
Human-Like Playtesting with Deep Learning

Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet, Sami Purmonen,
Bartlomiej Kozakowski, Richard Meurling, Lele Cao

AI R&D, King Digital Entertainment, Activision Blizzard Group, Stockholm, Sweden

ai@king.com

Abstract—We present an approach to learn and deploy human-
like playtesting in computer games based on deep learning from
player data. We are able to learn and predict the most “human”
action in a given position through supervised learning on a
convolutional neural network. Furthermore, we show how we can
use the learned network to predict key metrics of new content
— most notably the difficulty of levels. Our player data and
empirical data come from Candy Crush Saga (CCS) and Candy
Crush Soda Saga (CCSS). However, the method is general and
well suited for many games, in particular where content creation
is sequential. CCS and CCSS are non-deterministic match-3
puzzle games with multiple game modes spread over a few
thousand levels, providing a diverse testbed for this technique.
Compared to Monte Carlo Tree Search (MCTS) we show that this
approach increases correlation with average level difficulty, giving
more accurate predictions as well as requiring only a fraction of
the computation time.

Index Terms—deep learning, convolutional neural network,
agent simulation, playtesting, Monte-Carlo tree search

I. INTRODUCTION

Within the recent years, game developers have increasingly

adopted a free-to-play business model for their games. This

is especially true for mobile games (see e.g. [1], [2]). In the

free-to-play business model, the core game is available free of

charge and revenue is created through the sales of additional

products and services such as additional content or in-game

items. Therefore, game producers tend to continuously add

content to the game to keep their users engaged and to be

able to continuously monetize on a game title. For this to

work out, it is important that the new content lives up to the

quality expectations of the players.

The difficulty of a game has a considerable impact on

a user’s perceived quality. Denisova et al. [3] argue that

challenge is the most important player experience. In trying

to create the desired experience with regards to the difficulty,

game designers estimate the players’ skill and set game

parameters accordingly. Mobile game companies usually have

sophisticated tracking techniques in place to monitor how

users interact with their games. This way, measures that reflect

the difficulty of the game can be monitored once content has

been released to players.

However, if new content would be released directly to

players of the game, those would potentially be exposed to

content that does not live up to their quality expectations and

might abandon the game as a consequence. Therefore, game

designers usually let new content be playtested and tune the

parameters in an iterative manner based on data obtained from

those tests before releasing the new content to players [4], [5].

Playtesting can be carried out by human test players that are

given access to the new content before it is released. However,

human playtesting comes at the disadvantages of introducing

latency and costs in the development process. Game designers

need to wait for the results from the test players before they

can continue with the next iteration of their development

process. Additionally, results from test players might not lead

to appropriate conclusions about the general player population

as the populations’ skill levels can differ.

In an attempt to tackle these disadvantages several ap-

proaches for automatic playtesting have been proposed [6]–

[9]. Isaksen et al. simulate playing levels using a simple

heuristic and then analyze the level design using survival

analysis. Zook et al. use Active Learning to automatically

tune game parameters to achieve a target value in human

player performance. Poromaa, similarly to Isaksen, proposes

an approach, where the playtest is carried out using a Monte-

Carlo Tree Search (MCTS) algorithm to simulate game play.

Silva et al. evaluate a competitive board game by letting

general (MCTS and A*) and custom AI agents play against

each other.

The methods above, however, do not consider data that can

be gathered from content that has been released earlier, when

simulating game play. We hypothesize, that taking this data

into account could lead to a game play simulation closer to

human play, and therefore to better estimates of the difficulty

of new content. More specifically, we built a prediction model

that predicts moves from a given game state. This model

is trained on moves that were executed by players on the

previously released content. Once trained, the model acts as

a policy, suggesting which move to execute given a game

state, for an agent simulating game play. The state-of-the-art

methods for predicting a move from a given state are based on

Convolutional Neural Networks (CNN) [10]–[12]. CNN is a

specific type of Neural Networks (NN) that is very well suited

for data that comes in a grid-like structure [13]. Since the data

of the problem at hand has a grid-like structure and is similar

to data used in state-of-the-art research, CNN appear to be the

most promising approach for the task at hand. Therefore, we

rely on this approach for this research.

In our investigation, the player data is the essential part.

Hence, we have to limit our research and empirical results to

the games from where we can gather the required data, Candy

Crush Saga (CCS) and Candy Crush Soda Saga (CCSS). It

remains to be tested on other types of games. However, the

approach only requires a state representation which can be

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18

processed by a CNN, a discrete actions space and a substantial

amount of play data. The same method was used in AlphaGo

[11] and the success of agents based on reinforcement learning

in Atari games [14] with a similar state-action setup suggests

that we can do the same for many other types of games.

Interestingly, in the Atari games, the main input is the pixels

of the screen so the grid-like structure can even apply to

pixels. In several games, the action space can be very large,

although discrete. Preprocessing of the action space might be

needed without necessarily reducing the quality of the agent.

For example, in bubble shooter games, e.g. Bubble Witch 3

Saga, Panda Pop, one might shrink the action space to 180

1◦ angles or define actions from possible destinations on the

board. In linker games where the order of the links does not

necessarily matter, e.g. Blossom Blast Saga, the combination

of linked squares can grow exponentially with the length of

the link where most combinations result in the same effect on

the game and could, therefore, be defined as the same action.

Bubble shooters and linker games are two types of games

where we think our approach could do very well as well as

clicker games, e.g. Toy Blast, Toon Blast, to mention three

very popular casual game types.

In our case, the difficulty of levels is the key metric. In

practice, a human-like agent can give us many more metrics

from the gameplay, e.g. score distribution and a distribution

of the number of moves needed to succeed. Moreover, it can

become a vital part of the Quality Assurance (QA) workflow,

being able to explore the relevant game space to a much larger

extent than humans or random agents.

Currently, we train the agent on all the gameplay we gather.

Consequently, the agent learns by averaging over all the

players’ policies. The policy of different players can be quite

different and the result of an average policy does not have to

represent the average result of different policies. The results

suggest that there is, nevertheless, significant knowledge to

be gained from the average policy. With player modeling

or "personas" [15]–[17] we could learn policies for different

clusters of players and build agents for each cluster that better

predict the different policies.

A. Casual Games Genre and Match-3 Games

Casual games are a big part of the gaming industry and

the genre has been growing very fast with gaming moving

increasingly to mobile devices. For casual games on mobile

devices it is common that the content generation is sequential,

i.e. new content/levels are added to the game as the players

progress. The frequency of new content can vary from every

few months up to once a week. One of the biggest game types

in the casual game genre is match-3 puzzle games with a few

hundred million monthly active users [18].

CCS and CCSS are two versions of a match-3 game.

They have a 2D board of tiles which may be left empty or

filled with different items (regular and special candies) and

blockers (e.g. chocolate and locked candy). A legal action is

a vertical/horizontal swap of two adjacent game items that

results in a vertical/horizontal match of at least 3 items of

the same type or that are special candies. When included in

a match, special candies remove more items from the board

than just the candies that are part of the match. The empty

tiles are then filled by items dropping down from above. If

there are no items above an empty tile it is filled with a new

random item. The diversity of this game is further enriched

by different game modes, e.g. score level and timed level and

behaviours of special items.

B. Contributions and Paper Organization

This paper presents an approach to estimate level difficulty

in games by simulating a gameplay policy CNN learned from

human gameplay. Our main contributions are:

• a deep CNN architecture for training agents that can play

the games at hand like human players;

• a generic framework for estimating the level difficulty of

games using agent simulations and binomial regression;

• extensive experimental evaluations that validate the effec-

tiveness of our framework on match-3 games and imply

practical suggestions for implementation.

In the upcoming sections, we start with related work and

continue to present our proposed approach followed by thor-

ough experimental evaluations and finally, conclusions are

drawn in section VI after a short discussion about future work.

II. RELATED WORK

Playtesting in games is used to understand the player expe-

rience and can have different perspectives, difficulty balancing

and crash testing being two common examples. Player experi-

ence can be measured with various metrics [3], [19], [20]. In

our context, the main focus is on playtesting as balancing the

difficulty of content. To automate agent playtesting, diversified

heuristic-based approaches were adopted to construct game-

play agents (e.g. [7], [21], [22]). Agents based on Monte-Carlo

Tree Search, as have been proposed in [8], [23], [24], are

generic and need little game-specific knowledge. Silva et al.

[9] argued that game-specific agents usually outperform both

standard MCTS and A* agents. Complying with that belief,

some attempts in customizing agent heuristics began to emerge

and the representative literature of that category include [25],

[26], to name a few. Despite the success of hand-crafted agents

on one specific game, its performance is non-transitive to other

games [27] — different agents perform best in different games,

which imposes difficulties when seeking to create agents

effortlessly for multiple games. One of the straightforward

(but inefficient) solutions is the ensemble method, so authors

of [28] investigated the relative performance of 7 algorithms

to formulate their approach of general game evaluation and

[29] show that there is no "one-fits-all" AI-algorithm available

yet in General Video Game Playing. Taken further broadly,

this problem calls for a more generic form of an intelligent

agent that is capable of learning the salient features embodied

in different games by analyzing human-play patterns and/or

directly interacting with game engines.

Although, training agents from move patterns (e.g. [30])

has been seen for over a decade, the recent advances of deep

learning techniques have moved the methodologies of this

kind beyond manual feature engineering, towards a setting of

end-to-end supervised learning from raw game-play data. For

instance, Runarsson [31] directly approximated a policy for

Othello game using binary classification. The works of [10]

and [12] reported their CNN-based approaches achieving a

prediction accuracy of 44.4% and 42% respectively on a Go

dataset; Silver et al. [11] (AlphaGo) managed to improve the

prediction accuracy to 55.7%.

In a more recent paper Silver at al. [32] managed to create

an agent that could outperform any previously best artificial

and human Go player in the game of Go. They proposed

a novel method of Reinforcement Learning (RL) coined Al-

phaGo Zero, that was using progressive self-play without the

aid of any human knowledge. In the field of multi-agent

collaboration, Peng et al. [33] introduced a bidirectionally

coordinated network with a vectorized extension of actor-

critic formulation, which managed to learn several effective

coordination strategies in StarCraft1. The goal of the last two

approaches, however, differs from our goal in that they try

to outperform, not simulate, human players. This can lead to

move patterns that are different from even those of the best

human players.

Fig. 1. An example game board of CCS encoded as 102-channel 2D input.

III. APPROACH

Our approach suggests using an agent to simulate human

gameplay, creating a metric of interest. Then we relate the

values of that metric observed during the simulation with the

values of the same metric observed by actual, human players.

As mentioned above, the metric of interest in this paper is the

difficulty measured as the average success rate.

Intuitively, the more similar the strategy of the agent is to

that of human players, the more should values observed during

the simulation relate to the values observed from real human

players. We, therefore, suggest training a CNN on human

player data from previous levels to act as policy for an agent

to play new, previously unseen levels.

We benchmark this approach against an approach using

MCTS [34]. MCTS agents are well suited where the game

environment is diverse and difficult to predict. For example,

they are the state-of-the-art in General Game Playing (GGP)

[35] and were a key component for the improvement of Go

programs (e.g. [11], [32], [34], [36], [37]). They are search

based as the agent simulates possible future states with self-

play, building an asynchronous game tree in memory in the

1A game published by Blizzard™: https://starcraft.com

process, until it reaches the end of the search time and chooses

an action to perform [30]. Our previous non-human playtesting

was done with MCTS agents [8].

A. CNN agent

A CNN-based agent sends the state to a policy network

which gives back a probability vector over possible actions. It

can be used to play greedily in each position picking the action

with the highest probability in each state. Thus, playing much

faster than the MCTS agent. The training of the network is

done with supervised learning from player data from previous

levels. Therefore, the policy network learns the most common

action taken by the players in similar states.

CNNs are well suited for capturing structural correlations

from data in grid-like topology [13], [38] which is often the

structure of a game board, especially in casual games and

match-3 games. Hence, we use a customized CNN (Fig. 2a)

as our agent, which predicts the next move greedily using the

current game state (i.e. board layout) as input. In this section,

CCS is used as an exemplary match-3 game facilitating the

explanation of the CNN agent.

B. Representation of Input and Output

The game board state, as the input of CNN, is represented

as a 9×9 grid with 102 binary feature planes as demonstrated

in Fig. 1. When 0-padded and stacked together, those feature

planes form a 102-channel 2D input to the network. There are

4 types of input channels:

1) 80 item channels — “1” for existence of the correspond-

ing item, “0” otherwise.

2) 20 objective channel — all “1”s when the corresponding

objective (e.g. creating n striped candies) is still unful-

filled, or all “0”s.

3) 1 legal-move channel — “1” for tile that is part of a

legal move, “0” otherwise.

4) 1 bias channel — a plane with “1” for every tile to allow

learning a spatial bias of game board. Can be thought

of as a heat map of moves.

Since the moves (output of the network) are horizontal/vertical

swaps of 2 items, they are encoded as a scalar by enumerating

the inner edges of the game grid (Fig. 2b), resulting in 144

possible moves.

C. Network Architecture

The architecture is selected as a result of the prestudy using

both the play data from MCTS-agents and human-play data

[39]. The architecture we chose consists of 11 convolutional

layers. We found that a 3× 3 kernel operating in stride 1

performs well for all convolutional layers. As less complex

models are favored during deployment due to faster inference

and training time, we empirically discovered that using only

35 filters for the first 11 convolutional layers is sufficient to

maintain a relatively high accuracy. To obtain move predictions

from previous convolutional layers, we followed [41]: the

last convolutional layer uses exactly 144 filters (to match

the numbers of possible moves) that are fed into a Global

input:

game

board

3x3 conv

35 filters

ELU

x11

3x3 conv

144 filters

ELU

global

avg pool
softmax

output:

moves

9

9
102

9

9
35

9

9

144
144 144 144

(a)

0

8

16

24

32

40

48

56

64

1

9

17

25

33

41

49

57

65

2

10

18

26

34

42

50

58

66

3

11

19

27

35

43

51

59

67

4

12

20

28

36

44

52

60

68

5

13

21

29

37

45

53

61

69

6

14

22

30

38

46

54

62

70

7

15

23

31

39

47

55

63

71

72

81

90

99

108

117

126

135

73

82

91

100

109

118

127

136

74

83

92

101

110

119

128

137

75

84

93

102

111

120

129

138

76

85

94

103

112

121

130

139

77

86

95

104

113

122

131

140

78

87

96

105

114

123

132

141

79

88

97

106

115

124

133

142

80

89

98

107

116

125

134

143

(b)

Fig. 2. Illustration of (a) the network architecture with the specification of each layer, and (b) the encoding of moves. Figures are adapted from [39], [40].

Average Pooling (GAP) layer (generating 144 scalars) right

before the softmax function. It is also worth mentioning that

adding the classic Fully-Connected (FC) layers with dropout

regularization [38], [42] performed inferior to GAP. Despite

the common application of Rectified Linear Unit (ReLU)

activation function in many prominent CNN architectures (e.g.

[10]–[12], [38], [42]), we opted to use the Exponential Linear

Unit (ELU) function [43] instead, because it improved the

validation accuracy by about 2.5%. In addition, we also ex-

perimented with batch normalization [44] and residual network

[45] but neither managed to provide better generalization

capability.

D. Prediction Models

The strength of an agent lies in its prediction ability, i.e.

how accurately it can predict the difficulty of new content

— a new level. To compare our agents, we must, therefore,

build prediction models based on historical data and compare

the prediction performance on new content. We measure the

difficulty as the success rate, calculated as the ratio between

the total number of successes and the total number of attempts.

For CCS and CCSS we use data from 800 levels to build the

prediction model. Then we predict the difficulty of succeeding

200 levels that have not been revealed to the training of the

CNN policy network. Gathering the data for the MCTS at-

tempts was the limiting factor where time allowed for running

on 1,000 levels. We try to build the best possible prediction

model for each agent. The results are therefore inevitably

subject to human choices in the prediction modeling. However,

we do not think this biases the comparison. The prediction

models are based on binomial regression using level type

features and the agents success rates as inputs. The model

type and input features should not favor the CNN agents over

the MCTS agent.

We use three different measures to compare the predictive

power: 1) mean absolute error (MAE) between the estimated

success rate and the actual success rate, 2) the percentage of

test points lying outside the 95% prediction bands, and 3)

standard deviation (STDDEV) of random effects. Measuring

from the perspective of generalization capability, we are in

favour of predictions for new levels with as little error or bias

as possible. The anticipated prediction error can be expressed

through the STDDEV of random effects and MAE and the

bias is indicated by the percentage of points outside of the

95% prediction bands.

E. Binomial Regression

Prior to building a statistical model that expresses the

players’ success rate ρplayer using agent success rate ρagent, we

observe that they do not need to linearly map to each other.

For the following reasons:

• The agent and players performance depends in a different

way on the game mode and features present on the board

• Players show higher success rate in the presence of game

features requiring deeper strategic thinking

• The agent is much less random than players. It is because

(a) the agent is a single player while human-players

belong to a large group of millions of individuals playing

with different skills and strategies; (b) agents follow their

own policy to the point and that leads to highly correlated

results.

• The average success rate observed for players is limited

in its value. The same does not hold for a single player

or a single agent. The observed relationship between the

agent and players cannot hold for levels where the agent

needs much more attempts to succeed than the average

observed for the population

• We have observed that the agents and players exhibit

different sensitivity to increased difficulty. The difference

does not need to be linear.

In addition to limitations explained above, the model chosen

needs to support rate values — ranging from 0 (when the

agent fails on all attempts) to 1 (when the agent succeeds

on all attempts) and the prediction, including the prediction

uncertainty, needs to stay within this range of values. For that

reason, we model the relationship ρplayer ∼ ρagent with binomial

regression.

To account for the difference in difficulty in the presence

of different board elements we add features available on the

board as covariates so that the model becomes:

logit(ρplayer,i) = β0+β1 ·f(ρagent,i)+
∑

j

βj ·x
<i>
j + ǫi , (1)

where f denotes a transformation of ρagent,i making it linear in

logit scale; i is the index of observations; x<i>
j denotes the j-

th feature for the i-th observation; and ǫ is the error term.

The data we model is aggregated per level, i.e. each data

point is represented by the average success rate for players

and the average success rate obtained for the agents. The

problem with this approach is that binomial regression imposes

a certain limit on uncertainty. The expected variance of the

observed success rate is formulated as Var(ρ) = ρ(1 − ρ)/n,

where n represents the number of attempts. For both ends of

the success rate range (i.e. ρ = 0 or ρ = 1), the expected

variance is 0 and for the middle point (i.e. ρ = 0.5) it takes

its maximum value and becomes 0.25/n. The dispersion of

data collected exceeds the limits imposed by the binomial

model. This phenomenon is known as overdispersion [46] and

if not taken into account it causes problems with inference.

In particular it leads to underestimation of the uncertainty

around the estimated parameters and as a consequence to

biased predictions.

The common strategies to account for overdispersion in-

clude adding new features and transforming the existing fea-

tures, neither of which solves our problem since we know that

the overdispersion is caused by the agent behavior which tends

to be self-correlated. In statistical literature, such a situation

is described as clustered measurements [46]. In our case, a

cluster is a game level for which we observe an average

success rate. Such data is assumed to be affected by two

random processes: (a) within-cluster randomness (uncertainty

of the measurement of ρ for a single game level) that is already

captured by the term ǫ in equation (1); and (b) between-cluster

randomness (uncertainty resulting from data being correlated),

which we model by introducing term κ to (1) and hence obtain

the improved model:

logit(ρplayer,i)=β0+β1·f(ρagent,i)+
∑

j

βj ·x
<i>
j +ǫi+κi , (2)

where both random terms are expected to be normally dis-

tributed around zero. This kind of model belongs to a family

of generalized linear mixed models. Here, κi is a random

effect and all other features are fixed effects. The model

estimates all parameters (i.e. β0, β1 and βj) together with

the variance of κ. The prediction of our model has two parts:

the deterministic part expressed by the logit model and the

random part expressed by κ. Since there is no closed-form

solution for obtaining prediction bands resulting from (2), we

obtain them instead by simulation and bootstrapping. The final

result of the modeling is shown in Fig. 4 and Table II.

Binomial regression with random effects describes the data

well but it is also possible to model the same data — log-

transformed, with linear regression. The drawback with linear

regression is that it lacks interpretation when the prediction

goes over 1 or below 0. Also, because the relationship cannot

be assumed to be strictly linear, as explained at the beginning

of this point, the variance of the model is higher than the

variance estimated with binomial regression.

Tracked data

of

levels ≤ 2150

CNN

(a) Train a CNN agent

Tracked

data

CNN

or

MCTS

Agent

success

rate

Human

success

rate

800 levels

≤ 2150

Binomial

Regression

(b) Fit a binomial regression model

CNN

or

MCTS

Agent

success

rate

Predicted

human

success

rate

200 levels

> 2150 Binomial

Regression

(c) Predict human success rate for new levels

Fig. 3. Three flow charts describing the overview of our proposed approach.

IV. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the proposed approach on the

games at hand. We compare MCTS results to the CNN results

for CCS and additionally show prediction accuracy for CCSS.

We did not build an MCTS agent for CCSS as this is a non-

trivial and time-consuming task in a live game on a game

engine not optimized for simulating agents. Thus, such a

comparison to MCTS for CCSS is not possible. Therefore, we

describe the details of the setup for the CNN agent in CCS and

show results for CCSS where they apply. The overall approach

for both games is identical.

A. Briefs of Human-Player Datasets

The data required to train the human-like agents is gathered

via tracking the state-action pairs (samples) from approxi-

mately 1% of players, selected at random, during about 2

weeks. By the time when we collected the data, there were

about 2,400 levels released in CCS. For training the CNN

agents, we use 5,500 state-action pairs per level for the level

range of 1 to 2,150, obtaining a dataset with nearly 1.2× 107

samples. The data set is split into 3 subsets: training set (4,500

samples per level), validation set (500 samples per level), and

test set (500 samples per level).

B. Evaluation Procedures and Settings

The experiment design is illustrated in Fig. 3. Prior to the

recent few applications of deep learning in developing intelli-

gent game agents (e.g. [11], [12], [32]), MCTS variants (e.g.

[8], [25]–[27]) served as one of the mainstream approaches for

simulating gameplay (as discussed in section II) and MCTS

TABLE I
THE SELECTION OF NETWORK ARCHITECTURES AND HYPER-PARAMETERS

Network
Architecture

Searched
Hyper-parameters

Validation
Accuracy (%)

12Conv+ELU+GAP a α, BS 32.35

12Conv+ReLU+FC+Dropout b α, BS, p 25.72
12Conv+ReLU+GAP c α, BS 28.59

20ResBlocks+ELU+GAP d α, BS 30.01

Random Policy * N/A 16.67

a The selected network architecture (Fig. 2a) that achieved the best validation accuracy
(indicated in bold).

b A network consisting of 12 convolutional layers with ReLU activation functions,
followed by 2 dropout regularized FC layers.

c Same as a except that ReLU is used in all convolutional layers.
d The convolutional layers used in a were replaced by 20 residual blocks of two

convolutional operations and a shortcut connection around these two.
* Baseline: an entirely random policy for choosing game moves.

still plays a key role in many of the recent deep learning

applications. Therefore we use Poromaa’s implementation of

MCTS [8] as a benchmark agent in our experiments. The

implementation considers partial objective fulfillment when a

roll-out does not lead to a win, instead of just binary values

(win or loss). The MCTS agent is much more time consuming

than the CNN agent. We want to understand how well the CNN

agent does compared to the MCTS agent. The MCTS agent

runs with 100 attempts on each level to get an estimate of

ρMCTS,i but at the same time it runs 200 self-play simulations

before taking a decision about which move to make for each

position. In our comparison we run the CNN agent with 100

attempts and also with 1,000 attempts as a proxy for what

could be more than 100,000 attempts if we want to compare

the total number of simulations2.

Training one version of our CNN model takes about 24

hours on a single machine with 6 CPUs and one Nvidia

Tesla K80 GPU. Game-play simulations are executed using

32 CPUs in parallel. All computational resources are allocated

on demand from a cloud service provider. The selected net-

work architecture (Fig. 2a: 12Conv+ELU+GAP) is a result

of the pre-study on data (state-action pairs) generated from

game-play by MCTS agents. We experimentally evaluated

4 different network architectures, each of which requires a

hyper-parameter search of learning rate (α), batch size (BS),

and dropout keep probability (p). The values used when

conducting a hyper-parameter grid search are respectively

α ∈ {5×10−5, 1×10−4, 5×10−4}, BS ∈ {27, 28, 29}, and

p ∈ {0.4, 0.5, 0.6}. We report the best validation accuracy

achieved by different network architectures in Table I. We

found that a learning rate of 5×10−4 and a batch size of

29 lead to the best results.

C. The Training Performance of CNN-based Agents

From this section, we will base our analysis on the best per-

forming architecture (i.e. 12Conv+ELU+GAP) in the previous

section. Agents using that network architecture are trained with

the data obtained by tracking human-players. The validation

2MCTS: 100 attempts, ∼ 30 moves per attempt, 200 simulations per move

and test accuracy reached around 47% for CCS and 48% for

CCSS. Comparing the validation accuracies we notice that

CNN agents trained on real human-player data performed

almost 50% better than the ones trained on data produced by

MCTS agents. We tried to improve the accuracy by adding

complexity to the model in form of more filters per layer

as well as adding a layer of linear combination after GAP;

but none of those added components made any significant

improvement to the network’s performance.

D. The Performance of Simulating Game Play

We can now use the trained CNN agent as a policy

evaluating all actions a ∈ A given a state s, where A is

the set of actions. The action with the highest probability

maxa∈A P (a|s) is then executed by the agent. The MCTS

agents use 200 simulations to make one move in one state.

This number proved in [8] to produce good results using a

tolerable amount of time. Selecting and executing an action

leads to a new state s′ with a new set of possible actions

A
′. The available actions are then again evaluated by the

respective agents. This loop of executing an action given a

state is continued until a terminal state is reached (either

fulfillment of the objective or out of moves).

E. Comparing Predictions

The predicted values for the 200 test levels and the associ-

ated prediction bands are shown in Fig. 4. The graphs compare

prediction accuracy for the CNN agents and the MCTS agent.

The CNN agents played both CCS and CCSS while the MCTS

agent played only CCS. Additionally, it also shows the impact

of the number of attempts on the prediction. For the CNN

agents the prediction is based on 100 or 1,000 attempts and

for the MCTS agent prediction is based on 100 attempts.

Table II summarizes the models. We see that MAE is lower

for CCS than CCSS and that both CNN with 100 attempts and

1000 attempts has a lower MAE than MCTS. The prediction

band is also much wider for MCTS indicating that the CNN

agent is a stronger predictor. It is interesting to see that for the

MCTS agent the ratio of prediction outside the 95% prediction

band is close to the expected 5% and the out-of-band ratio

is much higher for CNN. This is partly due to the wider

prediction band for MCTS but it also suggests that the MCTS

is quite robust to the evolution of the game. Note that the game

is evolving with every new level, sometimes introducing new

elements which the CNN has not trained on. Therefore, the

CNN must be retrained when new elements are introduced to

the game for optimal prediction performance but that was not

done here. MCTS and any model predicting player difficulty

measures would need to retrain their prediction model for new

game elements but additionally, the CNN agents need new

tracked data to update the policy.

V. FUTURE WORK

The policy that the CNN agent is learning is the aver-

age policy of all the players. It would improve difficulty

predictions if we could learn different policies representing

(a) CCS: MCTS 100 Att/Lvl

agent success rate (transformed)

p
la

y
er

 s
u
cc

es
s

ra
te

 (
tr

an
sf

o
rm

ed
)

(b) CCS: CNN 1000 Att/Lvl (c) CCSS: CNN 1000 Att/Lvl

Fig. 4. The success rate obtained by different agents plotted against the success rate of human-players. Note, the values have been transformed. The scale is
the same in all plots. The actual success rates for players are considered as sensitive information and therefore removed from the plot. The grey shaded areas
indicates the 95% prediction band. The graphs provide visual overview of the model prediction performances. The uncertainty band is narrower for the CNN
agents and thus the prediction for players’ prediction performance is captured better.

TABLE II
OVERALL ESTIMATION PERFORMANCE OF 2 GAMES: CCS AND CCSS

Agent Att/Lvl Game MAE out-band ratio STDDEV

MCTS 100 CCS 5.4% 4% 53%

CNN 1,000 CCS 4.0% 11% 35%

CNN 100 CCS 4.9% 24% 33%

CNN 1,000 CCSS 5.7% 17% 38%

CNN 100 CCSS 6.6% 23% 35%

different kind of players. Creating player "personas" based

on different policies to represent clusters of similar players

has the potential to greatly increase the understanding of

levels. With different "personas" we could measure how often

different policies agree and how certain the move predictions

are. Possibly indicating the different experiences players have,

e.g. if a level needs a high level of strategy or not. It could also

improve the prediction to play non-deterministically with the

CNN policy, with probabilities given by the CNN prediction

output or ǫ-greedy. The architecture and hyper-parameters of

the CNN can likely be improved which would be interesting

to investigate further, especially with more data. Practically, it

is important to measure other key metrics which can be done

in a very similar way as the difficulty. We have already done

this for score distribution and move distribution in CCS, CCSS

and other games. For Procedural Content Generation (PCG)

[47], the proposed agent can be a critical ingredient in the

generation loop. For example, providing a fitness function for

an evolutionary algorithm in a search-based approach [48].

Finally, we have indirectly been using the CNN agent for

Quality Assurance. Playing with an agent which visits tens of

thousands of the most relevant states in a level’s state space has

proven valuable and could prove to be an interesting research

on its own.

VI. CONCLUSIONS AND PERSPECTIVES

Inspired by the recent advancement of deep learning tech-

niques, mostly in the domain of computer vision, we proposed

a framework for estimating level difficulty of match-3 games,

the core of which is essentially a CNN-based agent trained on

human-player data. However, the method is general and well

suited for many games, in particular where content creation is

sequential. The predictive power of our approach outperformed

the state-of-the-art MCTS-based agents by a large margin on

prediction accuracy and execution efficiency.

In CCS we can now estimate the difficulty of a new level

in less than a minute and can easily scale the solution at

a low cost. This compares to the previous 7 days needed

with human playtesting on each new episode of 15 levels.

This completely changes the level design process where level

designers have now more freedom to iterate on the design and

focus more on innovation and creativity than before. Internally,

we have also tried this approach on a game in development

using rather limited playtest data. Nevertheless, we were able

to train a decent agent, albeit much noisier than in CCS and

CCSS, which has helped a lot with the iterative process of

game development. Since we ran the experiments presented

in this paper we have used the CNN agent for more than a

year, for more than 1,000 new levels in CCS. The prediction

accuracy has been stable and when new game features have

been presented it has been easy to retrain the agent to learn

the new feature and continue predicting the difficulty.

REFERENCES

[1] J. Hamari, N. Hanner, and J. Koivisto, “Service quality explains why
people use freemium services but not if they go premium: An empirical
study in free-to-play games,” International Journal of Information

Management, vol. 37, no. 1, pp. 1449–1459, 2017.

[2] K. Alha, E. Koskinen, J. Paavilainen, and J. Hamari, “Free-to-Play
Games: Professionals’ Perspectives,” in Proceedings of Nordic Digra.
Gotland, Sweden, 2014, pp. 1–14.

[3] A. Denisova, C. Guckelsberger, and D. Zendle, “Challenge in
digital games: Towards developing a measurement tool,” in
Proceedings of the 2017 CHI Conference Extended Abstracts on

Human Factors in Computing Systems, ser. CHI EA ’17. New
York, NY, USA: ACM, 2017, pp. 2511–2519. [Online]. Available:
http://doi.acm.org/10.1145/3027063.3053209

[4] M. Seif El-Nasr, A. Drachen, and A. Canossa, Game Analytics. London:
Springer, 2013.

[5] A. Drachen and A. Canossa, “Towards gameplay analysis via gameplay
metrics,” in Proceedings of the 13th International MindTrek Conference:

Everyday Life in the Ubiquitous Era on - MindTrek ’09. New York,
USA: ACM Press, 2009, p. 202.

[6] A. Zook, E. Fruchter, and M. O. Riedl, “Automatic Playtesting for Game
Parameter Tuning via Active Learning,” Foundations of Digital Games,
2014.

[7] A. Isaksen, D. Gopstein, and A. Nealen, “Exploring game space using
survival analysis,” in Proceedings of the 10th International Conference

on the Foundations of Digital Games. Pacific Grove, CA, 2015.
[8] E. R. Poromaa, “Crushing Candy Crush: Predicting Human Success Rate

in a Mobile Game using Monte-Carlo Tree Search,” Master’s thesis,
KTH Royal Institute of Technology, 2017.

[9] F. Silva, S. Lee, and N. Ng, “AI as Evaluator: Search Driven Playtesting
in Game Design,” in Proceedings of AAAI. Phoenix City, USA, 2016.

[10] C. Clark and A. Storkey, “Training deep convolutional neural networks
to play go,” in International Conference on Machine Learning. Lille,
France, 2015, pp. 1766–1774.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 1 2016.

[12] K. Shao, D. Zhao, Z. Tang, and Y. Zhu, “Move prediction in Gomoku
using deep learning,” in Proceedings of IEEE Youth Academic Annual

Conference of Chinese Association of Automation (YAC). Hefei, China,
2017, pp. 292–297.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[14] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents.” J.

Artif. Intell. Res.(JAIR), vol. 47, pp. 253–279, 2013.
[15] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Evolving

personas for player decision modeling,” in 2014 IEEE Conference on

Computational Intelligence and Games, pp. 1–8.
[16] ——, “Personas versus clones for player decision modeling,” in En-

tertainment Computing – ICEC 2014, Y. Pisan, N. M. Sgouros, and
T. Marsh, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 159–166.

[17] C. Holmgård, M. C. Green, A. Liapis, and J. Togelius, “Automated
playtesting with procedural personas through MCTS with evolved
heuristics,” CoRR, vol. abs/1802.06881, 2018. [Online]. Available:
http://arxiv.org/abs/1802.06881

[18] M. T. Omori and A. S. Felinto, “Analysis of motivational elements of
social games: a puzzle match 3-games study case,” International Journal

of Computer Games Technology, vol. 2012, p. 9, 2012.
[19] C. Guckelsberger, C. Salge, J. Gow, and P. Cairns, “Predicting player

experience without the player.: An exploratory study,” in Proceedings

of the Annual Symposium on Computer-Human Interaction in Play,
ser. CHI PLAY ’17. New York, NY, USA: ACM, 2017, pp. 305–315.
[Online]. Available: http://doi.acm.org/10.1145/3116595.3116631

[20] N. Shaker, S. Asteriadis, G. N. Yannakakis, and K. Karpouzis, “Fusing
visual and behavioral cues for modeling user experience in games,”
IEEE Trans. Cybernetics, vol. 43, no. 6, pp. 1519–1531, 2013. [Online].
Available: https://doi.org/10.1109/TCYB.2013.2271738

[21] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for rts
game combat scenarios.” in Proceedings of the 8th AIIDE. Palo Alto,
California, 2012, pp. 112–117.

[22] D. Perez, S. Samothrakis, and S. Lucas, “Knowledge-based fast evo-
lutionary MCTS for general video game playing,” in Proceedings of

IEEE Conference on Computational Intelligence and Games (CIG).
Dortmund, Germany, 2014, pp. 1–8.

[23] A. Zook, B. Harrison, and M. O. Riedl, “Monte-carlo tree search
for simulation-based strategy analysis,” in Proceedings of the 10th

Conference on the Foundations of Digital Games, 2015.
[24] S. Devlin, A. Anspoka, N. Sephton, P. Cowling, and

J. Rollason, “Combining gameplay data with monte carlo tree
search to emulate human play,” 2016. [Online]. Available:
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/14003

[25] T. Imagawa and T. Kaneko, “Enhancements in monte carlo tree search
algorithms for biased game trees,” in Proceedings of IEEE Conference

on Computational Intelligence and Games (CIG). Tainan, Taiwan,
2015, pp. 43–50.

[26] A. Khalifa, A. Isaksen, J. Togelius, and A. Nealen, “Modifying MCTS
for Human-like General Video Game Playing,” in Proceedings of IJCAI.
New York, USA, 2016, pp. 2514–2520.

[27] A. Mendes, J. Togelius, and A. Nealen, “Hyper-heuristic general video
game playing,” in Proceedings of IEEE Conference on Computational

Intelligence and Games (CIG). Santorini, Greece, 2016, pp. 1–8.
[28] T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “General

video game evaluation using relative algorithm performance profiles,”
in Proceedings of European Conference on the Applications of Evolu-

tionary Computation. Copenhagen, Denmark, 2015, pp. 369–380.
[29] P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching

games and algorithms for general video game playing,” in Proceedings

of the Twelfth AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment, AIIDE 2016, October 8-12, 2016,

Burlingame, California, USA., 2016, pp. 122–128. [Online]. Available:
http://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/14015

[30] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” Computers and games, vol. 4630, pp. 72–83, 2007.

[31] T. P. Runarsson and S. M. Lucas, “Preference learning for move
prediction and evaluation function approximation in Othello,” IEEE

Transactions on Computational Intelligence and AI in Games, vol. 6,
no. 3, pp. 300–313, 2014.

[32] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[33] P. Peng, Q. Yuan, Y. Wen, Y. Yang, Z. Tang, H. Long, and J. Wang,
“Multiagent bidirectionally-coordinated nets for learning to play starcraft
combat games,” arXiv preprint arXiv:1703.10069, 2017.

[34] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on

Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[35] M. Świechowski, H. Park, J. Mańdziuk, and K.-J. Kim, “Recent ad-
vances in general game playing,” The Scientific World Journal, vol. 2015,
pp. 1–22, 2015.

[36] S. Gelly and D. Silver, “Monte-carlo tree search and rapid action value
estimation in computer go,” Artificial Intelligence, vol. 175, no. 11, pp.
1856–1875, 2011.

[37] ——, “Combining online and offline knowledge in uct,” in Proceedings

of the 24th International Conference on Machine learning. Oregon,
USA, 2007, pp. 273–280.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification

with Deep Convolutional Neural Networks, 2012.
[39] P. Eisen, “Simulating human game play for level difficulty estimation

with convolutional neural networks,” Master’s thesis, KTH Royal Insti-
tute of Technology, 2017.

[40] S. Purmonen, “Predicting game level difficulty using deep neural net-
works,” Master’s thesis, KTH Royal Institute of Technology, 2017.

[41] M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proceedings of

ICLR. Banff, Canada, 2014.
[42] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for

Large-Scale Image Recognition,” Information and Software Technology,
vol. 51, no. 4, pp. 769–784, 9 2014.

[43] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs),” in
Proceedings of ICLR. Vancouver, Cadana, 2016, pp. 1–13.

[44] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings of

International Conference on Machine Learning. Lille, France, 2015,
pp. 448–456.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition. Las Vegas, USA, 2016, pp. 770–778.
[46] J. Hinde and C. G. Demétrio, “Overdispersion: models and estimation,”

Computational Statistics & Data Analysis, vol. 27, no. 2, pp. 151–170,
1998.

[47] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation

in Games, 1st ed. Springer Publishing Company, Incorporated, 2016.
[48] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving

Mario Levels in the Latent Space of a Deep Convolutional Generative
Adversarial Network,” ArXiv e-prints, May 2018.

