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Abstract

This paper presents a new approach to neural modeling based on the idea of using

an automated method to optimize the parameters of a synaptic learning rule. The

synaptic modi�cation rule is considered as a parametric function. This function has

local inputs and is the same in many neurons. We can use standard optimization

methods to select appropriate parameters for a given type of task. We also present a

theoretical analysis permitting to study the generalization property of such parametric

learning rules. By generalization, we mean the possibility for the learning rule to

learn to solve new tasks. Experiments were performed on three types of problems: a

biologically inspired circuit (for conditioning in Aplysia), Boolean functions (linearly

separable as well as non linearly separable) and classi�cation tasks. The neural network

architecture as well as the form and initial parameter values of the synaptic learning

function can be designed using a priori knowledge.
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1 Introduction

Many arti�cial neural network models have been recently proposed (see [17] and [18] for

detailed reviews) and each of them uses a di�erent (but constant) synaptic update rule. We

propose in this paper to use optimization methods to search for new synaptic learning rules.

Preliminary studies on this subject were reported in [4, 5, 6].

Many biologically inclined researchers are trying to explain the behavior of the nervous

system by considering experimentally acquired physiological and biological data for con-

structing their models (see for example [14] and [7]). These biologically plausible models

constrain the learning rule to be a function of information locally available to a synapse.

However, it has not yet been shown how such models could be e�ciently applied to di�cult

engineering or arti�cial intelligence problems, such as image or speech recognition, diagno-

sis, prediction, etc. Another approach, preferred by engineers, emphasizes problem solving,

regardless of biological plausibility (for example, error backpropagation [23]). The above two

classes of models seem to be growing more and more apart. An objective of this paper is

to contribute to �ll the gap between the two approaches by searching for new learning rules

that are both biologically plausible and e�cient compared to specialized techniques for the

solution of di�cult problems.

2 Learning Rule Optimization

The most remarkable characteristic of a neural network is its capacity to adapt to its envi-

ronment, in the sense that it can learn from experience, and generalize when presented new

stimuli. In both biologically motivated and arti�cial neural networks, this adaptation capac-

ity is represented by a learning rule, describing how connection weights (synaptic e�ciency)

change.

Even though it is generally admitted that the learning rule has a crucial role, neural

models commonly use ad hoc or heuristically designed rules; furthermore, these rules are

independent of the learning problem to be solved. This may be one reason why most cur-
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rent models (some with sound mathematical foundation) have di�culties to deal with hard

problems. In this paper we propose to improve a learning rule by adapting it to the kind of

problems to be solved.

To do this, we consider the synaptic learning rule as a parametric function, and we

optimize its parameters using standard optimization tools, such as gradient descent [23],

genetic algorithms [13], and simulated annealing [24]. We make the following assumptions:

� The same rule is used in many neurons (this constraint may be relaxed to one rule for

each type of neuron or synapse

1

). It is not plausible that every synapse or neuron in

a network has its own rule. Actually, neural models described in the literature use a

single learning rule (e.g. Hebb's [16]), which dictates the behavior of every neuron and

synapse.

� There exists a relation (possibly stochastic) between synaptic update and some infor-

mation locally available to the synapse, that corresponds to the learning rule (that is,

synaptic update is not totally random).

� This relation may be approximated by a parametric function

f(x
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; � � � ; x

n

; �
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; �
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; � � � ; �

m

) (1)

where x

i

are variables of the function and �

j

are a set of parameters.

2.1 Variables and Parameters of the Learning Rule

Since the domain of possible learning algorithms is very large, we propose to constrain it

by using in equation (1) only already known, biologically plausible synaptic mechanisms.

Consequently, we consider only local variables, such as presynaptic activity, postsynaptic

1

It was discovered by biologists that there exist di�erent types of neurons and synapses in the brain,

however their characterization is far from being complete [11].
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Figure 1: Elements found in the vicinity of a synapse, which can in
uence its e�cacy.

potential, synaptic strength, the activity of a facilitatory neuron, and the concentration of a

di�usely acting neuromodulator. Figure 1 shows the interaction between those elements.

Constraining the learning rule to be biologically plausible should not be seen as an ar-

ti�cial constraint but rather as a way to restrain the search space such that it is consistent

with solutions that we believe to be used in the brain. This constraint might ease the search

for new learning rules (Figure 2).

2.2 General Form of the Learning Rule

From the above, and denoting w(i; j) as the weight of the synapse from neuron i to neuron

j, the general weight update function will have the form

�w(i; j) = �w(x

1

; x

2

; � � � ; x

n
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; �
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m

) (2)

The synaptic update �w(i; j) of a synapse i! j is computed using (2), as a function of

variables x

k

, local to this synapse and a set of parameters �

k

. It is those parameters that we

propose to optimize in order to improve the learning rule.
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Figure 2: Constraining the space of learning rules considered

2.2.1 Example of a Parametric Learning Rule

Hebb's rule is probably the best known learning rule in connectionist models [16]. It suggests

that a biologically plausible synaptic modi�cation is to increase the weight of a connection

when the presynaptic and postsynaptic neurons are active simultaneously. Under its most

simple expression, Hebb's rule may be written as a parametric function as follows:

�w(i; j) = � y(i) x(j) (3)

where �w is the weight update, y(i) is the activity of presynaptic neuron i, x(j) is the

potential of postsynaptic neuron j, and � a correlation constant. In this case, y(i) and x(j)

are the variables and � a parameter.
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2.3 Form of the Rule

Once the variables and parameters have been chosen, the learning rule must be given a

precise form. In (3), it is simply the product of the variables and of the parameter. Currently

available biological knowledge can help us design a more general form of the learning rule. For

instance, it is now accepted that many mechanismsmay interact in a synapse simultaneously

but with di�erent time constants, which suggests the inclusion of delays in the learning rule.

We may also model a synapse with more details, considering for instance local interaction

at the dendritic tree level (a synapse is then in
uenced by the neuron's local potential instead

of its global activity).

2.4 Task Diversi�cation

Optimizing a learning rule to solve a given single task is an interesting and non-trivial

problem in itself that will be discussed in this paper. We want this rule to be able to

perform adequately on new instances of the task. However, it may be more interesting (and

more di�cult) to �nd a learning rule that can be used successfully on a number of di�erent

learning tasks. During the optimization process, the same rule (with the same parameters)

must be used on all tasks considered. Thus, we have to optimize a learning rule with respect

to its simultaneous performance on di�erent neural networks learning di�erent tasks. This

constraint, suggested by [8], should yield rules of more general applicability. This raises the

question of generalization over tasks. Let us suppose that we optimize a rule using a training

set of tasks sampled from a certain function space. Generalization over tasks is the expected

performance of the learning rule on a new function sampled from the same function space,

i.e., the same class of functions.

2.5 Parameter Optimization

Once the form of �w() is determined, we have to search for values of parameters that

optimize the learning rule's ability to solve di�erent tasks. We will now de�ne the problem
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of optimizing a learning rule.

2.5.1 Learning and Optimization

Let X be a random variable with probability distribution P

X

�xed but unknown, and let

� : X ! Y be an unknown function. For example, X may be a digital representation of a

pixel matrix and Y the symbol (e.g. numbers, letters) corresponding to the image X.

Let J be a scalar cost function. For example we can choose J to be the mean square

criterion:

J(x; y) = (x� y)

2

(4)

The goal of a learning system is then to produce a parametric function

^

�(�) : X ! Y

which minimizes

C =

Z

J(

^

�(x; �); �(x)) P

X

(x) dx (5)

by �nding adequate parameters �

2

. In order to minimize C with a supervised learning

system, we usually proceed using a set of N examples (x

i

; �(x

i

)), for i = 1! N , each chosen

in (X;Y ) independently using P

X

.

Training performance of such a system can be measured in terms of the di�erence between

� and

^

� for the N examples:

^

C =

N

X

i=1

J(

^

�(x

i

; �); �(x

i

)) (6)

The generalization performance of such a system measures the di�erence between � and

^

� for points other than those used to calculate

^

C. To quantify the generalization property

of a learning system, we now introduce the standard notion of capacity.

Let z 2 Z = (x; y) 2 (X;Y ) and let G(z; �) be the set of parametric functions g(z; �).

2

For example, in a neural network, � is the set of weights.

7



For example in neural networks, g represents a network architecture and a cost function, �

is the set of weights and z is a pair of input and corresponding desired output given to the

network. More precisely, g(z; �) = J(

^

�(x; �); �(x)).

When J 2 f0; 1g, Vapnik de�nes in [25] the capacity h of G(z; �) as the maximumnumber

of points x

1

; x

2

; : : : ; x

h

that can always be divided into two distinct class with G(z; �). Vapnik

then describes an extension for the case where J 2 IR. In this case, capacity is de�ned as the

maximum number of input/output pairs z

1

; z

2

; : : : ; z

h

that can always be learned by G(z; �)

with a cost less than a threshold chosen to maximize the capacity h.

Theoretical studies such as [1] and [26] give an upper bound on the numberN of necessary

instances of Z required to achieve generalization with a given maximal error when training

is performed with a learning system with capacity h:

� � O(

s

h

N

ln

N

h

) (7)

where � is the di�erence between training error (using theN examples) and generalization

error expected over all examples. This means that for a �xed number of examplesN , starting

from h = 0 and increasing it, one �nds generalization to improve until a critical value of

the capacity is reached. After this point, increasing h makes generalization deteriorate. For

a �xed capacity, increasing the number of training examples N improves generalization (�

asymptotes to a value that depends on h). The speci�c results of [25] are obtained in the

worst-case, for any distribution P

X

.

2.5.2 Optimization of the parameters

Let L be a learning rule de�ned by its structure (�xed) and its parameters � (considered to

be variable). Optimizing the learning rule requires to search for the values of parameters

that minimizes a cost function.

Let fR

1

; R

2

; :::; R

n

g be a set of neural networks trained on n di�erent tasks (and possibly

having di�erent structures), but using the same learning rule L. If C

i

is the cost (as de�ned

for instance by equation (6)) obtained with neural network R

i

after being trained on its task,
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then the global cost function we wish to minimize is

C

�

=

X

i

C

i

(8)

Furthermore, if we want a learning rule to be able to solve any task, we should, in theory,

optimize C

�

with respect to the cost resulting from the learning of every possible instance

of every one of the n tasks. Since this is usually impossible in practice, we can only �nd an

approximation having the generalization error decrease with the increasing number of tasks

used to optimize C

�

. This follows from Vapnik and Chervonenkis' theorem [26], as long

as those tasks are representative of the sets of all possible tasks (which we usually cannot

verify).

More formally, we can de�ne the capacity of a parametric learning rule G(z; �) as a

measure of the number tasks z that can always be learned using G. Thus equation (7) holds

for the generalization error of the learning rule where h is the capacity of the parametric

learning rule (which is in fact a function of the number of parameters of the learning rule),

N is the number of tasks used to optimize the parameters, and � is the di�erence between

training error (training tasks) and generalization error (on new tasks).

Thus, we can draw several conclusions from this extension. For example, it becomes clear

that the expected error of a learning rule over new tasks should decrease when increasing the

number of tasks (N) used for learning the parameters �. However, it could increase with the

number of parameters and the capacity of the learning rule class if an insu�cient number

or variety of training tasks are used in the optimization. This justi�es the use of a-priori

knowledge in order to limit the capacity of the learning rule. It also appears more clearly

that the learning rule will be more likely to generalize over tasks which are similar to those

used for the optimization of the rule's parameters. In consequence, it is advantageous to use,

for the optimization of the learning rule, tasks which are representative of those on which

the learning rule will be ultimately applied.
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Initialization of ∆w()

Learning some tasks
using the current ∆w()

Modification of ∆w() with
respect to the error

obtained after the learning
of the tasks

Step 1: Learning of the tasks

Step 2: optimization of ∆w()

Figure 3: Optimization steps

2.6 Optimization Process

We use a two-step optimization process as shown in Figure 3. The form of the learning

rule is de�ned and the parameters are initialized either to random values within reasonable

bounds, or to values corresponding to biological evidence (an example of this can be found

in Section 3). We also de�ne the set of tasks to be used in the process. Then we use the

following algorithm:

1. We train n networks simultaneously on n tasks by using the current learning rule.

Since �w() is, with high probability, initially far from optimal, it is very unlikely that

all tasks will be solved adequately. After a �xed number of learning steps, we compute

the error obtained in each task from equation (6).
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2. The objective function (such as equation (8)) is minimized by updating the parameters

� of �w() according to the optimization method used.

3. We return to step 1, using the new parameters of the learning rule, until we reach an

acceptable learning rule.

When the new learning rule is able to solve adequately all n tasks, we may want to test

its capability to generalize on tasks which were not used in the optimization process.

Many di�erent optimization methods may be used to improve �w(). We can use local

methods such as gradient descent, or global methods such as simulated annealing [24] or

genetic algorithms [19, 13]. Local methods are usually faster, but they can get trapped

in local minima, whereas global methods are less sensitive to local minima but usually

slower. Hybrid gradient descent/genetic algorithms were recently suggested [9, 28]. In our

experiments we used gradient descent, simulated annealing, as well as genetic algorithms.

2.7 Problem complexity

It is interesting to discuss brie
y the complexity of the above optimization problem. We

already have some knowledge of the complexity of neural network learning. Deciding if in the

space of parameters of a neural network N there exists an adequate solution to an arbitrary

task T is equivalent to the satis�ability problem, which is NP-complete [20]. Consequently,

the search for such solution in N must be NP-hard.

However, experimentation shows that a complex task may be learned in polynomial time

by a neural network if a sound approximation is acceptable [18]. General optimization

methods such as gradient descent or simulated annealing can usually give good sub-optimal

solutions in polynomial time, even if they may need exponential time for the optimal solution.

In our experiments we clearly cannot aim at exact optimization. Instead, we allocate a

polynomial amount of time to each network using the current learning rule to solve its task.

We are thus searching for a learning rule that can solve a set of tasks reasonably well in

reasonable time.
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3 Preliminary Experiments

To test the feasibility of our approach to the optimization of learning rules, we have perform

preliminary experiments with relatively simple problems [4, 5, 6, 2, 3]. In this section we

summarize the results. In these experiments, we used either gradient descent, simulated

annealing, or genetic algorithms as optimization methods. The tasks were the following:

conditioning, boolean functions and classi�cation problems. Although preliminary results

are positive, experimentation with more complex problems is needed in order to �nd useful

synaptic learning rules.

a-priori
modules

free
module

presynaptic
activity

postsynaptic
potential

synaptic
weight

neuro
modulator 1

neuro
modulator 2

∆w()

Figure 4: A priori knowledge utilization
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3.1 Form of the Learning Rule

To facilitate the search for an optimal synaptic update rule �w(), it is important to choose

an adequate form of the learning rule. Here, by adequate we mean a form su�ciently rich

to express a good solution (which is problem dependent), but su�ciently constrained to

ease the search of the solution

3

. To do so, we can use some biological knowledge. Figure

4 shows the general form of the learning rules we use in the experiments. It consists of a

certain number of a priori modules representing known or hypothesized biological synaptic

characteristics. The resulting rule re
ects a combination of a priori and free modules. The

parameters determine the relative in
uence of each module on �w(�).

Equation (9) is a concrete example of a learning rule used in the experiments that will

be described in this section.

�w(i; j) = �

0

+ �

1

y(i) + �

2

x(j) + �

3

y(mod(j)) +

�

4

y(i) y(mod(j)) + �

5

y(i) x(j) + �

6

y(i) w(i; j) (9)

This is an instance of the general form described in �gure 4. The function computed by

this equation has 7 parameters, and integrates the following a priori modules:

� y(i) � x(j), Hebb's rule.

� y(i)�y(mod(j)), where y(mod(j)) is a modulatory activity (chemical or neural). Hawkins

describes in [14] a conditioning model for Aplysia using such a mechanism.

� y(i) � w(i; j), where w(i; j) is the synaptic weight at a the previous time frame. This

term suggested in Gluck's conditioning models [12], permits gradual forgetting.

3

Moreover, as we have seen in section 2.5.2, if the form of the learning rule is too rich, capacity may be

too high to reach good generalization performance.

13



3.2 Conditioning Experiments

The goal of our �rst experiment is to discover a learning rule which is able to reproduce some

classical conditioning phenomena in animals. Conditioning experiments, �rst described by

Pavlov [22] are well known through experimental studies. For our experiments, we used

Hawkins' model [14]. We studied the following phenomena:

Conditional
Stimulus

CS1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0.95

0.25

0.25

0.95

0.25

0.43

0.95

0.25

0.62

0.95

0.25

Desired
Response

d

Unconditional
Stimulus

 US
The presentation of US
always lead to a strong
response from the
organism.

CS1 is conditioned by US.

Figure 5: Conditioning by a sequence of stimuli and responses. The real sequence used for

the experiments is much longer.

Habituation: initially, a conditional stimulus CS

1

(e.g. a red light presented to an animal)

produces a small response (e.g. the animal salivates slightly). By presenting CS

1

repetitively, the response gradually vanishes (i.e., the animal gets used to the stimulus,

and reacts to it less and less).
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Conditioning: a conditional stimulus CS

1

is followed by an unconditional stimulus US

(e.g. a red light followed by food). The response to CS

1

grows gradually (the animal

salivates before seeing the food, as soon as the red light is turned on).

Blocking: after CS

1

has been conditioned, a second conditional stimulus CS

2

(e.g. a green

light) is presented to the organism simultaneously with CS

1

, both followed by an

unconditional stimulus US. In that case, CS

2

is not conditioned (the animal will not

salivate on green light only).

Second order conditioning: after CS

1

has been conditioned, CS

2

may be conditioned by

presenting CS

2

followed by CS

1

(the animal will begin to salivate when it sees the

green light, knowing that the red light follows, and that it is usually followed by food).

Extinction: after CS

1

has been conditioned, repetitive presentation of CS

1

not followed

by US will reduce the animal's response to its original level (when no food follows the

red light, the animal tends to lower its saliva response with time, eventually reaching

its initial unconditioned level).

Figure 5 shows the way we modeled one of those behaviors (conditioning) with a sequence

of stimuli and associated responses.

The form of the learning rule we used is equation (9), while the network architecture is

shown in �gure 6. It is inspired by Hawkins' work [15, 14].

In this network, CS

1

and CS

2

are conditional stimuli, US is an unconditional stimulus,

FN is a facilitatory neuron, and MN a motor neuron (it represents the animal's response

to stimuli). CS

1

and CS

2

in
uence the motor neuron (through connections toward MN),

and these connections are themselves modulated by a facilitatory neuron which takes into

account two consecutive states of the system through connections with delay (e.g. when CS

1

is activated at time t and US at time t+ 1).

In the conditioning experiments, the cost function to minimize (with gradient descent

in this case) is de�ned following equations (6) and (8) where ŷ is the actual response of

the network given an input sequence of stimuli, and y is the target behavior for the same
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modulatory connection
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fixed weight (1) synapse

variable weight synapse
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FN
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Figure 6: Neural network used for the conditioning experiments
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Figure 7: Evolution of the learning rule e�cacy

input sequence. By �xing the initial values for some parameters (e.g. in equation (9), �

3

is initialized to 1) and by initializing the other parameters to random values (in the range
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Figure 8: Conditioning tasks computed by our new learning rule

[�1; 1]), it was possible to �nd a set � such that all �ve conditioning behaviors could be

learned by the network in �gure 6 with initial random weights. Figure 7 shows the evolution

of the cost function during optimization. Figure 8 shows the results of all �ve conditioning

tasks obtained from our new learning rule (an extensive analysis of the resulting rule will be

17



done in a future paper). The results obtained by this learning rule are similar to Hawkins'

experimental results [14].

3.3 Experiment with Boolean Functions

The goal of these experiments is to explore in a very simple setting the possibility of opti-

mizing a learning rule that could be used to train a network with hidden units. They allowed

us to evaluate the applicability of our method to a simple computational problem.

We used again the same learning rule from equation (9). Fully connected networks with

two inputs, a single output and one hidden unit were trained to perform linearly separable

functions (such as AND, OR) and non linearly separable functions (such as XOR, EQ). Infor-

mation provided to hidden units about their contribution to errors is fed through backward

paths, with neurons that may modulate synaptic change on corresponding forward paths

(Figure 9).

As for the conditioning experiments, a cost function was de�ned in terms of the di�erence

between real and expected learning behavior of the network. This target behavior consists

in learning some Boolean function within a cycle of 800 presentations of randomly selected

noisy Boolean input patterns. A Gaussian noise was added to each input pattern for better

generalization of the learning rule. Before each cycle, the network weights were initialized

randomly, in order to allow the resulting rule to be as insensitive as possible to the net-

work's initial conditions. Rule parameters � were updated after each cycle. The results are

summarized in Table 1.

Two optimization methods were used: gradient descent and simulated annealing. Gra-

dient descent proved to be faster but sensitive to initial values of �, whereas simulated

annealing was slower (around 500 times slower) but insensitive to parameter initialization.

In order to verify that gradient descent and simulated annealing were more e�cient than

random search, we also tried the following approach. For the random search, 50000 vectors

of �, each with 7 parameters within [�1; 1], were chosen and those corresponding to the best

learning performance on the training tasks were kept. The networks trained with that rule
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Output ErrorOutput

InputsInputs

Figure 9: Architecture transformation to enable local evaluation of the network error

could not learn the non linearly separable functions completely (25% error at best), whereas

the networks trained with a rule obtained with gradient descent or simulated annealing were

able to learn the training tasks perfectly. Furthermore, this rule could also generalize to new

(but similar) tasks including non linearly separable functions, as shown in Table 1. Another

interesting observation is that, as expected with the capacity theory extended in section

2.5.2 and with results of [8], generalization to new tasks is improved if more tasks are used

for optimizing the learning rule.

3.4 Classi�cation Experiments

The general problem of classi�cation [10] is to establish a correspondence between a set of

vectors and a set of classes. A classi�er is a function f : V ! C, where V 2 IR

n

is a set of
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Number Type Number Generalization Optimization Sensibility

of Tasks of Tasks of Steps (to New Tasks) Method to Initialization

L NL

1 L 3 yes no

1 NL 15 yes no Gradient yes

4 L 5 yes no Descent

5 4L, 1NL 100 yes yes

1 L 100 yes no Simulated

1 NL 1000 yes no Annealing no

5 4L, 1NL 24000 yes yes

Table 1: Summary of boolean experiments. L stands for linearly separable task whereas NL

stands for non-linearly separable tasks.

n-dimensional vectors we want to classify while C is the set of classes. Many problems may

be formulated in this way. An example is the optical character recognition problem, which is

to associate an image to a character. Here, using a simple neural network architecture with

two input units, one hidden unit and one output unit, we will search for a synaptic learning

rule able to solve two-dimensional classi�cation problems with two classes.

Let the two classes be C

1

and C

2

, and let V

1

= fv 2 IR

2

jv belongs to C

1

g and V

2

=

fv 2 IR

2

jv belongs to C

2

g be the sets of vectors belonging respectively to C

1

and C

2

. The

task consists in learn whether each vector v 2 IR

2

belongs to C

1

or C

2

. To do this, we

randomly select vectors v 2 IR

2

belonging to C

1

or C

2

. The network predicts the class C

�

to which an input vector v belongs. The goal is to minimize (by modifying the connection

weights) the di�erence between C

�

and the correct class associated to a vector, for every

training vector.

We performed experiments to verify the theory of capacity and generalization applied to

parametric learning rules. In particular, we wanted to study the variation of the number of

tasks N , the capacity h and the complexity of the tasks, over the learning rule's generalization

property (�). Moreover, we did these experiments using three di�erent optimization methods,

namely gradient descent, genetic algorithms and simulated annealing. Experiments were

conducted in the following conditions:

� Some tasks were linearly separable (L) while others where non-linearly separable (NL).
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� Each task was learned with 800 training examples and tested with 200 examples. A

task was said to be successfully learned when there were no classi�cation error over

the test set.

� We used once again the network described in �gure 9, with backward neurons that

may provide error information to hidden connections.

� We tried two di�erent parametric learning rules. Rule A was de�ned using biological

a-priori knowledge to constrain the number of parameters to 7, as equation (9):

�w(i; j) = �

0

+ �

1

y(i) + �

2

x(j) + �

3

y(mod(j)) +

�

4

y(i) y(mod(j)) + �

5

y(i) x(j) + �

6

y(i) w(i; j) (10)

where w(i; j) is the synaptic e�cacy between neurons i and j, x(j) is the activation po-

tential of neuron j (postsynaptic potential), y(i) is the output of neuron i (presynaptic

activity), and y(mod(j)) is the output of a modulatory neuron in
uencing neuron j.

Rule B had 16 parameters and was de�ned as follows:

�w(i; j) = �

0

+ �

1

y(i) + �

2

x(j) + �

3

y(mod(j)) + �

4

w(i; j) + �

5

y(i) x(j) +

�

6

y(i) y(mod(j)) + �

7

y(i) w(i; j) + �

8

x(j) y(mod(j)) +

�

9

x(i) w(i; j) + �

10

y(mod(j)) w(i; j) + �

11

y(i) x(j) y(mod(j)) +

�

12

y(i) x(j) w(i; j) + �

13

y(i) y(mod(j)) w(i; j) +

�

14

x(j) y(mod(j)) w(i; j) + �

15

y(i) x(j) y(mod(j)) w(i; j) (11)

� A typical experiment was conducted as follows: We chose a parametric learning rule

(A or B), an optimization method (genetic algorithms, gradient descent, or simulated

annealing), a number of tasks to optimize the rule (1 to 9), and a complexity for the

tasks (linearly separable (L), or non-linearly separable (NL)). Then we optimized the

rule for a �xed number of iterations, and �nally, we tested the new rule over other
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tasks (i.e., we tried to learn new tasks with their 800 training patterns and evaluate

performance with a test over the remaining 200).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9

Error

Number of tasks used for optimization

E

genL
3

3 3

3

3

3

3

3

3

3

Figure 10: Evolution of generalization error (E

genL

) with respect to the number of tasks

used during optimization. In this example, we used genetic algorithms and a rule with 7

parameters. Tasks were linearly separables.

The �rst experiment was to verify that the number of tasks N used for the optimization

had an in
uence on the rule's generalization performance. Figure 10 shows that for a given

and �xed optimization method and capacity h, generalization error tends to decrease when

N increases, as theory predicts.

The second experiment was to verify if the type of tasks used during optimization in-


uences the rule's generalization performance. Figure 11 illustrates the results. We can see

that when the rule is optimized using linearly separable tasks, generalization error on both

linearly and non linearly separable tasks stays high, whereas if we use non linearly separa-

ble tasks during rule optimization, generalization error decreases when the number of tasks

increases.

In the third experiment (�gure 12), we veri�ed if the capacity of a parametric learning rule

in
uences its generalization performance. Here, we compared rules A and B (respectively
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Figure 11: Evolution of generalization error with respect to the task di�culty used during

optimization. Here, we used genetic algorithms and a rule with 7 parameters. E(L)

gen

represents generalization error when the rule is optimized on linearly separable tasks, whereas

E(NL)

gen

represents generalization error when the rule is optimized on non linearly separable

tasks.

with 7 and 16 parameters). As we can see, if the number of tasks used for optimization is too

small, the rule with the smallest capacity (A) is better, but the advantage tends to vanish

when the number of tasks increases.

In �gure 13, we compare the use of di�erent optimization methods to �nd the parameters

of a learning rule. We compared two methods: genetic algorithms and simulated annealing

4

.

As we can see, genetic algorithms seem generally better, especially when the number of tasks

used for optimization is small.

The last �gure (14) shows how optimization error varies during optimization of the learn-

ing rule. At the beginning of the optimization process, training error on selected tasks is

very high, but it decreases rapidly during the optimization process.

4

Gradient descent always falled into local minima and thus have not been able to give interesting results.
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Figure 12: Evolution of generalization error with respect to capacity of the parametric

learning rule. Here, we used genetic algorithms and tasks were linealy separables.

E(7)

genL

is the generalization error of rule A (with 7 parameters) and E(16)

genL

is the

generalization error of rule B (with 16 parameters).

4 Conclusion

This paper explores methods to optimize learning rules in neural networks. Preliminary

results show that it is possible to optimize a synaptic learning rule for di�erent tasks, while

constraining the rule to be biologically plausible.

Furthermore, we have established the conceptual basis permitting to study the general-

ization properties of a learning rule whose parameters are trained on a certain number of

tasks. To do so, we have introduced the notion of capacity of parametric learning rules.

The experimental results described here qualitatively agree with learning theory applied to

parametric learning rules.

The problems studied so far were quite simple, and it is important to improve the form

of the learning rule and the optimization process in order to �nd rules that can e�ciently

solve more complex problems. In this section we discuss some improvements which should

be considered for further research.
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Figure 13: Evolution of generalization error with respect to the optimization method. Here,

tasks were linearly separables and the rule had 7 parameters. E(ga)

gen

represents gen-

eralization error with genetic algorithms, and E(sa)

gen

generalization error with simulated

annealing.
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Figure 14: Evolution of optimization error with respect to the number of steps during opti-

mization of a parametric learning rule. Here, optimization method is simulated annealing

and the rule has 7 parameters.

Optimization There are two immediate ways to improve the optimization process. One is
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to re�ne the cost function by adding terms re
ecting the quality of network generaliza-

tion. Other optimization methods such as genetic programming [21] or second-order

methods should be tested for their e�ciency in handling diverse and more complex

learning problems. Experiments show that a rule optimized to solve a simple task can-

not solve a more di�cult task, while the converse is often true (given that the number

of tasks used to optimize the rule is su�cient).

Form of �w() Optimization can yield good results only if the learning rule's constraints

are soft enough to yield one or more acceptable solutions, but hard enough in order to

yield good generalization performance and speed up optimization so that such solutions

can be found in reasonable time. One possibility is to perform a preliminary analysis

of the tasks to be learned and to \customize" the rule accordingly. Another one is to

take into account known (and probably useful) biological synaptic mechanisms such

as:

� Temporal processing in a synapse (di�erent input factors in
uence synaptic e�-

cacy with di�erent delays).

� Limiting the neurons to be excitatory or inhibitory (but not both). This is unlike

most existing arti�cial neural network models in which a neuron may have both

behaviors.

� More detailed modeling of operation of the neuron, taking into account physical

distance between synaptic sites and local in
uence of the local potential on the

neural membrane on the dendritic tree.

Analysis of resulting learning rules It is important to analyze the obtained learning

rules. We should systematically compare our resulting rules with other learning tech-

niques such as back-propagation and attempt to discover the underlying reasons for

di�erences in their behavior.
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