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Abstract 

Descriptor Predictive Control (DPC) is a hybrid 
open-loop closed-loop control strategy for trajectory 

tracking of nonlinear systems. The intrinsic idea of 

DPC is the combination of feedback control and the 

implicit formulation of a control law, the control be- 

ing obtained by iteratively solving a descriptor sys- 

tem. We consider three models for the riderless bi- 

cycle. A cart, a cart plus an inverted pendulum, and 

a complex model taking into account the complete 

geometry of a bicycle. We show first on the simple, 

then on the complex model, how to obtain an output 

tracking controller using the concept of DPC. 

1. Introduction 

In this paper, we apply a trajectory tracking con- 

trol methodology, called Descriptor Predictive Con- 

trol (DPC), which has been introduced by the au- 
thors in [13]. The basic concept of the methodology 
has initially been introduced in [7]. The underlying 
idea, is that the controller should compute the control 

numerically, in an implicit manner using backward 

differentiation formula, rather than symbolically. 

The objective of this paper is to show, on the exam- 

ple of the controller synthesis for a riderless bicycle, 

described by three models of different degrees of com- 

plexity, that nonlinear tracking control is most natu- 

rally designed using descriptor systems. Due to the 

implicit formulation and the use of DPC the resulting 

control laws remain simple in structure, even in the 

case of complex dynamical systems. 

Consider the nonlinear systems 

0 = F(#,x,t,u) (1) 

y = A(ze,u,t) (2) 

with control u, state 2, and output y. Many phys- 

ical systems, such as constrained mechanical sys- 

tems, are most naturally initially modeled in the form 

(1), where F; is identically singular, which means 
that (1) is a system of Differential Algebraic Equa- 
tions (DAE’s) or a Descriptor System. Classically, 

a trajectory tracking controller for (1) is obtained 

by, first, transforming (1)-(2) into the explicit form 
z = f(#,t)+g(2,t)u, y = A(z,u,t), and then de- 
signing an explicit expression for the controller u = 

k(@, Yas Yd, --- ye), where yg is the desired output 
trajectory (see for ex. [6]). Complex symbolic compu- 
tations are necessary to obtain these explicit expres- 

sions, whereas, in many cases, the same control objec- 

tives can be obtained by a simpler method. This can 

be done by considering (1)-(2) to be a DAE in «, y, 
and u, and computing wv numerically. This DAE will 

in the sequel be referred to as control DAF. Clearly, 

we have to assure that the control DAE has a solution. 

A necessary condition for that is that (1)-(2) has as 
many inputs as outputs and be invertible (see for ex. 

[5, 10] for conditions of invertibility). Furthermore, 
we need that the control DAE be numerically solv- 

able. To this end we assume that the control DAE is 

(or has been put into) a DAE of, at least, index three 
(see [1] for a more detailed discussion of the index of 
DAS’s). 

2. Descriptor predictive Control 

In order to compute the control (and if necessary ap- 

proximations for higher order derivatives), the con- 

troller uses the solution of the control DAE, which 

is composed out of the nonlinear plant and stabi- 

lized path constraints expressing the tracking require- 

ments. 

_ F(#,2,t,u) 
0= a(o)[ya(t) — h(a, u,2)] (3) 

where a(c) is a stable polynomial in the differential 
operator o = d/dt. The stabilization is necessary as 

the index has to be reduced to, at least, three [1] to 
insure safe numerical integrability of the DAE. The 

tracking control is computed as follows: the measured 

state is used as an initial condition for the controller 

DAE which is solved numerically for a short time pe- 

riod (prediction horizon) yielding a prediction of the 
state and the control. The control is applied for a



short period of time as an open loop control, the state 

is measured again, and the process repeated. The re- 

sulting control is a feedback control since the integra- 

tion is initialized by the measured state of the plant 

but open-loop over short periods of time. It is also 

in a sense predictive because the control is obtained 

by “looking ahead”. However, it is different from the 

“classical” concept of predictive control as used in [8] 

in that it does not involve optimization. 

A linear analysis of the controller has been carried 

out in [11, 13]. Here, we note only that the appli- 
cation of this controller as proposed in [7] can yield 

non stabilizing controllers, a problem which can be 

avoided by using a preliminary feedback, provided 

the system is minimum phase. The controllers used 

throughout this paper will be designed such that pre- 

liminary feedback will not be necessary. 

3. The bicycle model 

We consider three bicycle models. A cart, a cart plus 

an inverted pendulum, and a full bicycle model taking 

into account the complete geometry. The two latter 

models are depicted in Figure 6. Due to the physical 

constraints expressing the tire road contacts, which 

are supposed to be ideal, the bicycle is a nonholo- 

nomic system. 

3.1. The cart model 

A standard example for a nonholonomic system is 

the cart model, which has extensively been studied 

in the literature (see for example [2]). We denote the 
xy-position of the cart by the pair (x,y), its orienta- 
tion by @ and its velocity by v. The steering angle 

is denoted by A. Setting « = tan(A)/i, and using 
the assumption that we directly control the steering 

velocity (that is, A= ui) the cart model becomes 

Dynamic part { fy Tk = (14 0in*) ut 
mtv = Up 

do = UK 
Kinematic part z = vcos(¢) (4) 

y = vsin(¢) 

where x = (k,v,¢,2,y)? is the state and u = 
(ui, Ug)? the control input. 

3.2. The simple bicycle model 

The simplest bicycle model describing leaning and 

falling over is a cart extended by an inverted pen- 

dulum. This model is studied in [8, 4]. The result- 
ing equations of motion are sufficiently simple to be 

manipulated by hand. This will help us studying the 

problem of stabilizing the bicycle and tracking a path 

in the xy-plane. The simple bicycle model is the cart 

model plus the equation of motion of an inverted pen- 

dulum. As in the cart model, we assume here that 

    

    
Figure 1 The simple bicycle model of [4] and the 

“full” bicycle model of [12]. 

we control the angular velocity of the steering angle?. 

The model is equivalent to that in [8] except for an 
appropriate feedback transformation. 

idk = (1 + 2«?)uy 

Dynamic part mv = Uwe 

pa —9§P8q~ = CoE (5) 

Kinematic part{ see cart model 

E=Ktplot(k*p’sy t+Kp)v? +vkplo 

where a is the bank angle, s. = sin(a) and cg = 

cos(a). The constant p denotes the length of the in- 
verted pendulum on the cart, fp is the distance be- 

tween the rear wheel and the turning point of the 

pendulum on the cart, and g is the gravity constant. 

3.3. The full bicycle model 

Experiments on a real bicycle show that a bicycle has 

beyond a certain critical velocity and below a sec- 

ond critical velocity a stable movement, which is the 

straight line movement. Since the inverted pendulum 

on the cart is unstable for any movement, the simple 

bicycle model is too incomplex to be (on this point) 
physically correct and we need to extend the model 

to a more complex one. The equations of motion 

of the extended bicycle model (in the sequel referred 

to as (full) bicycle model) are computed in a stan- 
dard parameterization (¢ denotes the generalized co- 

ordinates) using the Euler Lagrange formalism with 

constraint equations (A and y denote the Lagrange 

multipliers). The resulting model is a constrained 

  

1For some comparisons with the full bicycle model we will 

need to replace this assumption by the new assumption that 

we control the angular acceleration of the steering angle.



mechanical system of the form 

M(q)¢- F(a, —K(q)u- fF (@A- G* (ay 
0= f(q). 

where fy = Of(q)/@q. In the following we suppress 
the arguments g and g in the matrices M, F, K, G, 

and f, and reduce the index of the constrained system 

to obtain the index one DAE 

j—-M-"|P~ Ku fP\- G7] 
0= cait+f 

Gq 

where c is a positive constant, =X and a = y. The 

control inputs are a pedalling torque (generated by 

an actuator placed between the frame and the rear 

wheel) and a steering torque (generated by an ac- 

tuator between the handlebars and the frame). Let 

w = (AT, AT )F, in the following we will denote the 
full bicycle model as 

g- Poixe (4, q,W, u) 
0= : 6 

Tike (4, q) ( ) 

4. Asymptotic tracking controller 

We say a control asymptotically tracks the output 

y to the desired output trajectory yg if y > ya for 

t + co. In this section we will show that asymptotic 

tracking of the xy-position is impossible if we allow 

the bicycle to lean to the side (and fall over). 

4.1. Cart model 

It is shown in [9] that the position of the center of 
mass of the rear wheel of the cart, given by Py, = 

(x,y), allows to reconstruct the entire state and the 

control input uv = (ui, uz)? by pure differentiation. 
This implies that we can asymptotically track the xy- 

position of the cart provided the cart does not stop. 

(An isolated point in the xy-plain cannot be stabilized 

by smooth state feedback.) The asymptotic tracking 

control can be implemented as DPC, which involves 

the solution? of the following controller DAE. 

xz — feart (2, Ul; uz) 

0=|  aley(r— aq) (7 
b(o)(y — ya) 

where & = feart(&, U1, Ug) denotes the nonlinear plant 

(4). The index of (7) is assured by [9]. a(o) = ao + 
ayo + az07 +a30% and b(c) = bp + bio + beo? 4 ba. 

DAE that can safely be integrated by DASSL. The integrator 

fails if we set b3 = a3 = 0. In this case (7) is and index two 

DAE; DASSL does not support the integration of index two 

DAE’s. 

4,2. Simple bicycle model 

As we have seen on the cart model, a desired path 

for the output (x,y) can be expressed in terms of v 

and «. Consequently, to study the effect of instability 

while tacking (x, y), we may disregard the kinematic 
part in (5) and consider only the dynamic part having 

has output y = («,v)?. The zero dynamics of (5) for 
this output is 

p’a — gp sin(a) = cos(a) € (8) 
E=Ktplo + (K*p* sin(a) +Kp)v? + vk plo 

For € = const. (8) has in a, in the neighborhood of 
a = 0 and € = 0, unstable equilibria at @ = const.. 

Consequently, we cannot asymptotically track the 

output y = (x,v)? to a desired output trajectory. 
That is, tracking of the xy-position is not possible 

with our controller. For the new output 9 = (a, v)? 
we obtain again (8) as zero dynamics. However, in «, 

(8) has stable equilibria for « = const., in the neigh- 
borhood of k = 0, and v = const.. That is, asymp- 

totic tracking of ¥ = (a,v)? is possible. Let the non- 
linear plant (5) be denoted by # = feimp(#, t1, ua), 
where x = (k,a,v,@,%)?. DPC for the output 9 in- 
volves the solution the following controller DAE®. 

xz — foimp (, U1, U2) 

Q= ag(v = va) + ay (v — va) (9) 

bo(a—ag)+b1 (@—Gg) +b2(A—Gq) 

4.3. Full bicycle model 

The same holds for the full bicycle model: we cannot 

asymptotically track y = (x,v)?, but 7 = (a,v)?. 
However, new coupling terms between «, v and a may 

change the index of the control DAE. In our case, the 

index of the control DAE can be studied by looking 

at the linearization, here, the index being equal to 

the number of differentiations necessary to compute 

the inverse dynamics, plus one. Note that we need to 

know the index to chose the degree of the polynomial 

matrix for the stabilization of the path constraints. 

4.3.1 Linear considerations: Consider the 

minimal representation of the linear model of (6) for 

the straight line movement in the operation point 

Qequi = 0 rad, vequi = 2m/s, and (41 gui “equi ) = 

(0,0). We chose as output the bank angle and the 
velocity: 6Y = (a@ — Qequi, U — Vequi)® - The poles are 

{—15.2, 2.15 + 71.68, —3.8, 0} and the zeros for the 
given output are {—55.69, —2.72}. The transfer ma- 
trix in this operation point is 

— 4: €1(2its)(22+8) ¢ 

oy i diag iS SSS ) =) du (10) 

where diag stand for diagonal matrix, p;, z; and ¢1, ce 

are constants, and du = u— Uequi. The two output 

  

  
°The DAE is index one and can safely be integrated by 

DASSL.
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Figure 2 Example of typical tracking error encoun- 

tered using DPC. Tracking errors for the bank angle 

(denoted by the solid line e,) and speed (denoted by 

the dotted line ey). 

channels become coupled as soon as Qequi # 0, but 

the number of zeros and poles of the linear system 

remain the same. As we have four poles and two 

zeros for the input-output channel u, — a, and no 

zero and one pole for the input output channel uz > 

v, the bank angle has to be differentiated twice and 

the speed once to inverse the system. This is not 

consistent with the simple bicycle model. Assume we 

control the angular acceleration of the the steering 

angle (and not its velocity). To compute a tracking 
control for y for the simple bicycle model we have 

to invoke the third derivative of a and the second 

derivative of v to get an explicit expression for uz 

and us. The difference between the two models is 

due to coupling terms between « and a, which occur 

in the full bicycle model and which are absent in the 

simple bicycle model. 

4.3.2 Implementation as DPC: Based on 

the linear considerations we use the control DAE 

¢ — foike t Nt wu) 

_ Gbike |G; 9 

0 = lala —ag) +ai(@—aa) + (@—ay)} ED 
bo(v — vd) + (v — va) 

which is (at least in a neighborhood of aegui = 0 and 

Kequi = 0) of index one. Note that, due to the use of 

the implicit description of the controller, v and @ are 

available while the solution of (11). 

Computer simulations show that DPC stabilizes the 

unstable bicycle dynamics and assures asymptotic 

tracking of the desired output trajectories. 

Figure 2 shows an example of a tracking error which 

might be encountered using DPC. The nonzero track- 

ing errors are due to the piecewise constant imple- 

mentation of the controller. DPC tracks the output 

y = (a,v)? to a step function starting at a = (deg. 
and v = 2 m/s. The initial conditions are chosen to 

be consistent with the desired trajectory. During the 

computer simulation the bicycle has a speed varying 

between 1.75 m/s and 2 m/s and a bank angle vary- 
ing between Odeg. and 8deg.. (for more figures and 

implementation issues see [11]). The bicycle is unsta- 
ble for speeds below 3.95 m/s and becomes nonmini- 

mum phase for speeds below 0.95 m/s, that is, DPC 

stabilizes the unstable bicycle dynamics and assures 

asymptotic tracking of the desired output trajecto- 

ries. The computer simulations show that a sampling 

period of h = 0.02 sec. suffices to stabilize the bicy- 

cle and to assure good tracking performance. Good 

tracking performance of the asymptotic tracking con- 

troller is a necessary condition for the next controller, 

which approximately tracks the “nonminimum phase 

output” y = (x, v)?. 

5. Approximate tracking controller 

We have seen that asymptotic tracking of the output 

y = (x, v)? is impossible due to unstable zero dynam- 

ics. However, if asymptotic tracking is not possible, 

we may design an approximate tracking controller us- 

ing a kind of prefilter for the desired output trajec- 

tory. 

5.1. The idea of approximate tracking 

The approximate tracking approach of nonmiminum 

phase systems considered here has initially been in- 

troduced in [4] and is extended in [11]. Its extended 
version of [11] is based on the following idea. We call 
an output (non-} minimum phase output if the plant 

is (non-) minimum phase for the output. Consider 
the plant 

r= fplant (2, U), Y= A(z), y= h(x) 

where y is a nonminimum phase output and Y a min- 

imum phase output. To compose the control DAE 

for approximate tracking, we add a copy of the plant 

to the control DAE (involved in asymptotic tracking) 
and modify the copy such that, for the copy, y be- 

comes a minimumphase output and we do not alter 

the equilibrium point. That is, if ¢ = Friant (23 u) de- 
notes the copy of the plant, we assure for all « and u 

that folant (#, u) = Potant (x, u), which implies that we 
need to determine a matrix £, such that 

Ee = Plant (2: u), y=A(z) 

is of minimum phase. Then we generate through the 

modified copy a reference trajectory y, for the min- 

imum phase output yY which we can asymptotically 

track to yz using DPC. The extended control DAE 

for approximate tracking is 

Bb — FR (0, u) 
LE a Friant (&, tw) 

G(o)[h(#) — A(w)] 

where a(o) and a(o) are two stable polynomials in 
o = d/dt. The resulting control is @, which applied



as DPC tracks y approximately to yg provide ya(t) is 

of sufficiently “low frequency”. The control strategy 

admits a complete analysis for the linear case, which 

is given in [11]. The approach of [4] is equivalent with 
[11] for a particular choice of h(x), h(x) and E. 

5.2. Simple bicycle model 

Consider the dynamic part of the simple bicycle 

model. The following modified bicycle dynamics are 

clearly locally minimum phase for the output y = 

(x,v)? in the neighborhood of a = 0 and sufficiently 
small €. 

lJk = Ut 

mv = we 
2 ae . __ 

preg’ —€1A—GPSq = CoE 

E=Ktplo t+ (k*p*sy + Kp)u? +vk plo 

where e, and é€g are chosen such that the polynomial 

p’eg07 +e,0 +gp = 0 ing has stable roots. The 

modified simple bicycle dynamics will be referred to 

as Eg = Some (x,u). Now the solution of 

Bi — fS2P°(0,u)_ 
0= do(v — va) + ai (t — ba) (13) 

bo(K — Ka) + bi(k — Ka) + (K — Ka) 

yields a desired output trajectory for the minimum 

phase output 9, = (a,v)?, which we may track by 
the controller (9), which together with (13) forms the 
extended control DAE (12). In the case of the simple 
bicycle model we may use a simplified version of the 

extended control DAE (12). In fact, if we assume that 
in the modified dynamics (18) « = Kg and v = va, 
we obtain a simplified version of (12) by replacing 
in (9) the path constrain on a by the stabilized zero 
dynamics (8) in which we replace k by the desired 
output «gz. The new path constraint on a is a second 

order differential equation and the resulting DAE is 

still index one, which can safely be solved by DASSL. 

xz feimp (2, Ul; uz) 

0= ag(v _ va) + ay (v — va) (14) 

preg + 1d + 9 pSa + Co€ 

E= Kat plo +(Ka*p'sa + ka pv? + vu kaplo 

In the computer simulation in Figure 3 we use the 

controller (14) to track « to the slew function. 

Ka(t) = Ao (Hu — S28 4 Bee — B86 138(5 
f f f f f 

where Ak = 0.1 rad and t; = 2s and the speed is 

held constant at the value vg = 4 m/s. As kq varies 

too fast we have poor tracking performance. For a 

“low frequency” sin function we obtain good tracking 

performance (see Figure 4). We use the controller 

parameters bp = 5, 6; = 4, b2 = 1, a9 = 2, ay = 1 and 

the model parameters m = 1, J=1, p=1,h =1, 

flop = 0.5,9 = 9.8. 
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Figure 3 Simple bicycle model: approximate track- 

ing for the output « by a desired trajectory composed 

from the step function. 
0.120 
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Figure 4 Simple bicycle model: approximate track- 

  

       

  

K and K_d 

  

      
ing for the output Kk by the sin function kg = 

0.1 sin(0.5¢). 

5.3. Full bicycle model 

We have seen that we can asymptotically track the 

output ¥ = (a,v)?, which is a minimum phase out- 
put, as for the simple bicycle model. In analogy to the 

simple bicycle, y = (x, v)? is a non minimumphase 
output. For the full bicycle model « (or equiva- 

lently, the steering angle A) has not been chosen as 

generalized coordinate but can be computed by the 

kinematic equation @¢ = «kv. Consequently, tracking 

y = (x, v)? is equivalent with tracking y* = (¢1, v)?, 
where ¢, is the yaw angle of the rear wheel. Clearly, 

y* = (¢,v)* is also a nonminimum phase output. To 
apply the idea of approximate tracking we need to 

determine two matrices FE and > such that 

Fog + Eig = Foike(q, WU) 

0 = Ivike (4, 9) 

y = A(z) 

has locally stable zero dynamics. In analogy to the 

simple bicycle, we may assume that the zero dynam- 

ics can approximately be written in terms of the bank 

angle of the rear wheel and we chose FE, and FE» such 

that we obtain the same stabilization of the bank an- 

gle as in the case of the simple bicycle. Computer 

simulations of the approximate tracking controller for 

the full bicycle model for different desired output tra- 

jectories are shown in Figures 5 - 7.
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Figure 5 Full bicycle model: approximate tracking 

of py by bq = 0.5 sin(0.5t). 
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Figure 6 Full bicycle model: approximate tracking 

of 1 by a desired output function composed from a 

step function. The second output is tracked by v1, = 

—va/’u, where vg = 4 m/s for all t. 

6. Conclusion 

We have shown that the control of a riderless bicycle 

can be approached by systematically extending the 

cart model (which is a bicycle that does not lean) 
to more complex descriptions. We have shown on 

three different models of a riderless bicycle of differ- 

ent complexity how to apply DPC for output trajec- 

tory tracking . The tracking controllers for the full 

bicycle model, remain well structured and require no 

symbolical differentiation of the output equation. We 

have shown the design of an asymptotic tracking con- 

troller for the bank angle and the velocity of the bi- 

cycle model. Finally, we have shown that asymptotic 

tracking of the xy-position of the bicycle using DPC 

is not possible, but that approximate tracking can be 

achieved. 
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