The Speed Prior: A New Simplicity Measure
Yielding Near-Optimal Computable Predictions*

Jurgen Schmidhuber

IDSIA, Galleria 2
6928 Manno (Lugano), Switzerland
juergen@idsia.ch
http://www.idsia.ch/"juergen

Abstract. Solomonoff’s optimal but noncomputable method for induc-
tive inference assumes that observation sequences z are drawn from an
recursive prior distribution p(z). Instead of using the unknown p(z) he
predicts using the celebrated universal enumerable prior M (z) which
for all z exceeds any recursive u(zx), save for a constant factor indepen-
dent of z. The simplicity measure M (z) naturally implements “Occam’s
razor” and is closely related to the Kolmogorov complexity of x. How-
ever, M assigns high probability to certain data z that are extremely
hard to compute. This does not match our intuitive notion of simplicity.
Here we suggest a more plausible measure derived from the fastest way
of computing data. In absence of contrarian evidence, we assume that
the physical world is generated by a computational process, and that any
possibly infinite sequence of observations is therefore computable in the
limit (this assumption is more radical and stronger than Solomonoff’s).
Then we replace M by the novel Speed Prior S, under which the cu-
mulative a priori probability of all data whose computation through an
optimal algorithm requires more than O(n) resources is 1/n. We show
that the Speed Prior allows for deriving a computable strategy for optimal
prediction of future y, given past z. Then we consider the case that the
data actually stem from a nonoptimal, unknown computational process,
and use Hutter’s recent results to derive excellent expected loss bounds
for S-based inductive inference. We conclude with several nontraditional
predictions concerning the future of our universe.

1 Introduction

How to predict the future from the past? To get a grip on this fundamental ques-
tion, let us first introduce some notation. B* denotes the set of finite sequences
over the binary alphabet B = {0,1}, B> the set of infinite sequences over B,
A the empty string, Bf = B* U B®. z,v,2,2", 2% stand for strings in Bf. If
x € B* then xy is the concatenation of x and y (e.g., if x = 10000 and y = 1111

* This paper is based on section 6 of TR IDSIA-20-00, Version 2.0:
http://www.idsia.ch/ " juergen/toesv2/
http://arXiv.org/abs/quant-ph/0011122 (public physics archive)

J. Kivinen and R. H. Sloan (Eds.): COLT 2002, LNAT 2375, pp. 216-228, 2002.
© Springer-Verlag Berlin Heidelberg 2002

The Speed Prior: A New Simplicity Measure 217

then xy = 100001111). For & € B*, I(x) denotes the number of bits in x, where
l(x) = oo for z € B*®; [(\) = 0. x,, is the prefix of = consisting of the first n
bits, if I(x) > n, and x otherwise (2o := A). log denotes the logarithm with basis
2, f, g functions mapping integers to integers. We write f(n) = O(g(n)) if there
exist positive constants ¢, ng such that f(n) < cg(n) for all n > ng. For simplic-
ity let us consider universal Turing Machines (TMs) with input alphabet B and
trinary output alphabet including the symbols “0”, “17, and “ ” (blank). For
efficiency reasons, the TMs should have several work tapes to avoid potential
quadratic slowdowns associated with 1-tape TMs. The remainder of this paper
refers assumes a fixed universal reference TM.

Now suppose bitstring represents the data observed so far. What is its most
likely continuation y € B*? Bayes’ theorem yields

P(x | zy)P(zy)

Play| 2) = =20

x P(zy) (1)

where P(22 | z!) is the probability of 22, given knowledge of z!, and P(x) =
fz cBt P(xz)dz is just a normalizing factor. So the most likely continuation y is
determined by P(zy), the prior probability of xy. But which prior measure P is
plausible? Occam’s razor suggests that the “simplest” y should be more probable.
But which exactly is the “correct” definition of simplicity?

The next section will offer an alternative to the celebrated but noncomputable
algorithmic simplicity measure or Solomonoff-Levin measure [24,29,25]. But let
us first review Solomonoff’s traditional approach.

Roughly fourty years ago Solomonoff started the theory of universal optimal
induction based on the apparently harmless simplicity assumption that P is
computable [24]. While Equation (1) makes predictions of the entire future, given
the past, Solomonoff [25] focuses just on the next bit in a sequence. Although
this provokes surprisingly nontrivial problems associated with translating the
bitwise approach to alphabets other than the binary one — only recently Hutter
managed to do this [8] — it is sufficient for obtaining essential insights. Given
an observed bitstring x, Solomonoff assumes the data are drawn according to a
recursive measure p; that is, there is a program for a universal Turing machine
that reads € B* and computes p(z) and halts. He estimates the probability
of the next bit (assuming there will be one), using the remarkable, well-studied,
enumerable prior M [24,29,25,6,15]

M(z) = > 2~ le), (2)

program prefixz p computes
output starting with «
M is universal, dominating the less general recursive measures as follows: For
all x € B*,
M(2) > cupl@) (3)

where ¢, is a constant depending on p but not on x. Solomonoff observed that
the conditional M-probability of a particular continuation, given previous ob-
servations, converges towards the unknown conditional i as the observation size

218 Jirgen Schmidhuber

goes to infinity [25], and that the sum over all observation sizes of the corre-
sponding u-expected deviations is actually bounded by a constant. Hutter even-
tually showed that the number of prediction errors made by universal Solomonoff
prediction is essentially bounded by the number of errors made by any other pre-
dictor, including the optimal scheme based on the true p [3]. He also derived
general loss bounds and showed that the expected loss of the universal scheme
does not exceed by much the loss of the optimal scheme [9]. Recent research also
generalized Solomonoff’s approach to the case of much less restrictive univer-
sal nonenumerable priors that are computable in the limit [22,23]. One might
say that Solomonoft’s restriction of recursiveness leads to a “slightly more com-
putable” approach than the more general case.

However, while M is enumerable, it is not recursive, and thus practically
infeasible. This drawback inspired less general yet practically more feasible prin-
ciples of minimum description length (MDL) [27,17] as well as priors derived
from time-bounded restrictions [15] of Kolmogorov complexity [12,24,4]. No par-
ticular instance of these approaches, however, is universally accepted or has a
general convincing motivation that carries beyond rather specialized application
scenarios. For instance, typical efficient MDL approaches require the specifica-
tion of a class of computable models of the data, say, certain types of neural
networks, plus some computable loss function expressing the coding costs of the
data relative to the model. This provokes numerous ad-hoc choices.

The novel approach pursued here agrees that Solomonoff’s assumption of
recursive priors without any time and space limitations is too weak, and that we
somehow should specify additional resource constraints on the data-generating
process to obtain a convincing basis for feasible inductive inference. But which
constraints are plausible? Which reflect the “natural” concept of simplicity?
Previous resource-oriented priors derived from, say, polynomial time bounds [15]
have no obvious and plausible a priori justification.

Therefore we will suggest a novel, natural prior reflecting data-independent,
optimally efficient use of computational resources. Based on this prior, Section 3
will derive a near-optimal computable strategy for making predictions, given past
observations.

2 Speed Prior S

Let us assume that the observed data sequence is generated by a computational
process, and that any possible sequence of observations is therefore computable
in the limit [22].

This assumption is stronger and more radical than the traditional one: So-
lomonoff just insists that the probability of any sequence prefix is recursively
computable, but the (infinite) sequence itself may still be generated probabilis-
tically.

Under our starting assumption that data are deterministically generated by
a machine, it seems plausible that the machine suffers from a computational

The Speed Prior: A New Simplicity Measure 219

resource problem. Since some things are much harder to compute than others,
the resource-oriented point of view suggests the following postulate.

Postulate 1 The cumulative prior probability measure of all x incomputable
within time t is at most inversely proportional to t.

To add some flesh to this postulate, we introduce the asymptotically fastest
way of computing all computable data, for our particular universal reference
TM:

FAST Algorithm (version 1): For i = 1,2,... perform PHASE i:

PHASE i: Execute 2~ 4P) instructions of all program prefixes p
satisfying {(p) < i, and sequentially write the outputs on adjacent
sections of the output tape, separated by blanks.

Following Levin [14][15, p. 502-505], within 2*+! TM steps FAST will generate
all prefixes x,, satisfying Kt(xz,) < k, where x,’s Levin complexity Kt(z,,) is
defined as

Kt(zy,) = mqin{l(q) +log t(q,xn)}, (4)

where program prefix ¢ computes z,, in t(q, z,,) time steps. The computational
complexity of the algorithm is not essentially affected by the fact that PHASE
1 =2,3,..., repeats the computation of PHASE i — 1 which for large i is approx-
imately half as short (ignoring nonessential speed-ups due to halting programs
if there are any).

As noted by Hutter [11], there is an essentially equivalent version of FAST
which makes very clear just how simple the asymptotically optimal method really
is:

FAST (version 2): Execute one instruction of the n-th program every 2"
steps on average, using blanks to separate program outputs.

To see how we can obtain universal search [14][15, p. 502-505] from FAST, sup-
pose we are seeking the solution y to some inversion problem ¢(y) = z. For
instance, y might be a path through a maze providing reward ¢(y) = 1, while
@(z) = 0 for uneffective paths z. Then we can use FAST to work through all pro-
grams and check for each whether it generates a path yielding reward. This will
identify each reward-generating solution as quickly as the fastest algorithm that
generates and tests that particular solution, save for a constant factor (which
may be huge). Compare this to Hutter’s recent more complex search algorithm
for all well-defined problems [11] which reduces the unknown multiplicative con-
stant factor to a remarkably small known value, namely, 5 — at the expense of
introducing an unknown, problem class-specific, additive constant.

How does the optimal algorithm tie in with Postulate 1?7 Since the most
efficient way of computing all = is embodied by FAST, which computes each x as
quickly as x’s fastest algorithm, save for a constant factor, and since each PHASE
of FAST (version 1) consumes roughly twice the time and space resources of the

220 Jirgen Schmidhuber

previous PHASE, the cumulative prior probability of things first computed in
any particular PHASE should be roughly half the one of the previous PHASE;
zero probability should be assigned to infinitely resource-consuming PHASEs.
Postulate 1 therefore suggests Definition 2 below.

Definition 1 (p — x,p —; x). Given program prefix p, write p — x if our TM
reads p and computes output starting with x € B*, while no prefix of p consisting
of less than l(p) bits outputs x. Write p —; x if p — x in PHASE i of FAST.

Definition 2 (Speed Prior S). Define the Speed Prior S on B* as

S(x) = 22_i5i(x); where S;(A\) =1; S;(z) = Z 27UP) for x> A
i=1

P—i®
We observe that S(z) is a semimeasure — compare [15]:
S(A) =1; S(20) 4+ S(x1) < S(x).

The very fact that a speed prior can be defined in a meaningful way is
interesting in itself, and may also be relevant in some practical situations — see
Section 5.

3 Speed Prior-Based Inductive Inference

Given S, as we observe an initial segment x € B* of some string, which is the
most likely continuation? According to Bayes,
S(x | zy)S(xy) _ S(xy)

S(zy | z) = S() = S(z) (5)

where S(2% | z!) is the measure of 22, given z'. Having observed z we will
predict those y that maximize S(ay |). Which are those? In what follows, we
will confirm the intuition that for n — oo the only probable continuations of x,,
are those with fast programs. The sheer number of “slowly” computable strings
cannot balance the speed advantage of “more quickly” computable strings with
equal beginnings.

Definition 3 (p ikn x etc.). Write p LA if finite program p (p — x)
computes x within less than k steps, and p ﬁn x if it does so within PHASE i
of FAST. Similarly for p =X & and D ﬁn x (at most k steps), p =k x,
(exactly k steps), p 2k, x, (at least k steps), p L™ (more than k steps).

Theorem 1. Suppose x € B>, p* € B* outputs x,, within at most f(n) steps
for allm, and lim,,_.~ f(n)/g(n) = 0. Then

Doy 27" szgm 2-UP)

Q(z, g, f) == lim 9-1(p) =

n—oo 3370, 27 Zpsig

2)
iTn

The Speed Prior: A New Simplicity Measure 221

Proof. Since no program that requires at least g(n) steps for producing z,, can
compute z,, in a PHASE with number < log g(n), we have

221 9—log g(n)—iz S otm) 9—1(p)
p

.9, < lim _*) (i+log g(n))Tn
Q(g f) = o 221 9—log f(n)—i Zp:f_(f'l)x 2-1(p)

n

n 9—1(p) 1
< tim L Ly, <m W1
n— oo g(n) Z =f(n) 2*l(p) Nn—00 g(TL) 27l(p)
p—x

n

Here we have used the Kraft inequality [13] to obtain a rough upper bound for
the enumerator: when no p is prefix of another one, then Zp 2-Ur) < 1. Q.E.D.

Hence, if we know a rather fast finite program p” for x, then Theorem 1 allows
for predicting: if we observe some x,, (n sufficiently large) then it is very unlikely
that it was produced by an xz-computing algorithm much slower than p®.

Among the fastest algorithms for = is FAST itself, which is at least as fast
as p”, save for a constant factor. It outputs xz,, after O(2Kt(‘””)) steps.

3.1 Algorithm GUESS

S can be implemented by the following probabilistic algorithm for a universal
TM.

Algorithm GUESS:
1. Toss an unbiased coin until heads is up; let ¢ denote the num-
ber of required trials; set ¢ := 2.
2. If the number of steps executed so far exceeds t then exit.
Execute one step; if this leads to a request for a new input bit
(of the growing selfdelimiting program, e.g., [15]), toss the coin
to determine the bit, and set ¢ :=¢/2.
3. Go to 2.

In the spirit of FAST, algorithm GUESS makes twice the computation time
half as likely, and splits remaining time in half whenever a new input bit is
requested, to assign equal runtime to the two resulting sets of possible program
continuations. Note that the expected runtime of GUESS is unbounded since
>-;27%2% does not converge. Still, each invocation of GUESS terminates with
probability 1.

Algorithm GUESS is almost identical to a probabilistic search algorithm
used in previous work on applied inductive inference [19,21]. The programs gen-
erated by the previous algorithm, however, were not bitstrings but written in an
assembler-like language; their runtimes had an upper bound, and the program
outputs were evaluated as to whether they represented solutions to externally
given tasks. Using a small set of exemplary training examples, the system dis-
covered the weight matrix of an artificial neural network whose task was to

222 Jirgen Schmidhuber

map input data to appropriate target classifications. The network’s generaliza-
tion capability was then tested on a much larger unseen test set. On several
toy problems it generalized extremely well in a way unmatchable by traditional
neural network learning algorithms.

The previous papers, however, did not explicitly establish the relation men-
tioned above between “optimal” resource bias and GUESS.

3.2 Close Approximation of the Speed Prior

The precise value of S(z) is only computable in the limit. However, within finite
time we can compute S(x) with arbitrary precision. There is a halting algorithm
AS that takes as input z and some ¢ > 0, and outputs an approximation S, ()
such that

| Sulw) — S() |< eS(a). (6)

AS works as follows:

Algorithm AS:
1. Run FAST until « is computed for the first time in PHASE
Kt(x). Let n(x) denote the size of the smallest program for =
found in this PHASE.
3. Set S.(z) equal to the sum of the contributions to S(z) of all
programs of all PHASEs up to the PHASE with number

Kt(x) +n(x) + 1 —loge.

AS halts after step 3 since any additional PHASESs are superfluous in the follow-
ing sense: even if all their programs computed z, their cumulative contributions
to S(x) could not exceed eS(z).

3.3 Computable Predictions

Given observation x and some € > 0, we use AS to approximate all possibly
relevant S(xy) within € accuracy, and predict a continuation y with maximal
Sc(zy). This ensures that no z # y can yield some S(zz) significantly exceeding
S(zy).

That is, with S comes a computable method for predicting optimally within
€ accuracy. This contrasts with Solomonoff’s noncomputable method.

4 Machine Dependence / Suboptimal Computation of
the Data: Expected Loss Bounds

So far we have assumed the process computing the data is (asymptotically)
optimally efficient, running on a particular universal computer, our reference
machine. In general, however, we cannot know the machine used to run this
process. Furthermore, the process may be nonoptimal even with respect to its

The Speed Prior: A New Simplicity Measure 223

machine. For such reasons we now relax our initial assumption, and show that S-
based predictions on our reference machine still work well.

Consider a finite but unknown program p computing y € B*. What if Pos-
tulate 1 holds but p is not optimally efficient, and/or computed on a computer
that differs from our reference machine? Then we effectively do not sample be-
ginnings y; from S but from an alternative semimeasure

S'(yk) <1/t

for any y;, whose computation through p costs more than O(t) time. Can we still
predict well? Yes, because the Speed Prior S dominates S’: For all € B*,

S(x) > cg:S' (), (7)

where cg is a constant depending on S’ but not on x, because FAST computes y
faster than p, and thus S(yx) > O(1/t). This dominance is all we need to apply
Hutter’s recent loss bounds [9]:

Corollary 1 (Unit loss bound). Suppose initial sequence prefives x, are
drawn with true but unknown probability S’(x,). A system predicts the k + 1st
sequence element, given xy, and receives loss €[0, 1] depending on the true k+1st
symbol. The Ag/-system is optimal in the sense that it predicts as to minimize
the S’-expected loss; As minimizes the S-expected loss. For the first n symbols,
the total S’-expected losses Lay of Ag and Lyag, of As' are bounded as follows:

0 § LnAs - LnAS/ = O(\/ LnAS/)-

In practice we have to use S, instead of S. Does that cost us a lot? Again the
answer is no, since for any € > 0,

Se(x) = cs5(x), (8)

where cg is a constant independent of x. That is, in analogy to Corollary 1 (using
analogous notation) we obtain

0 § Ln/lgE *LnAS/ == O(\/Ln/ls/)- (9)

To summarize: The loss that we are expected to receive by predicting according
to computable S instead of the true but unknown S’ does not exceed the optimal
loss by much.

4.1 Relation to a Popular Classical Approach

It is not hard to show that if we use, say, the Bernoulli model class and the
uniform prior and predict using the Bayes predictive distribution (i.e., Laplace’s
rule of succession), and the data is generated by a process that has indeed a sta-
tionary distribution, then with probability 1 our predictions will converge to the

224 Jirgen Schmidhuber

predictions that are optimal according to the stationary distribution although
strings sampled from the stationary distribution are extremely hard to compute.
In addition, the classical approach does not cost much. Hence sometimes (when
the assumptions happen to be correct) it is preferrable, and it may also help us
to do reasonable (though non-optimal) prediction, no matter whether the true
distribution is computable or not. But unlike Laplace’s approach the present one
also yields asymptotically optimal predictions under the (strong but intriguing)
assumption that the data is generated deterministically under certain resource
constraints.
It will be of interest to identify the precise set of priors dominated by S.

4.2 Rational Decision Makers Based on Universal Predictors

The sections above treated the case of passive prediction, given the observa-
tions. Note, however, that agents interacting with an environment can also
use predictions of the future to compute action sequences that maximize ex-
pected future reward. Hutter’s AIXT model [10] does exactly this, by combining
Solomonoff’s M-based universal prediction scheme with an expectimazx computa-
tion. It can be shown that the conditional M probability of environmental inputs
to an AIXI agent, given the agent’s earlier inputs and actions, converges with
increasing length of interaction against the true, unknown probability [10], as
long as the latter is recursively computable, analogously to the passive prediction
case.

We can modify the AIXI model such that its predictions are based on the
e-approximable Speed Prior S instead of the incomputable M. Thus we obtain
the so-called AIS model. Using Hutter’s approach [10] we can now show that
the conditional S probability of environmental inputs to an AIS agent, given the
earlier inputs and actions, converges against the true but unknown probability,
as long as the latter is dominated by S, such as the S’ in subsection 4.

5 Physics

Note: this section can be skipped by readers who are interested in the theoretical
framework only, not in its potential implications for the real world.

Virtual realities used for pilot training or video games are rapidly becoming
more and more convincing, as each decade computers are getting roughly 1000
times faster per dollar — a consequence of Moore’s law first formulated in 1965.
At the current pace, however, the Bremermann limit [2] of roughly 10°! opera-
tions per second, on not more than 1032 bits for the “ultimate laptop” [16] with
1 kg of mass and 1 liter of volume, will not be reachable within this century,
and there is no obvious reason why Moore’s law should break down any time
soon. Thus a simple extrapolation has led many to predict that within a few
decades computers will match brains in terms of raw computing power, and that
soon there will be reasonably complex virtual worlds inhabited by reasonably
complex virtual beings.

The Speed Prior: A New Simplicity Measure 225

In the past decades numerous science fiction authors have anticipated this
trend in novels about simulated humans living on sufficiently fast digital ma-
chines, e.g., [7]. But even serious and reputable computer pioneers have suggested
that the universe essentially is just a computer. In particular, the “inventor of the
computer” Konrad Zuse not only created the world’s first binary machines in the
1930s, the first working programmable computer in 1941, and the first higher-
level programming language around 1945, but also introduced the concept of
Computing Space (Rechnender Raum), suggesting that all physical events are
just results of calculations on a grid of numerous communicating processors [28].
Even earlier, Gottfried Wilhelm von Leibniz (who not only co-invented calculus
but also built the first mechanical multiplier in 1670) caused a stir by claim-
ing that everything is computable (compare C. Schmidhuber’s concept of the
mathscape [18]).

So it does not seem entirely ludicrous to study consequences of the idea that
we are really living in a “simulation,” one that is real enough to make many
of its “inhabitants” smile at the mere thought of being computed. In absence
of contrarian evidence, let us assume for a moment that the physical world
around us is indeed generated by a computational process, and that any possible
sequence of observations is therefore computable in the limit [22]. For example,
let = be an infinite sequence of finite bitstrings ', 22, . . . representing the history
of some discrete universe, where z* represents the state of the universe at discrete
time step k, and 2! the “Big Bang” [20]. Suppose there is a finite algorithm A
that computes z¥*1 (k > 1) from 2* and additional information noise* (this may
require numerous computational steps of A, that is, “local” time of the universe
may run comparatively slowly). Assume that noise® is not truly random but
calculated by invoking a finite pseudorandom generator subroutine. Then x has
a finite constructive description and is computable in the limit.

Contrary to a widely spread misunderstanding, quantum physics and Heisen-
berg’s uncertainty principle do not rule out such pseudorandomness in the ap-
parently random or noisy physical observations — compare reference [26] by 't
Hooft (physics Nobel prize 1999).

If our computability assumption holds then in general we cannot know which
machine is used to compute the data. But it seems plausible to assume that it
does suffer from a computational resource problem, that is, the a priori proba-
bility of investing resources into any computation tends to decrease with growing
computational costs.

To evaluate the plausibility of this, consider that most data generated on
your own computer are computable within a few microseconds, some take a few
seconds, few take hours, very few take days, etc... Similarly, most files on your
machine are small, few are large, very few are very large. Obviously, anybody
wishing to become a “God-like Great Programmer” by programming and simu-
lating universes [20] will have a strong built-in bias towards easily computable
ones. This provokes the notion of a “Frugal Creator” (Leonid Levin, personal
communication, 2001).

226 Jirgen Schmidhuber

The reader will have noticed that this line of thought leads straight to the
Speed Prior S discussed in the previous sections. It may even lend some addi-
tional motivation to S.

S-based Predictions. Now we are ready for an extreme application. Assum-
ing that the entire history of our universe is sampled from S or a less dominant
prior reflecting suboptimal computation of the history, we can immediately pre-
dict: 1. Our universe will not get many times older than it is now [22] — the
probability that its history will extend beyond the one computable in the current
phase of FAST (that is, it will be prolongated into the next phase) is at most
50 %; infinite futures have measure zero. 2. Any apparent randomness in any
physical observation must be due to some yet unknown but fast pseudo-random
generator PRG [22] which we should try to discover. 2a. A re-examination of
beta decay patterns may reveal that a very simple, fast, but maybe not quite
trivial PRG is responsible for the apparently random decays of neutrons into
protons, electrons and antineutrinos. 2b. Whenever there are several possible
continuations of our universe corresponding to different Schrodinger wave func-
tion collapses — compare Everett’s widely accepted many worlds hypothesis [5]
— we should be more likely to end up in one computable by a short and fast
algorithm. A re-examination of split experiment data involving entangled states
such as the observations of spins of initially close but soon distant particles with
correlated spins might reveil unexpected, nonobvious, nonlocal algorithmic reg-
ularity due to a fast PRG. 3. Large scale quantum computation [1] will not
work well, essentially because it would require too many exponentially growing
computational resources in interfering “parallel universes” [5].

Prediction 2 is verifiable but not necessarily falsifiable within a fixed time
interval given in advance. Still, perhaps the main reason for the current absence
of empirical evidence in this vein is that nobody has systematically looked for it
yet.

The broader context. The concept of dominance is useful for predicting
prediction quality. Let denote the history of a universe. If x is sampled from an
enumerable or recursive prior then M-based prediction will work well, since M
dominates all enumerable priors. If x is sampled from an even more dominant
cumulatively enumerable measure CEM [22] then we may use the fact that there
is a universal CEM p that dominates M and all other CEMs [22,23]. Using
Hutter’s loss bounds [] we obtain a good u-based predictor. Certain even
more dominant priors [22,23] also allow for nonrecursive optimal predictions
computable in the limit. The price to pay for recursive computability of S-based
inference is the loss of dominance with respect to M, u¥, etc.

The computability assumptions embodied by the various priors mentioned
above add predictive power to the anthropic principle (AP) [3] which essentially
just says that the conditional probability of finding oneself in a universe com-
patible with one’s existence will always remain 1 — the AP by itself does not
allow for any additional nontrivial predictions.

The Speed Prior: A New Simplicity Measure 227

6 Conclusion

Unlike the traditional universal prior M, the Speed Prior S is recursively ap-
proximable with arbitrary precision. This allows for deriving an asymptotically
optimal recursive way of computing predictions, based on a natural discount of
the probability of data that is hard to compute by any method. This markedly
contrasts with Solomonoff’s traditional noncomputable approach to optimal pre-
diction based on the weaker assumption of recursively computable priors that
completely ignore resource limitations [24,25].

Our expected loss bounds building on Hutter’s recent work show that S-based
prediction is quite accurate as long as the true unknown prior is less dominant
than 9, reflecting an observation-generating process on some unknown computer
that is not optimally efficient.

Assuming that our universe is sampled from a prior that does not dominate S
we obtain several nontrivial predictions for physics.

Acknowledgment

The material presented here is based on section 6 of [22]. Thanks to Ray
Solomonoff, Leonid Levin, Marcus Hutter, Christof Schmidhuber, and an un-
known reviewer, for useful comments.

References

1. C. H. Bennett and D. P. DiVicenzo. Quantum information and computation.
Nature, 404(6775):256-259, 2000. 226

2. H. J. Bremermann. Minimum energy requirements of information transfer and
computing. International Journal of Theoretical Physics, 21:203-217, 1982. 224

3. B. Carter. Large number coincidences and the anthropic principle in cosmology.
In M. S. Longair, editor, Proceedings of the IAU Symposium 63, pages 291-298.
Reidel, Dordrecht, 1974. 226

4. G. J. Chaitin. On the length of programs for computing finite binary sequences:
statistical considerations. Journal of the ACM, 16:145-159, 1969. 218

5. H. Everett III. ‘Relative State’ formulation of quantum mechanics. Reviews of
Modern Physics, 29:454-462, 1957. 226

6. P. Gacs. On the relation between descriptional complexity and algorithmic prob-
ability. Theoretical Computer Science, 22:71-93, 1983. 217

7. D. F. Galouye. Simulacron 3. Bantam, 1964. 225

8. M. Hutter. Convergence and error bounds of universal prediction for general alpha-
bet. Proceedings of the 12th European Conference on Machine Learning (ECML-
2001), (TR IDSIA-07-01, ¢s.A1/0103015), 2001. 217, 218

9. M. Hutter. General loss bounds for universal sequence prediction. In C. E. Brodley
and A. P. Danyluk, editors, Proceedings of the 18" International Conference on
Machine Learning (ICML-2001), pages 210-217. Morgan Kaufmann, 2001. TR
IDSTA-03-01, IDSTA, Switzerland, Jan 2001, ¢s.AI/0101019. 218, 223, 226

228

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

Jiirgen Schmidhuber

M. Hutter. Towards a universal theory of artificial intelligence based on algorithmic
probability and sequential decisions. Proceedings of the 12" European Conference
on Machine Learning (ECML-2001), (TR IDSIA-14-00, cs.AI/0012011), 2001. 224
M. Hutter. The fastest and shortest algorithm for all well-defined problems.
International Journal of Foundations of Computer Science, (TR IDSIA-16-00,
¢s.CC/0102018), 2002. In press. 219

A. N. Kolmogorov. Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1:1-11, 1965. 218

L. G. Kraft. A device for quantizing, grouping, and coding amplitude modulated
pulses. M.Sc. Thesis, Dept. of Electrical Engineering, MIT, Cambridge, Mass.,
1949. 221

L. A. Levin. Universal sequential search problems. Problems of Information Trans-
mission, 9(3):265-266, 1973. 219

M. Li and P. M. B. Vitanyi. An Introduction to Kolmogorov Complexity and its
Applications (2nd edition). Springer, 1997. 217, 218, 219, 220, 221

S. Lloyd. Ultimate physical limits to computation. Nature, 406:1047—-1054, 2000.
224

J. Rissanen. Stochastic complexity and modeling. The Annals of Statistics,
14(3):1080-1100, 1986. 218

C. Schmidhuber. Strings from logic. Technical Report CERN-TH/2000-316,
CERN, Theory Division, 2000. http://xxx.lanl.gov/abs/hep-th/0011065. 225

J. Schmidhuber. Discovering solutions with low Kolmogorov complexity and high
generalization capability. In A. Prieditis and S. Russell, editors, Machine Learn-
ing: Proceedings of the Twelfth International Conference, pages 488-496. Morgan
Kaufmann Publishers, San Francisco, CA, 1995. 221

J. Schmidhuber. A computer scientist’s view of life, the universe, and everything.
In C. Freksa, M. Jantzen, and R. Valk, editors, Foundations of Computer Science:
Potential - Theory - Cognition, volume 1337, pages 201-208. Lecture Notes in
Computer Science, Springer, Berlin, 1997. 225

J. Schmidhuber. Discovering neural nets with low Kolmogorov complexity and
high generalization capability. Neural Networks, 10(5):857-873, 1997. 221

J. Schmidhuber. Algorithmic theories of everything. Technical Report IDSIA-20-
00, quant-ph/0011122, IDSTA, Manno (Lugano), Switzerland, 2000. 218, 225, 226,
227

J. Schmidhuber. Hierarchies of generalized Kolmogorov complexities and nonenu-
merable universal measures computable in the limit. International Journal of
Foundations of Computer Science, 2002. In press. 218, 226

R. J. Solomonoff. A formal theory of inductive inference. Part I. Information and
Control, 7:1-22, 1964. 217, 218, 227

R. J. Solomonoff. Complexity-based induction systems. IEFEE Transactions on
Information Theory, 1T-24(5):422-432, 1978. 217, 218, 227

G. ’t Hooft. Quantum gravity as a dissipative deterministic system. Technical Re-
port SPIN-1999/07/gr-gc/9903084, http://xxx.lanl.gov/abs/gr-qc/9903084, Insti-
tute for Theoretical Physics, Univ. of Utrecht, and Spinoza Institute, Netherlands,
1999. Also published in Classical and Quantum Gravity 16, 3263. 225

C. S. Wallace and D. M. Boulton. An information theoretic measure for classifica-
tion. Computer Journal, 11(2):185-194, 1968. 218

K. Zuse. Rechnender Raum. Friedrich Vieweg & Sohn, Braunschweig, 1969. 225
A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the algorithmic
concepts of information and randomness. Russian Math. Surveys, 25(6):83-124,
1970. 217

