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Abstract

This paper presents an original approach to neural modeling based on the idea of searching, with

learning methods, for a synaptic learning rule which is biologically plausible, and yields networks that

are able to learn to perform di�cult tasks. The proposed method of automatically �nding the learning

rule relies on the idea of considering the synaptic modi�cation rule as a parametric function. This

function has local inputs and is the same in many neurons. The parameters that de�ne this function

can be estimated with known learning methods. For this optimization, we give particular attention to

gradient descent and genetic algorithms. In both cases, estimation of this function consists of a joint

global optimization of (a) the synaptic modi�cation function, and (b) the networks that are learning

to perform some tasks. The proposed methodology can be used as a tool to explore the missing pieces

of the puzzle of neural networks learning. Both network architecture, and the learning function can be

designed within constraints derived from biological knowledge.

1 Introduction

One of the major goals of both biological neural networks modeling and arti�cial neural networks research

is to discover better learning rules, to yield networks that can learn more di�cult tasks, such as tasks

that the brain can handle. Most researchers now accept that animal learning involves changes of synaptic

e�cacy [Byrn87]. Several researchers have proposed abstract models Connectionist models use fairly simple

mechanisms for both the neuron operation and the modi�cation of synapses. They can be used to solve

some di�cult learning problems, including the problem (\hard learning", [Hint89]) of training hidden layers

of the network when reinforcement or supervision is only available to some neurons. However, as has been

pointed out by Hinton [Hint89], a mathematically derived algorithm such as backpropagation [Rume86b]

does not seem plausible as a biological model for many reasons. Synapses used in backpropagation models

permit both forward and backward signals, a functionality not demonstrated to exist in biological synapses.

Furthermore, the neurons have to propagate error derivatives through the axon backwards, as well as

propagating activity level forwards.

Some models have recently been proposed that seek to narrow the gap between biological models and

connectionist models (see for example [Bair90, Bart91]). This is also the goal of the approach presented

here. The basic hypothesis of this approach is that it is possible to search with learning algorithms for a

synaptic learning rule, and to constrain this rule in order to yield networks that can solve some di�cult AI

problems, respect aspects of biological knowledge about synaptic mechanisms and behavioral phenomena.

The proposed method of automatically �nding the learning rule relies on the idea of considering the

synaptic modi�cation rule as a parametric function, which has local inputs, and is the same in many

neurons. The parameters that de�ne this function can be optimized with known learning methods. For
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this optimization, we give particular consideration to gradient descent and genetic algorithms. In both

of these cases, estimation of the synaptic modi�cation rule consists of a joint global optimization of the

synaptic modi�cation rule, as well as of networks that learn to perform some tasks with this rule. The

architecture of the networks, as well as the learning function can be designed with constraints derived from

biological considerations. The proposed methodology can be used as a tool to explore the missing pieces

of the puzzle of neural networks learning.

Initial experiments are described in order to assess the feasability of the proposed method in the case of

very simple tasks. As a result of these initial experiments, a learning rule is discovered that is similar to

backpropagation but is more biologically plausible.

2 Learning the learning rule

Studies on animal learning increasingly agree that learning involves changes in synaptic connections

[Hawk89a, Byrn87]. Synaptic transmission is a complex process, in which changes in e�cacy can be

due to a number of factors, sometimes acting in concert, both at presynaptic and postsynaptic sites. Stud-

ies of several forms of learning (e.g. classical conditioning and sensitization) suggest that they are related

and that complex forms of learning could be obtained by combining mechanisms of elementary forms of

learning [Hawk89b]. This helps justifying a model of synaptic change that is a functional combination of

several lower level mechanisms (see section 3). In this paper, we do not propose answers to the architectural

questions, nor to the reinforcement/supervision problems. Instead, we describe a tool to help search for

and re�ne the synaptic learning rule, given some architectural constraints and a learning criterion.

We consider an automatic method of �nding and improving, with learning methods, a synaptic modi�cation

function that attempts to satisfy several constraints. To this end, we make the following assumptions: 1)

The same rule is used in many neurons
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. 2) There exists an input/output mapping that corresponds to

the learning rule
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. 3) This mapping can be approximated with a parametric function.

2.1 Gradient Descent

Suppose we want to minimize an error E that depends on parameters �

i

. Then in order to minimize E, the

parameters should be updated with
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where � is a very small but positive real number. There exist numerous variants of this method, to make

it faster and more resistant to local minima, for example with the use of second-order information and an

adaptable �(t) [Beck89].

Consider a network of neurons and synapses (with strength w

i

), and an optimization criteria E, which is

a function of the behavior of the network, and that is to be minimized. Let us assume that

@E

@w

i

can be

computed ([Rume86b] or [Pear89] for a continuous recurrent network). Let the synaptic weight update at

time t be de�ned as follows:
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and let �w

i

(t) be a function of local observable quantities, as well as, of a set of parameters � shared by

all (or a lot of) synapses:
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This constraint can be relaxed to several rules for several types of neurons or synapses.
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However, a stochastic process may be involved in the computation of the synaptic change, for example as a variable noise

term.



For example, a biologically plausible synaptic change function could have as local arguments a measure

of presynaptic activity (y

pre

), the postsynaptic potential (x

post

), the strength of the synapse (w

i

) and a

measure of the activity of a facilitatory neuron (or of the concentration of a di�usely acting neuromodulator)

(y

modul

) that modulates the synaptic plasticity:
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To perform gradient descent on � one computes the following derivative:
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where
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can be computed recursively (
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To avoid that � be estimated in function of a particular synapse, neuron or network performing a particular

task, it is important that the function �w(�) and the parameter set � that de�nes it be the same for all

(or a large number of) synapses, and that � be estimated simultaneously with a population of networks

learning to perform di�erent tasks.

2.2 Genetic Algorithms

An interesting alternative to gradient based optimization methods is the set of optimizationmethods called

\genetic algorithms" (see [Holl75] and [Gold88]). Genetic algorithms are learning algorithms inspired from

several features of biological evolution. They consider a population of solutions to a problem, such as

the synaptic modi�cation function, encoded in arti�cial \chromosomes". Each member of the population

is evaluated using an evaluation function. The population undergoes reproduction until a satisfactory

performance is attained. During reproduction, \parents" are stochastically chosen to reproduce. This

choice favors parents with highest evaluation, i.e., best performance of the evaluation function. Operators

such as "cross-over" are applied to the chromosomes of the parents to produce children that are inserted

into the population. Domain knowledge can be exploited to create operators which improve the e�ciency

of the optimization procedure [Whit89].

It should be noted that interesting gradient-descent/genetic-algorithm hybrids have been proposed and

could be considered here (see for example [Davi89] or [Whit89]). A coding scheme and a set of genetic

operators for �w(�) could be designed, based for example on those proposed in [Whit89] to improve neural

networks with genetic algorithms.

The advantages of genetic algorithms is that they are quite resistant to the problem of local minima in the

optimization criteria and that they don't require a di�erentiable �w(�). However, this is obtained at the

cost of improving simultaneously a whole population of solutions instead of just one.

2.3 Methodology

Both these learning methods require the implementation of several neural networks, doing several di�erent

tasks. Indeed, it is very important for these tasks to be as varied as possible, because they will constrain

the learning power and the generality of the new learning rule.



Figure 1: Proposed structure of the synaptic learning function�w(�): it contains multiple a-priorimodules,

each representing a di�erent known or hypothesized synaptic plasticity mechanism. A free module may be

added to allow the resulting �w(�) function to be more powerful.

Some networks should work on complex learning problems such as pattern or speech recognition problems,

to enforce e�ciency constraints. There should also be tasks that consist in reproducing behavioral phe-

nomena, such as associative conditioning, to re
ect behavioral constraints. And �nally, some very small

networks may be trained to reproduce neurological phenomena such as habituation, recovery, dishabitua-

tion and sensitization.

The synaptic modi�cation function can be implemented as a backpropagation [Rume86a] neural network

with constraints, inputs and initial features that are derived from biological considerations, i.e., biological

knowledge will be used to bootstrap this function and force it to be plausible (see section 3). This network

can have feedback and could be desribed by di�erential equations (see [Pear89] for the computation of the

gradient in that case).

3 Biological Constraints

Biological plausibility constraints can be imposed on the learning rule. For example the rule can be

designed in such a way that it uses only information which is local in time and in space: its inputs are

locally measurable quantities, sampled in the near past. The rule can have some internal variables which

represent a memory of their past values. However, this mechanism should not use an inde�nitely large

bu�er of their past values, as does for example the time-unfolding algorithm for backpropagation recurrent

networks [Rume86b].

A biologically plausible implementation of excitatory and inhibitory synapses should allow a di�erent

parameter set � for the �w(�) function of excitatory and inhibitory synapses. A generalization of this idea

is to allow multiple �w(�) functions for the diverse types of synapses that are observed. Various types of

synapses, neurotransmitter, pre-, epi- and post-synaptic mechanisms were for example modeled in Aplysia

[Gard87].

Another way to use biological knowledge is to bootstrap the function �w(�) so that it initially has access

to a set of a-priori subfunctions equivalent to known or hypothesized synaptic modi�cation mechanisms

(see Figure 1). These a-priori subfunctions may themselves be parametrized functions. The optimization

method described in section 3 can be used to search for an optimal combination of these subfunctions, as

well as, to tune their parameters. In addition, a free subfunction could be included in the system that

computes �w(�). This free subfunction is initialized with random parameters and it is used to perform

computations which the a-priori subfunctions and their combination cannot provide, but which can help

improving the satisfaction of constraints imposed on �w(�). This bootstrapping of �w(�) ensures that the

networks will at least be able to learn, in the situations in which the a-priori subfunctions where shown to

work.

An example of a biological model that could be embedded as a module of �w(�) is the generalized Hebbian

rule proposed in [Done89]:

�w

i

= � y

pre(i)

k (7)

where � is a positive valued learning rate parameter, y

pre(i)

is the presynaptic activity (at synapse i), and

k is a reinforcing signal. That signal can either be the postsynaptic potential x

post(i)

or the activity of a

special training signal, for example a neurofacilitator signal y

modul(i)

, as in the case of the pairing-speci�c

presynaptic facilitation observed in Aplysia [Hawk83], or in the case of neuromodulators that may be

related to associative learning in Hermissenda [Crow89]. In general, several modulating signals should be

allowed, corresponding to multiple neuromodulators, as in Figure 1.



Another example of a synaptic modi�cation model that could inspire the design of �w(�) is the one

proposed in [Klop89]. In this model, synaptic changes depend upon changes in pre- and post- synaptic

activity, instead of depending upon the absolute levels of these variables. This could be implemented in

the design of Figure 1, by allowing multiple delays (and/or recurrence) in the subfunction modules.

4 Conclusion and Initial Experiments

A few simple experiments were performed in order to evaluate the proposed method.

...

We present an original approach to neural modeling, based on the idea of searching with learning methods

for a parametric synaptic learning rule that is biologically plausible, as well as yielding networks that can

learn to perform di�cult tasks. The networks architecture, as well as the learning function, can be designed

with constraints derived from biological considerations. The method presented may help to bridge the gap

between two approaches in neural networks research: mathematically-derived (e.g., connectionist models

[Rume86a]) and biologically-faithful models (e.g., [Hawk89a]). This is not only important to improve

biological modeling of brain function and learning, but it may also help to discover better arti�cial neural

networks algorithms. By constraining the search for these algorithms to biologically plausible models, we

increase the probability that these models will perform and generalize well, when facing tasks on which the

brain performs well. It should be noted that the method of learning the learning rule can be viewed as a

recursive process. If the resulting learning rule performs better than the original learning method used to

learn that rule (e.g. gradient descent or genetic algorithms), then that learning rule should be used in a

further iteration as a learning method in order to improve itself.

References

[Bair90] Baird B. (1990). Learning with synaptic nonlinearities in a coupled oscillator model of olfactory

cortex. To appear in Analysis and Modeling of Neural Systems, F.H. Eeckerman ed.

[Bart91] Bartha G.T., Thompson R.F., and Gluck M.A. (1991). Sensorimotor learning and the cere-

bellum. To appear in Visual Structures and Integrating Functions, M. Arbib & J. Ewert eds,

Springer-Verlag.

[Beck89] Becker, S. and Le Cun, Y. (1989). Improving the convergence of back-propagation learning with

second-order methods. In Touretzky, Hinton and Sejnowski eds., Proc. of the 1988 Connectionist

Summer School, pp. 29-37, San Mateo. Morgan Kaufmann.

[Beng89] Bengio Y., Cardin R., De Mori R. & Merlo E. (1989). Programmable execution of multi-layered

networks for automatic speech recognition. Communications of the Association for Computing

Machinery, vol. 32, no. 2, pp. 195-199.

[Byrn87] Byrne J.H. (1987). Cellular analysis of associative learning. Physiological Review, 67, pp. 329-

439.

[Crow89] Crow T. (1989). Associative learning, memory and neuromodulation in Hermissenda. In Neural

Models of plasticity, J.H. Byrne & W.O. Berry, eds., pp. 1-21.

[Davi89] Davis L. (1989). Mapping neural networks into classi�er systems. Proc. Third International

Conference on Genetic Algorithms, J.D. Shafer ed., Morgan Kaufmann, pp. 375-378.

[Done89] Donegan N.H., Gluck M.A. and Thompson R.F. (1989). Integrating behavioral and biological

models of classical conditioning. Computational Models of Learning in Simple Neural Systems,

Hawkins R.D. & Bower G.H. eds. Academic Press. pp. 109-156.



[Gard87] Gardner D. (1987). Synaptic diversity characterizes Biological Neural Networks. Proc. IEEE

First International Conference on Neural Networks, San Diego, CA, pp. IV-17 - IV-22.

[Gold88] Goldberg D. (1988). Genetic Algorithms in Machine Learning, Optimization, and Search.

Addison-Wesley.

[Hawk89a] Hawkins R.D., Bower G.H. (eds.) (1989). Computational Models of Learning in Simple Neural

Systems. Academic Press.

[Hawk89b] Hawkins R.D. (1989). A biologically based computational model for several simple forms of

learning. Computational Models of Learning in Simple Neural Systems, Hawkins R.D. & Bower

G.H. eds. Academic Press. pp. 65-108.

[Hawk83] Hawkins R.D., Abrams T.W., Carew T.J. and Kandel E.R. (1983). A cellular mechanism of

classical conditioning in Aplysia: Activity-dependent ampli�cation of presynaptic facilitation.

Science, 219, pp. 400-404.

[Hint89] Hinton G.D. (1987). Connectionist Learning Procedures. Arti�cial Intelligence, vol. 40, Sept.

89, pp. 185-234.

[Holl75] Holland J. (1975). Adaptation in Natural and Arti�cial Systems. University of Michigan Press.

[Klop89] Klopf A.H. (1989). Classical conditioning phenomena predicted by a drive-reinforcement model

of neuronal function. In Neural Models of plasticity, J.H. Byrne &W.O. Berry, eds., pp. 104-132.

[Pear89] Pearlmutter B.A. (1989). Learning state space trajectories in recurrent neural networks. Neural

Computation vol. 1, no. 2, pp. 263-269.

[Rume86a] Rumelhart D.E., McClelland J.L. (eds.) (1986).Parallel Distributed Processing, volume 1. Brad-

ford Books, MIT Press.

[Rume86b] Rumelhart D.E., Hinton G.E. and Williams R.J. (1986). Learning internal representations by

error propagation. Chapter 8 of Parallel Distributed Processing, volume 1. Rumelhart D.E. and

McClelland J.L. (eds.), Bradford Books, MIT Press.

[Whit89] Whitley D. and Hanson T. (1989). Optimizing neural networks using faster, more accurate

genetic search. Proc. Third International Conference on Genetic Algorithms, J.D. Shafer ed.,

Morgan Kaufmann, pp. 391-396.


