Reinforcement Learning as Classification:

Leveraging Mod

ern Classifiers

Michail G. Lagoudakis
Ronald Parr

MGL @CS.DUKE.EDU
PARR@CS.DUKE.EDU

Department of Computer Science, Duke University, Durham, NC 27708 USA

Abstract

The basic tools of machine learning appear in
the inner loop of most reinforcement learning al-
gorithms, typically in the form of Monte Carlo
methods or function approximation techniques.
To a large extent, however, current reinforcement
learning algorithms draw upon machine learn-
ing techniques that are at least ten years old and,
with a few exceptions, very little has been done
to exploit recent advances in classification learn-
ing for the purposes of reinforcement learning.
We use a variant of approximate policy iteration
based on rollouts that allows us to use a pure clas-
sification learner, such as a support vector ma-
chine (SVM), in the inner loop of the algorithm.
We argue that the use of SVMs, particularly in
combination with the kernel trick, can make it
easier to apply reinforcement learning as an “out-
of-the-box” technique, without extensive feature
engineering. Our approach opens the door to
modern classification methods, but does not pre-
clude the use of classical methods. We present
experimental results in the pendulum balancing
and bicycle riding domains using both SVMs and
neural networks for classifiers.

1. Introduction

Reinforcement learning provides an intuitively appealing
framework for addressing a wide variety of planning and
control problems(Sutton & Barto, 1998). Compelling con-

vergence results exist for small state spaces(Jaakkola et aé
1994) and there has been some success in tackling larg

function that is both rich enough to express interesting poli-
cies, yet smooth enough to ensure that good policies can
be discovered. The validity of such criticisms is debatable
(since nearly all practical applications of machine learning
methods requirsomefeature engineering), but there can
be no question that recent advances in classifier learning
have raised the bar. For example, it is not uncommon to
hear anecdotal reports of the naive application of support
vector machines matching or exceeding the performance
of classical approaches with careful feature engineering.

We are not the first to note the potential benefits of modern
classification methods to reinforcement learning. For ex-
ample, Yoon et al.(2002) use inductive learning techniques,
including bagging, to generalize across similar problems.
Dietterich and Wang (2001) also use a kernel-based ap-
proximation method to generalize across similar problems.
The novelty in our approach is its orientation towards the
application of modern classification methaslighin a sin-

gle, noisy problem at the inner loop of a policy iteration
algorithm. By using rollouts and a classifier to represent
policies, we avoid the sometimes problematic step of value
function approximation. Thus we aim to address the cri-
tiques of value function methods raised by the proponents
of direct policy search, while avoiding the confines of a pa-
rameterized policy space.

We note that in recent work, Fern, Yoon and Givan(2003)
also examine policy iteration with rollouts and an induc-

tive learner at the inner loop. However, their emphasis
is different. They focus on policy space bias as a means
of searching a rich space of policies, while we emphasize
modern classifiers as a method of recovering high dimen-

(Tabnal structure in policies.

state spaces through the use of value function approxima-

tion and/or search through a space of parameterized pol
cies (Williams, 1992).

2. Basic definitions and algorithms

In this section we review the basic definitions for Markov

Despite the successes of reinforcement learning, some fru®ecision Processes (MDPSs), policy iteration, approximate
tration remains about the extent and difficulty of featurepolicy iteration and rollouts. This is intended primarily as
engineering required to achieve success. This is true both review and to familiarize the reader with our notation.
of value function methods, which require a rich set of fea-More extensive discussions of these topics are widely avail-
tures to represent accurately the value of a policy, and polable (Bertsekas & Tsitsiklis, 1996).

icy search methods, which require a parameterized policy

Proceedings of the Twentieth International Conference on Machine Learning (ICML;20@3hington DC, 2003.

2.1. MDPs In practice, policy iteration terminates in a surprisingly

.) ~small number of steps. However, it relies on the availabil-
An MDP is defined as a 6-tupls, A’_P’ RZ’V_’ D) where: ity of the full model of the MDP, exact evaluation of each
‘.S IS the_state space of the pr_ocesms a finite set of ac- policy, and exact representation of each policy.
tions; P is a Markovian transition model, whef(s, a, s')
is the probability of making a transition to statewhen
taking actiona in states; R is a reward (or cost) function,
such thatR(s, a) is the expected reward for taking action Approximate methods are frequently used when the state
a in states; v € [0,1) is the discount factor for future re- space of the underlying MDP is extremely large and exact
wards; and,D is the initial state distribution from which (solution or learning) methods fail. A general framework of
states are drawn when the process is initialized. using approximation within policy iteration is knownas-
ximate policy iteratior{API). In its most general form,

In reinforcement learning, it is assumed that the learner cah™ . .
| assumes a policy; at each step, which may not nec-
essarily be an exact implementation of the improved pol-

observe the state of the process and the immediate rewa

at every step, howevd? and R are completely unknown. ¢ h) . Tvpically. th ;

In this paper, we also make the assumption that ourlearningé’d romdt_ ebpre\gogsbtlmr:e step._ ypicall, the error in-

algorithm has access to a generative model of the proce uced s bounde y the maximum norfi) error in
whatis presumed to be an approxim@te _, thatwas used

which is a black box that takes a statend an actioru ‘ : Bertsekas & Tsitsiklis. 1996). AP
as inputs and outputs a next statedrawn fromP and a 0 generater;, (Bertsekas & Tsitsiklis,)- can-

rewardr. Note that this is not the same as having the mode['°t guarantee monotonic improvement and convergence to
(P andR) itself the optimal policy. However, in practice it often finds very

good policies in a few iterations, since it normally makes
A deterministic policyr foran MDP is a mapping : S — big steps in the space of possible policies. This is in con-
A from states to actions, wherés) is the action the agent trast to policy gradient methods which, despite acceleration
takes at state. The valuel; (s) of a states under a policy methods, are often forced to take very small steps.
« is the expected, total, discounted reward when the pro-

cess begins in stateand all decisions at all steps are madekl‘?l:l l(Lag(;udak:s & Parr, 2001|) (ij;ﬁan exampfle of aln
according to policyr: algorithm. It uses temporal differences of sample

transitions between state-action pairs to approximate each

2.3. Approximate methods

o Q. Itis also possible to use a technique closer to pure
Va(s) = E | Y v R(st,m(s1))]s0 = s| Monte Carlo evaluation callemllouts. Rollouts estimate
t=0 Q- (s,a) by executing action in states and following pol-

icy w thereafter, while recording the total discounted re-
ard obtained during the run. This processes is repeated
several times and it requires a simulator with resets to ar-
bitrary states (or a generative model) since a large num-
7 = argmaxn(m, D) = Esup [Vi(s)] . ber of trajectories is required to obtain an accurate esti-
i mate of Q. (s,a). Rollouts were first used by Tesauro

It is known that for every MDP, there exists at least oneand Galperin (1997) to improve online performance of a

The goal of the decision maker is to find an optimal policy
«* that maximizes the expected, total, discounted rewar
from the initial state distributio:

optimal deterministic policy. backgammon player. (A supercomputer did rollouts before
selecting each move.) However, they can also be used to
2.2. Policy Iteration specify a set of target values for a function approximator

used within API to estimat€),.. The rollout algorithm is
Policy iterationis a method of discovering such a policy summarized in Figure 1.

by iterating through a sequenge, 7, ..., Of improving

policies. The iteration terminates when there is no chang . .

in the policy ¢rx = mr_1) andm is the optimal policy. % API without Value Functions

This is typically achieved by computirig:,, which can be The dependence of typical API algorithms on value func-
done iteratively or by solving a system of linear equationsions places continuous function approximation methods at

and then determining a set of Q-values: the inner loop of most approximate policy iteration algo-
rithms. These methods typically minimiZe error, which
Qx.(s,a) = R(s,a) + 7Y _ P(s,a,8)V, (s') , is a poor match with the... bounds for API. This prob-
s lem isnotjust theoretical. Efforts to improve performance
and the improved policy as such as adding new features to a neural network or new

basis functions to LSPI don’t always have the expected ef-
mir1(s) = argmax Qn, (s,a) . fect. Increasing expressive power can sometimes lead to
a

Rollout (M, s, a, v, 7, K, T) /I M Generative model
Il M :Generative model /I D, Source of rollout states
1 (s,a) : State-action pair whose value is sought /I~ : Discount factor
1 y : Discount factor Il o Initial policy (default: uniformly random)
1 ™ : Policy /I K: Number of trajectories
1 K : Number of trajectories /I T : Length of each trajectory
1 T : Length of each trajectory
7Tl = 7o
fork=1t0 K
(s',7) < SIMULATE (M, s, a) repeat
@k —r =
P, TS=go
fort=1t07T —1 foreachs € D,
(s',7) — SIMULATE (M, s, 7(s)) foreacha € A
@k — @k +’Yt7" QW(S,G) HNROHOUt(Mv S, a, 7, T, Ka T)
5« s a* = argmax Q" (s,a)
A o5 ifVaGAaE:;éa*'@”(sa)Z@"(sa*)
— —) *))
¢ K;Qk TS — TS U {(s,a)"}
_ foreacha € A: Q7 (s,a) < Q" (s,a*)
return @ TS — TS U {(s,a)"}
' = Learn(TS)
Figure 1.Estimation of state-action values using rollouts. until (~ ')
return

surprisingly worse performance, which can make feature
engineering a somewhat tedious and counterintuitive task. Figure 2.Approximate Policy Iteration with Rollouts.

If a model is available and the structure of the value func{or the state. This approximate policy iteration algorithm is
tion approximation is compatible with the model, value described in Figure 2.

function approximation minimizingL.. error is possi- CWe use the notatioffs, a)* to indicate a positive train-

ble (Guestrin et al., 2001). There are arguments that su T .
ing example, ands, a)~ to indicate a negative example.

apprommaﬂoqs are better suited to MDPs, §ugge§tlng .thEearn is a supervised learning algorithm that trains a clas-
use of something like support vector regression, which trieg

- . Sifier given a set of labeled training data. The structure of
to limit the worst case approximation error. Unfortunately, the policy iteration algorithm naturally suggestsatchim-

the a_pprpach does not gener_allze easily to re'nforcememlementation since the policy is updated in distinct phases.
learning in the presence of noise. To see this, consider th he termination condition is left somewhat open ended. It

in minimizing Lo error, we serve two objectives: averag- .
. I . can be when the performance of the current policy does not
ing within states and smoothing across states. Thus, thé

. g .Fxceed that of the previous one, when two subsequent poli-
mean state value (based upon trajectories or temporal dl(:'ies are similar (the notion of similarity will depend upon
ferences) is also the one that minimizes error at that Y P P

ST = . the learner used), or when a cycle of policies is detected

state. In contrast, minimizind.., error is ill suited to . .
. . (also learner dependent). If we assume a fortuitous choice
raw data of the type encountered in reinforcement learn: g
. . . of S, and a sufficiently powerful learner that can correctly
ing since the mean state value can differ sharply from the : . -
T . generalize fromS, to the entire state space, the itera-

L, error minimizing estimate. (Suppose we dr&y0 next

states from state, of which 99 have valuel.0 and1 has g?fg;if\}:;s ierlrigcl)emn?erzrrllt\;vr: I I::?lrjrl} th;itml?tr:é?%gﬂ:%:fﬁm
value0.0. The mean value foV (s) is 0.99, which is also yimp 9 policy g .

the value that minimizes thg, error in the temporal dif- and terminating with the optimal policy. For large-scale

ferences. Howevel/ (s) = 0.5 minimizes thel ., error.) zé?gﬁmzozzossgggﬁggggggng with imperfect classi-

An important observation, also noted by Fern, Yoon and

Giv:_an (2003), is tha_t rollouts can_be used V\{ithin_ API to 4. ChoosingSp

avoid the problematic value function approximation step

entirely. We choose some representative set of siéifes For the choice ofS,, we have a number of alternatives.
and assume that we can perform enough rollouts to defhe simplest is to try to dense, uniform covering of the
termine which action maximize@ (s, a) for the current state space. For low-dimensional state spaces, this will be
policy. Rather than fitting a function approximator to the practical, but it scales poorly. A similar option would be
values obtained by the rollouts, we instead train a classito randomly selec$, from some uniform distribution over
fication learner where the maximizing action is the labelthe state space. This is again problematic due to poor cov-

erage for high-dimensional spaces. distribution can lead to arbitrarily bad performance (policy
loss that grows with the size of the state space). Of course,
the ideal restart distribution would be that of the optimal
policy, but this begs the question.

A natural choice ofS, would be the distribution of states
induced by the current policy,;. While intuitively appeal-
ing, this distribution may differ dramatically from the dis-
tribution of the subsequent policy;..1, for which we must A related practical problem is what to do in states where
train our classifier. (To see this, considerathat directs rollouts cannot provide sufficient information to select
the system towards one “side” of the state space anda m;;1. We discuss this issue in Section 6.

that directs the system towards another side. If we train our

classifier on states drawn from, when we try to use our 5. Imperfect Learners

classifier to execute; 1, it may be asked to classify states

that are disjoint from the ones it has been trained on.) ThiSuppose that our learner fails to leariis) perfectly when
mismatch between training and testing can be dealt with bpresented withr; (s) for all s in .S,. To quantify the extent
using a step size, 0 < o < 1, to keep the policy for the of this failure, we must first define the test distribution. Fol-
next iteration sufficiently close to the current policy so thatlowing Kakade and Langford (2002), we express the natu-

performance does not degrade: ral test distribution for this problem as the set of states en-
N countered when starting from states drawn from the initial
Tit1 = aargmax,Qr, (s,a) + (1 —)7 , distribution D, and following7;. The probability of reach-

ing future states is discounted hyand the infinite sum is
Note thatr;.; is now a stochastic policy that chooses from normalized by(1 —), resulting in:
the improved policy with probabilityx and from the old .
policy with probability (1 — «). A positive « that im-
proves performance is(guarar)nteed to exist (Jaakkola et al., dr,,p(s) = ZVt(PtﬂD)S
1995). Recently, Kakade and Langford (2002) demon-
strated a method for picking near optimally, although the where thes subscript indicates that we are selecting com-
largest “safe” valuex may be quite small. ponents of the matrix-vector product.

Fortunately, our assumption of a generative model givesf we have ara priori guarantee that our learner will choose
us the luxury of drawing states from the policy we wish the wrong action with probability at mo&ton states drawn
to learn before we have completely discovered or learneftom this distribution, then we can bound the expected
it. While this may sound paradoxical at first, it is actu- shortfall from followingr; instead ofr; as follows:
ally quite simple thanks to an observation by Fern (personal

icati fwe begin i d Rmax
communication). If we begin in some staig we can use Va,(s) = Vi, (s) < —02%

i

rollouts to determiner;_.; for so. We can then sample, ST 1=y

by executing actiom;1(so) in so. We continue by using o0 Rmax is the maximum reward value. This pes-
rollouts to determiner;.1 (s1) and executing this action to simistic bound arises from the assumption that all mistakes
obtains,. We contln_ue in this fashion _unt|l we have sam- 56 made in the initial states, which occur with probability
pled_states and act_lons glong an entire tr_ajectoryirpt (1), incurring penaltymax/ (1 —). Since we cannot
s'Fartmg fromso. Trajec_to_nes produced during rollouts are guarantee that such learners exist, this is not meant to be a
discarded, the only training kept are fram,, serious bound, but reassurance that in principle good learn-
Fern's observation mostly solves tt% problem, but it ers can produce good policies. In practice, the actual loss
leaves open the question of how the initial stajés se- is best measured empirically by Monte Carlo evaluation, or
lected. The initial distributiorD may seem like a natural estimated by the error rate on the training set. From a prac-
distribution from which to draws,. In practice, however, tical standpoint, high observed errors (or low performance)
this can cause API to get stuck in local optima: Supposavill suggest a change in representation, or a change in the
; visits only a small region of the state space. To improveearning mechanism, such as a change of kernel.

upon;, rollouts must discover better alternatives at the

fringe of the states reachable ly. However, our clas- g A Practical Algorithm

sifier for r; was never trained on states that aren’t reach-

able bym;, making it unlikely that rollouts from the fron- The main contribution of our paper is a particular embod-
tier of 7; will produce a better alternative to staying within iment of the approximate policy iteration algorithm de-
the region normally circumscribed by. The choice of a scribed in Section 3. Training examples can be formed for
“restart distribution” which differs from the problems nat- any given states € .S assuming some underlying policy
ural starting distribution is also explored by Kakade and. The estimated valugg™ (s, a) are computed by rollouts
Langford(2002), who show that a poor choice of a restarfor all possible actions in state If the valuesQ”(s, a)

were exact, then the maximizing actiehwould yield one The most significant contribution of effort is that it opens
positive examplés, «*)™ and the rest of the actions would reinforcement learning to the full array of modern classi-
yield a number of negative examplgsa)~ forall a # a*. fication methods through tHearn function. SVMs are a
Unfortunately, the estimate:é%(s, a) are noisy and could particularly appealing choice to the reinforcement learning
yield incorrect examples if treated as exact. Thus, we usefiractitioner vexed by the feature selection problem. We
a simple two-sample-test to compare rollout values. To offer a brief sketch of how SVMs work to justify this ap-
generate examples in any stateising the rollout values peal: With the kernel trick, SVMs are able to implicitly
Q7 (s,a), we did the following: and automatically consider classifiers with very complex
feature spaces. Nevertheless, the optimization performed

1. Use a fixed budget df samples to determin@~ in by SVMs can be interpreted as a search through a space of

states anda*: classifiers to find one that is both a good fit and has low
B VC dimension. In the most optimistic interpretation, this
a* = arg max Q7 (s,a) . dodges the feature selection problem while simultaneously
ac

demonstrating resistance to overfitting. In practice there

are, of course, complications but if SYMs come close to

this dramatic and optimistic description, we should be able

to feed the raw state variables used by our simulators into

our SVM classifier with little regard for the feature engi-

Vac A a#a*: QVW(& a) < @ﬂ(s, a*) . neering required to obtain success in these problems using
value function methods.

2. Generate a positive examgle o*)™ if the value of
actiona* is statistically significantly bigger than the
value of every other actiom € A:

3. Generate a negative examplea)~ for each actiom
whose value is statistically significantly smaller than
the value of action*:

While SVMs are a particularly appealing choice fearn,
they are not the only option and may not be the most de-
sirable option in many cases. The theoretical motivations
Vac A-: @w(s,a) z QVW(&G*) . for using SVMs_ are not as crisp for multlcla_ls_s p_roblems.
For problems with many actions, other classification meth-

A positive example is generated only if there is a cIearIyOds may be more natural: neural nets, Bayes nets, decision

best action in which case all other actions generate negd€€S: etc. For these reasons, and for the sake of compar-
on, we also implementdéarn using a neural network.

tive examples. If there is no best action, negative example%s

can still be generated for the actions that are clearly inferior//¢ designed the neural network with a number of outputs
guals to the number of actions and trained the network to

Notice that in this case the remaining actions appear to p&aL _ -
equally good and, by not generating a positive example, th&ctivate output (and not others) output on pos_ltlve exam-
classifier is essentially given the freedom to choose any oP'€S (s;@:) . Our neural network classifier did not take
them. The only case where no training examples are gerdvantage of negative examples.

erated is wherll actions appear to be equally good. We

expect this approach would benefit from more sophisticated. Experimental Results

approachesto managing the number of samples used (Kael- .) .
bling, 1993; Kearns et al., 1999). We implemented the SVM version of our API algorithm

using SVMTorch (Collobert & Bengio, 2001), a publicly

One peculiarity of rollout based policy iteration is that if available implementation of support vector machines. The
the current policy is very good, i.e. able to recover fromSvMTorch package provides a simple multiclass capability
small mistakes, there will be no statistically significant dif- (one versus a||), but is not necessar”y representative of the
ferences between many of the actions. This can make fest that can be done on multiclass problems using SVM
difficult to acquire sufficient training data for the next pol- technology. We also implemented a version of our algo-
icy. We mitigate this problem by treating the demonstrablyrithm using a simple feedforward, multi-layer neural net-
bad actions as negative training examples even if we canwork as the multiclass classifier. In this section, we present
not determine a single, clearly superior action. Note thakxperimental results on tlieverted pendulurproblem and
randomly selecting an action among the equivalent oneghe bicycle balancing and ridingroblem. Our goal in
and marking it as positive will create a lot of noise for our these preliminary experiments is not necessarily to demon-
learner since subsequent visits to the same state may pditrate the superiority of our rollout approach in terms of
lute the training set with multiple “optimal” actions for the CPU cycles or sample complexity, but rather its viability as

same state. A simple lexicographic ordering can also havan alternate approach to the reinforcement learning control
unexpected side effects at execution time by introducingroblem.

strong preferences for particular actions and heavily bias- _ . o .
ing the training data with examples of just one class. In our experiments we ran approximate policy iteration un-

Using about200 rollout states, the algorithm consistently
6 - x learns excellent balancing policies in one or two iterations
o, . with both neural nets and SVMs, starting with an initial
[e . . policy that selects actions randomly with uniform proba-
T h e o " . bility. Such “excellent” policies balance the pendulum for
+ @ < x more then 3 simulated minutes (in practice, we found that
oo g X o N “x ’ such policies could balance essentially indefinitely). The
i 6 @ ® % T e choice of the sampling distribution did not affect the re-
® L ~ . sults significantly. For illustration, we used uniform sam-
e ® \ e pling for rollout states. Figure 3 shows the training data
N . & \ obtained for the LF action. A positive example indicates a
8 oo state where LF was found to be the best action and a neg-
o ®o, x_ ative example is a state where LF was found to be a bad
Fo] choice. Itis easy to see that positive and negative examples
. + iieae; are easily separated. The same figure also shows the result-
L ing support vectors for the LF classifier using a polynomial
Angle ’ ' kernel of degree 2.

Angular Velocity
o
T
+
+
+

!

N
T

+

Figure 3.Training data (+ : positive, x : negative) and support Figure 4 shows the entire learned policies (blue/dark-gray
vectors (0) for the LF action. for LF, red/medium-gray for RF, and green/light-gray for
NF) for all three classifiers: SVM with a polynomial ker-
) . nel, SVM with a Gaussian kernel, and a neural network
til the observed performance of the policy, as measured|,ssifier with 5 hidden units. Interestingly, in the case of
with experiments with the simulator, decreased. Since apme nolynomial kernel, the policy does not use the NF ac-
proximate policy iteration does not ensure monotonically;jon at all, whereas the other policies do. This is due to
improving policies, itis possible that continuing to run pol- e jimited abilities of the polynomial degree-2 kernel. All
icy iteration beyond an initial setback could still result in policies are excellent in the sense that they can all balance

better policies, but we did not explore this possibility. the pendulum for a long time, perhaps indefinitely. In all
cases, the input to the SVM or the neural network was just
7.1. Inverted pendulum the 2-dimensional state description. For SVMs, the number

gf support vectors was normally smaller than the number of

In the inverted pendulum domain, the task is to balance X
pendulum of unknown length and mass at the upright posi-m"OUt states. The consta@t, the trade-off between train-

tion by applying forces to the cart to which it is attached. N9 €ror and margin, was set 1o
Three actions are allowed: left force LF-$0 Newtons), We note that pendulum balancing is a relatively simple
right force RF (-50 Newtons), or no force (NF) at alD(problem. The classes are nearly linearly separable, so good
Newtons). All three actions are noisy; uniform noise in classification performance here should not be surprising to
[—10,10] is added to the chosen action. The state spacghose familiar with modern classification methods. Note-
of the problem is continuous and consists of the verticalyorthy features from the reinforcement learning perspec-
angled and the angular velocit§ of the pendulum. The tive are the small number of iterations of policy iteration
transitions are governed by the nonlinear dynamics of theequired and the non-parametric representation of the pol-
system (Wang & Griffin, 1996). and depend on the currenfcy. Figure 3 shows the ability of the SVM to adapt the rep-
state and the current (noisy) contiol resentation to match the training data since only the support

; gsin(8) — aml(é)2 §in(26)/2 — o cos()u vectors are used to represent the policy.

Al/3 — aml cos?(6) 7 7.2. Bicycle riding

whereg is the gravity constantg(= 9.8m/s?), mis the | the bicycle balancing and riding problem (Randigv &
mass of the pendulunm{ = 2.0 kg), M is the mass of the p|strgm, 1998) the goal is to learn to balance and ride a
cart (M = 8.0kg), lis the length of the pendulum € 0.5 pjcycle to a target position located 1 km away from the
m), anda = 1/(m+ M). Areward ofl is givenaslong as giarting location. Initially, the bicycle’s orientation is at an
the angle of the pendulum does not excegdlin absolute 4ngle of 90 to the goal. The state description is a six-
value (the pendulum is above the horizontal line). An anglejimensional real-valued vectos, 0w, 0,0,), wheref
greater tham /2 signals the end of the episode and a rewardg the angle of the handlebay, is the vertical angle of

épg;alty) of0. The discount factor of the process is set toy¢ bicycle, and) is the angle of the bicycle to the goal.

Angular Velocity
Angular Velocity
Angular Velocity

-6
-15 -1 -0.5 0 0.5 1 15 -15 -1 -0.5 0 0.5 1 15
Anale Anale Anale

Figure 4.Pendulum: policies learned with the polynomial kernel SVM, the Gaussian kernel SVM, and the neural network classifier.

The actions are the torqueapplied to the handlebar (dis-
cretized to{—2, 0, +2}) and the displacement of the rider 2o
v (discretized to{—0.02,0,40.02}). In our experiments,
actions are restricted so that either= 0 or v = 0 giving
a total of 5 actions. The noise in the system is a uniformly 1or Goal position |
distributed term in[—0.02, +-0.02] added to the displace- 57 \ 1
ment component of the action. The dynamics of the bicycle of]

15F 1

are based on the model of Randlov and Alstrom (1998) ani _| |
the time step of the simulation is set@®2 seconds. As

is typical with this problem, we used a shaping reward (Ng™°[.

et al., 1999). 15l Starting: position |

Our experiments with the bicycle did show some sensitivity>° o 100 200 300 400 500 600 700 800 900 1000

to the parameters of the problem as well as the parameters

of our learner. This made it difficult for us to find parame- Figure 5.Bicycle: Trajectory of an SVM policy.

ters that consistently produced good performance. Some of

this may simply be reflective of our inexperience in tuning

the pgrameters of SVMs. ltis also possible that we did ”OEide). This policy was produced with a polynomial ker-
consider enough samples. nel of degrees and4000 rollout states. In the final policy,
For our SVM experiments, we used a shaping rewand of the bicycle rides to the goal, then turns around toward the
given at each time step, wherg= (d,_, — ~vd;) as long goal in a very tight radius. This policy was obtained in just
as|w| < m/15, andr = 0 otherwise.d; is the distance of two API iterations, starting with a uniformly random ac-
the back wheel of the bicycle to the goal position at time tion selection policy. Similarly to the pendulum, the input
The discount factor was set 6095. to the SVM was the raw 6-dimensional state description

- . . . i andC = 1.
In our preliminary experiments with this domain, we were

able to solve the problem with uniform sampling and poly- For our neural network experiments, we used a shaping re-
nomial kernels of low degree. However it required a largeward ofr; given at each time step, where= 1+ (d;—1 —
number of rollout states (about 000). With sampling 7d:) as long agw| < «/15, andr = 0 otherwise d; is the
from the distribution of the next policy, we were able to distance of the back wheel of the bicycle to the goal posi-
solve the problem with fewer rollout states and both RBFtion at timet. The discount factor was setd®9. Since our
and polynomial kernels. However we did not find kernelsneural network learner only uses positive examples and not
that consistently produced good policies with reasonabl@ll states successfully produce positive training instances,
sample sizes. (The balancing problem is solved easily us~€ useB000 rollout states.

ing any of the classification methods, but riding to the goalgjy re 5 shows sample trajectories of one of our better neu-
proved more difficult.) ral network policy iteration runs using 30 hidden units. Af-

Figure 5 shows a sample trajectory from the final policy ofter the first iteration, the learned policy can only balance
one of our better policy iteration runs using SVMs. The bi-the bicycle for a few steps and it crashes. The policy at
cycle moves in the 2-dimensional plane from the initial po-the second iteration reaches the goal, but fails to return to

sition (0, 0) (left side) to the goal positiofil 000, 0) (right it. Finally, the policy at the third iteration, reaches the goal
faster and stays there. The best neural network policy is not

Fern, A., Yoon, S., & Givan, R. (2003fpproximate policy itera-
500 tion with a policy language bias: Learning control knowledge
in planning domain$echnical report TR-ECE-03-11). Purdue
University School of Electrical and Computer Engineering.

Iteration 2

201 / \ i Guestrin, C. E., Koller, D., & Parr, R. (2001). Max-norm projec-
tions for factored MDPsProceedings of the Seventeenth Inter-
national Joint Conference on Atrtificial Intelligence (IJCAI-01)

(pp. 673 — 680). Seattle, Washington: Morgan Kaufmann.
250 n?crzisohr;l \ Jaakkola, T., Jordan, M., & Singh, S. (1994). On the convergence
Goal Position of stochastic iterative dynamic programming algorithiNeu-
Starting position teration 3 ral Computation 6, 1185-1201.

500 i i i i i i
-500 —-250 0 250 500 750 1000 1250

Jaakkola, T., Singh, S. P, & Jordan, M. |. (1995). Reinforcement
learning algorithm for partially observable Markov decision

. . R o . o problems Advances in Neural Information Processing Systems
Figure 6.Bicycle: policies at successive iterations (NN classifier). 7 (pp. 345-352). Cambridge, Massachusetts: MIT Press

Kaelbling, L. P. (1993).Learning in embedded system€am-
as good as the best SVM policy, but it is more illustrative bridge, Massachusetts: MIT Press.
of the progress of policy iteration because it takes an extr

. . %akade, S., & Langford, J. (2002). Approximately optimal ap-
iteration. g (2002). App y op p

proximate reinforcement learningThe Nineteenth Interna-
tional Conference on Machine Learning (ICML-20023yd-

8. Discussion ney, Australia.

Kearns, M., Mansour, Y., & Ng, A. Y. (1999). A sparse sampling
We have presented a case for an approach to RL that com- 5 4orithm for near-optimal planning large markov decision pro-

bines policy iteration and pure classification learning with cesses Proceedings of the Sixteenth International Joint Con-
rollouts. The emphasis of the approach in this paper is the ference on Atrtificial Intelligence (IJCAI-99pp. 1324-1331).
ability to use of modern classification techniques such as Stockholm, Sweden: Morgan Kaufmann.

SVMs to alleviate some of the burden of feature engineery 4qoudakis, M., & Parr, R. (2001). Model free least squares pol-
ing from the practitioner of reinforcement learning. How- icy iteration. To appear in 14th Neural Information Processing
ever, our empirical results also suggest that more traditional Systems (NIPS-14Yancouver, Canada.

methods such as neural networks can be used successfulwg’ A. Y. Harada, D., & Russell, S. (1999). Policy invariance

We believe that these initial successes will help open the under reward transformations: theory and application to reward
door to greater exploitation of modern classification meth- Shapég%' Pzrgg. 1&th 'merQa“?”a' Cogf' OE Machine '(-:Zam'”g
ods on more challenging reinforcement learning domains. (pp. 278-287). Morgan Kaufmann, San Francisco, CA.

Of course, many questions remain. More thorough invesRandlgv, J., & Alstrgm, P. (1998). Learning to drive a bicycle us-

tigation of issues relating to sample complexity and restart ing reinforcement learning and shapirighe Fifteenth Interna-

distributions are important areas for future work. tional Conference on Machine Learniniladison, Wisconsin:
Morgan Kaufmann.

Sutton, R., & Barto, A. (1998)Reinforcement learning: An in-
troduction Cambridge, MA: MIT Press.

This research was supported in part by NSF grant 020908§esauro, G., & Tesauro, G. (1997). On-line policy improvement
We also thank Alan Fern, Bob Givan, Carlos Guestrin and using monte-carlo searct@th Neural Information Processing
Ryan Deering for helpful discussions. Systems (NIPS-9penver, Colorado.

Acknowledgments

Wang, H. Tanaka, K., & Griffin, M. (1996). An approach to fuzzy
References control of nonlinear systems: Stability and design issUeSE

o) Transactions on Fuzzy Systemsl4—23.
Bertsekas, D., & Tsitsiklis, J. (1996)Neuro-dynamic program-

ming Belmont, Massachusetts: Athena Scientific. Williams, R. J. (1992). Simple statistical gradient-following al-
gorithms for connectionist reinforcement learniniylachine
Collobert, R., & Bengio, S. (2001). SVMTorch: Support vec- | earning 8, 229—256.
tor machines for large-scale regression probledsurnal of
Machine Learning Research (JMLHR) 143-160. Yoon, S. W., Fern, A., & Givan, B. (2002). Inductive policy se-
lection for first-order MDPs. Proceedings of the Eighteenth
Dietterich, T. G., & Wang, X. (2001). Batch value funtion approx- Conference on Uncertainty in Artificial Intelligence (UAI-02)
imation via support vectorsAdvances in Neural Information Edmonton, Canada: Morgan Kaufmann.
Processing Systems 14: Proceedings of the 2001 Conference
Vancouver, British Columbia: MIT Press.

