
Reinforcement Learning as Classification:
Leveraging Modern Classifiers

Michail G. Lagoudakis MGL@CS.DUKE.EDU

Ronald Parr PARR@CS.DUKE.EDU

Department of Computer Science, Duke University, Durham, NC 27708 USA

Abstract
The basic tools of machine learning appear in
the inner loop of most reinforcement learning al-
gorithms, typically in the form of Monte Carlo
methods or function approximation techniques.
To a large extent, however, current reinforcement
learning algorithms draw upon machine learn-
ing techniques that are at least ten years old and,
with a few exceptions, very little has been done
to exploit recent advances in classification learn-
ing for the purposes of reinforcement learning.
We use a variant of approximate policy iteration
based on rollouts that allows us to use a pure clas-
sification learner, such as a support vector ma-
chine (SVM), in the inner loop of the algorithm.
We argue that the use of SVMs, particularly in
combination with the kernel trick, can make it
easier to apply reinforcement learning as an “out-
of-the-box” technique, without extensive feature
engineering. Our approach opens the door to
modern classification methods, but does not pre-
clude the use of classical methods. We present
experimental results in the pendulum balancing
and bicycle riding domains using both SVMs and
neural networks for classifiers.

1. Introduction

Reinforcement learning provides an intuitively appealing
framework for addressing a wide variety of planning and
control problems(Sutton & Barto, 1998). Compelling con-
vergence results exist for small state spaces(Jaakkola et al.,
1994) and there has been some success in tackling large
state spaces through the use of value function approxima-
tion and/or search through a space of parameterized poli-
cies (Williams, 1992).

Despite the successes of reinforcement learning, some frus-
tration remains about the extent and difficulty of feature
engineering required to achieve success. This is true both
of value function methods, which require a rich set of fea-
tures to represent accurately the value of a policy, and pol-
icy search methods, which require a parameterized policy

function that is both rich enough to express interesting poli-
cies, yet smooth enough to ensure that good policies can
be discovered. The validity of such criticisms is debatable
(since nearly all practical applications of machine learning
methods requiresomefeature engineering), but there can
be no question that recent advances in classifier learning
have raised the bar. For example, it is not uncommon to
hear anecdotal reports of the naive application of support
vector machines matching or exceeding the performance
of classical approaches with careful feature engineering.

We are not the first to note the potential benefits of modern
classification methods to reinforcement learning. For ex-
ample, Yoon et al.(2002) use inductive learning techniques,
including bagging, to generalize across similar problems.
Dietterich and Wang (2001) also use a kernel-based ap-
proximation method to generalize across similar problems.
The novelty in our approach is its orientation towards the
application of modern classification methodswithin a sin-
gle, noisy problem at the inner loop of a policy iteration
algorithm. By using rollouts and a classifier to represent
policies, we avoid the sometimes problematic step of value
function approximation. Thus we aim to address the cri-
tiques of value function methods raised by the proponents
of direct policy search, while avoiding the confines of a pa-
rameterized policy space.

We note that in recent work, Fern, Yoon and Givan(2003)
also examine policy iteration with rollouts and an induc-
tive learner at the inner loop. However, their emphasis
is different. They focus on policy space bias as a means
of searching a rich space of policies, while we emphasize
modern classifiers as a method of recovering high dimen-
sional structure in policies.

2. Basic definitions and algorithms

In this section we review the basic definitions for Markov
Decision Processes (MDPs), policy iteration, approximate
policy iteration and rollouts. This is intended primarily as
a review and to familiarize the reader with our notation.
More extensive discussions of these topics are widely avail-
able (Bertsekas & Tsitsiklis, 1996).

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

2.1. MDPs

An MDP is defined as a 6-tuple(S,A, P,R, γ,D) where:
S is the state space of the process;A is a finite set of ac-
tions;P is a Markovian transition model, whereP (s, a, s′)
is the probability of making a transition to states′ when
taking actiona in states; R is a reward (or cost) function,
such thatR(s, a) is the expected reward for taking action
a in states; γ ∈ [0, 1) is the discount factor for future re-
wards; and,D is the initial state distribution from which
states are drawn when the process is initialized.

In reinforcement learning, it is assumed that the learner can
observe the state of the process and the immediate reward
at every step, howeverP andR are completely unknown.
In this paper, we also make the assumption that our learning
algorithm has access to a generative model of the process
which is a black box that takes a states and an actiona
as inputs and outputs a next states′ drawn fromP and a
rewardr. Note that this is not the same as having the model
(P andR) itself.

A deterministic policyπ for an MDP is a mappingπ : S 7→
A from states to actions, whereπ(s) is the action the agent
takes at states. The valueVπ(s) of a states under a policy
π is the expected, total, discounted reward when the pro-
cess begins in states and all decisions at all steps are made
according to policyπ:

Vπ(s) = E

[∞∑
t=0

γtR
(
st, π(st)

)|s0 = s

]
.

The goal of the decision maker is to find an optimal policy
π∗ that maximizes the expected, total, discounted reward
from the initial state distributionD:

π∗ = argmax
π

η(π,D) = Es∼D [Vπ(s)] .

It is known that for every MDP, there exists at least one
optimal deterministic policy.

2.2. Policy Iteration

Policy iteration is a method of discovering such a policy
by iterating through a sequenceπ1, π2, ...,πk of improving
policies. The iteration terminates when there is no change
in the policy (πk = πk−1) andπk is the optimal policy.
This is typically achieved by computingVπi , which can be
done iteratively or by solving a system of linear equations
and then determining a set of Q-values:

Qπi(s, a) = R(s, a) + γ
∑
s′
P (s, a, s′)Vπi(s

′) ,

and the improved policy as

πi+1(s) = arg max
a

Qπi(s, a) .

In practice, policy iteration terminates in a surprisingly
small number of steps. However, it relies on the availabil-
ity of the full model of the MDP, exact evaluation of each
policy, and exact representation of each policy.

2.3. Approximate methods

Approximate methods are frequently used when the state
space of the underlying MDP is extremely large and exact
(solution or learning) methods fail. A general framework of
using approximation within policy iteration is known asap-
proximate policy iteration(API). In its most general form,
API assumes a policŷπi at each step, which may not nec-
essarily be an exact implementation of the improved pol-
icy from the previous time step. Typically, the error in-
troduced is bounded by the maximum norm (L∞) error in
what is presumed to be an approximateQ̂πi−1 that was used
to generateπi+1 (Bertsekas & Tsitsiklis, 1996). API can-
not guarantee monotonic improvement and convergence to
the optimal policy. However, in practice it often finds very
good policies in a few iterations, since it normally makes
big steps in the space of possible policies. This is in con-
trast to policy gradient methods which, despite acceleration
methods, are often forced to take very small steps.

LSPI (Lagoudakis & Parr, 2001) is an example of an
API algorithm. It uses temporal differences of sample
transitions between state-action pairs to approximate each
Qπ. It is also possible to use a technique closer to pure
Monte Carlo evaluation calledrollouts. Rollouts estimate
Qπ(s, a) by executing actiona in states and following pol-
icy π thereafter, while recording the total discounted re-
ward obtained during the run. This processes is repeated
several times and it requires a simulator with resets to ar-
bitrary states (or a generative model) since a large num-
ber of trajectories is required to obtain an accurate esti-
mate ofQπ(s, a). Rollouts were first used by Tesauro
and Galperin (1997) to improve online performance of a
backgammon player. (A supercomputer did rollouts before
selecting each move.) However, they can also be used to
specify a set of target values for a function approximator
used within API to estimateQπ. The rollout algorithm is
summarized in Figure 1.

3. API without Value Functions

The dependence of typical API algorithms on value func-
tions places continuous function approximation methods at
the inner loop of most approximate policy iteration algo-
rithms. These methods typically minimizeL2 error, which
is a poor match with theL∞ bounds for API. This prob-
lem isnot just theoretical. Efforts to improve performance
such as adding new features to a neural network or new
basis functions to LSPI don’t always have the expected ef-
fect. Increasing expressive power can sometimes lead to

Rollout (M, s, a, γ, π, K, T)
// M : Generative model
// (s, a) : State-action pair whose value is sought
// γ : Discount factor
// π : Policy
// K : Number of trajectories
// T : Length of each trajectory

for k = 1 to K
(s′, r)← SIMULATE (M, s, a)
eQk ← r
s← s′

for t = 1 to T − 1
(s′, r)← SIMULATE (M, s, π(s))
eQk ← eQk + γtr
s← s′

eQ← 1

K

KX

k=1

eQk

return eQ

Figure 1.Estimation of state-action values using rollouts.

surprisingly worse performance, which can make feature
engineering a somewhat tedious and counterintuitive task.

If a model is available and the structure of the value func-
tion approximation is compatible with the model, value
function approximation minimizingL∞ error is possi-
ble (Guestrin et al., 2001). There are arguments that such
approximations are better suited to MDPs, suggesting the
use of something like support vector regression, which tries
to limit the worst case approximation error. Unfortunately,
the approach does not generalize easily to reinforcement
learning in the presence of noise. To see this, consider that
in minimizingL2 error, we serve two objectives: averag-
ing within states and smoothing across states. Thus, the
mean state value (based upon trajectories or temporal dif-
ferences) is also the one that minimizesL2 error at that
state. In contrast, minimizingL∞ error is ill suited to
raw data of the type encountered in reinforcement learn-
ing since the mean state value can differ sharply from the
L∞ error minimizing estimate. (Suppose we draw100 next
states from states, of which 99 have value1.0 and1 has
value0.0. The mean value forV (s) is 0.99, which is also
the value that minimizes theL2 error in the temporal dif-
ferences. However,V (s) = 0.5 minimizes theL∞ error.)

An important observation, also noted by Fern, Yoon and
Givan (2003), is that rollouts can be used within API to
avoid the problematic value function approximation step
entirely. We choose some representative set of statesSρ

and assume that we can perform enough rollouts to de-
termine which action maximizesQπ(s, a) for the current
policy. Rather than fitting a function approximator to the
values obtained by the rollouts, we instead train a classi-
fication learner where the maximizing action is the label

// M: Generative model
// Dρ: Source of rollout states
// γ : Discount factor
// π0: Initial policy (default: uniformly random)
// K : Number of trajectories
// T : Length of each trajectory

π′ = π0

repeat
π = π′

TS = ?
for each s ∈ Dρ

for each a ∈ A
eQπ(s, a)← Rollout(M, s, a, γ, π, K, T)

a∗ = arg max
a∈A

eQπ(s, a)

if ∀ a ∈ A, a 6= a∗ : eQπ(s, a) e< eQπ(s, a∗)
TS← TS ∪ {(s, a∗)+}

for each a ∈ A : eQπ(s, a) e< eQπ(s, a∗)
TS← TS ∪ {(s, a)−}

π′ = Learn(TS)
until (π ≈ π′)

return π

Figure 2.Approximate Policy Iteration with Rollouts.

for the state. This approximate policy iteration algorithm is
described in Figure 2.

We use the notation(s, a)+ to indicate a positive train-
ing example, and(s, a)− to indicate a negative example.
Learn is a supervised learning algorithm that trains a clas-
sifier given a set of labeled training data. The structure of
the policy iteration algorithm naturally suggests abatchim-
plementation since the policy is updated in distinct phases.
The termination condition is left somewhat open ended. It
can be when the performance of the current policy does not
exceed that of the previous one, when two subsequent poli-
cies are similar (the notion of similarity will depend upon
the learner used), or when a cycle of policies is detected
(also learner dependent). If we assume a fortuitous choice
of Sρ and a sufficiently powerful learner that can correctly
generalize fromSρ to the entire state space, theith itera-
tion of this algorithm will learn the improved policy ofπi,
effectively implementing a full policy iteration algorithm,
and terminating with the optimal policy. For large-scale
problems, choosingSρ and dealing with imperfect classi-
fiers will pose some challenges.

4. ChoosingSρ

For the choice ofSρ, we have a number of alternatives.
The simplest is to try to dense, uniform covering of the
state space. For low-dimensional state spaces, this will be
practical, but it scales poorly. A similar option would be
to randomly selectSρ from some uniform distribution over
the state space. This is again problematic due to poor cov-

erage for high-dimensional spaces.

A natural choice ofSρ would be the distribution of states
induced by the current policy,πi. While intuitively appeal-
ing, this distribution may differ dramatically from the dis-
tribution of the subsequent policy,πi+1, for which we must
train our classifier. (To see this, consider aπi that directs
the system towards one “side” of the state space and aπi+1

that directs the system towards another side. If we train our
classifier on states drawn fromπi, when we try to use our
classifier to executeπi+1, it may be asked to classify states
that are disjoint from the ones it has been trained on.) This
mismatch between training and testing can be dealt with by
using a step sizeα, 0 < α ≤ 1, to keep the policy for the
next iteration sufficiently close to the current policy so that
performance does not degrade:

π̃i+1 = αarg maxaQ̂πi(s, a) + (1 − α)π̂i ,

Note that̂πi+1 is now a stochastic policy that chooses from
the improved policy with probabilityα and from the old
policy with probability (1 − α). A positive α that im-
proves performance is guaranteed to exist (Jaakkola et al.,
1995). Recently, Kakade and Langford (2002) demon-
strated a method for pickingα near optimally, although the
largest “safe” valueα may be quite small.

Fortunately, our assumption of a generative model gives
us the luxury of drawing states from the policy we wish
to learn before we have completely discovered or learned
it. While this may sound paradoxical at first, it is actu-
ally quite simple thanks to an observation by Fern (personal
communication). If we begin in some states0, we can use
rollouts to determineπi+1 for s0. We can then samples1,
by executing actionπi+1(s0) in s0. We continue by using
rollouts to determineπi+1(s1) and executing this action to
obtains2. We continue in this fashion until we have sam-
pled states and actions along an entire trajectory ofπi+1

starting froms0. Trajectories produced during rollouts are
discarded, the only training kept are fromπi+1.

Fern’s observation mostly solves theSρ problem, but it
leaves open the question of how the initial states0 is se-
lected. The initial distributionD may seem like a natural
distribution from which to draws0. In practice, however,
this can cause API to get stuck in local optima: Suppose
πi visits only a small region of the state space. To improve
uponπi, rollouts must discover better alternatives at the
fringe of the states reachable byπi. However, our clas-
sifier for πi was never trained on states that aren’t reach-
able byπi, making it unlikely that rollouts from the fron-
tier of πi will produce a better alternative to staying within
the region normally circumscribed byπi. The choice of a
“restart distribution” which differs from the problems nat-
ural starting distribution is also explored by Kakade and
Langford(2002), who show that a poor choice of a restart

distribution can lead to arbitrarily bad performance (policy
loss that grows with the size of the state space). Of course,
the ideal restart distribution would be that of the optimal
policy, but this begs the question.

A related practical problem is what to do in states where
rollouts cannot provide sufficient information to select
πi+1. We discuss this issue in Section 6.

5. Imperfect Learners

Suppose that our learner fails to learnπi(s) perfectly when
presented with̃πi(s) for all s in Sρ. To quantify the extent
of this failure, we must first define the test distribution. Fol-
lowing Kakade and Langford (2002), we express the natu-
ral test distribution for this problem as the set of states en-
countered when starting from states drawn from the initial
distributionD, and followingπ̂i. The probability of reach-
ing future states is discounted byγ and the infinite sum is
normalized by(1 − γ), resulting in:

dπi,D(s) = (1 − γ)
∞∑

t=0

γt(P t+1
πi

D)s

where thes subscript indicates that we are selecting com-
ponents of the matrix-vector product.

If we have ana priori guarantee that our learner will choose
the wrong action with probability at mostδ on states drawn
from this distribution, then we can bound the expected
shortfall from followingπi instead of̂πi as follows:

V
bπi

(s) − Vπi(s) ≤
δRmax
(1 − γ)2

,

whereRmax is the maximum reward value. This pes-
simistic bound arises from the assumption that all mistakes
are made in the initial states, which occur with probability
(1−γ), incurring penaltyRmax/(1−γ). Since we cannot
guarantee that such learners exist, this is not meant to be a
serious bound, but reassurance that in principle good learn-
ers can produce good policies. In practice, the actual loss
is best measured empirically by Monte Carlo evaluation, or
estimated by the error rate on the training set. From a prac-
tical standpoint, high observed errors (or low performance)
will suggest a change in representation, or a change in the
learning mechanism, such as a change of kernel.

6. A Practical Algorithm

The main contribution of our paper is a particular embod-
iment of the approximate policy iteration algorithm de-
scribed in Section 3. Training examples can be formed for
any given states ∈ S assuming some underlying policy
π̂. The estimated values̃Qbπ(s, a) are computed by rollouts
for all possible actions in states. If the valuesQ̃bπ(s, a)

were exact, then the maximizing actiona∗ would yield one
positive example(s, a∗)+ and the rest of the actions would
yield a number of negative examples(s, a)− for all a 6= a∗.
Unfortunately, the estimates̃Qbπ(s, a) are noisy and could
yield incorrect examples if treated as exact. Thus, we used
a simple two-samplet-test to compare rollout values. To
generate examples in any states using the rollout values
Q̃π(s, a), we did the following:

1. Use a fixed budget ofk samples to determinẽQπ in
states anda∗:

a∗ = argmax
a∈A

Q̃π(s, a) .

2. Generate a positive example(s, a∗)+ if the value of
actiona∗ is statistically significantly bigger than the
value of every other actiona ∈ A:

∀ a ∈ A, a 6= a∗ : Q̃π(s, a) <̃ Q̃π(s, a∗) .

3. Generate a negative example(s, a)− for each actiona
whose value is statistically significantly smaller than
the value of actiona∗:

∀a ∈ A : Q̃π(s, a) <̃ Q̃π(s, a∗) .

A positive example is generated only if there is a clearly
best action in which case all other actions generate nega-
tive examples. If there is no best action, negative examples
can still be generated for the actions that are clearly inferior.
Notice that in this case the remaining actions appear to be
equally good and, by not generating a positive example, the
classifier is essentially given the freedom to choose any of
them. The only case where no training examples are gen-
erated is whenall actions appear to be equally good. We
expect this approach would benefit from more sophisticated
approaches to managing the number of samples used (Kael-
bling, 1993; Kearns et al., 1999).

One peculiarity of rollout based policy iteration is that if
the current policy is very good, i.e. able to recover from
small mistakes, there will be no statistically significant dif-
ferences between many of the actions. This can make it
difficult to acquire sufficient training data for the next pol-
icy. We mitigate this problem by treating the demonstrably
bad actions as negative training examples even if we can-
not determine a single, clearly superior action. Note that
randomly selecting an action among the equivalent ones
and marking it as positive will create a lot of noise for our
learner since subsequent visits to the same state may pol-
lute the training set with multiple “optimal” actions for the
same state. A simple lexicographic ordering can also have
unexpected side effects at execution time by introducing
strong preferences for particular actions and heavily bias-
ing the training data with examples of just one class.

The most significant contribution of effort is that it opens
reinforcement learning to the full array of modern classi-
fication methods through thelearn function. SVMs are a
particularly appealing choice to the reinforcement learning
practitioner vexed by the feature selection problem. We
offer a brief sketch of how SVMs work to justify this ap-
peal: With the kernel trick, SVMs are able to implicitly
and automatically consider classifiers with very complex
feature spaces. Nevertheless, the optimization performed
by SVMs can be interpreted as a search through a space of
classifiers to find one that is both a good fit and has low
VC dimension. In the most optimistic interpretation, this
dodges the feature selection problem while simultaneously
demonstrating resistance to overfitting. In practice there
are, of course, complications but if SVMs come close to
this dramatic and optimistic description, we should be able
to feed the raw state variables used by our simulators into
our SVM classifier with little regard for the feature engi-
neering required to obtain success in these problems using
value function methods.

While SVMs are a particularly appealing choice forlearn,
they are not the only option and may not be the most de-
sirable option in many cases. The theoretical motivations
for using SVMs are not as crisp for multiclass problems.
For problems with many actions, other classification meth-
ods may be more natural: neural nets, Bayes nets, decision
trees, etc. For these reasons, and for the sake of compar-
ison, we also implementedlearn using a neural network.
We designed the neural network with a number of outputs
equals to the number of actions and trained the network to
activate outputi (and not others) output on positive exam-
ples (s, ai)+. Our neural network classifier did not take
advantage of negative examples.

7. Experimental Results

We implemented the SVM version of our API algorithm
using SVMTorch (Collobert & Bengio, 2001), a publicly
available implementation of support vector machines. The
SVMTorch package provides a simple multiclass capability
(one versus all), but is not necessarily representative of the
best that can be done on multiclass problems using SVM
technology. We also implemented a version of our algo-
rithm using a simple feedforward, multi-layer neural net-
work as the multiclass classifier. In this section, we present
experimental results on theinverted pendulumproblem and
the bicycle balancing and ridingproblem. Our goal in
these preliminary experiments is not necessarily to demon-
strate the superiority of our rollout approach in terms of
CPU cycles or sample complexity, but rather its viability as
an alternate approach to the reinforcement learning control
problem.

In our experiments we ran approximate policy iteration un-

−1.5 −1 −0.5 0 0.5 1 1.5
−6

−4

−2

0

2

4

6

Angle

A
ng

ul
ar

 V
el

oc
ity

Figure 3.Training data (+ : positive, x : negative) and support
vectors (o) for the LF action.

til the observed performance of the policy, as measured
with experiments with the simulator, decreased. Since ap-
proximate policy iteration does not ensure monotonically
improving policies, it is possible that continuing to run pol-
icy iteration beyond an initial setback could still result in
better policies, but we did not explore this possibility.

7.1. Inverted pendulum

In the inverted pendulum domain, the task is to balance a
pendulum of unknown length and mass at the upright posi-
tion by applying forces to the cart to which it is attached.
Three actions are allowed: left force LF (−50 Newtons),
right force RF (+50 Newtons), or no force (NF) at all (0
Newtons). All three actions are noisy; uniform noise in
[−10, 10] is added to the chosen action. The state space
of the problem is continuous and consists of the vertical
angleθ and the angular velocitẏθ of the pendulum. The
transitions are governed by the nonlinear dynamics of the
system (Wang & Griffin, 1996). and depend on the current
state and the current (noisy) controlu:

θ̈ =
g sin(θ) − αml(θ̇)2 sin(2θ)/2 − α cos(θ)u

4l/3− αml cos2(θ)
,

whereg is the gravity constant (g = 9.8m/s2), m is the
mass of the pendulum (m = 2.0 kg),M is the mass of the
cart (M = 8.0 kg), l is the length of the pendulum (l = 0.5
m), andα = 1/(m+M). A reward of1 is given as long as
the angle of the pendulum does not exceedπ/2 in absolute
value (the pendulum is above the horizontal line). An angle
greater thanπ/2 signals the end of the episode and a reward
(penalty) of0. The discount factor of the process is set to
0.95.

Using about200 rollout states, the algorithm consistently
learns excellent balancing policies in one or two iterations
with both neural nets and SVMs, starting with an initial
policy that selects actions randomly with uniform proba-
bility. Such “excellent” policies balance the pendulum for
more then 3 simulated minutes (in practice, we found that
such policies could balance essentially indefinitely). The
choice of the sampling distribution did not affect the re-
sults significantly. For illustration, we used uniform sam-
pling for rollout states. Figure 3 shows the training data
obtained for the LF action. A positive example indicates a
state where LF was found to be the best action and a neg-
ative example is a state where LF was found to be a bad
choice. It is easy to see that positive and negative examples
are easily separated. The same figure also shows the result-
ing support vectors for the LF classifier using a polynomial
kernel of degree 2.

Figure 4 shows the entire learned policies (blue/dark-gray
for LF, red/medium-gray for RF, and green/light-gray for
NF) for all three classifiers: SVM with a polynomial ker-
nel, SVM with a Gaussian kernel, and a neural network
classifier with 5 hidden units. Interestingly, in the case of
the polynomial kernel, the policy does not use the NF ac-
tion at all, whereas the other policies do. This is due to
the limited abilities of the polynomial degree-2 kernel. All
policies are excellent in the sense that they can all balance
the pendulum for a long time, perhaps indefinitely. In all
cases, the input to the SVM or the neural network was just
the 2-dimensional state description. For SVMs, the number
of support vectors was normally smaller than the number of
rollout states. The constantC, the trade-off between train-
ing error and margin, was set to1.

We note that pendulum balancing is a relatively simple
problem. The classes are nearly linearly separable, so good
classification performance here should not be surprising to
those familiar with modern classification methods. Note-
worthy features from the reinforcement learning perspec-
tive are the small number of iterations of policy iteration
required and the non-parametric representation of the pol-
icy. Figure 3 shows the ability of the SVM to adapt the rep-
resentation to match the training data since only the support
vectors are used to represent the policy.

7.2. Bicycle riding

In the bicycle balancing and riding problem (Randløv &
Alstrøm, 1998) the goal is to learn to balance and ride a
bicycle to a target position located 1 km away from the
starting location. Initially, the bicycle’s orientation is at an
angle of 90◦ to the goal. The state description is a six-
dimensional real-valued vector(θ, θ̇, ω, ω̇, ω̈, ψ), whereθ
is the angle of the handlebar,ω is the vertical angle of
the bicycle, andψ is the angle of the bicycle to the goal.

−1.5 −1 −0.5 0 0.5 1 1.5
−6

−4

−2

0

2

4

6

Angle

A
n

g
u

la
r

V
e

lo
ci

ty

−1.5 −1 −0.5 0 0.5 1 1.5
−6

−4

−2

0

2

4

6

Angle

A
n

g
u

la
r

V
e

lo
ci

ty

−1.5 −1 −0.5 0 0.5 1 1.5
−6

−4

−2

0

2

4

6

Angle

A
n

g
u

la
r

V
e

lo
ci

ty

Figure 4.Pendulum: policies learned with the polynomial kernel SVM, the Gaussian kernel SVM, and the neural network classifier.

The actions are the torqueτ applied to the handlebar (dis-
cretized to{−2, 0,+2}) and the displacement of the rider
υ (discretized to{−0.02, 0,+0.02}). In our experiments,
actions are restricted so that eitherτ = 0 or υ = 0 giving
a total of 5 actions. The noise in the system is a uniformly
distributed term in[−0.02,+0.02] added to the displace-
ment component of the action. The dynamics of the bicycle
are based on the model of Randlov and Alstrom (1998) and
the time step of the simulation is set to0.02 seconds. As
is typical with this problem, we used a shaping reward (Ng
et al., 1999).

Our experiments with the bicycle did show some sensitivity
to the parameters of the problem as well as the parameters
of our learner. This made it difficult for us to find parame-
ters that consistently produced good performance. Some of
this may simply be reflective of our inexperience in tuning
the parameters of SVMs. It is also possible that we did not
consider enough samples.

For our SVM experiments, we used a shaping reward ofrt
given at each time step, wherert = (dt−1 − γdt) as long
as|ω| < π/15, andr = 0 otherwise.dt is the distance of
the back wheel of the bicycle to the goal position at timet.
The discount factor was set to0.95.

In our preliminary experiments with this domain, we were
able to solve the problem with uniform sampling and poly-
nomial kernels of low degree. However it required a large
number of rollout states (about5, 000). With sampling
from the distribution of the next policy, we were able to
solve the problem with fewer rollout states and both RBF
and polynomial kernels. However we did not find kernels
that consistently produced good policies with reasonable
sample sizes. (The balancing problem is solved easily us-
ing any of the classification methods, but riding to the goal
proved more difficult.)

Figure 5 shows a sample trajectory from the final policy of
one of our better policy iteration runs using SVMs. The bi-
cycle moves in the 2-dimensional plane from the initial po-
sition (0, 0) (left side) to the goal position(1000, 0) (right

0 100 200 300 400 500 600 700 800 900 1000
−20

−15

−10

−5

0

5

10

15

20

Goal position

Starting position

Figure 5.Bicycle: Trajectory of an SVM policy.

side). This policy was produced with a polynomial ker-
nel of degree3 and4000 rollout states. In the final policy,
the bicycle rides to the goal, then turns around toward the
goal in a very tight radius. This policy was obtained in just
two API iterations, starting with a uniformly random ac-
tion selection policy. Similarly to the pendulum, the input
to the SVM was the raw 6-dimensional state description
andC = 1.

For our neural network experiments, we used a shaping re-
ward ofrt given at each time step, wherert = 1+(dt−1 −
γdt) as long as|ω| < π/15, andr = 0 otherwise.dt is the
distance of the back wheel of the bicycle to the goal posi-
tion at timet. The discount factor was set to0.99. Since our
neural network learner only uses positive examples and not
all states successfully produce positive training instances,
we used8000 rollout states.

Figure 5 shows sample trajectories of one of our better neu-
ral network policy iteration runs using 30 hidden units. Af-
ter the first iteration, the learned policy can only balance
the bicycle for a few steps and it crashes. The policy at
the second iteration reaches the goal, but fails to return to
it. Finally, the policy at the third iteration, reaches the goal
faster and stays there. The best neural network policy is not

−500 −250 0 250 500 750 1000 1250
−500

−250

0

250

500

Iteration 2

Iteration 1
 (crash)

Iteration 3 Starting position
Goal Position

Figure 6.Bicycle: policies at successive iterations (NN classifier).

as good as the best SVM policy, but it is more illustrative
of the progress of policy iteration because it takes an extra
iteration.

8. Discussion

We have presented a case for an approach to RL that com-
bines policy iteration and pure classification learning with
rollouts. The emphasis of the approach in this paper is the
ability to use of modern classification techniques such as
SVMs to alleviate some of the burden of feature engineer-
ing from the practitioner of reinforcement learning. How-
ever, our empirical results also suggest that more traditional
methods such as neural networks can be used successfully.

We believe that these initial successes will help open the
door to greater exploitation of modern classification meth-
ods on more challenging reinforcement learning domains.
Of course, many questions remain. More thorough inves-
tigation of issues relating to sample complexity and restart
distributions are important areas for future work.

Acknowledgments

This research was supported in part by NSF grant 0209088.
We also thank Alan Fern, Bob Givan, Carlos Guestrin and
Ryan Deering for helpful discussions.

References
Bertsekas, D., & Tsitsiklis, J. (1996).Neuro-dynamic program-

ming. Belmont, Massachusetts: Athena Scientific.

Collobert, R., & Bengio, S. (2001). SVMTorch: Support vec-
tor machines for large-scale regression problems.Journal of
Machine Learning Research (JMLR), 1, 143–160.

Dietterich, T. G., & Wang, X. (2001). Batch value funtion approx-
imation via support vectors.Advances in Neural Information
Processing Systems 14: Proceedings of the 2001 Conference.
Vancouver, British Columbia: MIT Press.

Fern, A., Yoon, S., & Givan, R. (2003).Approximate policy itera-
tion with a policy language bias: Learning control knowledge
in planning domainsTechnical report TR-ECE-03-11). Purdue
University School of Electrical and Computer Engineering.

Guestrin, C. E., Koller, D., & Parr, R. (2001). Max-norm projec-
tions for factored MDPs.Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-01)
(pp. 673 – 680). Seattle, Washington: Morgan Kaufmann.

Jaakkola, T., Jordan, M., & Singh, S. (1994). On the convergence
of stochastic iterative dynamic programming algorithms.Neu-
ral Computation, 6, 1185–1201.

Jaakkola, T., Singh, S. P., & Jordan, M. I. (1995). Reinforcement
learning algorithm for partially observable Markov decision
problems.Advances in Neural Information Processing Systems
7 (pp. 345–352). Cambridge, Massachusetts: MIT Press.

Kaelbling, L. P. (1993).Learning in embedded systems. Cam-
bridge, Massachusetts: MIT Press.

Kakade, S., & Langford, J. (2002). Approximately optimal ap-
proximate reinforcement learning.The Nineteenth Interna-
tional Conference on Machine Learning (ICML-2002). Syd-
ney, Australia.

Kearns, M., Mansour, Y., & Ng, A. Y. (1999). A sparse sampling
algorithm for near-optimal planning large markov decision pro-
cesses.Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-99)(pp. 1324–1331).
Stockholm, Sweden: Morgan Kaufmann.

Lagoudakis, M., & Parr, R. (2001). Model free least squares pol-
icy iteration.To appear in 14th Neural Information Processing
Systems (NIPS-14). Vancouver, Canada.

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance
under reward transformations: theory and application to reward
shaping.Proc. 16th International Conf. on Machine Learning
(pp. 278–287). Morgan Kaufmann, San Francisco, CA.

Randløv, J., & Alstrøm, P. (1998). Learning to drive a bicycle us-
ing reinforcement learning and shaping.The Fifteenth Interna-
tional Conference on Machine Learning. Madison, Wisconsin:
Morgan Kaufmann.

Sutton, R., & Barto, A. (1998).Reinforcement learning: An in-
troduction. Cambridge, MA: MIT Press.

Tesauro, G., & Tesauro, G. (1997). On-line policy improvement
using monte-carlo search.9th Neural Information Processing
Systems (NIPS-9). Denver, Colorado.

Wang, H. Tanaka, K., & Griffin, M. (1996). An approach to fuzzy
control of nonlinear systems: Stability and design issues.IEEE
Transactions on Fuzzy Systems, 4, 14–23.

Williams, R. J. (1992). Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning.Machine
Learning, 8, 229–256.

Yoon, S. W., Fern, A., & Givan, B. (2002). Inductive policy se-
lection for first-order MDPs.Proceedings of the Eighteenth
Conference on Uncertainty in Artificial Intelligence (UAI-02).
Edmonton, Canada: Morgan Kaufmann.

