
26 IEEE Signal Processing Magazine | November 2017 |

Deep Learning for Visual Understanding

1053-5888/17©2017IEEE

Kai Arulkumaran, Marc Peter Deisenroth,
Miles Brundage, and Anil Anthony Bharath

Deep Reinforcement Learning
A brief survey

Deep reinforcement learning (DRL) is poised to revolution-
ize the field of artificial intelligence (AI) and represents
a step toward building autonomous systems with a higher-

level understanding of the visual world. Currently, deep learn-
ing is enabling reinforcement learning (RL) to scale to problems
that were previously intractable, such as learning to play video
games directly from pixels. DRL algorithms are also applied
to robotics, allowing control policies for robots to be learned
directly from camera inputs in the real world. In this survey,
we begin with an introduction to the general field of RL, then
progress to the main streams of value-based and policy-based
methods. Our survey will cover central algorithms in deep RL,
including the deep Q-network (DQN), trust region policy opti-
mization (TRPO), and asynchronous advantage actor critic. In
parallel, we highlight the unique advantages of deep neural net-
works, focusing on visual understanding via RL. To conclude,
we describe several current areas of research within the field.

Introduction
One of the primary goals of the field of AI is to produce fully
autonomous agents that interact with their environments to learn
optimal behaviors, improving over time through trial and error.
Crafting AI systems that are responsive and can effectively
learn has been a long-standing challenge, ranging from robots,
which can sense and react to the world around them, to purely
software-based agents, which can interact with natural lan-
guage and multimedia. A principled mathematical framework
for experience-driven autonomous learning is RL [78]. Although
RL had some successes in the past [31], [53], [74], [81], previous
approaches lacked scalability and were inherently limited to fairly
low-dimensional problems. These limitations exist because RL
algorithms share the same complexity issues as other algorithms:
memory complexity, computational complexity, and, in the case
of machine-learning algorithms, sample complexity [76]. What
we have witnessed in recent years—the rise of deep learning,
relying on the powerful function approximation and representa-
tion learning properties of deep neural networks—has provided
us with new tools to overcoming these problems.

©Istockphoto.com/zapp2photo

Digital Object Identifier 10.1109/MSP.2017.2743240
Date of publication: 13 November 2017

27IEEE Signal Processing Magazine | November 2017 |

The advent of deep learning has had a significant impact
on many areas in machine learning, dramatically improving
the state of the art in tasks such as object detection, speech
recognition, and language translation [39]. The most impor-
tant property of deep learning is that deep neural networks can
automatically find compact low-dimensional representations
(features) of high-dimensional data (e.g., images, text, and
audio). Through crafting inductive biases into neural network
architectures, particularly that of hierarchical representations,
machine-learning practitioners have made effective progress
in addressing the curse of dimensionality [7]. Deep learning
has similarly accelerated progress in RL, with the use of deep-
learning algorithms within RL defining the field of DRL. The
aim of this survey is to cover both seminal and recent develop-
ments in DRL, conveying the innovative ways in which neu-
ral networks can be used to bring us closer toward developing
autonomous agents. For a more comprehensive survey of recent
efforts in DRL, we refer readers to the overview by Li [43].

Deep learning enables RL to scale to decision-making prob-
lems that were previously intractable, i.e., settings with high-
dimensional state and action spaces. Among recent work in the

field of DRL, there have been two outstanding success stories.
The first, kickstarting the revolution in DRL, was the develop-
ment of an algorithm that could learn to play a range of Atari
2600 video games at a superhuman level, directly from image
pixels [47]. Providing solutions for the instability of function
approximation techniques in RL, this work was the first to con-
vincingly demonstrate that RL agents could be trained on raw,
high-dimensional observations, solely based on a reward signal.
The second standout success was the development of a hybrid
DRL system, AlphaGo, that defeated a human world champion in
Go [73], paralleling the historic achievement of IBM’s Deep Blue
in chess two decades earlier [9]. Unlike the handcrafted rules that
have dominated chess-playing systems, AlphaGo comprised neu-
ral networks that were trained using supervised learning and RL,
in combination with a traditional heuristic search algorithm.

DRL algorithms have already been applied to a wide range
of problems, such as robotics, where control policies for robots
can now be learned directly from camera inputs in the real world
[41], [42], succeeding controllers that used to be hand-engineered
or learned from low-dimensional features of the robot’s state. In
Figure 1, we showcase just some of the domains that DRL has

(a) (b)

(c) (d)

(f)

(e)

Target

A Giraffe Standing

Figure 1. A range of visual RL domains. (a) Three classic Atari 2600 video games, Enduro, Freeway, and Seaquest, from the Arcade Learning Environment (ALE)
[5]. Due to the range of supported games that vary in genre, visuals, and difficulty, the ALE has become a standard test bed for DRL algorithms [20], [47], [48],
[55], [70], [75], [92]. The ALE is one of several benchmarks that are now being used to standardize evaluation in RL. (b) The TORCS car racing simulator, which
has been used to test DRL algorithms that can output continuous actions [33], [44], [48] (as the games from the ALE only support discrete actions). (c) Utilizing
the potentially unlimited amount of training data that can be amassed in robotic simulators, several methods aim to transfer knowledge from the simulator to the
real world [11], [64], [84]. (d) Two of the four robotic tasks designed by Levine et al. [41]: screwing on a bottle cap and placing a shaped block in the correct hole.
Levine et al. [41] were able to train visuomotor policies in an end-to-end fashion, showing that visual servoing could be learned directly from raw camera inputs by
using deep neural networks. (e) A real room, in which a wheeled robot trained to navigate the building is given a visual cue as input and must find the correspond-
ing location [100]. (f) A natural image being captioned by a neural network that uses RL to choose where to look [99]. (b)–(f) reproduced from [41], [44], [84],
[99], and [100], respectively.

28 IEEE Signal Processing Magazine | November 2017 |

St+1 rt+1

State (St)

Reward (rt)

Action (at)

Environment Agent

Policy (π)

Figure 2.  The perception-action-learning loop. At time ,t the agent receives state s t from the environment. The agent uses its policy to choose an action
.at Once the action is executed, the environment transitions a step, providing the next state, ,s t 1+ as well as feedback in the form of a reward, .rt 1+ The

agent uses knowledge of state transitions, of the form (, , ,),rs a st t t t1 1+ + to learn and improve its policy.

been applied to, ranging from playing video games [47] to indoor
navigation [100].

Reward-driven behavior
Before examining the contributions of deep neural networks to
RL, we will introduce the field of RL in general. The essence of
RL is learning through interaction. An RL agent interacts with
its environment and, upon observing the consequences of its
actions, can learn to alter its own behavior in response to rewards
received. This paradigm of trial-and-error learning has its roots
in behaviorist psychology and is one of the main foundations of
RL [78]. The other key influence on RL is optimal control, which
has lent the mathematical formalisms (most notably dynamic
programming [6]) that underpin the field.

In the RL setup, an autonomous agent, controlled by a
machine-learning algorithm, observes a state st from its envi-
ronment at time step .t The agent interacts with the environ-
ment by taking an action at in state .st When the agent takes
an action, the environment and the agent transition to a new
state, ,st 1+ based on the current state and the chosen action.
The state is a sufficient statistic of the environment and there-
by comprises all the necessary information for the agent to
take the best action, which can include parts of the agent such
as the position of its actuators and sensors. In the optimal con-
trol literature, states and actions are often denoted by xt and
,ut respectively.
The best sequence of actions is determined by the rewards

provided by the environment. Every time the environment tran-
sitions to a new state, it also provides a scalar reward rt 1+ to
the agent as feedback. The goal of the agent is to learn a policy
(control strategy) r that maximizes the expected return (cumula-
tive, discounted reward). Given a state, a policy returns an action

to perform; an optimal policy is any policy that maximizes the
expected return in the environment. In this respect, RL aims to
solve the same problem as optimal control. However, the chal-
lenge in RL is that the agent needs to learn about the consequenc-
es of actions in the environment by trial and error, as, unlike in
optimal control, a model of the state transition dynamics is not
available to the agent. Every interaction with the environment
yields information, which the agent uses to update its knowledge.
This perception-action-learning loop is illustrated in Figure 2.

Markov decision processes
Formally, RL can be described as a Markov decision process
(MDP), which consists of

■■ a set of states ,S plus a distribution of starting states ()p s0
■■ a set of actions A
■■ transition dynamics (,)|s s aT t t t1+ that map a state-action

pair at time t onto a distribution of states at time t 1+
■■ an immediate/instantaneous reward function (, ,)s a sR t t t 1+

■■ a discount factor [,],0 1!c where lower values place more
emphasis on immediate rewards.
In general, the policy r is a mapping from states to a prob-

ability distribution over actions (|) .: p aS A S"r = If the
MDP is episodic, i.e., the state is reset after each episode of length
,T then the sequence of states, actions, and rewards in an episode

constitutes a trajectory or rollout of the policy. Every rollout of a
policy accumulates rewards from the environment, resulting in
the return .R rt tt

T
10

1
c= +=

-/ The goal of RL is to find an opti-
mal policy, *r that achieves the maximum expected return from
all states:

	 argmax [|] .RE*r r=
r

� (1)

29IEEE Signal Processing Magazine | November 2017 |

It is also possible to consider nonepisodic MDPs, where
.T 3= In this situation, 11c prevents an infinite sum of

rewards from being accumulated. Furthermore, methods that
rely on complete trajectories are no longer applicable, but those
that use a finite set of transitions still are.

A key concept underlying RL is the Markov property—
only the current state affects the next state, or, in other words,
the future is conditionally independent of the past given the
present state. This means that any decisions made at st can
be based solely on ,st 1+ rather than { , , , }.s s st0 1 1f - Although
this assumption is held by the majority of RL algorithms, it is
somewhat unrealistic, as it requires the states to be fully observ-
able. A generalization of MDPs are partially observable MDPs
(POMDPs), in which the agent receives an observation ,ot ! X
where the distribution of the observation (| ,)p o s at t t1 1+ + is
dependent on the current state and the previous action [27].
In a control and signal processing context, the observation
would be described by a measurement/observation mapping in
a state-space model that depends on the current state and the
previously applied action.

POMDP algorithms typically maintain a belief over the
current state given the previous belief state, the action taken,
and the current observation. A more common approach in deep
learning is to utilize recurrent neural networks (RNNs) [20],
[21], [48], [96], which, unlike feedforward neural networks, are
dynamical systems.

Challenges in RL
It is instructive to emphasize some challenges faced in RL:

■■ The optimal policy must be inferred by trial-and-error
interaction with the environment. The only learning signal
the agent receives is the reward.

■■ The observations of the agent depend on its actions and
can contain strong temporal correlations.

■■ Agents must deal with long-range time dependencies:
often the consequences of an action only materialize after
many transitions of the environment. This is known as the
(temporal) credit assignment problem [78].
We will illustrate these challenges in the context of an

indoor robotic visual navigation task: if the goal location is
specified, we may be able to estimate the distance remaining
(and use it as a reward signal), but it is unlikely that we will
know exactly what series of actions the robot needs to take
to reach the goal. As the robot must choose where to go as it
navigates the building, its decisions influence which rooms it
sees and, hence, the statistics of the visual sequence captured.
Finally, after navigating several junctions, the robot may find
itself in a dead end. There is a range of problems, from learning
the consequences of actions to balancing exploration versus
exploitation, but ultimately these can all be addressed formally
within the framework of RL.

RL algorithms
So far, we have introduced the key formalism used in RL, the
MDP, and briefly noted some challenges in RL. In the following,
we will distinguish between different classes of RL algorithms.

There are two main approaches to solving RL problems: methods
based on value functions and methods based on policy search.
There is also a hybrid actor-critic approach that employs both
value functions and policy search. Next, we will explain these
approaches and other useful concepts for solving RL problems.

Value functions
Value function methods are based on estimating the value
(expected return) of being in a given state. The state-value
function ()V sr is the expected return when starting in state s
and following r subsequently:

	 () [,] .V Rs sE r=r � (2)

The optimal policy, ,*r has a corresponding state-value
function (),V s* and vice versa; the optimal state-value function
can be defined as

	 () () .maxV Vs s s S* 6 != r

r
� (3)

If we had ()V s* available, the optimal policy could be
retrieved by choosing among all actions available at st and
picking the action a that maximizes [()].V sE ~ (| ,)

*
t 1s s s aTt t t1 1 ++ +

In the RL setting, the transition dynamics T are unavail-
able. Therefore, we construct another function, the state-action
value or quality function (,),Q s ar which is similar to ,Vr
except that the initial action a is provided and r is only fol-
lowed from the succeeding state onward:

	 () [|].Q R, , ,s a s aE r=r � (4)

The best policy, given (,)Q ,s ar can be found by choos-
ing a greedily at every state: (,) .argmax Q s aa

r Under this
policy, we can also define ()V sr by maximizing (,):Q s ar

() (,) .maxV Qs s aa=r r

Dynamic programming
To actually learn ,Qr we exploit the Markov property and
define the function as a Bellman equation [6], which has the
following recursive form:

	 (,) [(, ())] .Q r Qs a s sEt t t t t1 1 1st 1 c r= +r r
+ + ++ � (5)

This means that Qr can be improved by bootstrapping, i.e.,
we can use the current values of our estimate of Qr to improve
our estimate. This is the foundation of Q-learning [94] and the
state-action-reward-state-action (SARSA) algorithm [62]:

	 (,) (,) ,Q Qs a s at t t t! ad+r r � (6)

where a is the learning rate and (,)Y Q s at td = - r the tempo-
ral difference (TD) error; here, Y is a target as in a standard
regression problem. SARSA, an on-policy learning algorithm,
is used to improve the estimate of Qr by using transitions gen-
erated by the behavioral policy (the policy derived from),Qr

which results in setting (,) .Y r Q s at t t1 1c= + r
+ + Q-learning

30 IEEE Signal Processing Magazine | November 2017 |

is off-policy, as Qr is instead updated by transitions that were
not necessarily generated by the derived policy. Instead,
Q -learning uses (,),maxY r Q s at t 1ac= + r

+ which directly
approximates .Q*

To find Q* from an arbitrary ,Qr we use generalized policy
iteration, where policy iteration consists of policy evaluation
and policy improvement. Policy evaluation improves the esti-
mate of the value function, which can be achieved by minimiz-
ing TD errors from trajectories experienced by following the
policy. As the estimate improves, the policy can naturally be
improved by choosing actions greedily based on the updated
value function. Instead of performing these steps separately to
convergence (as in policy iteration), generalized policy itera-
tion allows for interleaving the steps, such that progress can be
made more rapidly.

Sampling
Instead of bootstrapping value functions using dynamic
programming methods, Monte Carlo methods estimate the
expected return (2) from a state by averaging the return from
multiple rollouts of a policy. Because of this, pure Monte Carlo
methods can also be applied in non-Markovian environments.
On the other hand, they can only be used in episodic MDPs,
as a rollout has to terminate for the return to be calculated. It
is possible to get the best of both methods by combining TD
learning and Monte Carlo policy evaluation, as is done in the
TD(m) algorithm [78]. Similarly to the discount factor, the m in
TD(m) is used to interpolate between Monte Carlo evaluation
and bootstrapping. As demonstrated in Figure 3, this results in

an entire spectrum of RL methods based around the amount of
sampling utilized.

Another major value-function-based method relies on
learning the advantage function (,)A s ar [3]. Unlike produc-
ing absolute state-action values, as with ,Q Ar r instead rep-
resents relative state-action values. Learning relative values is
akin to removing a baseline or average level of a signal; more
intuitively, it is easier to learn that one action has better conse-
quences than another than it is to learn the actual return from
taking the action. Ar represents a relative advantage of actions
through the simple relationship A Q V= -r r r and is also
closely related to the baseline method of variance reduction
within gradient-based policy search methods [97]. The idea of
advantage updates has been utilized in many recent DRL algo-
rithms [19], [48], [71], [92].

Policy search
Policy search methods do not need to maintain a value func-
tion model but directly search for an optimal policy .*r Typi-
cally, a parameterized policy ri is chosen, whose parameters
are updated to maximize the expected return [|]RE i using
either gradient-based or gradient-free optimization [12]. Neu-
ral networks that encode policies have been successfully
trained using both gradient-free [17], [33] and gradient-based
[22], [41], [44], [70], [71], [96], [97] methods. Gradient-free
optimization can effectively cover low-dimensional parameter
spaces, but, despite some successes in applying them to large
networks [33], gradient-based training remains the method of
choice for most DRL algorithms, being more sample efficient
when policies possess a large number of parameters.

When constructing the policy directly, it is common to
output parameters for a probability distribution; for continu-
ous actions, this could be the mean and standard deviations of
Gaussian distributions, while for discrete actions this could be
the individual probabilities of a multinomial distribution. The
result is a stochastic policy from which we can directly sample
actions. With gradient-free methods, finding better policies
requires a heuristic search across a predefined class of models.
Methods such as evolution strategies essentially perform hill
climbing in a subspace of policies [65], while more complex
methods, such as compressed network search, impose addi-
tional inductive biases [33]. Perhaps the greatest advantage of
gradient-free policy search is that it can also optimize nondif-
ferentiable policies.

Policy gradients
Gradients can provide a strong learning signal as to how to
improve a parameterized policy. However, to compute the
expected return (1) we need to average over plausible trajec-
tories induced by the current policy parameterization. This
averaging requires either deterministic approximations (e.g.,
linearization) or stochastic approximations via sampling
[12]. Deterministic approximations can be only applied in a
model-based setting where a model of the underlying transi-
tion dynamics is available. In the more common model-free
RL setting, a Monte Carlo estimate of the expected return is

Full
Backups

Sample
Backups

Deep
Backups

Monte Carlo

(d)

Exhaustive
Search

Dynamic
Programming

(b)(a)

TD Learning

(c)

Shallow
Backups Bootstrapping

Figure 3. Two dimensions of RL algorithms based on the backups used
to learn or construct a policy. At the extremes of these dimensions are (a)
dynamic programming, (b) exhaustive search, (c) one-step TD learning, and
(d) Monte Carlo approaches. Bootstrapping extends from (c) one-step TD
learning to n-step TD learning methods [78], with (d) pure Monte Carlo ap-
proaches not relying on bootstrapping at all. Another possible dimension of
variation is (c) and (d) choosing to sample actions versus (a) and (b) taking
the expectation over all choices. (Figure recreated based on [78].)

determined. For gradient-based learning,
this Monte Carlo approximation poses a
challenge since gradients cannot pass through
these samples of a stochastic function. There-
fore, we turn to an estimator of the gradient,
known in RL as the REINFORCE rule [97].
Intuitively, gradient ascent using the estima-
tor increases the log probability of the sam-
pled action, weighted by the return. More
formally, the REINFORCE rule can be used to compute the gra-
dient of an expectation over a function f of a random variable X
with respect to parameters :i

	 [(;)] [(;) ()] .logf X f X p XE EX Xd di i=i i � (7)

As this computation relies on the empirical return of a trajec-
tory, the resulting gradients possess a high variance. By introduc-
ing unbiased estimates that are less noisy, it is possible to reduce
the variance. The general methodology for performing this is to
subtract a baseline, which means weighting updates by an advan-
tage rather than the pure return. The simplest baseline is the aver-
age return taken over several episodes [97], but there are many
more options available [71].

Actor-critic methods
It is possible to combine value functions with an explicit rep-
resentation of the policy, resulting in actor-critic methods,
as shown in Figure 4. The “actor” (policy) learns by using
feedback from the “critic” (value function). In doing so, these
methods tradeoff variance reduction of policy gradients with
bias introduction from value function methods [32], [71].

Actor-critic methods use the value function as a baseline
for policy gradients, such that the only fundamental difference
between actor-critic methods and other baseline methods is
that actor-critic methods utilize a learned value function. For
this reason, we will later discuss actor-critic methods as a sub-
set of policy gradient methods.

Planning and learning
Given a model of the environment, it is possible to use dynam-
ic programming over all possible actions [Figure 3(a)], sample
trajectories for heuristic search (as was done by AlphaGo
[73]), or even perform an exhaustive search [Figure 3(b)]. Sut-
ton and Barto [78] define planning as any method that utilizes
a model to produce or improve a policy. This includes distri-
bution models, which include T and ,R and sample models,
from which only samples of transitions can be drawn.

In RL, we focus on learning without access to the underlying
model of the environment. However, interactions with the envi-
ronment could be used to learn value functions, policies, and also
a model. Model-free RL methods learn directly from interactions
with the environment, but model-based RL methods can simulate
transitions using the learned model, resulting in increased sample
efficiency. This is particularly important in domains where each
interaction with the environment is expensive. However, learning
a model introduces extra complexities, and there is always the

danger of suffering from model errors, which
in turn affects the learned policy. Although
deep neural networks can potentially produce
very complex and rich models [14], [55], [75],
sometimes simpler, more data-efficient meth-
ods are preferable [19]. These considerations
also play a role in actor-critic methods with
learned value functions [32], [71].

The rise of DRL
Many of the successes in DRL have been based on scaling
up prior work in RL to high-dimensional problems. This is
due to the learning of low-dimensional feature representations
and the powerful function approximation properties of neural
networks. By means of representation learning, DRL can deal
efficiently with the curse of dimensionality, unlike tabular and
traditional nonparametric methods [7]. For instance, convo-
lutional neural networks (CNNs) can be used as components
of RL agents, allowing them to learn directly from raw, high-
dimensional visual inputs. In general, DRL is based on train-
ing deep neural networks to approximate the optimal policy

r and/or the optimal value functions , ,V Q * and .A*

Value functions
The well-known function approximation properties of neural net-
works led naturally to the use of deep learning to regress functions
for use in RL agents. Indeed, one of the earliest success stories in
RL is TD-Gammon, a neural network that reached expert-level
performance in backgammon in the early 1990s [81]. Using TD
methods, the network took in the state of the board to predict the
probability of black or white winning. Although this simple idea
has been echoed in later work [73], progress in RL research has
favored the explicit use of value functions, which can capture the

31IEEE Signal Processing Magazine | November 2017 |

State Action

Actor
(Policy)

TD Error

Critic
(Value Function)

Reward

Environment

Figure 4. The actor-critic setup. The actor (policy) receives a state from
the environment and chooses an action to perform. At the same time, the
critic (value function) receives the state and reward resulting from the
previous interaction. The critic uses the TD error calculated from this infor-
mation to update itself and the actor. (Figure recreated based on [78].)

Searching directly for a
policy represented by a
neural network with very
many parameters can be
difficult and can suffer
from severe local minima.

32 IEEE Signal Processing Magazine | November 2017 |

structure underlying the environment. From early value function
methods in DRL, which took simple states as input [61], current
methods are now able to tackle visually and conceptually com-
plex environments [47], [48], [70], [100].

Function approximation and the DQN
We begin our survey of value-function-based DRL algo-
rithms with the DQN [47], illustrated in Figure 5, which
achieved scores across a wide range of classic Atari 2600
video games [5] that were comparable to that of a profes-
sional video games tester. The inputs to the DQN are four
gray-scale frames of the game, concatenated over time, which
are initially processed by several convolutional layers to
extract spatiotemporal features, such as the movement of the
ball in Pong or Breakout. The final feature map from the
convolutional layers is processed by several fully connected
layers, which more implicitly encode the effects of actions.
This contrasts with more traditional controllers that use fixed
preprocessing steps, which are therefore unable to adapt their
processing of the state in response to the learning signal.

A forerunner of the DQN—neural-fitted Q (NFQ) itera-
tion—involved training a neural network to return the Q-value
given a state-action pair [61]. NFQ was later extended to train a
network to drive a slot car using raw visual inputs from a camera
over the race track, by combining a deep autoencoder to reduce
the dimensionality of the inputs with a separate branch to predict
Q-values [38]. Although the previous network could have been
trained for both reconstruction and RL tasks simultaneously, it
was both more reliable and computationally efficient to train the
two parts of the network sequentially.

The DQN [47] is closely related to the model proposed
by Lange et al. [38] but was the first RL algorithm that was
demonstrated to work directly from raw visual inputs and on
a wide variety of environments. It was designed such that
the final fully connected layer outputs (,)Q s $r for all action
values in a discrete set of actions—in this case, the various
directions of the joystick and the fire button. This not only
enables the best action, argmax (,),Q s aa

r to be chosen after
a single forward pass of the network, but also allows the net-
work to more easily encode action-independent knowledge
in the lower, convolutional layers. With merely the goal of

maximizing its score on a video game, the DQN learns to
extract salient visual features, jointly encoding objects, their
movements, and, most importantly, their interactions. Using
techniques originally developed for explaining the behavior
of CNNs in object recognition tasks, we can also inspect what
parts of its view the agent considers important (see Figure 6).

The true underlying state of the game is contained within 128
bytes of Atari 2600 random-access memory. However, the DQN
was designed to directly learn from visual inputs (210 160#
pixel 8-bit RGB images), which it takes as the state .s It is
impractical to represent (,)Q s ar exactly as a lookup table: when
combined with 18 possible actions, we obtain a Q-table of size

.18 256AS 3 210 160# #= # # Even if it were feasible to cre-
ate such a table, it would be sparsely populated, and information
gained from one state-action pair cannot be propagated to other
state-action pairs. The strength of the DQN lies in its ability to
compactly represent both high-dimensional observations and
the Q-function using deep neural networks. Without this ability,
tackling the discrete Atari domain from raw visual inputs would
be impractical.

The DQN addressed the fundamental instability problem
of using function approximation in RL [83] by the use of
two techniques: experience replay [45] and target networks.
Experience replay memory stores transitions of the form
(, , ,)rs a st t t t1 1+ + in a cyclic buffer, enabling the RL agent to
sample from and train on previously observed data offline.
Not only does this massively reduce the number of interac-
tions needed with the environment, but batches of experience
can be sampled, reducing the variance of learning updates.
Furthermore, by sampling uniformly from a large memory,
the temporal correlations that can adversely affect RL algo-
rithms are broken. Finally, from a practical perspective,
batches of data can be efficiently processed in parallel by
modern hardware, increasing throughput. While the origi-
nal DQN algorithm used uniform sampling [47], later work
showed that prioritizing samples based on TD errors is more
effective for learning [67].

The second stabilizing method, introduced by Mnih et al.
[47], is the use of a target network that initially contains the
weights of the network enacting the policy but is kept frozen
for a large period of time. Rather than having to calculate the

State

Action

Reward

Figure 5. The DQN [47]. The network takes the state—a stack of gray-scale frames from the video game—and processes it with convolutional and fully
connected layers, with ReLU nonlinearities in between each layer. At the final layer, the network outputs a discrete action, which corresponds to one of
the possible control inputs for the game. Given the current state and chosen action, the game returns a new score. The DQN uses the reward—the dif-
ference between the new score and the previous one—to learn from its decision. More precisely, the reward is used to update its estimate of ,Q and the
error between its previous estimate and its new estimate is backpropagated through the network.

33IEEE Signal Processing Magazine | November 2017 |

TD error based on its own rapidly fluctuating estimates of
the Q-values, the policy network uses the fixed target net-
work. During training, the weights of the target network are
updated to match the policy network after a fixed number of
steps. Both experience replay and target networks have gone
on to be used in subsequent DRL works [19], [44], [50], [93].

Q-function modifications
Considering that one of the key components of the DQN is a
function approximator for the Q-function, it can benefit from
fundamental advances in RL. In [86], van Hasselt showed that
the single estimator used in the Q-learning update rule over-
estimates the expected return due to the use of the maximum
action value as an approximation of the maximum expected
action value. Double-Q learning provides a better estimate
through the use of a double estimator [86]. While double-Q
learning requires an additional function to be learned, later
work proposed using the already available target network
from the DQN algorithm, resulting in significantly better
results with only a small change in the update step [87].

Yet another way to adjust the DQN architecture is to
decompose the Q-function into meaningful functions, such as
constructing Qr by adding together separate layers that com-
pute the state-value function Vr and advantage function Ar
[92]. Rather than having to come up with accurate Q-values
for all actions, the duelling DQN [92] benefits from a single
baseline for the state in the form of Vr and easier-to-learn
relative values in the form of .Ar The combination of the duel-
ling DQN with prioritized experience replay [67] is one of the
state-of-the-art techniques in discrete action settings. Further
insight into the properties of Ar by Gu et al. [19] led them to
modify the DQN with a convex advantage layer that extended
the algorithm to work over sets of continuous actions, creating
the normalized advantage function (NAF) algorithm. Benefit-
ing from experience replay, target networks, and advantage
updates, NAF is one of several state-of-the-art techniques in
continuous control problems [19].

Policy search
Policy search methods aim to directly find policies by means
of gradient-free or gradient-based methods. Prior to the cur-
rent surge of interest in DRL, several successful methods in
DRL eschewed the commonly used backpropagation algo-
rithm in favor of evolutionary algorithms [17], [33], which are
gradient-free policy search algorithms. Evolutionary methods
rely on evaluating the performance of a population of agents.
Hence, they are expensive for large populations or agents with
many parameters. However, as black-box optimization meth-
ods, they can be used to optimize arbitrary, nondifferentiable
models and naturally allow for more exploration in the param-
eter space. In combination with a compressed representation
of neural network weights, evolutionary algorithms can even
be used to train large networks; such a technique resulted in
the first deep neural network to learn an RL task, straight
from high-dimensional visual inputs [33]. Recent work has
reignited interest in evolutionary methods for RL as they can

potentially be distributed at larger scales than techniques that
rely on gradients [65].

Backpropagation through stochastic functions
The workhorse of DRL, however, remains backpropagation.
The previously discussed REINFORCE rule [97] allows neural
networks to learn stochastic policies in a task-dependent man-
ner, such as deciding where to look in an image to track [69]
or caption [99] objects. In these cases, the stochastic variable
would determine the coordinates of a small crop of the image
and hence reduce the amount of computation needed. This
usage of RL to make discrete, stochastic decisions over inputs
is known in the deep-learning literature as hard attention and is
one of the more compelling uses of basic policysearch methods
in recent years, having many applications outside of traditional
RL domains.

Compounding errors
Searching directly for a policy represented by a neural network
with very many parameters can be difficult and suffer from severe
local minima. One way around this is to use guided policy search
(GPS), which takes a few sequences of actions from another con-
troller (which could be constructed using a separate method, such

Figure 6. A saliency map of a trained DQN [47] playing Space Invad-
ers [5]. By backpropagating the training signal to the image space, it is
possible to see what a neural-network-based agent is attending to. In
this frame, the most salient points—shown with the red overlay—are the
laser that the agent recently fired and also the enemy that it anticipates
hitting in a few time steps.

34 IEEE Signal Processing Magazine | November 2017 |

as optimal control). GPS learns from them by using supervised
learning in combination with importance sampling, which cor-
rects for off-policy samples [40]. This approach effectively biases
the search toward a good (local) optimum. GPS works in a loop,
by optimizing policies to match sampled trajectories and opti-
mizing trajectory distributions to match the policy and minimize
costs. Levine et al. [41] showed that it was possible to train visuo-
motor policies for a robot “end to end,” straight from the RGB
pixels of the camera to motor torques, and, hence, provide one of
the seminal works in DRL.

A more commonly used method is to use a trust region, in
which optimization steps are restricted to lie within a region
where the approximation of the true cost function still holds.
By preventing updated policies from deviating too wildly from
previous policies, the chance of a catastrophically bad update is
lessened, and many algorithms that use trust regions guarantee
or practically result in monotonic improvement in policy perfor-
mance. The idea of constraining each policy gradient update, as
measured by the Kullback–Leibler (KL) divergence between the
current and proposed policy, has a long history in RL [28]. One
of the newer algorithms in this line of work, TRPO, has been
shown to be relatively robust and applicable to domains with
high-dimensional inputs [70]. To achieve this, TRPO optimiz-
es a surrogate objective function—specifically, it optimizes an
(importance sampled) advantage estimate, constrained using a
quadratic approximation of the KL divergence. While TRPO can
be used as a pure policy gradient method with a simple baseline,
later work by Schulman et al. [71] introduced generalized advan-
tage estimation (GAE), which proposed several, more advanced
variance reduction baselines. The combination of TRPO and
GAE remains one of the state-of-the-art RL techniques in con-
tinuous control.

Actor-critic methods
Actor-critic approaches have grown in popularity as an
effective means of combining the benefits of policy search
methods with learned value functions, which are able to
learn from full returns and/or TD errors. They can benefit
from improvements in both policy gradient methods, such as
GAE [71], and value function methods, such as target net-
works [47]. In the last few years, DRL actor-critic methods
have been scaled up from learning simulated physics tasks
[22], [44] to real robotic visual navigation tasks [100], directly
from image pixels.

One recent development in the context of actor-critic algo-
rithms is deterministic policy gradients (DPGs) [72], which
extend the standard policy gradient theorems for stochastic poli-
cies [97] to deterministic policies. One of the major advantages of
DPGs is that, while stochastic policy gradients integrate over both
state and action spaces, DPGs only integrate over the state space,
requiring fewer samples in problems with large action spaces. In
the initial work on DPGs, Silver et al. [72] introduced and demon-
strated an off-policy actor-critic algorithm that vastly improved
upon a stochastic policy gradient equivalent in high-dimensional
continuous control problems. Later work introduced deep DPG,
which utilized neural networks to operate on high-dimensional,

visual state spaces [44]. In the same vein as DPGs, Heess et al.
[22] devised a method for calculating gradients to optimize sto-
chastic policies by “reparameterizing” [30], [60] the stochastic-
ity away from the network, thereby allowing standard gradients
to be used (instead of the high-variance REINFORCE estima-
tor [97]). The resulting stochastic value gradient (SVG) methods
are flexible and can be used both with (SVG(0) and SVG(1))
and without (SVG(3)) value function critics, and with (SVG
(3) and SVG(1)) and without (SVG(0)) models. Later work
proceeded to integrate DPGs and SVGs with RNNs, allowing
them to solve continuous control problems in POMDPs, learning
directly from pixels [21]. Together, DPGs and SVGs can be con-
sidered algorithmic approaches for improving learning efficiency
in DRL.

An orthogonal approach to speeding up learning is to exploit
parallel computation. By keeping a canonical set of parameters
that are read by and updated in an asynchronous fashion by mul-
tiple copies of a single network, computation can be efficiently
distributed over both processing cores in a single central process-
ing unit (CPU), and across CPUs in a cluster of machines. Using
a distributed system, Nair et al. [51] developed a framework for
training multiple DQNs in parallel, achieving both better per-
formance and a reduction in training time. However, the sim-
pler asynchronous advantage actor-critic (A3C) algorithm [48],
developed for both single and distributed machine settings, has
become one of the most popular DRL techniques in recent times.
A3C combines advantage updates with the actor-critic formula-
tion and relies on asynchronously updated policy and value func-
tion networks trained in parallel over several processing threads.
The use of multiple agents, situated in their own, independent
environments, not only stabilizes improvements in the param-
eters, but conveys an additional benefit in allowing for more
exploration to occur. A3C has been used as a standard start-
ing point in many subsequent works, including the work of Zhu
et al. [100], who applied it to robotic navigation in the real world
through visual inputs.

There have been several major advancements on the original
A3C algorithm that reflect various motivations in the field of
DRL. The first is actor-critic with experience replay [93], which
adds off-policy bias correction to A3C, allowing it to use experi-
ence replay to improve sample complexity. Others have attempted
to bridge the gap between value and policy-based RL, utilizing
theoretical advancements to improve upon the original A3C [50],
[54]. Finally, there is a growing trend toward exploiting auxiliary
tasks to improve the representations learned by DRL agents and,
hence, improve both the learning speed and final performance of
these agents [26], [46].

Current research and challenges
To conclude, we will highlight some current areas of research
in DRL and the challenges that still remain. Previously, we have
focused mainly on model-free methods, but we will now exam-
ine a few model-based DRL algorithms in more detail. Model-
based RL algorithms play an important role in making RL data
efficient and in trading off exploration and exploitation. After
tackling exploration strategies, we shall then address hierarchical

35IEEE Signal Processing Magazine | November 2017 |

RL (HRL), which imposes an inductive bias on the final policy
by explicitly factorizing it into several levels. When available,
trajectories from other controllers can be used to bootstrap the
learning process, leading us to imitation learning and inverse RL
(IRL). For the final topic, we will look at multiagent systems,
which have their own special considerations.

Model-based RL
The key idea behind model-based RL is to learn a transition
model that allows for simulation of the environment without
interacting with the environment directly. Model-based RL
does not assume specific prior knowledge. However, in prac-
tice, we can incorporate prior knowledge (e.g., physics-based
models [29]) to speed up learning. Model learning plays an
important role in reducing the number of required interac-
tions with the (real) environment, which may be limited in
practice. For example, it is unrealistic to perform millions of
experiments with a robot in a reasonable amount of time and
without significant hardware wear and tear. There are various
approaches to learn predictive models of dynamical systems
using pixel information. Based on the deep dynamical model
[90], where high-dimensional observations are embedded into
a lower-dimensional space using autoencoders, several model-
based DRL algorithms have been proposed for learning models
and policies from pixel information [55], [91], [95]. If a suffi-
ciently accurate model of the environment can be learned, then
even simple controllers can be used to control a robot directly
from camera images [14]. Learned models can also be used to
guide exploration purely based on simulation of the environ-
ment, with deep models allowing these techniques to be scaled
up to high-dimensional visual domains [75].

Although deep neural networks can make reasonable predic-
tions in simulated environments over hundreds of time steps [10],
they typically require many samples to tune the large number
of parameters they contain. Training these models often requires
more samples (interaction with the environment) than simpler
models. For this reason, Gu et al. [19] train locally linear mod-
els for use with the NAF algorithm—the continuous equivalent
of the DQN [47]—to improve the algorithm’s sample complex-
ity in the robotic domain where samples are expensive. It seems
likely that the usage of deep models in model-based DRL could
be massively spurred by general advances in improving the data
efficiency of neural networks.

Exploration versus exploitation
One of the greatest difficulties in RL is the fundamental dilemma
of exploration versus exploitation: When should the agent try out
(perceived) nonoptimal actions to explore the environment (and
potentially improve the model), and when should it exploit the
optimal action to make useful progress? Off-policy algorithms,
such as the DQN [47], typically use the simple e-greedy explora-
tion policy, which chooses a random action with probability !e
[0, 1], and the optimal action otherwise. By decreasing e over
time, the agent progresses toward exploitation. Although adding
independent noise for exploration is usable in continuous control
problems, more sophisticated strategies inject noise that is corre-

lated over time (e.g., from stochastic processes) to better preserve
momentum [44].

The observation that temporal correlation is important led
Osband et al. [56] to propose the bootstrapped DQN, which
maintains several Q-value “heads” that learn different values
through a combination of different weight initializations and
bootstrapped sampling from experience replay memory. At
the beginning of each training episode, a different head is cho-
sen, leading to temporally extended exploration. Usunier et al.
[85] later proposed a similar method that performed explora-
tion in policy space by adding noise to a single output head,
using zero-order gradient estimates to allow backpropagation
through the policy.

One of the main principled exploration strategies is the
upper confidence bound (UCB) algorithm, based on the prin-
ciple of “optimism in the face of uncertainty” [36]. The idea
behind UCB is to pick actions that maximize ,RE R lv+6 6@ @
where []Rv is the standard deviation of the return and .02l
UCB therefore encourages exploration in regions with high
uncertainty and moderate expected return. While easily achiev-
able in small tabular cases, the use of powerful density models
has allowed this algorithm to scale to high-dimensional visual
domains with DRL [4].

UCB can also be considered one way of implementing
intrinsic motivation, which is a general concept that advocates
decreasing uncertainty/making progress in learning about the
environment [68]. There have been several DRL algorithms that
try to implement intrinsic motivation via minimizing model pre-
diction error [57], [75] or maximizing information gain [25], [49].

Hierarchical RL
In the same way that deep learning relies on hierarchies of fea-
tures, HRL relies on hierarchies of policies. Early work in this
area introduced options, in which, apart from primitive actions
(single time-step actions), policies could also run other poli-
cies (multitime-step “actions”) [79]. This approach allows top-
level policies to focus on higher-level goals, while subpolicies
are responsible for fine control. Several works in DRL have
attempted HRL by using one top-level policy that chooses
between subpolicies, where the division of states or goals in to
subpolicies is achieved either manually [1], [34], [82] or auto-
matically [2], [88], [89]. One way to help construct subpolicies
is to focus on discovering and reaching goals, which are spe-
cific states in the environment; they may often be locations, to
which an agent should navigate. Whether utilized with HRL or
not, the discovery and generalization of goals is also an impor-
tant area of ongoing research [35], [66], [89].

Imitation learning and inverse RL
One may ask why, if given a sequence of “optimal” actions
from expert demonstrations, it is not possible to use supervised
learning in a straightforward manner—a case of “learning
from demonstration.” This is indeed possible and is known as
behavioral cloning in traditional RL literature. Taking advan-
tage of the stronger signals available in supervised learn-
ing problems, behavioral cloning enjoyed success in earlier

neural network research, with the most notable success being
ALVINN, one of the earliest autonomous cars [59]. However,
behavioral cloning cannot adapt to new situations, and small
deviations from the demonstration during the execution of
the learned policy can compound and lead to scenarios where
the policy is unable to recover. A more generalizable solution
is to use provided trajectories to guide the learning of suit-
able state-action pairs but fine-tune the agent using RL [23].

The goal of IRL is to estimate an unknown reward function
from observed trajectories that characterize a desired solution
[52]; IRL can be used in combination with
RL to improve upon demonstrated behavior.
Using the power of deep neural networks, it
is now possible to learn complex, nonlinear
reward functions for IRL [98]. Ho and Ermon
[24] showed that policies are uniquely char-
acterized by their occupancies (visited state
and action distributions) allowing IRL to be
reduced to the problem of measure matching.
With this insight, they were able to use gen-
erative adversarial training [18] to facilitate
reward-function learning in a more flexible manner, resulting in
the generative adversarial imitation learning algorithm.

Multiagent RL
Usually, RL considers a single learning agent in a stationary
environment. In contrast, multiagent RL (MARL) considers
multiple agents learning through RL and often the nonstation-
arity introduced by other agents changing their behaviors as
they learn [8]. In DRL, the focus has been on enabling (differ-
entiable) communication between agents, which allows them
to cooperate. Several approaches have been proposed for this
purpose, including passing messages to agents sequentially
[15], using a bidirectional channel (providing ordering with
less signal loss) [58], and an all-to-all channel [77]. The addi-
tion of communication channels is a natural strategy to apply
to MARL in complex scenarios and does not preclude the
usual practice of modeling cooperative or competing agents as
applied elsewhere in the MARL literature [8].

Conclusion: Beyond pattern recognition
Despite the successes of DRL, many problems need to be
addressed before these techniques can be applied to a wide
range of complex real-world problems [37]. Recent work
with (nondeep) generative causal models demonstrated supe-
rior generalization over standard DRL algorithms [48], [63]
in some benchmarks [5], achieved by reasoning about causes
and effects in the environment [29]. For example, the schema
networks of Kanksy et al. [29] trained on the game Break-
out immediately adapted to a variant where a small wall was
placed in front of the target blocks, while progressive (A3C)
networks [63] failed to match the performance of the schema
networks even after training on the new domain. Although
DRL has already been combined with AI techniques, such
as search [73] and planning [80], a deeper integration with
other traditional AI approaches promises benefits such as bet-

ter sample complexity, generalization, and interpretability [16].
In time, we also hope that our theoretical understanding of the
properties of neural networks (particularly within DRL) will
improve, as it currently lags far behind practice.

To conclude, it is worth revisiting the overarching goal of all
of this research: the creation of general-purpose AI systems that
can interact with and learn from the world around them. Interac-
tion with the environment is simultaneously the advantage and
disadvantage of RL. While there are many challenges in seeking
to understand our complex and ever-changing world, RL allows

us to choose how we explore it. In effect, RL
endows agents with the ability to perform
experiments to better understand their sur-
roundings, enabling them to learn even high-
level causal relationships. The availability
of high-quality visual renderers and physics
engines now enables us to take steps in this
direction, with works that try to learn intui-
tive models of physics in visual environments
[13]. Challenges remain before this will be
possible in the real world, but steady progress

is being made in agents that learn the fundamental principles of
the world through observation and action. Perhaps, then, we
are not too far away from AI systems that learn and act in more
human-like ways in increasingly complex environments.

Acknowledgments
Kai Arulkumaran would like to acknowledge Ph.D. funding
from the Department of Bioengineering at Imperial College
London. This research has been partially funded by a Google
Faculty Research Award to Marc Deisenroth.

Authors
Kai Arulkumaran (ka709@imperial.ac.uk) received a B.A.
degree in computer science at the University of Cambridge in
2012 and an M.Sc. degree in biomedical engineering from
Imperial College London in 2014, where he is currently a Ph.D.
degree candidate in the Department of Bioengineering. He was a
research intern at Twitter’s Magic Pony and Microsoft Research
in 2017. His research focus is deep reinforcement learning and
transfer learning for visuomotor control.

Marc Peter Deisenroth (m.deisenroth@imperial.ac.uk)
received an M.Eng. degree in computer science at the University
of Karlsruhe in 2006 and a Ph.D. degree in machine learning at
the Karlsruhe Institute of Technology in 2009. He is a lecturer of
statistical machine learning in the Department of Computing at
Imperial College London and with PROWLER.io. He was
awarded an Imperial College Research Fellowship in 2014 and
received Best Paper Awards at the International Conference on
Robotics and Automation 2014 and the International Conference
on Control, Automation, and Systems 2016. He is a recipient of
a Google Faculty Research Award and a Microsoft Ph.D.
Scholarship. His research is centered around data-efficient
machine learning for autonomous decision making.

Miles Brundage (miles.brundage@philosophy.ox.ac.uk)
received a B.A. degree in political science at George

36 IEEE Signal Processing Magazine | November 2017 |

In effect, RL endows
agents with the ability to
perform experiments to
better understand their
surroundings, enabling
them to learn even high-
level causal relationships.

37IEEE Signal Processing Magazine | November 2017 |

Washington University, Washington, D.C., in 2010. He is a
Ph.D. degree candidate in the Human and Social Dimensions
of Science and Technology Department at Arizona State
University and a research fellow at the University of Oxford’s
Future of Humanity Institute. His research focuses on gover-
nance issues related to artificial intelligence.

Anil Anthony Bharath (a.bharath@ic.ac.uk) received his B.
Eng. degree in electronic and electrical engineering from
University College London in 1988 and his Ph.D. degree in sig-
nal processing from Imperial College London in 1993, where he
is currently a reader in the Department of Bioengineering. He is
also a fellow of the Institution of Engineering and Technology
and a cofounder of Cortexica Vision Systems. He was previously
an academic visitor in the Signal Processing Group at the
University of Cambridge in 2006. His research interests are in
deep architectures for visual inference.

References
[1] K. Arulkumaran, N. Dilokthanakul, M. Shanahan, and A. A. Bharath,
“Classifying options for deep reinforcement learning,” in Proc. IJCAI Workshop Deep
Reinforcement Learning: Frontiers and Challenges, 2016.

[2] P. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in Proc.
Association Advancement Artificial Intelligence, 2017, pp. 1726–1734.

[3] L. C. Baird III, “Advantage updating,” Defense Tech. Inform. Center, Tech. Report
D-A280 862, Fort Belvoir, VA, 1993.

[4] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos,
“Unifying count-based exploration and intrinsic motivation,” in Proc. Neural
Information Processing Systems, 2016, pp. 1471–1479.

[5] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning
environment: an evaluation platform for general agents,” in Proc. Int. Joint Conf.
Artificial Intelligence, 2015, pp. 253–279.

[6] R. Bellman, “On the theory of dynamic programming,” Proc. Nat. Acad. Sci., vol.
38, no. 8, pp. 716–719, 1952.

[7] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: a review and new
perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, 2013.

[8] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of multiagent
reinforcement learning,” IEEE Trans. Syst., Man, Cybern., vol. 38, no. 2, pp. 156–172, 2008.

[9] M. Campbell, A. J. Hoane, and F. Hsu, “Deep Blue,” Artificial Intell., vol. 134, no.
1-2, pp. 57–83, 2002.

[10] S. Chiappa, S. Racaniere, D. Wierstra, and S. Mohamed, “Recurrent environment
simulators,” in Proc. Int. Conf. Learning Representations, 2017.

[11] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin, P.
Abbeel, and W. Zaremba. (2016). Transfer from simulation to real world through learn-
ing deep inverse dynamics model. arXiv. [Online]. Available: https://arxiv.org/
abs/1610.03518

[12] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for
robotics,” Foundations and Trends in Robotics, vol. 2, no. 1–2, pp. 1–142, 2013.

[13] M. Denil, P. Agrawal, T. D. Kulkarni, T. Erez, P. Battaglia, and N. de Freitas,
“Learning to perform physics experiments via deep reinforcement learning,” in Proc.
Int. Conf. Learning Representations, 2017.

[14] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, “Deep spatial
autoencoders for visuomotor learning,” in Proc. IEEE Int. Conf. Robotics and
Automation, 2016, pp. 512–519.

[15] J. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to communi-
cate with deep multi-agent reinforcement learning,” in Proc. Neural Information
Processing Systems, 2016, pp. 2137–2145.

[16] M. Garnelo, K. Arulkumaran, and M. Shanahan, “Towards deep symbolic rein-
forcement learning,” in NIPS Workshop on Deep Reinforcement Learning, 2016.

[17] F. Gomez and J. Schmidhuber. “Evolving modular fast-weight networks for con-
trol,” in Proc. Int. Conf. Artificial Neural Networks, 2005, pp. 383–389.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. Neural Information
Processing Systems, 2014, pp. 2672–2680.

[19] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep Q-learning with
model-based acceleration,” in Proc. Int. Conf. Learning Representations, 2016.

[20] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially observ-
able MDPs,” in Association for the Advancement of Artificial Intelligence Fall
Symp. Series, 2015.

[21] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver. “Memory-based control with
recurrent neural networks,” in NIPS Workshop on Deep Reinforcement Learning,
2015.

[22] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa, “Learning
continuous control policies by stochastic value gradients,” in Proc. Neural
Information Processing Systems, 2015, pp. 2944–2952.

[23] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, A.
Sendonaris, G. Dulac-Arnold, et al. (2017). Learning from demonstrations for real
world reinforcement learning. arXiv. [Online]. Available: https://arxiv.org/
abs/1704.03732

[24] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Proc. Neural
Information Processing Systems, 2016, pp. 4565-4573.

[25] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. de Turck, and P. Abbeel,
“VIME: Variational information maximizing exploration,” in Proc. Neural Information
Processing Systems, 2016, pp. 1109–1117.

[26] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K.
Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,” in Proc.
Int. Conf. Learning Representations, 2017.

[27] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in par-
tially observable stochastic domains,” Artificial Intell., vol. 101, no. 1, pp. 99–134,
1998.

[28] S. M. Kakade, “A natural policy gradient,” in Proc. Neural Information
Processing Systems, 2002, pp. 1531–1538.

[29] K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lázaro-Gredilla, X. Lou, N.
Dorfman, S. Sidor, S. Phoenix, and D. George, “Schema networks: zero-shot transfer
with a generative causal model of intuitive physics,” in Proc. Int. Conf. Machine
Learning, 2017, pp. 1809–1818.

[30] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc. Int.
Conf. Learning Representations, 2014.

[31] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast quadrupedal
locomotion,” in Proc. IEEE Int. Conf. Robotics and Automation, 2004, pp. 2619–
2624.

[32] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM J. Control
Optim., vol. 42, no. 4, pp. 1143–1166, 2003.

[33] J. Koutník, G. Cuccu, J. Schmidhuber, and F. Gomez, “Evolving large-scale neu-
ral networks for vision-based reinforcement learning,” in Proc. Conf. Genetic and
Evolutionary Computation, 2013, pp. 1061–1068.

[34] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation,” in
Proc. Neural Information Processing Systems, 2016, pp. 3675–3683.

[35] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman, “Deep successor rein-
forcement learning,” in NIPS Workshop on Deep Reinforcement Learning, 2016.

[36] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Adv.
Appl. Math., vol. 6, no. 1, pp. 4–22, 1985.

[37] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building
machines that learn and think like people,” Behavioral Brain Sci., pp. 1–101, 2016.
[Online]. Available: https://www.cambridge.org/core/journals/behavioral-and-brain-
sciences/a r t icle/bui lding-machines-that-lea rn-and-th ink-l ike-people/
A9535B1D745A0377E16C590E14B94993

[38] S. Lange, M. Riedmiller, and A. Voigtlander, “Autonomous reinforcement learn-
ing on raw visual input data in a real world application,” in Proc. Int. Joint Conf.
Neural Networks, 2012, pp. 1–8.

[39] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[40] S. Levine and V. Koltun, “Guided policy search,” in Proc. Int. Conf. Learning
Representations, 2013.

[41] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuo-
motor policies,” J. Mach. Learning Res., vol. 17, no. 39, pp. 1–40, 2016.

[42] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye coordi-
nation for robotic grasping with deep learning and large-scale data collection,” in Proc.
Int. Symp. Experimental Robotics, 2016, pp. 173–184.

[43] Y. Li. (2017). Deep reinforcement learning: An overview. arXiv. [Online].
Available: https://arxiv.org/abs/1701.07274

[44] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.
Wierstra, “Continuous control with deep reinforcement learning,” in Proc. Int. Conf.
Learning Representations, 2016.

[45] L. Lin, “Self-improving reactive agents based on reinforcement learning, planning
and teaching,” Mach. Learning, vol. 8, no. 3–4, pp. 293–321, 1992.

[46] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R.
Goroshin, et al., “Learning to navigate in complex environments,” in Proc. Int. Conf.
Learning Representations, 2017.

[47] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

38 IEEE Signal Processing Magazine | November 2017 |

[48] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D.
Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learn-
ing,” in Proc. Int. Conf. Learning Representations, 2016.

[49] S. Mohamed and D. J. Rezende, “Variational information maximisation for
intrinsically motivated reinforcement learning,” in Proc. Neural Information
Processing Systems, 2015, pp. 2125–2133.

[50] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans. (2017). Bridging the gap
between value and policy based reinforcement learning. arXiv. [Online]. Available:
https://arxiv.org/abs/1702.08892

[51] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. de Maria, V.
Panneershelvam, M. Suleyman, et al., “Massively parallel methods for deep rein-
forcement learning,” in ICML Workshop on Deep Learning, 2015.

[52] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning,” in
Proc. Int. Conf. Machine Learning, 2000, pp. 663–670.

[53] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and
E. Liang, “Autonomous inverted helicopter flight via reinforcement learning,” in
Proc. Int. Symp. Experimental Robotics, 2006, pp. 363–372.

[54] B. O’Donoghue, R. Munos, K. Kavukcuoglu, and V. Mnih, “PGQ: Combining
policy gradient and Q-learning,” in Proc. Int. Conf. Learning Representations,
2017.

[55] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional video
prediction using deep networks in Atari games,” in Proc. Neural Information
Processing Systems, 2015, pp. 2863–2871.

[56] I. Osband, C. Blundell, A. Pritzel, and B. van Roy, “Deep exploration via boot-
strapped DQN,” in Proc. Neural Information Processing Systems, 2016, pp. 4026–
4034.

[57] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven explora-
tion by self-supervised prediction,” in Proc. Int. Conf. Machine Learning, 2017, pp.
2778–2787.

[58] P. Peng, Q. Yuan, Y. Wen, Y. Yang, Z. Tang, H. Long, and J. Wang. (2017).
Multiagent bidirectionally-coordinated nets for learning to play StarCraft combat
games. arXiv. [Online]. Available: https://arxiv.org/abs/1703.10069

[59] D. A. Pomerleau, “ALVINN, an autonomous land vehicle in a neural network,”
in Proc. Neural Information Processing Systems, 1989, pp. 305–313.

[60] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and
approximate inference in deep generative models,” in Proc. Int. Conf. Machine
Learning, 2014, pp. 1278–1286.

[61] M. Riedmiller, “Neural fitted q iteration—First experiences with a data efficient
neural reinforcement learning method,” in Proc. European Conf. Machine
Learning, 2005, pp. 317–328.

[62] G. A. Rummery and M. Niranjan, “On-line Q-learning using connectionist sys-
tems,” Dept. Engineering, Univ. Cambridge, MA, Tech. Rep. CUED/F-INFENG/
TR 166, 1994.

[63] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K.
Kavukcuoglu, R. Pascanu, and R. Hadsell. (2016). Progressive neural networks.
arXiv. [Online]. Available: https://arxiv.org/abs/1606.04671

[64] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell.
(2016). Sim-to-real robot learning from pixels with progressive nets. arXiv. [Online].
Available: https://arxiv.org/abs/1610.04286

[65] T. Salimans, J. Ho, X. Chen, and I. Sutskever. (2017). Evolution strategies as a
scalable alternative to reinforcement learning. arXiv. [Online]. Available: https://
arxiv.org/abs/1703.03864

[66] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function
approximators,” in Proc. Int. Conf. Machine Learning, 2015, pp. 1312–1320.

[67] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. Int. Conf. Learning Representations, 2016.

[68] J. Schmidhuber, “A possibility for implementing curiosity and boredom in
model-building neural controllers,” in Proc. Int. Conf. Simulation Adaptive
Behavior, 1991, pp. 222–227.

[69] J. Schmidhuber and R. Huber, “Learning to generate artificial fovea trajectories
for target detection,” Int. J. Neural Syst., vol. 2, no. 01n02, pp. 125–134, 1991.
[Online]. Available: ht tp://www.worldscientif ic.com/doi /abs/10.1142/
S012906579100011X

[70] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region
policy optimization,” in Proc. Int. Conf. Machine Learning, 2015, pp. 1889–1897.

[71] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,” in Proc.
Int. Conf. Learning Representations, 2016.

[72] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Machine Learning,
2014, pp. 387–395.

[73] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.
Schrittwieser, I. Antonoglou, et al., “Mastering the game of go with deep neural net-
works and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[74] S. Singh, D. Litman, M. Kearns, and M. Walker, “Optimizing dialogue manage-
ment with reinforcement learning: Experiments with the NJFun system,” J. Artificial
Intell. Res., vol. 16, pp. 105–133, Feb. 2002.

[75] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in reinforcement
learning with deep predictive models,” in NIPS Workshop on Deep Reinforcement
Learning, 2015.

[76] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman, “PAC model-free
reinforcement learning,” in Proc. Int. Conf. Machine Learning, 2006, pp. 881–888.

[77] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent communication
with backpropagation,” in Proc. Neural Information Processing Systems, 2016, pp.
2244–2252.

[78] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[79] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning,” Artificial Intell., vol. 112, no.
1–2, pp. 181–211, 1999.

[80] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iteration net-
works,” in Proc. Neural Information Processing Systems, 2016, pp. 2154–2162.

[81] G. Tesauro, “Temporal difference learning and TD-gammon,” Commun. ACM,
vol. 38, no. 3, pp. 58–68, 1995.

[82] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor, “A deep hier-
archical approach to lifelong learning in Minecraft,” in Proc. Association for the
Advancement Artificial Intelligence, 2017, pp. 1553–1561.

[83] J. N. Tsitsiklis and B. van Roy, “Analysis of temporal-difference learning with
function approximation,” in Proc. Neural Information Processing Systems, 1997, pp.
1075–1081.

[84] E. Tzeng, C. Devin, J. Hoffman, C. Finn, X. Peng, S. Levine, K. Saenko, and T.
Darrell, “Towards adapting deep visuomotor representations from simulated to real
environments,” in Workshop Algorithmic Foundations Robotics, 2016.

[85] N. Usunier, G. Synnaeve, Z. Lin, and S. Chintala, “Episodic exploration for deep
deterministic policies: An application to StarCraft micromanagement tasks,” in Proc.
Int. Conf. Learning Representations, 2017.

[86] H. van Hasselt, “Double Q-learning,” in Proc. Neural Information Processing
Systems, 2010, pp. 2613–2621.

[87] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
Q-learning,” in Proc. Association for the Advancement of Artificial Intelligence, 2016,
pp. 2094–2100.

[88] A. Vezhnevets, V. Mnih, S. Osindero, A. Graves, O. Vinyals, J. Agapiou, and K.
Kavukcuoglu. “Strategic attentive writer for learning macro-actions,” in Proc. Neural
Information Processing Systems, 2016, pp. 3486–3494.

[89] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and
K. Kavukcuoglu, “FeUdal networks for hierarchical reinforcement learning,” in Proc.
Int. Conf. Machine Learning, 2017, pp. 3540–3549.

[90] N. Wahlström, T. B. Schön, and M. P. Deisenroth, “Learning deep dynamical
models from image pixels,” in Proc. IFAC Symp. System Identification, 2015, pp.
1059–1064.

[91] N. Wahlström, T. B. Schön, and M. P. Deisenroth, “From pixels to torques: poli-
cy learning with deep dynamical models,” in ICML Workshop on Deep Learning,
2015.

[92] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures for deep
reinforcement learning,” in Proc. Int. Conf. Learning Representations, 2016.

[93] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de
Freitas, “Sample efficient actor-critic with experience replay,” in Proc. Int. Conf.
Learning Representations, 2017.

[94] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[95] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed to control:
A locally linear latent dynamics model for control from raw images,” in Proc. Neural
Information Processing Systems, 2015, pp. 2746–2754.

[96] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber, “Recurrent policy gradi-
ents,” Logic J. IGPL, vol. 18, no. 5, pp. 620–634, 2010.

[97] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Mach. Learning, vol. 8, no. 3–4, pp. 229–256, 1992.

[98] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep inverse
reinforcement learning,” in NIPS Workshop on Deep Reinforcement Learning,
2015.

[99] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation with visual
attention,” in Proc. Int. Conf. Machine Learning, 2015, pp. 2048–2057.

[100] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi,
“Target-driven visual navigation in indoor scenes using deep reinforcement learning,” in
Proc. IEEE Int. Conf. Robotics and Automation, 2017, pp. 3357–3364.

� SP

