complexity as well. Indeed, the entire distinction between verifiable and true sample

complexities collapses if we remove the dependence on these unobservable quantities.

One might wonder what the practical implications of the true sample complexity of ac-

tive learning might be since the theoretical improvements we provide are for an unverifiable

complexity measure and therefore they do not actually inform the user (or algorithm) of

how many labels to allow the algorithm to request. However, there might still be implica-

tions for the design of practical algorithms. In some sense, this is the same issue faced in the

analysis of universally consistent learning rules in passive learning (Devroye et al. 1996).

There is typically no way to verify how close to the Bayes error rate a classifier is (ver-

ifiable complexity is infinite), yet we still want learning rules whose error rates provably

converge to the Bayes error in the limit (true complexity is a finite function of epsilon and

the distribution of (X,Y )), and we often find such methods quite effective in practice (e.g.,

k-nearest neighbor methods). So this is one instance where an unverifiable sample complex-

ity seems to be a useful guide in algorithm design. In active learning with finite-complexity

hypothesis classes we are more fortunate, since the verifiable complexity is finite—and we

certainly want algorithms with small verifiable sample complexity; however, an analysis of

unverifiable complexities still seems relevant, particularly when the verifiable complexity is

large. In general, it seems desirable to design algorithms for any given active learning prob-

lem that achieve both a verifiable sample complexity that is near optimal and a true sample

complexity that is asymptotically better than passive learning.

Open questions There are many interesting open problems within this framework. Perhaps

the most interesting of these would be formulating general necessary and sufficient con-

ditions for learnability at an exponential rate, and determining whether Theorem 1 can be

extended to the agnostic case or to infinite capacity hypothesis classes.
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Subsequent work Since the initial publication of these results at the 2008 Conference on

Learning Theory (Balcan et al. 2008), there has been some progress in this area worth report-

ing. In particular, recall that Theorem 1 allows the algorithm to depend on the distribution

D in arbitrary ways; that is, for each D, we can use a different active learning algorithm to

achieve the improvements over the passive learning method. Indeed the proof of this result

presented in Appendix E employs an active learning algorithm that leverages this depen-

dence to such an extent that it does not seem feasible to remove this dependence on the

distribution without altering the fundamental nature of the algorithm. However, using an

entirely different type of active learning algorithm, Hanneke (2009) has recently been able

to strengthen Theorem 1, proving that for any passive learning algorithm, there is an active

learning algorithm achieving asymptotically strictly superior sample complexities simulta-

neously for all nontrivial target functions and distributions.
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Appendix A: A lower bound on the verifiable sample complexity of the empty interval

Let h− denote the all-negative interval. In this section, we lower bound the verifiable sam-

ple complexity achievable for this classifier, with respect to the hypothesis class C of in-

terval classifiers under a uniform distribution on [0,1]. Specifically, suppose there exists

an algorithm A that achieves a verifiable sample complexity S(ǫ, δ,h) such that for some

ǫ ∈ (0,1/4) and some δ ∈ (0,1/4),

S(ǫ, δ,h−) <

⌊

1

24ǫ

⌋

.

We prove that this would imply the existence of some interval h′ for which the value of

S(ǫ, δ,h′) is not valid under Definition 1. We proceed by the probabilistic method.

Consider the subset of intervals

Hǫ =
{

[3iǫ,3(i + 1)ǫ] : i ∈
{

0,1, . . . ,

⌊

1 − 3ǫ

3ǫ

⌋}}

.

Let s = ⌈S(ǫ, δ,h−)⌉. For any f ∈ C, let Rf , ĥf , and ǫ̂f denote the random variables repre-

senting, respectively, the set of examples (x, y) for which A(s, δ) requests labels (including

their y = f (x) labels), the classifier A(s, δ) outputs, and the confidence bound A(s, δ) out-

puts, when f is the target function. Let I be an indicator function that is 1 if its argument is

true and 0 otherwise. Then

max
f ∈Hǫ

P

(

PX

(

ĥf (X) �= f (X)
)

> ǫ̂f

)

≥ 1

|Hǫ |
∑

f ∈Hǫ

P

(

PX

(

ĥf (X) �= f (X)
)

> ǫ̂f

)
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≥ 1

|Hǫ |
∑

f ∈Hǫ

P

(

(Rf = Rh−) ∧
(

PX

(

ĥf (X) �= f (X)
)

> ǫ̂f

))

= E

[

1

|Hǫ |
∑

f ∈Hǫ :Rf =Rh−

I

[

PX

(

ĥf (X) �= f (X)
)

> ǫ̂f

]

]

≥ E

[

1

|Hǫ |
∑

f ∈Hǫ :Rf =Rh−

I

[(

PX

(

ĥf (X) = +1
)

≤ ǫ
)

∧
(

ǫ̂f ≤ ǫ
)

]

]

(A.1)

= E

[

1

|Hǫ |
∑

f ∈Hǫ :Rf =Rh−

I

[(

PX

(

ĥh−(X) �= h−(X)
)

≤ ǫ
)

∧
(

ǫ̂h− ≤ ǫ
)

]

]

(A.2)

≥ E

[( |Hǫ | − s

|Hǫ |

)

I

[

PX

(

ĥh−(X) �= h−(X)
)

≤ ǫ̂h− ≤ ǫ
]

]

(A.3)

=
( |Hǫ | − s

|Hǫ |

)

P

(

PX

(

ĥh−(X) �= h−(X)
)

≤ ǫ̂h− ≤ ǫ
)

≥
( |Hǫ | − s

|Hǫ |

)

(1 − δ) > δ.

All expectations are over the draw of the unlabeled examples and any additional random

bits used by the algorithm. Line (A.1) follows from the fact that all intervals f ∈ Hǫ are of

width 3ǫ, so if ĥf labels less than a fraction ǫ of the points as positive, it must make an

error of at least 2ǫ with respect to f , which is more than ǫ̂f if ǫ̂f ≤ ǫ. Note that, for any

fixed sequence of unlabeled examples and additional random bits used by the algorithm,

the sets Rf are completely determined, and any f and f ′ for which Rf = Rf ′ must have

ĥf = ĥf ′ and ǫ̂f = ǫ̂f ′ . In particular, any f for which Rf = Rh− will yield identical outputs

from the algorithm, which implies line (A.2). Furthermore, the only classifiers f ∈ Hǫ for

which Rf �= Rh− are those for which some (x,−1) ∈ Rh− has f (x) = +1 (i.e., x is in the f

interval). But since there is zero probability that any unlabeled example is in more than one

of the intervals in Hǫ , with probability 1 there are at most s intervals f ∈ Hǫ with Rf �= Rh− ,

which explains line (A.3).

This proves the existence of some target function h∗ ∈ C such that P(er(hs,δ) > ǫ̂s,δ) > δ,

which contradicts the conditions of Definition 1.

Appendix B: Proof of Theorem 2

First note that the total number of label requests used by the aggregation procedure in Algo-

rithm 1 is at most t . Initially running the algorithms A1, . . . ,Ak requires
∑k

i=1⌊t/(4i2)⌋ ≤
t/2 labels, and the second phase of the algorithm requires k2⌈72 ln(4k/δ)⌉ labels, which by

definition of k is also less than t/2. Thus this procedure is a valid learning algorithm.

Now suppose that the true target h∗ is a member of Ci . We must show that for any input

t such that

t ≥ max
{

4i2
⌈

Si(ǫ/2, δ/2, h∗)
⌉

,2i2 ⌈72 ln(4i/δ)⌉
}

,

the aggregation procedure outputs a hypothesis ĥt such that er(ĥt ) ≤ ǫ with probability at

least 1 − δ.
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First notice that since t ≥ 2i2 ⌈72 ln(4i/δ)⌉, k ≥ i. Furthermore, since t/(4i2) ≥
⌈Si(ǫ/2, δ/2, h∗)⌉, with probability at least 1 − δ/2, running Ai(⌊t/(4i2)⌋, δ/2) returns

a function hi with er(hi) ≤ ǫ/2.

Let j ∗ = argminj er(hj ). Since er(hj∗) ≤ er(hℓ) for any ℓ, we would expect hj∗ to make

no more errors that hℓ on points where the two functions disagree. It then follows from

Hoeffding’s inequality, with probability at least 1 − δ/4, for all ℓ,

mj∗ℓ ≤ 7

12
⌈72 ln (4k/δ)⌉ ,

and thus

min
j

max
ℓ

mjℓ ≤ 7

12
⌈72 ln(4k/δ)⌉ .

Similarly, by Hoeffding’s inequality and a union bound, with probability at least 1 − δ/4,

for any ℓ such that

mℓj∗ ≤ 7

12
⌈72 ln(4k/δ)⌉ ,

the probability that hℓ mislabels a point x given that hℓ(x) �= hj∗(x) is less than 2/3, and

thus er(hℓ) ≤ 2er(hj∗). By a union bound over these three events, we find that, as desired,

with probability at least 1 − δ,

er(ĥt ) ≤ 2er(hj∗) ≤ 2er(hi) ≤ ǫ.

Appendix C: Proof of Theorem 3

Assume that (C,D) is learnable at an exponential rate. This means that there exists an

algorithm A such that for any target h∗ in C, there exist constants γh∗ and kh∗ such that for

any ǫ and δ, with probability at least 1 − δ, for any t ≥ γh∗(log (1/(ǫδ)))kh∗ , after t label

requests, A(t, δ) outputs an ǫ-good classifier.

For each i, let

Ci = {h ∈ C : γh ≤ i, kh ≤ i}.
Define an algorithm Ai that achieves the required polylog verifiable sample complexity on

(Ci,D) as follows. First, run the algorithm A to obtain a function hA. Then, output the

classifier in Ci that is closest to hA, i.e., the classifier that minimizes the probability of

disagreement with hA. If t ≥ i(log (2/(ǫδ)))i , then after t label requests, with probability

at least 1 − δ, A(t, δ) outputs an ǫ/2-good classifier, so by the triangle inequality, with

probability at least 1 − δ, Ai(t, δ) outputs an ǫ-good classifier.

It can be guaranteed that with probability at least 1 − δ, the function output by Ai has

error no more than ǫ̂t = (2/δ) exp{−(t/i)1/i}, which is no more than ǫ, implying that the

expression above is a verifiable sample complexity.

Combining this with Theorem 2 yields the desired result.

Appendix D: Heuristic approaches to decomposition

As mentioned, decomposing purely based on verifiable complexity with respect to (C,D)

typically cannot yield a good decomposition even for very simple problems, such as unions
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of intervals (see Sect. 5.2). The reason is that the set of classifiers with high verifiable sample

complexity may itself have high verifiable complexity.

Although we have not yet found a general method that can provably always find a good

decomposition when one exists (other than the trivial method in the proof of Theorem 3),

we find that a heuristic recursive technique is frequently effective. To begin, define C1 = C.

Then for i > 1, recursively define Ci as the set of all h ∈ Ci−1 such that θh = ∞ with re-

spect to (Ci−1,D). (Here θh is the disagreement coefficient of h; see Definition 3.) Suppose

that for some N , CN+1 = ∅. Then for the decomposition C1,C2, . . . ,CN , every h ∈ C has

θh < ∞ with respect to at least one of the sets in which it is contained, which implies that

the verifiable sample complexity of h with respect to that set is O(polylog(1/ǫδ)), and the

aggregation algorithm can be used to achieve polylog sample complexity.

We could alternatively perform a similar decomposition using a suitable definition of

splitting index (Dasgupta 2005), or more generally using

lim sup
ǫ→0

SCi−1
(ǫ, δ, h)

(log( 1
ǫδ

))k

for some fixed constant k > 0.

This procedure does not always generate a good decomposition. However, if N < ∞
exists, then it creates a decomposition for which the aggregation algorithm, combined with

an appropriate sequence of algorithms {Ai}, could achieve exponential rates. In particular,

this is the case for all of the (C,D) described in Sect. 5. In fact, even if N = ∞, as long as

every h ∈ C does end up in some set Ci for finite i, this decomposition would still provide

exponential rates.

Appendix E: Proof of Theorem 1

We now finally prove Theorem 1. This section is mostly self-contained, though we do make

use of Theorem 2 from Sect. 4 in the final step of the proof.

The proof proceeds according to the following outline. We begin in Lemma 1 by describ-

ing special conditions under which a CAL-like algorithm has the property that the more

unlabeled examples it considers, the smaller the fraction of them it asks to be labeled. Since

CAL is able to identify the target’s true label on any example it considers (either the label of

the example is requested or the example is not in the region of disagreement and therefore

the label is already known), we end up with a set of labeled examples growing strictly faster

than the number of label requests used to obtain it. This set of labeled examples can be used

as a training set in any passive learning algorithm. However, the special conditions under

which this happens are rather limiting. In Lemma 2, we exploit a subtle relation between

overlapping boundary regions and shatterable sets to show that we can decompose any finite

VC dimension class into a countable number of subsets satisfying these special conditions.

This, combined with the aggregation algorithm, and a simple procedure that boosts the con-

fidence level, extends Lemma 1 to the general conditions of Theorem 1.

Before jumping into Lemma 1, it is useful to define some additional notation. For any

V ⊆ C and h ∈ C, define

B̃V (h, r) = {h′ ∈ Ṽ : PD(h(x) �= h′(x)) ≤ r},
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where Ṽ is a countable dense subset of V .4 Define the boundary of h with respect to D and

V , denoted ∂V h, as

∂V h = lim
r→0

DIS(B̃V (h, r)).

Lemma 1 Suppose (C,D) is such that C has finite VC dimension d , and ∀h ∈ C,

P(∂Ch) = 0. Then for any passive learning sample complexity Sp(ǫ, δ, h) for (C,D) which

is nondecreasing as ǫ → 0, there exists an active learning algorithm achieving a sam-

ple complexity Sa(ǫ, δ, h) such that, for any δ > 0 and any target function h∗ ∈ C with

Sp(ǫ, δ, h∗) = ω(1) and ∀ǫ > 0,Sp(ǫ, δ, h∗) < ∞,

Sa(ǫ,2δ,h∗) = o(Sp(ǫ, δ, h∗)).

Proof Recall that t is the “budget” of the active learning algorithm, and our goal in this

proof is to define an active learning algorithm Aa and a function Sa(ǫ, δ, h
∗) such that, if

t ≥ Sa(ǫ, δ, h
∗) and h∗ ∈ C is the target function, then Aa(t, δ) will, with probability 1 − δ,

output an ǫ-good classifier; furthermore, we require that Sa(ǫ,2δ,h∗) = o(Sp(ǫ, δ, h∗)) un-

der the conditions on h∗ in the lemma statement.

To construct this algorithm, we perform the learning in two phases. The first is a passive

phase, where we focus on reducing a version space, to shrink the region of disagreement; the

second is a phase where we construct a labeled training set, which is much larger than the

number of label requests used to construct it since all classifiers in the version space agree

on many of the examples’ labels.

To begin the first phase, we simply request the labels of x1, x2, . . . , x⌊t/2⌋, and let

V = {h ∈ C̃ : ∀i ≤ ⌊t/2⌋, h(xi) = h∗(xi)}.

In other words, V is the set of all hypotheses in C̃ that correctly label the first ⌊t/2⌋ ex-

amples. By standard consistency results (Vapnik 1982; Blumer et al. 1989; Devroye et al.

1996), there is a universal constant c > 0 such that, with probability at least 1 − δ/2,

sup
h∈V

er(h) ≤ c

(

d ln t + ln 1
δ

t

)

.

This implies that

V ⊆ B̃

(

h∗, c

(

d ln t + ln 1
δ

t

))

,

and thus P(DIS(V )) ≤ �t where

�t = P

(

DIS

(

B̃

(

h∗, c

(

d ln t + ln 1
δ

t

))))

.

Clearly, �t goes to 0 as t grows, by the assumption on P(∂Ch∗).
Next, in the second phase of the algorithm, we will actively construct a set of labeled

examples to use with the passive learning algorithm. If ever we have P(DIS(V )) = 0 for

some finite t , then clearly we can return any h ∈ V , so this case is easy.

4See the note in Definition 3.
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Otherwise, let nt = ⌊t/(24P(DIS(V )) ln(4/δ))⌋, and suppose t ≥ 2. By a Chernoff

bound, with probability at least 1 − δ/2, in the sequence of examples x⌊t/2⌋+1, x⌊t/2⌋+2,

. . . , x⌊t/2⌋+nt , at most t/2 of the examples are in DIS(V ). If this is not the case, we fail

and output an arbitrary h; otherwise, we request the labels of every one of these nt examples

that are in DIS(V ).

Now construct a sequence L = {(x ′
1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
nt

, y ′
nt

)} of labeled examples

such that x ′
i = x⌊t/2⌋+i , and y ′

i is either the label agreed upon by all the elements of V , or it is

the h∗(x⌊t/2⌋+i) label value we explicitly requested. Note that because infh∈V er(h) = 0 with

probability 1, we also have that with probability 1 every y ′
i = h∗(x ′

i). We may therefore use

these nt examples as iid training examples for the passive learning algorithm.

Suppose A is the passive learning algorithm that guarantees Sp(ǫ, δ, h) passive sample

complexities. Then let ht be the classifier returned by A(L, δ). This is the classifier the active

learning algorithm outputs.

Note that if nt ≥ Sp(ǫ, δ, h∗), then with probability at least 1 − δ over the draw of L,

er(ht ) ≤ ǫ. Define

Sa(ǫ,2δ,h∗) = 1 + inf
{

s : s ≥ 144 ln(4/δ)Sp(ǫ, δ, h∗)�s

}

.

This is well-defined when Sp(ǫ, δ, h∗) < ∞ because �s is nonincreasing in s, so some value

of s will satisfy the inequality. Note that if t ≥ Sa(ǫ,2δ,h∗), then (with probability at least

1 − δ/2)

Sp(ǫ, δ, h∗) ≤ t

144 ln(4/δ)�t

≤ nt .

So, by a union bound over the possible failure events listed above (δ/2 for P(DIS(V )) > �t ,

δ/2 for more than t/2 examples of L in DIS(V ), and δ for er(ht ) > ǫ when the previous

failures do not occur), if t ≥ Sa(ǫ,2δ,h∗), then with probability at least 1 − 2δ, er(ht ) ≤ ǫ.

So Sa(ǫ, δ, h
∗) is a valid sample complexity function, achieved by the described algorithm.

Furthermore,

Sa(ǫ,2δ,h∗) ≤ 1 + 144 ln(4/δ)Sp(ǫ, δ, h∗)�Sa (ǫ,2δ,h∗)−2.

If Sa(ǫ,2δ,h∗) = O(1), then since Sp(ǫ, δ, h∗) = ω(1), the result is established. Other-

wise, since Sa(ǫ, δ, h
∗) is nondecreasing as ǫ → 0, Sa(ǫ,2δ,h∗) = ω(1), so we know that

�Sa (ǫ,2δ,h∗)−2 = o(1). Thus, Sa(ǫ,2δ,h∗) = o(Sp(ǫ, δ, h∗)). �

As an interesting aside, it is also true (by essentially the same argument) that under

the conditions of Lemma 1, the verifiable sample complexity of active learning is strictly

smaller than the verifiable sample complexity of passive learning in this same sense. In

particular, this implies a verifiable sample complexity that is o (1/ǫ) under these conditions.

For instance, with some effort one can show that these conditions are satisfied when the VC

dimension of C is 1, or when the support of D is at most countably infinite. However, for

more complex learning problems, this condition will typically not be satisfied, and as such

we require some additional work in order to use this lemma toward a proof of the general

result in Theorem 1. Toward this end, we again turn to the idea of a decomposition of C,

this time decomposing it into subsets satisfying the condition in Lemma 1.

In order to prove the existence of such a decomposition, we will rely on the assumption

of finite VC dimension. The essential insight here is that anytime boundary regions are over-

lapping, we can shatter points in the overlap regions. To build the intuition for this, it may be

helpful to first go through a related proof of a simpler (significantly weaker) result: namely,
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that not all classifiers in a C with VC dimension 1 can have P(∂Ch) = 1.5 This situation

corresponds to all boundaries overlapping almost completely. To see that this is true, sup-

pose the opposite, and consider any two classifiers h1, h
′
1 ∈ C̃ with P(h1(x) �= h′

1(x)) > 0.

Let A1 = {x : h1(x) �= h′
1(x)} and �1 = P(A1)/3. Then, since P(∂Ch1 ∩ ∂Ch′

1) = 1, there

must be some region A′
1 ⊆ ∂Ch1 ∩ ∂Ch′

1 with P(A′
1) > 0 and some h2 ∈ B̃C(h1,�1) for

which P(x ∈ A′
1 ∧ h2(x) �= h1(x)) > 0 (because A′

1 ⊆ ∂Ch1 and C̃ is countable). Fur-

thermore, letting A′′
1 = {x ∈ A′

1 : h2(x) �= h1(x)}, since A′′
1 ⊆ ∂Ch′

1 there exists some

h′
2 ∈ B̃C(h′

1,�1) with P(x ∈ A′′
1 ∧ h′

1(x) �= h′
2(x)) > 0. Let A2 = {x ∈ A′′

1 : h′
1(x) �= h′

2(x)}.
Since, by construction, P(h1(x) �= h2(x)) ≤ �1 and P(h′

1(x) �= h′
2(x)) ≤ �1, we have that

{x : h2(x) = h1(x) �= h′
1(x) = h′

2(x)} is nonempty, so choose any point x1 from this region.

Furthermore, as mentioned, the set A2 is nonempty, so take any point x2 ∈ A2. Then we have

that {h1, h
′
1, h2, h

′
2} shatters {x1, x2}, which is a contradiction to the assumption that the VC

dimension of C is 1. It is not difficult to see that the argument can be applied repeatedly

to add more points to the shatterable set, each time doubling the number of classifiers by

finding another classifier sufficiently close to a respective classifier from the previous round

so that it agrees with that one on most of all of the sets A1, A2, etc., but disagrees with

that classifier on some subset of the overlap region of the boundaries of classifiers from the

previous rounds.

This general relationship between overlapping boundaries and shatterable sets is the pri-

mary tool in proving the existence of a good decomposition. To extend the idea beyond the

simple case of boundaries with probability one, we need some way to show that certain

smaller boundaries will overlap under some conditions. To this end, we will prove that any

set of classifiers that are sufficiently close together must have significant overlap in their

boundaries, and thus if the boundaries have similar probabilities, the regions will be almost

the same, and we can apply the above argument. The formal details are given below.

Lemma 2 For any (C,D) where C has finite VC dimension d , there exists a countably

infinite sequence C1,C2, . . . such that C =
⋃∞

i=1 Ci and ∀i,∀h ∈ Ci,P(∂Ci
h) = 0.

Proof The case of d = 0 is clear, so assume d > 0. A decomposition procedure is given in

Algorithm 2. We will show that, if we let H = Decompose(C), then the maximum recursion

depth is at most d (counting the initial call as depth 0). Note that if this is true, then the

lemma is proved, since it implies that H can be uniquely indexed by a d-tuple of integers,

of which there are at most countably many.

Algorithm 2 Decompose(H)

Let H∞ = {h ∈ H : P(∂Hh) = 0}
if H∞ = H then

Return {H}
else

For i ∈ {1,2, . . .}, let Hi =
{

h∈H : P(∂Hh)∈((1 + 2−(d+3))−i, (1 + 2−(d+3))1−i]
}

Return
⋃

i∈{1,2,...} Decompose(Hi) ∪ {H∞}
end if

5In fact, as mentioned, with a bit more effort, one can show that when the VC dimension is 1, every h ∈ C

has P(∂Ch) = 0. However, the weaker result studied here will be illustrative of a general technique applied in

Lemma 2.



136 Mach Learn (2010) 80: 111–139

For the sake of contradiction, suppose that the maximum recursion depth of

Decompose(C) is more than d (or is infinite). Thus, based on the first d + 1 recursive

calls in one of those deepest paths in the recursion tree, there is a sequence of sets

C = H
(0) ⊇ H

(1) ⊇ H
(2) ⊇ · · · H

(d+1) �= ∅

and a corresponding sequence of finite positive integers i1, i2, . . . , id+1 such that for each

j ∈ {1,2, . . . , d + 1}, every h ∈ H(j) has

P(∂H(j−1)h) ∈
(

(1 + 2−(d+3))−ij , (1 + 2−(d+3))1−ij
]

.

Take any hd+1 ∈ H(d+1). There must exist some r > 0 such that ∀j ∈ {1,2, . . . , d + 1},

P(DIS(B̃H(j−1)(hd+1, r))) ∈
(

(1 + 2−(d+3))−ij, (1 + 2−(d+2))(1 + 2−(d+3))−ij
]

. (E.1)

In particular, by (E.1), each h ∈ B̃H(j)(hd+1, r/2) has

P(∂H(j−1)h) > (1 + 2−(d+3))−ij ≥ (1 + 2−(d+2))−1
P(DIS(B̃H(j−1)(hd+1, r))),

though by definition of ∂H(j−1)h and the triangle inequality,

P(∂H(j−1)h \ DIS(B̃H(j−1)(hd+1, r))) = 0.

Recall that in general, for sets Q and R1,R2, . . . ,Rk , if P(Ri \ Q) = 0 for all i, then

P(
⋂

i Ri) ≥ P(Q) −
∑k

i=1(P(Q) − P(Ri)). Thus, for any j , any set of ≤ 2d+1 classifiers

T ⊂ B̃H(j)(hd+1, r/2) must have

P(∩h∈T ∂H(j−1)h) ≥ (1 − 2d+1(1 − (1 + 2−(d+2))−1))P(DIS(B̃H(j−1)(hd+1, r))) > 0.

That is, any set of 2d+1 classifiers in H̃(j) within distance r/2 of hd+1 will have boundaries

with respect to H(j−1) which have a nonzero probability overlap. The remainder of the proof

will hinge on this fact that these boundaries overlap.

We now construct a shattered set of points of size d + 1. Consider constructing a binary

tree with 2d+1 leaves as follows. The root node contains hd+1 (call this level d +1). Let hd ∈
B̃H(d)(hd+1, r/4) be some classifier with P(hd(X) �= hd+1(X)) > 0. Let the left child of the

root be hd+1 and the right child be hd (call this level d). Define Ad = {x : hd(x) �= hd+1(x)},
and let �d = 2−(d+2)

P(Ad). Now for each ℓ ∈ {d − 1, d − 2, . . . ,0} in decreasing order, we

define the ℓ level of the tree as follows. Let Tℓ+1 denote the nodes at the ℓ + 1 level in the

tree, and let A′
ℓ =
⋂

h∈Tℓ+1
∂H(ℓ)h. We iterate over the elements of Tℓ+1 in left-to-right order,

and for each one h, we find h′ ∈ B̃H(ℓ)(h,�ℓ+1) with

PD(h(x) �= h′(x) ∧ x ∈ A′
ℓ) > 0.

We then define the left child of h to be h and the right child to be h′, and we update

A′
ℓ ← A′

ℓ ∩ {x : h(x) �= h′(x)}.

After iterating through all the elements of Tℓ+1 in this manner, define Aℓ to be the final value

of A′
ℓ and �ℓ = 2−(d+2)

P(Aℓ). The key is that, because every h in the tree is within r/2 of

hd+1, the set A′
ℓ always has nonzero measure, and is contained in ∂H(ℓ)h for any h ∈ Tℓ+1,

so there always exists an h′ arbitrarily close to h with PD(h(x) �= h′(x) ∧ x ∈ A′
ℓ) > 0.
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Note that for ℓ ∈ {0,1,2, . . . , d}, every node in the left subtree of any h at level ℓ + 1 is

strictly within distance 2�ℓ of h, and every node in the right subtree of any h at level ℓ + 1

is strictly within distance 2�ℓ of the right child of h. Thus,

P(∃h′ ∈ Tℓ, h
′′ ∈ Subtree(h′) : h′(x) �= h′′(x)) < 2d+12�ℓ.

Since

2d+12�ℓ = P(Aℓ)

= P

(

x ∈
⋂

h′∈Tℓ+1

∂H(ℓ)h′ and ∀ siblings h1, h2 ∈ Tℓ, h1(x) �= h2(x)

)

,

there must be some set

A∗
ℓ =
{

x ∈
⋂

h′∈Tℓ+1

∂H(ℓ)h′ s.t. ∀ siblings h1, h2 ∈ Tℓ, h1(x) �= h2(x)

and ∀h ∈ Tℓ, h
′ ∈ Subtree(h),h(x)=h′(x)

}

⊆ Aℓ

with P(A∗
ℓ) > 0. That is, for every h at level ℓ + 1, every node in its left subtree agrees with

h on every x ∈ A∗
ℓ and every node in its right subtree disagrees with h on every x ∈ A∗

ℓ .

Therefore, taking any {x0, x1, x2, . . . , xd} such that each xℓ ∈ A∗
ℓ creates a shatterable set

(shattered by the set of leaf nodes in the tree). This contradicts VC dimension d , so we must

have the desired claim that the maximum recursion depth is at most d . �

Before completing the proof of Theorem 1, we have two additional minor concerns to

address. The first is that the confidence level in Lemma 1 is slightly smaller than needed for

the theorem. The second is that Lemma 1 only applies when Sp(ǫ, δ, h∗) < ∞ for all ǫ > 0.

We can address both of these concerns with the following lemma.

Lemma 3 Suppose (C,D) is such that C has finite VC dimension d , and suppose

S ′
a(ǫ, δ, h

∗) is a sample complexity for (C,D). Then there is a sample complexity Sa(ǫ, δ, h
∗)

for (C,D) s.t. for any δ ∈ (0,1/4) and ǫ ∈ (0,1/2),

Sa(ǫ, δ, h
∗) ≤ (k + 2)max

{

min{S ′
a(ǫ/2,4δ,h∗), 16d log(26/ǫ)+8 log(4/δ)

ǫ
},

(k + 1)272 log(4(k + 1)2/δ),

where k = ⌈log(δ/2)/ log(4δ)⌉.

Proof Suppose A′
a is the algorithm achieving S ′

a(ǫ, δ, h
∗). Then we can define a new algo-

rithm Aa as follows. Suppose t is the budget of label requests allowed of Aa and δ is its

confidence argument. We partition the indices of the unlabeled sequence into k + 2 infinite

subsequences. For i ∈ {1,2, . . . , k}, let hi = A′
a(t/(k + 2),4δ), each time running A′

a on a

different one of these subsequence, rather than on the full sequence. From one of the re-

maining two subsequences, we request the labels of the first t/(k + 2) unlabeled examples

and let hk+1 denote any classifier in C consistent with these labels. From the remaining

subsequence, for each i, j ∈ {1,2, . . . , k + 1} s.t. P(hi(X) �= hj (X)) > 0, we find the first
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⌊t/((k + 2)(k + 1)k)⌋ examples x s.t. hi(x) �= hj (x), request their labels and let mij de-

note the number of mistakes made by hi on these labels (if P(hi(X) �= hj (X)) = 0, we let

mij = 0). Now take as the return value of Aa the classifier hî where î = arg mini maxj mij .

Suppose t ≥ Sa(ǫ, δ, h
∗). First note that, by a Hoeffding bound argument (similar to

the proof of Theorem 2), t is large enough to guarantee with probability ≥ 1 − δ/2 that

er(hî) ≤ 2 mini er(hi). So all that remains is to show that, with probability ≥ 1 − δ/2, at

least one of these hi has er(hi) ≤ ǫ/2.

If S ′
a(ǫ/2,4δ,h∗) >

16d log(26/ǫ)+8 log(4/δ)

ǫ
, then the classic results for consistent classifiers

(e.g., Vapnik 1982; Blumer et al. 1989; Devroye et al. 1996) guarantee that, with probability

≥ 1 − δ/2, er(hk+1) ≤ ǫ/2. Otherwise, we have t ≥ (k + 2)S ′
a(ǫ/2,4δ,h∗). In this case,

each of h1, . . . , hk has an independent ≥ 1 − 4δ probability of having er(hi) ≤ ǫ/2. The

probability at least one of them achieves this is therefore at least 1 − (4δ)k ≥ 1 − δ/2. �

We are now ready to combine these lemmas to prove Theorem 1.

Proof of Theorem 1 Theorem 1 now follows by a simple combination of Lemmas 1

and 2, along with Theorem 2 and Lemma 3. That is, the passive learning algorithm

achieving passive learning sample complexity Sp(ǫ, δ, h) on (C,D) also achieves passive

sample complexity S̄p(ǫ, δ, h) = minǫ′≤ǫ⌈Sp(ǫ ′, δ, h)⌉ on any (Ci,D), where C1,C2, . . .

is the decomposition from Lemma 2. So Lemma 1 guarantees the existence of active

learning algorithms A1,A2, . . . such that Ai achieves a sample complexity Si(ǫ,2δ,h) =
o(S̄p(ǫ, δ, h)) on (Ci,D) for all δ > 0 and h ∈ Ci s.t. S̄p(ǫ, δ, h) is finite and ω(1). Then

Theorem 2 tells us that this implies the existence of an active learning algorithm based

on these Ai combined with Algorithm 1, achieving sample complexity S ′
a(ǫ,4δ,h) =

o(S̄p(ǫ/2, δ, h)) on (C,D), for any δ > 0 and h s.t. S̄p(ǫ/2, δ, h) is always finite and is

ω(1). Lemma 3 then implies the existence of an algorithm achieving sample complexity

Sa(ǫ, δ, h) ∈ O(min{Sa(ǫ/2,4δ,h), log(1/ǫ)/ǫ}) ⊆ o(S̄p(ǫ/4, δ, h)) ⊆ o(Sp(ǫ/4, δ, h)) for

all δ ∈ (0,1/4) and all h ∈ C. �

Note there is nothing special about 4 in Theorem 1. Using a similar argument, it can be

made arbitrarily close to 1.
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