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N A V I G A T I O N

Time-optimal planning for quadrotor waypoint flight
Philipp Foehn*, Angel Romero, Davide Scaramuzza

Quadrotors are among the most agile flying robots. However, planning time-optimal trajectories at the actuation 
limit through multiple waypoints remains an open problem. This is crucial for applications such as inspection, 
delivery, search and rescue, and drone racing. Early works used polynomial trajectory formulations, which do not 
exploit the full actuator potential because of their inherent smoothness. Recent works resorted to numerical 
optimization but require waypoints to be allocated as costs or constraints at specific discrete times. However, this 
time allocation is a priori unknown and renders previous works incapable of producing truly time-optimal trajec-
tories. To generate truly time-optimal trajectories, we propose a solution to the time allocation problem while 
exploiting the full quadrotor’s actuator potential. We achieve this by introducing a formulation of progress along 
the trajectory, which enables the simultaneous optimization of the time allocation and the trajectory itself. We 
compare our method against related approaches and validate it in real-world flights in one of the world’s largest 
motion-capture systems, where we outperform human expert drone pilots in a drone-racing task.

INTRODUCTION
Autonomous drones are nowadays used for inspection, delivery, 
cinematography, search and rescue, and entertainment such as 
drone racing (1). The most prominent aerial system is the quadrotor, 
thanks to its simplicity and versatility ranging from smooth maneuvers 
to extremely aggressive trajectories. This renders quadrotors among 
the most agile and maneuverable aerial robots (2, 3).

However, quadrotors have limited flight range, dictated by their 
battery capacity, which limits how much time can be spent on a 
specific task. If the task consists of visiting multiple waypoints 
[delivery, inspection, and drone racing (4–6)], then doing so in 
minimal time is often desired, and, in the context of search and rescue 
or drone racing (Fig. 1), even the ultimate goal. Expert human drone 
racing pilots accomplish this with astonishing performance, guiding 
their quadrotors through race tracks at speeds so far unreached by 
any autonomous system. This begs the question of how close human 
pilots fly to the theoretical limit of a quadrotor and whether plan-
ning algorithms could find and execute such theoretical optima.

For simple point-mass systems, time-optimal trajectories can be 
computed in closed form, resulting in bang-bang acceleration tra-
jectories (7), which can be sampled over multiple waypoints (8). 
However, quadrotors are underactuated systems that need to rotate 
to adjust their actuated acceleration direction, which always lies in 
the body z axis (9, 10). Both the linear and rotational acceleration 
are controlled through the rotor thrusts, which are physically limited 
by the actuators. This introduces a coupling in the achievable linear 
and rotational accelerations. Therefore, time-optimal planning 
becomes the search for the optimal trade-off between maximizing 
these accelerations.

Two common approaches for planning quadrotor trajectories 
exist: continuous-time polynomials and discrete-time state space 
representations. The first option is the widely used polynomial for-
mulation (10–12) exploiting the quadrotor’s differentially flat output 
states with high computational efficiency. However, these poly-
nomials are inherently smooth and therefore cannot represent rap-
id state or input changes [e.g., bang-bang (7)] at reasonable order 

and only reach the input limits for infinitesimal short durations or 
constantly for the full trajectory time. This renders polynomials 
suboptimal because they cannot exploit the full actuator potential. 
Both problems are visualized and further explained in the “Preface: 
Time-optimal quadrotor trajectory” section in the Supplementary 
Materials.

The second option includes all approaches using time-discretized 
trajectories that can be found using search and sampling-based 
methods (13–16) or optimization-based methods (17–20). However, 
sampling the four-dimensional (4D) continuous input space over 
many discrete time steps with sufficient resolution quickly becomes 
computationally intractable, which is why prior work (13–16) 
restores to point-mass, polynomial, or differential-flatness approxi-
mations and therefore does not handle single-rotor thrust constraints. 
Therefore, planning time-discretized trajectories with optimization-
based methods is the only viable solution in the short-medium term. 
In such methods, the system dynamics and input boundaries are 
enforced as constraints. In contrast to the polynomial formulation, 
this allows the optimization to pick any input within bounds for each 
discrete time step. For a time-optimal solution, the trajectory time 
tN is part of the optimization variables and is the sole term in the 
cost function. However, if multiple waypoints must be passed, then 
these must be allocated as constraints to specific nodes on the tra-
jectory. This time allocation is a priori undefined, because the time 
spent between any two waypoints is unknown, which renders traditional 
discretized state space formulations ineffective for time-optimal 
trajectory generation through multiple waypoints.

We investigate this problem and provide a solution that allows 
simultaneously optimizing the trajectory and waypoint allocation 
in a given sequence, exploiting the full actuator potential of a quadrotor. 
Our approach formulates a progress measure for each waypoint 
along the trajectory, indicating completion of a waypoint (see Fig. 5). 
We then introduce a “complementary progress constraint” (CPC) 
that allows completion only in proximity to a waypoint. Intuitively, 
proximity and progress must complement each other, enforcing 
completion of all waypoints without specifying their time allocation.

There already exists a number of works toward time-optimal 
quadrotor flight (21–24), which, however, all suffer from severe 
limitations, such as limiting the collective thrust and body rates, 
rather than the actual constraint of limited single-rotor thrusts. The 
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two earlier works (21, 22) are based on the aforementioned bang-
bang approaches extended through numerical optimization of the 
switching times (21) and a trajectory representation using a convex 
combination of multiple analytical path functions (22). However, 
both are restricted to 2D maneuvers, whereas our approach gener-
alizes to arbitrary 3D waypoint sequences.

Another approach is taken in (23), where a change of variables 
along an analytic reference path is used to put the vehicle state 
space into a traverse-dynamics formulation. This allows using the 
arc length along the reference path as a progress measure and 
enables the formulation of costs and constraints independent of the 
time variable. However, as in the previous works, they simplify the 
platform limits to collective thrust and body rates, neglecting realistic 
actuator saturation. Furthermore, because of the use of Euler angles, 
their orientation space only covers a subset of the feasible attitudes 
and limits the solutions to a, possibly suboptimal, subspace.

Last, Ryou et al. (24) use a completely different approach, where 
the segment times of a polynomial trajectory are refined on the ba-
sis of learning a Gaussian classification model predicting feasibility. 
The classification is trained on analytic models, simulation, and real 
flight data. Although emphasizing real-world applicability, this ap-
proach is still constrained to polynomials and requires real-world 
data specifically collected for the given vehicle. Furthermore, it is an 
approximate method that only refines the execution speed of a pre-
defined trajectory, rather than modifying the trajectory itself to a 
time-optimal solution, as opposed to our method.

In contrast to existing methods, our approach resolves these 
problems by taking inspiration from optimization under contacts 
(25), proposing the formulation of CPCs, where we introduce a 

measure of progress and complement 
(26) it with waypoint proximity. More 
specifically, we formulate two factors that 
must complement each other, where, in 
our case, one factor is the completion of 
a waypoint (progress), whereas the other 
factor is the local proximity to a way-
point. Intuitively, a waypoint can only be 
marked as completed when the quadro-
tor is within a certain tolerance of the 
waypoint, allowing simultaneous opti-
mization of the state and input trajectory 
and the waypoint time allocation.

We demonstrate how our formula-
tion can generate trajectories that are faster than human expert 
flights and evaluate it against two professional human drone racing 
pilots, outperforming them in terms of lap time and consistency 
on a 3D race track in a large-scale motion capture system 
(Fig.  1). Because our proposed optimization problem is highly 
nonconvex, we also provoke nonconvexity effects in simulation ex-
periments in the Supplementary Materials (the “Simulation exper-
iments” section).

Our method not only can serve as a baseline for time-optimal 
quadrotor flight but also might find applications in other fields, 
such as (multi-) target interception and orbital maneuvers, avoiding 
mixed-integer formulations (27) and any problem where a sequence 
of task goals of unknown duration must be optimized under com-
plex dynamic constraints.

RESULTS
We chose drone racing as a demonstrator for our method because 
in racing, the ultimate goal is to fully exploit the actuator potential 
to accomplish a task in minimal time. In our experiment, we set up 
a human baseline on a 3D race track with seven gates (Fig. 1 and 
Movie 1) in a motion capture environment with two professional 
expert drone racing pilots. We planned a time-optimal trajectory 
through the same race track and used an in-house developed drone 
platform and software stack to execute the trajectory in the same 
motion capture environment. We generated the trajectory at a 
slightly lower thrust bound than what the platform can deliver, to 
maintain controllability under disturbances as mentioned in the “Real-
world restrictions” section in the Supplementary Materials and 
discussed in the “Real-world deployment” section. Our results show that 
we can outperform the humans and consistently beat their best lap time.

Experimental drone platform
The experiments were flown with an in-house developed drone plat-
form (Fig. 2) based on off-the-shelf drone-racing components such as 
a carbon-fiber frame, BLDC (brush-less direct current) motors, 5-inch 
propellers, and a BetaFlight flight controller. The quadrotor was equipped 
with an NVIDIA Jetson TX2 computing unit with Wi-Fi and a 
Laird RM024 module for wireless low-latency communication. The 
static maximum thrust of a single rotor was measured using a load 
cell and verified in-flight, marking the platform’s real maximum 
limit at a thrust-to-weight ratio (TWR) of ~4. Other specifications 
can be taken from table S1 under the race quadrotor configuration.

For state estimation (pose, linear, and angular velocities), we 
used a VICON system with 36 cameras. For control, we deployed a 

Fig. 1. A time-optimal trajectory. This time-optimal flight path was computed using the proposed CPCs and exe-
cuted in a motion capture system, outperforming the best human expert.

Fig. 2. The quadrotor vehicle. The autonomous platform used for the real-world 
experiments with a theoretical TWR of ~4 at 0.8-kg  weight, equipped with a Jetson 
TX2, a Laird communication module, off-the-shelf drone racing components, and 
infrared-reflective markers for motion capture.
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model predictive controller (MPC), similar to (28) but on the basis 
of the quadrotor dynamics from Eqs. 16 to 18, with the state space 
x = [pIB, qIB, vIB, B]⊤ and input space u = [T1, T2, T3, T4]. The MPC 
operated over a horizon of NMPC = 20 time steps of t = 0.05 s, with 
a quadratic cost function, and also accounted for the single-rotor 
thrust constraints. The implementation was done using the ACADO 
(29) toolkit and qpOASES (30) as solver. We executed the MPC in 
a real-time iteration scheme (31) at a feedback rate of 100 Hz. The 
low-level BetaFlight controller has access to high-frequency IMU 
(inertial measurement unit) measurements, which allows precise 
tracking of body rate and collective thrust commands. These commands 
were extracted from the MPC controller and were guaranteed to 
stay within the platform capabilities because of the single-rotor 
thrust constraints.

Human expert pilot baseline
Because human pilots so far outperformed autonomous vehicles, 
we established a baseline by inviting two professional expert drone 
racing pilots, M. Isler and T. Trowbridge, both of whom compete in 
professional drone racing competitions. A list of their participation 
and rankings can be found in table S2. We created a 3D racing track 
in a VICON motion capture environment spanning roughly 25 m 
by 30 m by 8 m and let the humans train on this track for hours. We 
captured multiple races, each consisting of multiple laps, from which 
we evaluated the one with the overall best lap time (Table 1 and 
Fig. 3), according to our timing strategy described in the “Timing 
analysis” section. The quadrotor platform used for human flights 
has the same TWR as the autonomous platform. This provides a fair 
baseline because (i) both the humans and the autonomous drone 
have the same limitations; (ii) the humans were given enough train-
ing time to adapt to the track, as is the case at a real drone racing 
event; and (iii) we compared against the race including the absolute 
best lap time from all runs. Especially, the latter point gives a sub-
stantial advantage to the human competitors, because they are typ-
ically not capable of reproducing the absolute best lap time reliably 
and would therefore fall behind in any multilap evaluation. The 
evaluated best human runs each contain seven laps.

The human platform was also tracked in the VICON system and 
resembled the autonomous drone described in the “Experimental 
drone platform” section but dropped the Jetson and Laird modules 
for a remote control receiver and a first-person-view camera sys-
tem, with no weight difference. To keep a fair baseline, the human 
platform was restricted to the same maximum thrust-to-weight 
limit as the autonomous drone. The track, time-optimal reference 

(TWR of 3.3), and the human expert 1 trajectory are visualized in 
Fig. 4, with their speed and acceleration profile colorized.

Trajectory generation
To generate the time-optimal trajectories that will be executed by 
our platform, we set the gate positions of the track shown in Fig. 4 
as waypoint constraints. We generated 2.5 laps to ensure that our ex-
periments were not affected by start and end transient effects or large 
drops in battery voltage and to ensure at least two full laps at maximum 
speed. For optimal results, the laps were generated by concatenat-
ing the waypoints for a single lap multiple times and solving the full 
multilap problem at once. Therefore, the optimization passes through 
18 waypoints and can be solved on a normal desktop computer in 
~40 min. We used N = 720 nodes with a tolerance of dtol = 0.3 m.

Because a time-optimal trajectory exploits the full actuator po-
tential, it is extremely aggressive from start to end. To ensure safe 
execution on a real drone, we linearly ramped up the thrust limit for 
the trajectory generation from hover to the full thrust limit, guaran-
teeing a smooth start of the trajectory. Because we planned over 
2.5 laps and excluded the start and end from the timing, this had no 
notable impact on the reported timing results. The same start and 
end exclusion were done for the human timings (in the “Timing 
analysis” section).

In addition, we planned the trajectory for a multitude of TWRs 
reaching from 2.5 with a lap time of 7.14 s to a maximum of 3.6, 
resulting in a lap time of 5.81 s. As expected, the time shrinks with 
higher thrust-to-weight capabilities. We evaluated two configura-
tions with TWRs of 3.15 (6.27 s) and 3.3 (6.10 s) in our real-world 
experiments, reported in the following section. Both of these con-
figurations were consistently faster than the human trajectory while 
staying within a safe margin of the quadrotor absolute limit (TWR 
of ~4), which allows for robust control even under disturbances, 
noise, and model imperfections.

Timing analysis
First of all, our real-world experiments should provide a proof of 
concept that time-optimal trajectories planned below the drone’s 

Table 1. Timing statistics.  

Timing Mean (s) Median (s) Min (s) Max (s) Std (s)

Human 
expert 1

6.794 6.740 6.389 7.530 0.2556

Human 
expert 2

6.987 6.960 6.450 7.780 0.2859

Ours with 
TWR: 3.15

6.272 6.272 6.190 6.354 0.0280

Ours with 
TWR: 3.3

6.120 6.116 6.048 6.215 0.278

Movie 1. Time-optimal planning for quadrotors. This movie depicts 
the real-world experiments evaluating our time-optimal quadrotor trajecto-
ries against professional human drone racing pilots.
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actual thrust limit are a feasible and viable solution. We refer the 
reader to the accompanying Movie 1.

Second, we point out that it is possible to generate and execute 
trajectories that can outperform the human baseline. For this, we 
provide a statistical lap time analysis in Table 1 and Fig. 3, indicating 
the superior performance on both configurations.

To compute reliable lap times, we first defined a full lap as each 
lap that is not affected by any start (takeoff) or end (landing) seg-
ment. We could then pick a set of timing points 𝒮pt = {pt0, pt1, …} 
along the trajectory and define the timing as the time needed to 
visit one such point twice, i.e., the time of a segment starting and 
ending at the same point. This measure allows us to extract a statis-
tically valid timing of a single closed lap, which does not depend on 
the location of timing start and stop.

Effectively, we timed the best laps of the human flights and two 
full laps of both our race trajectories, each flown twice. Figure  3 
shows the obtained timing results, where it is clearly visible that 
the autonomous drone outperforms the human pilots both in abso-
lute time and consistency. The latter is expected because once the 
trajectory is generated, it can be repeated multiple times without 
variation.

DISCUSSION
Velocity and acceleration distribution
Furthermore, we evaluate the velocity and acceleration distribution 
over the different human and time-optimal flights. We depict the 
trajectories colored by their speed and acceleration profile in Fig. 4 
with the time-optimal reference with TWR of 3.3. Inspecting the hotspots 
of darker colors in the velocity plots (Fig. 4, top row) indicating higher 
speeds, we can see that the velocity distribution is rather similar for 
the autonomous time-optimal and the human trajectory. However, 
comparing the acceleration of the human and the time-optimal tra-
jectory (Fig. 4, bottom row), we observe that the acceleration of the 
human varies considerably more and often dips to lower values 
than the time-optimal ones. This corresponds to sections where the 
human pilots do not use the full actuation spectrum of the platform 
and lose substantial performance over the time-optimal trajectory. 
This is especially visible in the right-most section of the track, where 
the flight path has relatively low curvature. The time-optimal trajec-
tory exploits the full acceleration capabilities, whereas the human 
notably reduces the acceleration between the right-most gates, lead-
ing to lower speeds in the following bottom section of the track.

Furthermore, we can identify the high-speed 
region in the sections of low curvature, where 
both human and autonomous platforms spend 
more acceleration in the velocity direction (accel-
erating and braking) than perpendicular to the 
velocity (direction change). Although the plat-
forms have equal TWR, and our time-optimal 
trajectory is planned with a substantial margin to 
the platform’s TWR limit, it exceeds the human 
speed profile.

Human performance comparison
From our findings in the “Timing analysis” and 
“Velocity and acceleration distribution” sections, 
we conclude that human pilots are not far away 
from our time-optimal trajectory, because they 

reach similar but slower velocity distribution and lap times. However, 
humans struggle to consistently exploit the full actuation spectrum 
of the vehicle, resulting in suboptimal performance compared to our 
approach. One possible reason for this can be found in (32), where 
we analyzed eye gaze fixations of human pilots during racing and 
found that they fixate their eyes on upcoming gates well before passing 
the next gate, indicating that humans use a receding planning hori-
zon, whereas our approach optimizes the full trajectory at once.

Tracking error considerations
We want to point out that although we achieved successful deploy-
ment on a real quadrotor system, we experience substantial tracking 
errors in doing so, as visible in Fig.  4. Although this work is not 
about improving the tracking performance but should rather serve 
as a feasibility study given our method, we still feel responsible for 
pointing out the encountered difficulties. A number of effects lead 
to this tracking error of ~0.7 positional root mean square error:

1) We did not account for any latency correction of the whole 
pipeline, including motion capture and pose filtering, data trans-
mission to the drone, MPC execution time, and communication to 
the flight controller.

2) Our simple linear-drag aerodynamic model was verified in (33) 
at speeds up to 5 m s−1. However, in the vastly higher speed regimes 
that we reach during our real-world experiments, the model seems 
to be inaccurate, especially in terms of drag at higher speeds and in 
body z direction. The effect of this is visible in Fig. 4, where there is 
a disturbance toward the inside of the curvature for most of the time.

3) The used BetaFlight controller is a reliable system for human 
drone pilots. However, as such, it includes many filtering, feed-forward, 
and control strategies that are tuned for a consistent human flight 
feeling. Unfortunately, this does not translate to accurate closed-
loop control or desirable control-loop shaping and causes more harm 
than good when used with closed-loop high-level controllers such 
as our MPC. Not only is it not possible to command the single-rotor 
thrusts from the MPC to BetaFlight but also the provided body rate 
tracking performed poorly. This, however, could be solved with a 
custom flight controller and might be part of further studies.

Convexity and optimality
Although the problem of trajectory optimization quickly becomes 
nonconvex when using complex and/or nonlinear dynamic models, 
constraints, or even cost formulations (e.g., obstacle avoidance), it 
is often a valid approach to generate feasible (in terms of model 

Fig. 3. Timing analysis. Lap time box plot of our time-optimal trajectory executed in real world for two 
configurations (two laps) and two human races (seven laps). Note that even with a 5% reduced TWR of 
3.15, the proposed time-optimal trajectories are faster than the best human lap time, with substantially 
lower variance.
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dynamics) trajectories. Given a nonconvex problem, solution schemes 
such as the used interior point method can only guarantee local op-
timality and global feasibility but not global optimality. Within our 
approach, we can summarize the following nonconvex properties:

1) The quadrotor dynamics (Eq. 16) are nonlinear and therefore 
nonconvex in the context of Eq. 1.

2) The acceleration space of a quadrotor (Eq. 18) is nonconvex 
given nonzero minimal thrust Tmin > 0.0.

3) Equation 14 is nonconvex because of the norm on distance 
and the bilinearity of the progress change  and tolerance slack .

In our experiments in the “Provoking nonconvexity issues” and 
“Local-versus-global optimum” sections in the Supplementary 
Materials, we provoke such nonconvex properties and explain how 
the optimization can be supported with an advanced initialization 
scheme to start close to the global optimum.

This can be achieved by reducing the nonlinear quadrotor mod-
el into a linear point-mass model with bounded 3D acceleration 
input u = a where ∥a ∥ ≤ amax. The linear model removes the prom-
inent nonconvex dynamics and allows us to find a solution from 
which the original problem with the quadrotor model can be initial-
ized, both in terms of translational trajectory, and also with a non-
continuous orientation guess based on the point-mass acceleration 
direction. Although this initial guess is not yet dynamically feasible 

for quadrotors because of the absent rotational dynamics, it serves 
as a valid initial guess in the convex region of the global-optimal 
translation space. Last, the rotational nonconvexity can be resolved 
by solving multiple problems of different initializations, as demon-
strated in the “Provoking nonconvexity issues” section in the 
Supplementary Materials.

Last but not least, the reader should note that even in the case of 
a local (but not global) optimal solution, the vehicle dynamics are 
satisfied and the trajectory is dynamically feasible.

Real-world deployment
There are three challenges when deploying our approach in real-
world scenarios.

The first problem is posed by the nature of time-optimal trajec-
tories themselves, because the true solution for a given platform is 
nearly always at the actuator constraints and leaves no control au-
thority. This means that even the smallest disturbance could poten-
tially have damaging consequences for the drone and render the 
remainder of the trajectory unreachable. One has to define a margin 
lowering the actuator constraints used for the trajectory generation 
to add control authority and therefore robustness against distur-
bances. However, this also leads to a slower solution, which is no 
longer the platform-specific time-optimal one. In the context of a 

Fig. 4. Comparison against a human pilot. The race track with seven gates visualized with the yellow-red real-world trajectories of the humans (left; all seven laps of the 
race including the overall best lap time) and the autonomous drone (right; two laps visualized), and the green-blue time-optimal reference trajectory with a TWR of 3.3. 
The trajectories are colored by their speed profile (top row) and acceleration profile (bottom row) to indicate the hotspots of highest velocity and acceleration along the 
track. The two black arrows indicate the direction of flight. The human pilots vary their acceleration substantially more than the autonomous drone and spend more time 
at suboptimal acceleration (yellow coldspots on the lower left). Note that the gate in the lower left corner consists of two gates stacked vertically.
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competition, this effectively becomes a risk-management problem 
with interesting connections to game theory.

Second, our method is computationally demanding, ranging 
from a few minutes (<20 min) for scenarios as in the “Time-optimal 
hover-to-hover trajectories” and “Provoking nonconvexity issues” 
sections in the Supplementary Materials toward an hour or more 
for larger scenarios such as in Results with ~40 min and in the 
“Microsoft AirSim, NeurIPS 2019 Qualification 1” in the Supple-
mentary Materials with ~65 min on a normal desktop computer. 
However, this is highly implementation dependent and could be vastly 
broken down to usable times or precomputed for static race tracks 
and other nondynamic environments. Furthermore, our approach 
provides a method for finding the theoretical upper bound on per-
formance, as a benchmark for other methods.

Third, we use a motion capture system to deploy our method. 
However, in real-world scenarios, such high-performance off-board 
localization systems are barely ever available. This necessitates the 
deployment using on-board state-estimation systems, such as visual-
inertial odometry. Unfortunately, these systems can suffer from 
high motion blur in such fast flight scenarios and therefore need 
substantial further research and development to be of sufficient ro-
bustness for the purpose of time-optimal flight (4, 5). Despite those 
difficulties, we have demonstrated that our method can be deployed 
and is substantially faster than human experts.

MATERIALS AND METHODS
General trajectory optimization
The general optimization problem of finding the minimizer x* for 
cost L(x) in the state space x ∈ ℝn can be stated as

	​​ x​​ *​  = ​ argmin​ 
x
​  ​ L(x ) subject to g(x ) = 0 and h(x ) ≤  0​	

where g(x) and h(x) contain all equality and inequality constraints, 
respectively. The full state space x is used equivalently to the term 
optimization variables. The cost L(x) typically contains one or 
multiple quadratic costs on the deviation from a reference, costs on 
the systems actuation inputs, or other costs describing any desired 
behaviors.

Multiple-shooting method
To represent a dynamic system in the state space, the system state xk 
is described at discrete times tk = dt · k at k ∈ [0, N], also called 
nodes, where its actuation inputs between two nodes are uk at tk 
with k ∈ [0, N). The systems evolution is defined by the dynamics ​​
x ̇ ​  = ​ f​ dyn​​(x, u)​, anchored at x0 = xinit, and implemented as an 
equality constraint of the fourth-order Runge-Kutta integration 
scheme (RK4)

	​​ x​ k+1​​ − ​x​ k​​ − dt · ​f​ RK4​​(​x​ k​​, ​u​ k​​ ) = 0​	 (1)

which is part of g(x) = 0 in the general formulation. Both xk and uk 
are part of the state space and can be summarized as the vehicle’s 
dynamic states xdyn,k at node k. Note that this renders the problem 
formulation nonconvex for nonlinear system dynamics.

Time-optimal trajectory optimization
Optimizing for a time-optimal trajectory means that the only cost 
term is the overall trajectory time L(x) = tN. Therefore, tN needs to 
be in the optimization variables x = [tN, …]⊤ and must be positive 
tN > 0. The integration scheme can then be adapted to use dt = tN/N.

Passing waypoints through optimization
To generate trajectories passing through a sequence of waypoints 
pwj with j ∈ [0, …, M], one would typically define a distance cost or 
constraint and allocate it to a specific state xdyn,k at node k with time 
tk. For cost-based formulations, quadratic distance costs are robust 
in terms of convergence and implemented as

	​​ L​ dist,j​​  = ​ (​p​ k​​ − ​p​ wj​​)​​ ⊤​(​p​ k​​ − ​p​ wj​​)​	 (2)

where pk, part of x, is the position state at a user defined time tk. 
However, such a cost-based formulation is only a soft requirement 
and if summed with other cost terms does not imply that the way-
point is actually passed within a certain tolerance. To guarantee to 
pass within a tolerance, constraint-based formulations can be 
used, such as

	​​ (​p​ k​​ − ​p​ wj​​)​​ ⊤​(​p​ k​​ − ​p​ wj​​ ) ≤ ​ ​j​ 2​​	 (3)

State-of-the-Art: Waypoint Allocation using Constraints

Ours: Waypoint Progress Variables  and their Completion (Arrows)

Fig. 5. Progress variables. (Top) State-of-the-art fixed allocation of positional 
waypoints pwj to specific nodes xi. (Bottom) Our method of defining one progress 
variable j per waypoint. The progress variable can switch from 1 (incomplete) to 0 
(completed) only when in the proximity of the relevant waypoint, implemented as 
a complementary constraint.

Fig. 6. Complementary progress constraint. The progress change  can only be 
nonzero if the distance to the waypoint pw is less than the tolerance dtol. This is not 
the case for x0, but for x1, and allowing the progress variable to switch to 0 
(complete).
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which, in the general problem, is part of h(x) ≤ 0 and requires the 
trajectory to pass by waypoint j at position pwj within tolerance j 
at time tk.

Progress measure variables
To describe the progress throughout a track, we want a measure 
that fulfills the following requirements: (i) it starts at a defined value, 
(ii) it must reach a different value by the end of the trajectory, and 
(iii) it can only change when a waypoint is passed within a certain 
tolerance. To achieve this, let the vector k ∈ ℝM define the progress 
variables ​​​k​ j ​​ at time step tk for all M waypoints indexed by j. All 
progress variables start at 1 as in 0 = 1 and must reach 0 at the end 
of the trajectory as in N = 0. The progress variables  are chained 
together and their evolution is defined by

	​​ ​ k+1​​  = ​ ​ k​​ − ​​ k​​​	 (4)

where the vector k ∈ ℝM indicates the progress change at every time 
step (Fig. 5). Note that the progress can only be positive, and therefore, 
​​​k​ j ​  ≥  0​. Both k and k for every time step are part of the optimiza-
tion variables x, which replicates the multiple-shooting scheme for 
the progress variables. To define when and how the progress vari-
ables can change, we now imply a vector of constraints fprog on k, 
in its general form as

	​​ 𝛜​k​ −​  ≤ ​ f​ prog​​(​x​ k​​, ​​ k​​ ) ≤ ​ 𝛜​k​ +​​	 (5)

where ϵ− and ϵ+ can form equality or inequality constraints. Last, to 
ensure that the waypoints are passed in the given sequence, we en-
force subsequent progress variables to be bigger than their prequel 
at each time step by

	​​ ​k​ j ​  ≤ ​ ​k​ j+1​ ∀ k  ∈  [0, N ] , j  ∈  [0, M)​	 (6)

Note that the last waypoint pwM is always reached at the last node 
at tN and, therefore, could be implemented as a fixed positional 
constraint on xN, without loss of generality.

Complementary progress 
constraints
In the context of waypoint following, 
the goal is to allow k to only be non-
zero at the time of passing a waypoint. 
Therefore, fprog and ϵ− = ϵ+ = 0 are cho-
sen to represent a complementarity con-
straint (25) as

		
​​
​f​ prog,j​​(​x​ k​​, ​μ​ k​​ ) = ​μ​k​ j ​ · ∥ ​ p​ k ​​−

​  
​p​ wj​​ ​∥​2​ 2​ ≔ 0 ∀ j  ∈  [0, M]

 ​​   (7)

which can be interpreted as a mathe-
matical NAND (not and) function, be-
cause either ​​​k​ j ​​ or ∥pk − pwj∥ must be 0. 
Intuitively, the two elements complement 
each other (Fig. 6).

Tolerance relaxation
With Eq. 7, the trajectory is forced to 
pass exactly through a waypoint. Not 

only is this impractical, because, often, a certain tolerance is admit-
ted or even wanted, but also it negatively affects the convergence 
behavior and time optimality, because the system dynamics are dis-
cretized and one of the discrete time steps must coincide with the 
waypoint. Therefore, it is desirable to relax a waypoint constraint by 
a certain tolerance, which is achieved by extending Eq. 7 to

	​​ f​ prog,j​​(​x​ k​​, ​​ k​​) = ​​k​ j ​ · (∥ ​ p​ k​​ − ​p​ wj​​ ​∥​2​ 2​ − ​​k​ j ​ ) ≔  0 ∀ j ∈  [0, M]​	 (8)

	​ subject to 0  ≤ ​ ​k​ j ​  ≤ ​ d​tol​ 
2 ​​	

where ​​​k​ j ​​ is a slack variable to allow the distance to the waypoint to 
be relaxed to zero when it is smaller than dtol, the maximum dis-
tance tolerance. This now enforces that the progress variables can-
not change, except for the time steps at which the system is within 
tolerance to the waypoint. Furthermore, please note that the spatial 
discretization s depends on the number of nodes N and the speed 
profile. It should hold that s < dtol, to always allow at least one node 
to lie within the tolerance, as visualized in Fig. 7. This can be veri-
fied after the optimization and approximated beforehand by s ≈ 
D/N, where D is the cumulative distance between all waypoints.

Optimization problem summary
The full space of optimization variables x consists of the overall 
time and all variables assigned to nodes k as xk. All nodes k include 
the robot’s dynamic state xdyn,k, its inputs uk, and all progress vari-
ables, x = [tN, x0, …, xN], where

	​​ x​ k​​  =  (​[​x​ dyn,k​​, ​u​ k​​, ​​ k​​, ​​ k​​, ​​ k​​]​  for k  ∈  [0, N
)​   

​
​ 

for k  =  N
  ​​	 (9)

On the basis of this representation, we write the full problem as

	​​ x​​ *​  = ​ arg min ​ 
x
​  ​ ​t​ N​​​	 (10)

subject to the system dynamics and initial constraint

	​​ x​ k+1​​ − ​x​ k​​ − dt · ​f​ RK4​​(​x​ k​​, ​u​ k​​ ) = 0 ​x​ 0​​  = ​ x​ init​​​	 (11)

Fig. 7. Quadrotor input space. Acceleration (left) and thrust/torque space (right) of a standard quadrotor configu-
ration. Note that the acceleration space is nonconvex because of the minimum acceleration (the idle thrust at mini-
mum motor speed) amin > 0 being nonzero, and the thrust and torque limits are dependent on each other.
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the input constraints

	​​ u​ min​​ − ​u​ k​​  ≤  0 ​u​ k​​ − ​u​ max​​  ≤  0​	 (12)

the progress evolution, boundary, and sequence constraints

	​​ ​ k+1​​ − ​​ k​​ + ​​ k​​  =  0​	

	​​ ​​ 0​​ − 1​  = 0​   ​​ N​​​  = 0​​	 (13)

	​​ ​​ k​​​  ≥  0​  ​​k​ j ​ − ​​k​ j+1​​  ≤  0​  ∀ k​  ∈  [0, N ) ,​  j​  ∈  [0, M)​​	

and the CPC with tolerance

	​​ ​k​ j ​ · (∥ ​ p​ k​​ − ​p​ wj​​ ​∥​2​ 2​ − ​​k​ j ​ ) = 0​	 (14)

	​​ − ​​k​ j ​​  ≤  0​   ​​k ​ j ​ − ​d​tol​ 
2 ​ ​  ≤  0​​	 (15)

Note that constraints 14 and 15 are nonlinear because of the 
norm on distance and the bilinearity of the progress change  and 
tolerance slack .

Quadrotor dynamics
The quadrotor’s state space is described between the inertial frame 
I and body frame B, as x = [pIB, qIB, vIB, B]⊤ corresponding to posi-
tion pIB ∈ ℝ3, unit quaternion rotation on the rotation group ​​
q​ IB​​  ∈  𝕊𝕆(3)​ given ∥qIB ∥ = 1, velocity vIB ∈ ℝ3, and body rate 
B ∈ ℝ3. The input modality is on the level of collective thrust ​​
T​ B​​  = ​ [​0​  0​  ​T​ Bz​​​]​​ ⊤​​ and body torque B. From here on, we drop the 
frame indices because they are consistent throughout the descrip-
tion. The dynamic equations are

	​​
​p ̇ ​

​ 
= v

​ 
​q ̇ ​

​ 
= ​ 1 ─ 2 ​ (q ) [​0​ ​]​   

​v ̇ ​
​ 

= g + ​ 1 ─ m ​ R(q ) T
​ 

 ​ ̇ ​
​ 

= ​J​​ −1​( −  × J)
​​	 (16)

where  represents a quaternion multiplication, R(q) the quaternion 
rotation, m the quadrotor’s mass, and J its inertia.

Quadrotor inputs
The input space given by T and  is further decomposed into the 
single-rotor thrusts u = [T1, T2, T3, T4], where Ti is the thrust at ro-
tor i ∈ {1,2,3,4}.

	​ T  = 
[

​
0

​ 0​ 
∑  ​T​ i​​

​ 
]

 and   = 
[

​
l / ​√ 

_
 2 ​(​T​ 1​​ + ​T​ 2​​ − ​T​ 3​​ − ​T​ 4​​)

​  l / ​√ 
_

 2 ​(− ​T​ 1​​ + ​T​ 2​​ + ​T​ 3​​ − ​T​ 4​​)​  
​c​ ​​(​T​ 1​​ − ​T​ 2​​ + ​T​ 3​​ − ​T​ 4​​)

  ​
]

​	 (17)

with the quadrotor’s arm length l and the rotor’s torque constant c. 
The quadrotor’s actuators limit the applicable thrust for each rotor, 
effectively constraining Ti as

	​ 0  ≤ ​ T​ min​​  ≤ ​ T​ i​​  ≤ ​ T​ max​​​	 (18)

In Fig.  7, we visualize the acceleration space and the thrust 
torque space of a quadrotor in the xz plane. Note that the accelera-
tion space in Fig. 7 is nonconvex because of Tmin > 0 for the depicted 
model parameters from the standard configuration of table S1. The 

torque space is visualized in Fig. 7, where the coupling between the 
achievable thrust and torque is visible.

Approximative linear aerodynamic drag
Last, we extend the quadrotor’s dynamics to include a linear drag 
model (33), to approximate the most dominant aerodynamic effects 
with diagonal matrix D by

	​​ v ̇ ​  =  g + ​ 1 ─ m ​ R(q ) T − R(q ) D ​R​​ ⊤​(q ) ·v​	 (19)

where we approximate D = diag (dx, dy, dz) in this work.
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