
Nature | Vol 588 | 3 December 2020 | 77

Article

Autonomous navigation of stratospheric
balloons using reinforcement learning

Marc G. Bellemare1 ✉, Salvatore Candido3 ✉, Pablo Samuel Castro1, Jun Gong3,

Marlos C. Machado1, Subhodeep Moitra1, Sameera S. Ponda3 & Ziyu Wang2

Efficiently navigating a superpressure balloon in the stratosphere1 requires the

integration of a multitude of cues, such as wind speed and solar elevation, and the

process is complicated by forecast errors and sparse wind measurements. Coupled

with the need to make decisions in real time, these factors rule out the use of

conventional control techniques2,3. Here we describe the use of reinforcement

learning4,5 to create a high-performing flight controller. Our algorithm uses data

augmentation6,7 and a self-correcting design to overcome the key technical challenge

of reinforcement learning from imperfect data, which has proved to be a major

obstacle to its application to physical systems8. We deployed our controller to station

Loon superpressure balloons at multiple locations across the globe, including a

39-day controlled experiment over the Pacific Ocean. Analyses show that the

controller outperforms Loon’s previous algorithm and is robust to the natural

diversity in stratospheric winds. These results demonstrate that reinforcement

learning is an effective solution to real-world autonomous control problems in which

neither conventional methods nor human intervention suffice, offering clues about

what may be needed to create artificially intelligent agents that continuously interact

with real, dynamic environments.

Superpressure balloons1 can autonomously operate in the stratosphere

for months, making them a cost-effective platform for communication,

Earth observation, gathering meteorological data and other appli-

cations. The altitude of a superpressure balloon is determined by its

density relative to the ambient atmosphere. In a Loon superpressure

balloon, vertical motion is achieved by pumping air ballast in and out

of a fixed-volume envelope, and horizontal motion is dictated by the

winds at the balloon’s location. To navigate, a flight controller must

therefore ascend and descend to find and follow favourable wind cur-

rents (Fig. 1a).

Despite these simple dynamics, long-term balloon control is chal-

lenging. The task of ‘station-keeping’, for example, involves maintaining

the balloon above a fixed ground location. To succeed, an indirect flight

path must be taken through the wind field (Fig. 1b). Station-keeping

also requires managing power over the day–night cycle, as descend-

ing uses solar energy stored in on-board batteries. Sparse wind meas-

urements result in a phenomenon called partial observability9, and a

good controller must weigh the costs and benefits of gathering distal

observations. The nature of this partial observability alone limits the

usefulness of conventional control techniques2.

We used reinforcement learning5 to train a flight controller from

simulations. Reinforcement learning excels at producing control strat-

egies that can handle high-dimensional, heterogeneous inputs and

optimize long-term objectives—for example, resulting in superhuman

game play10–12. Reinforcement learning has proven effective in optimiza-

tion problems in which a model of the process is available13–16, and has

shown promising results in simulations of real applications and back-

testing17–20 with some commercial success in internet applications21,22.

However, learning from imperfect data results in behavioural inac-

curacies that compound over the planning horizon23,24. This poses an

important difficulty in scaling up to autonomous physical platforms

such as ours, where acquiring flight data is slow and expensive, and

where decisions have consequences more than 24 h into the future.

Past results on autonomous flight, in comparison, have optimized

shorter-horizon objectives such as trajectory following25,26 or maximiz-

ing upwards velocity27. In the extreme, a balloon may need weeks of

roundabout flight to recover from control errors, without the benefit

of a reset mechanism such as is common in robotics experiments7,28–31.

Finally, the controller must cope with ageing-related changes such as

helium loss and battery fatigue.

Station-keeping

We say that a balloon is successfully station-keeping when within

50 kilometres of its station, a distance at which it can comfortably com-

municate with a ground device. The availability of diverse opposing

winds at different altitudes facilitates station-keeping. In the tropics,

this diversity varies seasonally and is affected by large-scale weather

phenomena32–34. However, short-term forecasts for the region can sub-

stantially differ from actual measurements; wind-heading prediction

errors greater than 90° are frequent, and are greatest at the equator35,36.

This makes exploration integral to an effective control strategy.

https://doi.org/10.1038/s41586-020-2939-8

Received: 1 April 2020

Accepted: 29 September 2020

Published online: 2 December 2020

 Check for updates

1Brain Team, Google Research, Montreal, Quebec, Canada. 2Brain Team, Google Research, Toronto, Ontario, Canada. 3Loon, Mountain View, CA, USA. ✉e-mail: bellemare@google.com;

scandido@loon.com

https://doi.org/10.1038/s41586-020-2939-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-2939-8&domain=pdf
mailto:bellemare@google.com
mailto:scandido@loon.com

78 | Nature | Vol 588 | 3 December 2020

Article

Loon’s previous hand-crafted algorithm, colloquially named

StationSeeker, provides insight into what makes a good controller.

StationSeeker tracks winds with headings that form an acute angle with

the direction to the station, effectively tacking towards its destination.

Once the balloon is in range, it seeks slow-moving winds. Decisions are

made by maximizing a score function that incentivizes exploration (see

Methods). Although heuristic, this controller has been tuned extensively

and has reliably navigated Loon balloons for over 150,000 flight hours.

A better controller spends a greater fraction of time successfully

station-keeping. To reserve energy for the balloon’s payload, it should

also minimize power consumption. We therefore require that deployed

controllers use on average no more power than StationSeeker, which

is calibrated for normal operations.

We encode this objective using a reward, r, that is maximal (r = 1) when

the balloon is within ρ = 50 km of its station. This reward is associated with

the balloon state st at time t and is provided in response to an action at

(ascend, descend or stay). Given a discount factor γ < 1, an optimal control-

ler maximizes the expected discounted sum of future rewards, or ‘return’

E








∑R γ r s a s s= (,)| = ,s

t

t
t t

=0

∞

0

where E indicates the expected value. Rs characterizes the long-term

value of a flight controller from an initial state s onwards.

Although setting the reward to r = 0 outside the 50 km range describes

the objective, softening the transition at the boundary results in

improved controllers. We reduce the reward r to a constant ccliff < 1 at

50 km and decay it by a half every τ = 100 km (see Methods). To incentiv-

ize power efficiency, r is further decreased when consuming energy.

An ablation study confirms that the learning is robust to a wide range

of reward parameters (Fig. 2a).

Wind measurements are typically only available at the balloon’s

current position and in its wake, where they have been obtained from

instruments. To extrapolate to other positions, we use a Gaussian

process37 to blend the balloon’s measurements with forecasts from

the European Centre for Medium-Range Weather Forecast (ECMWF),

using the wind forecast as a prior mean. The variance of the posterior

distribution quantifies the uncertainty of different wind estimates. As

inputs to our controller, we encode the magnitude and relative bear-

ing of winds directly above and below the balloon, at 181 pressure lev-

els ranging from 5 kPa to 14 kPa (15–20 km equivalent altitude). This

wind column also forms the bulk of StationSeeker’s inputs. Using wind

estimates outside of this column increases the computational costs

without substantially affecting performance, because the wind field

varies slowly with latitude and longitude and also because the Gaussian

process integrates measurements from nearby balloons. We encode

the uncertainty at each pressure level to provide an approximate belief

state38. By treating uncertainty as an input, we avoid explicitly enumer-

ating plausible scenarios—a considerable computational advantage

over search methods. Finally, we encode 16 ambient variables important

to efficient flight (Extended Data Table 1).

The wind column encoding is centred at the balloon’s altitude, so

that its frame of reference is independent of the balloon’s absolute

coordinates. This provides the learning system with a useful inductive

bias that takes advantage of natural symmetries and supports a simple

strategy: ascend or descend when the winds above or below offer better

returns, stay if they do not. Because poor decisions take the balloon

to a lower-return state, this strategy corrects for many mistakes by

design. We thus expect it to perform well in different wind conditions

and handle discrepancies between real and simulated environments.

A large supply of realistic training data is key to successful reinforce-

ment learning. Data from previous balloon flights are inadequate as

they cannot be used to evaluate large deviations from historical behav-

iour. On the other hand, generating sufficiently accurate data from

a physical atmospheric simulation is computationally prohibitive.

Instead, we create plausible wind data based on the ECMWF’s ERA5

global reanalysis dataset39, which reinterprets historical weather obser-

vations using numerical models. ERA5 provides baseline winds that are

modified with procedural noise40 to generate high-resolution wind

fields. By varying the random seed that drives the procedural noise, we

can generate an arbitrary number of scenarios and emulate forecasting

errors. The end product bears resemblance to data augmentation6,7,

which is known to improve the robustness of reinforcement-learning

controllers to modelling discrepancies.

We model the dynamics of a Loon superpressure balloon within

these plausible wind fields to obtain a simulator for training and

evaluating flight controllers. A trial consists of two simulated days of

station-keeping at a fixed location, during which controllers receive

inputs and emit commands at 3-min intervals. Flight controllers are

thus exposed to diurnal cycles and scenarios in which the balloon must

recover from difficult overnight conditions. These realistic flight paths

come at the cost of relatively slow simulation—roughly 40 Hz on data-

centre hardware. In comparison, the Arcade Learning Environment

(ALE) benchmark41 operates at over 8,000 Hz.

Our controller uses action values to predict the rewards resulting

from its decisions. The action value Rs,a estimates the expected return

Station-keeping range

15 km

20 km

6:00 11:00

16:00 21:00

6:00

21:00

16:00

11:00

a b

0 10 20 30 km

Fig. 1 | Station-keeping with a superpressure balloon. a, Schematic of a

superpressure balloon navigating a wind field. The balloon remains close to its

station by moving between winds at different altitudes. Its altitude range is

indicated by the upper and lower dashed lines. b, The balloon’s flight path,

viewed from above. The station and its 50-km range are shown in light blue.

Shaded arrows represent the wind field. The wind field constantly evolves,

requiring the balloon to replan at regular intervals.

Nature | Vol 588 | 3 December 2020 | 79

obtained when the action a is selected from a state s. During operation,

the controller behaves ‘greedily’, selecting the action that has the high-

est estimate. Action-value estimation is particularly well suited to the

problem of station-keeping, in which there are few actions to evalu-

ate. Unlike direct policy optimization schemes42,43, it is also trivially

combined with experience replay44 to reuse simulator interactions

and achieves greater data efficiency.

To obtain a state-of-the-art controller, we leveraged recent develop-

ments from the field of deep reinforcement learning, which emphasizes

the use of deep neural networks in the learning process. Our controller

estimates its action values using a feed-forward network with seven layers

of 600 rectified linear units45 each; the weights of the network are learned

using the distributional QR-DQN algorithm46. Using smaller networks or a

non-distributional algorithm was found to degrade performance (Fig. 2b).

We train the neural network in a distributed setting47. Data are

generated from 100 parallel simulations and stored in an array of cir-

cular replay buffers from which minibatches are sampled and pro-

vided to a learner process11. Distributed training overcomes the low

simulation rate and enables training within a reasonable amount of

time. The training process alternates between its greedy policy and a

momentum-based exploratory policy (see Methods).

Evaluation

We evaluate controllers in simulation using a 6,000-flight benchmark.

This benchmark serves as a reliable proxy for actual flight performance,

and allows fast iterations over the controller design. By varying hyper-

parameters, we obtain a number of controllers that exhibit different

a

Decay rate, (km)Discontinuity, ccliff

T
W

R
5

0
 (
%

)
55 55

50

40

1 3 5 7 9 11

50

45

40

35

30

25

Target range, (km)

30 0 0 100 200 300 4000.2 0.4 0.6 0.8 1.040 50 60 70

T
W

R
5

0
 (
%

)

Number of network layers

200 units per layer

600 units per layer
1,000 units per layer

600 units, non-distributional

b

Fig. 2 | Effect of parameters on controller performance. a, Performance of

reinforcement-learning controllers trained with different reward parameters.

Performance is measured in terms of the fraction of time spent within 50 km of

the station (TWR50), evaluated using our simulation benchmark (averaged

over 6,000 simulations; see text). Each parameter is varied in isolation; the

deployed controller’s parameter settings are indicated by a black outline.

b, Performance as a function of network size.

RL

controller

StationSeeker OPD Random Passive
0

10

20

30

40

50

60

70

T
W

R
5
0
 (
%

)

a

b

Perfect-information limit

Simulation

baselines

Plausible range of

maximum benchmark TWR50

c

55.1
40.5 51.6

1520253035404550

Power (W)

20

25

30

35

40

45

50

55

60

T
W

R
5
0
 (
%

)

OPD controllers

StationSeeker-type controllers

RL controller

RL controller

(24 days)Tuned

search
OPD

(equal power)

StationSeeker

12 h

1 day

2 days

7 days

0 25 50 75 100

TWR50 after 24 days (%)

0

25

50

75

100

T
W

R
5
0
 a

ft
e
r

4
1
 d

a
y
s
 (
%

)

Fig. 3 | Performance profile of the reinforcement-learning controller in

simulation. a, Proportion of flight time spent within 50 km of the station

(TWR50) by different controllers in the simulation benchmark (averaged over

6,000 simulations); a higher TWR50 reflects better performance. Also

included are controllers that select actions uniformly at random and passively

drift. Error bars show 99.9% confidence intervals. The shaded area indicates

the estimated range for the maximum TWR50 in the benchmark. RL,

reinforcement learning. b, TWR50 and power consumption for alternative

parametrizations of StationSeeker and OPD. The controllers from a, and the

reinforcement-learning controller at different points in training, are indicated.

c, Per-flight performance of the reinforcement-learning controller after 24 and

41 days of training. Points indicate the two controllers’ TWR50 for specific

flights from the benchmark. Both controllers achieve 55.1% TWR50, but differ

substantially on a per-flight basis, illustrating the partially observable nature of

station-keeping.

80 | Nature | Vol 588 | 3 December 2020

Article

trade-offs between station-keeping performance and energy usage.

The best controller satisfying our power requirement achieves a score

of 55.1% TWR50 (time within radius 50 km) on the benchmark. By com-

parison, StationSeeker achieves 40.5% TWR50 (Fig. 3a). A 1% gain cor-

responds to 14.4 additional minutes of station-keeping in a 24-h period,

and so the difference amounts to a substantial 3.5 h per day average

improvement in time spent near the station.

We estimate that the maximum achievable TWR50 on this benchmark

is somewhere between 56.8% and 68.7% (see Methods). The upper limit

corresponds to the performance of a tree-search controller with perfect

wind information, and reflects the limitations of wind-based navigation.

Even if favourable winds exist, partial observability implies that an agent

that behaves optimally with respect to its knowledge must still some-

times gamble. This is reflected in the network’s distributional predic-

tion, which we use to obtain the 56.8% lower limit. The per-flight TWR50

of equally performing controllers can vary substantially (Fig. 3c), which

suggests that the true maximum lies closer to the lower limit, implying

that our controller is close to optimal in simulation.

As a strong competitor, we applied a tree-search algorithm (optimis-

tic deterministic planning, OPD48) to a coarse approximation of flight

dynamics, used for computational reasons (see Methods for modelling

details). At equal power consumption, the reinforcement-learning

controller outperforms a controller based on OPD (51.6% TWR50;

Fig. 3b). Even a tuned-search controller that uses all available power

remains worse (53.0%, Mann–Whitney U test n = 6,000, P < 10−4, all

tests two-sided). Anecdotal evidence from prior tests suggests that

the tuned-search controller performs poorly in real conditions,

in part because its model does not adequately deal with partial

observability.

We also tested the reinforcement-learning controller’s sensitivity

to initial conditions. For 12 initial conditions, we ran 125 trials from

perturbations of a start position, and measured the average distance

between balloons (see Methods). The reinforcement-learning control-

ler is much less sensitive to perturbations (56 km average pairwise

distance) than StationSeeker (117 km). Supplementary Videos 1–2

illustrate this point in easier and more challenging station-keeping

conditions.

Deployment

We used the reinforcement-learning controller to station Loon bal-

loons near an equatorial location over the Pacific Ocean where Sta-

tionSeeker already performs superbly (see Methods for details on

how controllers are integrated into the broader fleet management

system). We cumulated a total of 2,884 flight hours from 17 Decem-

ber 2019 to 25 January 2020 (Extended Data Figs. 1–3). Flight data was

divided into 851 three-hour periods, each of which can be viewed as

a roughly independent sample. This process was repeated with data

from 7,475 flight hours concurrently acquired with StationSeeker at

the same location (48 segments, 2,185 periods). Real conditions differ

from simulation due to modelling discrepancies in flight dynamics

and power consumption, making this experiment a major challenge

for the reinforcement-learning controller. Additionally, the control-

lers received observations from multiple other balloons operating in

the vicinity of the station. As a result, many of the states encountered

during deployment had never been experienced in training (Supple-

mentary Video 3 visualizes a balloon station-keeping over the course

of seven days).

Overall, our controller spends more time in range of the station

(TWR50 79% versus 72%; U = 850,410.5, P < 10−4), and uses less power for

altitude control (average 29 W versus 33 W, U = 1,048,814, P < 10−4). The

reported TWR50 values are higher than the average for the simulation

0 50 100 150 200
0

60
0–25 km

0 50 150 200100
0

45
25–50 km

0 50 100 150 200
0

35
50–100 km

0 200100
Power (W)

Power (W)

0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e

0 200100
Power (W)

0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e

0 200100
Power (W)

0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e

0 25 75 10050

Percentile

0

20

40

60

80

100
T

W
R

5
0
 o

v
e
r

3
-h

 p
e
ri
o

d
s
 (
%

)

StationSeeker

RL controller

0 246 12 18

Excursion length (h)

0

50

0 124 8

Excursion length (h)

0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e

0 50 100 150

Distance (km)

0

4

F
re

q
u

e
n

c
y
 (
%

)

F
re

q
u

e
n

c
y
 (
%

)

F
re

q
u

e
n

c
y
 (
%

)

F
re

q
u

e
n

c
y
 (
%

)

F
re

q
u

e
n

c
y
 (
%

)

6:00 18:00

Local time (h)

17.9

18.0

18.1

18.2

18.3

A
lt
it
u

d
e
 (
k
m

)

a b c

d e

Station-keeping

range

Daytime

Fig. 4 | Flight characteristics of controllers tested in the Pacific Ocean

experiment. a, Distribution of time spent within 50 km (TWR50) across 3-h

periods. The panel shows the cumulative fraction of periods (x axis) during

which up to a given fraction of time was spent within 50 km of the station

(y axis). A left-shifted curve indicates higher performance and the

reinforcement-learning controller has a lower 25th-percentile TWR50.

b, Histogram of distances to the station across 3-h periods (bin width: 1 km).

c, Histogram of duration of excursions (bin width: 1 h). An excursion begins

when the balloon leaves the 50-km range and ends when it returns within range.

The distribution of StationSeeker’s excursion lengths shows a heavier tail. Inset

shows cumulative frequency to 12 h (89.7% and 92.5% of data for the

reinforcement-learning controller and StationSeeker, respectively).

d, Histogram of power usage across 3-h periods (bin width: 10 W) within the

inner and outer rings (0–25 km and 25–50 km) and outside the range

(50–100 km). Insets show cumulative frequencies, illustrating how the

controllers use energy for different purposes. e, Average altitude over the day

(1-h increments). The shaded area indicates the period during which solar

energy is available. Local time is −8 utc.

Nature | Vol 588 | 3 December 2020 | 81

benchmark, which is curated to contain an artificially high proportion

of difficult conditions. We find that our controller spends far fewer 3-h

periods outside of the 50-km range, resulting in a lower 25th-percentile

TWR50 (72% versus 39%; Fig. 4a). On the basis of our simulation results,

we expect a larger performance gap at other locations.

Within range, StationSeeker attempts to simultaneously slow down

and navigate towards the station, a behaviour that often takes it through

the centre of the range. By contrast, the reinforcement-learning con-

troller uses different strategies depending on wind conditions. For

example, it takes advantage of lateral winds to station-keep without

closing in, benefiting from a larger area and thus remaining passive

more often. This results in more time spent within the 25–50 km outer

ring (Fig. 4b), where it uses significantly less energy (27 W versus 43 W,

U = 287,887, n1 = 812, n2 = 565, P < 10−4; Fig. 4d), Power consumption is

also reduced in the inner ring (0–25 km; 15 W versus 18 W, U = 54,176,

n1 = 778, n2 = 116, P = 0.0005).

Outside the range (50–100 km), the reinforcement-learning control-

ler actively works to return within the target region, resulting in shorter

excursion lengths (average 3.3 h versus 5.0 h, U = 21,738, n1 = 295, n2 = 123,

P = 0.001; Fig. 4c). This results in increased power consumption beyond

50 km (55 W versus 39 W, U = 14,060.5, n1 = 367, n2 = 95, P = 0.0036),

evidencing how the reinforcement-learning controller utilizes energy

savings made while within range. Finally, we find evidence that the

controller uses altitude to convert solar energy in excess of battery

capacity into potential energy (Fig. 4e). This occurs because ascending

does not require power; the stored potential energy is then released

early in the night, when power availability is most uncertain.

Discussion

We used reinforcement learning to create a flight controller that can

efficiently station a stratospheric balloon for weeks at a time. We dealt

with the unavailability of a tractable physical simulator or affordable

data-collection mechanism by augmenting an existing meteorologi-

cal dataset with procedural noise to create simulations sufficient for

our purposes. We address the problem of partial observability9,38 by

incorporating uncertainty variables as additional inputs to the neural

network, and used a relative encoding of the wind column to reduce

the gap between simulation and reality6,7.

Although short-term, low-level control of the balloon can be achieved

using standard linearization techniques2, reinforcement learning is

particularly well equipped to deal with the discrete factors that must

be considered when optimizing complex, long-term objectives such as

station-keeping. The algorithmic framework we used is by now reason-

ably standard, and many state features were inherited from Station-

Seeker. Reinforcement learning also compares favourably to runtime

planning: offloading the optimization process to a training phase ena-

bles a longer decision-making horizon and reduces the computational

cost of decisions during deployment. Although we reported on a single,

controlled experiment, our method has now replaced StationSeeker

across the Loon fleet.

In designing intelligent agents that carry out tasks autonomously

in the real world, we encounter the issue of domain boundaries—for

instance, what a plate-grasping robot29 does once its dishwasher is

empty. Currently, in between bouts of cognition, scripted behaviours

and engineers take over from the agent to reset the system to its initial

configuration, but this reliance on external agency limits the agent’s

autonomy. By contrast, station-keeping offers an example of a funda-

mentally continual and dynamic activity, one in which ongoing intel-

ligent behaviour is a consequence of interacting with a chaotic outside

world. By reacting to its environment instead of imposing a model upon

it, the reinforcement-learning controller gains a flexibility that enables

it to continue to perform well over time. In our pursuit of autonomous

intelligence, we may do well to pay attention to emergent properties

of these and other agent–environment interactions49,50.

Online content

Any methods, additional references, Nature Research reporting sum-

maries, source data, extended data, supplementary information,

acknowledgements, peer review information; details of author con-

tributions and competing interests; and statements of data and code

availability are available at https://doi.org/10.1038/s41586-020-2939-8.

1. Lally, V. E. Superpressure Balloons for Horizontal Soundings of the Atmosphere Technical

report (National Center for Atmospheric Research, 1967).

2. Anderson, B. & Moore, B. J. Optimal Control: Linear Quadratic Methods (Prentice-Hall,

1989).

3. Camacho, E. F. & Bordons, C. Model Predictive Control (Springer, 2007).

4. Bellman, R. E. Dynamic Programming (Princeton Univ. Press, 1957).

5. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction 2nd edn (MIT Press,

2018).

6. Jakobi, N., Husbands, P. & Harvey, I. Noise and the reality gap: the use of simulation in

evolutionary robotics. In Proc. European Conf. Artificial Life (eds Moran, F. et al.) 704–720

(Springer, 1995).

7. Tobin, J. et al. Domain randomization and generative models for robotic grasping. In Proc.

Intl Conf. Intelligent Robots and Systems 3482–3489 (IEEE, 2018).

8. Levine, S., Kumar, A., Tucker, G. & Fu, J. Offline reinforcement learning: tutorial, review,

and perspectives on open problems. Preprint at https://arxiv.org/abs/2005.01643 (2020).

9. Kaelbling, L. P., Littman, M. L. & Cassandra, A. R. Planning and acting in partially

observable stochastic domains. Artif. Intell. 101, 99–134 (1998).

10. Tesauro, G. Temporal difference learning and TD-Gammon. Commun. ACM 38, 58–68

(1995).

11. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518,

529–533 (2015).

12. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search.

Nature 529, 484–489 (2016).

13. Lauer, C. J., Montgomery, C. A. & Dietterich, T. G. Managing fragmented fire-threatened

landscapes with spatial externalities. For. Sci. 66, 443–456 (2020).

14. Simão, H. P. et al. An approximate dynamic programming algorithm for large-scale fleet

management: a case application. Transport. Sci. 43, 178–197 (2009).

15. Mannion, P., Duggan, J. & Howley, E. An experimental review of reinforcement learning

algorithms for adaptive traffic signal control. In Autonomic Road Transport Support

Systems (eds McCluskey, T. L. et al.) 47–66 (Springer, 2016).

16. Mirhoseini, A. et al. Chip placement with deep reinforcement learning. Preprint at

https://arxiv.org/abs/2004.10746 (2020).

17. Nevmyvaka, Y., Feng, Y. & Kearns, M. Reinforcement learning for optimized trade

execution. In Proc. Intl Conf. Machine Learning (eds Cohen, W. W. & Moore, A.) 673–680

(ACM, 2006).

18. Pineau, J., Bellemare, M. G., Rush, A. J., Ghizaru, A. & Murphy, S. A. Constructing

evidence-based treatment strategies using methods from computer science. Drug

Alcohol Depend. 88, S52–S60 (2007).

19. Anderson, R. N., Boulanger, A., Powell, W. B. & Scott, W. Adaptive stochastic control for

the smart grid. Proc. IEEE 99, 1098–1115 (2011).

20. Glavic, M., Fonteneau, R. & Ernst, D. Reinforcement learning for electric power system

decision and control: past considerations and perspectives. IFAC PapersOnLine 50,

6918–6927 (2017).

21. Theocharous, G., Thomas, P. S. & Ghavazamdeh, M. Personalized ad recommendation

systems for life-time value optimization with guarantees. In Proc. Intl Joint Conf. Artificial

Intelligence (eds Yang, Q. & Wooldridge, M.) 1806–1812 (AAAI Press, IJCAI, 2015).

22. Ie, E. et al. SlateQ: a tractable decomposition for reinforcement learning with

recommendation sets. In Proc. Intl Joint Conf. Artificial Intelligence (ed. Kraus, S.)

2592–2599 (IJCAI, 2019).

23. Ross, S., Gordon, G. & Bagnell, D. A reduction of imitation learning and structured

prediction to no-regret online learning. In Proc. 14th Intl Conf. Artificial Intelligence and

Statistics, (eds Gordon, G. et al.) 627–635 (PMLR, 2011).

24. Tan, J. et al. Sim-to-real: learning agile locomotion for quadruped robots. In Proc.

Robotics: Science and Systems XIV (eds Kress-Gazir, H. et al.) 10 (2018).

25. Ng, A. Y., Kim, H. J., Jordan, M. I. & Sastry, S. Autonomous helicopter flight via

reinforcement learning. In Advances in Neural Information Processing Systems 16 (NIPS

2003) (eds Saul, L. K. et al.) 799–806 (2004).

26. Abbeel, P., Coates, A., Quigley, M. & Ng, A. Y. An application of reinforcement learning to

aerobatic helicopter flight. In Advances in Neural Information Processing Systems 19

(NIPS 2006) (eds Schölkopf, B. et al.) 1–8 (MIT Press, 2007).

27. Reddy, G., Wong-Ng, J., Celani, A., Sejnowski, T. J. & Vergassola, M. Glider soaring via

reinforcement learning in the field. Nature 562, 236–239 (2018).

28. Lange, S., Riedmiller, M. & Voigtländer, A. Autonomous reinforcement learning on raw

visual input data in a real world application. In Proc. Intl Joint Conf. Neural Networks

https://doi.org/10.1109/IJCNN.2012.6252823 (IEEE, 2012).

29. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J. & Quillen, D. Learning hand-eye coordination

for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res.

37, 421–436 (2018).

30. Kalashnikov, D. et al. Scalable deep reinforcement learning for vision-based robotic

manipulation. In Proc. Conf. Robot Learning Vol. 87 (eds Billard, A. et al.) 651–673

(PMLR, 2018).

31. Andrychowicz, O. M. et al. Learning dexterous in-hand manipulation. Int. J. Robot. Res.

39, 3–20 (2020).

32. Zhang, C. Madden–Julian Oscillation. Rev. Geophys. 43, RG2003 (2005).

33. Domeisen, D. I., Garfinkel, C. I. & Butler, A. H. The teleconnection of El Niño Southern

Oscillation to the stratosphere. Rev. Geophys. 57, 5–47 (2018).

https://doi.org/10.1038/s41586-020-2939-8
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2004.10746
https://doi.org/10.1109/IJCNN.2012.6252823

82 | Nature | Vol 588 | 3 December 2020

Article

34. Baldwin, M. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).

35. Friedrich, L. S. et al. A comparison of Loon balloon observations and stratospheric

reanalysis products. Atmos. Chem. Phys. 17, 855–866 (2017).

36. Coy, L., Schoeberl, M. R., Pawson, S., Candido, S. & Carver, R. W. Global assimilation of

Loon stratospheric balloon observations. J. Geophys. Res. D 124, 3005–3019 (2019).

37. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press,

2006).

38. Sondik, E. The Optimal Control of Partially Observable Markov Processes. PhD thesis,

Stanford Univ. (1971).

39. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049

(2020).

40. Perlin, K. An image synthesizer. Comput. Graph. 19, 287–296 (1985).

41. Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The Arcade Learning Environment:

an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279 (2013).

42. Kolter, Z. J. & Ng, A. Y. Policy search via the signed derivative. In Proc. Robotics: Science

and Systems V (eds Trinkle, J. et al.) 27 (MIT Press, 2009).

43. Levine, S. & Koltun, V. Guided policy search. In Proc. Intl Conf. Machine Learning Vol. 28-3

(eds Dasgupta, S. & McAllester, D.) 1–9 (ICML, 2013).

44. Lin, L. Self-improving reactive agents based on reinforcement learning, planning and

teaching. Mach. Learn. 8, 293–321 (1992).

45. Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In

Proc. 27th Intl Conf. Machine Learning (ed. Fürnkranz, J.) 807–814 (ICML, 2010).

46. Dabney, W., Rowland, M., Bellemare, M. G. & Munos, R. Distributional reinforcement

learning with quantile regression. In Proc. AAAI Conf. Artificial Intelligence 2892–2901

(AAAI Press, 2018).

47. Mnih, V. et al. Asynchronous methods for deep reinforcement learning. In Proc. Intl Conf.

Machine Learning Vol. 48 (eds Balcan, M.-F. &Weinberger, K. Q.) 1928–1937 (ICML, 2016).

48. Munos, R. From bandits to Monte-Carlo tree search: the optimistic principle applied to

optimization and planning. Found. Trends Mach. Learn. 7, 1–129 (2014).

49. Gibson, J. J. The Ecological Approach to Visual Perception (Taylor & Francis, 1979).

50. Brooks, R. Elephants don’t play chess. Robot. Auton. Syst. 6, 3–15 (1990).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

Methods

Platform

The Loon superpressure balloons1 (http://www.loon.com) used in our

experiments are around 1,800 m3 and carry a payload of around 100 kg.

They fly in the stratosphere above wildlife, weather and most planes,

using lighter-than-air lift gas to provide buoyancy. They stabilize at

the altitude where the force of gravity on the system is equal to the lift

created by the buoyancy of the lift gas. Each balloon has two chambers:

one that contains lift gas and another that can be filled with ambient

air. Doing so changes the mass of the balloon system and causes it to

descend. Pumping air into the chamber requires energy but releasing

it does not, creating asymmetry in control dynamics.

A fleet dispatch system assigns each balloon to a particular loca-

tion, and a navigation controller brings it in the vicinity of that loca-

tion before switching control to the station-keeping controller. All

controllers run within a safety layer to ensure important behavioural

invariants are respected. As examples, a controller is not permitted

to use power in a way that would leave the balloon unable to maintain

safety-critical functions, or permitted to navigate to an altitude that

would damage the system. The observation vector contains variables

indicating whether the balloon has reached the limits of its altitude

range and whether it can use energy. These safety limits are present

both in training and on the real system, so the algorithm learns to work

within the constraints of the safety layer. At the end of their flight, the

balloons are navigated to planned locations and landed in coordination

with air traffic control.

The controllers navigate by providing a periodically updated

setpoint to the altitude-control system. The actions used by the

reinforcement-learning controller (ascend, descend and stay) cor-

respond to setpoints at the lowest-permitted, highest-permitted and

current altitudes.

Station-keeping as a control problem

Station-keeping is initiated up to 300 km from the station, and contin-

ues until the balloon is reassigned. The objective of station-keeping is to

maximize the proportion of time spent within range from the moment

that the process is initiated. We further require that a controller’s aver-

age power usage be no greater than StationSeeker’s.

The nature of station-keeping creates challenges for standard

model-predictive control tools3. There is a nontrivial and nonlinear

relationship between decisions and the signal we wish to control—that

is, the distance to the station. At night, for example, the controller

must weigh making short-term gains against long-term losses due to

low battery charge. Because wind uncertainty cannot be accurately

described in closed form, there is also no simple way of modelling the

consequences of exploration. More generally, the mapping from a

state to an optimal decision varies nonlinearly in terms of the input

variables. Search-based model-predictive solutions such as the OPD

controller are a more natural fit, but are computationally impractical.

Conditions for station-keeping

We say that a location has diverse winds if we can identify altitudes at

which the winds blow in opposing directions. We use wind diversity

to characterize the difficulty of station-keeping at a particular loca-

tion, and to filter out impossible training scenarios. In aggregate, we

estimate that diverse winds are available in the tropics 67% of time. We

obtain this estimate using a 1°-spaced lattice over the tropics (approxi-

mately 18,000 locations). For each location, wind diversity is estimated

by querying the simulator every hour from 2000 to 2019 and over five

random seeds. Each query results in a ‘diverse-or-not’ outcome. The

aggregate availability is the proportion of queries that are diverse.

Using the same technique, we estimate at 83.3% the average January

availability for the equatorial location of our experiment. Note that,

as this number measures the occurrence of a specific wind pattern

and ignores partial observability, it is not directly comparable to

TWR50.

The diversity of winds in the tropical stratosphere is influenced by

several phenomena. The Quasi-Biennial Oscillation is a series of alter-

nating easterly and westerly winds with a period of approximately

28 months, and is driven by vertically propagating gravity waves origi-

nating in the troposphere34. The Madden–Julian Oscillation (MJO) is a

progression of convective activity from the Indian Ocean into the Pacific

Ocean with a periodicity of 30–90 days32. It has been shown that the

movement of precipitation centres by the Madden–Julian Oscillation

alters the east-west winds in the tropical stratosphere51. Finally, the El

Niño–Southern Oscillation influences the tropical circulation in both

the troposphere and stratosphere through several mechanisms33.

StationSeeker

StationSeeker assigns a score sl to pressure levels, l, ranging from 5 kPa

to 14 kPa in 50 Pa increments (l = 1, …, 181). The highest-scoring altitude

is designated as a setpoint. The score function is parametrized to bal-

ance four considerations within the station-keeping objective: reaching

the station, remaining close to the station, exploring the wind field and

limiting power consumption.

A wind score gl is computed for each pressure level l on the basis of

the wind magnitude μl and bearing θl:

g α α= (1 −)e + e .
l Δ

w θ
Δ

k μ− −Δ l l1

The term αΔ ∈ [0, 1] is the relative weight associated with the wind

magnitude and bearing, and the term wΔ defines the magnitude of the

penalty associated with winds whose direction makes a large angle with

the direction of the station. Both of these decrease with the distance to

the station, Δ, and k1 is a constant. Close to the station, the magnitude

term dominates and the controller seeks slow winds.

To incentivize exploration and minimize power consumption, sl

interpolates between gl and a default score gunknown and penalizes large

altitude changes:

s u g u g k= (1 −) + + e .l l l l
k l l

unknown 2
− | − |3 current

The interpolation factor ul ∈ [0, 1] is the uncertainty at pressure level

l, and k2 and k3 are constants. Interpolating using uncertainty leads the

controller to navigate to unexplored altitudes when no high-scoring

winds have been observed.

All parameters effect a trade-off between power and performance;

they were previously tuned through multiple interactions with the

simulator and manual analysis of real flight data. We validated this

tuning by evaluating different settings of wΔ, k1, k2 and gunknown on our

6,000-flight benchmark. We sampled 50 settings uniformly at random

from reasonable ranges, and additionally varied one parameter at a

time (Extended Data Fig. 4). At equal or lower power consumption,

the best parametrization of the evaluation function achieves barely

higher TWR50 than StationSeeker (41.6% versus 40.5%), within the

range where the two can be considered equivalent.

Tree-search controller (OPD)

In theory, a search-based approach can achieve near-optimal per-

formance by enumerating all possible futures. However, using it in

a production-grade flight controller is computationally impractical

as it requires growing the search tree at every decision point. This is

problematic in our setting, where partial observability creates sizeable

randomness.

Instead, the tree-search controller models the flight dynamics

deterministically, using first-order physics to determine the bal-

loon’s position following a decision. It models night-time power

consumption as a constant baseline rate plus an additional descent

cost. Although practical, one downside of this simplified model is that

http://www.loon.com

Article

it cannot account for measurements obtained during the planning

process.

We use OPD48 to plan over this model. OPD is designed for deter-

ministic discounted decision processes. It improves over breadth-first

search by focusing on the most promising sequences first, enabling

longer planning horizons. This is particularly effective in our setting,

where many decisions move the balloon away from the station. Once N

nodes have been expanded, OPD selects the action offering the greatest

lower bound on the return.

Gaussian process queries dominate the computational cost of a node

expansion (75–95% of total cost). To make the process tractable we use

a caching mechanism that aggregates neighbouring winds and impose

a planning limit of 500 km and 33 h. By parallelizing the process over

8 threads, our algorithm can expand 200,000 nodes in roughly 800 ms.

Although additional engineering could scale this process further, our

results suggest that this would produce, at best, marginal gains. The

search process is parametrized by the duration T of a single decision and

a stride parameter S. The available setpoints are those reachable within

that time interval, spaced S pascals apart. If T = 15 min and S = 100 Pa

these are 0, ±100 and ±200 Pa, relative to the current altitude. Planning

at the same resolution as the reinforcement-learning controller (T = 3

and S = 50) remains computationally infeasible; as a nontrivial point

of comparison, even using T = 15 and S = 100 achieves a low TWR50 of

34.4%.

The search controllers reported in Fig. 3b were obtained by varying

T ∈ [15, 60], S ∈ [50, 200], γ ∈ {0.993, 0.999}, and a potential penalty for

power usage (fω ∈ {0.9, 1.0}; see below). The best controller uses T = 60,

S = 100, γ = 0.993 and fω = 1.0.

The tuned-search controller replaces the tree by a lattice of 400-km2

cells. All locations within a cell are approximated with its centre. Addi-

tionally, it uses the negative of the distance to the station as reward,

ignoring power or the 50-km boundary.

Reward function

We consider a distance-based reward







r Δ
Δ ρ

c
() =

1.0 if <

2 otherwise
,

Δ ρ τdist
cliff

−(−)/

where Δ is the distance to the station. Smaller values of ccliff penalize

exiting the range so that the objective is preserved; with ccliff = 1 and a

low decay rate τ, the balloon may prefer to remain just outside the range,

owing to discounting and approximation errors. The best performance

is provided by τ = 100 km and ccliff = 0.4 (Fig. 2a).

We modulate this reward by a multiplicative penalty for energy that is

drawn from the battery or could be used to charge it. We found this per-

forms better than an additive penalty, which dominates the action-value

estimates far from the station. We use a normalized measure of power

consumption ω ∈ [0, 1] during the 3-min time step. The power-penalized

reward is r(s, a) = r(Δ, ω) = fωrdist(Δ), with





f
ω ω

=
0.95 − 0.3 if > 0

1.0 otherwise
.

ω

State encoding

The state vector consists of 1,083 wind variables (361 triples) and

16 ambient variables (Extended Data Table 1). 181 triples correspond

to pressure levels from 5 kPa to 14 kPa in 50-Pa increments, and the

central triple always corresponds to the balloon’s current altitude.

The remaining triples are invalid for any given state; some altitudes are

also inaccessible owing to changes in temperature, infrared radiation

and levels of lift gas. We encode these using the limit triple (1, 1, 0),

semantically equivalent to being maximally confident that the wind

is blowing infinitely fast away from the station.

Deep reinforcement learning

An action value52 describes the expected return that follows from tak-

ing action a in state s:

E ∑R γ r s a s s a a= (,)| = , = .s a
t

t
t t,

=0

∞

0 0











We estimate action values using the QR-DQN algorithm46, an

open-source implementation of which is available online53. QR-DQN

uses collections of N real-valued locations θs a
i

, :

∑R
N

θ≈
1

.s a
i

N

s a
i

,
=1

,

Each location approximates a quantile of the probability distribu-

tion of the random return. This approach stabilizes learning in neural

networks and improves performance compared to direct mean estima-

tion54; Fig. 2b shows a small (+1.2%) TWR50 improvement. We also use

these locations to estimate the maximum performance in our simula-

tion benchmark (see below).

We model QR-DQN’s locations using a seven-layer, 600-unit neural

network. The network takes in a state vector as input and outputs

51 quantiles per action. Fewer (21) or more (101) quantiles did not

affect performance. We maintain a separate target network11 and

use n-step backups5. The controller then acts by selecting the action

with the highest estimate. The network weights are optimized using

Adam55.

Extended Data Table 2 summarizes the parameters of the learning

algorithm (hyperparameters). These were tuned using Vizier56 and grid

search. The learning process is most sensitive to Adam parameters, and

these formed the bulk of early tuning. The process otherwise performs

well for a range of parameters and many of these (for example, mini-

batch size, update horizon and number of quantiles) are imported from

open-source implementations. The deployed controller was trained

for 24 days (wall-clock time) and 1.1 billion gradient updates using a

V100 graphics processing unit (GPU), and was selected from among

ten similarly trained parametric variations. The controllers with per-

formances reported in Fig. 1 were trained in the same fashion, but for

300 million gradient updates.

Training-data generation

A trial is defined by the balloon’s initial longitude, latitude, altitude,

date, time, station location and a random seed for wind noise. For train-

ing, trial start dates and locations are sampled uniformly at random

from 2005–2010 (inclusive) and from the tropics (latitudes −25° to 25°);

configurations lacking wind diversity are rejected. The balloon’s initial

altitude is sampled uniformly from the accessible range, and its initial

distance from the station is drawn from a scaled beta distribution with

support 0–200 km; note that poor navigation will cause the balloon

to experience larger distances. This procedure provides a diversity

of learning scenarios, as weather patterns recur seasonally but differ

across the planet.

Data are recorded as a series of state–action–reward transitions.

Once a trial completes, its transitions are appended to a replay buffer

chosen uniformly at random. The final transition of a trial lacks con-

tinuation and is ignored.

To efficiently explore the consequences of different decisions, we

use an exploratory policy. This policy first samples a setpoint uniformly

at random from the accessible range. This setpoint is then periodically

updated with zero-mean Gaussian noise. This causes the balloon to

perform a random walk between altitudes, rather than taking indi-

vidual actions, providing momentum to exploration and improving

its efficiency.

A majority (80% probability) of trials are selected for exploration.

These trials interleave the reinforcement-learning controller with the

exploratory policy in intervals of four and two hours, respectively,

for a total of eight cycles per trial. Interleaving allows the controller

to efficiently test macroscopic deviations from its usual behaviour,

as following the exploratory policy for more than a few hours would

produce mostly uninteresting data.

Simulation benchmark

Our simulation benchmark is divided equally across three locations in

Peru and two in Kenya, regions in which Loon operates. This assesses

our controller’s ability to respond to different weather statistics;

empirically, station-keeping is easier over Kenya than over Peru. One

hundred dates selected from 2000 to 2015 correspond to each of the

five locations, omitting training dates (2005–2010), each with 12 ran-

dom seeds. This yields 6,000 flight configurations. The per-location

dates are sampled in equal proportions from five difficulty categories

derived from StationSeeker’s performance. Each category corresponds

to a 20% TWR50 interval. For example, there are 20 dates for which

StationSeeker achieves 0–19% TWR50. The balloon’s initial position

is sampled as in training.

We simulated 12 more flights sharing a common Peru station, begin-

ning on the first of each month of 2002, which we refer to as ‘the 2002

simulations’. This procedure yielded 11,520 states. Of these, the first

state of each trajectory is discarded to correct for the simulator’s

burn-in period.

Estimation of maximum benchmark performance

By providing the OPD controller with perfect wind information, we

reduce station-keeping to a path-planning problem with energy con-

straints. However, partial observability carries a performance cost. This

is reflected in the spread of the neural network’s return distribution

predictions (Extended Data Fig. 5). We therefore estimate the lower

limit on maximum performance as the perfect-information upper

limit, minus the cost of partial observability.

We assume the following: 1) the action-value distribution predictions

are reasonably accurate; 2) the environment dynamics are deterministic

given the random seed, such that any predicted quantile is obtained

by some sequence of decisions; and 3) the predicted outcomes cor-

respond to a sum of contiguous binary rewards. This last assumption

enables us to interpret action-value differences as differences in the

time spent successfully station-keeping. We write

R γ= ,s a
T

,
s a,

where Ts,a is the number of time steps before the balloon arrives within

range of the station, after which point it remains within range until the

simulation ends. An alternative model, R γ γ= (1 −)/(1 −)s a
T

,
+1s a, , leads

to similar estimates.

Under these assumptions, the only source of randomness is partial

observability. The largest predicted quantile, Rs a,
⁎ , therefore estimates

the optimal return in the absence of partial observability. We associate

this larger quantile with an earlier arrival time, T s a,
⁎ . For a given state s,

we compute the time steps saved owing to full observability:

∗

∗

T T
R R

γ
− =

log(max) − log(max)

−log
.s a s a

a s a a s a
, ,

, ,

Using the 2002 simulations, we estimate T s a,
⁎ − Ts,a = 57 steps, or 2.85 h.

We convert this difference into TWR50 by dividing it by 24 h (480 time

steps). 24 h corresponds to the expected length of time remaining in

a simulated trial, when sampling a time step at random, as we do here.

Anecdotally, it also roughly corresponds to the longest time period in

which a balloon may station-keep without interruption, owing to chang-

ing winds and low battery charge at night. This calculation results in a

TWR50 difference of 11.9%, which, once subtracted from the

perfect-information limit, yields 56.8% TWR50 as a plausible maximum

on performance on the simulation benchmark.

Sensitivity to initial conditions

For each of the 2002 simulations, we consider 125 perturbations of the

balloon’s initial position, arranged in a box (0, ±0.01, ±0.02 degrees

latitude and longitude, 0, ±100, ±200 Pa). We record their average dis-

tance to the station and the average distance between pairs of balloons

(ignoring altitude), which we call the pairwise distance (Extended Data

Fig. 6). The numbers reported in the main text correspond to pairwise

distances averaged across months; the medians across months are

55 km (reinforcement-learning controller) and 66 km (StationSeeker).

Response to bearing and magnitude as a function of distance

We use a sensitivity analysis to study the reinforcement-learning con-

troller’s decision-making process, focusing on how it trades off magni-

tude and bearing as a function of distance. We use finite differences to

estimate the partial derivative of the controller’s action-value estimates

with respect to input i—that is, its ‘response’ to i. For a given state s and

action a we query the neural network for its action-value estimate Rs,a.

We then add δ = 0.01 to the component of s corresponding to input i

to produce a new state y(i), and query the neural network for the new

estimate Ry(i),a. The network’s response ei is

e
R R

δ
=

−
.i

y i a s a(), ,

We repeat the process for each state s of the 2002 simulations, result-

ing in an average response ēi.

To obtain a response that depends on the distance Δ, we vary the

distance-to-station input from 0 to 200 km, and fix it across states

before querying the network. This yields a function ēi(Δ), which we

rescale according to

e Δ
e Δ

e Δ
^ () =

¯()

max|¯(′)|
.i

i

Δ
i

′

We compare êi(Δ) to the derivative of StationSeeker’s score func-

tion with respect to i, rescaled as above so that the two controllers’

responses can be compared. Negative responses to magnitude and

bearing respectively indicate an aversion to fast winds and to winds

bearing away from the station.

Both controllers emphasize magnitude and bearing respectively

near and far from the station (Extended Data Fig. 7). However, the

reinforcement-learning controller exhibits a sharp change in sensi-

tivity at 50 km. Beyond this boundary, it prefers fast winds (positive

response), supporting our empirical observation that the controller

works to return within range.

Preprocessing of real flight data

We divide the flight data from our Pacific Ocean experiment into seg-

ments, each corresponding to a specific balloon station-keeping during

a contiguous time period. Segments shorter than 6 h are omitted. For

our reinforcement-learning controller, this yields 25 segments (mean

segment length: 115 h, maximum length: 377 h). For StationSeeker, this

yields 48 segments. Extended Data Figs. 1–3 depict all segments lasting

at least 12 h. Most segments begin with the balloon approaching from

a distance; in our analysis we discard this initial approach so that all

flight segments start 50 km from the station.

Data availability

The data analysed in this paper are available from the corresponding

authors on reasonable request.

Article

Code availability

The code used to train the flight controllers is proprietary. The code

used to analyse the generated data is available from the corresponding

authors on reasonable request.

51. Alexander, M., Grimsdell, A., Stephan, C. & Hoffmann, L. MJO-related intraseasonal

variation in the stratosphere: gravity waves and zonal winds. J. Geophys. Res. D

Atmospheres 123, 775–788 (2018).

52. Watkins, C. J. C. H. Learning from Delayed Rewards. PhD thesis, Cambridge Univ.

(1989).

53. Castro, P. S., Moitra, S., Gelada, C., Kumar, S. & Bellemare, M. G. Dopamine: a research

framework for deep reinforcement learning. Preprint at https://arxiv.org/abs/1812.06110

(2018).

54. Bellemare, M. G., Dabney, W. & Munos, R. A distributional perspective on reinforcement

learning. In Proc. Intl Conf. Machine Learning Vol. 70 (eds Precup, D. & Teh, Y. W.) 449–458

(PMLR, 2017).

55. Kingma, D. & Ba, J. Adam: A method for stochastic optimization. In Proc. Intl Conf.

Learning Representations (eds Benigo, Y. & LeCun, Y.) (2015).

56. Golovin, D. et al. Google Vizier: a service for black-box optimization. In Proc. ACM

SIGKDD Intl Conf. Knowledge Discovery and Data Mining (eds Matwin, S. et al.) 1487–1496

(ACM, 2017).

Acknowledgements We are grateful to J. Davidson for early ideation and prototyping.

We thank V. Vanhoucke, K. Choromanski, V. Sindhwani, C. Boutilier, D. Precup, S. Mourad,

S. Levine, K. Murphy, A. Faust, H. Larochelle and J. Platt for discussions; M. Bowling,

A. Guez, D. Tarlow, J. Drouin, and M. Brenner for feedback on earlier versions of the

manuscript; W. Dabney for feedback and help with design; T. Larivee for help with visuals;

N. Mainville for project management support; R. Carver for information on weather

phenomena; and the Loon operations team.

Author contributions S.C. conceptualized the problem. J.G., S.C., S.S.P., P.S.C. and S.M. built

the technical infrastructure. S.C., M.G.B., J.G., M.C.M. and P.S.C. developed and tested the

algorithm. M.C.M., M.G.B., P.S.C., S.C., S.S.P., J.G. and Z.W. performed experimentation and data

analysis. M.G.B. and S.C. managed the project. M.G.B., S.C., M.C.M., P.S.C. and S.S.P. wrote the

paper. Authors are listed alphabetically by surname.

Competing interests M.G.B., S.C., J.G. and M.C.M. have filed patent applications relating to

navigating aerial vehicles using deep reinforcement learning. The remaining authors declare

no competing financial interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-

2939-8.

Correspondence and requests for materials should be addressed to M.G.B. or S.C.

Peer review information Nature thanks Scott Osprey and the other, anonymous, reviewer(s)

for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints.

https://arxiv.org/abs/1812.06110
https://doi.org/10.1038/s41586-020-2939-8
https://doi.org/10.1038/s41586-020-2939-8
http://www.nature.com/reprints

Extended Data Fig. 1 | Flight paths of the reinforcement-learning controller during the Pacific Ocean experiment. The x and y axes represent longitude and

latitude.

Article

Extended Data Fig. 2 | Flight paths of StationSeeker during the Pacific Ocean experiment, 1 of 2. The x and y axes represent longitude and latitude,

respectively.

Extended Data Fig. 3 | Flight paths of StationSeeker during the Pacific Ocean experiment, 2 of 2. The x and y axes represent longitude and latitude,

respectively.

Article

Extended Data Fig. 4 | TWR50 and power consumption for different

parametrizations of StationSeeker’s score function. Grey points indicate

settings chosen uniformly at random from the following ranges: wΔ ∈ [0.4, 0.8]

(at close range), k1 ∈ [0.01, 0.15], gunknown ∈ [0.4, 0.6] and k2 ∈ [0, 0.2]. Each

parameter was also varied in isolation (coloured points). Semantically

interesting parameter choices are highlighted.

Extended Data Fig. 5 | Distribution of returns predicted by the neural

network. Each panel indicates the predicted distributions for a particular state

and action. The 51 quantiles output by the network are smoothed using kernel

density estimation (σ determined from Scott’s rule with interquartile range

scaling). The dashed lines indicate the average of these locations. The states

with depicted distributions are from different times (0, 3, 6 and 9 h) into the

July 2002 simulation. We use the largest quantile to estimate the return that

could be realized in the absence of partial observability.

Article

Extended Data Fig. 6 | Average distances and pairwise distances for

perturbations of 12 initial conditions. a, Distance to station, averaged over

125 perturbations. These numbers highlight how the 1 January to 1 June 2002

simulations (May excluded) were challenging station-keeping conditions.

The 1 January configuration, in particular, lacked wind diversity. b, Average

distance between pairs of balloons (7,750 pairs). Our controller exhibits greater

robustness to challenging conditions.

Extended Data Fig. 7 | Scaled response of controllers to wind bearing and

magnitude as a function of distance. We use the derivative of the network’s

action-value estimates, or response, as a proxy for the relative weight of an

input. The two inputs tested here are the wind bearing and magnitude at the

balloon’s altitude; the curves report the derivative for the ‘stay’ action.

Article

Extended Data Table 1 | Inputs to the flight controller

Unless otherwise stated, inputs are normalized using linear rescaling f(x) = (x – xmin)/(xmax – xmin). The last three sets of input values encode the wind column at the balloon’s position, centred at

the balloon’s altitude.

__... .2arning algorithm

Hyperparameter Value Notes

Network layer width 600

Numberof locations 51 Used by QR-DQN

Discountfactor 0.993

Update horizon 5 Used by the n-step method

Minibatch size 32

Replay buffer size 500,000

Numberofreplay buffers 4

Numberof actors 100

Adam step-size 2e-6 Linearly decayed to 4e-7 in 5 million updates

Adam epsilon 0.00002

Target network update frequency 100

Reward function p 50 Range (in km) within which r = 1

Reward function T 100 Decayrate (km)

Reward function Cc, 0.4 Reward when beyond p km

Extended Data Table 2 | Hyperparameters defining the deep reinforcement-learning algorithm

	Autonomous navigation of stratospheric balloons using reinforcement learning

	Station-keeping

	Evaluation

	Deployment

	Discussion

	Online content

	Fig. 1 Station-keeping with a superpressure balloon.
	Fig. 2 Effect of parameters on controller performance.
	Fig. 3 Performance profile of the reinforcement-learning controller in simulation.
	Fig. 4 Flight characteristics of controllers tested in the Pacific Ocean experiment.
	Extended Data Fig. 1 Flight paths of the reinforcement-learning controller during the Pacific Ocean experiment.
	Extended Data Fig. 2 Flight paths of StationSeeker during the Pacific Ocean experiment, 1 of 2.
	Extended Data Fig. 3 Flight paths of StationSeeker during the Pacific Ocean experiment, 2 of 2.
	Extended Data ﻿Fig. 4 TWR50 and power consumption for different parametrizations of StationSeeker’s score function.
	Extended Data ﻿Fig. 5 Distribution of returns predicted by the neural network.
	Extended Data ﻿Fig. 6 Average distances and pairwise distances for perturbations of 12 initial conditions.
	Extended Data ﻿Fig. 7 Scaled response of controllers to wind bearing and magnitude as a function of distance.
	Extended Data Table 1 Inputs to the flight controller.
	Extended Data Table 2 Hyperparameters defining the deep reinforcement-learning algorithm.

