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Deep Reinforcement Learning
A brief survey 

Deep reinforcement learning (DRL) is poised to revolution-
ize the field of artificial intelligence (AI) and represents 
a step toward building autonomous systems with a higher-

level understanding of the visual world. Currently, deep learn-
ing is enabling reinforcement learning (RL) to scale to problems 
that were previously intractable, such as learning to play video 
games directly from pixels. DRL algorithms are also applied 
to robotics, allowing control policies for robots to be learned 
directly from camera inputs in the real world. In this survey, 
we begin with an introduction to the general field of RL, then 
progress to the main streams of value-based and policy-based 
methods. Our survey will cover central algorithms in deep RL, 
including the deep Q-network (DQN), trust region policy opti-
mization (TRPO), and asynchronous advantage actor critic. In 
parallel, we highlight the unique advantages of deep neural net-
works, focusing on visual understanding via RL. To conclude, 
we describe several current areas of research within the field. 

Introduction
One of the primary goals of the field of AI is to produce fully 
autonomous agents that interact with their environments to learn 
optimal behaviors, improving over time through trial and error. 
Crafting AI systems that are responsive and can effectively 
learn has been a long-standing challenge, ranging from robots, 
which can sense and react to the world around them, to purely 
software-based agents, which can interact with natural lan-
guage and multimedia. A principled mathematical framework 
for experience-driven autonomous learning is RL [78]. Although 
RL had some successes in the past [31], [53], [74], [81], previous 
approaches lacked scalability and were inherently limited to fairly 
low-dimensional problems. These limitations exist because RL 
algorithms share the same complexity issues as other algorithms: 
memory complexity, computational complexity, and, in the case 
of machine-learning algorithms, sample complexity [76]. What 
we have witnessed in recent years—the rise of deep learning, 
relying on the powerful function approximation and representa-
tion learning properties of deep neural networks—has provided 
us with new tools to overcoming these problems. 
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The advent of deep learning has had a significant impact 
on many areas in machine learning, dramatically improving 
the state of the art in tasks such as object detection, speech 
recognition, and language translation [39]. The most impor-
tant property of deep learning is that deep neural networks can 
automatically find compact low-dimensional representations 
(features) of high-dimensional data (e.g., images, text, and 
audio). Through crafting inductive biases into neural network 
architectures, particularly that of hierarchical representations, 
machine-learning practitioners have made effective progress 
in addressing the curse of dimensionality [7]. Deep learning  
has similarly accelerated progress in RL, with the use of deep-
learning algorithms within RL defining the field of DRL. The 
aim of this survey is to cover both seminal and recent develop-
ments in DRL, conveying the innovative ways in which neu-
ral networks can be used to bring us closer toward developing 
autonomous agents. For a more comprehensive survey of recent 
efforts in DRL, we refer readers to the overview by Li [43]. 

Deep learning enables RL to scale to decision-making prob-
lems that were previously intractable, i.e., settings with high-
dimensional state and action spaces. Among recent work in the 

field of DRL, there have been two outstanding success stories. 
The first, kickstarting the revolution in DRL, was the develop-
ment of an algorithm that could learn to play a range of Atari 
2600 video games at a superhuman level, directly from image 
pixels [47]. Providing solutions for the instability of function 
approximation techniques in RL, this work was the first to con-
vincingly demonstrate that RL agents could be trained on raw, 
high-dimensional observations, solely based on a reward signal. 
The second standout success was the development of a hybrid 
DRL system, AlphaGo, that defeated a human world champion in 
Go [73], paralleling the historic achievement of IBM’s Deep Blue 
in chess two decades earlier [9]. Unlike the handcrafted rules that 
have dominated chess-playing systems, AlphaGo comprised neu-
ral networks that were trained using supervised learning and RL, 
in combination with a traditional heuristic search algorithm. 

DRL algorithms have already been applied to a wide range 
of problems, such as robotics, where control policies for robots 
can now be learned directly from camera inputs in the real world 
[41], [42], succeeding controllers that used to be hand-engineered 
or learned from low-dimensional features of the robot’s state. In 
Figure 1, we showcase just some of the domains that DRL has 
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Figure 1. A range of visual RL domains. (a) Three classic Atari 2600 video games, Enduro, Freeway, and Seaquest, from the Arcade Learning Environment (ALE) 
[5]. Due to the range of supported games that vary in genre, visuals, and difficulty, the ALE has become a standard test bed for DRL algorithms [20], [47], [48], 
[55], [70], [75], [92]. The ALE is one of several benchmarks that are now being used to standardize evaluation in RL. (b) The TORCS car racing simulator, which 
has been used to test DRL algorithms that can output continuous actions [33], [44], [48] (as the games from the ALE only support discrete actions). (c) Utilizing 
the potentially unlimited amount of training data that can be amassed in robotic simulators, several methods aim to transfer knowledge from the simulator to the 
real world [11], [64], [84]. (d) Two of the four robotic tasks designed by Levine et al. [41]: screwing on a bottle cap and placing a shaped block in the correct hole. 
Levine et al. [41] were able to train visuomotor policies in an end-to-end fashion, showing that visual servoing could be learned directly from raw camera inputs by 
using deep neural networks. (e) A real room, in which a wheeled robot trained to navigate the building is given a visual cue as input and must find the correspond-
ing location [100]. (f) A natural image being captioned by a neural network that uses RL to choose where to look [99]. (b)–(f) reproduced from [41], [44], [84], 
[99], and [100], respectively.  
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Figure 2.  The perception-action-learning loop. At time ,t  the agent receives state s t  from the environment. The agent uses its policy to choose an action 
.at  Once the action is executed, the environment transitions a step, providing the next state, ,s t 1+  as well as feedback in the form of a reward, .rt 1+  The 

agent uses knowledge of state transitions, of the form ( , , , ),rs a st t t t1 1+ +  to learn and improve its policy.

been applied to, ranging from playing video games [47] to indoor 
navigation [100]. 

Reward-driven behavior
Before examining the contributions of deep neural networks to 
RL, we will introduce the field of RL in general. The essence of 
RL is learning through interaction. An RL agent interacts with 
its environment and, upon observing the consequences of its 
actions, can learn to alter its own behavior in response to rewards 
received. This paradigm of trial-and-error learning has its roots 
in behaviorist psychology and is one of the main foundations of 
RL [78]. The other key influence on RL is optimal control, which 
has lent the mathematical formalisms (most notably dynamic 
programming [6]) that underpin the field. 

In the RL setup, an autonomous agent, controlled by a 
machine-learning algorithm, observes a state st  from its envi-
ronment at time step .t  The agent interacts with the environ-
ment by taking an action at  in state .st  When the agent takes 
an action, the environment and the agent transition to a new 
state, ,st 1+  based on the current state and the chosen action. 
The state is a sufficient statistic of the environment and there-
by comprises all the necessary information for the agent to 
take the best action, which can include parts of the agent such 
as the position of its actuators and sensors. In the optimal con-
trol literature, states and actions are often denoted by xt  and 
,ut  respectively. 
The best sequence of actions is determined by the rewards 

provided by the environment. Every time the environment tran-
sitions to a new state, it also provides a scalar reward rt 1+  to 
the agent as feedback. The goal of the agent is to learn a policy 
(control strategy) r  that maximizes the expected return (cumula-
tive, discounted reward). Given a state, a policy returns an action 

to perform; an optimal policy is any policy that maximizes the 
expected return in the environment. In this respect, RL aims to 
solve the same problem as optimal control. However, the chal-
lenge in RL is that the agent needs to learn about the consequenc-
es of actions in the environment by trial and error, as, unlike in 
optimal control, a model of the state transition dynamics is not 
available to the agent. Every interaction with the environment 
yields information, which the agent uses to update its knowledge. 
This perception-action-learning loop is illustrated in Figure 2. 

Markov decision processes
Formally, RL can be described as a Markov decision process 
(MDP), which consists of 

■■ a set of states ,S  plus a distribution of starting states ( )p s0  
■■ a set of actions A
■■ transition dynamics ( , )|s s aT t t t1+  that map a state-action 

pair at time t  onto a distribution of states at time t 1+
■■ an immediate/instantaneous reward function ( , , )s a sR t t t 1+

■■ a discount factor [ , ],0 1!c  where lower values place more 
emphasis on immediate rewards.
In general, the policy r  is a mapping from states to a prob-

ability distribution over actions ( | ) .: p aS A S"r =  If the 
MDP is episodic, i.e., the state is reset after each episode of length 
,T  then the sequence of states, actions, and rewards in an episode 

constitutes a trajectory or rollout of the policy. Every rollout of a 
policy accumulates rewards from the environment, resulting in 
the return .R rt tt

T
10

1
c= +=

-/  The goal of RL is to find an opti-
mal policy, *r  that achieves the maximum expected return from 
all states: 

	 argmax [ | ] .RE*r r=
r

� (1) 
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It is also possible to consider nonepisodic MDPs, where 
.T 3=  In this situation, 11c  prevents an infinite sum of 

rewards from being accumulated. Furthermore, methods that 
rely on complete trajectories are no longer applicable, but those 
that use a finite set of transitions still are. 

A key concept underlying RL is the Markov property—
only the current state affects the next state, or, in other words, 
the future is conditionally independent of the past given the 
present state. This means that any decisions made at st  can 
be based solely on ,st 1+  rather than { , , , }.s s st0 1 1f -  Although 
this assumption is held by the majority of RL algorithms, it is 
somewhat unrealistic, as it requires the states to be fully observ-
able. A generalization of MDPs are partially observable MDPs 
(POMDPs), in which the agent receives an observation ,ot ! X  
where the distribution of the observation ( | , )p o s at t t1 1+ +  is 
dependent on the current state and the previous action [27]. 
In a control and signal processing context, the observation 
would be described by a measurement/observation mapping in 
a state-space model that depends on the current state and the 
previously applied action. 

POMDP algorithms typically maintain a belief over the 
current state given the previous belief state, the action taken, 
and the current observation. A more common approach in deep 
learning is to utilize recurrent neural networks (RNNs) [20], 
[21], [48], [96], which, unlike feedforward neural networks, are 
dynamical systems. 

Challenges in RL
It is instructive to emphasize some challenges faced in RL: 

■■ The optimal policy must be inferred by trial-and-error 
interaction with the environment. The only learning signal 
the agent receives is the reward. 

■■ The observations of the agent depend on its actions and 
can contain strong temporal correlations. 

■■ Agents must deal with long-range time dependencies: 
often the consequences of an action only materialize after 
many transitions of the environment. This is known as the 
(temporal) credit assignment problem [78].
We will illustrate these challenges in the context of an 

indoor robotic visual navigation task: if the goal location is 
specified, we may be able to estimate the distance remaining 
(and use it as a reward signal), but it is unlikely that we will 
know exactly what series of actions the robot needs to take 
to reach the goal. As the robot must choose where to go as it 
navigates the building, its decisions influence which rooms it 
sees and, hence, the statistics of the visual sequence captured. 
Finally, after navigating several junctions, the robot may find 
itself in a dead end. There is a range of problems, from learning 
the consequences of actions to balancing exploration versus 
exploitation, but ultimately these can all be addressed formally 
within the framework of RL. 

RL algorithms
So far, we have introduced the key formalism used in RL, the 
MDP, and briefly noted some challenges in RL. In the following, 
we will distinguish between different classes of RL algorithms. 

There are two main approaches to solving RL problems: methods 
based on value functions and methods based on policy search. 
There is also a hybrid actor-critic approach that employs both 
value functions and policy search. Next, we will explain these 
approaches and other useful concepts for solving RL problems. 

Value functions
Value function methods are based on estimating the value 
(expected return) of being in a given state. The state-value 
function ( )V sr  is the expected return when starting in state s  
and following r  subsequently: 

	 ( ) [ , ] .V Rs sE r=r � (2) 

The optimal policy, ,*r  has a corresponding state-value 
function ( ),V s*  and vice versa; the optimal state-value function 
can be defined as 

	 ( ) ( ) .maxV Vs s s S* 6 != r

r
� (3) 

If we had ( )V s*  available, the optimal policy could be 
retrieved by choosing among all actions available at st  and 
picking the action a  that maximizes [ ( )].V sE ~ ( | , )

*
t 1s s s aTt t t1 1 ++ +  

In the RL setting, the transition dynamics T  are unavail-
able. Therefore, we construct another function, the state-action 
value or quality function ( , ),Q s ar  which is similar to ,Vr  
except that the initial action a  is provided and r  is only fol-
lowed from the succeeding state onward: 

	 ( ) [ | ].Q R, , ,s a s aE r=r � (4) 

The best policy, given ( , )Q ,s ar  can be found by choos-
ing a  greedily at every state: ( , ) .argmax Q s aa

r  Under this 
policy, we can also define ( )V sr  by maximizing ( , ):Q s ar  

( ) ( , ) .maxV Qs s aa=r r

Dynamic programming
To actually learn ,Qr  we exploit the Markov property and 
define the function as a Bellman equation [6], which has the 
following recursive form: 

	 ( , ) [ ( , ( ))] .Q r Qs a s sEt t t t t1 1 1st 1 c r= +r r
+ + ++ � (5) 

This means that Qr  can be improved by bootstrapping, i.e., 
we can use the current values of our estimate of Qr  to improve 
our estimate. This is the foundation of Q-learning [94] and the 
state-action-reward-state-action (SARSA) algorithm [62]:

	 ( , ) ( , ) ,Q Qs a s at t t t! ad+r r � (6) 

where a  is the learning rate and ( , )Y Q s at td = - r  the tempo-
ral difference (TD) error; here, Y  is a target as in a standard 
regression problem. SARSA, an on-policy learning algorithm, 
is used to improve the estimate of Qr  by using transitions gen-
erated by the behavioral policy (the policy derived from ),Qr

which results in setting ( , ) .Y r Q s at t t1 1c= + r
+ +  Q-learning 
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is off-policy, as Qr  is instead updated by transitions that were 
not necessarily generated by the derived policy. Instead, 
Q -learning uses ( , ),maxY r Q s at t 1ac= + r

+  which directly 
approximates .Q*

To find Q*  from an arbitrary ,Qr  we use generalized policy 
iteration, where policy iteration consists of policy evaluation 
and policy improvement. Policy evaluation improves the esti-
mate of the value function, which can be achieved by minimiz-
ing TD errors from trajectories experienced by following the 
policy. As the estimate improves, the policy can naturally be 
improved by choosing actions greedily based on the updated 
value function. Instead of performing these steps separately to 
convergence (as in policy iteration), generalized policy itera-
tion allows for interleaving the steps, such that progress can be 
made more rapidly. 

Sampling
Instead of bootstrapping value functions using dynamic 
programming methods, Monte Carlo methods estimate the 
expected return (2) from a state by averaging the return from 
multiple rollouts of a policy. Because of this, pure Monte Carlo 
methods can also be applied in non-Markovian environments. 
On the other hand, they can only be used in episodic MDPs, 
as a rollout has to terminate for the return to be calculated. It 
is possible to get the best of both methods by combining TD 
learning and Monte Carlo policy evaluation, as is done in the 
TD(m) algorithm [78]. Similarly to the discount factor, the m  in 
TD(m) is used to interpolate between Monte Carlo evaluation 
and bootstrapping. As demonstrated in Figure 3, this results in 

an entire spectrum of RL methods based around the amount of 
sampling utilized. 

Another major value-function-based method relies on 
learning the advantage function ( , )A s ar  [3]. Unlike produc-
ing absolute state-action values, as with ,Q Ar r  instead rep-
resents relative state-action values. Learning relative values is 
akin to removing a baseline or average level of a signal; more 
intuitively, it is easier to learn that one action has better conse-
quences than another than it is to learn the actual return from 
taking the action. Ar  represents a relative advantage of actions 
through the simple relationship A Q V= -r r r  and is also 
closely related to the baseline method of variance reduction 
within gradient-based policy search methods [97]. The idea of 
advantage updates has been utilized in many recent DRL algo-
rithms [19], [48], [71], [92]. 

Policy search
Policy search methods do not need to maintain a value func-
tion model but directly search for an optimal policy .*r  Typi-
cally, a parameterized policy ri  is chosen, whose parameters 
are updated to maximize the expected return [ | ]RE i  using 
either gradient-based or gradient-free optimization [12]. Neu-
ral networks that encode policies have been successfully 
trained using both gradient-free [17], [33] and gradient-based 
[22], [41], [44], [70], [71], [96], [97] methods. Gradient-free 
optimization can effectively cover low-dimensional parameter 
spaces, but, despite some successes in applying them to large 
networks [33], gradient-based training remains the method of 
choice for most DRL algorithms, being more sample efficient 
when policies possess a large number of parameters. 

When constructing the policy directly, it is common to 
output parameters for a probability distribution; for continu-
ous actions, this could be the mean and standard deviations of 
Gaussian distributions, while for discrete actions this could be 
the individual probabilities of a multinomial distribution. The 
result is a stochastic policy from which we can directly sample 
actions. With gradient-free methods, finding better policies 
requires a heuristic search across a predefined class of models. 
Methods such as evolution strategies essentially perform hill 
climbing in a subspace of policies [65], while more complex 
methods, such as compressed network search, impose addi-
tional inductive biases [33]. Perhaps the greatest advantage of 
gradient-free policy search is that it can also optimize nondif-
ferentiable policies. 

Policy gradients
Gradients can provide a strong learning signal as to how to 
improve a parameterized policy. However, to compute the 
expected return (1) we need to average over plausible trajec-
tories induced by the current policy parameterization. This 
averaging requires either deterministic approximations (e.g., 
linearization) or stochastic approximations via sampling 
[12]. Deterministic approximations can be only applied in a 
model-based setting where a model of the underlying transi-
tion dynamics is available. In the more common model-free 
RL setting, a Monte Carlo estimate of the expected return is 
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Figure 3. Two dimensions of RL algorithms based on the backups used 
to learn or construct a policy. At the extremes of these dimensions are (a) 
dynamic programming, (b) exhaustive search, (c) one-step TD learning, and  
(d) Monte Carlo approaches. Bootstrapping extends from (c) one-step TD 
learning to n-step TD learning methods [78], with (d) pure Monte Carlo ap-
proaches not relying on bootstrapping at all. Another possible dimension of 
variation is (c) and (d) choosing to sample actions versus (a) and (b) taking 
the expectation over all choices. (Figure recreated based on [78].) 



determined. For gradient-based learning,  
this Monte Carlo approximation poses a  
challenge since gradients cannot pass through 
these samples of a stochastic function. There-
fore, we turn to an estimator of the gradient, 
known in RL as the REINFORCE rule [97]. 
Intuitively, gradient ascent using the estima-
tor increases the log probability of the sam-
pled action, weighted by the return. More 
formally, the REINFORCE rule can be used to compute the gra-
dient of an expectation over a function f  of a random variable X  
with respect to parameters :i

	 [ ( ; )] [ ( ; ) ( )] .logf X f X p XE EX Xd di i=i i � (7) 

As this computation relies on the empirical return of a trajec-
tory, the resulting gradients possess a high variance. By introduc-
ing unbiased estimates that are less noisy, it is possible to reduce 
the variance. The general methodology for performing this is to 
subtract a baseline, which means weighting updates by an advan-
tage rather than the pure return. The simplest baseline is the aver-
age return taken over several episodes [97], but there are many 
more options available [71]. 

Actor-critic methods
It is possible to combine value functions with an explicit rep-
resentation of the policy, resulting in actor-critic methods, 
as shown in Figure 4. The “actor” (policy) learns by using 
feedback from the “critic” (value function). In doing so, these 
methods tradeoff variance reduction of policy gradients with 
bias introduction from value function methods [32], [71]. 

Actor-critic methods use the value function as a baseline 
for policy gradients, such that the only fundamental difference 
between actor-critic methods and other baseline methods is 
that actor-critic methods utilize a learned value function. For 
this reason, we will later discuss actor-critic methods as a sub-
set of policy gradient methods. 

Planning and learning
Given a model of the environment, it is possible to use dynam-
ic programming over all possible actions [Figure 3(a)], sample 
trajectories for heuristic search (as was done by AlphaGo 
[73]), or even perform an exhaustive search [Figure 3(b)]. Sut-
ton and Barto [78] define planning as any method that utilizes 
a model to produce or improve a policy. This includes distri-
bution models, which include T  and ,R  and sample models, 
from which only samples of transitions can be drawn. 

In RL, we focus on learning without access to the underlying 
model of the environment. However, interactions with the envi-
ronment could be used to learn value functions, policies, and also 
a model. Model-free RL methods learn directly from interactions 
with the environment, but model-based RL methods can simulate 
transitions using the learned model, resulting in increased sample 
efficiency. This is particularly important in domains where each 
interaction with the environment is expensive. However, learning 
a model introduces extra complexities, and there is always the 

danger of suffering from model errors, which 
in turn affects the learned policy. Although 
deep neural networks can potentially produce 
very complex and rich models [14], [55], [75], 
sometimes simpler, more data-efficient meth-
ods are preferable [19]. These considerations 
also play a role in actor-critic methods with 
learned value functions [32], [71]. 

The rise of DRL
Many of the successes in DRL have been based on scaling 
up prior work in RL to high-dimensional problems. This is 
due to the learning of low-dimensional feature representations 
and the powerful function approximation properties of neural 
networks. By means of representation learning, DRL can deal 
efficiently with the curse of dimensionality, unlike tabular and 
traditional nonparametric methods [7]. For instance, convo-
lutional neural networks (CNNs) can be used as components 
of RL agents, allowing them to learn directly from raw, high-
dimensional visual inputs. In general, DRL is based on train-
ing deep neural networks to approximate the optimal policy 

*r  and/or the optimal value functions , ,V Q* *  and .A*

Value functions
The well-known function approximation properties of neural net-
works led naturally to the use of deep learning to regress functions 
for use in RL agents. Indeed, one of the earliest success stories in 
RL is TD-Gammon, a neural network that reached expert-level 
performance in backgammon in the early 1990s [81]. Using TD 
methods, the network took in the state of the board to predict the 
probability of black or white winning. Although this simple idea 
has been echoed in later work [73], progress in RL research has 
favored the explicit use of value functions, which can capture the 
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Figure 4. The actor-critic setup. The actor (policy) receives a state from 
the environment and chooses an action to perform. At the same time, the 
critic (value function) receives the state and reward resulting from the 
previous interaction. The critic uses the TD error calculated from this infor-
mation to update itself and the actor. (Figure recreated based on [78].)

Searching directly for a 
policy represented by a 
neural network with very 
many parameters can be 
difficult and can suffer 
from severe local minima. 
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structure underlying the environment. From early value function 
methods in DRL, which took simple states as input [61], current 
methods are now able to tackle visually and conceptually com-
plex environments [47], [48], [70], [100]. 

Function approximation and the DQN
We begin our survey of value-function-based DRL algo-
rithms with the DQN [47], illustrated in Figure 5, which 
achieved scores across a wide range of classic Atari 2600 
video games [5] that were comparable to that of a profes-
sional video games tester. The inputs to the DQN are four 
gray-scale frames of the game, concatenated over time, which 
are initially processed by several convolutional layers to 
extract spatiotemporal features, such as the movement of the 
ball in Pong or Breakout. The final feature map from the 
convolutional layers is processed by several fully connected 
layers, which more implicitly encode the effects of actions. 
This contrasts with more traditional controllers that use fixed 
preprocessing steps, which are therefore unable to adapt their 
processing of the state in response to the learning signal. 

A forerunner of the DQN—neural-fitted Q  (NFQ) itera-
tion—involved training a neural network to return the Q-value 
given a state-action pair [61]. NFQ was later extended to train a 
network to drive a slot car using raw visual inputs from a camera 
over the race track, by combining a deep autoencoder to reduce 
the dimensionality of the inputs with a separate branch to predict 
Q-values [38]. Although the previous network could have been 
trained for both reconstruction and RL tasks simultaneously, it 
was both more reliable and computationally efficient to train the 
two parts of the network sequentially. 

The DQN [47] is closely related to the model proposed 
by Lange et al. [38] but was the first RL algorithm that was 
demonstrated to work directly from raw visual inputs and on 
a wide variety of environments. It was designed such that 
the final fully connected layer outputs ( , )Q s $r  for all action 
values in a discrete set of actions—in this case, the various 
directions of the joystick and the fire button. This not only 
enables the best action, argmax ( , ),Q s aa

r  to be chosen after 
a single forward pass of the network, but also allows the net-
work to more easily encode action-independent knowledge 
in the lower, convolutional layers. With merely the goal of 

maximizing its score on a video game, the DQN learns to 
extract salient visual features, jointly encoding objects, their 
movements, and, most importantly, their interactions. Using 
techniques originally developed for explaining the behavior 
of CNNs in object recognition tasks, we can also inspect what 
parts of its view the agent considers important (see Figure 6). 

The true underlying state of the game is contained within 128 
bytes of Atari 2600 random-access memory. However, the DQN 
was designed to directly learn from visual inputs (210 160#  
pixel 8-bit RGB images), which it takes as the state .s  It is 
impractical to represent ( , )Q s ar  exactly as a lookup table: when 
combined with 18 possible actions, we obtain a Q-table of size 

.18 256AS 3 210 160# #= # #  Even if it were feasible to cre-
ate such a table, it would be sparsely populated, and information 
gained from one state-action pair cannot be propagated to other 
state-action pairs. The strength of the DQN lies in its ability to 
compactly represent both high-dimensional observations and 
the Q-function using deep neural networks. Without this ability, 
tackling the discrete Atari domain from raw visual inputs would 
be impractical. 

The DQN addressed the fundamental instability problem 
of using function approximation in RL [83] by the use of 
two techniques: experience replay [45] and target networks. 
Experience replay memory stores transitions of the form 
( , , , )rs a st t t t1 1+ +  in a cyclic buffer, enabling the RL agent to 
sample from and train on previously observed data offline. 
Not only does this massively reduce the number of interac-
tions needed with the environment, but batches of experience 
can be sampled, reducing the variance of learning updates. 
Furthermore, by sampling uniformly from a large memory, 
the temporal correlations that can adversely affect RL algo-
rithms are broken. Finally, from a practical perspective, 
batches of data can be efficiently processed in parallel by 
modern hardware, increasing throughput. While the origi-
nal DQN algorithm used uniform sampling [47], later work 
showed that prioritizing samples based on TD errors is more 
effective for learning [67]. 

The second stabilizing method, introduced by Mnih et al. 
[47], is the use of a target network that initially contains the 
weights of the network enacting the policy but is kept frozen 
for a large period of time. Rather than having to calculate the 

State

Action

Reward

Figure 5. The DQN [47]. The network takes the state—a stack of gray-scale frames from the video game—and processes it with convolutional and fully 
connected layers, with ReLU nonlinearities in between each layer. At the final layer, the network outputs a discrete action, which corresponds to one of 
the possible control inputs for the game. Given the current state and chosen action, the game returns a new score. The DQN uses the reward—the dif-
ference between the new score and the previous one—to learn from its decision. More precisely, the reward is used to update its estimate of ,Q  and the 
error between its previous estimate and its new estimate is backpropagated through the network.
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TD error based on its own rapidly fluctuating estimates of 
the Q-values, the policy network uses the fixed target net-
work. During training, the weights of the target network are 
updated to match the policy network after a fixed number of 
steps. Both experience replay and target networks have gone 
on to be used in subsequent DRL works [19], [44], [50], [93]. 

Q-function modifications
Considering that one of the key components of the DQN is a 
function approximator for the Q-function, it can benefit from 
fundamental advances in RL. In [86], van Hasselt showed that 
the single estimator used in the Q-learning update rule over-
estimates the expected return due to the use of the maximum 
action value as an approximation of the maximum expected 
action value. Double-Q  learning provides a better estimate 
through the use of a double estimator [86]. While double-Q  
learning requires an additional function to be learned, later 
work proposed using the already available target network 
from the DQN algorithm, resulting in significantly better 
results with only a small change in the update step [87]. 

Yet another way to adjust the DQN architecture is to 
decompose the Q-function into meaningful functions, such as 
constructing Qr  by adding together separate layers that com-
pute the state-value function Vr  and advantage function Ar  
[92]. Rather than having to come up with accurate Q-values 
for all actions, the duelling DQN [92] benefits from a single 
baseline for the state in the form of Vr  and easier-to-learn 
relative values in the form of .Ar  The combination of the duel-
ling DQN with prioritized experience replay [67] is one of the 
state-of-the-art techniques in discrete action settings. Further 
insight into the properties of Ar  by Gu et al. [19] led them to 
modify the DQN with a convex advantage layer that extended 
the algorithm to work over sets of continuous actions, creating 
the normalized advantage function (NAF) algorithm. Benefit-
ing from experience replay, target networks, and advantage 
updates, NAF is one of several state-of-the-art techniques in 
continuous control problems [19]. 

Policy search
Policy search methods aim to directly find policies by means 
of gradient-free or gradient-based methods. Prior to the cur-
rent surge of interest in DRL, several successful methods in 
DRL eschewed the commonly used backpropagation algo-
rithm in favor of evolutionary algorithms [17], [33], which are 
gradient-free policy search algorithms. Evolutionary methods 
rely on evaluating the performance of a population of agents. 
Hence, they are expensive for large populations or agents with 
many parameters. However, as black-box optimization meth-
ods, they can be used to optimize arbitrary, nondifferentiable 
models and naturally allow for more exploration in the param-
eter space. In combination with a compressed representation 
of neural network weights, evolutionary algorithms can even 
be used to train large networks; such a technique resulted in 
the first deep neural network to learn an RL task, straight 
from high-dimensional visual inputs [33]. Recent work has 
reignited interest in evolutionary methods for RL as they can 

potentially be distributed at larger scales than techniques that 
rely on gradients [65]. 

Backpropagation through stochastic functions
The workhorse of DRL, however, remains backpropagation. 
The previously discussed REINFORCE rule [97] allows neural 
networks to learn stochastic policies in a task-dependent man-
ner, such as deciding where to look in an image to track [69] 
or caption [99] objects. In these cases, the stochastic variable 
would determine the coordinates of a small crop of the image 
and hence reduce the amount of computation needed. This 
usage of RL to make discrete, stochastic decisions over inputs 
is known in the deep-learning literature as hard attention and is 
one of the more compelling uses of basic policysearch methods 
in recent years, having many applications outside of traditional 
RL domains. 

Compounding errors
Searching directly for a policy represented by a neural network 
with very many parameters can be difficult and suffer from severe 
local minima. One way around this is to use guided policy search 
(GPS), which takes a few sequences of actions from another con-
troller (which could be constructed using a separate method, such 

Figure 6. A saliency map of a trained DQN [47] playing Space Invad-
ers [5]. By backpropagating the training signal to the image space, it is 
possible to see what a neural-network-based agent is attending to. In 
this frame, the most salient points—shown with the red overlay—are the 
laser that the agent recently fired and also the enemy that it anticipates 
hitting in a few time steps. 
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as optimal control). GPS learns from them by using supervised 
learning in combination with importance sampling, which cor-
rects for off-policy samples [40]. This approach effectively biases 
the search toward a good (local) optimum. GPS works in a loop, 
by optimizing policies to match sampled trajectories and opti-
mizing trajectory distributions to match the policy and minimize 
costs. Levine et al. [41] showed that it was possible to train visuo-
motor policies for a robot “end to end,” straight from the RGB 
pixels of the camera to motor torques, and, hence, provide one of 
the seminal works in DRL.

A more commonly used method is to use a trust region, in 
which optimization steps are restricted to lie within a region 
where the approximation of the true cost function still holds. 
By preventing updated policies from deviating too wildly from 
previous policies, the chance of a catastrophically bad update is 
lessened, and many algorithms that use trust regions guarantee 
or practically result in monotonic improvement in policy perfor-
mance. The idea of constraining each policy gradient update, as 
measured by the Kullback–Leibler (KL) divergence between the 
current and proposed policy, has a long history in RL [28]. One 
of the newer algorithms in this line of work, TRPO, has been 
shown to be relatively robust and applicable to domains with 
high-dimensional inputs [70]. To achieve this, TRPO optimiz-
es a surrogate objective function—specifically, it optimizes an 
(importance sampled) advantage estimate, constrained using a 
quadratic approximation of the KL divergence. While TRPO can 
be used as a pure policy gradient method with a simple baseline, 
later work by Schulman et al. [71] introduced generalized advan-
tage estimation (GAE), which proposed several, more advanced 
variance reduction baselines. The combination of TRPO and 
GAE remains one of the state-of-the-art RL techniques in con-
tinuous control. 

Actor-critic methods
Actor-critic approaches have grown in popularity as an 
effective means of combining the benefits of policy search 
methods with learned value functions, which are able to 
learn from full returns and/or TD errors. They can benefit 
from improvements in both policy gradient methods, such as 
GAE [71], and value function methods, such as target net-
works [47]. In the last few years, DRL actor-critic methods 
have been scaled up from learning simulated physics tasks 
[22], [44] to real robotic visual navigation tasks [100], directly 
from image pixels. 

One recent development in the context of actor-critic algo-
rithms is deterministic policy gradients (DPGs) [72], which 
extend the standard policy gradient theorems for stochastic poli-
cies [97] to deterministic policies. One of the major advantages of 
DPGs is that, while stochastic policy gradients integrate over both 
state and action spaces, DPGs only integrate over the state space, 
requiring fewer samples in problems with large action spaces. In 
the initial work on DPGs, Silver et al. [72] introduced and demon-
strated an off-policy actor-critic algorithm that vastly improved 
upon a stochastic policy gradient equivalent in high-dimensional 
continuous control problems. Later work introduced deep DPG, 
which utilized neural networks to operate on high-dimensional, 

visual state spaces [44]. In the same vein as DPGs, Heess et al. 
[22] devised a method for calculating gradients to optimize sto-
chastic policies by “reparameterizing” [30], [60] the stochastic-
ity away from the network, thereby allowing standard gradients 
to be used (instead of the high-variance REINFORCE estima-
tor [97]). The resulting stochastic value gradient (SVG) methods 
are flexible and can be used both with (SVG(0) and SVG(1)) 
and without (SVG(3)) value function critics, and with (SVG 
(3) and SVG(1)) and without (SVG(0)) models. Later work 
proceeded to integrate DPGs and SVGs with RNNs, allowing 
them to solve continuous control problems in POMDPs, learning 
directly from pixels [21]. Together, DPGs and SVGs can be con-
sidered algorithmic approaches for improving learning efficiency 
in DRL. 

An orthogonal approach to speeding up learning is to exploit 
parallel computation. By keeping a canonical set of parameters 
that are read by and updated in an asynchronous fashion by mul-
tiple copies of a single network, computation can be efficiently 
distributed over both processing cores in a single central process-
ing unit (CPU), and across CPUs in a cluster of machines. Using 
a distributed system, Nair et al. [51] developed a framework for 
training multiple DQNs in parallel, achieving both better per-
formance and a reduction in training time. However, the sim-
pler asynchronous advantage actor-critic (A3C) algorithm [48], 
developed for both single and distributed machine settings, has 
become one of the most popular DRL techniques in recent times. 
A3C combines advantage updates with the actor-critic formula-
tion and relies on asynchronously updated policy and value func-
tion networks trained in parallel over several processing threads. 
The use of multiple agents, situated in their own, independent 
environments, not only stabilizes improvements in the param-
eters, but conveys an additional benefit in allowing for more 
exploration to occur. A3C has been used as a standard start-
ing point in many subsequent works, including the work of Zhu 
et al. [100], who applied it to robotic navigation in the real world 
through visual inputs. 

There have been several major advancements on the original 
A3C algorithm that reflect various motivations in the field of 
DRL. The first is actor-critic with experience replay [93], which 
adds off-policy bias correction to A3C, allowing it to use experi-
ence replay to improve sample complexity. Others have attempted 
to bridge the gap between value and policy-based RL, utilizing 
theoretical advancements to improve upon the original A3C [50], 
[54]. Finally, there is a growing trend toward exploiting auxiliary 
tasks to improve the representations learned by DRL agents and, 
hence, improve both the learning speed and final performance of 
these agents [26], [46]. 

Current research and challenges
To conclude, we will highlight some current areas of research 
in DRL and the challenges that still remain. Previously, we have 
focused mainly on model-free methods, but we will now exam-
ine a few model-based DRL algorithms in more detail. Model-
based RL algorithms play an important role in making RL data 
efficient and in trading off exploration and exploitation. After 
tackling exploration strategies, we shall then address hierarchical 
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RL (HRL), which imposes an inductive bias on the final policy 
by explicitly factorizing it into several levels. When available, 
trajectories from other controllers can be used to bootstrap the 
learning process, leading us to imitation learning and inverse RL 
(IRL). For the final topic, we will look at multiagent systems, 
which have their own special considerations. 

Model-based RL
The key idea behind model-based RL is to learn a transition 
model that allows for simulation of the environment without 
interacting with the environment directly. Model-based RL 
does not assume specific prior knowledge. However, in prac-
tice, we can incorporate prior knowledge (e.g., physics-based 
models [29]) to speed up learning. Model learning plays an 
important role in reducing the number of required interac-
tions with the (real) environment, which may be limited in 
practice. For example, it is unrealistic to perform millions of 
experiments with a robot in a reasonable amount of time and 
without significant hardware wear and tear. There are various 
approaches to learn predictive models of dynamical systems 
using pixel information. Based on the deep dynamical model 
[90], where high-dimensional observations are embedded into 
a lower-dimensional space using autoencoders, several model-
based DRL algorithms have been proposed for learning models 
and policies from pixel information [55], [91], [95]. If a suffi-
ciently accurate model of the environment can be learned, then 
even simple controllers can be used to control a robot directly 
from camera images [14]. Learned models can also be used to 
guide exploration purely based on simulation of the environ-
ment, with deep models allowing these techniques to be scaled 
up to high-dimensional visual domains [75]. 

Although deep neural networks can make reasonable predic-
tions in simulated environments over hundreds of time steps [10], 
they typically require many samples to tune the large number 
of parameters they contain. Training these models often requires 
more samples (interaction with the environment) than simpler 
models. For this reason, Gu et al. [19] train locally linear mod-
els for use with the NAF algorithm—the continuous equivalent 
of the DQN [47]—to improve the algorithm’s sample complex-
ity in the robotic domain where samples are expensive. It seems 
likely that the usage of deep models in model-based DRL could 
be massively spurred by general advances in improving the data 
efficiency of neural networks. 

Exploration versus exploitation
One of the greatest difficulties in RL is the fundamental dilemma 
of exploration versus exploitation: When should the agent try out 
(perceived) nonoptimal actions to explore the environment (and 
potentially improve the model), and when should it exploit the 
optimal action to make useful progress? Off-policy algorithms, 
such as the DQN [47], typically use the simple e-greedy explora-
tion policy, which chooses a random action with probability !e  
[0, 1], and the optimal action otherwise. By decreasing e  over 
time, the agent progresses toward exploitation. Although adding 
independent noise for exploration is usable in continuous control 
problems, more sophisticated strategies inject noise that is corre-

lated over time (e.g., from stochastic processes) to better preserve 
momentum [44]. 

The observation that temporal correlation is important led 
Osband et al. [56] to propose the bootstrapped DQN, which 
maintains several Q-value “heads” that learn different values 
through a combination of different weight initializations and 
bootstrapped sampling from experience replay memory. At 
the beginning of each training episode, a different head is cho-
sen, leading to temporally extended exploration. Usunier et al. 
[85] later proposed a similar method that performed explora-
tion in policy space by adding noise to a single output head, 
using zero-order gradient estimates to allow backpropagation 
through the policy. 

One of the main principled exploration strategies is the 
upper confidence bound (UCB) algorithm, based on the prin-
ciple of “optimism in the face of uncertainty” [36]. The idea 
behind UCB is to pick actions that maximize ,RE R lv+6 6@ @  
where [ ]Rv  is the standard deviation of the return and .02l  
UCB therefore encourages exploration in regions with high 
uncertainty and moderate expected return. While easily achiev-
able in small tabular cases, the use of powerful density models 
has allowed this algorithm to scale to high-dimensional visual 
domains with DRL [4]. 

UCB can also be considered one way of implementing 
intrinsic motivation, which is a general concept that advocates 
decreasing uncertainty/making progress in learning about the 
environment [68]. There have been several DRL algorithms that 
try to implement intrinsic motivation via minimizing model pre-
diction error [57], [75] or maximizing information gain [25], [49]. 

Hierarchical RL
In the same way that deep learning relies on hierarchies of fea-
tures, HRL relies on hierarchies of policies. Early work in this 
area introduced options, in which, apart from primitive actions 
(single time-step actions), policies could also run other poli-
cies (multitime-step “actions”) [79]. This approach allows top-
level policies to focus on higher-level goals, while subpolicies 
are responsible for fine control. Several works in DRL have 
attempted HRL by using one top-level policy that chooses 
between subpolicies, where the division of states or goals in to 
subpolicies is achieved either manually [1], [34], [82] or auto-
matically [2], [88], [89]. One way to help construct subpolicies 
is to focus on discovering and reaching goals, which are spe-
cific states in the environment; they may often be locations, to 
which an agent should navigate. Whether utilized with HRL or 
not, the discovery and generalization of goals is also an impor-
tant area of ongoing research [35], [66], [89]. 

Imitation learning and inverse RL
One may ask why, if given a sequence of “optimal” actions 
from expert demonstrations, it is not possible to use supervised 
learning in a straightforward manner—a case of “learning 
from demonstration.” This is indeed possible and is known as 
behavioral cloning in traditional RL literature. Taking advan-
tage of the stronger signals available in supervised learn-
ing problems, behavioral cloning enjoyed success in earlier 



neural network research, with the most notable success being 
ALVINN, one of the earliest autonomous cars [59]. However, 
behavioral cloning cannot adapt to new situations, and small 
deviations from the demonstration during the execution of 
the learned policy can compound and lead to scenarios where 
the policy is unable to recover. A more generalizable solution 
is to use provided trajectories to guide the learning of suit-
able state-action pairs but fine-tune the agent using RL [23]. 

The goal of IRL is to estimate an unknown reward function 
from observed trajectories that characterize a desired solution 
[52]; IRL can be used in combination with 
RL to improve upon demonstrated behavior. 
Using the power of deep neural networks, it 
is now possible to learn complex, nonlinear 
reward functions for IRL [98]. Ho and Ermon 
[24] showed that policies are uniquely char-
acterized by their occupancies (visited state 
and action distributions) allowing IRL to be 
reduced to the problem of measure matching. 
With this insight, they were able to use gen-
erative adversarial training [18] to facilitate 
reward-function learning in a more flexible manner, resulting in 
the generative adversarial imitation learning algorithm. 

Multiagent RL
Usually, RL considers a single learning agent in a stationary 
environment. In contrast, multiagent RL (MARL) considers 
multiple agents learning through RL and often the nonstation-
arity introduced by other agents changing their behaviors as 
they learn [8]. In DRL, the focus has been on enabling (differ-
entiable) communication between agents, which allows them 
to cooperate. Several approaches have been proposed for this 
purpose, including passing messages to agents sequentially 
[15], using a bidirectional channel (providing ordering with 
less signal loss) [58], and an all-to-all channel [77]. The addi-
tion of communication channels is a natural strategy to apply 
to MARL in complex scenarios and does not preclude the 
usual practice of modeling cooperative or competing agents as 
applied elsewhere in the MARL literature [8]. 

Conclusion: Beyond pattern recognition
Despite the successes of DRL, many problems need to be 
addressed before these techniques can be applied to a wide 
range of complex real-world problems [37]. Recent work 
with (nondeep) generative causal models demonstrated supe-
rior generalization over standard DRL algorithms [48], [63] 
in some benchmarks [5], achieved by reasoning about causes 
and effects in the environment [29]. For example, the schema 
networks of Kanksy et al. [29] trained on the game Break-
out immediately adapted to a variant where a small wall was 
placed in front of the target blocks, while progressive (A3C) 
networks [63] failed to match the performance of the schema 
networks even after training on the new domain. Although 
DRL has already been combined with AI techniques, such 
as search [73] and planning [80], a deeper integration with 
other traditional AI approaches promises benefits such as bet-

ter sample complexity, generalization, and interpretability [16]. 
In time, we also hope that our theoretical understanding of the 
properties of neural networks (particularly within DRL) will 
improve, as it currently lags far behind practice. 

To conclude, it is worth revisiting the overarching goal of all 
of this research: the creation of general-purpose AI systems that 
can interact with and learn from the world around them. Interac-
tion with the environment is simultaneously the advantage and 
disadvantage of RL. While there are many challenges in seeking 
to understand our complex and ever-changing world, RL allows 

us to choose how we explore it. In effect, RL 
endows agents with the ability to perform 
experiments to better understand their sur-
roundings, enabling them to learn even high-
level causal relationships. The availability 
of high-quality visual renderers and physics 
engines now enables us to take steps in this 
direction, with works that try to learn intui-
tive models of physics in visual environments 
[13]. Challenges remain before this will be 
possible in the real world, but steady progress 

is being made in agents that learn the fundamental principles of 
the world through observation and action. Perhaps, then, we 
are not too far away from AI systems that learn and act in more 
human-like ways in increasingly complex environments. 
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