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Identifying general reaction conditions by 
bandit optimization

Jason Y. Wang (王亿珩)1,2, Jason M. Stevens3, Stavros K. Kariofillis1,2,8,12, Mai-Jan Tom2,12, 

Dung L. Golden3,12, Jun Li4, Jose E. Tabora4, Marvin Parasram1,9, Benjamin J. Shields1,10, 

David N. Primer3,11, Bo Hao5, David Del Valle4, Stacey DiSomma4, Ariel Furman4, G. Greg Zipp6, 

Sergey Melnikov7, James Paulson4 & Abigail G. Doyle1,2 ✉

Reaction conditions that are generally applicable to a wide variety of substrates are 

highly desired, especially in the pharmaceutical and chemical industries1–6. Although 

many approaches are available to evaluate the general applicability of developed 

conditions, a universal approach to efficiently discover these conditions during 

optimizations is rare. Here we report the design, implementation and application  

of reinforcement learning bandit optimization models7–10 to identify generally 

applicable conditions by efficient condition sampling and evaluation of experimental 

feedback. Performance benchmarking on existing datasets statistically showed high 

accuracies for identifying general conditions, with up to 31% improvement over 

baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed 

imidazole C–H arylation reaction, an aniline amide coupling reaction and a phenol 

alkylation reaction were investigated experimentally to evaluate use cases and 

functionalities of the bandit optimization model in practice. In all three cases, the 

reaction conditions that were most generally applicable yet not well studied for the 

respective reaction were identified after surveying less than 15% of the expert-designed 

reaction space.

Chemists have long sought robust synthetic methods that can be 

applied to a wide variety of substrates11–13. However, these methods 

are generally developed and optimized with only one or a few model 

substrates. These ‘optimized’ conditions are subsequently applied to a 

substrate scope, usually with higher yielding substrates preferentially 

reported. However, optimal reaction conditions for one substrate 

are not guaranteed to be applicable to other molecules. Despite the 

increased efficiency of reaction optimization enabled by automated 

reaction systems14–20 and optimization algorithms21–30, this phenom-

enon still substantially hampers the adoption of newly developed meth-

odologies in synthetic chemistry31,32. Further optimization for different 

target substrates is typically required, and pharmaceutically relevant 

molecules with high structural complexity might not be compatible 

with the existing conditions at all33. Most work so far has focused on 

retroactively evaluating the general applicability of developed meth-

odologies using substrate scope design or additive screening34–37.

Nevertheless, post hoc analyses of applicability do not change the 

reaction conditions derived from antecedent optimization. De novo 

optimization processes that can directly yield generally applicable 

conditions are highly sought. Recent advances in asymmetric catalysis 

have started to address this problem, in which chiral catalysts that 

enable highly stereoselective transformations for a broad range of sub-

strates were identified through multi-substrate screening1–4. However, 

despite advances in high-throughput experimentation (HTE), exhaus-

tive examination of high-dimensional reaction conditions for a sizable 

scope of diverse substrates remains analytically difficult and experi-

mentally expensive to carry out. Judicious selection of experiments 

is, therefore, imperative to efficiently explore a reaction space during 

optimization38. A notable recent example from Burke, Aspuru-Guzik 

and Grzybowski aimed to find more general sets of conditions for a 

Suzuki–Miyaura cross-coupling reaction with aryl halides and aryl 

N-methyliminodiacetic acid (MIDA) boronates5 using Bayesian optimi-

zation. After the initial benchmarking and downselection of reaction 

conditions before optimization, exploration of more than 50% of the 

reaction space identified conditions more general than a previously 

published standard condition. This important advance notwithstand-

ing, a universal reaction optimization model targeting general applica-

bility, especially one with an efficient experiment selection strategy that 

can also be easily incorporated into the workflow of bench chemists, 

has not yet been realized.

In this study, we show that reinforcement learning models can effec-

tively guide chemists to the most generally applicable conditions for 

a given substrate scope without previous experimental data on the 

reaction system. We designed a discrete optimization framework with 

experiment selection strategies that target condition generality, as 

quantified by average reactivity (albeit other distribution metrics can 
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be used). Through performance benchmarking on four existing reac-

tion datasets, we demonstrate that the implemented reinforcement 

learning model and its underlying algorithms reach high accuracies 

for identifying optimal general conditions in all cases, while being 

adaptable, scalable and data efficient. To further substantiate the opti-

mization framework, we validated the learning model on three unseen 

chemical transformations.

Model design and development

The multi-armed bandit problem7–10 is a reinforcement learning prob-

lem that resembles many characteristics of the generality optimization 

problem in chemistry. In the classic stochastic formulation, a casino 

player is presented with a series of slot machines, each with a fixed but 

different reward distribution that is initially unknown. With a limited 

budget, the objective of the player is to maximize overall winnings by 

recognizing and playing the slot machine with better payouts. To do 

so, the player efficiently allocates the limited resources to balance the 

exploration of rarely played machines and the exploitation of current 

best options. In a reaction optimization campaign, chemists need to 

choose from many options for reaction conditions to maximize certain 

objectives with limited initial knowledge of how they will perform on a 

wide range of substrates (Fig. 1a). Finite experimental resources must 

be efficiently allocated to each reaction condition in consideration of 

a similar exploration–exploitation tradeoff: current best conditions 

derived from empirical knowledge are usually exploited, whereas new 

conditions are explored in hopes of discovering previously unknown 

and more effective methods. The similar characteristics of both 

problems prompted us to adapt solutions to the multi-armed bandit 

problem (often called bandit optimization algorithms) for generality 

optimization in chemistry.

The multi-armed bandit problem has been previously studied in 

chemistry contexts for autonomous drug design and reaction condi-

tion discovery39,40. In the latter case, an information-directed adaptive 

sampling algorithm was designed to sample conditions for a single 

reaction to maximize information gains and reaction yields41. Whereas 

condition arms are dropped in this example after they are sampled once 

for each reaction, we hypothesized that repeated sampling of distri-

bution of each condition arm over a substrate scope (the underlying 

population for each arm) guided by bandit algorithms would enable the 

prediction of condition generality across substrates, a main contrast 

with the previous work (Fig. 1c). Using reaction yield as an example of 

an optimization objective, the same substrate scope is expected to 

exhibit different reactivities under different conditions, resulting in 

unique reward distributions for each arm (Fig. 1b). The treatment of 

condition variables as discrete arms enable flexible interpretation of 

conditions. For example, arms can cover one condition dimension (for 

example, solvent) or many dimensions (for example, combinations 

of catalyst, ligand, base and solvent). Incorporating substrates into a 

distribution also means no explicit search space needs to be defined, 

and the algorithm can adjust its estimation of the distribution of each 

condition by continuing to sample that condition. This feature enables 

both the elimination of ineffective arms and the expansion of substrate 

scope on the fly during optimization. The latter is especially important 

in application, as the generality of a reaction condition is highly depend-

ent on the scope it is applied to.

We implemented the optimization framework in Python centred 

around a reaction scope object that can create substrate scopes with 

possible conditions, interface with bandit algorithms, propose and 

record experimental results, predict yields for unrun reactions and 

recom mend general conditions (Extended Data Fig. 2). We imple-

mented numerous stochastic bandit algorithms for both binary 

rewards (for example, reactivity thresholds) and continuous rewards 

(for example, numeric reaction yields). Effective algorithm classes 

were identified through extensive benchmarking with synthetic data 

as well as empirical modifications and hyperparameter selections that 

are beneficial to algorithm performance. The Bayes UCB (Upper Con-

fidence Bound) algorithm42 with tuned parameters mostly offered the 

best performance, whereas the UCB1-Tuned algorithm43 is preferred 

in practice because of the absence of tunable parameters and gener-

ally satisfactory performance. Multiple approaches to support batch 

proposing and updating were also implemented to allow parallel experi-

mentation in practice (see Supplementary Information for details 

on algorithm benchmarking and development). Unlike optimization 

frameworks that involve costly fitting of Gaussian processes and neural 

networks as surrogate models44, our framework is also lightweight and 

computationally efficient with minimal software dependencies. This 

advantage not only enhances software performance in a production 

environment but also enables us to extensively simulate the learning 

model with existing datasets to statistically evaluate its effectiveness.

Performance testing with chemistry reaction datasets

We simulated the optimization model on three previously published 

chemistry reaction datasets consisting of a variety of conditions applied 

to a broad scope of substrates: a nickel-catalysed borylation dataset 

previously investigated by Bristol Myers Squibb (BMS)45, a deoxyfluori-

nation dataset from the Doyle group46 and a Buchwald–Hartwig C–N 

cross-coupling dataset47, all with the aim of finding the most general 

conditions with different reactivity metrics (Fig. 2a). For every dataset, 

the most general conditions were first determined through analyses of 

reaction yield distributions (Fig. 2c; see Supplementary Information 

for detailed yield analyses on all datasets). Optimization runs were 

then simulated by iteratively allowing the bandit algorithms to propose 

experiments and providing the algorithms with actual experimen-

tal results. For all three reactions, we used the Bayes UCB algorithm 

with beta prior for binary metrics and Gaussian prior for continuous 

metrics (see Supplementary Information section 8 for performance 
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comparison with other algorithms). After each round, the learning 

model updated its beliefs for the reaction scope, and this process was 

continued until a specified number of experiments was reached. This 

simulation process was repeated many times (for example, 500) and 

the top-n accuracy was used as a metric to compare algorithm perfor-

mances. Top-n accuracy was calculated as the relative frequency of the 

model correctly identifying the top-n conditions with data collected 

up to time point t across all simulations.

To confirm that meaningful learning took place with the devel-

oped model, we established baselines for comparison of each data-

set. The first is a pure exploration baseline in which the conditions 

are randomly selected for evaluation. The other baseline strategy, 

explore-then-commit (ETC), tries each condition during the explora-

tion stage and exploits by committing to the best option from explo-

ration. To compare with other algorithms, at any given time point, 

the best empirical option from all previous, completed exploration 

rounds is identified. After a new round of exploration is complete, 

ETC re-evaluates and chooses a new option that appears best with the 

inclusion of new data, and its accuracy is also updated accordingly, 

yielding a stepwise accuracy baseline. The pure exploration and ETC 

baselines exhibit similar accuracies in practice because of the similar 

concept of uniform exploration, with ETC being less noisy because of 

the more structured exploration by round. These two baseline strate-

gies mimic the state-of-the-art multi-substrate screening approaches, 

in which different combinations of substrates and conditions are evalu-

ated, and the most general condition is chosen based on the average 

performance using all available data. Compared with ETC baselines, 

the bandit algorithms achieved substantial improvements in accura-

cies for all three datasets (28%, 31% and 8%) within 100 experiments 

(Fig. 2b). An accuracy improvement of 30% indicates that the probabil-

ity of finding general conditions within a relatively low experimental 

budget is better when pursuing the bandit strategy compared with 

the baselines. For the C–N cross-coupling dataset, the ETC strategy 

reached high accuracy (>80%) because each round of exploration 

costs at most four experiments. Despite the high baseline accuracy, the 

highest-performing bandit algorithm still achieved an 8% improvement 

in accuracy. To evaluate the data efficiency of the bandit algorithms, 

we simulated a palladium-catalysed C–N cross-coupling reaction 

dataset with more than 3,600 experiments (Extended Data Fig. 1a,b)48. 

The best-performing Bayes UCB algorithm achieved more than 90% 

accuracy after exploring only 2% of the reaction scope (72 reactions) 

(Extended Data Fig. 1c). We also visualized the experiments selected by 

the Bayes UCB algorithm at different time points in a single optimiza-

tion run (Extended Data Fig. 1d) to illustrate the general behaviour of 

bandit algorithms (further discussion can be found in Supplementary 

Information section 8.5). Taken together, these results validated that 

the bandit algorithms can be successfully translated to chemistry reac-

tion data and are accurate in finding the most general conditions for 

various reactions, condition precisions and optimization objectives.

Optimization study 1: C–H arylation reaction

Next, we set out to evaluate the bandit algorithms on unseen data for 

distinct chemical transformations. A reaction dataset with many diverse 
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substrate pairings and calibrated reaction yields for all products under 

the same environment, that which is also sufficiently large for model-

ling, would be ideal to evaluate the performance of generality optimi-

zation algorithms in a regime in which multiple substrate dimensions 

simultaneously interact with conditions. Owing to the lack of these 

datasets in the literature, we decided to collect a palladium-catalysed 

imidazole direct C5-arylation dataset that satisfies these require-

ments. This dataset builds on a C–H arylation dataset investigated in 

a previous collaboration between the Doyle group and BMS25, in which 

the conditions were extensively surveyed with a single pair of sub-

strates. However, in this case, we expanded the substrate dimensions 

of both imidazoles and aryl bromides and specifically studied ligand 

effects with an expanded ligand scope. A total of 64 unique C5-arylated 

imidazole products were generated from eight imidazoles and eight  

aryl bromides, each evaluated with 24 ligands yielding 1,536 total reac-

tions (Fig. 3a).
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Fig. 3 | Optimization studies of a palladium-catalysed C–H arylation 

reaction. a, General reaction scheme and HTE results for palladium-catalysed 

C–H arylation of imidazoles with aryl bromides. Average yields across all 64 

products for each ligand are shown in white. Structures of all 24 ligands are 

included in the Supplementary Information. b, Ligand optimization results 

using a model substrate approach. The ligand that gives the highest yield (that  

is also >75% yield) for each of the 64 products is selected as the optimal ligand. 

Substrate combinations are considered as not optimized if no ligand surpasses 

the 75% reactivity threshold. c, Substrate scope search space expansion 

scheme. Phase I (imidazoles A, B, C and D and aryl bromides 1, 2, 3 and 4) was 

expanded with four more imidazoles (E, F, G and I) after 50 experiments and 

four more aryl bromides (5, 7, 9 and 10) after 100 experiments. d, Average yield 

distributions for top-5 (overall) ligands during three phases. e, Average accuracy 

of identifying each of the five most general ligands as the optimal ligand over 

time during different phases (UCB1-Tuned algorithm, 500 random starts). 

Overall top-5 accuracy (black, solid), top-5 explore-then-commit baseline 

accuracy (black, dashed) and the accuracy of identifying Cy-BippyPhos as 

optimal with full scope of data available from the start (red, dotted) are also 

shown. KOPiv, potassium pivalate; DMA, dimethylacetamide.
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We first retrospectively analysed the dataset by mimicking a tradi-

tional model substrate approach, in which the ligands are screened 

with a model substrate (or product) to identify the highest-performing 

ligand as optimal. For each of the 64 products in the scope, we filtered 

out products (40 out of 64) that did not achieve a reaction yield above 

75% (these reactions can usually be considered as ‘not optimized’ in 

practice). For the rest of the products, the highest-yielding ligand was 

selected (Fig. 3b). Twelve out of 24 ligands in the scope can be consid-

ered as ‘optimal’ with different substrate pairings. Most of these ligands, 

however, are non-optimal when considering all 64 products. The most 

notable example, PPh3, is the optimal ligand for imidazole C with multi-

ple aryl bromides, but its average yield over all products is only 32.4%, 

compared with 46.2% for CyBippyPhos. Moreover, our previous HTE 

study of C–H arylation25, in which imidazole C and aryl bromide 7  

were used as model substrates to evaluate 1,984 different reaction 

conditions including 14 monophosphine ligands, identified CgMe-PPh 

as the optimal ligand almost exclusively (19 out of top 20 conditions, 

with the only other ligand being PPh3). These analyses highlight that 

a traditional screening approach with a model substrate, even after 

extensive exploration of the condition space, does not usually produce 

a satisfying general condition. By contrast, simulating the bandit model 

with this dataset showed an 85% top-5 accuracy (Fig. 3e, compared with 

the 71% explore-then-commit baseline) and a > 95% top-9 accuracy on 

average after 200 experiments (see Supplementary Information for 

detailed simulation studies of this reaction). Non-optimal ligands, such 

as PPh3, are almost always excluded from consideration by the model, 

thus reducing bias when choosing general conditions.

A key advantage of the bandit optimization model is that no search 

space needs to be explicitly defined. Reactivity responses from vari-

ous substrates are treated as feedback from the environment that the 

algorithm is learning from. This means that the substrate scope, as 

part of a dynamic environment, can arbitrarily change on the fly and 

the model can learn these changes continuously from the feedback it 

receives during optimization. It is common in practice to expand the 

substrate scope and further evaluate the use of a developed method, 

which can affect how generally applicable a condition is and the ability 

of the optimization model to select these conditions. For this problem 

setting, we designed a test scenario in which both the imidazole and 

aryl bromide scopes available to the algorithm were restricted at first 

and expanded during optimization. Four imidazoles (A, B, C and D) 

and four aryl bromides (1, 2, 3 and 4) constituted the initial scope, 

defined as phase I. After 50 experiments in phase I, the imidazole scope 

was expanded to include four additional imidazoles (E, F, G and I), 

creating 16 new potential products in phase II. After 50 experiments in  

phase II, the aryl bromide scope was expanded again to include four 

more aryl bromides (5, 7, 9 and 10), creating 32 new potential pro-

ducts in phase III (Fig. 3c). Although phases I and II experience similar 

rankings for the top-5 ligands, the relative order changes in phase III 

after the addition of four aryl bromides (Fig. 3d). During optimization 

simulations, the individual accuracies over time for each of the top-5 

ligands were tracked and compared (Fig. 3e). The model correctly iden-

tified the initial ligand reactivity rankings in phases I and II. When the 

reactivity ranking was changed in phase III, the algorithm did not over-

commit and successfully adjusted its belief in ligand performance by 

increasingly sampling Cy-BippyPhos (red) and Et-PhenCarPhos (blue), 

the top-2 performing ligands. The previous top ligands, tBPh-CPhos 

(orange) and JackiePhos (purple), were downgraded by the algorithm 

in phase III. We also compared the accuracy of Cy-BippyPhos under 

a substrate expansion regime with the accuracy of Cy-BippyPhos 

obtained from a separate optimization simulation in which the full 

substrate scope is always available for the algorithm to sample from. 

Although the initial accuracies understandably differed because 

of the different reactivity distributions in phases I and II, the end  

accuracies at experiment 200 are similar despite the differences in the  

initial sampling pools.

Optimization study 2: amide coupling reaction

Owing to the prevalence of amide bond structures in biological systems 

and pharmaceutical compounds, amide coupling reactions are the 

most commonly used reactions in medicinal and process chemistry49. 

Carboxylic acids are often preferred as inexpensive and abundant start-

ing materials. Their chemical stability, while desirable on account of the 

ease of handling on scale, necessitates activation by coupling reagents, 

usually through in situ formation of an acid halide or anhydride. Despite 

the vast number of activators (>200) developed for amide coupling 

reactions50, chemists often resort to a few routine reagents on the basis 

of their proven reliabilities51. However, the efficacy of these coupling 

reagents when applied to specific target substrates is still difficult to 

assess a priori, especially for the challenging coupling with weakly 

nucleophilic anilines. Aniline deactivation from the aromatic system, 

as well as accompanying steric and electronic demands from various 

substituents, complicates the selection of productive coupling rea-

gents. Other aspects of reaction conditions, such as bases and solvents, 

can also affect reactivity.

Using the late-stage functionalization of indomethacin, a commonly 

prescribed nonsteroidal anti-inflammatory drug (NSAID), as an exam-

ple, we sought to demonstrate the ability of the bandit model to identify 

generally applicable amide coupling conditions when faced with a 

diverse scope of aniline substrates and reaction conditions (Fig. 4a). For 

the defined reaction scope, we attempted to identify the most general 

activator–base combinations. Not expecting a notable solvent effect 

between the three solvents chosen (THF, MeCN and DMF), we prioritized 

activators and bases because they often work in tandem and generate 

reactive intermediates, which can affect amide coupling reactivity. 

We first aimed to filter out less-effective activators by setting the opti-

mization objective to activators alone. Unlike simulation studies in 

which real-time feedback was immediately provided for each proposed 

experiment, experiments proposed in batch are necessary in practice 

to maximize time efficiency, resulting in a delayed feedback setting. 

Similar to a kriging believer52,53 in a sequential optimization problem, 

our implementation of batched bandit optimization uses a separately 

trained random forest prediction model with existing data. Both the 

optimization model and the prediction model were updated when 

experimental feedback became available. After eight rounds of initial 

experiments (five experiments per round), activ ators were ranked by 

reactivity based on the beliefs of the model, and the bottom four acti-

vators (PFTU, HOTU, HATU and PyBOP) were eliminated. For the four 

remaining activators (DPPCl, BOP-Cl, TCFH and TFFH), the optimiza-

tion objective was modified to activator–base combinations. Relevant 

data for the four activators retained were recycled and incorporated 

as knowledge of the new objective by the optimization model. After 16 

additional rounds of experiments, all activator–base combinations were 

again ranked by projected reactivity (top nine conditions are shown in 

Fig. 4b). Overall, about 12% of the reaction scope were experimentally 

explored following the suggestions of the model.

To conclusively evaluate the resulting rankings from our model, we 

collected experimental results for all remaining reactions not explored 

during optimization and analysed true reactivity rankings for activators 

and activator–base combinations for comparison. The model correctly 

identified and ranked the top three activators during the activator 

selection phase. For activator–base combinations, top nine out of 

10 combinations were identified, with the top four correctly ranked. 

Interestingly, HATU–DIPEA, one of the most commonly applied amide 

coupling activator–base combinations54, was the only condition not 

selected in top 10 as HATU was eliminated in the initial rounds. Use of 

DPPCl (diphenylphosphinic chloride) with NMM or DIPEA yielded the 

most effective general reaction conditions, ranking number one and 

two, respectively. Using HATU–DIPEA as a benchmark, the average 

yields over three solvents (THF, MeCN and DMF) for DPPCl–NMM and 

DPPCl–DIPEA for each aniline substrate were also analysed (Fig. 4d). 
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DPPCl–NMM significantly outperformed, or at least matched, HATU–

DIPEA for most anilines (except n10), including highly deactivated 

anilines (n1) and sterically hindered anilines (n8). When compared with 

TCFH–NMI, a reagent combination developed by BMS for challenging 

amide coupling reaction with non-nucleophilic amines55, DPPCl also 

exhibited superior reactivities for selected anilines (for example, n7). 

Although not a commonly used amide coupling reagent, the optimiza-

tion results suggest that DPPCl can be effective for amide coupling with 

anilines. Effective amide couplings using DPPCl have been separately 

investigated by BMS56. The desirability of DPPCl-mediated amide cou-

pling in commercial routes, owing to its exceptional thermal stability57 

and improved atom economy compared with the mechanistically simi-

lar but much more common activator T3P, has also been demonstrated 

on multi-kilo scales58.

Finally, we evaluated the accuracy of the final prediction model from 

the last round of optimization with measured ground truth data for 

the full scope. The random forest model was only trained with 12.5% 

of the data from the reaction scope explored during optimization 

but exhibits good prediction accuracy for unexplored experiments 

involving both activators retained and eliminated after initial experi-

mental rounds (12% mean absolute error for both, Fig. 4c). The good 

accuracy of the prediction model under a low-data regime further 

validates the approach of using a supervised machine learning model 

to predict experimental results in a delayed feedback setting during 

optimization.

Optimization study 3: phenol alkylation reaction

The prevalence of alkyl aryl ethers in natural products and pharma-

ceuticals has prompted developments in mild and general syntheses 

of these products. Despite advances in transition-metal catalysed C–O 

cross-coupling reactions59, traditional approaches, such as Williamson 
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Fig. 4 | Optimization studies of an amide coupling reaction with anilines.  

a, The substrate and condition scope for the amide coupling reaction. The 

structures of bases and activators are included in Supplementary Information. 

b, Algorithm rankings for activators after eight rounds of experiments  

(five experiments per round) and algorithm rankings for activator–base 

combinations after 16 rounds of experiment (five experiments per round) 

using UCB1-Tuned as the selection algorithm. True rankings for activators  

and activator–base combinations from all experimental yields collected using 

HTE are shown in grey boxes for comparison. c, The performance of random 

forest prediction model trained with results from 24 experimental rounds. 

Predicted yields for the entire scope, further divided into three groups, were 

compared with true experimental yields. MAE, mean absolute error; RMSE, 

root mean square error; and R2, coefficient of determination. d, Average  

yields over three solvents (THF, MeCN and DMF) for identified conditions of 

DPPCl–NMM and DPPCl–DIPEA when applied to all 10 aniline nucleophiles. 

HATU–DIPEA and TCFH–NMI were used as baseline comparisons.
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ether synthesis60, Mitsunobu etherification61 and nucleophilic aromatic 

substitution (SNAr), are still widely used because of their simplicity. 

However, these reactions usually have limited functional group compat-

ibility. We decided to investigate a base-promoted phenol alkylation 

reaction with alkyl mesylates, which also suffers from similar substrate 

applicability issues, with the objective of identifying a more general 

condition.

Six mesylates and six phenols were selected from commercial data-

bases as substrates with varying structural motifs and complexities. We 

randomly left out one phenol (p5) and one mesylate (m1) as external 

testing substrates and did not include them in the optimization pro-

cess. As a result, 25 substrate pairings (five phenols × five mesylates) 

were sampled by the algorithm during optimization, and 11 unseen 

pairings (those with p5 and m1, including p5–m1) were tested after to 

externally validate the generality of the identified conditions. Six bases 

(inorganic and organic), two solvents and three temperatures were 

selected as the condition scope, totaling 36 overall conditions (Fig. 5a). 

Conditions selected by expert medicinal and process chemists at BMS 

and their corresponding reactivity data were used as a benchmark for 

the decisions of the bandit algorithm and optimization performance.

Using UCB1-Tuned algorithm, we conducted four rounds of optimiza-

tion with a total of 90 experiments (36, 18, 18 and 18 for each round; all 

conducted experiments are included in the Supplementary Informa-

tion section 11.3). The first round of experiments is a uniform explora-

tion of all conditions required by UCB-type algorithms. All conditions 

were sequentially explored with randomly sampled substrate pairings  

(21 out of 25 were sampled at this stage). Subsequent rounds of experi-

ments were chosen by the algorithm evaluating different conditions 

and substrate pairings. After 90 experiments, or 10% of the available 

reaction scope, the average yields and number of samples for each con-

dition were analysed (Fig. 5b and Supplementary Fig. 118). Notable base 

(BTMG) and temperature (60 °C) effects on reactivity were observed, 

with BTMG–t-AmOH–60 °C identified as the most generally applicable 

condition, achieving an average yield of 30.4% over five substrate pairs 

tested. Two conditions most commonly used and most successful in 

past HTE datasets at BMS, Cs2CO3–DMF–60 °C and K3PO4–DMF–60 °C 

were selected as benchmark conditions for comparison (Supplemen-

tary Information section 11.4). These three conditions were tested on 

11 unseen substrate pairings that involve phenol p5 and mesylate m1 

(Fig. 5c). Compared with the benchmark conditions, the algorithmically 

derived condition, BTMG–t-AmOH–60 °C, performed better (or at least 

comparably) in all except one substrate pairing (p5–m5). These results 

showed that bandit algorithms are compatible with continuous param-

eter optimization and can be used with batch sizes amenable to HTE. 
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Fig. 5 | Optimization studies of phenol alkylation with mesylates. a, The 

substrate and condition scope for the phenol alkylation reaction, with two 

external test substrates not included in optimization highlighted. b, Summary 

of experiments conducted after four rounds of optimization (90 experiments). 

For each condition, different substrate combinations were selected to test by 

the UCB1-Tuned algorithm, with the yields for each individual reaction shown 

with a colour scale. The white numbers represent the current average yields of 

all conditions based on reactions that have been run. c, Performance comparison 

of the optimal condition identified, BTMG–t-AmOH–60 °C, with two most 

commonly used phenol alkylation conditions at BMS (K3PO4–DMF–60 °C and 

Cs2CO3–DMF–60 °C) on 11 unseen substrate pairings. BTMG, 2-tert-butyl-

1,1,3,3-tetramethylguanidine; DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene; DMF, 

dimethylformamide; t-AmOH, tert-amyl alcohol.
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Furthermore, validation with unseen substrate pairings showed that 

the condition identified by the bandit algorithm during optimization is 

more generally applicable for the reaction scope, even when compared 

with conditions selected by practicing chemists that performed well 

in historical datasets.

Discussion

Our learning model can achieve data-efficient learning at high accu-

racies and has unique functionalities that we substantiated through 

the experimental investigations of three chemical transformations. 

Despite its advances, the optimization framework still has limitations 

and can be improved in a few areas. Given the typical experimental 

budget (100–1,000 experiments) and the efficiency of optimization 

(2–10% exploration of the scope needed), our approach is not suit-

able for the evaluation of a scope with thousands of possible condi-

tions. Rather, the condition scope needs to be reduced by expert 

chemists to selective conditions that show reactivity initially, so that 

more experimental resources can be spent on sampling substrates. 

Furthermore, the treatment of reaction conditions as independent 

arms in a stochastic multi-armed bandit problem setting means that 

there is no sharing of structural information between arms. Although 

effective in all our test cases, this approach can be inefficient when 

more than 100 conditions need to be simultaneously evaluated and 

significant correlations between conditions are present. Elimination 

of less effective conditions, as demonstrated in the amide coupling 

example (optimization study 2), can attenuate this problem. Alterna-

tively, suitable descriptors for conditions could be used to transfer 

knowledge between similar conditions, but the choice of descriptors 

is difficult to determine a priori. Finally, although we showed that the 

learning model can successfully adjust to a changing environment 

with unseen substrates and correctly identify most general conditions, 

addition of any new conditions will require additional sampling for the 

model to have an accurate estimation of their performance. This issue 

was partially addressed by the inclusion of a real-time supervised learn-

ing model, which can be used to extrapolate to unseen conditions and 

predict their effectiveness, but a more direct approach with knowledge 

transfer between arms is still desired.
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Methods

Detailed descriptions of bandit optimization algorithms implemented 

in this study, benchmark simulation testing of algorithms with syn-

thetic data, optimization model design for chemistry reaction data 

and global analysis and simulation of various reaction datasets can be 

found in the Supplementary Information. Dataset designs, procedures 

of high-throughput experimentation, authentic product syntheses and 

characterizations for the palladium-catalysed imidazole C–H arylation 

reaction, amide coupling reaction and phenol alkylation reaction are 

also included in the Supplementary Information.

Data availability

All reaction datasets evaluated in simulation studies and the two newly 

collected reaction datasets (the palladium-catalysed C–H arylation 

reaction and the amide coupling reaction) are available at GitHub 

(https://github.com/doyle-lab-ucla/bandit-optimization). Raw data 

logs from simulation studies with both synthetic data and chemis-

try reaction data are available at Zenodo (https://doi.org/10.5281/

zenodo.8170874).

Code availability

All source codes for implemented optimization algorithms and models, 

simulation methods for synthetic data and chemistry reaction dataset 

and analysis functions for data logs and optimization results are availa-

ble at GitHub (https://github.com/doyle-lab-ucla/bandit-optimization). 

The current release of the software is also available at Zenodo (https://

doi.org/10.5281/zenodo.8181283). 
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Extended Data Fig. 1 | Testing the bandit algorithms on a previously 

published C–N cross-coupling reaction dataset. a, General reaction scheme 

of the C–N cross-coupling reaction and reactivity heatmap grouped by base 

and ligand, with average yields for each base/ligand combination shown  

in white text. Structures for all substrates and conditions in the scope are 

included in the Supplementary Information. b, Top three most general base–

ligand conditions for the dataset. c, Average accuracies of identifying top-3 

conditions with various algorithms across 500 simulations with random  

starts. Exploration refers to the uniform exploration required by some 

algorithms, during which each condition is sequentially selected once. 

Different implementations of TS and Bayes UCB algorithms were used and 

differentiated by implementation 1 and 2 for simplicity. This plot is reproduced in 

Fig. S83, with the details of the algorithms included in the legend. TS: Thompson 

Sampling; UCB: upper confidence bound. d, Real-time optimization progress 

for simulation 0 (the first simulation) of a Bayes UCB (implementation 2) 

algorithm at n = 12, 30, 60, 99. Squares with different colors represent all 

reactions that have been suggested and evaluated by the algorithm at the time. 

The real-time empirical average for each base/ligand combination is shown in 

white texts.
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Extended Data Fig. 2 | Model architecture and workflow of bandit 

algorithms during reaction optimization. The bandit algorithm suggests  

a condition (an arm) to evaluate first. The chemist-designed reaction scope 

suggests a reaction to evaluate with the selected condition. The suggested 

reaction is tested experimentally, and the result is used to update both the 

reaction scope and the bandit algorithm for the next round of proposal. Finally, 

a prediction model, separately trained with existing experimental results,  

is optionally used to propose reactions to evaluate via other mechanisms  

(e.g., batch proposal).
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