
8402282

G oldberg , David Edward

COMPUTER-AIDED GAS PIPELINE OPERATION USING GENETIC
ALGORITHMS AND RULE LEARNING

The University of Michigan Ph.D. 1983

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

Copyright 1983

by

Goldberg, David Edward

All Rights Reserved

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

PLEASE WOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or pages______

2. Colored illustrations, paper or print______

3. Photographs with dark background______

4. Illustrations are poor copy_______

5. Pages with black marks, not original copy_______

6. Print shows through as there is text on both sides of page_____

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements______

9. Tightly bound copy with print lost in spine______

10. Computer printout pages with indistinct print______

11. Page(s)_____________lacking when material received, and not available from school or
author.

12. Page(s)____________ seem to be missing in numbering only as text follows.

13. Two pages num bered_____________ . Text follows.

14. Curling and wrinkled pages_______

15. O th er___

University
Microfilms

International

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

COMPUTER-AIDED GAS PIPELINE OPERATION

USING
GENETIC ALGORITHMS AND RULE LEARNING

by

David Edward Goldberg

A dissertation submitted in partial fulfillment
of the requirements for the degree o

Doctor of Philosophy
(Civil Engineering)

in The University of Michigan
1 9 8 3

Doctoral Committee:
Professor John H. Holland, Co-chairman
Professor E. Benjamin Wylie, Co-chairman
Professor Jonathan W. Bulkley
Assistant Professor Nikolaos D. Ratopodes
Associate Professor Steven J. Wright

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

RULES REGARDING THE USE OF

MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertations submitted
to The University of Michigan and made available through University Micro­

film s International or The University of Michigan are open for inspection,

but they are to be used only with due regard for the rights of the author.

Extensive copying of the dissertation or publication of material in excess of

standard copyright limits, whether or not the dissertation has been copy­
righted, must have been approved by the author as well as by the Dean of

the Graduate School. Proper credit must be given to the author if any

material from the dissertation is used i n , subsequent written or published

work.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

For Nary

i i

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

ACKNOWLEDGEMENTS

I gratefully acknowledge the steadfast support and
assistance of my committee co-chairmen, Professors E. B.
Wylie and J. H. Holland. It is most fitting, considering the
topic of this dissertation, that I met both men through
randomized, inference-guided searches at two different
decision junctions in my career.

I met Ben Wylie nine years ago while choosing a
specialty within Civil Engineering in "something analytical
where one uses computers a lot." Ben was on duty that day
and suggested that hydraulics might be the ticket. It was,
and it is. Since that time, I have benefited from, and
thoroughly enjoyed, his imaginative instruction, keen
insight, and gentle guidance through a maze of academic and
career choices.

I met John Holland while searching for a thesis topic
that might connect control, artificial intelligence, and
pipelines. His course, "Introduction to Adaptive Systems."
seemed to contain some interesting clues, but I wasn't sure
how all this biological stuff could help. Since then, I
have come to appreciate, not only the fundamental soundness
of his position, but also the breadth and depth of
understanding which led him there.

i i i

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

I thank the rest of the committee, Professors J. W.
Bulkley, N. D. Katapodes, and S. J. Wright, for their time,
suggestions, and support. My contact with these people has
made this project as enjoyable as it has been stimulating.
I also acknowledge Doug Ward's workmanlike programming on
the steady serial model, and I appreciate Carol Miller's
comments on draft chapters.

Gary Black of Union Gas Ltd., Phil Isola of Michigan-
Wisconsin Pipeline, and Chuck Crider of Colonial Pipeline
were instrumental in getting me out of the ivory tower and
into the field. I thank them and the many operations people
I met during my visits.

This work has been partially supported under U. S.
Department of Energy contract DE-FG02-80ER10125. I
acknowledge and appreciate this support as well as financial
assistance from the M. W. Goodric d, the H. W. King
Fund, the Rackham School of Graduate Studies, and the U. M.
Office of Energy Research.

Regardless of where one stands on the age-old question
of environment vs. heredity, a good deal of credit for this
work belongs to my parents. I thank them for implanting the
seeds of learning within me and nurturing those seeds so
well.

Finally, I am beholden to my best friend and spouse,
Mary Ann, for many things. With my single question, she

left a secure job, home, family, and friends for a place
with none of these. She created a new home, a new career, a

iv

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

new life, against the long odds of a deep recession. Her
energy spurred me on when mine was gone. She had confidence
in me when I had none. For these things and so much more, I
dedicate this work to her with all my love.

v

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

DEDICATION
T A B L E O F C O N T E N T S

ACKNOWLEDGEMENTS i i i
LIST OF T A B L E S viii
LIST OF F I G U R E S ... ix
LIST OF A P P E N D I C E S xi
CHAPTER
1. INTRODUCTION ... 1

1.1 Scope of R e s e a r c h 2
1.2 Basic Approach 3
1.3 Benefits of this R e s e a r c h 5
1.4 S u m m a r y ... 7

2. PIPELINE OPERATIONS AND COMPUTERS 9
2.1 What is Gas D i s p a t c h i n g ? 9
2.2 Computers in Gas P i p e l i n i n g 14
2.3 S u m m a r y 19

3. OPTIMIZATION VIA GENETIC ALGORITHM 22
3.1 What are Genetic A l g o r i t h m s ? 23
3.2 Robustness of Conventional Search Methods . 26
3.3 Goals of O p t i m i z a t i o n 29
3.4 A Simple Genetic A l g o r i t h m 30
3.5 Genetic Algorithm at Work - A Simulation by

H a n d 38
3.6 A Rigorous Reappraisal 41
3.7 Summary 52

4. APPLICATION OF GENETIC OPTIMIZATION IN
P I P E L I N I N G 56
4.1 Discretization and C o d i n g 56
4.2 Constraints and Genetic Algorithms 60
4.3 Fitness M a p p i n g 63
4.4 Setting Genetic Algorithm Parameters . . . 64
4.5 Steady State Serial Line Problem 65
4.6 Single Line Transient Problem 80
4.7 Good News and Bad News 94
4.8 S u m m a r y 105

5. A LEARNING CLASSIFIER SYSTEM 111

5.1 Learning Classifier Systems - Overview . . 112
5.2 The Rule and Message System 117

with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.3 Apportionment of C r e d i t 122
5.4 Genetic Algorithm 133
5.5 Application to a Simple Control Problem , . 139
5.5 Summary.. 166

6. PIPELINE CONTROL WITH A LEARNING CLASSIFIER
S Y S T E M ... 173
6.1 Environmental Description 176
6.2 LCS-Environmental Interface... 181
6.3 Implementation Details 185
6.4 Normal Operating Simulations................ 188
6.5 Leak Detection S i m u l a t i o n s 193
6.6 S u m m a r y 200

7. C O N C L U S I O N S ... 205
7.1 A Genetic Algorithm and Pipeline

Optimization 206
7.2 A Learning Classifier System Controls a

P i p e l i n e 207
7.3 What Needs to be Done? 209
7.4 Are the GA and LCS Ready for Gas Pipeline

Control and Vice V e r s a ? 210
A P P E N D I C E S ... 213
R E F E R E N C E S ... 220

vi i

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

in in

L I S T OF T A B L E S

Table
3-1 Natural and Artificial Vernacular 32
3-2 Hand Simulation of Genetic Algorithm . . . 39
4-1 Numerical Parameters - Steady Serial

P r o b l e m 72
4-2 Penalty Coefficients - Steady Serial

P r o b l e m 74
4-3 Best-of-Run Results - Steady Serial

P r o b l e m 78
4-4 Pipeline and Compressor Coefficients -

Single Line Transient Problem 89
4-5 Best-of-Run Results - Single Line

Transient Problem 94
-1 Example Cycle of Rule and Message System . 123
-2 Parameter Adjustment Tests - Specified

Rule S e t 147
5-3 Initial Rule Population. Learning Tests

IOLCS.1 and IOLCS.2 159
5-4 Learning Tests IOLCS.1 and IOLCS.2. Above

Average Rule Sets at T=5000 164
5-5 Initial Deprived Rule Set. Runs IOLCS.3

and I O L C S . 4 166
5-6 Above Average Rule Sets at T=5000.

Deprivation Runs P0LCS.3 & P0LCS.4 . . . 169
6-1 Pipeline LCS-Environmental Message

T e m p l a t e• . „ 182
6-2 LCS Parameters for Pipeline Operation

T e s t s 186
6-3 Environmental Parameters for Pipeline

Operation Tests 187
6-4 Initial Rule Population - Runs P0LCS.1 &

P 0 L C S . 2 189
6-5 Top Rule Subset & Strengths (End of Run) -

Runs P0LCS.1 & P 0 L C S . 2 192

viii

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

LIST OF FIGURES
Figure

2-1 Gas Dispatching Environment 11
4-1 System Schematic - Steady Serial Problem . 67
4-2 Best-of-Generation Results - Steady Serial

P r o b l e m 77
4-3 Generation Average Results - Steady Serial

P r o b l e m 79
4-4 Pressure Profile - Run SS.1 - Steady

Serial Problem 81
4-5 Compression Ratio Results - Run SS.1 -

Steady Serial Problem 82
4-6 System Schematic - Single Line Transient

P r o b l e m 84
4-7 Best-of-Generation Results - Single Line

Transient Problem . . . 93
4-8 Generation Average Results - Single Line

Transient Problem 95
4-9 Pressure Time-History - Run T R . 1 - Single

Line Transient Problem 96
4-10 Flow Time-History - Run TR . 1 - Single Line

Transient Problem 97
5-1 Schematic-Learning Classifier System . . . 119
5-2 Apportionment of Credit - Paying and

Receiving B i d s 125
5-3 Nine Point Discrete Approximation to

Gaussian Distribution 129
5-4 Roulette Wheel Selection 136
5-5 Inertial Object Domain - Schematic 140
5-6 Environmental Message and Coding 143
5-7 Variation of CBID - TOTALEVAL vs. Time . . 148
5-8 Variation of TEVAL - TOTALEVAL vs. Time . 151
5-9 Variation of SIGMABID - TOTALEVAL

vs. SIGMABID/MAXPOINTS 153
5-10 Variation of SIGMABID - Low Initial

Strength - Average TOTALEVAL (2 rules)
vs. SIGMABID/MAXPOINTS 154

5-11 Time-averaged TOTALEVAL vs. Time - Random
Rule Set - Uur.r IOLCS.1 and IOLCS.2 . . 160

5-12 Time-averaged Goal Count vs. Time - Random
.Rule Set - Runs IOLCS.1 and IOLCS.2 . . ibi

5-13 Time-averaged TOTALEVAL vs. Time -
Deprived Rule Set - Runs IOLCS.3 and
I O L C S . 4 167

5-14 Time-averaged Goal Count vs. Time -
Deprived Rule Set - Runs IOLCS.3 and
IOLCS.4 168

ix

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

6-1 Simplified Pipeline Model Schematic . . . 177
6-2 Daily Loading Patterns 180
6-3 Pressure Levels for Reward and Penalty . . 184
6-4 Time-averaged TOTALEVAL vs. Time. Normal

Operations. Runs POLOS.1 & POLCS.2 . . 190
6-5 Time-averaged TOTALEVAL vs. Time. Normal

Operations. Runs POLCS.3 & POLCS.4 . . 194
6-6 Time-averaged TOTALEVAL vs. Time. Leak

Runs. POLCS.5 6 P O L C S . 6 196
6-7 Percentage of Leaks Correct vs. Time.

Runs POLCS.5 & P O L C S . 6 . 197
6-8 Percentage of False Alarms vs. Time. Runs

POLCS.5 & P O L C S . 6 198
6-9 Time-averaged TOTALEVAL vs. Time. Leak

Runs POLCS.7 & P O L C S . 8 201
6-10 Percentage of Leaks Correct vs. Time.

Runs POLCS.7 & P O L C S . 8 202
6-11 Percentage of False Alarms vs. Time. Runs

POLCS.7 & P O L C S . 8 203

x

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

LIST OF APPENDICES
APPENDIX A - SKELETAL CODE FOR GENETIC

OPTIMIZATION PROGRAMS GENESS AND
G E N E T R 214

APPENDIX B - SKELETAL CODE FOR LEARNING
CLASSIFIER SYSTEM (LCS) INERTIAL
OBJECT AND PIPELINE OPERATIONS
E N V I R O N M E N T 217

xi

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

CHAPTER 1

INTRODUCTION

Transmission of gas by pipeline is a vital commercial
activity. It is also a somewhat tricky business. The gas
dispatcher, the human operator, must balance supply and
demand under uncertain circumstances through proper
sequencing of equipment that is both expensive to run and
maintain. Although computer decision aids are entering the
gas dispatching task, these aids have not proven
sufficiently capable to face the changing environment
autonomously. Furthermore, many existing computer
algorithms require large amounts of computational
horsepower; the human dispatcher makes the same decision
with relative ease. As a result, gas dispatching, like most
complex technical tasks, still relies heavily upon the human
operator's experience and savvy.

The goals of this study are the development of robust
decision-making and learning algorithms for gas pipeline
operations. To achieve the desired breadth of behavior, we
abandon the traditional techniques of optimization and
control theory in favor of mei^.cds associated with genetics

and artificial intelligence. We adopt these methods to more

1

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2

closely match the human learning and decision-making
experience, because ultimately, we seek algorithms capable
of autonomous pipeline control.

In the remainder of this chapter, the scope,
methodology, and benefits of this research are detailed. We
conclude the chapter with a summary and an overview of the
sequel.

1.1 Scope of Research
TIME!: 7:00 AM, Monday morning, January 198-
PLACE: Central Dispatch Center

Central Iowa Gas Transmission Company

"Well, Joe, how's it look?"
"Don't know yet. Weather service predicts a cold one.
Front moving through."

"Gee, how we gonna make it with the number 2 unit out
at Lorraine?"

"Might be tough. Think we can get by if we run the
standby and push a bit harder upstream. That worked
pretty good last year at Downing. Things at Lorraine
are usually a little less hairy anyway."

This fictional account of a dispatcher’s informal
decision shows the complexity and breadth of knowledge
required in the simplest day-to-day operating decisions. In
the brief exchange, the two operators 1) recognize and
evaluate the severity of the situation, 2) size up a
response, and 3) reinforce and informally prove strategy
success by citing a complex inequality relation. Note that
this whole process is seemingly effortless, a product of
complex intuitive thought.

If successful algorithms for learning and decision-

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

3

making are to be developed, they must possess skills of
similar breadth as our fictional dispatchers. The primary
measure of this quality is robustness. Paraphrasing Holland
[1], a robust system is one which is efficient over the
range of environments it may encounter. A robust pipeline
operator (human or artificial) must be capable of learning
and making decisions under widely varied circumstances.
This requires satisfactory adaptation to normal and abnormal
conditions alike. It further suggests that some decision be
made in situations which may or may not be completely
familiar (an educated guess).

The efficiency required of a robust system is
demonstrated in the effortlessness of human intuitive
decisions; this type of efficiency is also desirable in an
artificial decision maker. The computational intensity of
many artificial decision procedures suggests that there is
room for a good deal of improvement.

1.2 Basic Approach
To achieve the desired breadth and effortlessness of

behavior, we apply computer techniques connected with
genetics and artificial intelligence to the pipeline
operations problem, proceeding in two separate steps.

First, we apply genetic algorithms (GA) [1] to two

problems i-n pipeline optimization. Genetic algorithms seek
improved performance by combining some string manipulations
similar to the mechanics of natural genetics and a survival-

of-the-fittest mechanism, This application demonstrates the

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

efficacy of genetic algorithms as a search procedure in
practical engineering problems; it also ties the present
work to existing pipeline operation and control literature.

This experience leads us to the second step of our
study: the development of a learning classifier system
(LCS) for pipeline control. Briefly, a learning classifier
system is a learning system that learns rules to improve its
performance in some arbitrary environment. The LCS uses
behavioral reinforcement (reward) and environmental
information to guide its learning and decision making. Our
experiments with genetic algorithms are quite useful here,
because a genetic algorithm serves as one of two major
learning mechanisms in the LCS. We expect the system to be'
capable of learning and responding to varied normal and
abnormal operations alike.

Why this Approach?

While this work represents a departure from more
traditional methods of optimization and control, it is not a
case of being unconventional for its own sake.

Traditional methods of optimization and control suffer
from two major shortcomings. First, they most often employ
local search procedures. Local techniques are, by
definition, myopic; they cannot see the forest for the
trees, unless the trees happen to grow in some well-behaved
manner. Second, traditional methods are structurally rigid.
System models, objective functions and improvement
algorithms are usually fixed in form; even those techniques

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

5

which adapt to environmental information tend to limit that
adaptation to a few, select parameters.

The methods we suggest for this study answer these two
objections directly. Genetic algorithms are a global search
technique, a result of their stochastic origins. They are
not, however, a simple random search; genetic algorithms
efficiently exploit past information to explore new regions
of the decision space with a high probability of finding
improved performance.

Learning classifier systems overcome structural
rigidity by requiring the formation and testing of general
rules for system decision making. In a sense, a learning
classifier system learns by reprogramming itself with better
and better rules.

By overcoming locality and rigidity, the development of
these tools pushes us closer to computer systems capable of
autonomous pipeline control.

1.3 Benefits of this Research
The development of practical techniques for learning

control of pipelines has a variety of benefits. Most
obviously, this research leads to the installation of
systems which learn to operate pipelines. These systems
will combine the effortless, robust behavior of the human
operator with the vigilance of an on-line computer system.

Yet, while we seek systems capable of autonomous
control, we are in no way motivated by a desire to replace
existing human dispatchers with silicon surrogates; the

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

6

savings in salaries is dubious justification for such an
undertaking, and automating for its own sake has never been
a persuasive argument with justifiably, hard-nosed utility
executives. Instead, our motivations are much closer to
those of utility management: we seek safety and efficiency
gains by using a learning system as a decision aid and as a
permanent storehouse of pipeline operations knowledge.

As a decision aid, the experienced learning system acts
as an expert consultant to help shape the human dispatcher's
operating sequence. Under the stress of abnormal or
emergency operations, the learning system acts as an extra
pair of eyes and ears, monitoring conditions and suggesting
alternatives to alleviate the problem.

As a storehouse of system operating knowledge, the
learning system is the permanent repository of all operating
experience in a form which cannot quit, retire, or take a
job elsewhere. Thus, loss of key people becomes less of a
problem, because their experience does not leave with them.
Training of new people is simplified, because they may run
through a sequence of case studies with the learning system
using its response as a guide. Viewed in this way, the
learning system is not a competitor to be feared and
avoided; rather, it becomes an invaluable member of the
operations team, advising, training, and assisting team
members as they strive to improve pipeline safety and
efficiency.

This research generalizes to many other industries.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

7

Power plants, chemical plants and factories may, one day,
employ these techniques. Energy exploration and production
operations may be improved using this technology. Any field
where operator intuition is an important ingredient is a
candidate for the application of these methods. Similar
techniques may be applied in design; however, the step from
the operation of a relatively fixed plant to the design of
some complex system should not be taken too lightly.

A less tangible, but nonetheless, important benefit of

this research is the study of engineering intuition itself.
In developing robust methods of decision making and
learning, we are drawn toward techniques which have some of
the richness of human behavior. The study and further
development of these methods can help our understanding of
the art of engineering which has for so long been shrouded
in almost mystical terms.

1.4 Summary

In this chapter, we have outlined the goals, approach,
and benefits of this research. Simply stated, we seek
robust techniques for the automatic operation of gas
pipelines. We start by applying a genetic algorithm (GA) to
two problems in pipeline optimisation . This demonstrates

the utility of the genetic algorithm as a search technique
in practical engineering problems. At the same time, it
connects our work to existing literature in optimal control
of pipelines. Following the optimization work, we develop
and apply a learning classifier system (LCS) to control a

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

8

gas pipeline. The system must learn to operate the pipeline
under normal and .leak conditions.

This research has many benefits; however, replacement
of dispatch personnel is not our aim. Instead, we seek
improved safety and efficiency by using an experienced
learning system as a decision aid and knowledge repository.
In addition to improving safety and efficiency, these
applications should help eliminate personnel turnover
problems and training difficulties.

In the remainder, we start by examining the gas
dispatching environment with particular emphasis on the use
of computers. The genetic algorithm and learning classifier
system are successively developed and applied in pipeline
environments.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

CHAPTER 2

PIPELINE OPERATIONS AND COMPUTERS

To build decision aids for pipelines, one must have a
solid understanding of current pipeline operations methods.
In this chapter, we review gas pipeline dispatching practice
so the responsibilities, available decision-making options,
and system information are clearly defined. We also discuss
the computer technology of pipelining to understand its
effect on the dispatching mission.

2.1 What is Gas Dispatching?

Many have asked this question. Lafferty [2] answers it
well in his time-honored article by stating that the primary
function of the gas dispatching department is,
". . . determining the market demand for gas and adjusting
the operations of a pipeline system to meet those demands."
Although this sounds like a fairly straightforward process,
it can be a challenging task because of the many conflicting
constraints of the pipeliner's environment.

A schematic of this environment is shown in Figure 2-1.
The dispatcher must juggle the needs of gas users with the
availability of supply, using equipment with highly dynamic

response characteristics. This juggling act is performed

9

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

10

against a backdrop of vagaries in weather, corporate policy,
and economic conditions. Lafferty discusses many of these
issues and gives examples of typical dispatcher solutions.

Dispatching Goals
What is a dispatcher trying to accomplish when he

operates a pipeline? The specific answer to this question
lies in the complex interaction between the dispatcher, his
immediate supervisor, and perceived corporate policy. A
more general answer is available when the basic dispatching
task is considered. Fundamentally, a dispatcher must
deliver sufficient quantities of gas to market safely and
efficiently. These three goals, sufficiency, safety, and
efficiency must be balanced to achieve a good operating
strategy. In many companies, there is an understandable
tendency to weight sufficient and safe delivery more heavily
than efficiency. This is a source of difficulty for
traditional artificial decision makers which tend to weight
efficiency most heavily because of their structure.

Dispatch Information and Controls

In a study of decision making— artificial or human— one
of the most important ingredients is the information flow
from the different components of the environment. The
following is a list of data available to a dispatcher;

1. Pipeline - pressures, flows, temperatures.
2. Supply - available quantity and pressure.

3. Demand - current and predicted demand.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

11

O A m b i e n t
Env i ronment \

GAS
USERS

P i p e l i n e
S y s t e m

G A S
SUPPLY

CORPORATE POLICY

DISPATCHER

Fig. 2-1. Gas Dispatching Environment

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

12

4. Weather - temperature, wind speed and direction,
humidity, etc.

5. Corporate - contractual obligations, standard
operating procedures, management praise
and punishment.

The first four categories are easily quantified, while the
last presents some difficulty. The importance of this
category and difficulty in its representation are major
shortcomings in existing artificial decision procedures.

While a dispatcher receives a large information flow
from his environment, he has relatively few actions he can
take to maintain acceptable conditions on his system. These
actions are related to the components of his environment
over which he possesses some control:

Supply - Distribution of supply (pipeline, storage,
or production)

Pipeline - Compressor status and level, controller set
points.

Demand - Curtailment of interruptible demand.
Additionally, the dispatcher may have to take steps to alert
others to dangerous conditions such as line breaks and
explosions.

Dispatcher Learning and Decision Making

A thorough investigation of human dispatcher learning
and decision making would take us beyond the reasonable
boundaries of this dissertation onto the turf of human

psychology and cognition? however, to get an intuitive feel
for these processes, two gas control centers at two
different gas companies were visited. Informal discussions

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

13

were held with operations managers and dispatchers;
dispatchers were also observed over the course of several
days while they operated their pipeline.

During these observation periods, the dispatchers
frequently made operating decisions. During these decision
episodes, the dispatcher typically spent most of his time
communicating with supply, delivery, and internal operating
personnel. After getting a clear picture of the situation,
he made a decision and passed it on to all involved parties.
The decision rarely required any analysis or calculations;
the dispatcher simply knew what to do.

As we might expect, attempts to get dispatchers to
explain specific decisions were largely unsuccessful; people
running on intuition are not the best at explaining the
logic of their actions. Nonetheless, one dispatcher
volunteered several of his rules of thumb, culled from his
pipeline experience;

If you are losing 10-15 psi/hour then you must take
corrective action.

If in a 6 hour period you lose 70 psi of linepack
then replenish before moderating operation.
Try to maintain 700 psi at W (a location) during
the winter.

At this juncture, we are little concerned with the content
of the rules (though we might marvel how three little rules
could say so much.); rather, we observe that a dispatcher
voluntarily chose to describe his knowledge in rule form.
This notion of intuitive, rule-based thought will become
more important when we decide upon an underlying

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

14

computational structure for our learning system.
How does a dispatcher learn to make good decisions? To

observe this in the field requires more than a few casual
sessions; however, the management-dispatcher discussions did
shed light on this process. The primary mode of dispatcher
learning is on-the-job training. A new dispatcher (in both

companies visited) is an apprentice until he gains a wide
spectrum of operating experience. During this
apprenticeship, the novice dispatcher observes the line and
operates alongside a more experienced person. Some formal
training or coursework may also be required, but this is not
considered as important as the cn-the-job training by the
dispatchers themselves. As the new dispatcher gains
confidence, he is allowed to take over more and more
operating duties, until he is deemed competent to control
the system autonomously. Arriving at this point of autonomy

seems to take at least a year, and it can take two or three.
The learning processes that take place during this

apprenticeship and throughout a dispatcher's career are
manifold and complex; yet, one thing is clear; since a

dispatcher is never in the exact same situation twice, he
must, both, generalize his experience when it is acquired
and apply this generalized knowledge to specific situations
as they arise. This must bias our search for learning

algorithms towards those that can do likewise.

2.2 Computers in Gas Pipelining

The spread of the commercial digital computer in the

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

15

fifties encouraged increasing applications in gas pipelining
[3-8], Primarily, computers have been used for
communicating and processing distributed pipeline
information for centrally located, human pipeline operators.
Computer pipeline simulation techniques have been devised
for both real-time and look-forward modeling. Optimization
and control techniques have been suggested for closing the
operations loop; however, to date, no major pipeline is run
by an autonomous computer program.

In this section, we examine the application of
computers to gas pipelining. Specifically, we survey the
use of computers in data acquisition and remote control,
simulation, optimization, and other control applications.
We survey the field with a general eye, though our main
focus remains with automated decision making and learning.

System Control and Data Acquisition (SCADA)
The computer's greatest single impact on the gas

dispatch function has come from the widespread installation
of centralized data acquisition and control systems. These
systems provide centralized data monitoring and logging
functions. Additionally, they often permit control over
remote compressors, valves, and controller set points. For
examples of modern day installations, see representative
articles by Yonker [93 and Kloer [10], Turner [11] presents
a good discussion of general system specifications and

requirements. Early efforts in this field are discussed in
papers by Wilson (1953) [12], Orlofsky (1958) [13], and

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

16

Armstrong (1964) [14]. These articles demonstrate the
progression from analog methods, to relay computers, to the

modern digital computer. The availability of SCADA
computers has improved the dispatcher's ability to monitor
and respond to the pipeline environment. Previously, remote
information was manually logged over teletype or phone, and
it was only updated after long time intervals (hours). With
SCADA, this information is available upon demand, permitting
the dispatcher to form an accurate picture of pipeline
status.

Pipeline Modeling
With computers in widespread dispatching use,

suggestions for more involved information processing have
occurred quite naturally. There has been a growing
discussion of the merits of concurrent and look-forward
modeling for dispatcher assistance and training. See for
example, Pai and Mugele [15], Heath and Blunt [16], Rachford
[17], Covington [18], and Wylie and Streeter [19].

The idea is threefold. First, a real-time (concurrent)
model may be used to identify anomalies between predicted
and actual response, thereby pointing to leaks or other

undesirable events. Second, a look-forward model permits an
operator to try alternative strategies in a safe quasi­
environment, hopefully improving dispatcher decision
making. Last, use of a model as a training simulator

reduces the need for costly on-the-job training.

Pipeline modeling on computers had its origins in the

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

17

fifties when Hardy Cross techniques were placed or. the old
punched card computers [20]. More realistic models for
transmission lines which include dynamic phenomena may be
seen in papers by Nelson and Powers (1958) [21], and Taylor,
Wood and Powers (1962) [22]. Since that time, many have
contributed to the literature of pipeline modeling [23-28].

Modeling has developed where, today, software is
available commercially for real-time and look-forward
applications. Several look-forward and training simulator
models are being installed, although results from these
efforts have not been widely reported in the literature.

Continued use of real-time and predictive modeling
promises better information digestion by human dispatchers.
Whether dispatchers develop hearty appetites for these tools
remains to be seen. The existence of modelisig tools has
also led to the development of various optimization
procedures.

Optimization of Pipeline Operations
The notion of optimization is an old and recurring

theme in the engineering literature. Basically, one seeks a
design or operating sequence that is best in some well-
defined sense. In pipeline operations, this may imply
finding the operating sequence that minimizes total cost of
transportation subject to various delivery and safety

requirements. Many techniques have been applied to the
pipeline operations problem.

Dynamic programming has been used for steady state and

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

18

transient optimization of simple pipeline operations by Wong
and Larson [29] and Larson, Humphrey and Wong [30]. Ade
[31] has applied Pontryagrin's principle to the problem of
optimizing more complex configurations. This work also
offers a solid discussion of the many factors that
contribute to formulating a realistic objective function.
Sood, et al. [32] have considered the network problem using
a gradient search technique. Wienecke [33] has described
the use of a method based upon linear programming. This
work suggests possible real-time usage of the method by
operations personnel. Many others have considered the
problem of optimization in pipeline design [34-37].

Although there has been much interest in the
development of these optimization procedures, their field
implementation and use by working dispatchers has not been
widely reported. There are numerous reasons for this. Cost
of implementation is a factor; software and hardware costs
for these methods can be substantial; however, cost is not
the whole story. Dispatch supervisors and dispatchers
consulted during the informal visits, felt that dispatchers
already did a good job, and the optimization procedures
would not bring substantial savings. Furthermore, they
argued that a computer procedure could not handle all the
exceptions and extraordinary situations that arise.

While some of this may be chalked up to job
protectionism and homo sapiens chauvinism, there is some

sense in this stance. Good dispatchers (human) do a good

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

19

job. They respond to a broad spectrum of events with
intuitive flair. By contrast, optimization techniques
respond to situations with a pre-cast methodology. Changes
in the environment must be handled explicitly or they are
not noticed at all. Changes in operating philosophy
(objectives) are difficult to model.

Because of this, it is understandable why optimization
methods have not caught on in the pipeline dispatch
environment. We must have robust methods that handle the
breadth of a real pipeline system.

Other Computer Methods
Other methods have been suggested for gas pipeline

control. Two papers have discussed the development of
heuristic pipeline control algorithms. The early SRI report
[30] on dynamic programming suggested a heuristic control
scheme based upon some simple operations rules, These rules
were generalized by the authors from their dynamic
programming model. A later paper by Larson and Wismer [38]
outlines a scheme for hierarchical control for more general
networks. It is interesting that both papers seek to
generalize low computation, heuristic rules from complex
optimization procedures. The approach to be studied in
Chapter 5 seeks heuristic rules in a more direct manner.

2.3 Summary

In this chapter, we have examined the gas dispatching
function and the role of computers in that function-.

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

20

The dispatcher faces a demanding environment, fraught
with uncertainty, complex hardware, and changing objectives.
Nonetheless, he meets his environment head on, tackling the
task with a flexible, intuitive approach. Observations of
dispatchers at two gas companies confirm this; the
dispatcher learns and decides easily. During decision
episodes, he gets a clear picture of the situation, decides
what to do, and does it; there is little analysis or
agonizing,

Computers have helped the dispatcher in his role as a
communicator. Centralized systems provide reliable
information and equipment control at his fingertips;
however, the computer has had little to do with aiding the
dispatcher's decisions.

Why haven't computers been more helpful in this
important role? The primary reason is the robustness gap
between man and machine. Good (human) dispatchers do a good
job; they approach a tough job with intuitive flair and a
flexible attack. By contrast, artificial decision
techniques approach the task with a rigid, pre-cast
methodology that is guaranteed to fail when it encounters
the unanticipated or when its pre-set models don't (model).

Thus, it is little wonder that dispatchers and their
managers have been less than enthusiastic in their embrace
of these techniques. If the computer is ever to effectively
aid in the dispatcher's decision process, our mission is

clear; we must try to close the robustness gap and bring

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

21

machine performance closer to the intuitively flexible
approach of the human dispatcher.

Over the next four chapters we take a few small steps
in this direction. First, we investigate a genetic
algorithm, an improvement search technique with some of the
boldness and innovation of human search, in pipeline
optimization. After these optimization studies, we
integrate the genetic algorithm into a more complete rule-
learning system. This system learns rules of thumb for high
performance interaction with its pipeline environment. By
doing this, we hope to come closer to the intuitive approach
used by the working dispatcher.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

CHAPTER 3

OPTIMIZATION VIA GENETIC ALGORITHM

Optimization is a natural first step in a quest for
artificial decision-making procedures similar to human
processes. The idea is simple: human decision makers seek
the best decision in some well-defined sense. While common-
sensical, this notion begs to be questioned. Human decision
makers perform in situations where both the environment of
decision and the concept of best are, at best, ill-defined.
Because of this, optimization with its well-defined
constraints, objective functions, and system models, is no
more than a rigid approximation to natural decision-making
processes.

Nonetheless, we study optimization for two good
reasons. First, because optimization is well defined, it
provides a pure proving ground for search procedures. A
robust decision maker must use algorithms enabling

improvement with experience. With optimization, we can
test, explore, and compare different search procedures and
still maintain strict control over the search environment.
Second, optimization has proved to be a useful tool in the
hands of a skilled engineer or technologist. The user can

22

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

23

carefully tune model and objective parameters to obtain
desirable system performance; it is, however, this human
interaction, the art of optimization, which keeps such
systems from autonomy.

In this chapter, we study one search procedure, a
genetic algorithm, with promise in both areas: as a search
algorithm in a larger decision-making learning machine and
as a practical, engineering optimization tool. We focus on
the latter for now, but keep in mind the former. Genetic
algorithms have seen growing application in the past decade
in computer scientific domains. Here, we explore their use
as an engineering optimization tool. This lays the
foundation for actual application to two problems in
pipeline control in the next chapter.

To get a handle on genetic algorithms, we look at what
they are and where they come from. In so doing, we question
the motivation for looking at still other techniques of
optimization (aren't there enough already?). The mechanics
of the algorithm are then presented; we attempt to gain some
intuition of why they work. We finish with a more rigorous
explanation of the underlying search processes.

3.1 What are Genetic Algorithms?

Genetic algorithms are a class of stochastic improvmal
algorithm; they seek improved performance by sampling areas
of a parameter space with high probability of success. The

algorithms are genetic because the string manipulations
employed resemble the mechanics of natural genetics. In a

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

24

sense, genetic algorithms enforce a Darwinian survival of
the fittest among a population of artificial creatures
(strings). Every generation, a new set of creatures is
created using bits and pieces of the fittest of the old
generation; an occasional new part is tried for good
measure.

Yet, one should not assume that genetic algorithms are
a simple random walk through some parameter space; these
methods are not coin flipping by a fancy name. Genetic
algorithms efficiently exploit old information to seek trial
points with above average performance.

Genetic algorithms have been developed by John Holland
and his students in the Computer and Communications Sciences
Department at the University of Michigan. The main goals of
their research have been twofold: 1) abstract and
understand, mathematically, the adaptive processes of
natural systems, 2) design artificial systems software that
retain the important mechanisms of natural systems. This
approach has led to important discoveries in both natural
and artificial systems science.

The central issue of this philosophy is robustness— the
balance between efficiency and efficacy necessary for
survival in different environments. The implications of
robustness for artificial systems are manifold. If

artificial systems can be made more robust, costly redesic ■'»
can be reduced or eliminated. If higher levels of
adaptation can be achieved, existing systems can perform

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

25

thei'r' function longer and better. Designers of artificial
systems— both software and hardware, whether mechanical,
chemical, civil, or electrical— can only marvel at the
robustness, the flexibility of biological systems. Features
for self-repair, self-guidance, and reproduction are the
rule in biological systems, whereas they barely exist in the
most sophisticated artificial systems.

Thus, we are drawn to an interesting conclusion: where
robust performance is desired— and where is it not?— nature
does it better; the secrets of adaptation and survival are
best learned from the careful study of biological example.

Yet, we do not accept the genetic algorithm method by
appeal to this beauty-of-nature argument alone. Genetic
algorithms are theoretically and empirically proven to
provide robust search in complex spaces. The primary
monograph on the topic is Holland's, Adaptation in Natural
and Artificial Systems [1] (hereafter ANAS). Many papers
[39-47] and dissertations [48-54] establish the validity of
the technique in function optimization and control
applications. Particularly applicable to the present; work
are Ph.D. theses by Hollstein [51], De Jong [53], and Bethke
[54].

While established as a valid approach to problems
requiring efficient and effective search, genetic algorithms
have not been widely applied in engineering circles. There

is no good reason for this oversight. These algorithms are
computationally simple, yet powerful in their search for

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

26

above average behavior. Furthermore, they are not
fundamentally limited by restrictive assumptions about the
search space (continuity, existence of derivatives, etc.).
We will investigate the reasons behind these attractive
qualities; but before this, we need to explore the
robustness of more widely accepted search procedures.

3.2 Robustness of Conventional Search Methods
This is not a comparative study of optimal search

techniques. Nonetheless, it is important to question
whether conventional search methods meet our robustness
requirements. The current literature identifies three main
types of search methods: calculus-based, enumerative, and
random. Let us examine each type to see what conclusions
may be drawn without formal testing.

Calculus-based methods have been heavily studied.
These subdivide into two main classes: indirect and direct
methods. Indirect methods seek local extrema by solving the
usually, nonlinear set of equations resulting from setting
the gradient of the objective function equal to zero. This
is the generalization of the elementary calculus notion of
extremal points. On the other hand, direct (search) methods
seek local optima by hopping on the objective function and
moving in a direction related to the local function
gradient. This is simply the notion of hill-climbing. To
find the local best, one climbs in the steepest permissible
direction. While these methods have been improved,
extended, hashed, and rehashed, some simple reasoning shows

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

27

their lack of robustness.
First, both methods are local in scope; the optima they

seek are only the best in a neighborhood of the current
point. Further improvement must be sought through random
restart or other trickery. Second, they depend upon the
existence of derivatives. Even if we allow numerical
evaluation of derivatives, this is a severe shortcoming.
Many practical parameter spaces have little respect for the
notion of a derivative and the smoothness this implies. The
engineering community has been too willing to accept the
tradition of the 18th century classicists who painted a
clean world of quadratic objective functions, ideal
constraints, and ever present derivatives. The real world
of search is fraught with discontinuities and vast multi­
modal, noisy search spaces. It comas as no surprise that
methods depending upon the restrictive requirements of
continuity and derivative existence are unsuitable for all
but a very limited problem domain. For this reason and
their inherent local scope of search, we must reject
calculus-based methods; they are insufficiently robust in
unintended domains.

Enumerative, search-for-the-best schemes have taken a
variety of forms; but, their consideration in the robustness
race must be limited for a simple reason: lack of
efficiency. Most parameter spaces are simply too large to
search one at a time and still have a chance of using the
information to some practical end. Even the highly touted

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

28

scheme, dynamic programming, is little more than logical
enumeration with a model* It too, breaks down on problems
of moderate complexity, suffering from a malady
melodramatically labeled the "curse of dimensionality" by
its creator [55]. We must conclude that less clever
enumerative schemes are similarly— and more abundantly—

cursed for real problems.

Random algorithms have achieved increasing popularity
as researchers recognize the shortcomings of calculus-based
and enumerative schemes [56]. Yet, strictly random search
must also be discounted because of the efficiency
requirement. Random searches, in the long run, can be
expected to do no better than enumerative schemes. We must
be careful to separate random search methods from randomized
techniques. The genetic algorithm we investigate is an
example of a search procedure which uses random choice as a
tool to guide a highly exploitative search through the
parameter space.

While not an exhaustive examination, we are left with a
somewhat unsettling conclusion: conventional search methods
are not robust. This does not'imply they are not useful.
The schemes mentioned and countless hybrid permutations have
been used successfully in many applications; however, as
more complex problems are attacked, other methods will be
necessary. We shall soon see how genetic algorithms help
fill this robustness gap in practical engineering
applications.

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited without perm iss ion .

29

3.3 Goals of Optimization
We are seeking methods which optimize efficiently and

effectively over a broad environmental spectrum. We must
now be clearer about our meaning when we say optimize. What
are we trying to accomplish in an optimization process? The
conventional view is presented well by Beightler, Phillips
and Wilde [573 :

Man's longing for perfection finds expression in the
theory of optimization. It studies how to describe and
attain what is Best, once one knows how to measure and
alter what is Good or Bad . . . Optimization theory
encompasses the quantitative study of optima and methods
for finding them.
From this we see that optimization seeks to improve

performance toward some optimal point or points. Note that
this definition has two separable parts: 1) we seek
improvement to approach some 2) optimal point. There is a
clear distinction between the process of improvement and the
destination or optimum itself. Yet, in judging optimization
procedures we commonly focus solely upon convergence,
whether the method reaches the optimum, and forget entirely
about interim performance. This emphasis stems from the
origins of optimization in the calculus. It is not,
however, a natural emphasis.

Consider a human decision maker, for example, a
businessman. How are his decisions judged? What criteria
are used to decide whether he does a good or bad job?

Usually he is judged by whether he makes good selections
within the time and resources allotted. Goodness is judged
relative to his competition. Does he make a better widget?

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

30

Does he get it to market more efficiently? With better
promotion? Our businessman is never judged by attainment-
of-the-best criteria; perfection is all too stern a
taskmaster. Convergence to the best is not an issue in
business or in most walks of life; we are only concerned
with doing better relative to others, Thus, if we want more
human-like optimization tools, we are led to a reordering of
priorities. The most important goal of optimization is
improvement. Can we get to some good, sufficing level of
performance quickly. Fine tuning can be performed in our
spare time. Attainment of some optimum is much less
important for complex systems. It would be nice to be
perfect: in the meanwhile, we can only strive to improve.

In the next chapter, we watch the genetic algorithm for
these human-like qualities. In the meantime, we define a
simple genetic algorithm to see how and why it works.

3.4 A Simple Genetic Algorithm
In this section, we investigate a simple genetic

algorithm, both its mechanics and why it works. The
mechanics of the process are surprisingly simple. We do
nothing more complex than string copying and partial string
swapping. The explanation of why it works is much more
subtle and powerful. This simplicity of operation and power
of effect are one of the main attractions of the genetic
algorithm approach.

We separate this discussion into two parts. First, we
address the structures being processed. Next, we outline

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

31

the rules and operators used to modify the structures. Our
main efforts, at first, are directed toward understanding
the mechanics of the process and gaining an intuitive feel
for their robustness. Later, we return for a rigorous
examination of genetic cilgorithm performance.

Strings and Chromosomes

The basic structure processed by genetic algorithms is
the string. The strings we consider are a sequence of
characters of finite length 1 composed over some alphabet V.
In this study, we limit ourselves to the binary strings over
the alphabet V = {0,1} without loss of generality.

Roughly speaking, strings in artificial systems are
analogous to chromosomes in biological systems. In natural
systems, the chromosome (or set of chromosomes) is a
prescription for the operation of some animal or plant. In
artificial systems optimization, the string is a description
of a parameter set for operating the underlying system. The
system designer has a variety of alternatives in coding
numeric and non-numeric parameters. We will confront this
when we discuss applications in the next chapter. Right
now, we aim to see how genetic algorithms can effect

improvement regardless of the coding scheme used.
Because the genetic algorithm is rooted in natural

genetics and computer science, the terminology used is an
unholy mixture of the natural and artificial. We review the
terminology to connect with existing literature and also

permit the occasional slip of a natural utterance or two.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

32

In the geneticists parlance, a chromosome is composed of
genes which may take on a number of values called alleles.
A gene is also identified by its position on the chromosome
called its locus. The correspondence between natural and
artificial vernacular is shown in Table 3-1.

Table 3-1
Natural and Artificial Vernacular

natural artificial

chromosome string
gene character or bit
allele bit value
locus position

In this study, we do not distinguish between a gene
(character) and its locus (position); the position or a gene
determines its meaning uniformly throughout a population and
throughout time. More complex chromosome (string) models
may be introduced; but, these have not proved necessary in
applications studies to date.

As a notational convenience, we refer to strings by
capital letters and individual characters by lower case
letters subscripted by their position. For example, the
string A may be represented as follows:

A — a^a23-2' * * ̂ 1
Here the a. represent the alleles at the ith gene. A
particular string is represented in its binary form.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

33

Populations of Strings

We have defined the individual structures as finite
length strings. It would be possible to operate on strings
one at a time, thereby generating a sequence of individual
strings with time. Many optimization algorithms operate
this way, moving gingerly from one parameter set to another:
gradient methods, as an example, use this individual
sequential approach. Yet, nature does not work this way,
and nor shall we. In natural systems, a population of
individuals exists at any one time. As time progresses, new
generations are born and older generations die away,
creating constantly changing populations. Similarly,
genetic algorithms generate a sequence of string
populations. This factor alone gives genetic algorithms
much of their differential advantage over conventional
search methods.

By working from a population, genetic algorithms
maintain a rich database of well-adapted diversity from
which new members may be created. By maintaining this
diversity, these algorithms can search different regions of
a parameter space in parallel. This results in a search
with a much broader, more global flavor than any method that
searches from a single point.

As a matter of notation, we consider a sequence of
populations A(t) where the underscore indicates a vector of
strings and the index t refers to the time step. For

simplicity, we consider non-overlapping populations A(t}

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

34

where all the members of the population undergo mating and
genetic action to create the members of generation t+1. We
also limit ourselves to populations of constant size.
Having adopted these guidelines, we examine how genetic
algorithms act to create a sequence of improving
populations.

Reproductive Plans and Genetic Operators
At some point in time, we imagine a population of

strings A(t). The job of a genetic algorithm is to perform
a series of simple operations on the current population to
generate a new population in the next time step. This is
done with a number of transition rules.

Genetic algorithms are composed of two types of
transition rules:

1. Reproductive plans
2. Genetic operators

Reproductive plans determine the number of copies
(offspring) of an existing string to make during a
reproductive cycle (iteration). Genetic operators determine'
the modification and combination of these strings which will
form the strings of the next generation.

One simple genetic algorithm, which gives good
practical results, is composed of three rules, one

reproductive plan and two genetic operators:
1. Fitness proportionate reproduction
2. Simple crossover

3. Simple mutation

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

35

Fitness proportionate reproduction is a simple rule
whereby the probability of reproduction during a given cycle
is proportional to the fitness of the individual string.
Fitness is defined as some non-negative measure of merit (an
objective function to be maximized;. The effect of this
rule is clear. High fitness individuals have a higher
expected number of offspring than low fitness individuals.
Reproduction is, thus, the survival-of-the-fittest or
emphasis step of the simple genetic algorithm.

One common implementation of this rule evaluates a
reproduction count for every member of the old population.
This count is simply the individual’s fitness u^ divided by
the average fitness of the population u. This normalization
assures a population of constant size N. Note that the
reproduction count is usually some non-integral value. To
round off to integral values, two things are often done.
First, the population count may be scaled so the best

individual gets at least two copies. This insures some
pressure toward the best strings while still maintaining
constant population size. Second, the non-integral
reproduction counts may be rounded probabilistically to the
next higher or lower integer using the fractional part to
bias a simulated coin toss.

After the reproduction phase, simple crossover may
proceed in two steps. First, members of the newly
reproduced generation are mated at random. Then, each pair

of strings undergoes crossover as follows: an integer

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

36

position k along the string is selected uniformly at random
on the interval 1<k£l-1. Two new strings are created by
exchanging all characters between positions 1 and k,
inclusively.

For example, consider two strings A and B of length 7
mated at random;

A = a 1a 2a 3a4a 5a ga7
B « b 1b 2b 3b4b 5b 6b7

Suppose the roll of a die turns up a four. The resulting
crossover yields two new strings;

A' = b 1b 2b 3b4a 5a ga 7
B' = aia 2a 3a4b 5b6b7

What is the effect of crossover on the search process?
Clearly, crossover is some sort of randomized, yet,
structured information exchange. Together with
reproduction, this simple operator gives genetic algorithms
much of their surprising power. A rigorous explanation of

this may be given in terms of schemata. A more intuitive
feel can be obtained by considering strings as ideas and
substrings as containing notions.

A string is a complete idea or prescription of how to
do a particular task (in our case, a description of how to
operate a pipeline). Substrings contain various notions of
what's important or relevant to the task. Viewed in this

manner, the population is a body of knowledge containing a
multitude of notions and rankings of those notions for task
performance. The act of crossover with previous

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

37

reproduction, combines various notions of high performance
strings to form new ideas. Intuitively, exchanging notions
to form new ideas is appealing if one thinks in terms of the
process of innovation. What is an innovative idea? Most
often, it is a combination of things that have worked well
in the past. In much the same way, reproduction and
crossover combine to search potentially pregnant, new ideas.

It is as if various widget experts from around the
world gathered at a trade show to discuss the latest in
widget technology. After the paper sessions, they all pair
off around the bar to exchange widget stories. Well-known
widget experts, of course, are in greater demand, and
exchange more ideas, thoughts and notions with their lesser
known widget colleagues. The show ends and the widget
people return to their widget laboratories to try out a
surfeit of widget innovations. The process of reproduction
and crossover is precisely this kind of exchange among
experts. High performance notions are repeatedly tested and
exchanged, seeking better and better performance.

While reproduction and crossover effectively search and
recombine extant notions, occasionally they may become
overzealous and destroy some potentially useful genetic
material. The mutation operator protects against such an
unrecoverable loss. Mutation is the occasional random
alteration of a string position. In a binary code, this
simply means changing a 1 to a 0 and vice versa. By itself,
mutation is a random walk through the search space. When

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

38

used sparingly with reproduction and crossover it is an

insurance policy against premature loss of important
notions.

Other genetic operators and reproductive plans have
been abstracted from the study of biological example;
however, the three examined in this section, proportionate
reproduction, simple crossover, and simple mutation have
proven to be both computationally simple and effective in
solving optimization problems. In the next section, we
perform a hand simulation of our simple genetic algorithm to
demonstrate both the mechanics and effect of the method.

3.5 Genetic Algorithm at Work - A Simulation by Hand
Consider the problem of finding high performance

strings (1=5) where the objective functions is f(x) = x and
strings are interpreted as binary integers on the interval
[0,2^-1]. In this section, we perform one generation of the
simple genetic algorithm to drive home the mechanics and
concept of the method in a simple problem domain.

To start, a small initial population of four strings
(N=4) is selected at random. Bit positions have been chosen
by flipping an honest penny. The decimal values x are shown
with their respective fitness values in Table 3-2.
Reproduction counts are set by taking the integer part of

the normalized fitness and adding a count with probability
equal to the remaining fractional part. In the particular
simulation, 3 coins have been flipped to approximate this
process to the nearest eighth.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 3-2
Hand Simulation of Genetic Algorithm

Initial
Population

X
Value

f (x) f (x)
E (x)

Count String
Copies

Mated
With

Cross­
over
Site

Mew
Population

X
Value

f (x)

01101 13 169 0.58 1 01101 2 4 01100 12 144
11000 24 576 1.97 2 11000 1 4 11001 25 625
01000 8 64 0.22 0 11000 4 2 11011 27 729
10011 19 361 1.23 1 10011 3 2 10000 16 256

Average 293 439
MOTES: 1) Reproduction count rounding, crossover and mating performed at

random using one or more coin tosses.

2) Mutation probability p assumed small enough to be negligible
over a single generation.

3) X interpreted as binary integer [0,31].

40

Reproduction proceeds by copying the number of strings
specified in the reproduction counts. Random mating of the
strings follows, using coin tosses to pair off the happy
couples. After mating, crossover is applied to each pair by
randomly selecting a crossover site. The mutation
probability has been assumed to be small. Therefore,
following reproduction and crossover, the new population is
ready to be tested.

The results of a single generation of the simulation

are shown in the table. While concrete conclusions from a
single trial of a stochastic process are, at best, a risky
business, we start to see how genetic algorithms combine
high performance notions to achieve better performance.
Note how both the maximal and average performance have
improved in the new population. Although random processes
help cause this happy circumstance, we can see how this
improvement is no fluke. The best string of the first
generation (11000) receives 2 copies because of its high,
above average performance. When this combines at random
with the next highest string (10011) and is crossed at
location 2 (again at random), one of the resulting strings
(11011) proves to be a very good choice indeed.

This event is an excellent illustration of the ideas
and notions analogy we developed in the previous section.
In this case, the resulting good idea is the combination of

two above average notions, namely the substrings 11 and
 11. While still somewhat heuristic, we start to see how

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

41

genetic algorithms effect a robust search. In the next
section, we tighten down these concepts by analyzing genetic
algorithms in terms of schemata.

3.6 A Rigorous Reappraisal
The intuitive viewpoint developed thus far has much

appeal. It places the genetic algorithm in similitude with
certain human search processes commonly called innovative or
creative; however, as engineers and technologists, we need
to have a better handle on genetic algorithm performance.

To get this, we examine the raw data available for any
search procedure and discover that we can increase the
information available by comparing strings and exploiting
important similarities in a population. We develop the
framework of similarity templates or schemata to rigorously
show how genetic algorithms work. We show how this leads us
to consider a keystone of the genetic algorithm process, the
building block hypothesis.

Grist for the Search Mill - Important Similarities
For much too long we have ignored a fundamental

question. In a search process where we only have payoff
data (fitness), what information is contained in a set of
structures (strings) to help guide a directed search for

improvement? To make this clearer, consider the strings and
fitness values originally displayed in Table 3-2 from the
simulation of a previous section and gathered below for
convenience;

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

42

String Fitness

01101 169
1 1000 576
01000 64
10011 361

What information is contained in this population? On. the
face of it, there is not much: four independent samples of
different strings with their fitness values. As we stare at
the page, however, quite naturally we start scanning up and
down the string column. We notice certain similarities
among ths strings. Furthermore, we note certain
similarities that seem highly associated with good
performance. The temptation is great to experiment with
these high fitness associations. It seems reasonable to
play with those particular substrings that are highly
correlated with past success. For example, in the sample
population, the strings starting with a 1 seem to be among
the best. Might this be an important ingredient in
optimizing this function? Certainly with this function
(f(x)= x) and coding (binary integer) we know it is. But,
what are we doing here? Really, two separate things. First,
we are seeking similarities among strings in the population.
Second, we are looking for causal relationships between
these similarities and high fitness. By doing this, we
admit a wealth of new information to help guide a search.
To see how much and precisely what information is being

considered, we introduce the important concept of a schema

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

43

or similarity template.

Schemata - Similarity Templates
We are no longer interested in strings as strings

alone. Since important similarities can help guide a
search, we need to define how a string is similar to other
strings. In what ways is a string a representative of other
string classes with similarities over certain string
positions? The framework of schemata provides the tool to
analyze these questions.

A schema is a similarity template describing a subset
of strings with similarities over certain string positions.
The template may be motivated by appending the symbol * or
don't care to the normal alphabet V. With this extended
alphabet, the characters of V retain their normal
significance. A don't care in a string position means that
any character of V at that position will satisfy the
template. Thus, positions that are important are specified
by elements of V; positions where the similarity is
unimportant are occupied by a don't care. We point out that
the * is a meta-symbol; it is not actually processed by any
algorithm. It is simply a notational device which allows us
to describe all possible similarities.

As an example, consider the-strings of length 5. The
schema *0000 describes a subset of strings, namely {10000,
00000}. The schema *111* describes a subset with 4 members

{01110, 01111, 11110, 11111}. In this way, schemata provide
a straightforward means of describing all the similarity

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

44

subsets possible among the strings of given length.
Counting the number of schemata is an enlightening

exercise. In the previous example, with 1=5, we note there
5are 5 = 243 different similarity templates because each of

the 5 positions may be a 0, 1 or *. In general, for
alphabets of cardinality k, there are (k+1)^ schemata. At
first blush, it appears that schemata are making our search

lives more difficult. For an alphabet of cardinality k
there are only (only?) k^ different strings. Why consider
schemata and enlarge the space of concern? The answer lies
in the number of strings and schemata contained in each
sampled population. How many strings are there in a
population of size N? Obviously, there are N strings in a
population of size N. How many schemata are contained in a
population of size N? To see this, consider a single string

5of length 5: 11111, for example. This string contains 2
schemata because each position may take on its actual value
or a don't care symbol. In general, a particular string
contains 2^ schemata. As a result, a population of size N
contains somewhere between 21 and N*2^ schemata depending
upon the population diversity. This fact verifies our
earlier intuition. The original motivation for considering
important similarities was to get more information out of a
string population. The counting argument shows that there
is indeed a wealth of information about important

similarities contained in even moderately sized populations.
We will examine how genetic algorithms effectively exploit

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

4 5

this information. At this juncture, we suspect the need for
some parallel processing if we are to make use of all this
information in a timely fashion.

Schema Properties
All schemata are not created equally. Some are more

specific than others. Some have defining positions that
span a greater or lesser proportion of the string. To
identify these differences we identify two properties of a
schema following Bethke [54]: order and defining length.

The order of a schema h, denoted by o(h), is simply the
number of ones or zeroes present in the template. It is a
measure of schema specificity; the higher the order the more
specific the template.

Defining length of a schema h, denoted by 6(h), is the
distance between the first and last specific string position
(one or zero). Defining length is a measure of schema span.

To illustrate these properties consider a schema hci
over the strings of length 7:

h = * 10***1 a
What are the order, o(h) and defining length 6 (h) of thiso a
particular schema? The order is straightforward. There are
two ones and a single zero. Hence, the order of this schema

is 3. To calculate the defining length, we note that the
first defining position is at location 2. The last defining
position is at location 7. The defining length is the

difference, 7-2 = 5. While these two properties are easily
calculated for any schema, they play an important role in

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

46

identifying genetic algorithm performance.

Processing of Schemata by Genetic Algorithm
Schemata are an interesting notational device for

discussing similarities in strings. More than this, they
provide the basic means for analyzing the performance of
genetic algorithms. W'; have already considered how genetic
algorithms process string populations. We now consider how
they process schemata, "the underlying similarities in the
string population. We examine reproduction, crossover, and
mutation to identify the expected effect of each transition
rule.

The effect of reproduction on the number of schemata in
a population unveils quite directly. Recall that a string
receives u / u copies during fitness proportionate
reproduction. For any schema h, we assume there are m(h,t)
such schemata in a population at time step t. After
reproduction, we expect m(h,t)*u(h)/u schemata h, where u(h)
is simply the average fitness over all the strings
containing schema h. Considering reproduction alone, the
number of schemata will grow or decline depending upon the
ratio u(h)/u— whether a schema is above or below the current
sampling average.

This rate of schemata growth has been connected to the
multi-armed bandit problem by both Holland [1] and De Jong
[53]. Simply stated, this problem seeks the optimal

allocation of trials among a number of alternatives with
unknown payoff (a bank of slot machines). The objective of

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

47

the problem is to minimize the expected losses from the
allocation. The form of the solution derived by Holland
suggests that an exponentially increasing number of trials

should be allocated to the observed best alternative. In
fact, the optimal strategy is not realizable because it
requires knowledge of outcomes before their occurrence.
Nonetheless, the plan forms an important bound on

performance which a time sequential procedure should attempt
to emulate. The simple reproductive plan does precisely
this. Fitness proportionate reproduction allocates
exponentially increasing numbers of trials to the observed
best schemata. As the number of trials increases, the
allocation by this procedure approaches the optimal
allocation. As such, it is an important, yet easily
realized, near-optiinal allocation procedure.

Reproduction by itself is not too interesting in
complex systems as no new points are explored. Crossover
provides the structured, though randomized, information
exchange between strings to effect a search of new points.
How does crossover affect schemata growth? Clearly, many
schemata remain unscathed because the crossover site does
not fall between schemata defining positions. To see this,
examine the following schema:

Recall that simple crossover proceeds with the random

selection of a crossover site and the exchange of material
through that site inclusively with the chosen mate. We note

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

48

that the first defining position of the schema is at
location 3 and last defining position is at location 6.
Therefore, this schema survives the crossover operation a
majority of the possible cases. The schema survives with
crossover at locations 1 or 2 or locations 6 through 10.
Conversely, the schema is broken with a crossover site at
locations 3, 4, or 5. Since the site is selected uniformly
at random, the probability of schema survival is easily
calculated. For the particular example, there are 10-3 = 7
survival sites out of 10 possible sites, probability=0.7.
More generally, this crossover survival probability may be
related to the defining length 5(h). The survival
probability is equal to 1 - 6(h)/(l-1) for a particular
schema h because the schema survives if the crossover site
does not fall within the defining length. Actually, this
estimate is conservative because it does not include the
probability of swapping identical defining positions between
two strings.

The probability of mutation leaving a schema unscathed
is also easily calculated. The number of defining positions
in a schema has been called its order o(h). If the
probability of mutation is constant and specified as pm , the
probability of a schema surviving intact is simply (1-
Pm)°'^« For small values of pm , this is well approximated
bv (1-o(h)*p_).rm

The combined effect of all three transition rules,
reproduction, crossover, and mutation, is easily derived.

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

49

The expected number of schemata h to survive into the next
generation is simply the product of the expected number from
reproduction alone and the survival probabilities of
crossover and mutation:

m(h,t+1) = m(h,t)«u(h,t)/u(t)
•(1-6(h)/(l-1))*(1-o(h).pm)

Identical results are presented in ANAS. The factor
multiplying the m(h,t) may be thought of as a growth factor.
If it is larger than one, the expected number of schemata h,
will continue to grow; otherwise, it can do no more than
remain constant in number. We note that this relationship
holds for all schemata contained in the population. In
other words, the simple genetic algorithm processes all
schemata in this manner. We observe that highly fit
schemata tend to survive because of the factor u/u. Short
definition length schemata are also preferred because the
crossover survival probability is closer to one. As a
practical matter, mutation usually plays little role as
mutation probabilities are often quite small (<0.001); this
has little effect except on schemata of very high order.

Standing back from the computation, we observe several
things: short schemata, 6(h) << 1, are sampled at near-
optimal rates. Longer schemata are sampled correspondingly
less frequently than this. In all, Holland [58] has
observed that approximately N schemata, where N is the
population size, are usefully sampled in parallel during
each generation of the genetic algorithm. While this is

1 1considerably less than the 2 -N»2 schemata which exist in a

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

50

population, it still represents a large amount of data
processing for populations of even moderate size (50-100).
This process proceeds in parallel with the action of simple
operators applied to strings only; no explicit computation
is ever made to correlate or keep track of schemata. They
simply behave as we have shown— the best getting more and
more trials. This property of genetic algorithms has been
called implicit parallelism by Holland because large number
of schemata are handled simultaneously without explicit
manipulation or recognition.

Building Blocks

The picture of genetic algorithms is much clearer with
the perspective afforded by schemata. High performance
schemata of relatively low defining length are sampled,
recombined and resampled to form strings of potentially
higher performance. In a sense, the problem has been
reduced in complexity; instead of seeking the highest
performing string by trying every conceivable combination,
we try to construct better and better strings from partial
solutions of past samplings.

Because high performance, low defining length schemata
play such an important role in the action of genetic

algorithms, Holland gives them a special name: building
blocks. Just as a child creates magnificent fortresses from
simple blocks of wood, a genetic algorithm seeks optimal or
near-optimal performance through the juxtaposition of short,
high performance schemata or building blocks.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

51

There is. however, one catch in our discussion to this
point. Repeatedly we have claimed that notions combine to
form better notions. Just now, we have claimed that
building blocks combine to form better building blocks.
While these ideas seem perfectly reasonable, how do we know
whether they hold true or not?

Certainly there is a growing body of empirical evidence
to support these claims. Starting in 1967 with Bagley's
pioneering thesis [48] through De Jong's careful study [53]
of genetic algorithms on a broad problem spectrum, this
building block hypothesis has held up in many different
problems. Smooth uni-modal problems to noisy multi-modal
problems have been successfully attacked using virtually the
same reproduction, crossover, and mutation model. While
limited empirical evidence does no theory prove, it does
suggest that genetic algorithms are appropriate for many of
the types of problems we normally encounter.

More recently, Bethke [54] has shed a great deal of
light on this topic. Using discrete Walsh transforms and
clever transformations of schemata, he has obtained a method
to identify the actual schemata average fitnesses. In this
way, he is able to identify whether for particular functions

and codings, the building blocks combine to form the
optimum. Attempts to generalize these results to arbitrary
codings prove difficult, -although he does derive sufficient
conditions on the derivatives of a function of a single
variable which has been encoded by a normal fixed point

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

52

coding. Despite the current limitations, Bethke has
provided an important tool for the analysis of genetic
algorithm performance.

As part of this research, Bethke also has generated a
number of test cases which are genetic algorithm hard (GA-
hard): they are not easily solved by the reproduction,
crossover, and mutation procedure. While the results are
inconclusive, they tend to suggest that when functions are
genetic algorithm hard, they tend to contain isolated
optima; the best points tend to be surrounded by the worst.
Practically, many of the functions we encounter do not have
this needle-in-the-hay-stack quality. There is usually some
regularity in the function and coding that may be exploited
by the building blocks. Nevertheless, it is important to
keep in mind that, fundamentally, the simple genetic
algorithm depends upon the combination of high performance
building blocks to seek the best points. If the building
blocks are misleading due to the coding used or the function
itself, the problem may not be solvable by the simple
algorithm.

3.7 Summary

In this chapter, we have laid a foundation for
understanding genetic algorithms. We are lead to these
methods by our search for robustness; natural systems are
robust— efficient and efficacious— as they adapt to wide
ranging environments. By abstracting the adaptation

mechanism of natural systems in algorithm form we hope to

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

53

achieve similar breadth of capability. In fact, genetic
algorithms have proven their breadth in analytical and
empirical studies.

The detailed mechanics of a simple genetic algorithm
have been presented. Genetic algorithms operate upon
populations of strings. The strings are coded to represent
the underlying parameter set. Reproduction, crossover, and
mutation are applied to successive string populations to
create new string populations. The operations performed are
simple string copies and partial string swaps, yet the
effect is extremely powerful. Genetic algorithms realize an
innovative notion exchange among strings. The best strings
provide the largest number of notions contributing to
continued improvement. A hand simulation of a simple
genetic algorithm has been helpful in illustrating both the
detail and power of this method.

In this examination, we notice there are three notions
underlying the genetic algorithm concept which separate it
from more familiar search techniques:

1. Direct manipulation of strings (structure)
2. Search from a population, not a single point.
3. Search rules as stochastic operators
Genetic algorithms manipulate control variable

representations at the string level to exploit similarities
in above average population members. Other methods deal
with functions at the variable level; the underlying coding
is only a necessary evil to obtain a computer solution.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

54

Because genetic algorithms operate at the coding level, they
are difficult to fool even when the function is difficult.

Genetic algorithms work from a population; many other
methods work from a single point. Genetic algorithms heed
the old adage "security in numbers." By retaining a
population of sample points, the probability of reaching a
false (local) peak is reduced.

The transition rules of genetic algorithms are
stochastic; many methods nave deterministic transition
rules. We are careful, however, to distinguish between
these randomized operators and random search. Genetic
algorithms use random choice to guide a highly exploitative
search. This may seem unusual, using chance to achieve a
particular result (the best points); nature is full of
precedent [46].

A more rigorous appraisal of genetic algorithm
performance has been undertaken using schemata or similarity
templates. A schema is a string over an extended alphabet,
V+(*), where V is the normal string alphabet and the
asterisk is a don't care symbol. This notational device
greatly simplifies the analysis of the genetic algorithm

method because it explicitly recognizes all the possible
similarities inherent in a population of strings. We have
shown how building blocks (short, high performance schemata)
are combined to form strings with expected higher
performance. This occurs because short building blocks are

sampled at near-optimal rates and recombined via crossover.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

55

Mutation has little effect on the building blocks; it does
help prevent the unrecoverable loss of potentially important
genetic material. Whether building blocks combine to form
better strings depends upon the function and the coding used
While there are functions which are genetic algorithm hard
(GA-Hard), these problems tend to have remote, highly
isolated optima and are difficult for other optimizers as
well.

Genetic algorithms seem to have much to recommend them.
In the next chapter, we apply the method to two problems in
pipeline optimization. This application will help identify
whether the method is as practical as it is promising.

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

CHAPTER 4

APPLICATION OF GENETIC OPTIMIZATION IN PIPELINING

In this chapter, we apply the simple genetic algorithm
to two problems in pipeline optimization. Our goal is to
illustrate genetic programming's effectiveness in practical
problem domains. We also try to clarify some of the more
persistent implementation details we have encountered along
the way.

We first explore four issues which confront the genetic
optimization user: discretization and coding, constraint
handling, minimization mapping, and genetic algorithm
parameter selection. We then solve two problems in pipeline
optimization: the serial, steady state problem and the
transient, single line problem. The simple genetic
algorithm presented in the previous chapter is used with
constant, fixed parameters. Problem formulations and
results from both problems are presented and analyzed;
techniques are suggested for improving the already

acceptable performance. We finish the chapter by reviewing
the method's salient features.

4.1 Discretization and Coding

Genetic algorithms process populations of strings to

56

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

57

search a particular problem space for improved performance.
While problems exist where the natural coding is a string
(crossword puzzles, word games), the usual engineering
problem is formulated as a parametric or continuous
variational problem.

In a parametric problem, a finite number of real
parameters may be adjusted for best performance. In the
variational problem some real function must be varied in
time or space to control the process. In either case, the
use of genetic algorithms forces us to transform the
underlying formulation to a finite string through some
discretization and coding process.

Discretization may be required at a variety of levels.
With variational problems, we must first reduce the problem
to a finite number of parameters. This is accomplished
through the type of discretization associated with
interpolation theory, finite elements, and other related
areas. Typically, the continuum is subdivided into discrete
chunks. Parameters are associated with points in the space,
and some functional relationship— step function, piecewise
polynomial, smooth spline, etc.— is assumed to describe the
function's behavior in between the discrete points.

Upon reduction of the problem to a finite number of
parameters (if necessary), another kind of discretization
becomes important: the discretization resulting from the
choice of coding. In most numerical computer work, we take

our parameter codings for granted. Typically, in using an

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

58

algorithmic language, FORTRAN as an example, we simply
create a set of parameters of type REAL and perform our
numerical work upon the parameters as if they were, in fact,
real numbers; we tend to forget that we are working with a
finite simulation of the real numbers. With genetic
algorithms, we must be very explicit about both the coding
and the way we combine the codings to form a string.

While we could form strings by simple concatenation of
the normal REAL representation, there is strong motivation
to avoid this approach. In the previous chapter, we learned
how genetic algorithms process building blocks— relatively
high performance, short schemata. If we use the normal
floating point representation on most computers (30-60
bits), the resulting strings are enormous for problems with
even modest numbers of parameters. For these codings,
adequate interaction of different parameters or even
different parts of the same parameter would require building
blocks with long defining lengths. As we know, longer
building blocks are destroyed with high probability by the
crossover operator. Therefore, it is better to custom
tailor shorter parameter codings which span the control
space with adequate precision.

A number of alternatives are available to code
individual parameters. Shortened fixed point (integer) and
floating point (real) codings are possible. De Jong [53]
discusses a mapped, fixed point parameter where the j bit
substring is interpreted as the usual, unsigned binary

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

59

integer on the interval [0,2^-1], This integer is linearly
mapped to some specified interval of the real numbers,

•̂um i n ,umax^* T^e Precis^on * this type of coding is
uniform and depends upon the length of the parameter
substrings j:

2^-1

This type of parameter coding is adopted in this study.
Floating point codings have been suggested [54] for

genetic optimization. In a typical floating point
representation, the string contains two parts, a mantissa
and and exponent. This type of coding gives greater range
at the expense of precision. They are advantageous when
parameters are known to vary over many orders of magnitude.
In this study, uniform precision is more important than wide
range; floating point codings have not been used.

Other coding schemes are possible. For example, Gray
codes have been investigated with genetic algorithms [51],
Gray codes map adjacent integers to binary strings which
differ by precisely one bit. While interesting, this work
proves no consistent differential advantage for these more
esoteric codings, and we stick to conventional schemes.

Once individual parameters have been coded, we must
decide how to assemble them on a string. Again, a variety
of options confronts us. The simplest ana most highly
investigated scheme simply concatenates the individual

parameter codings into a single string. Other methods have

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

60

been suggested which intermix the bits of different
parameters. The hope here is to create highly relevant,
short length building blocks through rearrangement of the
string structure. Eethke [54] has suggested a preset
interleaving of bits from each parameter. A more general
approach to this parameter mapping problem is to use the
inversion operator discussed by Holland [1]. Inversion, a
genetic operator with precedent in nature, is a structured
yet randomized rearrangement of locus (string position). In
this way, natural selection not only finds highly fit
strings, it finds highly fit arrangements of the bits on the
string. Implementation of this operator requires that we
tag each gene with its logical position; physical position
no longer is sufficient to specify function. While
potentially important in complex problems, it has not been
considered in this study. Instead, we go part way and
permit a specified shuffling of parameter bits with a bit
m a p . Before decoding each string, the bit map rearranges
the physical string into the logical string which is viewed
as a concatenation of parameter substrings. If no bit map
is specified, the physical string and logical string are
identical; the string is a simple concatenation of parameter
substrings.

4.2 Constraints and Genetic Algorithms

Thus far, we have only discussed genetic algorithms for
searching unconstrained fitness (objective) functions.
Typical engineering problems often contain one or more

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

61

constraints which must also be satisfied. In this section,
we see how constraints may be incorporated in a genetic
algorithm search.

Constraints are classified whether they are equality or
inequality relations. Since equality constraints may be
subsumed into the system model, we are only concerned with
inequality constraints.

At first, it would appear that inequality constraints
pose no particular problem. A genetic algorithm generates a
sequence of parameter sets to be tested using the system
model, objective function, and constraints. One simply runs
the model, evaluates the objective function, and checks to
see if any constraints are violated. If not, the parameter
set is assigned the fitness corresponding to the objective
function evaluation. If constraints are violated, the
solution is infeasible and thus, has no fitness. This
procedure is fine, except that many problems are highly
constrained; finding a feasible point is almost as difficult
as finding the best. As a result, we might want to rate
infeasible solutions as well, perhaps degrading their
fitness ranking in relation to the degree of constraint
violation. This is what is done in penalty methods [59],

In a penalty method, a constrained problem in
optimization is transformed to an unconstrained problem by
associating a cost or penalty with constraint violations.
This cost is included in the objective function evaluation.
Consider the original constrained problem:

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

62

minimize f(x)
subject to g i (x)^0 i=1,2,...,n

where x is an m vector
We transform this to the unconstrained form:

minimize f (x) +r=* £ ^ (g ^ x)) i = 1,2,...,n
where - penalty function

r - scaling coefficient
A number of alternatives exist for the form of the penalty
function 4>. In this study, we simply square the violation

2of the constraint: <j>(ĝ (x))=g^ (x) for all violated
constraints i. Under certain conditions, the unconstrained
solution converges to the constrained solution as the
scaling coefficient r approaches infinity [59]. As a
practical matter, r values are sized for each type of
constraint so that moderate violations of the constraints
yield a penalty which is a significant percentage of some
nominal operating cost. This sizing procedure is discussed
in more detail for each problem.

Suggestions exist to provide an increasing sequence of
penalty coefficients during the optimization process [59].
At first, when many of the trials are infeasible, useful
payoff information is obtained. As the solution progresses,
higher and higher penalties are enforced, driving the
solution to the actual optimum. This idea has much merit;
it is not adopted here because it introduces more •
parameters, complicates the process, and shifts our
attention from the real concern, the use and workings of

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

63

genetic algorithms.

4.3 Fitness Mapping

In many cases, optimization studies are naturally

formulated as minimization problems. The genetic algorithm
depends upon maximizing a fitness function, the non­
negative, increasing figure of merit discussed earlier. As
a result, we sometimes must find a way to transform a
minimization problem to a non-negative maximization problem.

In normal optimization practice, we can transform
minimization to maximization or vice versa by multiplying
the objective function by a -1. With genetic optimization
we must also satisfy the non-negativity requirement. One
way to do this is with the following simple mapping
relationship:

u (x) = CmaX'9(x) 9<x><Cmax
0 3(x)2Cmax

where C - nominal maximum costIua X
u(x) - fitness function
g(x) - cost function

This is the method adopted throughout this study. In the
current implementation, Cmax is specified by the user; it
could have been selected automatically as the highest value
of g(x) calculated thus far; however, this has not been done
to keep the run comparisons meaningful.

There are other alternatives for this mapping function.
Consider the following rational function:

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

64

u(x) = C 1 / (C2 + g (x))
Clearly, as g(x) goes to infinity, u(x) goes to zero as
desired. and C 2 may be selected to scale u(x)
appropriately. This function may be particularly useful for
functions with a wide range of values.

4.4 Setting Genetic Algorithm Parameters
Genetic algorithms have a number of parameters which

must be selected: population size N, crossover probability
p 1 and mutation probability pm . The effect of these
parameters upon genetic algorithm performance has been
investigated extensively by De Jong [53]. He has performed
parametric studies of the basic genetic algorithm over a set
of five test functions. These results point in several
directions:

-Crossover probability should be high to obtain maximum
search of new samples

-Mutation probability should be low to prevent
destruction of well-adapted schemata.

-Population size should be moderate to avoid problems
of genetic drift while encouraging rapid improvement
and avoiding the inertia of large numbers.

In this spirit, the following values have been chosen for
these parameters:

’In the previous chapter, we assumed a crossover
probability of 1. It is a simple extension to determine
whether an individual string is to be mated and crossed via
random choice. This process introduces the crossover
probability as a parameter.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

65

Population size = 50
Probability of Crossover = 1.0
Probability of Mutation = 0.001
Parameter selection can have an effect upon performance

of the genetic algorithm. De Jong's work accounts for the
contributing factors, backing up his conjecture with both
intuitive and mathematical reasoning. In the present study,
we, too, could search for optimal parameter settings, but
this would counter our real objectives. We are interested
in how well the method works when we haven’t twiddled with
parameters and fine tuned results. This is a better measure
of the practical performance we might expect when applying
the method in other problem domains.

4.5 Steady State Serial Line Problem
One important problem of pipeline control is the long

term optimisation problem. If demand remains steady for a
long period of time, how do we supply and compress gas to
minimize transportation cost, yet still meet delivery and
safety constraints? This is a static problem because the
flow is assumed constant for a long period. In actuality,
the strict conditions of long term optimization are never

met in practice: small fluctuations from steady conditions
always exist. Nonetheless, for many pipeline systems,
particularly long transmission systems, the approximation is

a good and useful one because lines are set up and operated
to give relatively, if not perfectly, steady operation.

In this section, we study the long term optimization of

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

66

a serial pipe-compressor system using a genetic algorithm.
The serial configuration is of practical importance because
it is so commonly used in transmission practice. This
configuration has also been studied using other optimization

methods. As a result, we are able to identify optimal
results independently and compare performance. In the
remainder, we define the problem, the system model,
objective function, and constraints; we also discuss
important implementation detail and present results of
genetic algorithm trials.

Modeling Equations and Control Parameters
The problem we study here has also been solved by other

methods. Wong and Larson [29] originally formulated and
solved the problem using dynamic programming. More
recently, Edgar, et. al. [37], have solved the same problem
using a gradient procedure. As a point of comparison, we
adopt the notation and problem formulation of Wong and
Larson.

A schematic of the line configuration is presented in
Figure 4-1. We envision a serial system with an alternating
sequence of compressors and pipelines. A fixed pressure
source exists at the inlet; gas is delivered at line
pressure to the terminus. Along the way, compressors are
used to boost pressure with fuel for the compressors taken
from the line. To model this system we consider the system
equations for pipe flow and compression.

Steady state pipe flow of natural gas is well studied.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

67

>
CCLii>

O
</>

©
O

g
.00
CH
i—i
(0 ■H
cu
CO

>ir0c3<u-p
CO

I
o■H+>«H0).C0co
1+JCO>t
CO

I—1I■'S*
O'•H|ii

CL
CL
3
CO

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

68

Assuming isothermal conditions and a level pipeline, the
difference of the squares of the absolute pressures (AP) is
proportional to the standard volumetric flow2 rate squared.
The pressure-flow relationship may be stated as follows:

PD? - PSi + ̂ = K.«Q? i= 1,2 , . . . ,N
where PD. - discharge pressure of the ith

compressor (psia)
PS* - suction pressure of the ith

compressor (psia)
Q. - standard flow of gas ith pipe (MMCFD)

Wong and Larson identify this as the Weymouth equation;

actually, it represents any number of equations of the form
2 2AP.=K.»Q. with the proper choice of the K, . Generallyl x l 1

speaking, the constant of proportionality depends upon
friction, temperature, pipe diameter, pipe length, as well

as dimensional constants and standard conditions. In this
study, we assume these constants are given for each line
segment.

The pressure-flow relationship for a compressor may be
obtained by considering the adiabatic compression of an
ideal gas. The resulting equation is of the following form:

HP./Qj = A^tPDj/PS.)R i-Bi
where HP. - Power required for ith

compressor (horsepower)
Q i - Flow rate (MMCFD)
A^,B.,R. - Compressor Constants for

ith compressor
The coefficients A ^ , B^ and Rj may be selected to match

2In natural gas practice, it is common to measure gas
quantities as a standard volume, the volume of gas occupied
by a certain mass expressed at some reference pressure and
temperature (standard conditions).

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

69

either theoretical considerations or the performance of an
actual unit; the latter is preferred in practice. The power
consumption HP^ is often regarded as the primary control
parameter. In Wong and Larson [29], an auxiliary control
relationship and variable is introduced; power is calculated
as a side computation. For consistency we follow their
procedure and introduce the set of control parameters

2 2U^=PD.“PS^. This parameter, the difference of the squared
discharge and suction pressures, is computationally
convenient; it does not correspond to usual gas operations
practice. Dispatchers usually watch power, compression
ratio or simply suction and discharge pressure to control
and monitor a line. In a numerical procedure this choice is
somewhat arbitrary, however.

In natural gas systems, the flowing fluid often
provides fuel for the compression equipment. To express
this fact, a fuel removal factor describes the reduction in
flow rate experienced downstream through the following
relationship;

Q. = (1-r.)*Q- .l v i - 1

where r^ - fuel removal factor at the ith station
The fuel used is related to detailed compressor settings.
For simplicity the r^ are specified as input constants.

Objective Function and Constraints

The objective for this problem is to minimize the total
power consumption. We state this succinctly in the
following relation;

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

70

minimize (£ HP^)
Keep in mind that this objective function is only one of

factors in gas transmission objectives is found in Ade's
work [31].

This minimization proceeds subject to a number of
constraints. The pipelines are not permitted to carry gas
at high pressures for safety reasons. Furthermore, there is
usually a required minimal pressure because of contract
requirements. Together, these constraints may be written as
follows:

Additionally, constraints are placed upon the pressure
ratio, the ratio of discharge pressure to suction pressure,
at each of the compressors. These correspond to physical
constraints of power available and prudent operation. We
represent them by the following set of relations:

The lower bound corresponds to no compression, while the
upper bound values are the physical constraints for each
compressor unit.

Computational Considerations
The steady state system model, objective function, and

constraints have been posed. We proceed to solution of the
problem by putting forth numerical parameters and clearing

some of the final details of discretization and constraint

many alternatives, A more complete discussion of other

max
£ PD. s P i

max

1 < PDi/PSi £ S i
max

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

71

representation.
The particular problem we solve is the 10 compressor,

10 pipe problem of Wong and Larson [29]. Numerical
parameters are presented in Table 4-1. The pipe segments
are fairly uniform except for numbers 3 and 9 which are
about twice as long as the average pipe. The compressors
are roughly equivalent except for units 4, 6, and 7. Unit 4
has a pressure ratio limit of 1.3 due to its more limited
capacity, while unit 7 has a better-rhan-average pressure
ratio limit of 1.75 due to its additional capacity. All the
units are equally efficient except for number 6 which is two
thirds as efficient as the others. We might expect a lower
utilization of this unit compared to the others.

To perform the optimization, each string must decode to
a set of control parameters. For this problem, the string
decodes to a set of 10 U. values (AP across the compressor
station). As indicated previously, we use a mapped fixed
point coding. Each parameter is treated as a j bit integer
which maps linearly to the interval [Um . ,Um]. For thisJ m i n ' max
problem, we select a discretization of j=4 bits.
Additionally, we must select the bounds for U • and Ummin max
The natural lower bound corresponds to a compressor at rest,
PD^=PS.; or Um ^n=0. The upper bound corresponds to the
maximum possible difference:

Umax = max{Pi }2 " min{pi . }2 , max 0 min
= 100(T - 500 = 7 . 5(10)

The resulting precision it of this coding is easily

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 4-1
Numerical Parameters
Steady Serial Problem

Pipe/
Compressor

i

Pipeline
Coefficients

Compressor
Coefficients

Constraints

K.l R.l A.l B.i r . i P. .lmin P.imax s.imax

1 0.800 0.217 215.8 213.9 0.005 500.0 1000.0 1.6
2 0.922 0.217 215.8 213.9 0.005 500.0 1000.0 1.6
3 1.870 0.217 215.8 213.9 0.005 500.0 1000.0 1.5
4 0.894 0.217 215.8 213.9 0.005 500.0 1000.0 1.3
5 0.917 0.217 215.8 213.9 0.005 500.0 900,0 1.6

6 0.989 0.217 323.7 320.8 0.005 500.0 1000.0 1.6
7 0.964 0.217 215.8 213.9 0.005 500.0 900.0 1.75
8 1.030 0.217 215.8 213.9 0.005 500.0 1000.0 1.5
9 1.950 0.217 215.8 2.13.9 0.005 500.0 1000.0 1.6

10 1.040 0.217 215.8 213.9 0.005 500.0 1000.0 1.6

73

calculated:

» - <°max -’’.i.'/l2'-'1 * 5(1»4)
This precision in the control variable translates to an
average precision in pressure of 34 psi over the range
500-1000 psia. This level of precision proves adequate for
engineering purposes? additional precision may be obtained
by lengthening the parameter substrings. We must also
decide how to form the full string from the parameter
substrings. In this study, the full string is obtained with
normal bit map; the resultant is a string of length 4 » 10=40,
the concatenation of 10, four bit substrings. With j, Um i p ,
Um=v' an<3 bit map selected, we may create a population of
binary strings and interpret the strings as values. For

example, with j=4, um in=0, Umax = 7 * ^ ' anc* normal bit map
the string 1000 0011 0111 0110 1111 0000 1100 1000 1110 0110
(low to high=right to left, spaces added for readability)
translates to the set of Uj values (30000, 70000, 40000,
60000, 0, 75000, 30000, 35000, 15000, 40000) (low to
high=left to right).

Constraints have been specified on both minimum and
maximum pressures as well as compression ratio. As
previously indicated, these constraints are adjoined to the
problem with a penalty method. A cost is added to the
unconstrained objective (total horsepower) proportional to
the square of the constraint violations. Table 4-2 displays
.values of penalty coefficient adopted in this study. These
coefficients have been sized to penalize a nominal violation

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

74

on each of the compressors by about 10% of a nominal
operating cost.

. Table 4-2
Penalty Coefficients
Steady Serial Problem

Constraint Type Penalty Coefficient Nominal Violation

maximum pressure 10 5 psia
minimum pressure 1 °6. 5 psia
pressure ratio 1(10b) 0.02

With objective function, discretization, and
constraints in place, we are almost ready to perform the
genetic optimization. One final computational detail must
be explored. Since we have formulated the problem as a
minimization we transform the objective function to a
fitness function with the transformation described
previously:

u(x) = Snax ■ 9 <x)
For this problem, the maximum of g is very large; however,
we choose Cmax= 1(106). This permits adequate admission of
infeasible solutions, while maintaining a reasonably
competitive range.

Results of Computation

The model, objective function, constraints, and genetic
algorithm have been programmed as described. In this
section, we examine results from independent trials and

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

75

compare to published results.
To initiate simulation, starting populations (N=50) are

chosen at random. For each trial, the genetic algorithm is
run to generation 60. This represents a total of 50*61=3050
function evaluations per trial. This may seem like a large
number of function evaluations until we consider the size of
space being searched. Recall that the binary strings are of
length 1=40. This represents a total of 24 ^=1.1(101^)
possible different alternatives in the search space. In

this light, 3050 function evaluations is a miniscule
fraction, 0.00000028%, of the possible unique alternatives.
To put this performance in perspective, if we were to search
this efficiently for the best person among the world’s 4.5
billion inhabitants, we would only examine 13 people before
making our selection.

The results of three independent trials— using
different starting points for the pseudo-random number
generator— are displayed in Figure 4-2. This figure shows
the cost of the best string of each generation as the
solution proceeds. At first, performance is poor. By the
action of selection, mating, and crossover, better and
better strings are formed. In all three cases, near-optimal
results are obtained by generation 20 (1050 function
evaluations). Careful examination of the best-of-run
results is instructive. ■ Table 4-3 shows the cost breakdown
for the best of each run. It is comforting to see that
three independent simulations consistently give near-optimal

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

75

results. In all cases, power cost alone is very near-
optimal, with most of the excursion incurred as penalty.
This is the result of small constraint violations caused by
the fairly crude degree of pressure control (=34 psi).

Another useful performance measure is displayed in
Figure 4-3, the population average performance. At first,
most of the population is infeasible; as a result., the
average is near the arbitrary specified maximum cost of
1(10^). For a time, improvement comes easily. During early
and middle stages, the creative notion exchange brings vast,
rapid improvement. After awhile, the population enters a
stagnation period. An examination of the individual strings
at this point shows substantial convergence at most bit
positions. This fact is also reflected in the closeness of
the population average and the maximum value by comparing
Figures 4-2 and 4-3 during later generations. We may wonder
why the solution exhibits a form of convergence which does
not contain-the global optimum. There are three reasons
which have been identified for this behavior: discretization
and constraint handling, genetic drift, and genetic
algorithm hard problems. We will examine these reasons and
their solutions near the end of the chapter.

In Figure 4-4 we compare the optimal pressure profile
(solid line) to the best of run SS.1 (triangles). First, we
note that the optimal solution is highly constrained. Six
pressures rest at a maximum or minimum pressure constraint.
Figure 4-5 shows the situation in run SS.1 for the

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

77

an

Key
55.1
55.2
55.3

I—cooo

GENERATION

Pig. 4— 2. Best-of-Generation Results - Steady
Serial Problem

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

78

Table 4-3
Best-of-Run Results

Steady Serial Problem

Run Least Cost
of Run

%
Power Cost Difference

from Optimal
%

Penalty of
Cost Optimal

SS. 1 1.380 1. 148 +1.1 0.232 20.4
SS.2 1.310 1.187 -4.6 0.123 10.8
SS.3 1.400 1.057 -6.9 0.343 30.2
Mean 1.363 1.131 0.233 20.5

Optimum 1.135 1.135 0 0 0

C
NOTES: 1) All costs are in units of 10 horsepower.

compression ratio. In the optimal results, 4 compressors
rest at maximum compression ratio. In all, 10 points are
constrained. This results naturally from the
characteristics of compressible flow. In a pipe carrying an
isothermal compressible fluid, friction gradient decreases
with increasing pressure. Furthermore, for a given flow,
compression power required is a sub-linear function of
compression ratio. As a result, other things being equal,
it is desirable to run at the highest pressures and
compression ratios while just satisfying delivery pressure
requirements. The optimal solution reflects this expected
behavior well. The only pressures not dictated by
constraint are discharge pressures at station 6 and 10.
Station 10 is set to just satisfy the outlet pressure after

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited without perm iss ion .

79

GENERATION

Pig. 4-3. Generation Average Results
Steady Serial Problem

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

80

accounting for losses through the last pipe. Compressor 6
is not fully utilized because of its low efficiency.
Recall, that compressor 6 is two thirds as efficient as the
other units. As a result, it is advantageous to use more
economical compression in its place.

The genetic algorithm solution also reflects these
basic principles. Run SS.1 agrees well with the optimal
solution except at compressors 1, 4, 6 and 8. Over
compression occurs, at compressors 1 and 4 with attendant
under compression at 6 and 8. The under compression at 6 is
in line with the low efficiency of that unit. The over
compression at units 1 and 4 is consistent with the
principle of elevated pressure; however, these excursions
are less than optimal because of pressure ratio constraint
violation; The under utilisation at unit 8 is not explained
by any means; somewhere along the way this set up was
advantageous in the context of other existing substrings.

4.6 Single Line Transient Problem
Another important area of application for optimization

is in time-varying flow problems. On many gas transmission
lines the assumptions of steady flow are hardly, if ever,
met. In these situations, it is important to model the
dynamics of pipeline flow in addition to the friction losses
that play the predominant role in steady flow. In this
section, a problem in transient flow on a single gas

pipeline is studied to further illustrate the use of the
genetic algorithm. Results are presented and compared to

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

81

CLM
to

ui:
Oil

toLU

— constraint
 optimal
A computed

S T A T I O N NUM B E R

Fig. 4-4. Pressure Profile - Run SS.1
Steady Serial Problem

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

82

* * * * * * * * * + jr+ -m jrw + * jr]r+ J r^ jfjr]r jr'* * * '* * -J f1* jr * y *

' .•'̂ *>W*̂ V&''.ij?̂I&? ■ , „_... ._;. .. ,

• g

5C/J
10

>o -P
(!) C-P -Hflj i—I flj•H flj p3 g -P
o -a coH -P C«j a oo o o

.. . . , .

M

ru•rH
P0)
CO

>»TJnJ0)-pco
I
I—I »
CO
co

§05

CO•pr-C
3co
CD
05

O
•H
•P(0
05

3
O
•H
(0CO g d) 3 P H CLiPg O O P O CP

in
!

tn
•HP4

001 OS'O
onuu sanssaad

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

83

solutions available in the literature.
The situation we study is illustrated in a schematic

diagram, Figure 4-6. A known demand schedule is required at
the delivery end of a single gas pipeline of known dimension
and characteristics. The supply flow may be adjusted within
limits to meet demand. This is done while minimizing the
cost of compression subject to minimum and maximum pressure

constraints.
This problem has been well studied by other authors

using more traditional methods of optimization. These
methods were briefly reviewed in Chapter 2. In this
section, we again follow the work of Wong and Larson;
however, we only adopt their problem specification this
time; newer, more appropriate modeling techniques are used
in this study.

Modeling Equations and Control Parameters
As with the steady state problem, it is conventional to

consider models for each piece of equipment and link them
together. In the following, we consider a single pipe with
specified flow boundaries and a compressor at the upstream
end.

Dynamic pipeline models have been extensively studied
and tested. In this study, simplified, one-dimensional
partial differential equations of mass and momentum
conservation are written and solved using the method of
characteristics transformation and a second order finite
difference approximation. This model is well established

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

84

>
DC ©

-J
yj
Q

©a.eiwn
e.

3 - X

©
*JS

©
CL
Eo
o

o-

£L
CL
3
c/5

§H
oMen
+>c
<d

CO6<0
£
CD
a

CDi—iGifi
w
j
o

•H•P

XO
CO

e
CD

+ 1CO
> 1
CO

VOI

tr>•H

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

85

and has been used by numerous natural gas companies in
operations and design.

As in the steady state case, flow is assumed to be
isothermal and all pipes have level profile. These
restrictions may easily be lifted; they have been adopted to
keep the equation set as simple as possible and still
maintain a realistic simulation. The simplified momentum
equation may be written as follows:

1 12 + 3v + f»v|v| = 0
p 3x 3t 2^6 u

where p - pressure
p - mass density
v - average velocity
d - pipe diameter
f - friction factor (dimensionless)
x - distance along pipe
t - time

A simplified continuity equation may be written:

M + Ifi = o ax at u

where x,t,p - as before
m - mass flux (mass rate per unit area)

The equation set is completed by recognizing an
appropriate equation of state, as well as a relationship
between average velocity and mass flux:

p = pRT
where p,p - as before

T - temperature (absolute scale)
R - gas constant

m = p • v
where p,v,m - as before

Eliminating variables among the four equations we obtain the
following two relationships:

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

86

2c _3£ + 8m , f«mjm| _ n
3x 3t 2»d'p
3m + 3p _ Q
3x 3t

where m, p, x, t - as before 2
c - isothermal wave speed (c =RT)

Together with appropriate initial and boundary conditions,
these equations provide sufficient information to calculate
density and mass flux over the entire pipeline for all time.
Initial conditions appropriate to this problem may be
written as follows:

p(x,0) = f(x)
m(x,0) = g(x)

where f, g - specified functions of x
It is quite common to assume steady initial conditions; this
has been done in this study. To complete the problem
specification, we specify mass flux boundary conditions at
both pipe ends:

m(0,t) = h(t)
m(L,t) = i (t)

where i, h - specified functions of time
L - length of pipe

For this problem, the downstream boundary represents a
specified user demand. The upstream boundary is the main

control variable. We are attempting to vary flow to obtain
optimal (least energy) results.

To solve the equations, we transform the partial
differential equations to ordinary differential equations
using the method of characteristics. The resulting

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

87

equations are solved numerically on a fixed space-time grid.
The method of characteristics may be motivated in a number
of ways [19]. Consider multiplying our reduced continuity
equation by an unknown multiplier X and adding the product
to the reduced momentum equation:

A similar expression is available for the density. In the
combined expression, we recognize the form of the total
derivatives and can rewrite it if we are willing to restrict
the direction of integration. This process results in the
following four differential equations:

These four ordinary differential equations may be
conveniently solved using a second order finite difference
approximation. The detail of this formulation is presented
elsewhere [19] and is not covered here.

The resulting procedure may be thought of as a black
box where time-varying upstream and downstream flow are

specified and upstream and downstream density (pressure) may
be calculated as time goes on.

We also require a relationship for calculating power

OXf c^ao . 1 . xam . am + f «m|mI = nL x ax at J ax at 2dp u
We recognize from the calculus the form of a total
derivative:

dx _ +c
3t = ~

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

88

consumption in the upstream compressor. The relationship
developed in a previous section for steady flow is also used
to calculate power use in transient flow. Dynamic effects
in compressors are small compared to the inertia and storage
capacity of even modest length transmission lines; such
effects are usually and presently ignored. The time
integral of power consumption (energy) is calculated using a
trapezoidal rule approximation, a second order procedure.

Objectives and Constraints
As before we want to deliver the demand flow at minimum

total power while satisfying pressure constraints. The
objective must now be stated as an integral because the
problem is now time dependent;

minimize HP(t)*dt
This minimization is subject to minimum and maximum pressure
requirements;

p • ^ d (x , t) SlDpm m ^ ' ^max
With system model, constraints, and objective function
specified, we consider the computational details in
preparation for solution.

Computational Considerations
The computational detail of our particular solution is

now presented. Specifically, we examine numerical

parameters, discretization, and constraint handling. The
particular problem we solve has been presented by Wong and
Larson [29]. Their pipeline parameters were selected from

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

- 89

field studies presented originally by Wilkinson, et
al. [23]. The pipeline characteristics and compressor
coefficients are presented in Table 4-4.

Table 4-4
Pipeline and Compressor Coefficients

Single Line Transient Problem

Pipeline Parameters

Length •• 15.95 miles
Inside Diameter •• 1.63 feet

Gas Molecular Weight •• 20.30 (S.G.=0.7)
Friction Factor •• 0.01028

Temperature •• 53.0.7° R

Compressor Parameters

A Coefficient : 215.8 horsepower/MMCFD
B Coefficient : 213.9 horsepower/MMCFD

R exponent : 0.217
Constraints

Minimum Pressure : 450 psia
Maximum Pressure ; None specified

Maximum Pressure Ratio : None specified

Unlike the steady state problem, we now have a time
dependent problem; we must find the input flow function
which minimizes accumulated horsepower. To solve by genetic
algorithm, we first reduce to a finite number of parameters

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

90

by time discretization and then code and discretize each
parameter to a suitable precision. Time discretization is
accomplished over m equidistant intervals using linear
interpolation between the m+1 parameters associated with
each of the interval endpoints. For the particular problem,
10 minute intervals are chosen resulting in 15 parameters

over a 140 minute simulation. Each parameter is represented
by the mapped fixed point coding discussed previously. For
this problem, we choose a 3 bit representation over the
interval, tQ__v ,Qm -] = [100, 170] MMCFD3. This results in auioa lit in
precision it equal to | 170-1 00 |/(2^-1)= 10 MMCFD. The
string representation of the time series is the
concatenation of the fixed point parameters (normal bit map)
resulting in a string of length 1=3*15=45.

Constraints are once again adjoined to the problem via
penalty cost. As before, the cost is taken proportional to
the square of the violation; however, because the problem is
time dependent, we must integrate the violation over the

simulation. For the constraints, this is done with a
rectangular rule integration, a first order procedure. The
penalty coefficient has been sized to permit a nominal 5 psi
violation over 50% of the simulation. The penalty
coefficient in psi and average horsepower units is 4822.

This coefficient yields a nominal average horsepower cost of

^Although the equations are in mass flux form, we
still express the rates as a volumetric mass flux. To
convert one to the other, we use the relation, m=p »Q /A
where A is the pipe cross-sectional area and the subscripts
indicates a quantity expressed at standard conditions.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

91

25.
The minimization is transformed to maximization with

the same kind of mapping used in the steady state case. The
total cost is subtracted from a nominal maximum cost of
5000. The fitness is the greater of the calculated
difference or zero. The cost in these runs is interpreted
as an average power consumption. The accumulated power
(energy) is time normalized resulting in an average power
consumption over the simulation.

Results of Computation
In this section, we examine the results of two

independent trials of the genetic algorithm on the transient
problem. The model, objectives, and constraints have been
programmed and interfaced to the same genetic algorithm used
in the steady state problem. Identical parameters have been
used for the population size, mutation and crossover
probabilities:

population size = 50

^crossover ~
^mutation “ ^*^01
Once again, the genetic algorithm finds improvement in

a workmanlike manner. Figure 4-7 shows the best-of-
generation results. Both trials are started from random

populations and run to generation 60 resulting in a total of
3050 function evaluations. Improvement is steady, although
less dramatic than that obtained in the previous case. This
is because the interval of control variable (input flow) has

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

92

been more carefully selected. As a result, highly
infeasible solutions are difficult to come by. This is in
stark contrast to the steady state formulation where much of
the parameter space was highly infeasible.

Table 4-5 shows a cost breakdown on the best of the two
runs in comparison with the optimal solution. In both
cases, results are near-optimal. Unpenalized power is very
near-optimal, and the penalties themselves are a small
percentage of the optimal average power.

The generation average results are presented in Figure
4-8. Population average lags the best as expected. Near
the end of the run, examination of the strings shows
convergence at most bit positions. This is also reflected
in the closeness of the population average and best results.

Examination of a sample solution is also instructive.
Wong and Larson found that the optimal results were obtained
by just maintaining the minimum pressure at the downstream
point at all times. The genetic algorithm, best-of-run TR.1
results follow this same trend quite closely. Figure 4-9
shows the delivery point pressure with time for run
T R . 1. The pressure remains near 450 psia except for small
excursions in the middle and end of the run. The input flow
time history selected by the genetic algorithm results is
shown in Figure 4-10. Wong and Larson's results show a
similar flow hump mid-run although the results are not
directly comparable because the pipeline models are
different. The dashed line shows the specified output flow

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

9 3

C J

cr Key

□ TR.l
A TR.2

GENERATION

Fig. 4-7. Best-of-Generation Results
Transient Problem

Single Line

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

94

Table 4-5
Best-Of-Run Results - Single Line Transient Problem

Run
Cost

Avg. HP
Power
Only

%A
Optimal Penalty

% of
Optimal

tr. 1 2107 2077. +2.4 30 1.5
tr.2 2107 2001 -1.3 106 5.2
average 2107 2039 68 3.4

optimal 2028 2028

time history.

4.7 Good News and Bad News
As the old story goes, we have some good news and some

bad news. The good news is that genetic algorithms have
demonstrated their efficacy as improvement finding
algorithms in two separate practical engineering
optimization problems. The bad news is that absolute
convergence to the best is not guaranteed. In this section,
we take a closer look at the reasons for the "bad news" and
some possible solutions within the genetic algorithm
context. We also take a look at the "good news": the
genetic algorithms simplicity and power.

Suboptima1 Performance and Premature Convergence
In both the steady state and transient problem, an

interesting thing has been observed: near-optimal results
are easily obtained, while further improvement is difficult.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

9 5

Key
□ TR.l
A TR.2

CO
oS

GENERATION

Fig. 4-8, Generation Average Results - Single Line Transient Problem

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

 optimaltnl LU
a. □ calculated

ST’

0.00 50.00 100.00TIME - (MINUTES)
Fig. 4-9. Pressure Time-History - Run TR.l

Line Transient Problem

150.00

- Single

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

FL
OW

-

(m
CF

D)
CD

0.0
0

50.
00

100
.00

150
.00

20
0.
00

.97

 specified outflow
□ calculated inflow

.00 50.00 100.00TIME - (MINUTES) 150.00

Fig. 4-10. Flow Time-history - Run TR.l
Single Line Transient Problem

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

98

Furthermore, examination of the strings contained in the
population toward the end of the run shows substantial
convergence at all bit positions. Both suboptimal
performance and premature convergence have been observed
previously by other authors [49,53]. We examine three
contributing factors to account for this behavior:
discretization and constraints, genetic drift and genetic
algorithm hardness.

One reason the genetic algorithm results cannot match
the continuous optimum is because we are not solving the
same problem. Discretization of the parameter space and
introduction of penalty functions transform the original
problem so the actual optimum is unattainable.
Discretization implies that we are only examining a finite
number of points in the continuous parameter space; it is
unlikely (an event with zero probability) that the discrete
optimum matches the continuous optimum. Furthermore, the
introduction of a penalty method with finite penalty
coefficients also modifies the problem. Only as the penalty
coefficients go to infinity can we hope to be solving the
same problem. While discretization and penalties may
account for suboptimal performance, neither of these
problems is totally responsible for the premature
convergence we have observed. Additionally, both

discretization and penalty selection may be controlled by
the user to get as close as is necessary and practical to

the original constrained problem. Therefore, we must turn

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout pe rm iss ion .

99

to more fundamental explanations of genetic algorithm
behavior to explain the phenomenon of premature convergence.

Premature convergence to suboptimal results has been
observed in empirical studies by both Cavicchio [49] and De
Jong [53]. De Jong likened the primary cause of this
behavior with a natural genetic phenomenon called genetic
drift. In small populations, the difference between the
expected number of offspring and the actual realization can
cause the population to drift away from the desired path.
We see this more clearly if we again look at our
reproductive plan in some detail.

We recall that in reproduction the number of copies is
proportional to the normalized fitness u/u. This rate of
sampling has been identified as a near-optimal, realizable
strategy. In actual implementations, we must reconcile the
fractional nature of the quotient, u/u, with the need for an
integer number of offspring. In this study, we have used a
probabilistic rounding, where the population count is
rounded up with a biased coin toss, using the fractional
part as the bias. This procedure is simple and gives the
correct expected number of offspring when large populations
are involved. Furthermore, the method adopted here is an
improvement over earlier methods which selected N
reproduction candidates from the population at large using
the selection probabilities p-/Zp? nonetheless, the biased
flip of a coin is-a high variance process. As a result,
excursions from the expected and near-optimal sampling rate

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

100

are commonplace. It is this difference that largely permits
the drift toward premature, suboptimal convergence.

The idea of reducing the variance can and has been
extended further. One particularly interesting approach
treats the fractional part of the fitness like an interest
payment. The interest is compounded over a number of
generations until it compounds to create another individual.
While not adopted in this study, this variance reduction
method provides a way of reducing the effects of premature
convergence due to genetic drift.

While genetic drift is a primary ingredient in
premature convergence, there is another important reason why
the simple genetic algorithm may converge to suboptimal
results: the problem may be genetic algorithm hard (GA-
H a r d) . A recent study by Bethke [54] has rigorously
explored whether or not a problem is difficult for the
simple, three rule genetic algorithm. In a previous
section, we saw how the genetic algorithm depends upon the
assembly of short building blocks. Crossover permits near-
optimal sampling of short schemata, but effectively destroys
longer ones. As a result, in problems where short building
blocks do not correctly predict the optimum, we may
naturally get convergence to suboptimal points. Although
Bethke has developed an approach for determining GA-Hard
problems by identifying schema average fitnesses with a

Walsh function analysis, the approach is cumbersome for
problems without simple analytical description. In

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

101

generalizing his investigation he has suggested that these
GA-Hard problems tend to have well-isolated optima: this
conclusion is limited to single parameter problems using a
normal fixed point coding.

In the large, there is little evidence that either of
the problems we have solved are GA-Hard. Short schemata
building blocks have re]iably led to near-optimal portions
of the.space. In the neighborhood of the optimum, the
problems may be partially difficult for the genetic
algorithm. In both problems, the parameter cost surface is
relatively flat near the optimum. This, together with an
interaction of the penalized constraints and relatively
crude discretization create the opportunity for irregular
multi-modality. This kind of irregularity may be difficult
for the genetic algorithm to exploit, however, we must
consider it to be a secondary effect when compared to the
problem of genetic drift.

The primary method of improving genetic algorithm
performance on GA-Hard problems is to seek a reordering of
bit positions which more naturally permits short building
blocks to lead to the optimum. Parameter interleaving or
specified bit maps as described previously are one

possibility for this. The more general solution is to
incorporate the inversion operator [ANAS Ch. 6], This may
be necessary in tackling tougher problems with longer string
representations.

Other methods may be useful for improving convergence.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

102

Bethke [54] has suggested hybrid techniques where a genetic
algorithm is used to define potentially important areas of a
space and a gradient searcher is used to converge to some
localized peak. This idea is attractive as it combines the
global perspective of the genetic procedure with the
convergence characteristics of calculus-based schemes. We
might also consider a hybrid scheme where instead of
reverting to the original parameter space for the gradient
search, we consider the 1 bit string representation as an 1
dimensional parameter space. In this 1-space, single bit
changes are analogous to numerical evaluation of
derivatives. Numerous strategies may then be used to combine
promising single bit changes into potentially promising
multiple bit moves. This procedure is, thus, analogous to a
gradient search in the 1-space.

Genetic Algorithm Strengths
In trying to portray an accurate picture of genetic

algorithm performance we have investigated a number of
genetic algorithm difficulties. Methods have been suggested

to answer each of these within the spirit of the genetic
algorithm methodology. In focusing upon problems, it is
possible to forget the strengths of the genetic algorithm
approach. This would be a mistake, as the method's
strengths are manifold.

First on the strength side of the score sheet is
simplicity. Genetic algorithms are elegantly simple in
operation and application. String copying, substring

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

103

swapping, and random number generation are the only

essential operations required. Application to different
problem domains is exceedingly straightforward as we have
shown. In the present study, the genetic algorithm and
decoding routines for both the steady and transient problems
are identical; only the system model, objectives, and
constraints have been changed. This simplicity of
application results in a clean interface between optimizer
and model. The usual genetic algorithm interface involves
passing a string down to the model and a fitness back up to
the genetic algorithm. This simple interface encourages
clean, modular programming; extant modules may be used with
little or no modification to either model or optimizer.
This is in stark contrast to many optimization methods.
Dynamic programming and other clever enumerative schemes,
for example, depend upon an unholy mixture of model and
improvement algorithm to effect a solution. Calculus-based
methods also involve a more complex interaction because at
the very least, derivative information is necessary for the
improvement algorithm.

The clean interface issue is not simply one of elegance

in programming; it also determines where the methods may be
applied. For example, dynamic programming and calculus-
based methods are generally inappropriate in situations
where no model exists as in the direct control of a
prototype system. Genetic algorithms have no such

restrictions because they only require payoff information.

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

104

While simple, genetic algorithms are powerful in their
quest for improvement. In this study, two problems with

12 13large problem domains (10 -10 alternatives) have been
solved using the simple reproduction, crossover, mutation
procedure. In all cases, near-optimal results have been
obtained in a relatively small number of function
evaluations. Furthermore, acceptable interim behavior is
noted because of the rapid initial improvement phase in both
cases. Genetic algorithms obtain acceptable performance
quickly and fine tune performance at a more leisurely pace.
This kind of behavior is desirable in practice. As we
pointed out when we discussed the goals of optimization,
finding the best is not usually important; reliably finding
an acceptable solution is.

No small part of the genetic algorithm’s power derives
from its global perspective. Genetic algorithms work from a
database of diverse points. As a result, during the search,
many hills are climbed simultaneously. This helps eliminate
the myopia of typical algorithms which work from a single
point.

Genetic algorithms are problem independent; they are
truly a canonical search method. The present study has

investigated two very different problems successfully with
the same procedure. Previous studies have investigated
genetic algorithms in a variety of domains: smooth and

discontinuous, deterministic and noisy, unimodal and multi­
modal. The combination of this breadth of performance and

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

105

power of effect supports the claim that genetic algorithms
are robust.

Last, in this study, we have demonstrated the intuitive
appeal of genetic algorithms. The valuable notion exchange
heuristic which underlies genetic algorithm performance is
dramatically similar to human innovative thought. We make
no claim that the simple genetic algorithm captures the full
richness of human innovation; yet in its simplicity, it
bears some strong resemblances. We note that this
heuristic is largely an inductive procedure. Genetic
algorithms by their nature, generalize from specific
example; this is a breath of fresh air among other search
algorithms which are methodically deductive.

4.8 Summary

In this chapter, we have applied the genetic algorithm
approach to two practical problems in pipeline control: long
term optimization of a serial system and transient optimal
control of a single line. The applications have proven
successful in independent trials on both problems: near-
optimal results have been obtained using an infinitesimal
sampling of the possible alternatives. Along the way, we
have also addressed some practical issues in using genetic
algorithms ,on engineering problems.

To apply genetic algorithms to practical problems, we
concern ourselves with four things: discretization and
coding, fitness mapping, constraints, and genetic algorithm
parameters. Discretization may appear at two levels. In

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

106

continuous control problems, the time or space continuum is
reduced to a finite space by assuming some convenient
functional form. For example, in the transient problem we
consider piecewise linear interpolation of the control
variable (mass flux) over equidistant time intervals. Once
we have reduced to a finite number of parameters, we must
discretize the individual parameters and combine them to
form a complete string. In this study, all parameters have
been coded in mapped, fixed point form. This type of coding
gives uniform precision over a well-known interval. We also
have discussed how shortened floating point codes and other
exotica may be useful for other problems. In this study,
strings have been formed in both problems by the simple
concatenation of the individual parameters. The computer
implementation allows for a specified bit map; however, this
feature did not prove necessary as the performance has been
deemed satisfactory.

Genetic algorithms are designed for unconstrained
problems; to handle constraints we must transform a
constrained problem to an unconstrained formulation with a
penalty method. A cost is associated with constraint
violation; in this study, the cost is proportional to the
square of the constraint violations. . A sizing procedure has
been developed for calculating reasonable penalty
coefficients; coefficients are chosen so that nominal
violations result in penalties which are a percentage,
usually 10% of some nominal cost.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

107

Fitness mapping may be necessary depending upon the
problem formulation. The normal genetic algorithm depends
upon the maximization of some non-negative figure of merit,
the fitness. In minimization problems, we must transform
the as-formulated objective function to a proper fitness
function form. In this study, we use a simple mapping
function: we subtract the minimized objective function value
from a specified constant and arbitrarily assign all
negative values to zero.

While the parameters of the genetic algorithm affect
its performance, nominal values of population size,
crossover probability, and mutation probability have yielded
acceptable engineering results. These parameters may be
fine-tuned— or adapted automatically— to get peak
performance; however, this should rarely be necessary for
practical results.

The steady state and transient problems have been posed
using the problem formulations of Wong and Larson [29]. In
the steady problem, we seek the least power operation of a
serial system of ten compressors and ten pipes. Maximum and
minimum pressure and compression ratio constraints are
specified. For this problem, the string is interpreted as
the concatenation of 10-four b i t 'substring parameters. Each

parameter is a mapped, fixed point code representing the
control parameter U* (AP) for each of the compressors. In
three independent trials of the genetic algorithm with fixed

genetic parameters, near-optimal performance is obtained.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

108

In all three cases, power cost alone is very near-optimal
(<5%), while nominal pressure and compression ratio
violations cause a total penalty violation cost ranging
between 10 and 30 percent.

In the transient problem, with known demand time
history, we seek the supply schedule which minimizes energy
consumption, subject to maximum and minimum pressure

constraints. To solve this via genetic algorithm, we first
discretize the continuous control schedule into 14-ten
minute intervals. A parameter is associated with each
interval endpoint and the flow is assumed to vary linearly
in between. The 15 parameter sequence is represented by the
concatenation of 3 bit substrings using a mapped fixed point
coding scheme. Two independent trials of the problem have
been performed using the same genetic algorithm and
parameters. In both cases, very near-optimal performance
has been been determined. The energy-only cost is within
2.5% of the optimal value, while the penalty cost adds less
than 6% of the optimal value. Wong and Larson have found
that the optimal solution is to just satisfy the minimum
pressure constraint at the downstream end for the duration
of the simulation. The genetic algorithm solutions follow
this trend as well; close examination of one solution shows
the pressure hugging the minimum pressure constraint of 450
psia.

While it is- encouraging to consistently obtain near-
.optimal performance, in both problems we note a form of

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

1 0 9

convergence at most bit positions by the end of each run.
We have seen how discretization and penalty methods
transform the original problem so we do not expect to obtain
the continuous constrained optimum exactly; but, these
effects do not adequately explain this premature
convergence. Genetic drift has been identified as the
primary cause of this problem. The difference between a
string's expected reproduction rate and its actual
realization may cause small populations to drift away from
the proper course. Variance reduction methods have ‘been
suggested to mitigate this problem.

Another cause of premature convergence is problem
hardness (GA-hard problems). If short building blocks do
not reliably predict the optimum, premature convergence may
result. In the problems investigated here, there is little
evidence of GA hardness. For problems which do display such
difficulty, the inversion operator may be necessary. This
operator attempts to find satisfactory re-orderings of bit
positions so short building blocks predict improvement more
reliably; thus far, inversion has not proved necessary for
problems with modest string lengths (<50).

While we have noted these difficulties, we also have
demonstrated some of the genetic algorithm's many strengths.
Genetic algorithms are simple in operation and application.
Yet, in their simplicity they have demonstrated great power
to search complex spaces quickly. Furthermore, they appeal
to our own sense of innovation. Unlike many optimization

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

110

procedures, genetic algorithms are inductive, they
generalize from specific instances. In a sense, the process
is a more human-like search; it is bold and synergistic. It
does not plod mechanically from point to point. Instead, it
combines its best ideas to speculate on improved
performance. As a result, genetic algorithms hold great
promise, not only in traditional problems, but as the
fundamental search mechanism in a learning system. In the
next chapter, we explore this application.

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

CHAPTER 5

A LEARNING CLASSIFIER SYSTEM

We started this study with the goal of designing,
constructing, and testing broadly applicable algorithms for
learning and decision making. In one sense, our study of
optimization with genetic algorithms in the previous two
chapters has been a digression from this goal because we
know full well that optimization is too rigid a methodology
to be trusted to control even fairly simple systems. In
another sense, this work is germane to our goal because it
has helped us examine the genetic algorithm's innovative
flair for searching rapidly through arbitrary string spaces?
they seem more human-like a search mechanism than others we
commonly encounter. What then is the problem? Why can't we
unleash this innovation in more complex, less completely
defined environments? The problem lies not with the genetic
algorithm, but rather, with the structures we choose to
adapt.

In this chapter, we overcome this difficulty by
changing the adapted structure. A learning system is
described and tested based upon a population of string

rules. The string rules use both environmental information

111

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

112

and the current internal state to decide what to do and what
to think next. A genetic algorithm generates new, possibly
better, rules for inclusion in the population. In this way,
the innovation of the GA is used to reprogram the system
with better and better rules. At first we confine our
attention to the origins of these rule systems, called
learning classifier systems (LCS). We describe in broad
terms the operation and structure of the LCS and then test
its operation on a simpler problem domain than the ultimate
pipeline control setup: one-dimensional control of a
frictionless inertial object. By doing this, we can test
the simple LCS without the complexities of a more
sophisticated operating environment.

5.1 Learning Classifier Systems - Overview
A learning classifier system is an artificial system

that learns rules, called classifiers, to guide its
interaction in some specified environment. Learning
classifier systems are the latest outgrowth of Holland’s
continuing work on adaptive systems.

In 1962, when Holland outlined his theory of adaptive
systems [60], he developed a general theory encompassing

many systems but ultimately he was addressing himself toward
machines who could program themselves:

The study of adaptation involves the study of both the
adaptive system and its environment. In general terms,
it i s a study of how systems can generate procedures
enabling them to adjust efficiently to their
environments. If adaptability is not to be arbitrarily
restricted at the outset, the adapting system must be
able to generate any method or procedure capable of an

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

113

effective definition.
With this foundation, more concrete suggestions emerged

for classes of schemata processors [61] which in some
limited respects resemble the present day LCS. This work
has evolved into the intricately interesting, but as yet
unimplemented, broadcast language [1], The first practical
implementation of a learning system based on these theories
appeared in 1978. Holland and Reitman [62] describe this
first Learning Classifier System which learns a simple maze
running task. Though the task is simple, the achievement is
remarkable because of its successful marriage of a rule-
based knowledge system and a genetic algorithm for discovery
of new rules. Holland [63,64] is continuing this work with
construction of a user-tailored information retrieval
system. Booker [65] has recently completed his study of an
LCS-based artificial creature learning to survive in a two
dimensional domain containing both food and noxious
substances. His work goes to great length to tie the LCS
and Holland Adaptive Systems Framework to current work in
cognitive science. Wilson [66] is applying the LCS concept
to visual pattern recognition. With this as historical

background, we need to examine the elements of an LCS to see
why it holds promise as an effective learner and decision
maker.

A learning classifier system is composed of three main
elements:

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

114

1. Rule and Message System
2. Apportionment of Credit System
3. Genetic Algorithm

The rule and message system of an LCS is a special kind of
production system. In computer science parlance, a
production system is a computational schema -which uses ’r.ules?'.
as its only algorithmic device. Although there is a wide
variety of syntax among production systems, the rules are
generally of the following form:

if <ccndition> then <action>
Semantically, the action’ is taken if the given condition is
satisfied.

At first blush, the restriction to such a simple device
for the representation of knowledge might seem too
constraining. Yet, it has been shown that production
systems are computationally complete [67-69]. Their power
in representing knowledge involves more than this. They are
also computationally convenient. A single production or
small group of productions can often represent a complex set
of ideas. In procedural languages, FORTRAN, ALGOL, etc. it
is rare that a single statement represents a complete
thought.

While completeness and convenience are important, we
are also drawn toward rule-based systems because, in some
sense, human operators seem to store their knowledge in rule
form. Earlier on, we noticed in our informal survey of the

gas dispatcher's environment, that a gas dispatcher, when

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

115

talking about his operation of the system, chose to describe
his knowledge in rule-of-thumb form. We repeat the selected
rules below:

If you are losing 10-15 psi/hr then you must take
corrective action
If during a 6 hr period you lose 70 psi of linepagk
then replenish before moderating.
Try to maintain 700 psi at W_______ (a location)
during the winter.

As we expect, the rules are simple in form but powerful in
their summary of a large deal of experience. In designing
an artificial learner and decision maker, it seems
reasonable to select a similar rule-based structure.

With their simplicity, power, and common sense appeal,
it is no wonder that productions systems have been very
useful in representing expert knowledge in artificial
intelligence systems. Two of the best known and successful
expert systems, DENDRAL [703 (Mass Spectroscopy Analysis)
and MYCIN [71] (Bacterial Infection Diagnosis), use
production systems for their representation of knowledge.
More recently and perhaps of more interest to engineers, the
Prospector system [72] has been constructed as a geological
field assistant to determine areas with high mineral
deposits. Other engineering expert systems have been
constructed to aid in oil well drilling [73], assist in
seismic data analysis, analyze oil well logs, site
hydropower developments, and manage a nuclear reactor [74],

Yet, production systems have been less frequently
suggested in situations in need of learning. One of the

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

1 16

main obstacles to learning has been complex production
syntax. Many productions systems permit involved
grammatical constructions for the condition and action
portions of a rule. Learning classifier systems depart from
the mainstream by restricting the rule (classifier) to a
fixed length representation. This has two benefits. First,
all strings under the permissible alphabet are syntactically
meaningful; this is not true in many production systems and
most procedural languages. Second, a fixed representation
permits meaningful string operators of the genetic kind.
This leaves the “door open for a genetic algorithm search of
the space of permissible classifiers.

In traditional expert systems, the value or rating of a
rule relative to other rules is fixed by the programmer in
conjunction with the expert or group of experts being
emulated. In a rule learning system, we don't have this
luxury. The relative value of different rules is one of the
key pieces of information which must be learned. To
facilitate this type of learning, Holland has suggested that
rules function in a competitive service economy. A
competition is held among classifiers where the right to
answer relevant messages goes to the highest bidders with
this payment serving as a source of income to previously
successful message senders. In this way, a chain of
middlemen is formed from manufacturer (source message) to
consumer (environmental action and payoff). The competitive
nature of the economy insures that the good rules

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

117

(profitable) survive and the unsuccessful die off.
While we shall soon examine the many details of this

apportionment of credit algorithm, one point is crucial; the
introduction of an internal currency or figure of merit.
The exchange and accumulation of an internal currency
provides a natural measure for the application of genetic
algorithms. Using the classifier's net worth (which we
shall shortly call strength) as a fitness function,
classifiers may be reproduced, crossed, and mutated as we
have done in Chapters 3 and 4. Thus, not only can the
system learn by evaluating and ranking existing rules, but
new rules, the offspring of high performance rules, are
inserted into the population by a genetic algorithm. We
must be a little less cavalier about generating entirely new
populations of rules, and we pay more attention to who gets
replaced; however, the process is very similar to the one
used in our optimization studies.

Together, apportionment of credit via competition and
search with genetic operators form a powerful learning
heuristic when combined with the computationally convenient
and complete framework of classifiers. In the following, we
examine the structure of the learning classifier system by
detailing each of the component parts: the rule and message

system, apportionment of credit system, and genetic
algorithm system.

5.2 The Rule and Message System

The rule and message system is central to the operation

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

118

of the learning classifier system. Not only does it provide
the computational framework for LCS thought and action, it
also is the backbone of the competitive service economy and
GA learning functions. To see this, Figure 5-1 shows a
schematic of the rule and message system integrated with the
apportionment of credit and genetic algorithm processes. In
this schematic, we see that the rule and message system
receives environmental information through its sensors,
called detectors, which decode to some standard message
format. This environmental message is placed on a message
list along with a finite number of other internal messages
generated from the previous cycle. Messages on the message
list may activate classifiers (rules) in the classifier
store. If activated, a classifier may then be chosen to
send a message to the message list for the next cycle.
Additionally, certain messages may call for external action
through a number of action triggers called effectors. In
this way, the rule and message system combines both external
and internal data to guide behavior and the state of mind in
the next state cycle.

The process is like a popular mode of communication at
our widget conventions. At these conventions, widget
conventioneers reach their fellow widget delegates by
posting notes on the widget convention bulletin board. The
notes may be posted by anyone (as long as there is room) and

may be addressed to individuals, widget committees, or other
groupings of widget delegates with something in common. In

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

119

ENVIRONMENT

LCSAOC

■

i
n
f

m e s sa g e

L i s t
DETECTORS -* EFFECTORS

o

CLASSIFIER

STORE

a
c
t
■

i
o
n

Fig- 5-1. Schematic - Learning Classifier System

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

120

this way, individual widgeteers rendezvous, committees
change or set their plans, and in general, the direction of
the convention is altered. Similarly, classifiers and
effectors are accessed and activated by the common
communication channel of the message list. Thus, the LCS is
able to change subsequent internal state and external
action.

To better understand the message processing action, we
examine the system’s two informational units:

1. Messages
2. Classifiers

In the LCS sense, a message is simply a string of fixed
length 1, over some finite alphabet, V. In this discussion,
we limit V to the binary alphabet {0,1} without loss of
generality. More formally, a message is defined as follows:

<message> — > {0 ,1}^
Messages may contain a variety of information, coded in any
imaginable manner. At a minimum, messages carry
environmental input data, internal tags, internal data, and
effector codings.

Messages are processed by classifiers. Recall that
classifiers are a form of rule in the tradition of
production systems. For this study, we limit classifiers to
the following form:

<classifier> — > <condition^><condition2><message>
As in the production systems discussed earlier, the

meaning of the classifier is clear: the message is sent

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

121

upon satisfaction of both conditions. A condition is a
recognition device which depends upon the presence of
certain messages on the message list. It would be nice if a
single condition could recognize not just a single message,
but rather, a class of messages with well-defined
similarity. We may achieve this capability quite simply and
elegantly by extending our message alphabet V by one
character to the alphabet V+ = {0,1,#}. Thus, a condition
is defined as an 1 position string over V+s

<condition> — > {0 , 1 ,#}^
Under the alphabet V+, at a given position, a 0 is

matched by a 0 , a 1 is matched by a 1 , and a # is matched by
either. For example, the condition #1111 is triggered by
either of: the messages 01111 or 11111. At the other

4extreme, the condition # 1### fires on any of the 2 = 16
messages with a 1 in the second position. In this way, the
is a wild card symbol permitting explicit recognition of
any of the subsets of messages with one or more
similarities. This is particularly useful in a learning
syster. what must generalize and instantiate new rules from
the ratings of the current rule store.

The mechanism of the rule and message system is fairly

straightforward; however, to reinforce these ideas, let us
examine a simple example. In Table 5-1, we see a single
iteration of the rule and message system. In this example,
we have a message list wi.th two messages, n = 2 , fourHIw 9 w
classifiers in the store, ncyass = 4 and string width of 4

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

122

positions, 1 = 4 . In the example, the classifiers numbered
1 and 3 are matched completely and therefore send their
messages to the message list in the next time step (for
simplicity, we have ignored any environmental messages).
This raises an interesting question: What would happen if
we matched more classifiers, that is, the number of
potential messages exceeded the size of the message list?
We must be concerned with this question because we are very
likely to have many matched classifiers with a severely
restricted message list. In the next section, we examine
how the apportionment of credit mechanism handles this and
other conflicts which arise.

Together, the picture of the rule and message system is
complete. Messages, either environmental messages or
internal messages, are placed on the finite size message
list. In turn, these messages may either match effectors
which cause external action or they match other classifiers
which may in turn send internal messages. In this way, the
rule and message system promotes behavior which depends upon
external stimulus and internal state of mind.

5.3 Apportionment of Credit

We now see how the rule and message system provides a
convenient method of storing and using rules for performance
in arbitrary environments. Yet, we are left with several
pressing questions: How can we select among many

potentially active classifiers when the communication

channel (the message list) is of finite size? How can we

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

123

iin
d)rHXI(0E-

E
d>
4J(0>iW
0)O)to tn tn d) 2
TJC(0
d)

rH3a

d)
rHO>1u
(U

iH04e
aXa

Sen
t

by
i

__
__ iH POo o

4->in
•f-i •H O
■ J —• O rH

rH O -H
d> + O rH
CT>-U
(0 .^4.in rH CMin e e
OJ
«g

<NI CM
TD £
C ft*o rH rH rHin V E E £ 1

d>
X
r \u
4J
(0

2 t—1
ro CM CM CMc £ I £ £o
u

rH O O rH
d> O rH rH O
u O O rH rH
O O O rH rH
4J w win O 8 8 8 8 8 8

H
Ur •— . 8 8 8 8 8 8 rH
0 4->

*rH w • 4 • • • • • •
U-4 =8= =8= =8= rH
•H 8 8 8 8 O 8 8in =8= rH rH 8 8in rH O rH 8 813
rH r s .r-*, au h m n <jio u o u

•uin
•ri O i—t
IH rH O

O rH
<D 4-) O rH
CT>'—•fa -—. .—.in rH CMin £ £
0)
2

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

124

apportion credit for performance among different rules which
may call each other in complex ways? As we have already
suggested, our answers to these questions are related to the
creation of an internal, competitive service economy.

This service economy consists of two elements:
1. An auction
2. A payment clearinghouse

During the auction, classifiers matched by the message list
bid for the right to send messages to one of the n_ slots 3 • mess
of the next time step. Following the auction, the winning
classifiers make payment to the clearinghouse where each
payment is divided among all those classifiers responsible
for activating the particular payment-making classifier.

We can see one complete cycle of this payment process
in Figure 5-2. In this diagram, classifiers 10, 20, and 55
are activated auction winners at time t and as a result,
they send their messages to the 3 position message list

^nmess=^ * A ^ter another auction, classifiers 4, 6 , and 19
are activated by the messages as shown. In consideration of
this activation, classifiers 4, 6 , and 19 make payments
which are divided among the time t classifiers. As
examples, c^'s payment is divided among all three

classifiers (c iq, c 20 anc ̂ c 5 5 ̂ whereas c 1Q's payment is only
paid to C 5 5 . Hence, classifiers receive payment from the
outside world whereby they then distribute payment amongst
themselves and accumulate payment for their own accounts.

To implement a well-defined procedure, we must be a bit

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

125

AOC

10

/ /

/
/

/
//

fs. / /
c N v m'20 ^ z

' ; ^ *
1 ' 's'

messagesSII^1̂ "
p a y m e n t

Fig. 5-2. Apportionment of Credit - Paying and
Receiving Bids

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

126

more rigorous in detailing the auction and payment scheme.
During the auction, classifiers make bids designated by the
letter B. Winning classifiers turn over their bids, B, to
the clearinghouse as payments, P. A classifier may also
have receipts from its previous message sending activities;
we designate a classifier's receipts by the letter R. In
addition to bids and receipts, we also permit one or more
forms of taxation, T. For each classifier, the receipts and
payments are made to and from a single bank account. The

classifier's account balance is called its strength, S. In
essence, strength is a classifier's net worth; we shall see
how it is related to its ability to make a profit by setting­
up subsequent reward.

Taken together, we write an equation governing
depletion or accretion of a classifier's strength as
follows:

Sj(t+1) = S.(t) - P ^ t) - Tj(t) +R.(t)
where: S - strength

P - payment
T - taxation
R - receipt
t - time index
i - classifier index

This system of first-order difference equations is the major
component of our apportionment of credit scheme. To
understand its effect upon classifier activation and
utilization, we look at the circumstances of bidding,
receipts and taxation. We also consider the detail of
effector activation and reinforcement.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

127

Bidding and the Auction
During the auction, the nmess highest bidding

classifiers are chosen to send their messages in the next
time step. Each classifier's bid must reflect its value to
the system in setting up fruitful action and subsequent
reward. One component of this value is a classifiers
strength. Strength is a measure of the.classifier's
relative ability to profit by receiving external reward
through classifier chains of payment. Another component of
value is a classifier's relevance to the matching messages.
Not only do we want winning classifiers to be strong, we
also require them to be strongly related to their activating
messages. One measure of this relevance relationship is the
simple matchscore:

M = 2 Zm(akj)
where: k - condition index

j - position index
a - position value

m(a) - 0 if a=#
1 if a =1 or 0

The matchscore is, thus, a simple count of a matched
classifiers total specificity, the number of condition
positions with non-wild characters.

Since we are inte;rested in promoting classifiers with
high strength and high specificity, following Holland
[63,64], we define our bid to be proportional to the product
of matchscore and strength:

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1 2 8

B i = Cbid * M i * S i
where: B - bid

M - matchscore
S - strength

Cbid ~ constant
i - classifier index

We could simply stop things at this point and choose
the auction winners deterministically by selecting the nJ J 3 mess
highest: however, this would unreasonably bias results
towards the status quo [75], Instead, we hold our auction
in the presence of random noise. Specifically, we calculate
an effective bid for each matched classifier, the sum of the
deterministic bid and a noise generator:

EBj = B; ♦ ^ (0 ^)
where: EB - effective bid

B - bid
N- - noise generator

- noise deviation
For this study, we use the noise generator defined by a 9
point discrete approximation to zero-mean, Gaussian random
noise shown in Figure 5-3. The noise deviation, is a
specified system parameter which may be varied to provide
more or less randomness to the auction.

Receipts and the Clearinghouse

After our somewhat noisy auction and the selection of
winners, payment must be made to those classifiers
responsible for sending the messages that activated the
winners. The winners pay their total bid to the

clearinghouse where each payment is divided evenly among
condition 1 and condition 2 , and thence it is divided evenly

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

1 2 9

ino

C3

CO .. ■ ■ ■

C3

3.00-3.005.00 “ 1.00N UMBER OF STD 1.00D EV I P T I G N S

Fig. 5-3. Nine Point Discrete Approximation to
Gaussian Distribution

-«
5.00

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

130

among all the classifiers which sent matching messages to
each of the conditions. Thus, a classifier sending a
message which matches condition k of classifier j receives
the share of payment, SP, given by the expression:

SPi = P j / (2 *n s harek^
where: SP - share of payment

P - payment
nshare ~ number of shares

k - condition index
j - paying index
i - receiving index

For each message sending classifier, the total receipts are
simply the sum of the share payments from all classifier
conditions matched.

Taxation

Each classifier is taxed to prevent freeloading,
thereby biasing the population toward productive rules.
Many schemes are available; we simply collect a tax
proportional to the classifier's strength:

T. = C. * S-1 tax 1
where: T - taxation

S - strength
C v,„x - tax constant

i - classifier index

Activating Effectors

The foregoing mechanisms for bidding, payment, and
activation are strictly true for pure classifiers, those
whose only effect is to send a message. For those
classifiers that ultimately set and perform an external

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

131

action (Holland calls these e-classifiers) we must be
careful to arbitrate among mutually exclusive activities.
Just as a switch cannot be both on and off at the same
momentr we too must choose among competing alternative
actions. In the prototype LCS, this is done very simply.
After classifiers are matched and the auction is held, the
winners' messages are immediately matched against the
effector store. If different classifiers match mutually
exclusive actions, the classifier-action pair with the
highest effective bid is selected for operation. Note that
the effective (noisy) bid is used, as with the pure
classifiers, to eliminate bias toward existing higher
strength e-classifiers.

Reinforcement
Intermittently, the LCS is rewarded with some payment

from the environment. This reinforcement is given to all e-

classifiers active during the previous time step. The
reasoning behind this is that these most recent actions and
their activating chains are most clearly responsible for the

current reward. Holland has suggested that the entire
message list receive reward; however, this has not been
adopted here for fear of encouraging unproductive
classifiers. This point should be kept in mind in future
studies where these free-floating classifiers may be more
useful in look-forward modeling or setting up future
classifier-action chains.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

132

Stability and Effect
We now have a fairly complete picture of the workings

of the apportionment of credit algorithm; however, we need
to explore the stability of this algorithm and its effect on
rule ratings and selection.

To examine both of these, we recast the apportionment
of credit equation into a more useful form where all
payments and taxes have been replaced by their strength
equivalent.

S(t+1) = S(t) - Cbid*M*S(t) - Ctax*S(t) * R (t)
We have dropped the index i and all terms are as defined
previously. Grouping terms we obtain the following;

S(t+1) = (1-K)*S(t) + R(t)
where: K = C k .,*M +bid tax

To see when this equation is stable we perform the usual Z

transform [76] on the homogeneous system and obtain the
characteristic equation;

Z - (1 - K) = 0
Stability is assured when | Z | 5 1 ,which implies that

0 ^ K £ 2; however, in practice we never permit K > 1 to
enforce non-negativity of the strength. This analysis is
only fully valid for the classifier which remains activated
thereby maintaining a constant K. However, the system
remains stable even with the switching non-linearity
introduced by the activation and deactivation of real
classifiers as long as the changing K meets the stability
criterion.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

133

Stability is essential, but to see the effect of the
mechanism, we are primarily concerned with performance in
the time domain. Assuming some initial strength, S(0), we
may define the strength on the nth time step by the
expression:

S(n) = (1 - K)nS(0) + 2 R (j) • (1 - K)n _ ^ ” 1

Once again we have ignored the switching non-linearity
although this could be incorporated as a time-varying K(j).

To further identify the effect of this mechanism we
examine the steady state response of the algorithm. If the
process continues indefinitely with a constant receipt
R(t) = R, we obtain the steady state strength, S(t), as t
approaches infinity:

S = R / K ss
Therefore, the strength is simply the receipt amplified by
the gain coefficient 1 / K. Furthermore, the steady bid is
derived directly:

BSS - Cbia * M / K » R = Cbid . M / <Cbid»M ♦ C tax) *R
Since C fcax is usually quite small, the steady bid value is
simply: Bgs = R. in other words, the bid value approaches
the receipt. For non-constant inputs we see that the bid is
a geometrically weighted average of the input. As such, it
acts as a filter of the possibly intermittent and noisy
receipt values.

5.4 Genetic Algorithm

The apportionment of credit algorithm gives us a clean
method of valuing rules, deciding among alternatives, and

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

134

weeding out unprofitable rules. Yet, we still must come up
with a way of injecting new rules into the system. This is
where the genetic algorithm steps in, Using a genetic
algorithm similar to the one described in Chapter 3, new
rules are created by the now-familiar reproduction,
crossover, and mutation process. These rules are then
placed in the population and processed by the probabilistic
auction, payment, and reinforcement mechanism to properly
evaluate their role in the system. In this section, we
concentrate on the differences between the GA used in the

LCS and the one described in Chapter 3, Specifically, these
differences include overlapping generations, roulette wheel
selection, partial replacement and crowding, restricted
crossover, and ternary mutation.

Overlapping Generations

In the previous description of the genetic algorithm,
the populations were non-overlapping; we completely
generated a new population at each iteration. This is not
desirable for the current application. With the LCS, we are
concerned with maintaining a high level of performance as
the system adapts. This requires that we leave our current
best rules alone and try to form better rules with a small
portion of the population. To do this, we introduce the

parameter, PROPORTION and generate nc iass * PROPORTION new
classifiers at each call to the genetic algorithm. To do

this conveniently, we must modify our method of selection.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

135

Roulette Wheel Selection
In Chapter 4, we described a variance limiting process,

where we attempted to give each population member the
correct expected number of offspring u / u. Although this
has certain advantages, it becomes cumbersome with
overlapping generations and therefore, we abandon it.
Instead, we select parents for mating via the weighted
roulette wheel technique.

In this method, we spin a weighted roulette wheel,
pictured in Figure 5-4, nc ^ags * PROPORTION times where the
wheel weights are given by Sj / £ S^. In this way, we still
bias the parent selection toward high strength members and
thereby schemata in the proper proportion? however, the
bookkeeping is greatly simplified. If this tradeoff between
programming simplicity and efficacy proves too deleterious,
we may always return to more sophisticated techniques.

Replacement and Crowding
Because we no longer generate entire populations, we

must be careful when choosing population members for
replacement, while it makes sense to replace low strength
members, simple replacement of the worst is probably not
good enough. This encourages a higher loss of alleles than
is desirable. To this end, we implement a crowding

mechanism among a low performance sub-population. With this
technique described by De Jong [53], when a child is

generated for insertion into the population, n repiace
replacement candidates are selected from the

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

136

Fig. 5-4. Roulette Wheel Selection

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

137

n replace * PROPORTION * nc lass mem^ers °f the lowest
performance population. These members are compared to the
child and the child replaces the most similar candidate on
the basis of similarity count, where similarity count is a
simple count of the positions where both child and candidate
are identical (#=#, 1=1, 0=0). In this way, children
replace similar population members and a pressure exists to
maintain diversity within tha population. This pressure
helps counterbalance the occurrence of premature convergence
noted earlier.

Restricted Crossover

Previously, our structure was a simple string and we
permitted crossover at any crossing site between 1 and the
string length 1. With a classifier, we may also perform
simple crossover if we view the rule as the concatenation of
3 strings, two conditions and the message. For example,
with 1 = 4 :

§ 1 # 0 0 1 0 1 0

C, | C 2 | M
Once again, we could simply permit crossover anywhere along
the string; however, to retain greater control over the
kinds of offspring we permit, we introduce 3 new parameters,
XLO, XHI and GAMODE. The parameters XLO and XHI define the
region of permissible crossover. For example, XLO = 1 and
XHI = 1-1 permit crossover along the entire condition or

message, whereas other values would specify some sub-range.

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

138

This mechanism permits the allocation of protected string
regions which may not be modified by crossover.

The parameter GAMODE specifies which elements of the
classifier engage in the crossing as follows:

GAMODE Elements

0 C v C2 , M
1 C 1 only
2 C 2 only
3 M only
4 C 1 ' C 2
5 C r M
6 C2 , M

By this mechanism, regions of crossing may be further
restricted, giving more control over the learning process.

We note that with the GAMODE parameter, we still only
permit crossing of similar elements: C-.-C.J, C2-<''2' M-M.
Holland [63,64] has suggested extensions to this crossover,
where messages may be crossed with conditions thereby
promoting an increased probability of linkage between rules.
These extensions are important if we expect useful chains of
rules to form in a timely fashion. In this study, however,
we keep the system as simple as possible to investigate the
capabilities of the basic mechanism.

Ternary Mutation

Previously, with the binary alphabet, mutation was
simply a bit inversion with probability, pmutation * The

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

139

message portion of the classifier also uses a binary
alphabet and therefore, message mutation is interpreted as
before. With the conditions, we have the ternary alphabet
V+ and we extend the mutation operator so that with

probability Pmutation we c^an9e characters. The changed
character is selected with probability 0.5 from the two
remaining characters.

5.5 Application to a Simple Control Problem
In this section, we apply the learning classifier

system to the control of a pure, inertial object in a
frictionless, one-dimensional domain. The system is
pictured in Figure 5-5, and the plant dynamics are given by
Newton’s second law:

m d2x = f(t)
dt2

where: m - mass
f - force
x - distance
t - time

The objective is to center the object given a decision
space of two alternatives: the LCS may apply a force of
given magnitude, Fmag, in the positive or negative
directions. We assume complete state knowledge; however,
this information is limited by the discretization we select.

The problem seems simple, perhaps too simple to be of
much use in evaluating the LCS method. Nonetheless, the

simpler problem is interesting for two reasons. First, time
optimal control of an inertial object is a fundamental
problem in optimal control theory. Its bang-bang solution

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

■1AD.

i'

QUAD a
0 1 2 3

1-- j— y—/ ’V

_ F ^

M

1XJX rT-/— 3—7-~y~r~7r

L

Fig. -5-5. Inertial Object Domain - Schematic

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

141

is well known [77] and thus, we connect the LCS work with
extant control literature. Second, the control of an
inertial object is a problem people and other mobile
creatures solve everyday: whether driving a car, riding a
bicycle or moving our limbs through space, we repeatedly
face and solve this problem effortlessly. If the LCS is to
be useful, it too must be capable of attacking this
recurring model problem.

Problem Specification
Specifically, the LCS is faced with the following

domain parameters:
L - wall to wall distance = 50 m
M - object mass = 5 kg

Fmag - force magnitude = 2 N
At - cycle time = 1 s

The LCS is born with detectors capable of deciphering the
following information with the specified discretization
within the stated limits:

Measurement
Discretization

(in bits)
Low

Level
High

Level

x - distance 2 0 50
u - velocity 2 -2 2

Fmag ~ ^orce magnitude 1 0 2

F • - force sign sign 5 1 -1 1

P - payoff 1 0 1

With this discretization, the LCS perceives the domain as 4

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

1 4 2

subregions. Speed is recognized in 4 discrete sub-ranges, 2
forward and 2 reverse, and the other detectors are simple
binary switches.

To better see how the LCS sees its domain, we outline
the format of the environmental message in Figure 5-6. The
message is of length 1= 8 with distance, velocity, force, and
payoff measurements allocated as shown. We note that the
tag field is one position long; this is sufficient in this
study as 2 classes of messages, external and internal, are
all that are required.

With the stated parameters and discretization we may
learn some additional information about the domain through
some elementary calculation. The wall to wall travel time
assuming constant application of F may be calculated asma y
follows;

fcwall to wall sqrt(2ML/Fm a g)
= sqrt(2(50)5/2)
= 15.8 s

Under these conditions the terminal velocity before striking
the opposing wall is given :

V = F *t . /M max mag wtw'
= 6.3 m/s

This value is the maximum obtainable with inelastic walls.

As a result, with the specified sensitivity, the velocity
measurement may saturate occasionally.

Another parameter of interest is the minimal centering

time Tcmin « Assuming the object is on the wall and

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

143

FIGURE 5-6
Environmental Message and Coding

1

Fm Fs P tag

X u
Sub­

message Meaning
Sub­

message Meaning

00 quad 0 (leftmost) 00 u<-umax/ 2
10 quaa 1 10 -umax£u<0
01 quad 2 01 0£u<umax/ 2
11 quad 3 (rightmost) 11 umaxJsu

Emag F .sign
Sub­

message Meaning
Sub­

message Meaning

0 no force 0 negative force
1 force=max 1 positive force

P-payoff Tag
Sub­

message Meaning
Sub­

message Meaning

0 no payoff 0 internal message
1 payoff 1 environmental message

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

1 4 4

stationary,, the 'time optimal control is to apply the maximal
restoring force until the object is halfway to the desired
location and then apply the maximal force in the opposite
direction until the objective position is achieved and the
object is once again stationary. For our problem, this
results in a minimal centering time as follows:

Tcmin ‘ 2 * s« ct(2EW L/4,/M >
= 15.8 s

We should hope that the LCS is capable of positioning the
objeefc from any location in a time on the order of this
value after sufficient learning has taken place. These
results will be useful when we look at the results from
actual learning simulations.

Reward Mechanism
As described earlier, rules which activate rewarded

effectors, receive a point score as a payment. In natural
domains, reward is usually in the form of food or other
substances necessary for survival. In our artificial
domain, the reward may come from one of two sources: the

keyboard (a knowledgeable instructor) or a computer
subroutine which rewards the system according to some
systematic method. In an actual installation, the use of an
expert instructor may be the preferred mode of instruction;

however, in the interest of uniformity and repeatability, a
systematic computer procedure is adopted for this study.

For the inertial object environment, the reward
procedure works according to the following scheme:

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

1 4 5

if (T mod Tgval = 0) (* every T eva]_th time step *)
and (not accelerating away from the target)
and ((Near the walls and applying restoring force)

or (Near the target and (going slow or
decelerating))

then points=MAXPOINTS
else points=0

The conditions, near the wall and going slow, are made
rigorous by introducing the input parameters xto ̂ and u s i o v

respectively.

Implementation
A computer procedure encompassing the LCS described in

this chapter as well as the inertial object environment,
reward mechanism, input-output routines, and necessary
interface procedures has been implemented in Pascal and 6502
assembler for execution on an Apple II computer. Skeletal
pseudo-code descriptions outlining the program’s modular
structure are presented in Appendix B. The code is written
primarily in Pascal to enhance portability. The portions of
code written in assembler may be replaced by equivalent
Pascal cede; however, the use of machine code speeds up the
fundamental rule matching process by a factor of between 3
and 1 0 .

Setting LCS Parameters
In both the apportionment of credit system and the

genetic algorithm, a number of parameters must be selected
before proceeding* Here, we examine the method of choosing
these parameters, relying on both limited simulations and
past experience with GA optimization.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

146

To select the apportionment of credit parameters, a
series of limited simulations have been undertaken with
performance compared over a fixed interval. There are three
parameters of interest: bidding coefficient taxation
coefficient C fcax and the bid spread 0 ^ 3 * Additionally,
these coefficients must be considered in relationship to the
regularity of reward from the environment. In our system,
this may be controlled by adjusting the period of evaluation

Teval'
In the restricted simulations, a known set of good

rules is specified with some bad rules implanted to test the
ability to weed out the bad and elevate the good. Table 5-2
shows the rule set, individual rule meanings in shorthand,
and a brief explanation of each rule's purpose. For this
set of experiments, the apportionment of credit algorithm is
enabled while the genetic algorithm has been turned off.

In the first set of experiments, the parameter is
varied over a range of values while and C fcax are set to
zero: there is deterministic bidding and no taxation. The
population is started from a relatively high value of
strength, and the calculations proceed. In this manner,
unfit rules, continuously lose strength while the good rule
set adapts to its appropriate steady state value.

The results from 3 different values of C.*j are shownbid
in Figure 5-7, a graph of total evaluation, TOTALEVAL, vs.
time. With the largest value, apparently too much is
wagered too soon and the performance lags that of the lower

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

147

CMIin
a)
r-H
£ >(0E-*

IDin
ai

rH3os
TJ0)

U
(Dain
in4Jin0)Eh
cQJE
jjin3*n'D<
u
9)
■Li
0)E10lj
na

IDinoau3a

305

-C
UctuIja
>i
Cl)

cc o c O E O
■»Hjj m jj 10 J= (0 U JJ IjO'— o w o)4J 4J a : J*in id in ra toID H 3 u
9)
U 'O3 m

01 U Li Lj J3 X3
<U <u oj Lj U H 3 3 3a jq a a a

i + + i + IUIUIUIMIU
A A A A A I I I I I
05 K u4 CM CM II II II II IX X X 3 II

— k. 3
rH - II CM X II — X

o o o o o o o o o o
O r l r l O H
r l r l r l r l r lo o o o o o o o o o o o o o o o o o © o

0)iH305

88 88 88 88 88 88 88 88 88 88 88 88 =»*= =»*r =««= 88 88 88 88 88 88

rH rH 88 88 88 88 =8= 88 =8= 88 88 88 88 88 88 88
88 88 88 88 88 88 88 88 88 88 88 88 88 88 88
88 88 88 i—I O
88 88 88 H O
rH rH O O r-l
88 88 88 rH O

— co
«-* CM rH -
CO - ~-CM

-O O h-
rH ’—'■—•h- inin in in T3 T3 ra
rO (0 CO 3
10 3 3 O1

O rH CM O 3 CT O'
CP L i

T3 T3 T3 'tJ C JJ JS (0 f0 f0 r0 rO D L*-icn
3 3 3 3 T 3 > (D " H
O1D101CPO (D rH U

I I I I I I I I
O H C M C O O H J t t
II
in
ID
3rH
10>

>1ID«
ro
C(0.cJ->H
o
J Sw

CM CM - —* I -eg <D 0) <D <D CM -pH I > > > > -rH I —
■rH *rH kp| • rH rH I —JJ JJ JJ JJ — — rQ
(0 10 * rH ■ I~i rQ Q)oioimiooioioioiv o i o o > > o i a c c a a**H *h a inD JJ Ehj a s jj -rt to cIII O O ID to omo ID(OHh 10 O Olt) >u 111 10 uj a C O 01
I I I I I I I I
CM pH pH CM + I © H I I

01ID3
(0>

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

va
lu

es

=
+

-
po

si
ti

ve

fo
rc

e
-

-
ne

ga
ti

ve

fo
rc

e

TOT
flL

EVR
L

148

Key!
+ CBID=0.0104, 0.0208
A CBID=0.0417
n CBID=0.0052

T I M E

Fig. 5-7. Variation of CBID - TOTALEVAL vs. Time

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

1 4 9

values.
To gain more perspective on the effect of we need

to look at the interaction with other system parameters.
Holding constant we vary the interval of evaluation,

Teval' over a tange between 1 and 5 time steps. The total
evaluation is plotted versus time in Figure 5-8. For the
values 1, 3, and 5 the results are as we might expect; as
the interval of evaluation goes up, the rate of evaluation
goes down roughly proportionately. In the cases with

Tevai = 2 » '*» something strange occurs. The performance is
much worse than we expect; hardly any reward is achieved in
either case. Close examination of the run details shows the
reason. There is a continuous oscillation between a good
rule and a bad rule. The oscillation causes the bad rule to
be active during reward time steps and the good rule to be
active on time steps without reward. This continues until
the object enters a zone where the bad rule's action may
receive reward as a braking rule. This reward is then
sufficient for the bad rule to drive the object to the waj.1
where the process repeats itself. The problem here is

caused by our deterministic bidding process (0^ 3 =0) in
concert with the rhythmic reward pattern. As the good and
bad rules are activated alternatively, each must pay its
bid, reducing its strength some small amount. This makes
its next bid less than its competitor by some small amount
thereby continuing the oscillation. Thus, we encounter our

first empirical need for noisy bidding to eliminate bias in

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

15 0

the decision process. In this case, some small randomness
in bidding should destroy the certainty of the oscillation

and decrease the impact of small differences among competing
bids.

We investigate this by holding = 0.0208 and

Teval = 2 w h ^ e varying °bid the amount stochastic bid
spread over the values, 0 .0 0 1 , 0 .0 1 , 0 , 1 , 1.0 times
MAXPOINTS. These results are summarized in Figure 5-9
showing the values at time = 150 vs. ^/MAXPOINTS. The
introduction of even the smallest amount of randomness,
results in a drastic improvement over the deterministic
decision process; the certainty of the oscillation is
destroyed as we predicted.

Yet, we should not assume that this small a level will
encompass all possible cases. Remember, we will be
generating new rules for insertion into the population at
the average strength of their parents. As a result, if
these rules are ever to have a possibility of trial, the

°bid Parameter must be sized to lift them above the leaders
upon occasion. To examine this possibility, a test is set
up where two good rules are placed at artificially low
levels of strength and is varied to investigate the
value required to raise the rules from their initially low

values during bidding competition. The results of this test
are shown in Figure 5-10, a graph of the average strength of
the 2 reduced strength rules at time = 300 time steps

vs. o^^/maxpoints. Below 15%, the randomness is

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

151

Key
TEVAL=1
TEVAL=2
TEVAL=3
TEVAL=4
TEVAL=5a:

LlI

5p

20,00 80,00 80,00TIME

Fig. 5-8. Variation of TEVAL - TOTALEVAL vs. Time

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

152

insufficient to give the two rules the needed boost as the
strength is simply the free fall value at the tax rate of

0.002. Above 15%, the mechanism gives sufficient assistance
to start to raise the rules from their artificially low
values.

With and 0 ^ 3 selected, our attention turns to the
taxation coefficient, In setting the tax rate, the
main consideration is the free fall half life. Since the
apportionment of credit algorithm simply reduces an inactive
rule by the tax rate, after n iterations of inactivity we
have the following value of strength:

S(t+n) = S(t) (1-C..)nt- 4* rfv
Thus, the half-life may be given:

n = log(1/2) / log(1“Ctax)
The half-life is tabulated below for convenient values of
Ctax *

^tax Half Life
0.1 6 . 6
0 .01 69.0
0.005 133.3
0.004 172.9
0.003 230.7
0 . 0 0 2 346.2
0 . 0 0 1 692.8

Since new rules are regularly inserted into the population
at possibly elevated levels of strength (average of

parents'), the tax rate must be set to insure that inactive
rules are degraded sufficiently before reproducing and
inserting new rules. If this is not done, relatively
inactive rules can retain an unrealistically high level of

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

153

o

a - CO

O

C3a • •

€ 3a
IxIlT*
S I G B I D / m X P O I N T S

Pig. 5-S. Variation of SIGMABID - TOTALEVAL vs.
SIGMABID/MAXPOINTS

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

n.5o

Fig.

1.70 1.90 2.10 2.30 2.50S I G B I D / H A X P O I N T S (X101)

5-10. Variation of SIGMABID - Low Initial Strength
Average TOTALEVAL (2 rules) vs.
SIGMABID/MAXPOINTS

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

1 5 5

strength and ultimately reach reproduction themselves,
thereby cluttering future rule sets with large numbers of
overrated, inactive rules. Therefore, C fcax must be set to
yield a half-life on the order of the insertion period of
the genetic algorithm, Tga *

In these initial runs, an insertion period of T = 200
c ga

has been set. This period is long enough to encompass a
meaningful span of system behavior. It is an order of
magnitude greater than the minimum centering time, Tc m in ? it
permits meaningful evaluation of new and extant rules. In
early tests, a Cfcax value of 0.001 was used (Half Life=693)
In conjunction with the GA period this resulted in large
numbers of over-evaluated rules. In subsequent tests, a
value of Cfcax = 0.002 (Half Life=346) eliminated this
difficulty by reducing the half life sufficiently without
detrimental deterioration of memory.

With C fcax and Tga set, the other GA parameters have
been selected based on a combination of past experience and
current expectations. PROPORTION, the proportion of a
population selected for replacement at a given GA
invocation, has been varied to obtain a small number of new
trials (usually between 2 and 4) per GA activation.
Contrasting the current learning tests to the optimization
studies in a previous chapter, this is a necessary step if
we want to maintain current performance at high levels while
exploring new rules.

In this study, we select a value of n . „ = 3, thereplace ;

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

156

number of low strength rules in each replacement
subpopulation. This value is chosen arbitrarily although it
is consistent with De Jong's findings [53] in an
optimization setting.

Results
With the LCS implemented and parameters selected; we

perform some learning tests. In these tests, we start with

a random selection of rules and proceed forward monitoring
performance by summing the total reward, TOTALEVAL; we also
examine an important auxiliary performance characteristic
related to goal achievement. In these tests, our ultimate
goal is to locate the object at some specified location (the
center). The total point score reflects the achievement of
this goal; however, it is easier to monitor if we keep track
of the number of times it is achieved. Since, it.is
unreasonable to expect the goal to be achieved exactly, we
create a more workable definition. For this study, the
centering criterion is achieved when the object is within
the target zone |x - xtarget| < xtol and is going slow,

|u| < uslow for ncriterion consecutive time steps. The
values used for these parameters are as follows:

ncriterion “
uslov ■ ’-5

XfcQl = 12,5
Upon reaching the goal, the goal statistic, TOTALGOAL,

is incremented by one and the object is disturbed by a force

of ± disturbance for one time sfcep. We use a value or

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

157

Fdisturbance = 5 0 * In ' fĉ e LCS repeatedly
forced to perforin over a broad range of space and velocity
values thereby providing a fairer test of the procedure's
capability.

To test the system, two series of tests have been
performed. These tests examine the LCS performance both,
with and without genetic algorithm under both undisturbed
and rule-deprived conditions.

In the first series of tests, we start the LCS from a
randomly generated population of 30 rules of the forms:

RRRR#R#1:#######1/00001100 (force +)
RRRR#R#1:#######1/00001000 (f o r c e -)

Half of the population is of the first type and half is of
the second type. In this notation, the colon separates
conditions, the slash separates conditions from the message,
the 0 , 1 , and # characters have their normal meaning, while
the R designates a position to be selected using random
choice. To permit control over the level of generality

(number of # s) , we introduce the parameter Pgeneraiity? a
don't care symbol, #, is selected with probability

Paenerality a 0 or a 1 is selected with probability

(1" ^ g e n e r a l i t y) / 2 * We f i x P g e n e r a l i t y = ° ’ 75 9 i v i n 9 a
f a i r l y g e n e r a l i n i t i a l r u l e s e t .

Table 5-3 shows the initial population generated for
the first series of cases. In the first run, number
IOLCS.1, we start from this population and proceed with rule
and message system and apportionment of credit system

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1 5 8

enabled and the genetic algorithm disabled. In run I0LCS.2,
all subsystems, including the genetic algorithm, are

enabled. The parameters are the same for both runs as
follows:

C bid SC 0.0208

°bid = 1.0

^tax = 0 . 0 0 2

T ga - 200

^mutation as o•o
PROPORTION = 0.0667

^eval = 1

MAXPOINTS = 6

In Figure 5-11, we compare the results with and without
genetic algorithm to random performance on the basis of
time-averaged accumulated evaluation, TOTALEVAL/T. In the
random results, the decision to direct the force right or
left is determined by the flip of a fair coin (p=0.'5). We
note that both the LCS runs are much better than random-
performance. Furthermore, case I0LCS.2 (with GA) eventually
overtakes and outperforms run I0LCS.2 (without GA). In
fact, while the differences appear small on this basis, the
difference in physical control is much better in the case
with genetic algorithm.

To see this, we shift the basis of comparison to the
more sensitive measure, time-averaged number of criterion
achievements, displayed as Figure 5-12. Again, LCS

performance is far better than random. Performance with the

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

159

Table 5-3.,
Initial Rule Population

Learning Tests I0LCS.1 and I0LCS.2

<CONDITION 1>:<CONDITION2 >/<MESSAGE>

###0# ## 1 :#######1 / 0 0 0 0 1 0 0 0
0######1 ;####### 1 / 0 0 0 0 1 0 0 0
0 1 0 # # 1#1 :#######1 / 0 0 0 0 1 0 0 0
1#0 0 # 1# 1 :#######1 / 0 0 0 0 1 0 0 0
0##### 1 :#######1 / 0 0 0 0 1 0 0 0
##0 0 # # # 1 :#######1 / 0 0 0 0 1 0 0 0
Q 1##### 1 1 / 0 0 0 0 1 0 0 0
10# 0# 1 :#######1 / 0 0 0 0 1 0 0 0
1 :#######1 / 0 0 0 0 1 0 0 0
0# 0###1 :#######1 / 0 0 0 0 1 0 0 0
0# # 1###1 :#######1/ 0 0 0 C 1000
1######1 : ####### 1 / 0 0 0 0 1 0 0 0
#######1 :#######1 / 0 0 0 0 1 0 0 0
1 :#######1 / 0 0 0 0 1 0 0 0
1##### 1J####### 1 / 0 0 0 0 1 0 0 0
11### 1:#######1 / 0 0 0 0 1 1 0 0
1# 0### 1 :#######1 / 0 0 0 0 1 1 0 0
#######1 :#######1 / 0 0 0 0 1 1 0 0
0 1 ##### 1 :#######1 / 0 0 0 0 1 1 0 0
1##0 # 1 :#######1 / 0 0 0 0 1 1 0 0
##0 #### 1 :#######1 / 0 0 0 0 1 1 0 0
0######1 :#######1 / 0 0 0 0 1100
1# 1 :#######1 / 0 0 0 0 1 1 0 0
0# # 1### 1 :#######1 / 0 0 0 0 1 1 0 0
1 0 1### 1 :#######1 / 0 0 0 0 1 1 0 0
1##### 1 ;#######1 / 0 0 0 0 1 1 0 0
#######1 :#######1 / 0 0 0 0 1100
0 0 0 #### 1 :#######1/ 0 0 0 0 1100
0#####1 :#######1 / 0 0 0 0 1 1 0 0
##0 0 ### 1 :#######1 / 0 0 0 0 1 1 0 0

genetic algorithm is that much better than without. In
fact, by the end of the learning run IOLCS.2 with GA, the
LCS had learned rules sufficient for the regular restoration
of the object to the goal position.

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

160

C9□
U)

_ >cn>LU_JCEJ-*" o
o*3
t-**

co

uj
D.QQ

(I0LCS.1)

With G A (I0LCS.2)

Random Walk

■+-
1.00 2.09 3.00 4.C8T I M E » (1Q00S OF STEPS) 5.00

Fig. 5-11. Time-averaged TOTALEVAL vs. Time - Random
Rule Set - Runs IOLCS.l and IOLCS.2

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

CR
IT

ER
IO

N
CO
UN
T

*
(1

0C
0)

/T

161

o
rH no GA (I0LCS.1)-;

CO

with GA (I0LCS.2)

Random

o
0.00 1.00 3.00 4.00 5.00T I M E - (1D00S O F STEPS)

Fig. 5-12. Time-averaged Goal Count vs. Time
Random Rule Set - Runs IOLCS.l and IOLCS.2

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

162

To get a better feel for the type of rules selected and
formed by the two learning mechanisms, we examine the above
average rule sets generated by each of the runs. Earlier,
we introduced the time-optimal solution where we recognized
the need for two types of action: restoring action and
braking action. Roughly speaking, we accelerate toward the
target with maximum force and suddenly apply the maximum

force in the opposite direction to place the object at the
desired location. Both types of actions are necessary for
effective control in a frictionless system. Similarly, in a
rule-based system, we expect to see 2 types of rules,
restoration and braking. Previously, in our tuning tests,
the specified rule set consisted of 4 rules, two restoring
and two braking rules as follows:

if <x=L> then <F+> : Restoration
if <x=R> then <F->

if <x=1> & <u=+> then <F-> : Braking
if <x=2> & <u=-> then <F+>

The restoring rules are fairly general. If the object is in
.. .

the left or right half plane a restoring force is applied.
The braking rules are more specific, only applying a braking
force when the object is adjacent to the goal location and
moving quickly toward the goal. Removal of any of these
rules is detrimental to performance. Restoration without

braking results in a perpetual oscillation. Braking without
restoration is ineffective because no work is directed
toward the desired goal.

In the two trial runs, we see evidence, as we must, of

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

163

both types of rules. In Table 5-4 we list the above average
rules of run I0LCS.1 {no GA) at the end of the run
(7=10000). Some of the more clear cut rules are interpreted
in the table. In fact, we see some of the rules designed
(by an intellect superior to the LCS) for the tuning tests,
although the population was selected initially at random
with no implants of helpful seeds. Clearly, the population
has sufficient restoration rules, as we might expect, *
because the model restoration rules require the setting o h a
single bit. The braking rules are not quite as plentiful,
nor are the ones selected as effective as we desire.

Contrasting these results to the above average rules of
run IOLCS.2 (with GA), we see that by exploring new rules we
can obtain more efficient braking as evidenced by the higher
scores and the final rule set shown in Table 5-4. In this
rule set, the presence of better braking rules is clearly
responsible for better performance. This is precisely the
kind of learning we had hoped to achieve. The apportionment
of credit mechanism rates extant rules and decides among
competitors, while the genetic algorithm contributes new
rules to the fray.

Deprivation Cases
Further evidence of this desirable type of learning

behavior is evidenced in runs IOLCS.3 and IOLCS.4. In these
cases, we make life even more difficult for the LCS by
starting from an otherwise randomly generated population
with the best rules removed. As before, we generate a

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

164

iin
0•H-Q(0
E-i

CM O• O
10 Ou in
P II O E*I—i4->03 0 c
(0 0 4-1

r-l 0
• t o

toU 0
p >-l O 3i-H PS
m 04-i Cn cn 0
0 u E-i 0 >
c n <
c

■ rH 0c >
U O 0 Xi
0 <
P

0(0oa
S-l3P
0lH3
OS

c
T3 O
C -H
0 4-1.e a
4-» —I
5ho o
CO 0 P

oooLO
CO

0rH3
PS

C
o

• H
C C 4-1
O O 0

• rt >rH 0 C 1-4
4-1 44 .i«S O O
0 0 0 -rH 4-1
14 14 U 4-1 0C O JO 0 CJ 0 04-1 4-1 r-4 0 r—} 140 0 TD 3 3J) HI HI l JJ U HU |H 0 rH 0

Q,T3 3 -H0 0 0 0 0 0 4-1
14 14 K W X (J3 3 -H -rH 0 -rH 0
aQrX S'S g a
i + + i i i

A A A A A A A I I I I I i I
OS p CN E3 =»= U CMII II I II II II
X X II 3 X X

c co o• iH• H4-14J0 (0
U uo o4-1-U 00 cn lH0 a> OU u 440o u 0•H • H 0 In04 U-l c In C 0• rH• rH o O o 44 rnt> u •pH c 44• rH a •H C0 0 44 o 0 44 3 0 0a a 0 • rH 0 0 -X o0 0 lH44 U In U a 0o o 0 o 0 Qr-Xc c 44 0 -H T3 44 -O O 0o o 0 3 c 0 >4• rH•rH 0 44 lH 0 0 0 0 X!44 44 iH rH In rH rHo U 3 n 0 •H 3 T30 0 0 0 0 -X 0 >h lH 0In 14 In 04 X 0 u 0■ rH• H 3 0 •rH (4 3 CM CM Q.TI rO cun E J3 Q.=«= =8= 0
1 + i + + 1 + + 1 +UH 04 04 04 04 04 04 04 04 04
A
1

A
1

A
1

A
1

AI A
1

A
1

A
1

A
1

A
1

+ 1 PS =»= H <D P 1 1 1II II 11 II II II II II II3 3 X 3 X X 3 3 3— - —OS P P PII II II 11
X X X X

in fO CM rH 00 ID lO
• • • » • • •

O VO 0 0 V0 LO
lo c o cn

^ c o o o -ctvvolocnhioh*
• • • • • • • • • • •

hi lOcotHOCTiinocnr'Ln
« r ? ^ r # n r O O I H i H r H

in
co

o o o o o o ©o o o o o o o
O rH rH rH O O O

O O O O
O O O O O O O O O O O O

o o o o o o o o

<
o

oc

COu
po

0
cn0
-40>
<

o o o o o o o o o oo o o o o o o o o o
O rH O rH i—t O rH rH O rH
H H H r l H H r l r H H r H 0 0 0 0 0 0 . 0 0 0 0
O O O O O O O O O O
O O O O O O O O O Oo o o o o o o o o o

rH iH iH rH rH rH rH o rH rH rH rH rH rH rH rH rH rH888888 8 8 8888 8 8 ■H 4—«0 88888888888888 8 8 88 8 8888888 8 8 8888 8 8 4J < 888888 =8= 888888 8 8 88 8 888 =w=88 8 8 8888 8 8 CO a 88888888888888 8 8 88 8 8888888 8 8 8888 8 8 rH 88888888888888 8 8 88 8 8888888 8 8 8888 8 8 3 * 3 888888 88888888 8 8 88 8 8888888 8 8 8888 8 8 a XJ 88888888888888 8 8 88 8 888888ft 8 8 8888 8 8 o ■ rH 88888888888888 8 8 88 8 8
S3 ea ea •» os *# ea Qj »> a« •• aa aa ea aa ce aa aa aa

rH rH rH rH rH rH rH w rH rH rH rH rH rH rH rH rH rH8888 8 8 =85 8888 8 8 88888888888888 8 8 88 8 88888 8 8 8 8 8888 8 8 CM 8 8 888888888888 8 8 88 8 8888888 8 8 8888 8 8 a 88888888888888 8ft 88 8 8=±fc88O 8 8 8888 8 8 CO rH O 88888888 8 8 0 O O88 sit: O O 8888 8 8 CJ 88888888O 8888 8 8 88 8 8
»H o 88 8 8 8888 rH rH O rH 888888 o o O 8 8888888 8 8 88O O o 8888888888 rH 88 8 8 88 8 8

p-0
iH CN CO LO vo r - H C N c o ^ i n v o r - c o a v o

rH

0
cn0U0>
<

c
o

•H
4-1
0rH3a
op

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

165

population at random using the same rule templates, this

time with nc iass = 40. We permit the system to select its
best rules by running the LCS with AOC on and GA off. At
the end of this initial trial, we remove the 10 best rules
and restore the remaining deprived population of bc]_ass = 30
to the normal initial strength value. This deprived
population is used as the starting point for the two
learning deprivation runs, IOLCS.3 (no GA) and IOLCS.4 (w/
GA). The deprived initial population is displayed as Table
5-5.

Once again we compare performance on the basis of time-
averaged accumulated evaluation, TOTALEVAL/T and contrast
this to the performance of the random walk. These results
are shown in Figure 5-13. As before, the case without GA
outperforms the random walk and is outperformed by the case
with genetic action. More dramatically, we see the physical
performance as measured by the time-averaged criterion count
in Figure 5— 14. Here the effect of deprivation is most
striking. Without genetic action, the deprived rule set
never achieves criterion. With genetic action the rule set
quickly outperforms the other cases moving toward the
results of the previous simulations without deprivation.

As before, a comparison of the above average rules is
instructive. Looking at Table 5-6, without the GA, we
clearly see the reason for not achieving criterion: there
are no effective braking rules. In the run IOLCS.4 the
genetic algorithm has discovered some effective brakes

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

166

Table 5-5
Initial Deprived Rule Set
Runs IOLCS. 3 and IOLCS.4

<CONDITION1>:<CONDITION2>/<MES SAGE>

###0###
1# 0#00#0#
00####
1#0 # # 1#
0# 1####
10# 0 #
1# 0###
##0####
000# #0#
1#####
#o#o#o#
10###
1# 0###
#0 # # # 1#

#######
1# # # 0
1
0
1# # # # 1#
0#####
1# 1###
01#####
0# # 1# 1#
1###
#####0 #
1####
11#####
1# 1# # 1#
1 # 1 # 1

1 / 0 0 0 0 1 0 0 0
1 / 0 0 0 0 1 0 0 0
1 /0 0 0 0 1 0 0 0
1 /0 0 0 0 1 0 0 0
1 /00001000
1 / 0 0 0 0 1 0 0 0
1 / 0 0 0 0 1 0 0 0
1 /00001000
1/00001000
1 /00001000
1 / 0 0 0 0 1 0 0 0
1 /00001000
1 /00001000
1 /00001000
1 /00001000

1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 /00 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0
1 / 0 0 0 0 1 1 0 0

thereby permitting consistent criterion achievement.

5.6 Summary

In this chapter, we have explored the history,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

167

in

in

CE> "LU
_Icn|— »o
(-=<•»

cn

in

with GA (IOLCS.4)

no GA (I0LCS.3)

Random

1.00 2.00 3.00 4.00TIM E - (10QGS OF STEPS) 5.00

Fig. 5-13. Time-averaged TOTALEVAL vs. Time -Deprived
Rule Set - Runs IOLCS.3 and IOLCS.4

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

CR
IT

ER
IO

N

OCJ '•o with GA (IOLCS.4)-

<N
Random

no GA (I0LCS.3)

0.00 1.00 2.00 3.00 4.00T I M E - (1000S OF STEPS)

Pig. 5-14. Time-averaged Goal Count vs. Time
Deprived Rule Set - Runs IOLCS.3 and
IOLCS.4

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

169

oo •o cn in o
ii

E-

X
<0

X
O
n

<2

i n
iin
a)

r—iX
CO
E-i

to co
X *4) cn cn o x ai o
i—I h4
3
a to

c
0) 3
c n «
to
X c
oj o> -<H< X

(0OJ >
O uxi a< <u

a

0Jcnoa
>4
3 c cOr 0 o A-

• H •l-t OJ n*OJ 4-1 4-1 u r~
rH CO CO 0J c3 14 14 rH CO tJa o o 3 rH cX 4-1 14 10 COm cn X0) 0J 4-1 14 OJx >4rH OJ >4

3 X oOJ OJ (0 c XX ■4U4 3 cn
3 3 01 o OJa a»o u X

cTD O C *hc3 x
x aX -H
14 X

o u
x to
cn ai

a

oooin
cn

oji—!
3
«

aiX c
O O x *h a
10 3<y nj -x x x uO <0 rO x X C CO co oj cm x =«=OJ DU o;ig ijh
X 3 3 X a X

C
o

tox
oXCO
0Jx

Qi U
V
CO

X

a)
a
co

OJ C -X
O (B

CM -r-i L i=»*= x X
Uoj a> -x

r H X (0 3 *i-i m
X T 3 S

c
o

COx
o
4-1
(0
d)
14

(0 d)
C -X
O CO ■H x X

a
3

- X
u
«0X
CM
=#=

OJ
r H
3
Li

I + + + +
4 1 1 4 U X I 4 4

A A A A AI I I I I
0$ X III II ̂ II IIX X U-l <4-4

+
II3

Cfl
II
X

I + + + I + I I +
> U U U 4 > U t U W U t l 4 I U

A A A A A A A A A I I I I I I I I I
+ O J l J + CM I X , J
II II II II II II II II II3 X X K 3 X I U X X

CM rHII IX II
W 3

co co h in o
o co h r* inr# co CM

co o*incoin<iinoicoin
• • • • • « # • • •co cooocoiHincninr-ir''LOOiOi^COCMCMCMiH

in
co
rH

o o o o o o o o o ©
O rH i—I rH f—I
rH rH H H rH © O O O ©
O O O G O
© © © © © © o o o o

<
o

o
c

CO
cn
<_>
xo

rH rH 88 88
88 88
88 88
88 88
88 88
88 88
88 88

rH H H
88 88 88
=*:=**:=*$=
88 88 88 =**= =8= 88
88 88 88
88 88 88 88 88 =*♦=:

rH rH rH rH f-H
88 88 88 88 88
8 8 8 8 8 8 O rH
88 88 88 88 88
88 88 88 88 88
rH O 8 8 8 8 8 8
88 88 88 88 ©

H CVJ CO <3« LO

0)cnro
u
0)><
c
o

<0
rH3a
o
Or

o o o o o o o o o o o o o o o o o o
O r H t H r - I O r H O O t H
rH rH H rH rH rH rH rH H
O O O O O O O O ©
O O O O O O O O O o o o o o o o o o o o o o o o o o o
rH rH lH pH rH rH rH rH rH
88 88 =«= a«s 88 88 88 88

< 88 88 =tt= =«==8=88 88 88 88
CD88 88 =tt==8=88 88 88 88

88 88 a«= =»= 88 88 88 88
X 88 88 =«==8=88 88 88 88
X 88 =«: =«= =*5=*888 88 88 88
• rH =a= =»= 88 88 88 88
JS 09 Oo «• <« •• •• • • • a • a

rH rH pH iH rH rH rH rH rH
=j£s sH: a»i= sjfe 88 88 88 88 88
=fte =tts =tt=88 88 O 88 88

• =tt= sjfc=«= =tt=88 88 88 88 88
cn rH =«= =«=rH 88 O 88 88
u =«= =$*==tt= ^ 88 88 rH 88 88

o o rH rH 88 O O
o =tt =tt= =8=O o 88 88 88
HH _><_v

rH OJ CO ^ LO UD CXJ vTt

d)
cn
CO14
dJ>
<
co
• rH

3
a
o

Or

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

170

principles of operation, and application of a learning
classifier system (LCS).

Learning classifier systems are the product of
Holland's continuing work on adaptive systems. A variety of
researchers have applied and enhanced these ideas; however,
the application in engineering-related domains has been
limited.

We have seen how the LCS starts from the concept of a
rule and message system, a type of production or rule-based
system. Production systems are useful in operations domains
because human operators seem to store their knowledge in
rule-of-thumb form. As with other production systems, the
rules are of the form, if <conditions> then <action>;
however, in the LCS, conditions and messages are restricted
to a fixed length string. Explicit pattern recognition is
provided by extending the binary alphabet by a single, don't
care symbol, #. Though simple in form, this system is both
computationally complete and convenient.

Classifiers (rules) send messages which may be placed
on the message list, potentially activating other rules or
directing external action by setting an action trigger, an
effector. The presence of a central message list is a
distinguishing and important feature providing a universal
communication.channel much like a bulletin board.

Since space is limited on the message list, some method
must exist for choosing among competing messages. An

apportionment of credit algorithm modeled after a

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

171

competitive service economy insures that rules are properly
evaluated and selected. Rules bid for the right to send
their messages; winning bids are paid to classifiers which
previously sent activating messages. In this way, a chain
of middlemen forms from the environment to ultimate action.
Competition keeps the system honest; useful classifiers live

and prosper, while the unsuccessful lose the means to engage
in commerce.

The payment made to and from a rule increases and
decreases its net worth called its Strength. Strength is
used to help determine a rule's bid; it also serves as a r
rule's fitness in a genetic algorithm search for new rules.
The GA adopted is similar to the one described earlier in
the optimization chapters; however, we only reproduce a
portion of the rule population at any one GA invocation.
Differences in the reproduction and mutation methods are
relatively minor and have been discussed in this chapter.

An LCS has been implemented and interfaced to a
simulated environment: an inertial object traveling in a
frictionless, one-dimensional space bounded by inelastic
walls. The LCS decides whether to apply a force in the

positive or negative direction, and it is rewarded if the
force tends to center the object and bring it to rest. We
choose this test problem to gain experience with the LCS in
a simpler environment than the typical pipeline system.

Yet, we recognize that this problem is no pussy cat; a
variety of rules working together are necessary for high

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

172

performance.
In a variety of studies, the LCS has learned effective

rule sets for control in this domain. In studies with the
genetic algorithm enabled and disabled, the LCS has always
outperformed a random walk. Cases with genetic algorithm
have consistently outperformed those without; the
difference is accentuated if we look at the number of times
the centering goal is accomplished. Even in cases where a
random population has been deprived of its best rules, the
apportionment of credit mechanism rates the remaining rules
and the genetic algorithm searches for new, better rules.

These results build our confidence in the learning
classifier system as an artificial learning and decision-

♦

making device. In the next chapter, wejEurth'er test its
* . \

capability by applying the LCS method to the control of a
highly variable pipeline environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

PIPELINE CONTROL WITH A LEARNING CLASSIFIER SYSTEM

The idea of tying computers to control equipment to
produce an 'automatic distribution system'. . . does not
seem impossible to me. Present use of telemetric and
remote control equipment has already gone a long way to
produce just that. How much farther it will go in the
future, and just how fast, is entirely a question of
economics. - E. F. Trunk, Gas Engineer.
The words sound fresh, as if uttered only yesterday,

but, in fact, they appeared in Gas magazine [7] in 1955 as
part of a symposium on computers in the gas industry. The
meteoric ascent of the digital computer at that time
increased expectations for rapid automation of pipelining
and network operations to the point where total control of a
pipeline by computer seemed imminent:

It would appear to me that the future of computers in
the gas industry is unlimited. . . . The only objection
to having an automatic distribution system is money.

- J. P. Clennon, Gas Engineer.
While optimistic enthusiasm for new technology is laudable,

in this case, it proved a bit premature. Though computers
have played an increasing role in communications,
simulation, and optimization in pipelining practice, the
dream of an automatic system is not much closer to fruition

today than it was in 1955.' Why is this so? Were our

'Some might argue that we are further away from this

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

writers correct and we have simply not invested enough money
to go all the way to human-free, closed-loop systems? Money
was and has not been the only obstacle as was recognized
even back in 1955 by another symposium participant:

Within the foreseeable future, no computer will be able
to perform any operation which has not, first, been
anticipated by its designer and taught to the computer.
Since unforeseen emergencies do occur, we cannot yet
hope to build into a computer the ability to respond
correctly to any situation that may arise. The possible
consequences of computer response to conditions arising
through some unpredictable accident are too serious to
accept. While continuous automatic indication of ideal
distribution dispatching may well be commonplace in 20
or 10 or even 5 years, there must be retained at least
one element of human judgement with full power to veto
any operating order which the computer may produce.

- J. H. Starr, Gas Engineer.
As this author realizes, conventional computer systems are
doomed for autonomous control applications because of their
brittle nature.2 If we must anticipate all possible
changes in the future before we can implement automatic
systems, we cannot succeed because, surely, we will miss

goal because we have lost our enthusiasm for new computer
discoveries and applications; everyone knows the way to
apply computers in their fields, and people do not work on
the innovations required for smarter machines. Even in AI
(artificial intelligence) research— where we should expect a
high level of innovation in this direction— one is
overwhelmed by the prevalence of convention over invention,
as evidenced by the burgeoning numbers of straight expert
system applications.

2While this author recognizes the brittleness of
conventional computer systems, he fails to recognize or
admit the possibility of adaptive computers. He is also
guilty of an implied double standard toward man and machine.
For his automatic distribution system he requires the
"ability to respond correctly to any situation." Does he
require such perfection from his human dispatchers? We must
overcome this double standard, one which is widely held, if
we are to judge our computer efforts fairly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

something or anticipate the future incorrectly. This truth
places a premium on learning and adaptation; the.need for
effective adaptation is crucial to have any hope for
autonomous pipeline system control.

In this chapter, we strike at the heart of these issues
directly by applying a learning classifier system to the

control of a highly variable pipeline environment. Not only
do we require the system to perform undcsr normal conditions,
we also expect the system to detect the presence or absence
of leaks on the pipeline. Furthermore, the test is made
more difficult by our choice of starting conditions. Unlike
Mr. Starr's computer system where everything must be
anticipated beforehand, in our tests, nothing is
anticipated; we start from a randomly generated initial
state of mind. This places our focus right where it should
be, on the system's ability to learn and adapt.

We start our journey down this promising path by

describing the simulated pipeline environment and LCS
interface particulars. While the environment is a simulated
abstraction of a real environment, we are careful to
preserve important characteristics which make good

performance a challenge. After this description, we present
results from a variety of simulations. Specifically, we
look at normal operations— summer and winter— and leak upset
operations. We compare results with and without the genetic
algorithm to a random walk as we did in the previous
chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

6.1 Environmental Description
We develop a fairly complete, though simplified,

pipeline environment to test the breadth of LCS techniques
in pipeline control. In this section, we describe the
pipeline model, load model, and supply alternatives, as well
as the upset conditions which together comprise the pipeline
environment.

Pipeline Model
For this portion of our study, we adopt a simplified

model of the pipeline dynamics as compared to the transient
optimization study in Chapter 4. We ignore gas inertia and
use a simple volume, nonlinear resistance model of pipeline
behavior. This permits simpler algebraic computations and
larger time steps, thereby promoting more efficient
computation. The LCS computations are demanding enough
without burdening the little Apple II with a detailed
pipeline model.

The model may be viewed simply as a balloon and pipe as
shown in Figure 6-1. We write a simplified continuity
equation for the balloon as follows:

Q i " Q0 = dV/dt
where: Q.- inflow

Q0 - oytflow
V - line pack
t - time

We combine this with a no-inertia equation of motion:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

Q; O

L, D, f

Fig. 6-1. Simplified Pipeline Model Schematic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

P2. - p2o = K«Q0»|Q0 |

where: P- - inlet pressure
P Q - outlet pressur
K - resistance

The two are linked by an isothermal equation of state:
V = c ^ P j

where: c 1 = T #A*L/(P *T)

Together, these equations define our simplified pipeline
dynamics. If we assume a linear variation of the quantity
Qj - Q q from one time step to the next, we may integrate the
set exactly using a trapezoidal rule integration. The
detail of this formulation is straightforward; however, we
do not pursue it further as this might be seen as an
endorsement of this type of modeling for normal engineering
work. More complete models such as the one developed in
Chapter 4 and those referenced in Chapter 2 should normally
be used. We adopt simpler models here because of the
constraints of our computing environment.

Load Model
In our system, we have two types of load pattern which

may occur: summer and winter. Both patterns are cyclical,
repeating on a daily basis every time steps. The

seasons change every Tseason time steps and each major
season change is preceded by a minor seasonal chanqe--

roughly equivalent to spring and fall— where the ambient
temperature changes but the load pattern does not yet shift.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

We adopt a pattern of loading shown in Figure 6-2. The
daily variation roughly corresponds to some results
presented by Boyer [78] who used cluster analysis to
identify typical daily usage patterns for a California gas
utility.

Supply Alternatives
As in our earlier study of transient optimization, our

major control variable here is the pipeline inflow. We may
supply different levels of flow between Q„. and CL.min “max
depending upon the discretization of the effector. For this
study, we permit 4 levels of flow to be specified by the
LCS.

Upset Conditions

In addition to normal summer and winter conditions, the
pipeline may be subjected to a leak upset. During any given
time step, a leak may occur with probability Pieak* If a
leak occurs, the leak flow, Q]_eaj?f is removed from the
upstream junction; however, this is not directly reflected
in any system measurements. The leak persists for T leak
time steps.

Together, the pipeline, loading, supply alternatives,
and upset conditions specify the pipeline environment.
While we have simplified it a great deal, we have not
eliminated the high load variability normally encountered in
practice; nor have we removed the unpredictable to make the
task easier. The LCS must learn to deal with both the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

1.5

E
O

o
(0

2400 h o u r

s u m m e r — 2 5 m m c f d

w i n t e r — 50 m m c f d

Fig. 6-2. Daily Loading Patterns

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

expected and the unexpected if it is to be successful in our
environmental abstraction. In the next section, we examine
the LCS-environmental interface to see what kind of cues the
learning system can get from the environment.

6.2 LCS-Environmental Interface
The LCS is presented with a fairly complete, yet fairly

crude, picture of its environment. In this section, we
examine that picture. We also specify the reward mechanism
adopted to evaluate the LCS's decisions and actions.

Environmental Message
The environmental message template for this problem is

shown in Table 6-1 along with the interpretations of the
various codings. The system has complete, albeit imperfect
and discrete, knowledge of its state including inflow,
outflow, inlet pressure, outlet pressure, pressure rate
change, season, time of day, time of year and current
temperature reading.

Reward Mechanism

As in the inertial object study, we install an ever-
vigilant computer procedure to consistently administer
reward to the LCS= We describe the procedure in pseudo-code
as follows;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

Table 6-1
Pipeline LCS

Environmental Message Template

i I I I M I II I I I I i ’I 1
| PI | QI | PO | QO | DP j TOD |TY|TP| TAG |

Variable Description min max
if of

positions

PI inlet pressure 0 2000 2

QI inlet flow 0 80 2
PO outlet pressure 0 2000 2
QO outlet flow 0 80 2
DP u. s. pressure rate -200 200 2
TOD time of day 0 24 2
TY time of year 0 1 1
TP temperature 0 1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

Every Tgvalth time step
if there is a leak and it is detected then

points=ptsleak else points=0
if there is no leak and
if it is winter and the pressure is ok then

points=ptsnotover
or if it is summer and the temperature is hi

and (pressure is lo-ok or
lowering) then

points=ptsnotover
or if it is summer and temperature is lo

and pressure is hi-ok or rising
then

points=ptsnotover
or if pressure is below acceptable

but system is packing at max rate
then >.

points=ptspressure
or if pressure is above acceptable

but system is drafting at max rate
then

points=ptspressure.
The pressure ranges described in this procedure are

illustrated in Figure 6-3. In words, a variety of point
rewards may be given to the LCS depending upon the action
taken and the current state of the pipeline. If a leak is
present and it is detected, a certain level of reward is
given; no points are given for an undetected leak
regardless of other actions. If no leak is present, points
are awarded depending upon the season, pressure and
temperature level. Additionally, if the pressure is out of
range, but the system is packing or unpacking to return the
system to an acceptable pressure, then another quantity of
points is awarded.

The normal level of award, ptsnotover, is greater than
the out-of-range value, ptspressure, because in the former,
both the action and system state are correct, while in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

u n a c c e p t a b l e

OK
Hi-OK

LQ-QK j

u n a c c e p t a b l e

P over
p

mid

P .
m m

Fig. 6-3. Pressure Levels for Reward and Penalty

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 8 5

latter, only the action is correct. The leak award is
generally higher than the other values because the
occurrence of a leak is a relatively low probability event,
thereby necessitating higher award for leak rule survival.

With a reward mechanism specified and LCS-enviror.mer.tal
interface drawn, we proceed toward simulation results by
first examining salient implementation details and system
parameters.

6.3 Implementation Details
In this section, we attack some remaining details of

implementation and summarize the LCS and environmental
parameters used in the pipeline operations learning tests.

The pipeline environment has been coded in Pascal and
hooked up with the learning classifier system of the
previous chapter. Careful, modular programming eliminates
the need for LCS modifications when arranging a new
application. The skeletal description of the LCS, presented
as Appendix B, is still an accurate representation of the
LCS code, except that the environment is replaced by the
pipeline operation environment also presented in Appendix B.

The learning system parameters of the previous chapter
have been adapted for this study. must be scaled to
reflect the longer message length and higher possible

maximum matchscore. Other length dependent values have been
adjusted to reflect the new message length. All the
parameters are summarized in Table 6-2.

The environmental parameters are displayed in Table

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

186

Table 6-2
LCS Parameters

for
Pipeline Operation Tests

nclass = 4 ̂ (normal), 60 (leak runs)
1 (message length) = 16

nmess - ®
xlo = 1

xhi " 14
^generality “ ®«75

pmutation = C)-001
Cbid = 0.0156

°bid s 1,0
nreplace " 3

ctax = °*002
T g a " 2 0 0

Teval " 1
PROPORTION = 0 . 0 5 (normal), 0.0333 (leak runs)

6-3. The line is of moderate length, 94.7 miles, and
diameter, 1.0 foot. As we saw previously, the load varies
greatly from summer to winter. Furthermore, we note that

the leak flow Q^eak a si9n ificant multiple of the
normal through flow. This • flow rate is realistic as it

represents the blowdown rate we might see if we were to
punch a 4 inch diameter hole into the line at a pressure of
1000 psia.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

167

Table 6-3
Environmental Parameters

for
Pipeline Operation Tests

pressure units
flow units = MMCFD

dt = 1 hour
gas gravity = 0.6 (relative to air)

P e4.o = 14.73 'PSIA
• 5 2 0 ■

P „ „ ^ = 1500 PSIA
= 1000 PSIA

Pmin = 500 PSIA
Pipe length = 500000 feet

Pipe diameter = 1.0 feet
f factor = 0*01

Gas temperature = 520 K

K1 = 300 (compressor coefficients)
K2 = 295
K3 = 0.25

T. •. = 24
T . ^ S i i ? = 480seasons

LEAKQ = 250 MMCFD
P leak = 0,2

ptsnotover = 6
ptspressure = 5

ptsleak = 12 (leak runs only)

Summer Load (time,load)
(0,25) (3,20) (5,25)
(10,35) (12,25) (17,20)
(20,25) (22,30) (24,25)

Winter Load

(0,50) (3,40) (5,50)
(10,70) (12,50) (17,40)
(20,50) (22,60) (24,50)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

188

6.4 Normal Operating Simulations
With a well-specified learning system and test

environment established, we proceed with several learning
tests under normal operating conditions (no leaks). As in
the inertial object tests, we look at learning with and
without genetic algorithm and compare those results to a
random walk through the decision space.

For this series of tests we generate an initial
population of rules of size, n c lass^O; ten rules are
reserved for each of the four possible decisions
corresponding to the four possible input flow rates. The
rules are restricted to the following form:

RRRRRRRRRRRRRR1 1 ' . # # # # # # # # # # # # # # } 1/< ACTION MESSAGE >
As in the inertial object study, the R signifies a position
chosen at random with the generality bias probability,

^generality'
In the first set of learning tests, we start from the

initial population presented in Table 6-4. In run P0LCS.1,
the learning proceeds with apportionment of credit only (no
GA). In run POLCS.2, both kinds of learning are enabled.
Results from these tests are presented in Figure 6-4, a
graph of time-averaged total evaluation vs. time. The
pattern displayed in this figure is familiar; both lea rning

tests outperform the random walk. Furthermore, while
outperformed at first, the run with genetic algorithm soon
beats the case without. This is not unexpected as we

obtained similar results in the inertial object simulations.

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

189

Table 6-4
Initial Rule Population
Runs P0LCS.1 & POLCS.2

100##########
1###1
0## # # # 0 # 1###1
1# 0# # # # # 10# 1##
##0 # # 0# 1####0
0# # # 1# 0 # # # 0##
0# 1# 0 0 0#######
^#0# 1 1 1 0 # 1##
1# # # # # # # 1# 0 ###
0# 0########
0# # 1# # # # # # 1##
1# # # # # 1#######
110# # # 11#
#1#######
11# # # # # # # 1####

0# # 1# # # 1 1 0 0

1001# # 1 1#####
1# # # # # # 0#####
0# # # # # # # # #0#
1# # # 1# # # # # 0 1##
1 ####### 1 #####
1# # # # 1# # # # # 1 1 #
####### 1### 10#
01# 1
0 0 1 # # 1#####
0 ##1###1 0 0####
1#######
1# # 0# # # # 0##
1# 1########
1# # 0# # 1###00
1# 0 1 ## # # # # 0 # # 0
i#io###i
0 # 110# # # # # 10#0
1 # # # 1 ##
1## 0#####11#1

11# # 11######
1# # # # 1# # # 1 1 # # 0

##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############

1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
i / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

To further explore why this-occurs, we delve into the
particular rules learned by the system. In Table 6-5, we

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

190

with GA (POLCS.2)
8
■Ji

no GA (POLCS.l)

Random

0.00 200.00 400.00TIME 600.00 (DAYS) 800.00 1000.00

Fig. 6-4. Time-averaged TOTALEVAL vs. Time. Normal
Operations. Runs POLCS.l & POLCS.2

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

1 9 1

see the top rules, those exceeding 3 times the average
strength at each run's end. Comparing the run POLCS.1 (no
GA) rules to the environmental template, the rules seem to
be a hodgepodge of not nonsensical, but not entirely clear,
rules. For example, the two top rated rules translate
loosely as follows:

If [(P^ is hi)
and (DP^/dt is (very negative or moderately
positive))]

then [set inflow=Q1]

If t (P^ is low) and (Qq is low) and (temp is hi)]
then [set infla»=Q 1

Although the rules are not usually counterproductive,, they
are by themselves, not complete. This is the best wo can
expect when we start from a random state of mind, and we
permit no refinement of the rules through genetic action;
the system must choose the best of the bunch to try to cover
the operating conditions it sees.

By contrast, when we permit genetic action, the best
rules in run POLCS.2 start to approach our intuition of how
a system should be controlled. For example, the two best
rules of run POLCS.2 translate as follows:

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

192

Table 6-5
Top Rule Subset & Strengths (End of Run)

Runs POLCS.1 & POLCS.2

POLCS.1 (no GA)

1:##############11/1010000000000000 54.30
#0#####0#1#jj!#11 1 :############## 1 1/1 1 10000000000000 35.2o

1:##############11/0010000000000000 28.95
d M # # 0 j W # # 1 1 # 1 1 1/0010000000000000 26.79

POLCS.2 (w/ GA)
#0############1 1:£#############1 1/1 1 10000000000000 65.44

1 ###1 1/0010000000000000 60.31
######1#10####111 # # # # # # # # # # # # # # } 1/0010000000000000 37.07

if [(P.. is low)] then [set inflow=Qm] i max
if [(dP./dt is (extremely negative or moderately

positive))]
then [set inflow=Qm ^n]

These simple rules, a simple pressure threshold and a multi­
level rate threshold, seem more natural than the earlier
mixture of complex rules (The pressure rate rule makes more
sense than it first seems because the extremely negative DP/

dt is not seen under the normal conditions of this run).
Judging by the relative performances, these rules are also a
good bit more effective than their no-GA counterparts.

A confirmation set. of runs is started from a different,
randomly generated set of rules, runs POLCS.3 and POLCS.4.
Again, the comparison of time-averaged total evaluation

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

193

yields the same result (shown in Figure 6-5): the run with
genetic algorithm outperforms the run without, and both
outperform the random walk.

6.5 Leak Detection Simulations '——— —— ——— _r“ 1
To test the breadth of the LCS method, we see if the

system can learn, not only normal operating rules, but also
rules that detect leaks. Recall that the LCS has only a
limited discretization of its environment to work with and
that no rules have been implanted to help it find its way.
Certainly, if the system can learn to detect leaks, we have
reason to hope that we can teach it many other tasks
required in a real operating environment.

In the leak runs, we again start from a randomly
generated set of rules. In these tests, 40 are devoted to
the four flow effectors, and 20 are allocated to the two
external leak messages: leak is present and no leak is
present. Once again, we compare performance with and
without a genetic algorithm to a random walk. In runs
POLCS.5 (no GA) and POLCS.6 (with G A) , history repeats
itself with the GA run outperforming the no-GA run, and both
outperforming the random walk on the basis of time-averaged
total evaluation shown in Figure 6-6. It is also
instructive to look at the percentage of leaks alarmed
correctly in Figure 6-7. without the genetic algorithm, the
percentage of leaks alarmed correctly starts out very high
and remains stationary throughout the simulation. By
contrast, the simulation with genetic algorithm starts out

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

194

_i<x
9a:h-o

S..

S
0.00

with GA (POLCS.4)

no GA (POLCS.3)

Random

------- 1----------- 1----------- j----------- ,
2QO.OO 400.00 600.00 800.00 1000.00T I M E (DAYS)

Fig. 6-5. Time-averaged TOTALEVAL vs. Time - Normal
Operations - Runs POLCS.3 & POLCS.4

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1 9 5

lower and approaches (and would eventually surpass) the no-
GA results on this basis. This seems surprising until we
examine the percentage of false alarms (shown in Figure
6-8). The high percentage of correct leak detections for
run POLCS.5 (no GA) is bought at the expense of a very high
(worse than random) percentage of false alarms. With the
genetic algorithm enabled, the system learns to not alarm
falsely at the same time it learns to detect correctly.
This results in the large differential in point score
between the two simulations.

If we examine the rule set at the end of run POLCS.6
(with GA) we see the reason for its high level of success in
detecting leaks. Among the leak rules, those with a leak or
no leak message effector, two rules predominate at the end
of the run:

if [anything] then [send no leak message]

if [(P^ is low) and (?o is low) and
(dP^/at is very negative)]

then [send leak message]
In other words, by default the system sends the no leak
message; the leak message is only sent under very specific
conditions. We note that the leak rule designed by the
system is not among the original random population.
Furthermore, the rule is the ideal leak detection rule for

this system because the specified conditions are precisely
those the system will see with the magnitude of leak

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

196

a

s.
in

S..

y r<x1—o

with GA (POLCS.6)

no GA (POLCS.5)
-------- A--------A A

Random

8 .oJ

S.

3^---------------i---------------1---------------1-------------- 1
0.00 100.00 200.00 300.00 400.00TINE (DAYS)

Fig. 6-6. Time-average TOTALEVAL vs. Time - Leak
Runs - POLCS.5 & POLCS.6

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

197

o o -

inr~
h - ° 'OUJ
CtL
(HOo«=>in
CO”
CELlI

•inC-Jd

CD
CD

no GA (POLCS.5)

with GA (POLCS.6)

Random

0.00 100.00 200.00 TIME (DfiYS)
— i—

300.00 400.00

Fig. 6-7. Percentage of Leaks Correct vs. Time
Runs POLCS.5 & POLCS.6

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

%
FAL

SE
AL

AR
MS

198

in r~.
no GA (POLCS.5)

-A-----------A" . A

Random

lO CM ,
With GA (POLCS.6)

C 3a .

0.00 100.00 200.00 300.00TIME (DRYS)
— i
400.00

Fig. 6-8, Percentage of False Alarms vs. Time
Runs POLCS.5 & POLCS.6

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

199

imposed.
A confirmation set of runs is performed using a

different, randomly generated, rule population. The results
are presented in Figures 6-S (time-averaged total
evaluation), 6-10 (% leaks correct), and 6-11 (% false
alarms). In these cases, the run with GA does not find the
ideal leak detection rule; however, its GA-refined rule set
still beats random and no-GA performance by a significant
margin on the basis of time-averaged total evaluation. In
the other measures, percentage leaks correct and percentage
false alarms, run POLCS.8 (with GA) outperforms run POLCS.7
(no G A) ; by contrast, in the previous runs, the no-GA case
outperformed the GA case in the percentage leaks detected
measure, but this was countered by the high percentage of
false alarms encountered. In the present cases, GA
perfprmance is consistently better than no-GA performance in
all measures, although the differences are less dramatic
than in the previous cases. Examination of the end-of-run
high performance rules shows why the runs differ: in runs
POLCS.7 and POLCS.8 there is no evidence of the crucial leak
detection schema, "if [very negative pressure rate] then
[send leak message]." The schema did not exist in the
initial population (In fact, the schema "very negative
pressure rate" did not exist in any rule in these runs).
Furthermore, generation of this schema (via GA) during the
run is a fairly low probability event because it requires a

mutation at one or two specific locations or a cross at a

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

200

specific site between two specific alleles in different
rules. The problem here (if there really is one— the GA run
did outperform the no-GA run, and both outperformed the
random walk.) is the small population, size. Higher order

schemata are not present in the starting population in
sufficient quantities because of the small population sizes
adopted. Larger populations should be used to provide
sufficient expected numbers of higher order schemata in
starting populations generated at random. Small populations
have been used in this study to keep computational
requirements (which qo up as the product of rule population
size and the message list length) to a minimum. The use of
large populations in future applications will rectify this
situation.

6.6 Summary
In this chapter, we have applied a learning classifier

system (LCS) to the control of a varied and uncertain
pipeline environment. Starting from randomly generated
rules, the system has learned, not only to operate under
normal summer and winter conditions, but also it has learned
to detect the presence or absence of leaks with increasing
certainty.

In two series of normal operating condition tests, the
LCS has consistently outperformed a random walk. The
simulations with GA have, once again, improved upon the
initial rule set by outperforming the runs without GA.
Examination and comparison of the best rules has

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

TOT
fiL

EVH
L/T

201

I-

S..

S.ei

Sc)

with GA (POLCS.8)
■e---------- o

no GA (POLCS.7)

Random

S.

O.QQ 100.00 200 .00TTMC move)I XI ll_ VUI I I vJ/
300.00 400.00

Fig. 6-9. Time-averaged TOTALEVAL vs. Time - Leak
Runs POLCS.7 & POLCS.8

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

202

C3C3 _

inr~'•
H-0O
LxJ
CcL
C CO(J oin
CO”
CELU

•inO!
d

CD
CD

with GA (8)

no GA (7)'

Random

+0.00 100.00 TIME 200.00
— f----
300.00

— f
400.00/nn\yr*\UJH T SJ

Fig. 6-10. Percentage of Leaks Correct vs. Time -
Leak Runs POLCS.7 & POLCS.8

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

%
FAL

SE
AL

AR
MS

0.2
5

0.5
0

0.
75

2 0 3

Random

no GA (POLCS.7)

with GA (POLCS.8)

*0.00
— 1----
100.00

+
200.00 TIME (DAYS) 300.00

— i
400.00

Fig. 6-11. Percentage of False Alarms vs. Time
Runs POLCS.7 & POLCS.8

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

204

demonstrated the increased effectiveness of the GA-
discovered rule set.

Two sets of leak detection runs have been performed.
Starting from a random rule set, the learning system has
outperformed the random walk. The GA runs have outperformed
the no-GA runs. Examination of the leak detection rules has
shown definite movement toward pressure rate leak detection
as we should expect. Indeed, in one of the two leak runs
the ideal leak detection rule has been discovered even
though it did not exist in the original rule population.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

CHAPTER 7

CONCLUSIONS

Our goals in this study have been clear: we have
sought robust learning and decision algorithms for operating
a gas pipeline. We have emphasized the need for
robustness— the efficiency and breadth of performance we
observe in human pipeline operators— because the varying
pipeline environment is fraught with change and uncertainty;
any pre-programming, modeling, or a priori decision making

is doomed to failure when conditions change, thereby
violating the assumptions contained in the programs, models,
or decision rules we so carefully constructed at an earlier
time.

Although it is easy to talk about algorithmic
efficiency and breadth, finding examples of robust
adaptation procedures is not so simple; a survey of
methodologies has shown that most common artificial
procedures have two shortcomings: locality and structural

rigidity. Because of these shortcomings, we have abandoned
the frontal attack— traditional optimizers and the learning
systems that use them— and instead, have staged a two

pronged assault on our objective.

205

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

206

First, we have tested the flanks by investigating a
genetic algorithm in two pipeline optimization applications.
This algorithm has demonstrated more of a global flavor than
other search procedures we commonly encounter.

Second, we have struck at the heart of structural
rigidity through the development and application of a
learning classifier system, first in an inertial object
environment and then in a pipeline environment. The
learning classifier system avoids rigidity because it is a
rule-based computational scheme that, in a sense, programs
itself with better and better rules.

In this chapter, we review our progress in genetic
algorithm and learning classifier system applications. We
also recommend some important directions for the
continuation of this work.

7.1 A Genetic Algorithm and Pipeline Optimization
In our bout with a genetic algorithm (one of a class of

algorithms) we have detailed its mechanics and effect.
Generally, genetic algorithms imitate the mechanics of
natural genetics by combining a survival-of-the-fittest
notion (reproduction) with a randomized, though structured,
information exchange (crossover) among strings in a
population. These operators involve nothing more complex
than string copying and partial string swapping, yet, we

have seen how this simple process effects a rapid search
among alternatives by independently sampling building
blocks, short high strength schemata, at near-optimal rates.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

207

Intuitively, this process is appealing because it is a kind
of innovative search where new ideas are boldly formed from
the best pieces of our old ideas.

Our genetic algorithm also contains a strictly random
operator, mutation, thrown in as an insurance policy against
unrecoverable loss of information. Many are surprised that
this operator only plays a secondary insurance role in the
search process; genetic algorithms are not coin flipping by
a fancy name. Crossover and reproduction carefully exploit
existing information to search for improvement in future
generations.

The three operator (reproduction, crossover, and
mutation) genetic algorithm has been tested on two pipeline
optimization problems, steady state operation of a serial
line and transient operation of a single line. In both
cases, in a variety of runs, near-optimal results have been
found after examining an infinitesimal fraction (10~^ -

-7-10 %) of the search space.

These results have established the genetic algorithm
approach as a practical methodology in engineering
optimization. They also have bolstered our confidence in
using the genetic algorithm as a component in a more
flexible learning system, a learning classifier system.

7.2 A Learning Classifier System Controls a Pipeline

A learning classifier system (LCS) has been developed
to control a simulated pipeline system. An LCS is a
learning system that creates, evaluates, and exploits string

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

2 0 8

rules for high performance interaction with some arbitrary
environment.

Our LCS learns in two ways. First, existing rules are
evaluated by an apportionment of credit algorithm modeled
after a competitive service economy. Rules bid to become
active and pay their bids to message-sending predecessors.
In this way, rules gain or lose accumulated wealth depending
u i their ability to set up reward from the environment.

Second, the system learns new rules by using a genetic
algorithm similar to the one in the optimization studies.
New rules are created by reproducing, crossing, and mutating
rules in the current rule set. Thus, new rules are
generated from the best pieces of the old; they are then
inserted into the population and evaluated by the
apportionment of credit mechanism.

In two different environments, an inertial object and a
pipeline, an LCS has learned effective rules for high
performance control. In the inertial object environment,
both braking rules and restoration rules have been learned
to center the inertial object after it is disturbed from
rest. In the pipeline environment, rules have been learned
to control the pipeline during normal summer and winter
conditions; the system also learns how to detect leaks with
increasing effectiveness. In all cases, the learning has
proceeded from a random state of mind; no rules have been
implanted to help the system learn its task more easily.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

2 0 9

7.3 What Needs to be Done?
The coming application of genetic methods in tougher

problem domains will demand fundamental study of a number of
genetic operators and mechanisms. Crowding, locus
rearrangement (inversion), and dominance mechanisms should
be studied empirically to verify the theories advanced to
date (ANAS). Crowding is particularly important in multi­
modal problems (and learning systems) because it divides
population slots among different peaks. Locus rearrangement
operators like inversion should be studied to verify their
usefulness in GA-hard problems; Bethke's methods may be
used to design GA-hard codings of GA-easy functions.
Dominance operators should be studied to naturally prevent
allele loss without disruptive mutation rates.

The LCS system may be extended simply to achieve more
computational convenience. At present, recognition of
environmental patterns and data is easy; transformation of
data is not. We suggest the extension of the LCS alphabet
by a single shift and transfer character, the dollar sign $.
In a condition a $ behaves like a # . In a message, it
transfers data from the condition side (processing left to

right) to the open $ slots in the message side. Such an
operation is necessary for convenient formation of time

histories and other transformed representations of incoming
data.

Beyond this we should strive to unify messages,
classifiers, and the algorithms that process them. If we can

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

2 1 0

extend the rule and message system simply, so the basic
genetic operators (and AOC?) may themselves be written in
rule form, we can achieve the ultimate in flexibility, a
system that learns to learn as it learns to perform.

7.4 Are the GA and LCS Ready for Gas
Pipeline Control and Vice Versa?
Yes, maybe, and probably not.
In this study, we have demonstrated the practicality of

genetic algorithms in pipeline engineering optimization
applications. If you have a model of your system, well-
defined constraints, and some appropriate objective
function, a genetic optimizer is a nice little black box you
plug into. In addition to being easy to use, we have also
seen how the GA does not rely upon the restrictive
assumptions of other methods (unimodality, existence of
derivatives, stage decomposability, piecewise linearity,
etc.) Indeed, genetic algorithms stand ready, today, to
perform practical production optimization studies on
pipelines and other engineering systems.

Learning classifier systems are, perhaps, not quite as
ready to start performing their roles as expert consultants
and knowledge storehouses; however, the progressive pipeline
manager may want to keep abreast of their progress and maybe
start a pilot investigation into their applicability.

In a pilot study, we should keep both the application
and our expectations down to a reasonable size.

Implementation of an LCS on an isolated stub line or a

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

211

simple main line is feasible; however, as with an infant, we
should not expect too much too soon. We should not expect
an LCS to solve problems that we cannot solve (although this
seems to be one popular success criterion for AI research).
Instead, if the system learns to advise its operators in a
consistent manner, we should be pleased. If the system
starts to take on some of our intuitive knowledge in its
rule set, we should be modestly ecstatic.

Is the pipeline community ire"ady for genetic algorithms
and learning classifier systems? As we have already
speculated, probably not. The notion of using artificial
genetics to optimize pipeline operations is sufficiently
bizarre to raise a few eyebrows; however, the resistance to
these techniques will probably be the same resistance that
faces other optimizers. Pre-programmed models and objective
functions have a difficult time representing the real world.
As a result, human dispatchers tend to distrust optimizer
recommendations and rely on their own intuition.
Nonetheless, genetic optimizers can be a useful tool in the
hands of the skilled dispatcher or engineer; furthermore,
the innovative search process underlying the genetic
algorithm may appeal to the operator's own sense of
innovation.

The notion of a learning system that learns rules of
thumb similar to the dispatcher will probably face a

different, less justified, kind of resistance. Dispatchers
may fear for their jobs, discomfited by the prospect of an

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2 1 2

infallible silicon surrogate. Although we understand these
fears, our goals run in a different direction. A learning

system should replace no dispatchers; it should aid the
decision-making process and act as a storehouse of
pipelining knowledge. This should ease, not teplace, the
dispatcher’s job, while it adds continuity of experience to
the pipelining workplace.

Regardless of the time and place of application of this
research, its pursuit can only help with our understanding
of intuitive gas dispatching and the performance of other
complex technical tasks. Our parting hope is twofold;
First, we hope this work spurs other engineers to carry on
both applied and basic research in this field. Second, we
hope it encourages the trial of these techniques on an
operating pipeline system, because in engineering, practical
application is the certain touchstone of success.

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

APPENDICES

213

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2 1 4

APPENDIX A

SKELETAL CODE FOR GENETIC OPTIMIZATION
PROGRAMF GENESS AND GENETR

In this appendix, the hierarchy of coding is presented
for t'he genetic optimization work of Chapter 4.
Relationships are presented in Pascal-like pseudocode with
procedures described in brief comments— (* comment enclosed
like this *). We proceed, presenting code from general to
particular, in the order of program flow.

Program GENESS

program geness; (* SS Serial Problem *)
begin (* main *)

input; (* read GA parameters *)
creation? (* create a string population and initialize

problem *)
generation; (* perform subsequent generation

calculations *)
end.

procedure creation;
begin

randomize; (* shake up random number generator *)
randomstart; (* randomly initialize string population

*)
initialreport? (* parameter printout *)
initmodel? (* initialize the model #)
fitnessevaluation; (* evaluate gen-0 fitness *)
greport; (* generation report *)
plotreport; (* initial plot report *)

end;

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

2 1 5

procedure generation;
begin

for ngen := 1 to maxgen do
begin (* generation loop *)

reproduction; (* fitness proportionate reproduction
and mutation *)

crossover; (* mate and cross reproduced strings *)
fitnessevaluation; (* evaluate fitness over

population *)
greport; (* generation report *)
plotreport; (* plot report *)
advance; (* oldpop := newpop *)

end (* end loop *)
end;

procedure fitnessevaluation;
begin

for [all strings] do
begin

unpackchrom; (* unpack chromosome (string) *)
decodeparms; (* decode string to sequence of real

parameters *)
modelss; (* steady state model calculations and

cost accounting *)
end; (* string loop *)

sort; (* order strings by fitness , hi to lo, for
convenience not necessary *)

countcalc; (* calculate reproduction count with
probabilistic rounding *)

end;

procedure modelss;
begin

flow; (* calculate flow and pressure for each pipe-
compressor *)

horse; (* calculate horsepower *)
constraint; (* calculate penalty cost *)
[calculate fitness]

end;

procedure countcalc;
begin

[calculate average fitness of population];
[calculate fitness count with probabilistic rounding

scaling (max=2) until all slots filled]
end;

Program GENETR

The transient program is similar in structure except f'or

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

216

the model. The following code replaces procedure modelss;
otherwise the structures are identical.

procedure modeltr; (* transient single line problem *)
begin

modelinit; (* initialize model *)
modelexec; (* execute model *)
costcalc; (* cost accounting calculations *)
summaryreport; (* summary report, if flagged *)

end;

procedure modelinit;
begin

initreset; (* reset time and accumulator variables *)
initsstate; (# set initial steady state conditions *)
report; {* variables report *)

end;

procedure modelexec;
begin

while [time is less than maximum]
begin

timecalc; (# calculations in time *)
report; (* variables report *)
advance? (* advance pressure-flow vars *)

end (* time iterations *)
end;

procedure timecalc;
begin

interior; (* interior point calculations in pipe *)
boundary; (* boundary junction calculations *)
statistics; (* calculate run statistics *)

end;

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout pe rm iss ion .

217

APPENDIX B

SKELETAL CODE FOR
LEARNING CLASSIFIER SYSTEM (LCS)

INERTIAL OBJECT AND PIPELINE OPERATIONS ENVIRONMENTS

In this appendix, the program hierarchy is presented
for the learning classifier system work of Chapters 5 and 6.
Relationships are presented in Pascal-like pseudocode with
procedures described in brief comments— (* comment enclosed
like this *). We proceed from general (main program) to
particular (lower level procedures) in the the normal order
of program execution.

Program LCSIO (Inertial Object)

program lcsio; (* Inertial Object LCS *)
begin (* main *)

initialization; (* initialize the LCS *)
initenvironment; (* initialize the environment *)
report; (* t=0 report *)
repeat (* thought iteration *)

lcs; (* LCS computations *)
efftocontrol; (* set actions from effectors *)
timekeeper; (* keep time and flags for ga, report,

eval *)
environment; (* environmental calculations and

display *)
statetomessage; (* place new environmental state in

env. message *)
reinforcement; (* reward active e-classifiers *)
report; (* report on iteration *)

until haltflag (* end of run *)
end.

procedure initenvironment;
begin

initenvdata; (* read environmental data *)
initenvreport; (* initial env. report *)
initdisplay; (* set up screen display *)

end;

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

2 1 8

procedure initialization;
begin

randomize; (* shake up random number generator *)
initlcs; (* initialize the lcs *)

end;

procedure initlcs;
begin

readdata; (.* read in LCS parms and data *)
initreport; (* printout initial LCS parms *)

end;

procedure lcs;
begin

performance; (* rule and message system and aoc *)
if gaflag then ga; (* genetic algorithm if enabled *)

end;

procedure performance;
begin

matchclass; (* match classifiers to messages and build
pointer list *)

bid; (* construct active list and hold noisy bidding *)
sort; (* pick best active classifiers by bid *)
effector; "(* check best actives for e-classifiers and

arbitrate among mutually exclusives *)
payment; (* payment to previous message senders -

clearinghouse and taxation *)
statistics; (* update avg, max, min stats *)

end;

procedure ga;
begin

pickmofon; (* pick potential replacement candidates *)
repeat

mating; (* selection, crossover, mutation *)
until [enough mates]

end;

procedure mating;
begin

select; (* 2 mates *)
crossover; (* crossover and mutation *)
replacement; (* the new children *)

end;

procedure environment; (* inertial object version *)
begin

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

2 1 9

evalkeyboard; (* keyboard commands and evaluation *)
model; (* inertial object model calculations - f=ma *)
evaluation; (* automatic evaluation procedure at

specified intervals *)
criteval; (* criterion counting mechanism *)
display; (* screen display update *)

end;

Pipeline Operations Environment
The pipeline LCS differs from the inertial object LCS

in the environment installed. The following is a
description of those differences.

procedure environment; (* pipeline operations version *)
begin

modelhandler; (* seasons, leaks, time of day, year *)
evalkeyboard; (* keyboard commands and evaluation *)
loadclac; {* load calculation *)
pipel; (* pipe model calculations *)
evaluation; {* automatic evaluation procedure at

specified intervals *)
display; (* update display *)

end;

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

REFERENCES

220

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2 2 1

REFERENCES

1. Holland, J. H., Adaptation in Natural and Artificial
Systems, University of Michigan Press, Ann Arbor, 1975.

2. Lafferty, H. B,, "Function of the Gas Dispatching
Department," Petroleum Engineer, vol. 30, no. 12,
pp. D34-35,38-39, November, 1958.

3. Ebdon, J. F . , "Digital Computers-Their Application to
the Gas Industry's Problems," Gas, vol. 31, no. 1,
pp. 109-115, January, 1955.

4. , "Personnel and Organizational Requirements
for Engineering Applications of Digital Computers,"
Gas, vol. 31, no. 3, pp. 43-49, March, 1955.

5. , "The Second Gas Computer Symposium," Gas,
vol. 31, no. 5, pp. 44-50, May, 1955.

6. _______ "Digital Computers Part 3. Where Gas
Companies Use Them; Storage System Developments," Gas,
vol. 31, no. 7, pp. 68-72, July, "955.

7. _______ "The Place of Computers in Gas Piping Network
Analysis," Gas, vol. 31, no.9, pp. 40-45, September,
1955.

8. , "Electronic Computers in Gas Industry
Technology," Gas, vol. 31, no. 11, pp. 51-57, November,
1955.

9. Yonker, T., "Computer Control of a Large Gas Pipeline
System," Pipeline and Gas J., vol. 201, no. 10,
pp. 26-27, 72, August, 1974.

10. Kloer, F. H., "Automation Helps Meet Growing Demands of
Pipeline System," Oil and G as’j., vol. 76, no. 24,
pp. 62, 67-70, June 12, 1978.

11. Turner, E. B., "Computer Based Supervisory Control
Systems," IEEE Trans, on Ind. Applications, vol. IA-10,
no. 2, pp. 305-315, March-April, 1974.

12. Wilson, G. C., "Unattended Terminal Station is
Controlled Remotely by Telemetering," Instruments,
vol. 26, no. 1, pp. 127-129, January, 1953.

13. Orlofsky, S., "First Pushbutton Gas Pipeline
Successful," Oil and Gas J., vol. 56, no. 28,
pp. 114-119, July 14, 1958.

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

2 2 2

14. Armstrong, T . , "Computer Monitors Gas Flow,” Oil and
Gas J., vol. 63, no, 51, pp. 64-67, December 20, 1965.

15. Pai, M. A. and R. A. Mugele, "Rapid Solution of Gas
Pipeline Flow Problems-GASFLOW," ISA Trans., vol. 3,
no. 2, pp. 149-157, April, 1964.

16. Heath, M. J. and J. C. Blunt, "Dynamic Simulation
Applied to the Design and Control of a Pipeline
Network," Gas Council Research Communication, GC149,
pp. 1-14, November, 1968.

17. Rachford, H. H . , "Care Can Reduce Gas Pipeline Use,"
Oil and Gas J., vol. 71, no. 29, pp. 93-96, July 16,
1973.

18. Covington, M. T., "Transient Models Permit Quick Leak
Identification," Pipe Line Industry, vol. 49, no. 8,
pp. 71-73, August, 1979.

19. Wylie, E. B. and V. L. Streeter, Fluid Transients. FEB
Press, Ann Arbor, 1983.

20. Kroegner, C. V., "Role of the Computer in Distribution
Design," American Gas J., vol. 182, no. 3, pp. 14-16,
34, March, 1955.

21. Nelson, J. M. and J. E. Powers, "Unsteady State Flow of
Natural Gas in Long Pipelines," Oil and Gas J.,
vol. 56, no. 26, pp. 86, 88-89, 91, June 30, 1958.

22. Taylor, T. D., N. E. Wood and J. E. Powers, "A Computer
Simulation of Gas Flow in Long Pipes,” S o c . Pet. Eng.
J., vol. 2, no. 4, pp. 297-302, December, 1962.

23. Wilkinson, Ji F., D. V. Holliday, E. H. Batey and K. W.
Hannah, Transient Flow in Natural Gas Transmission
Systems, American Gas Association, New York, January,
1965.

24. Guy, J. J., "Computation of Unsteady Gas Flow in Pipe
Networks," in Proc. of a Symposium on Efficient
Computer Methods for the Practising Chemical Engineer,
pp. 139-145, Institution of Chemical Engineers, London,
1967.

25. Stoner, M. A., "Analysis and Control of Unsteady Flows
in Natural Gas Piping Systems," Ph.D. dissertation
(Civil Engrg.), University of Michigan, Ann Arbor,
1968.

26. Yow, W . , "Analysis and Control of Transient Flow in
Natural Gas Piping Systems," Ph.D. dissertation (Civil
Engrg.), University of Michigan, Ann Arbor, 1971.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

223

27. Wylie, E. B., V. L. Streeter and M. A. Stoner,
"Unsteady Natural Gas Calculations in Complex Piping
Systems," Soc. of Pet. Eng. J., vol. 14, no. 1,
pp. 35-43, February, 1974.

28. Rachford, H. H. and T. Dupont, "A Fast Highly Accurate
Means of Modeling Transient Flow in Gas Pipeline
Systems by Variational Methods," Soc. Pet. Eng. J.,
vol. 14, no. 2, pp. 165-178, April, 1974.

29. Wong, P. J. and R. E. Larson, "Optimization of Natural
Gas Pipeline Systems via Dynamic Programming," IEEE
Trans. Auto. Control, vol. AC-13, no. 5, pp. 475-481,
October, 1968.

30. Larson, R. E., T. L. Humphrey and P. J. Wong, "Short-
Term Optimization of -a Single Pipeline," SRI Project
5975-Interim Report, Stanford Research Institute, Menlo
Park, February, 1967.

31. Ade, C. W . , "Optimal Management of a Natural Gas
Transmission System," Sc.D. dissertation
(Chem. Engrg.), Washington University, St. Louis,
1969.

32. Sood!, A. K., G. L. Funk and A. C. Delmastro, "Dynamic
Optimization of a Natural Gas Pipeline Using a Gradient
Search Technique," Int. J. Control, vol. 14, no. 6,
pp. 1149-1157, November-December, 1971.

33. Wienecke, D. R . , "Computerized Optimization of
Dispatching on a Gas Pipeline System," ASME 72-Pet-16,
presented at the Petroleum Mechanical Engineering and
Pressure Vessels and Piping Conf., New Orleans,
September, 1972.

34. Flanigan, 0., "Constrained Derivatives in Natural Gas
Pipeline System Optimization," See. Pet. Eng. 3621,
presented at 46th annual Fall meeting, New Orleans,
October, 1971.

35. Rothfarb, B., et al., "Optimal Design of Offshore
Natural Gas Pipeline Systems," Operations Research,
vol. 18, no. 6, pp. 992-1020, November-December, 1970.

36. Bhaskaran, S. and F. J. M. Salzborn, "Optimal Design of
Gas Pipeline Networks," J. of the Operational
Res. Soc., vol. 30, no. 12, pp. 1047-1060, December,
1 0 7 0i v / ? •

37. Edgar, T. F., D. M. Himmelblau, and T. C. Bickel,
"Optimal Design of Gas Transmission Networks,"
Soc. Pet. Eng. J., vol. 18, no. 2, pp. 96-104, April,
1978.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

2 2 4

38. Larson, R. E. and D. A. Wismer, "Hierarchical Control
of Transient Flow in Natural Gas Pipeline Networks," in
Proc. of the IFAC Symposium on the Control of
Distributed Parameter Systems, paper 6-1, 1971.

39. Holland, J. H., "Nonlinear Environments Permitting
Efficient Adaptation," in Computer and Information
Sciences I I , Tou, J. T. (e d .), p p . 147-164, Academic
Press, New York, 1967.

40. _________ , "A New Kind of Turnpike Theorem," Bull. Am.
Math. Soc., vol. 75, pp. 1311-1317, November, 1969.

41 • . "Adaptive Plans Optimal for Payoff-Only
Environments," Proc. of the 2nd Hawaii International
Conference on System Sciences, pp. 917-920, Western
Periodicals, 1969.

42. ________ , "Genetic Algorithms and the Optimal
Allocation of Trials," SIAM J. Computing, vol. 2,
no. 2, pp. 88-105, June, 1973.

43. __j________, "Adaptation," in Progress in Theoretical
Biology,' vol. 4, Rosen, R. and F. M. Snell (eds.),
pp. 263-293, Academic Press, New York, 1976.

44. Bosworth, J., N. Foo and B. P. Zeigler, "Comparison of
Genetic Algorithms with Conjugate Gradient Methods,"
NASA Contractor Report CR-2093, Langley Research
Center, NASA, August, 1972.

45. Foo, N. Y. and J. L. Bosworth, "Algebraic, Geometric
and Stochastic Aspects of Genetic Operators," NASA
Contractor Report CR-2099, Langley Research Center,
NASA, August, 1972.

46. Burks, A. W . , et al.f "Biologically Motivated Automaton
Theory and Automaton Motivated Biological Research," in
Proc. of the 1974 Conf. on Biologically Motivated
Automata Theory, pp. 1-12, 1974.

47. De Jong, K„, "Adaptive System Design: A Genetic
Approach," IEEE Trans, on Systems, Man, and
Cybernetics, vol. SMC-10, no. 9, pp. 566-574,
September, 1980.

48. Bagley, J. D., "The Behavior of Adaptive Systems Which
Employ Genetic and Correlation Algorithms," Ph. D.
dissertation (C. C. S.), University of Michigan, Ann
Arbor, 1967.

49. Cavicchio, D. J., "Adaptive Search Using Simulated
Evolution," Ph.D. dissertation (C. C. S.), University
of Michigan, Ann Arbor, 1970.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

2 2 5

50. Frantz. D. R. , "Non-lineari'ties in Genetic Adaptive
Search,” Ph.D. dissertation (C. C. S.), University of
Michigan, Ann Arbor, 1971.

51. Hollstein, R. B., "Artificial Genetic Adaptation in
Computer Control Systems," Ph. D. Dissertation (C. I.
C. E.), University of Michigan, Ann Arbor, 1971.

52. Martin, N., "Convergence Properties of a Class of
Probabilistic Adaptive Schemes Called Sequential
Reproductive Plans," Ph.D. dissertation (C. C. S.),
University of Michigan, Ann Arbor, 1973.

53. De Jong, K. A., "Analysis of the Behavior of a Class of
Genetic Adaptive Systems," Ph.D. Dissertation (C. C.
S.), University of Michigan, 1975.

54. Bethke, A. D., "Genetic Algorithms as Function
Optimizers," Ph.D. dissertation (C. C. S.), University
of Michigan, Ann Arbor, 1981.

55. Bellman, R .r Adaptive Control Processes: A Guided Tour,
Princeton Univarsty Press, Princeton, 1961. ~

56. Saridis, G, N., Self-Orqanizinq Control of Stochastic
A. . _ » * e ^ *••».. .« »-* s'* - ••

57. Beightler, C. S., D. T. Phillips and D. J. Wilde,
Foundations of Optimization, Prentice-Hall, Englewood
Cliffs, 1979.

58. Holland, J. H., "Adaptive Knowledge Acquisition,"
unpublished research proposal to the National Science
Foundation, 1980.

59. Fiacco, A. V. and G. P. McCormick, Nonlinear
Programming: Sequential Unconstrained Minimization
Techniques. Wiley, New York, 1968.

60. Holland, J. H., "Outline for a Logical Theory of
Adaptive Systems," J. Assoc. Computing Machinery,
vol. 3, pp. 297-314, July, 1962.

61. __________ , "Processing and Processors for Schemata," in
Associative Information Techniques, Jacks, E. L. (ed.),
pp. 127-146, American Elsevier, New York, 1971.

62. ^ _ and J. S. Reitman, "Cognitive Systems Based on
Adaptive Algorithms," in Pattern-Directed Inference
Systems, Waterman, D. A. and F. Hayes-Roth (eds.),
pp.313-329, Academic Press, New York, 1978.

63. _ _ j_______, "Adaptive Algorithms for Discovering and
Using General Patterns in Growing Knowledge-Bases,"

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

226

Int. J. Policy Analysis and Information Systems,
vol. 4, 1980.

64. , "Genetic Algorithms cind Adaptation,"
Tech. Report U 34, Cognitive Science Series, Univ. of
Michigan and Univ. of Chicago, December, 1981.

65. Booker, L. B., "Intelligent Behavior as an Adaptation
to the Task Environment," Ph.D. dissertation (C. C.
S.), University of Michigan, Ann Arbor, 1982.

66. Wilson, S., "Adaptive 'Cortical' Pattern Recognition,"
unpublished manuscript, Rowland Institute for Science,
Cambridge, MA, 1983.

67. Minsky, M. L., Computation; Finite and Infinite
Machines, Prentice-Hall, Englewood Cliffs, 1967.

68. Davis, R. and J. King, "An Overview of Production
Systems," in Machine Intelligence 8 , Elcock, E. W. and
D. Michie (eds.), pp. 300-332, Wiley, New York, 1976.

69. Anderson, J. R . , Language, Memory and Thought, Lawrence
Erlbaum Associates, Hillsdale, N. J., 1976.

70. Buchanan, B . , G. Sutherland and E. A. Feigenbaum,
"HEURISTIC DENDRAL; A Program for Generating
Explanatory Hypotheses in Organic Chemistry," in
Machine Intelligence 4 , Meltzer, B., D. Michie and
M. Swann (eds.), pp. 209-254; American Elsevier, New
York, 1969.

71. Davis, R., B. Buchanan and E. Shortliffe, "Production
Rules as a Representation for a Knowledge-Based
Consultation Program," Artificial Intelligence, vol. 8,
pp. 15-45, February, 1977.

72. Duda, R., J. Gaschnig and P. Hart, "Model Design in the
Prospector Consultant System for Mineral Exploration,"
in Expert Systems in the Microelectronic A g e , Michie,
D. TedTTT pp. 153-167, Edinburgh University Press,
Edinburgh, 1979.

73. Hollander, C. R . , et ai., "The Drilling Advisor," in
Froc. Trends and Applications 1983 Automating
Intelligent Behavior Applications and Frontiers,
pp. 28-32, IEEE Computer Society Press, Silver Spring,
1983.

74. Feigenbaum, E. A. and P. McCorduck, The Fifth
Generation, Addison-Wesley, Reading, 1983.

75. DeGroot, M. H., Optimal Statistical Decisions, McGraw-
Hill, New York, 1970"

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

227

76. Takahashi, Y., M. J. Rabins and D. M. Auslander,
Control and Dynamic Systems, Addison-Wesley, Reading,
1970.

77. Tsypkin, Ya. Z., Foundations of the Theory of Learning
Systems, translated by Z. J. Nikolic, Academic Press,
New York, 1973.

78. Boyer, H. M. "Application of Cluster Analysis in
Determining Transient Flow Loading Patterns," Pipeline
Simulation Interest Group, October, 1975.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

