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Hanabi is a card game by Antoine Bruza which won the prestigious Spiel des Jarhes

(Game of the Year) in 2013 [10]. Named after the Japanese word for fireworks, the

game is based upon creating the perfect fireworks display by playing cards, i.e. fire-

works, in a desirable sequence. Unlike conventional card games, players see cards in

other players’ hands but not their own and work together as a team. Hence, game-

play is focused on the players discovering information about their own cards through

the limited communication the game allows. Only through clever strategy, coordinated

implementation, and a bit of luck can the team successfully create the perfect fireworks

display.

In order to devise a strategy for Hanabi in which players communicate information

effectively, we turn to hat guessing games for inspiration. Hat guessing games are a

popular topic in recreational mathematics [3, 4, 5, 7, 8, 11]. Consider the following

version of a hat guessing game. Five people each put on either a red or blue hat at

random and stand so that each person can see the color of every other person’s hat but
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not their own. If the people guess the color of their own hats sequentially out loud, how

can they maximize the expected number of correct guesses? By guessing randomly,

on average only 2.5 people will guess correctly. On the other hand, by implementing

a clever strategy, the players can guarantee that 4 players will always guess correctly!

We will discuss such a strategy and its application to Hanabi in later sections.

Hat guessing games are problems that arise in coding theory. Coding theory has

many real world applications in communication theory [9], and it has also been used

to study other games such as Sudoku [1]. Our approach to Hanabi is similar to the

more modern topic of network coding, where multiple agents with asymmetric infor-

mation try to communicate effectively. For example, suppose that two people wish to

communicate simultaneously via a satellite. After the satellite receives the two mes-

sages A and B, which are numbers, the satellite can then broadcast A + B once instead

of broadcasting the two messages in sequence. Each person can then use the message

she sent along with the broadcasted message to deduce the the message sent to her, i.e.,

B = (A + B) − A. As a result, the satellite becomes more efficient by broadcasting

half as many messages!

This article presents two strategies for Hanabi that incorporate ideas from hat guess-

ing games and network coding. These strategies work similarly to the satellite example

above, where a player who is giving hints acts as the satellite and the contents of the

other players’ hands act as messages. In turn, each hint is more effective and hence,

more fireworks are made with fewer hints.

In the first strategy, hints are used to recommend actions to players. In the second

strategy, hints are used to tell the players information about their cards. Results from

computer simulations demonstrate that both strategies perform well, and that the more

advanced information strategy achieves a perfect score over 75 percent of the time. In

comparison, this is only slightly worse than a scenario in which the players cheat by

looking at their own hands and play by a simple heuristic.

This article begins with an overview of the rules of Hanabi followed by a dis-

cussion of the hat guessing game ideas incorporated into both of our strategies. We

then describe our two strategies and conclude by discussing results of computer

simulations.

Overview of the rules of Hanabi

Here we give a brief overview of the rules of Hanabi. We focus on the original variation

of the game with five players although most of the concepts throughout can be adapted

to other variations.

The game Hanabi is played with a special deck of cards, each card representing a

specific firework. Each card has a rank, which is a number 1 through 5, and a suit,

which is one of five colors. The deck consists of 50 cards with 10 cards in each of the

five suits. Within each suit, there are three ‘1’s, two ‘2’s, two ‘3’s, two ‘4’s, and one ‘5’.

Each player begins with a hand of four cards which are held so that all other players

can see them but she cannot. The team also begins with eight hint tokens. Starting with

the youngest player, players take turns in the clockwise direction performing one of

three actions: play a card, discard a card, or give a hint.

To play a card, a player selects a card in her hand, declares she is playing the card,

and then reveals the card. The cards that have already been played are placed in piles

based on suit, with the most recent, i.e., highest rank, card on top as demonstrated in

Figure 1a. The new card will be successfully played if its rank is exactly one higher

than the last successfully played card of the same suit and a ‘1’ is successful if no cards

of that suit have been previously played. For example, in Figure 1a the following cards
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(a) An imperfect fireworks display. (b) The perfect fireworks display.

Figure 1 Examples of different fireworks displays.

can be successfully played at the current game state: blue 3, green 1, red 4, white 2,

and yellow 3. If the card is successfully played, it is then added to the appropriate pile

and the fireworks display becomes one firework brighter! A perfect score corresponds

to a fireworks display of 25 cards as seen in Figure 1b. An unsuccessfully played card

is removed from the game and the team makes an error; that is, the team tried to launch

a firework at the wrong time. In either the event of a successful or unsuccessful play,

the player draws a card if the deck is nonempty.

To discard a card, the player selects a card in her hand, declares she is discarding

the card, and then reveals the card. The card is removed from the game and the team

is awarded a hint token, provided the team has fewer than eight hint tokens. She then

draws a card, provided the deck is not empty.

To give a hint, one player selects another player and identifies all cards in the other

player’s hand of a particular rank or suit, e.g., “These two cards are blue.” Giving a

hint costs the team one hint token, so if no hint tokens remain a hint cannot be given.

Also, whenever a player gives a hint, the recipient must have at least one card of the

chosen rank or suit, e.g., “You have no yellow cards in your hand” is not a legal hint.

There are three ways in which the game may end. If the team makes a third error,

the game ends with a score of 0. If the the team successfully plays 25 cards, the game

ends with perfect score of 25 points. Otherwise, once the deck becomes empty, each

player makes one final turn and the game ends with a score equal to the number of

fireworks successfully launched.

Hat guessing

We now discuss a strategy for the hat guessing game described in the introduction. We

will then generalize this strategy for two colors to an eight color version. The strategy

for the eight color hat guessing game will be implemented in both of our strategies for

Hanabi.

Two color hat guessing game Each of five players will be assigned either a red hat

or blue hat at random. Each player will be able to see the color of every other player’s

hat but will be unable to see the color of her own hat. In some order, for instance from

youngest to oldest, each player will then be asked to guess the color of the hat on her

own head. The players will be able to hear the guesses made by the previous players,

but no other communication is allowed. The objective of the game is for the players to

devise a strategy before the hats are assigned that maximizes the expected number of

correct guesses they will make as a team.

Since the youngest player has no information about her own hat and has not heard

any of the other players’ guesses, she can only guess her hat correctly, on average, half

of the time. It follows that the expected value of the game can be no greater than 4.5/5

correct guesses.
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There is, perhaps surprisingly, a strategy in which the expected number of correct

guesses is 4.5/5. Indeed, suppose that the first player guesses ‘blue’ if the number of

blue hats on the heads of the other four players is odd and guesses ‘red’ otherwise. As

noted before, this first guess will be correct, on average, half of the time. Once this

first guess has been made, every other player can now deduce the color of her own

hat! For example, suppose that the second player observes exactly one blue hat on the

heads of players three, four, and five. She can now reason that if her hat were blue,

the first player would have responded ‘red’ since that indicates there are two blue hats

on players two, three, four, and five. By similar reasoning, if her hat were red, the

first player would have guessed ‘blue.’ Similarly, players three, four, and five can also

deduce the color of the hat they are wearing based upon the first player’s guess.

We now describe a generalized version of this strategy for five players and eight hat

colors which we will incorporate into our strategies for Hanabi.

Multiple color hat guessing game The following notation will aid in our descrip-

tion of this eight color version of the above hat guessing game. Label the players

P1, P2, . . . , P5 and suppose that there are eight different “colors”: 0, 1, . . . , 7. Let ci

be the color of the hat placed on the head of player Pi . The following generalization

of the previous strategy can guarantee at least four of the players will guess correctly.

Player P1 will guess, or rather respond, with color

r1 :=
∑

i �=1

ci (mod 8),

which is computed by finding the sum of the hat colors of every player who is not the

first player and then determining the remainder when divided by 8. Hence, player P1 is

not actually guessing at her own hat color, nor is she guaranteed to respond correctly.

However, her response will guarantee that all other players can respond correctly.

For i > 1, player Pi will respond

ri := r1 −
∑

j �=1,i

c j (mod 8),

where the sum
∑

j �=1,i c j adds together the colors of the hats worn by all players other

than players P1 and Pi . Since

ri ≡
∑

j �=1

c j −
∑

j �=1,i

c j ≡ ci (mod 8),

every player other than the first player is guaranteed to have responded correctly.

We remark that this strategy generalizes to any number of colors and any number

of players.

We also note that this type of scheme is similar to “check digits” on bar codes such

as UPC and ISBN where the final digit of the code serves to verify the parity of the

other digits (see, for example, [12]). In the above hat guessing game, each player is

missing a different piece of information, and the initial response serves as a “check

digit” which allows the other players to deduce the information they are missing.

For more information about this sequential hat guessing game, in addition to other

variations, see [3, 4, 8, 11]. While sequential hat guessing games are well understood,

many interesting and open problems remain when players guess the colors of their hats

simultaneously. See [5, 7, 11] for more information on simultaneous hat guessing.

Overview of applying hat guessing to Hanabi The main idea of applying hat guess-

ing to Hanabi is that each player’s hand is a “hat” and the contents correspond to a
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“color.” While there are more than eight possible hands, we assign each possible hand

a “color” 0 through 7. As a result, when a player gives a hint, all other players can

determine the colors of their hands, thereby deducing information about its contents.

The two strategies presented assign colors to hands differently. In the first, the color

represents which card should be played or discarded. That is, loosely speaking, the

colors recommend a particular move to each other player. For the second, more com-

plicated strategy, the colors correspond to a set of possible rank and suit values for a

particular card. Hence, each hint narrows down the possibilities for the identity of a

particular card.

Strategy 1: The recommendation strategy

In the recommendation strategy, players recommend actions to each other by encoding

the recommendations as hints. For example, if player P1 gives a hint to player P2 telling

her which of her cards are red, all of the other players will interpret this as a custom

recommended action. For instance, a player may decode this hint to determine that

she should discard a certain card in her hand while another player will learn that one

of her cards should be played. By implementing a hat guessing scheme, a single hint

communicates custom recommendations to each of the other players.

For this strategy, the cards in each player’s hand are indexed from left to right (as

seen by the other players), C1, C2, C3, C4. Each time a player plays or discards a card,

the indices of cards with higher index will shift their indices down by 1, and the new

card drawn will be indexed as C4.

The key to the recommendation strategy is the following encoding scheme which

assigns a number 0 through 7 to each player’s hand. The possible recommendations

and their corresponding numbers are as follows:

0. Play card C1

1. Play card C2

2. Play card C3

3. Play card C4

4. Discard card C1

5. Discard card C2

6. Discard card C3

7. Discard card C4

Giving recommendations Before we describe how to determine which recommen-

dation to give to each player, we define three types of cards:

• Playable: a card that can be successfully played with the current game state.
• Dead: a card that has the same rank and suit of a successfully played card.
• Indispensable: a card for which all other identical copies have been removed from

the game, i.e., a card that if removed from the game will imply a perfect score cannot

be obtained.

In Figure 2, player P2’s card C1, the white 2, can be successfully played which deems

player P2’s card C1 as playable. Player P4’s card C1, the green 1, has already been

successfully played so player P4’s card C1 is a dead card. Player P5’s card C4, the red

5, is indispensable since 5’s of each color are unique in the deck. The cards which are

playable, dead, and indispensable in a player’s hand will determine the recommenda-

tion given to her as described below.

The recommendation for a hand will be determined with the following priority:

1. Recommend that the playable card of rank 5 with lowest index be played.
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2. Recommend that the playable card with lowest rank be played. If there is a tie for

lowest rank, recommend the one with lowest index.

3. Recommend that the dead card with lowest index be discarded.

4. Recommend that the card with highest rank that is not indispensable be discarded.

If there is a tie, recommend the one with lowest index.

5. Recommend that C1 be discarded.

With this, each player’s hand is assigned a number 0 through 7. Viewing the value of

the recommendation for each player’s hand as the “color of her hat,” we see that the

player giving a hint would like to tell every other player the color of her hat. Since

every other player knows the color of every other player’s hat, we can think of this as

a multiple color hat guessing game. As discussed in the hat guessing section, if the

player giving the hint can communicate a number 0 through 7 to the other players, she

can simultaneously tell every other player the color of her hat and thus their custom

recommendation. This is possible using the following encoding scheme.

Let position j denote the j th position in the clockwise direction from the player giving

the hint.

0. Rank hint to the player in position 1

1. Rank hint to the player in position 2

2. Rank hint to the player in position 3

3. Rank hint to the player in position 4

4. Suit hint to the player in position 1

5. Suit hint to the player in position 2

6. Suit hint to the player in position 3

7. Suit hint to the player in position 4

By choosing an appropriate rank or suit, it is indeed always possible to give any of

these hints.

Thus when a player gives a hint, she tells every other player the current recommen-

dation for their hands. For example, in Figure 2, player P1 needs to communicate that

the sum of the “colors” of the other players’ “hats.” She looks at the other players’

hands which have values 2, 0, 4, and 0. Since the sum is congruent to 6 modulo 8, she

will give a suit hint to player P4. From this hint, every other player can determine the

color of her hat and know what action has been recommended. For example, player P2

can deduce the value of her hand is 2 ≡ 6 − (0 + 4 + 0) (mod 8).

It is important to keep in mind that as actions take place after a hint is given, the

recommendation made to a player may no longer be appropriate. Consider the situa-

tion shown in Figure 3; on her turn, player P4 will recommend to both players P5 and

P2 to play their blue 3 cards. After which, player P5 will then play her blue 3 card. In

a following turn, player P2 will also play her blue 3, resulting in an error. Although

the player giving the hint could have realized that this conflict was going to occur, our

method only allows her to communicate the current state of each hand since this is the

only information known to all players. As it is more important for players to communi-

cate in a consistent reliable manner, we must accept these duplicate recommendations

as a possibility.

To use the recommendations given to them in a way which reduces the number of

errors that will be made, the following algorithm is used:

Action algorithm The action a player will take will be decided in the following

order of priority.

1. If the most recent recommendation was to play a card and no card has been played

since the last hint, play the recommended card.
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Figure 2 Recommendation strategy: An example of a hint using the recommendation
strategy. The updated game state based on this hint and the action algorithm can be
found in Figure 3.

2. If the most recent recommendation was to play a card, one card has been played

since the hint was given, and the players have made fewer than two errors, play the

recommended card.

3. If the players have a hint token, give a hint.

4. If the most recent recommendation was to discard a card, discard the requested

card.

5. Discard card C1.

To see the how the hints and action algorithm fit together, consider Figure 2. Player

P1 gives a suit hint to player P4. Recall that player P2 can decode the hint as 6 − 0 −

4 − 0 ≡ 2 (mod 8). As a result, she knows it is recommended to play her card C3.

Similarly, players P3 and P5 decode the hint as 0 and are recommended to play

C1, and player P4 decodes the hint as 4 receiving the recommendation to discard C1.

The action algorithm indicates that the next move is for player P2 to play her card

C3, which is successful. Since the team has less than two errors, the action algorithm

indicates that player P3 will play her card C1, which is also successful. Now, P4 was

recommended to discard C1, however, the team has three hint tokens left so the action

algorithm tells player P4 to give a hint. This new hint will give each of the players

P1, P2, P3, and P5 a new recommended action. The updated game state can be seen

in Figure 3.

In summary, the recommendation strategy uses hints to tell other players what

actions to take. We believe players can implement this strategy with just a little prac-

tice, so give it a try at your next game night! Its performance is discussed in the simu-

lation section.

Strategy 2: The information strategy

In the information strategy, hints give players information about the ranks and suits of

their cards. Players then decide how to play based upon this knowledge. Once again,
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Figure 3 Recommendation strategy: Updated game state three turns after player P1 gave
a hint in Figure 2. It is the beginning of player P4’s turn after players P2 and P3 played the
cards based on the recommendations of player P1’s hint.

a hat guessing scheme will be used so that the player giving the hint can communicate

information to all the other players simultaneously. In what follows, we give a brief

description of the concepts used in the strategy. The precise implementation of the

strategy can be read in the simulation code available online [6].

As with the recommendation strategy, each player’s hand will be assigned a value 0

through 7 and the same encoding scheme will be used as in the recommendation strat-

egy. However, unlike the recommendation strategy, the value assigned to the hand of

player Pi will not only be a function of the cards in Pi ’s hand and the cards played

previously, but will also be based upon what Pi has already been able to deduce about

the cards in her hand. An important aspect to this deduction will be what we refer to

as public and private information.

Public and private information We refer to two types of information: public and

private. Public information is information that all players know; that is, every player

knows the same public information. Private information is information that a player

can deduce based upon seeing the other players’ hands.

For example, in Figure 3, player P1 has a yellow 5. All of the other players know that

they do not have a yellow 5, since there is a unique yellow 5 in the game. However,

player P1 does not know that the other players can deduce that they do not have a

yellow 5. Hence, the other players’ knowledge that they do not have a yellow 5 is

private information. On the other hand, if a hint is given to player P1 that allows her to

deduce that she has a yellow 5, then this knowledge becomes public information.

Another important part of the information strategy is what we call the possibility

table, which is based solely on public information.

Possibility table Consider a card in Hanabi whose rank and suit are unknown. If

no information can be deduced, this card may take on one of five possible ranks and

five possible suits. We visualize these possibilities as a 5 × 5 table that we call the
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possibility table. As public information is revealed or deduced about the card, some of

these possibilities are eliminated. The table evolves with new information by placing

an N in each entry corresponding to a rank and suit combination that is no longer

possible and a P in each entry corresponding to rank and suit combination that is

possible. Figure 4 depicts what two possibility tables might look like at a certain point

in the game.

1 2 3 4 5

Blue N P P P N

Green N N N N N

Red N N N N N

White N N N N N

Yellow N N N N N

(a) Possibility table for C2 .

1 2 3 4 5

Blue N P P P N

Green P P P P P

Red P P N P P

White P N P P P

Yellow N N N N N

(b) Possibility table for C3 .

Figure 4 Possibility tables

Targeting a card When a player gives a hint, that hint will consider exactly one card

in every other player’s hand. We say the hint targets those cards. However, the exact

card targeted by each hint may vary from hint to hint. Hence, it is important for all

players to know which card is targeted for each hand.

To achieve this, we estimate the probability that each card is playable based upon the

public information. To this end, suppose that the card Ci can take on ti total different

values; that is, there are ti P’s in the possibility table for Ci , and ai of the possibilities

for Ci are immediately playable. The probability that card Ci is playable can be esti-

mated by ai/ti . However, since there are not the same number of cards of each type in

the deck, we use a slightly more complicated scheme to better estimate the probability

that the card is playable.

Our more complicated scheme utilizes the publicly available knowledge in the

following way. For a card Ci specified by suit and rank, let Ti be the set of elements

in the possibility table for Ci with entry ‘P’ and let Si be the set of elements in Ti

that correspond to playable cards. Now for c ∈ Ti , let mC be the number of copies

of C that have not been fully determined based on publicly available knowledge. The

probability that Ci is immediately playable can be estimated by
∑

C∈Ti ∩Si
mC∑

C∈Ti
mC

.

The card within a player’s hand with the highest such probability is targeted, with the

exception that a card with only one P in the possibility table will never be targeted.

In the event of a tie, the lowest indexed card is targeted. We remark that in Figure 7 we

use the estimate of ai/ti for simplicity.

Partition of the possibilities When a player gives a hint, each other player will

receive information about her targeted card thereby eliminating some of the P’s in the

card’s possibility table. To establish the meaning of each hint, the set of possibilities

for each targeted card is partitioned into 8 sets, and this partition is determined by the

public information.

Consider the possibility table for C3 in Figure 4. There are 16 possible values for C3

and each hint is one of eight different values, the numbers 0 through 7. As an example,
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the players might agree that if the hint is 0, this means that the true value of C3 is one

of the first two possible values in this table, ordered from the top left; that is, either a

blue 2 or a blue 3. Similarly, if the hint is a 1, this means that the true value of the card

is either a blue 4 or a green 1, and so on. Then when this player receives a hint about

C3, she is able to eliminate all but two possibilities from the possibility table for C3.

For example, if the player receives hint 7, then she knows that the true value of C3 is

one of the two last P’s in the possibility table. See Figure 5 for an illustration of this.

Note that there many ways to partition the possibility table. While it may seem

advantageous to partition it as evenly as above, we will, in fact, partition it differently

as we discuss later.

Blue 0 0 1

Green 1 2 2 3 3

Red 4 4 5 5

White 6 6 7 7

Yellow

(a) The meaning of each hint value for C3.

1 2 3 4 5 1 2 3 4 5

Blue N N N N N

Green N N N N N

Red N N N N N

White N N N P P

Yellow N N N N N

(b) Possibility table after receiving the hint 7.

Figure 5 Partition of the possibility table into hint sets for the nearly equal case. Our
information strategy uses a slightly different partition shown in Figure 6.

The different hint values partition the possibilities for a card. In the above example,

we partitioned the 16 possibilities into eight sets of size two. We will refer to the sets in

this partition as hint sets. Given any possibility table, there are many different partitions

into hint sets. In the C3 example, as seen in Figure 5, we gave one possible partition for

the possibility table of C3. Our choice of partition scheme for the information strategy

is a little more complex but follows three principles:

1. All possibilities that correspond to dead cards are grouped together in a single hint

set. This is because if the card is dead its rank and suit are unimportant.

2. We want many hint sets to contain a single element, which we call singleton hint

sets. The virtue of this is that whenever a hint specifies a hint set with a single

element, the hint recipient learns the exact rank and suit of that card in a single

hint. Consequently, we make as many singleton hint sets as possible.

3. Two hints about the same card should always completely determine both the suit

and rank of that card. This is accomplished by ensuring that there are no more than

eight elements in any hint set. Then after a single hint has been received about a

card, there must be fewer than eight possibilities left, at which point a second hint

will completely determine the card. We exclude the hint set comprised of the dead

cards, which is allowed to have more than eight elements.

As an example, consider again C3 whose possibility table is given in Figure 4b, and

assume that the only dead cards are the 1’s of each suit. Then the first hint set consists

of the green, red, and white 1’s. This leaves 13 possibilities. We can make six singleton

hint sets, leaving the seven remaining possibilities for our final hint set. This partition

is illustrated in Figure 6.

Value of a hand The value of a player’s hand, i.e., the hint 0 through 7 that she will

be given, is the number assigned to the targeted card by the partition of the possibility

table. Note that the possibility table was constructed from public information, so each
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1 2 3 4 5

Blue 1 4 7

Green 0 2 5 7 7

Red 0 3 7 7

White 0 6 7 7

Yellow

Figure 6 Partition of the possibility table into hint sets according to the information
strategy.

player can determine the value of every other player’s hand. Moreover, every player

can determine which card in their hand will be targeted and can construct the possibil-

ity table for this card. From this information, each player can deduce the partition their

card falls into based upon the hint given.

Action algorithm A player will act using her private information with the following

priority:

1. Play the playable card with lowest index.

2. If there are less than 5 cards in the discard pile, discard the dead card with lowest

index.

3. If there are hint tokens available, give a hint.

4. Discard the dead card with lowest index.

5. If a card in the player’s hand is the same as another card in any player’s hand, i.e.,

it is a duplicate, discard that card.

6. Discard the dispensable card with lowest index.

7. Discard card C1.

Figure 7 illustrates an example of a player giving a hint using the information strategy

with the probability estimate of ai/ti . The information strategy is not easily imple-

mented in practice, however a computer implementation is discussed in the following

section.

Simulations and their interpretation In this section, the results of simulating the

recommendation and information strategies are presented. We also simulate a cheating

strategy for the purpose of comparison. In this cheating strategy, each player cheats

by looking at the cards in their hand and follows the action algorithm presented in

the information strategy. The results are presented in Figure 8. The recommendation

strategy averages 23.00 points out of 25 and the information strategy averages 24.68

points. By comparison, the perfect information cheating strategy averages 24.87.

We also remark that in simulation the recommendation strategy frequently makes

two errors, but will never make a third. The information strategy will never make any

errors.

The simulations were written in C++, and the documented code is available

online [6]. The code was designed to be modular, separating the game mechanics

from the implementation of player strategies. We would like to encourage any inter-

ested readers to improve our strategies or implement their own. We made an effort to

make our code accessible and be a versatile foundation upon which any strategy could

be implemented.

We recognize that our strategies are not optimal. In particular, we see some improve-

ments that could be made but they come at the expense of increased complexity and
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Figure 7 An example of a hint using the information strategy.
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(c) Cheating strategy

Figure 8 Histograms of the scores after simulating each strategy 106 times.

appear to offer only small gains. Although any improvement would be of interest, we

would be particularly interested in a strategy that performs significantly better or a sim-

pler strategy with similar performance. We find it important to mention that no strategy

can achieve a perfect score every time, as there are permutations of the deck for which

a perfect score is impossible. One such permutation occurs when all fifteen 1’s are on

the bottom of the deck. Thus, there is some upper bound on the average score, which

is less than 25. It would be interesting to know a good estimate on the expected value

of the game. In particular, we wonder if it is possible for a legal strategy to outperform

the average score of 24.87 achieved by our cheating strategy.

Although some of our techniques generalize to other variants, including fewer play-

ers, many do not. As such, we leave it to the readers to come up with other strategies

for Hanabi when playing with fewer than five players. In general, there is still much

that could be done regarding the mathematics of Hanabi. We hope that fans of Hanabi

try to implement our strategies and come up with some of their own. Now go out and

create your own perfect fireworks display!
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Vojtech Rödl at Emory University. Troy is interested in an eclectic mix of discrete mathematics, especially the

insights offered by probabilistic combinatorics.

JOSH TOBIN (MR Author ID: 1124473) is a graduate student at UC San Diego, and will be Franklin Kenter’s

academic brother after graduation. When he is not working on his thesis, he is trying to make his computer write

his thesis for him.

This content downloaded from 128.111.121.42 on Thu, 24 Mar 2016 10:16:11 UTC
All use subject to http://about.jstor.org/terms


