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A R T I F I C I A L  I N T E L L I G E N C E

An adaptive deep reinforcement learning framework 
enables curling robots with human-like performance 
in real-world conditions

Dong-Ok Won1, Klaus-Robert Müller1,2,3, Seong-Whan Lee1,4*

The game of curling can be considered a good test bed for studying the interaction between artificial intelligence 
systems and the real world. In curling, the environmental characteristics change at every moment, and every throw 
has an impact on the outcome of the match. Furthermore, there is no time for relearning during a curling match 
due to the timing rules of the game. Here, we report a curling robot that can achieve human-level performance in 
the game of curling using an adaptive deep reinforcement learning framework. Our proposed adaptation framework 
extends standard deep reinforcement learning using temporal features, which learn to compensate for the uncer-
tainties and nonstationarities that are an unavoidable part of curling. Our curling robot, Curly, was able to win 
three of four official matches against expert human teams [top-ranked women’s curling teams and Korea national 
wheelchair curling team (reserve team)]. These results indicate that the gap between physics-based simulators and 
the real world can be narrowed.

INTRODUCTION

Applying artificial intelligence (AI) technologies to the real world 
(1–7) is a challenging problem. Operating beyond the confines of a 
laboratory means dealing with unknown factors, such as an environ-
ment that varies over time, that can have an effect on the performance 
of an AI system (8, 9). Moreover, the real world offers many uncer-
tainties, which may be too complex and ill defined to be modeled 
with sufficient accuracy (10). Thus, it is necessary to incorporate 
uncertainty into modeling efforts and to measure and approximate 
changes in real-world environments (5–7).

Although deep reinforcement learning (DRL) methods have been 
successfully applied to games in a discrete virtual environment (11–13), 
numerous real-world reinforcement learning (RL) applications re-
quire an agent to select optimal actions from a continuous environ-
ment. A strength of RL is that it can learn by itself through trial and 
error without specific previous knowledge, such as a complete un-
derstanding of principles and rules (for example, a game or a robotics 
task). Therefore, RL systems typically learn from simulations in 
virtual environments, and considerable efforts have been made to 
apply an RL model, trained from simulations, to the real world 
(5, 6, 14–18). Note that an RL system with well-designed rewards can 
adapt well to a certain stationary learning environment (i.e., fixed 
surface friction). However, when the environment changes, even a 
well-trained DRL model is unable to adapt to a changing environ-
ment; thus, producing reasonable results will be challenging because 
such models are typically only adapted to a specific (stationary) en-
vironment. Such models then require a process of relearning each 
time when the environment changes (19).

Many studies have focused on the simulation–to–real world 
(sim-to-real) transition to narrow the reality gap in various robot 
control problems (5, 6, 16, 17, 20–27). Arndt et al. (20) studied quick 

adaptation strategies to unknown conditions, for example, a sim-to-
real transfer under unknown friction. Tan et al. (5) designed a highly 
precise simulation and randomized the physical parameters to learn 
agile locomotion. After learning in a simulation environment, a 
quadruped robot could successfully perform two gaits in a real 
environment. These studies showed that the gap between simulation 
and reality can be narrowed. Peng et al. (16) demonstrated an 
object-pushing task with a robotic arm using dynamics randomiza-
tion. The experiments with a real-world pushing task demonstrated 
performance comparable with that of a simulation and the ability to 
adapt to changes in contact dynamics. The paper claimed that the 
robotic arm can adapt to various environment changes, such as 
mass, surface friction, and so on, through learning with dynamics 
randomization. However, here also, the real test appears to have 
been conducted in a stable and stationary environment with limited 
changes. Song et al. (21), in their study, made changes to the envi-
ronment and experimented with its adaptability. Their study addressed 
the problem of adapting to 50 episodes (for a total of 150 s) of real- 
world data in a mass-voltage task [the battery voltage dropped from 
16.8 to 10 V and added a mass of 0.5 kg (about 8% of robot mass)] 
or a friction task (the friction coefficient reduced from rubber feet 
to tennis ball feet). Sufficient time was allocated to adapt to the 
changing environment. The work of Hwangbo et al. (17) dealt with 
the pose of legged robots using DRL. Their paper introduced a 
method to train a neural network policy in simulation and then 
transfer this to a legged system. This showed that the learned policy 
can successfully recover its pose from a random initial configura-
tion in less than 3 s. Please refer to table S1 for a detailed compar-
ison of transferring methods that bridge the reality sim-to-real gap.

In our study, we consider the game of curling as a test bed for 
demonstrating the interaction between an AI system and a highly 
nonstationary real-world scenario. Curling is challenging because 
it requires precise throwing (robot control problem) and strategic 
planning to win. For this, we had to address the issue of transferring 
from a simulation to a real environment with high uncertainty and 
needed to propose adaptation to a dynamically changing environ-
ment where relearning is not a possibility. In curling, relearning is 
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not feasible due to the time constraints of the tournament rules; in 
addition, very little to no information is available on the nature of the 
environmental change. Furthermore, every throw (episode) has a 
large impact on the outcome of the match. This case study contains 
challenges related to using robotic systems in real-world environ-
ments: strong temporal variability, uncertainties, and continuous-
ness (28).

Curling has been described as a combination of bowling and chess 
(29); it is a turn-based game in which two teams play alternately on 
the ice sheet, requiring a high level of strategic thinking and perform-
ance. There are a variety of strategic nuances and subtleties, but as 
in most strategic games, there are two basic strategies: play cautiously, 
waiting for an opportunity to exploit the opposition’s mistakes, or 
play aggressively, where the “best defense is a strong offense,” like in 
chess or the game of go. From an AI perspective, curling—often 
referred to as “chess on ice” (30–32)—is different compared with 
board games such as chess or go (12, 13) in multiple ways (fig. S8). 
Curling has a considerably higher number of allowed moves because 
the game progresses in a continuous environment (2, 3, 33). Because 
of stones’ collisions, curling modeling requires a complex and time- 
consuming physics-based simulation process to accurately describe 
and simulate the possible allowed moves for the next step (31, 34). 
Furthermore, the real curling game is played on an ice sheet covered 
with small pebbles. The pebbles change their conditions depending 
on factors such as the temperature, humidity, maintenance skill of 
ice makers, elapsed time since the conclusion of the maintenance, 
the previous stone trajectories, and finally the amount of sweeping 
done during the game (35, 36)—all of which neither are under con-
trol nor can be measured. These conditions imply that when deliv-
ering curling stones using exactly the same direction, force, and curl, 
the trajectory of the stones will inevitably vary over time (Fig. 3). In 
addition, most of the strategic plays take place within a 1.83-m radius 
called the house region, about 40 m away from the hogline (the 
place where a curler releases the stone), 
so inaccuracies and strategic misplan-
nings could be amplified.

In recent years, algorithms for curl-
ing strategy were analyzed just in a virtual 
simulator environment (2, 3, 32). In the 
real world, however, ice has varying 
conditions (even on short time scales), 
so the uncertainties and nonstationarities 
are higher than what may be expected 
and encountered when dealing with sim-
ulations in the virtual world. Therefore, 
the strategy algorithms developed using 
only simulator data are difficult to adapt 
to the real ice sheet environment. Un-
certainty in curling can be caused by in-
ternal factors of the agent (robot control 
inaccuracies, etc.) or external environ-
mental factors (temperature, humidity, 
friction, etc.). The external factors are 
intrinsically unpredictable and have 
strong nonstationarity because the fric-
tion of the ice essentially changes with 
every throw. In this uncertain environ-
ment, it becomes necessary (after learning) 
to adapt the agent in real time to perform 

the curling tasks well enough so that it could provide a very high 
competitive performance (see Materials and Methods).

Here, we introduce Curly, a robot that we have taught using an 
adaptive DRL framework to excel in the Olympic discipline of curl-
ing (Figs. 1 and 2). Compared with other studies, the main differ-
ence in our work is that Curly performs adaptive actions that can 
respond to the environment changes that occur continuously with 
every shot. These changes have a notable influence on the perform-
ance if not compensated appropriately in a continuous manner. 
Our robot Curly was able to win three of four official matches against 
expert human teams [top-ranked women’s curling teams and Korea 
national wheelchair curling team (reserve team)], thus demonstrating 
human-level performance. Although we focus on curling, our frame-
work is readily transferable to other complex real-world applications.

RESULTS

The curling ice sheet is an environment with highly varying uncer-
tainty that has a large effect on the throw performance. Human 
players require many years of practice to master the game, which 
has complex strategic elements and a challenging throw technique. 
For example, world class–level curling players from the national 
wheelchair curling teams recorded approximate distance gaps of 0.8 
to 1.3 m between the goal and reached positions in the Paralympic 
Winter Games 2018 (https://curlit.com/PDF/PWG2018_ResultsBook.
pdf). This highlights the very challenging task of throwing with high 
accuracy to achieve small distance gaps in real curling. Our proposed 
adaptation framework can compensate for uncertainties and non-
stationarities that are unavoidable in the curling game by augment-
ing standard DRL through temporal features, which helps to lower 
the distance gaps to competitive levels. Specifically, we could show 
that the adaptation works well and compares very favorably to 
transferring a model trained on curling physics-based simulations 

Stone throw on ice-sheet 

Skip-Curly

Thrower-Curly

42.07 m

1.83 m1.83 m 6.40 m 21.95 m

4.28 m

Detection of the stones 

Hog Line

Hack

Hog Line

Fig. 1. AI curling robot system. The system consists of thrower/skip-Curly and curling AI (adaptation of the real icy 

environment, strategy planning, and curling simulator) (movie S6).
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only. An adaptation to the continuous changes occurring in the curl-
ing environment can be performed by adapting the whole control 
architecture of the robot (e.g, relearning) as a reaction to this change 
(our aim is to avoid this case). Or, alternatively, the control architec-
ture stays untouched, and the coordinates of the target are adapted 
such that the control using this “adaptive action from the adapta-
tion DRL model” yields a throw at the desired true target coordinate 
as if there was no change.

We will first discuss a simulation scenario that will serve as a proof 
of concept to quantitatively show the usefulness and limits of the 
proposed learning and adaptation procedures. In addition, we will 
show real curling results from an experimental setup to measure the 

performance of our proposed models in 
a reproducible real-world environment 
and determine their limitations. Last, we 
report on a series of tournament games 
that are unique events against human 
opponents, which present a real practical 
challenge for our robot, Curly. In the 
coming sections, we will conduct a com-
parison of the DRL adaptation, rule-based 
adaptation (33), no adaptation on sim-
ulated curling (see the “Simulated curling” 
section and Fig. 4), and a real curling ice 
sheet (see the “Test throw experiment 
on a real curling ice sheet” section and 
Fig. 5), introducing algorithmics and ex-
perimental findings. We have also used 
DRL adaptation in official real curling 
matches (see the “Real curling game 
with human teams” section and Fig. 6). 
The DRL adaptation model consists of 
model-free DRL based on the policy 
gradient (PG) algorithm, where we ex-
ploit the past distance gaps between the 
target and reached positions for learning 
the underlying dynamical changes of the 
environment. Furthermore, the rule-based 
adaptation method is based on previous 
knowledge of capturing the relationship 
between the target and reached positions 
(see also section A.1 in the Supplementary 
Materials). The no adaptation method 
is not learning about changes in the 
environment. All of these methods are 
first trained in a curling simulation en-
vironment and then tested on a real 
curling ice sheet (see the “Test throw 
experiment on a real curling ice sheet” 
section) and real icy curling matches 
against human teams (see the “Real curl-
ing game with human teams” section). 
Specifically, on a real curling ice sheet, 
the proposed adaptation DRL frame-
work is only allowed to calibrate using a 
few throws before the test experiment 
or the start of the curling tournament 
(e.g., four preparation shots are used for 
initial adaptation; Fig. 3) and then con-

tinuously adapts using past distance gaps.

Simulated curling
In Fig. 4, the model-free DRL with adaptation and no adaptation 
condition (see Materials and Methods) are compared with respect 
to the cumulative distance errors under environmental changes (i.e., 
ice sheet friction variable and wear of pebbles). As shown in Fig. 4A, 
our proposed DRL method learned to curl at high accuracy, essen-
tially reflecting the changes of the ice condition in the virtual environ-
ment. For the proposed model-free DRL framework with adaptation 
(see the “Adapting deep RL” section), the mean of the distance error 
is reduced to approximately one-third of the error of the no adaptation 

The configuration of the main components

Single Board Computer

(eBOX560-500-FL)
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(myRIO)
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Fig. 2. Specification of the Curly. (A) (Left) skip mode and (right) thrower mode in the Curly. (B) Configuration of the 

main components in the skeleton Curly. (C) Operation of the gripper: (left) gripper open for stone release and (right) 

stone grip and rotation. (D) Camera view in head and body. Head camera: Stone detection and current location 

(i.e., orientation) of itself in skip-Curly and thrower-Curly, respectively. Body camera: Hog line detection for hog line 

release. (E) Main controllers and components.
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method: 3.12 ± 0.20 m (no adaptation) → 0.83 ± 0.41 m (DRL adap-
tation) (table S2). Moreover, as shown in Fig. 4C, the time-varying 
distance errors in the no adaptation method are higher than those 

in the proposed DRL adaptive method. 
Moreover, we also compared nonsta-
tionary and stationary conditions for the 
real icy environment condition and an 
ideal (normal uncertainty environment) 
condition, respectively. The DRL method 
is also more stable than the other meth-
ods in the nonstationary condition; we 
studied this as a function of the elapsed 
time since the last ice maintenance. Also, 
the adaptive DRL method obtained not 
only the lowest cumulative errors com-
pared with others in nonstationary condi-
tion (Fig. 4B) but also stable low distance 
errors in the stationary condition (Fig. 
4C). Thus, we could demonstrate that ex-
ternal environmental factors are well ad-
dressed in our adaptive framework (Figs. 1 
and 3 and see also algorithm S1).

The DRL method is also found to be 
more stable than the other methods in 
nonstationary condition (i.e., an envi-
ronment with dynamic changes); the 
rule-based method is compensated in the 
stable environment but does not work in 
the nonstationary condition (Fig. 4C).

Test throw experiment on a real 
curling ice sheet
As shown in Fig. 5, we compared the 
adaptation (the DRL and rule-based 
methods) and no adaptation method 
under environment changes from various 
uncertainties (temperature, humidity, 
pebble, ice status by the ice maker, etc.). 
Our adaptation model greatly reduces 
the error scores compared with the 
other methods in Fig. 5 and table S2: 
1.38(±0.67) m, 2.11(±0.85) m, and 
3.61(±0.87) m for adaptive DRL, rule 
based, and no adaptation, respectively. 
Furthermore, the distance errors were 
accumulatively validated through time 
adapting for change in the environmental 
parameters (e.g., ice sheet friction vari-
able and wear of pebbles) (Fig. 5B).

This finding reflects that the accuracies 
resulting from the above strategies can 
differ depending on the degree of precise-
ness used to address the uncertainty. 
Moreover, a statistically significant dif-
ference is found between the observed dis-
tance error of these methods [analysis of 
variance (ANOVA) (37, 38): F = 33.82, 
P < 0.01; t test: no adaptation > rule based > 
DRL adaptation, Bonferroni-corrected 

P < 0.05] (Fig. 5). The results indicate that the DRL adaptation method 
shows the best performance in terms of the correction of the distance 
errors in real curling.
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Real curling game with human teams
We performed four official matches with a top-ranking Korean 
women’s curling team and the Korean national wheelchair curling 
team. Snapshots of the curling matches are available in Fig. 6 in ad-
dition to videos of the official curling matches. These videos show 
the highlights and also the entire matches [videos for highlights 
(<3 min): match A (movie S1), match D (movie S2); videos for rep-
resentation of strategies and throw: match C (movie S3), match D 
(movie S4); video links for entire matches: match A (https://youtu.
be/1ZQOo0H6_FA) (16 min), match D (https://youtu.be/
Cvp5nUu_GTM) (44 min)]. The matches allow only the thrower 
and skip player without sweepers (similar to wheelchair curling). 
Curly played the real curling game on par with the top-ranked players 
in Korea. In the course of the game, we have assumed the same fair 
play conditions as the top-ranked human team without giving the 
opportunity to repeat throws, even if Curly made mistakes (slight 
slip, little angle/speed of thrower errors, stone location detection, 
etc.). As seen in Fig. 6C, we succeeded not only in terms of strategic 
planning but also with respect to the real-time adaptation within 
the real curling game setting. We find that our robot Curly was able 
to win three of four official matches against human expert player 
teams [i.e., top-ranked women’s curling teams and Korea national 
wheelchair curling team (reserve team)].

Furthermore, we analyzed the distance gaps during the curling 
game between non-adaptation (i.e., it would have occurred without 
using adaptation methods) and adaption (see Fig. 6B). In particular, 
the variation of the distance gaps in the number of throws was ana-
lyzed by comparing the cumulative error between the adaptation and 
non-adaptation. Despite the large uncertainty in the later part of the 
game, we observe that the target coordinates and distance differences 
have been narrowed reliably through adaptation. As a result, Curly 
was enabled to win against human players with a high level of 
performance.

DISCUSSION

Curling has been presented in this work as a test bed scenario to AI 
systems, where deviations from a controlled environment pose 
intricate challenges. Directly applying a model learned from virtual 
curling to the real environment has been unsuccessful. We could, 
however, demonstrate that a successful throw with good accuracy is 
possible with simulations of a real ice sheet environment and addi-
tional compensation that needs to be learned. As shown in Fig. 5, 
the error trends represent the uncertainty of all the thrown stones 
by the different control techniques in an online test. As the experi-
ment progressed, we observed that various uncertainties accumulated, 

Fig. 4. Comparison of the deep RL adaptation, rule-based adaptation, and no adaptation on simulated curling. (A) Learning curve between desired and reached 

points for the adaptative deep RL method in a simulation [mean distance difference about 1,280,000 shots in each epoch (10,000 epoch × 128 shots)]. (B) Comparison of 

the cumulative distance error according to the elapsed time in nonstationarity condition. Test match has 10,000 sessions [=1,280,000 shots; one session consisted of 

128 shots (8 ends × 16 shots)]. (C) Comparison of the averaged distance error in nonstationarity (thick line) and stationarity (thin line) conditions according to the elapsed 

time since the maintenance ended. Test match has 10,000 sessions [=1,280,000 shots; one session consisted of 128 shots (8 ends × 16 shots)].
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gradually causing errors. Thus, it is important to compensate by 
adapting to the current environment. The online adaptation to the 
changing real environment performed by Curly uses recent trajec-
tories and arrival position statistics. Because only few throws per 
game are made (the real curling match takes a total of 160 throws 
during about 120 min), adaptation needs to be performed in a 
data-efficient manner.

To explore the limits in accuracy of our various proposed AI 
controllers, we performed systematic test throws on the actual curl-
ing ice sheet for comparison. Unfortunately, Curly takes about 1 to 
2 min for one shot, including whole throw procedures such as stone 
grasp, recognition of own coordinates, strategy planning/adaptation, 
and throwing and return. Having these experimental limits in mind, 
we designed an experiment with a total of 45 throws in one session 
(15 throws for each method) to measure success statistics; we re-
peated each session three times and thus have three sessions with 
altogether 45 × 3 throws. The above 45 throws were all targeted 
to random positions near the house (score zone) to obtain a target- 
independent assessment of the throw quality.

The best average accuracy of about 1.3 m for Curly (see Fig. 5C) 
is of the same order as that of a national wheelchair curling teams 
0.8 to 1.3 m in the Paralympic Winter Games 2018. Sweeping al-
lowed further compensation of differences up to 0.2 to 0.8 m in the 

Olympic Winter Games 2018 (https://curlit.com/PDF/PWG2018_
ResultsBook.pdf, https://curlit.com/PDF/OWG2018_ResultsBook.
pdf). Note that the throw experiments designed to test a special throw, 
i.e., the draw strategy, exhibit vertical errors (errors in the direction 
of the long axis of the curling sheet) that are roughly four times 
larger than the horizontal errors (Fig. 5D). Because of this error dis-
tribution, the success rate of the draw strategy can be expected to be 
lower than that of a takeout throw that just needs to hit the oppo-
nent’s stone hard enough to remove it from the ice and depends 
only on the much smaller horizontal errors. Similarly to Curly, take-
outs can also be much more accurately delivered by human players 
without sweeping. The average success rates were about 57% for 
draw and 62% for takeout in the Paralympic Winter Games 2018. 
Here, the medalist teams achieved about 61 and 66% in draw and 
takeout shot success rates, respectively. In the Olympic Winter 
Games 2018 involving sweeping, national human players showed 
success rates about 79% between draw and takeouts; i.e., sweeping 
can greatly affect shot accuracy.

We demonstrated the high performance of Curly through official 
matches with top-ranked human teams (Fig. 6). However, the pre-
cise reason for the competitiveness of Curly against human teams is 
not clear. Three possibilities for explaining this effect exist in prin-
ciple: (i) the human team lacks the social competitive edge and is 

10m 10m 10m

Trajectory

10m

C
u
m
u
la
ti
v
e 
D
is
ta
n
ce
 E
rr
o
r(
m
)

Time(Shot)

A

D

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15

No adaptation

Model-based

Model-free

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

No adaptation Model-based Model-free

Session A

Session B

Session C

Mean

D
is
ta
n
ce
 E
rr
o
r(
m
)

V
er
ti
ca
l 
(m

)

Horizon (m)

10

8

6

4

2

0

-2

-4

-6
-2     0       2 -2     0       2 -2     0       2

No Adaptation Rule-based DRL Adaptation

No Adaptation Rule-based DRL Adaptation

No Adaptation

Rule-based

DRL Adaptation

B C

Fig. 5. Experimental setup for online test on real curling ice sheet. (A) Thrown stone’s trajectory data captured by mounting a sensor (indoor GPS device; 12 Hz, ± 2 cm) 

attached on the stone (right). The thrower-Curly is throwing to deliver the stone to the target location chosen by the curling AI (left). (B) For the online test in the real 

curling ice sheet, comparison of the cumulative distance difference according to the elapsed time since the maintenance ended (mean and SE). (C) Mean of distance error 

between goal and reached coordinates for no adaptation, rule-based, and proposed adaptation DRL method in real curling environment. (D) Distance error between goal 

and reached coordinates for all sessions and methods.
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too relaxed to the outcome of a match against a robot opponent; (ii) 
humans tend to become nervous during matches, whereas robots 
do not; and (iii) the AI strategy component is superior to the human 
strategic insight because it is able to consider more rare events and 
can factor elements of uncertainty more successfully. We conducted 
an interesting case study of a game where Curly collaborated with 
human players. As well as the throw itself, the sweeping also has a 
large effect on the curling game. The human players played the role 
of sweepers in the Curly team instead of relying on the sweeping 

robots (fig. S1, movie S5, and https://
youtu.be/1rocA7SLl2Y). Curly showed 
the human players a visualization of its 
throw strategies. This resulted in an in-
teresting match between the Curly team 
mixed with sweeping human players and 
an all-human team (fig. S1). These spe-
cial matches are a good example of 
collaborative robots in the real world. 
Curling is certainly a very challenging 
environment, and we found that humans 
and robots can cooperate very well, as 
was also observed in previous collabora-
tive robot scenarios (39, 40).

Typically, RL learns states from 
millions of actions in simulations. As 
discussed, in the real world, we may not 
even be able to perform hundreds of ac-
tions for the purpose of learning in each 
case (11–13, 18, 23, 41). Also, application 
to nonstationary scenarios, namely, an 
environment that changes frequently, 
poses a challenge. Moreover, various 
uncertainty factors in unknown combi-
nations contribute to performance errors. 
In this study, we therefore proposed a 
DRL framework that performs actions 
adaptively for states that are assumed 
uncertain because of the unknown en-
vironmental factors. The proposed 
framework carried out an estimation of 
the distance (to intended target position) 
gap based on cumulative trajectories and 
the chronological errors.

Systematic studies of Curly’s perform-
ance were enabled by creating an integrat-
ed system platform—a task that required 
an extensive engineering effort. After 
numerous tests, investigations, and ad-
aptation algorithms that could alleviate 
the challenges, we could reach an over-
all system stability and performance 
level that enabled Curly to play official 
curling matches with the best players in 
Korea. Most competitions were conduct-
ed in a wheelchair curling style without 
sweeping, and the content and results of 
the competition were successful and highly 
encouraging (Fig. 6 and movie S6).

The use of explainable AI techniques 
[e.g. (42–45)] to gain a further understanding of critical shot im-
pacts, thus allowing the curling AI and its creators to learn better 
from their mistakes, will be interesting for future studies. Moreover, 
cases of extreme changes, such as sweeping in curling, deserve fur-
ther investigation. Last, we note that the insights obtained within 
our framework on how to alleviate challenges such as strong temporal 
variability, uncertainties, and continuousness are readily transfer-
able for contributing to other real-world applications of comparable 
complexity in robotics and beyond.

A

B

Match A Match B Match C Match D*

Result 0:4 (Lose) 4:0 (Win) 4:3 (Win) 4:2 (Win)

Ends 0:3 0:1 1:0 3:0 0:3 4:0 1:0 0:0 1:0 0:2 2:0

Curling AI Coordinates of the stones (before) Result of the throw by Curly (after)

Strategy: TakeOut

(Hit and roll)

Strategy: Draw

(Come around)

Match C

Match D

C

Fig. 6. Real curling match with human teams. (A) Results of curling matches with top-ranking Korean curling team 

and national wheelchair curling team (reserve). (B) Performance evaluation of adaptation deep RL during real curling 

game matches. Each error bar is the SD of the mean for each shot in all curling matches. (C) Representation of 

strategies and throw performance with Curly (see also movies S3 and S4 for matches C and D, respectively).
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MATERIALS AND METHODS

In the following, we will introduce methods for adapting the deep 
reinforcement learner that was in a first step trained on simulation 
data and that will subsequently harvest the scarce data available in 
real-world conditions such as during a tournament.

Adapting deep RL
The main difference between curling and other games is that it is 
very difficult for a human or robot thrower to send the stone to the 
desired location due to the uncertainty and variability of the ice sheet 
condition, with variation caused by factors such as pebble condition, 
humidity, and temperature (i.e., external uncertainty). Also, robot 
throwers have inherent errors such as initial velocity, curl, and 
angles (i.e., internal uncertainty). Moreover, the large difference in 
the trajectory between a virtual physics simulator environment and 
the real ice sheet needs to be decreased to reach a competitive level. 
To perform this adaptation, we propose in this work to use the error 
information provided by the last throws for adapting the DRL model. 
To practically validate the resulting extended DRL framework (de-
noted later as adaptation DRL), we adapt the PG method (13, 46) 
and also consider a simpler algorithm denoted as rule-based method 
as a baseline (see the Supplementary Materials for details) (33). We 
have introduced the system with the rule-based method (33). The 
main difference between the proposed adaptation and the rule-based 
method is whether they have dealt with the test bed environment 
with changes and full of uncertainty.
RL framework
Let us consider the standard RL framework, in which a learning agent 
interacts with a Markov decision process (MDP) [see, e.g., (46–50)]. 
To clarify the following notation, we have the state, action, and re-
ward at each time t ∈ 0,1,2, … denoted by st ∈ S, at ∈ A, and rt ∈ R, 
respectively. Also, the action a is defined as throw to the two- 
dimensional coordinate a on the ice sheet (12, 13). Its dynamics are 
characterized by state transition probabilities

   P s s ′    
a   = Pr( s  t+1   =  s ′  ∣ s  t   = s,  a  t   = a)  (1)

The decision-making procedure for Curly at each time is character-
ized by a policy

  p( a  t  ∣ s  t  , q ) = Pr( a  t   = a∣ s  t   = s,  q  t   = q ) , ∀ s ∈ S, a ∈ A  (2)

where q ∈ ℝl, for l ≪ ∣S∣, is the policy’s parameter vector. We as-
sume that p is differentiable with respect to its parameters such that 

  
∂p(a∣s)

 _ 
∂ q

    exists.

Here, we briefly describe the PG method that is used in our study 
(see also algorithm S1). The PG update q is defined as

   q ← q + [ r  t    ∇  q  (ln p( a  t  ∣ s  t  , q ))]  (3)

where the reward value rt is defined as

   r  t   =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

    

+ 2

  

          if ∣ Δ 
t
  GR ∣ < half of the stone diameter (0.15m ) ,

     + 1
  if 0.15m ≤∣ Δ 

t
  GR  ∣ < 0.4m,

     
  + 0.5

  
if 0.4m ≤∣ Δ 

t
  GR  ∣ < 0.8m,

     

  − 1

  

otherwise

    

(4)

and the rt is determined by using the distance error   D t  
GR   between the 

desired position and the actual position and it is realized through 
execution. If   D t  

GR   is within half of the stone diameter (0.15 m), 0.4 m, 
or 0.8 m, then rt is increased by +2, +1, or +0.5 for positive RL, re-
spectively. Alternatively, rt is decreased by −1 for negative RL. In 
curling, throwing a stone within 0.4 m of the target is regarded as 
very successful (curling stone diameter: 0.3 m). Furthermore, throw-
ing it within 0.8 m is still considered to be successful because this is 
less than half of the house, or score zone (0.9 m). Even the distance 
gaps of the national team in the recent Paralympic Winter Games 
2018 were 0.8 to 1.3 m. Reflecting the discussed curling game context, 
we therefore designed a discrete reward scheme (Eq. 4). In addition, 
the state st is defined as

   s  t   = { H  t  ,  Y  t  
G ,  T  t  }  (5)

where the state st is composed of the cumulative trajectories of the 
thrown stone ( T  ) on the curling ice sheet, the strategy (desired coor-
dinates given by strategy planning model) (  Y   G  ), and the adaptive 
factor matrix (H). In particular, learning to adapt to the unpredict-
able environmental changes was implemented by adding H to s.
DRL framework to adapt to uncertainties
We enrich the neural network for estimating the policy with temporal 
information to model nonstationary and uncertain environments 
(see Fig. 3D; for an overview of all input features into the DRL, see 
Table 1). To reflect these temporal changes and uncertainties, we 
define a matrix H of distance errors ∆ from the previous throws 
and our prediction/simulation model

    H  n   =  {    
 Δ   n  l  −1  , … ,  Δ   n  l  − k  l       
 Δ   n  r  −1  , … ,  Δ   n  r  − k  r    

  }  , where( k  l   <  n  l  ;  k  r   <  n  r  ; n =  n  l   +  n  r  )   

(6)

where Hn is obtained for action a in state s and n is the nth action 
state (throw). nl and nr denote the number of left and right curl 
throws, respectively. k is the number of cumulative sequences used 
for training. kl and kr are the number of left and right curl cumulative 
sequences, respectively. We consider left and right curls separately 
for adaptation, because there is an asymmetry due to the different 
interaction of the rotating stone and the ice. For example, the main-
tenance skill of the ice maker gives rise to asymmetry in the pebbles 
or other aspects of the curling ice sheet condition.

The distance differences ∆ (x,y coordinates) for left curl (Dnl) and 
right curl (Dnr) are defined as

    Δ   n  l     =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   

 Δ  n  l    
AG  =  Y  n  l    

A   −  Y  n  l    
G  

    Δ  n  l    
AR  =  Y  n  l    

A   −  Y  n  l    
R     

 Δ  n  l    
GR  =  Y  n  l    

G   −  Y  n  l    
R  

     (7)

    Δ   n  r     =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   

 Δ  n  r    
AG  =  Y  n  r    

A   −  Y  n  r    
G  

    Δ  n  r    
AR  =  Y  n  r    

A   −  Y  n  r    
R     

 Δ  n  r    
GR  =  Y  n  r    

G   −  Y  n  r    
R  

     (8)

where   Y n  G   denotes the nth desired coordinates given by the strategy 
planning model,   Y n  A   is the adaptive action (coordinate) an obtained 
from the adaptation DRL model, and   Y n  R   results from an in real curl-
ing. The D superscripts denote the respective distance errors of the 
throws between G, R, and A, respectively. In addition, the cumulative 
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trajectories   T  n    of the previously thrown stones are used to reflect the 
change of the curling ice sheet caused over time. The environment 
and state s that contains the cumulative trajectories of the thrown 
stones   T  n    is defined as

   T  n   =  T  1   +  T  2   + … +   T  n    (9)

where T is the trajectory of the thrown stone in a 237 × 1622 coor-
dinate system (i.e., the trajectory path is marked as a series of ones, 
filling in the respective grid squares of the 237 × 1622 grid over 
which the stone passed and setting the rest of the squares to zero); 
we have reduced the resolution to 32 × 64 in the training phase. In 
the training phase, we furthermore add a random perturbation to 
the output coordinate point (with respect to the ideal simulation) 
to increase resilience to the uncertainties and changing environ-
mental factors. This stabilizes training when going beyond the 
idealized noise-free curling simulation. The randomized coordinate 

point   Y x,y  
 G ′      is defined as

   Y x,y  
 G ′     = ( Y x  G  +  ϵ   x  1     ⋅ sin (     1 ─ 

6
   ⋅  ϵ   x  2     +   p ─ 

4
   ⋅  ϵ   x  3     )  〈  e  x   〉,  Y y  

G  +  
                                    ϵ   y  1     ⋅ sin (     1 ─ 

6
   ⋅  ϵ   y  2     +   p ─ 

4
   ⋅  ϵ   y  3     )  〈  e  y   〉)   (10)

where   Y x,y  
G   = ( Y x  G ,  Y y  

G )  represents the desired coordinates given by 

strategy planning model. In addition, ϵx1, ϵx2, ϵx3, ϵy1, ϵy2, ϵy3 are 
appropriately scaled random perturbations and 〈ex〉, 〈ey〉 are averaged 
distance errors in real curling with no adaptation (i.e., vertical and 
horizontal errors are approximately 3 and 0.5 m, respectively).

The movements of the left/right curls are substantially different 
due to various external factors (amount of pebble uneven skewed in 
some areas, inclined ice sheet, etc.). To respond appropriately to this 

phenomenon,   Y x,y  
  G ′      need to distinguish between the left and right curl 

cases. Figure 3 shows an overview of our concept to adapt DRL from 
simulation to real curling with its uncertainties: The action space is, 
in principle, continuous; as an approximation for efficient learning 
in the neural networks, we use a discretization (32, 51). We use a 
ResNet architecture (eight basic blocks) [c.f., the alphago zero or other 
well-known AI systems (13, 52)], where the input feature maps 
(32 × 64) include the desired position given by strategy planning 
model (two planes), the trajectories of the past thrown stones ( T  from 

Eq. 9) (one plane), and error estimations Ds from Eqs. 7 and 8 [e.g., 
sequential distance gaps (4 × 3 × 2) planes] (Table 1). As shown in 
Eq. 6, for H, the updates of the cumulative sequence differ for each 
left (kl) and right (kr) curl depending on the strategic target. Also, 
we need to adjust the number of cumulative sequences that are used 
for learning according to the application situation. For the real curling 
game, say in a tournament, we need to adapt to the new ice environ-
ment in the curling arena at the match time, where we are allowed 
to use about only 10 min of ice reading time (international curling 
match rules, seven to eight shots are available to Curly before the 
start of the game). So, we used this time to calibrate our adaptation 
using four throws for each left (kl) and right (kr) curl and then pro-
ceed to the curling match.

Essentially, the temporal features (i.e., the trajectories of 
the thrown stones) and cumulative distance errors are the essen-
tial features in our framework for adapting the simulation 
model estimates.

Note that retraining beyond a mere adaptation is not a practical 
option within the ruleset of curling matches.

AI curling robot system “Curly”
Curly, the AI curling robot system, consists of the curling AI (strategy 
planning model) (see Fig. 7 and fig. S2), adaptation DRL model to 
the dynamically changing environment in real icy world, and a curl-
ing simulator (see Figs. 3D and 8 and fig. S2) and two curling robots 
(skip-/thrower-Curly) (see Fig. 2). Curly operates in four steps: (i) 
The skip-Curly recognizes the coordinates of the stones on the ice 
sheet through active vision and transmits them to the curling AI. 
(ii) After receiving the current game status with the coordinates, the 
strategy planning (32) establishes a strategy within a curling simu-
lator environment already factoring in uncertainties to compute the 
best throw (Fig. 7) and transmits them to the adaptation DRL model. 
(iii) After receiving the throw strategy, the adaptation DRL model 
computes an adaption to the coordinate provided by the strategy 
planning model, and then the curling simulator transmits the throw 
parameters of the adapted coordinate to the “thrower-Curly.” Note 
that, here, our proposed framework (main contribution of this work) 
is to incorporate the diverse uncertainty factors into the real curling 
ice sheet parameter estimates, which plays a crucial role (Fig. 3). (iv) 
The thrower-Curly precisely delivers the actual stone with the pa-
rameters received from the curling AI, and when all the stones have 
stopped, the opponent takes his strategic move again.

Moreover, for a wireless control of the robot, a data communica-
tion module was used to transmit the acquired information (i.e., 
stones’ coordinates) to the curling AI and to exchange the throwing 
parameters from the curling AI (i.e., the velocity, angle of stone, and 
the direction of curl). More details can be found in the Supplementary 
Materials (section A.5).
Curling robots: Skip and thrower
We constructed two identical robots (operated in skip and thrower 
modes), each equipped with video analysis, data communication, and 
throwing control modules including traction control (as we need to 
quickly accelerate a curling stone weighing about 20 kg) (see Fig. 2). 
The thrower-Curly implements our AI-based strategy on the ice sheet, 
i.e., holding and rotating a curling stone, accelerating it, and then 
releasing the stone from the gripper with the appropriate speed and 
angle before the hogline (Fig. 2). The skip-Curly can recognize the 
coordinates of all stones and the trajectories of the moving stones by 
using image processing techniques.

Table 1. Input features used in the network for our adaptive deep RL.  

Features Number of planes Description

Strategy (coordinates) 2

Desired coordinates 
given by strategy 
planning model 
(strategy for left and 
right curls, 
respectively)

Adaptive factors (H) 4 × 3 × 2

Chronological and 
cumulative errors, 
four previous 
sequences × distance 
errors DAG, DAR, and 
D

GR (two each for left 
and right curls)

Trajectories ( T  ) 1
Cumulative 
trajectories of the 
thrown stones
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Figure 2 shows the whole structure of the proposed robot, which 
consists of two type cameras (on the body and head), one neck 
(similar to giraffes or horses), two front wheels, one rear caster, and 
a gripper. The neck can lift the head camera up and bring it down. 
In the skip mode, the robot can recognize the stone by lifting the 
head. In the thrower mode, the head cameras on the neck are to 
detect the location of robot itself (localization), and the body camera 
is to detect the hog line. Although the head needs to be raised to 
recognize the stone positions accurately (because they are roughly 
40 m away), the robot in crouched state enables stable throwing by 
the head down position and the respective lower center of gravity. 
Two front wheels are connected to two brushless DC motors and 
work as driving wheels, while one rear wheel is a caster that only 
supports the body. In addition, Curly uses the gripper to generate 
curls of the stone while driving and releases the stone before the hog 
line (rules of the competition). The gripper consists of two motors: 
One is used to grip and release the stone, and the other one rotates 
a belt that moves the stone to generate the necessary curl directions 
and speed of the stone (i.e., clockwise or counterclockwise rotation). 
Note that our mobile robots can perform a curling game without 
any external installation or cables.
Precision-controlled throwing in thrower-Curly
Curly can automatically make precise throws based on the current 
location estimate (i.e., coordinate on the ice sheet) and orientation, 
the desired velocity/angle control at the point of release time, 
and stable release moment control. Location and orientation are 
estimated using line detection and the crossing point of the curling 
ice sheet (house, side lines, etc.) while correcting the distortions 
according to the oblique view through a mapping of the actual 

ground-truth information and the obtained image from the head 
camera.

In a first step, the thrower-Curly travels approximately 10 m 
(from hack to hog line) to precisely control the target velocity and 
angle of the curling stone. The target velocity and angle are received 
from the curling AI, which is, as we indicated earlier, composed of 
strategy planning, adaptation, and curling simulation. Because the 
point of arrival (length of the throw) for the stone in the house 
depends mainly on the velocity at the moment of release, the 
thrower-Curly has to perform very precise velocity control. To 
achieve high precision driving, the first and most important tech-
nique is an efficient anti-slip control to prevent any slip between the 
rubber wheel and the ice, i.e., maintaining the slip ratio within a 
certain range. There are many anti-slip control algorithms to achieve 
high traction. Here, we apply to the thrower-Curly the so-called 
model following control suggested by Hori et al. (53), because its 
structure is straightforward and its tuning parameters are simple 
enough. The thrower-Curly driving is achieved by applying yaw 
moment observer (54) for a robust head angle control. As a result, 
our robot has an accuracy of 0.1° and 0.01 m/s error with respect to 
target velocity and angle [c.f. (55) for further details about the pre-
cision driving control applied to Curly]. The third step is the hog 
line release phase, one of the important rules to obey in the curling 
game. For stable release control, the thrower-Curly predicts the dis-
tance to the hog line based on the image processing technique (i.e., 
detection of the Hog line and side line) using the image of the front 
camera. Then, the image processing module sends a release signal 
to the gripper about 30 cm before the hog line; immediately, the 
gripper releases the stone.

< Selection > < Expansion > < Simulation > < Backpropagation >

Highest

value

Root node

5th shot 6th shot 16th shot. . . . 1st shot 2nd shot 3rd shot 4th shot 15th shot14th shot

First mover Second mover

Current

game state

Reward

Optimal

strategy

B
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e

Residual Block

x9
2 256
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Policy head
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Fig. 7. Overview of strategy planning. (A) Steps of the MCTS algorithm. (B) Architecture of the strategy network. The network consists of the policy network head Np 

and value network head Nv. (C) Policy RA (final selection).
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Detection of the curling stone location by the skip-Curly
Precise coordinate estimation of the stones is one of the important 
cornerstones for a successful curling game. The skip-Curly matches 
the coordinates of the actual curling ice sheet by recognizing the 
house circles, side line, back line, etc. After the newly thrown stone 
has stopped completely, its position is computed within the inferred 
coordinates and sent to the curling AI.

Realistic curling simulation
Our physics-based curling simulator is designed to simulate outcomes 
for a given parameter set, i.e., throw angle, velocity, and curl direc-
tion (Fig. 8). It can provide a starting point (although in the real 
world inaccurate) for a subsequent intelligent compensation, which 
then allows the robot to throw stones precisely on desired target 
points (Fig. 1), although all individual subcomponents of the Curly 
system are intrinsically carrying large uncertainties.

We implemented a curling stone curl simulation based on the 
representative physical mechanisms, known as “front-rear asymmetry” 
model and “scratch guiding” model (fig. S6, algorithms S2 and S3) 
following (36, 56). Moreover, the implemented curling simulation can 
render the reaching distance different as the game progresses (Fig. 8).

Strategy planning in simulation
In our previous study, an optimal curling strategy was established 
within a simulation environment only (32). Curly’s strategy planning 
uses a policy-value network (DNN) along with a Monte Carlo tree 
search (MCTS) using kernel regression upper confidence bound 

applied to trees (KR-UCT) (32). The search procedure follows the 
MCTS algorithm, which comprises selection, expansion, simulation, 
and backpropagation. (See also section A.3 in the Supplementary 
Materials for more details.) Moreover, we also implemented the re-
liability assessment (RA) step to achieve a stable strategy in the final 
selection. In addition, as an approximation, a discretization of the 
continuous action space is used for the MCTS search and the learn-
ing in neural networks.
Policy-value network
Our network takes the following inputs: the stones’ location, stone 
order in terms of proximity from the tee (the center point of the 
house), number of shots, and flags to indicate whether each grid cell 
within the house, comprising three concentric circles where points 
are scored, is occupied by a stone (32). After a first convolutional 
block, nine residual blocks follow (52), which are shared during neural 
network training procedure (Fig. 7).
Monte Carlo tree search
Our MCTS method, referred to as KR-UCT, has been successfully 
applied to the simulated curling game (32). As shown in Fig. 7B, the 
curling strategy DNNs (policy-value networks) consist of the policy 
network head Np and value network head Nv. The output of the neural 
network policy head Np is applied for the selection and expansion of 
the actions in the MCTS steps. The value computed as the output of 
head Np is used instead of an MCTS simulation (i.e., rollout policy).
Reliability assessment
In the curling simulation, the ice conditions are assumed unchanged 
with only a small range of uncertainties added (i.e., Gaussian noise), 
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and the throw stone trajectory shape is fixed (32). However, the real 
environment has a substantially larger range of uncertainties and also 
becomes more nonstationary. To provide more stable strategies in 
this study, the changes and uncertainties that emerge in the real world 
need to be anticipated, and an appropriate strategy that matches the 
real-time constraints for the simulation needs to be established ac-
cordingly. Moreover, when a stone is thrown to the target point in 
real curling, it will often deviate. Even small distance errors can 
have a substantial impact on the outcome of the curling match. To 
compensate for these issues, we also propose and apply an RA L(a) 
step to achieve a stable and robust strategy for the final selection 
after the MCTS step (Fig. 7C). It is possible to capture the uncer-
tainty of the outcomes by simulating additional actions on neighboring 
target points. Because it has been proven that sufficient information 
can be obtained by sparse sampling (57), uncertainty can be mea-
sured through an analysis of few neighboring points. During search, 
the proposed algorithm performs stochastic simulations of stone 
throwings for a test group consisting of a target point and some k 
neighbors (slightly distorted targets). The L(a) is then approximated 
as a summation over the individual shot reliabilies Li(a) for the target 
action (a) from the given state s

  L(a ) =   S  
i=1

  
n
    L  i  (a)  (11)

    L  i  (a ) =  

⎛

 ⎜ 

⎝

     1 ─  

1 +  
  S  
j=1

  
k+1

   ( f  i  ( s  j   ) − m)   2 

 _ 
k + 1

  

   

⎞

 ⎟ 

⎠

     (12)

where n is the number of functions fn evaluating a position and m 
denotes the average of the evaluation values over the distorted targets. 
The evaluation functions f are determined by representative curling 
rules (i.e., f1: score variation, f2: changes in the number of guard 
stones, f3: change in the number of stones in house). A large vari-
ance of evaluation values means that the difference between each dis-
torted throw is large, and thus, the reliability L(a) goes to 0. Figure 8C 
shows the process of applying the proposed assessment method for 
curling. The RA evaluates the recommended strategic candidates by 
MCTS with the policy-value network in the curling simulation en-
vironment. Last, the L(a) model selects a stable strategy with the 
highest RA value. Insisting on throws with large reliability allows to 
achieve stable performance under nonstationary uncertainties, and 
thus, more robust strategies are created.
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Fig. S1. Match results between the top-ranked Korean women’s team and cooperative team 
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Fig. S3. Sequence diagram of the throwing process in our system.

Fig. S4. The configuration of our curling simulator (server).

Fig. S5. Representation of the curling stone running band and pebbles on the ice.

Fig. S6. Overview of the asymmetrical friction mechanism on the rotating and sliding running band.

Fig. S7. Comparison of trajectories between actual case, our simulation, and Ito’s simulation.

Fig. S8. Comparison of the go and curling (Curly).

Table S1. Comparison of transfer methods for bridging reality gap with physical robot.

Table S2. Comparison of the averaged distance error between no adaptation, rule-based, and 
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Table S3. Comparison of curling simulation methods for the dynamics of the traveling 
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Movie S1. Highlights of the official curling match A.

Movie S2. Highlights of the official curling match D.
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