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Versatile articulated aerial robot DRAGON:
Aerial manipulation and grasping by vectorable
thrust control
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Abstract

Various state-of-the-art works have achieved aerial manipulation and grasping by attaching additional manipulator to

aerial robots. However, such a coupled platform has limitations with respect to the interaction force and mobility. In this

paper, we present the successful implementation of aerial manipulation and grasping by a novel articulated aerial robot

called DRAGON, in which a vectorable rotor unit is embedded in each link. The key to performing stable manipulation and

grasping in the air is the usage of rotor vectoring apparatus having two degrees-of-freedom. First, a comprehensive flight

control methodology for aerial transformation using the vectorable thrust force is developed with the consideration of the

dynamics of vectoring actuators. This proposed control method can suppress the oscillation due to the dynamics of

vectoring actuators and also allow the integration with external and internal wrenches for object manipulation and

grasping. Second, an online thrust-level planning method for bimanual object grasping using the two ends of this ar-

ticulated model is presented. The proposed grasping style is unique in that the vectorable thrust force is used as the internal

wrench instead of the joint torque. Finally, we show the experimental results of evaluation on the proposed control and

planning methods for object manipulation and grasping.
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1. Introduction

During the last decade, aerial robots, particularly multi-

rotors, have undergone considerable development (Floreano

and Wood 2015; Kumar and Michael 2012). The precise

maneuvering of multirotors has been achieved in various

autonomous applications, such as disaster response

(Michael et al., 2012), inspection (Ozaslan et al., 2017),

surveillance (Doitsidis et al., 2012), and cinematography

(Bonatti et al., 2020), whereas the agility enables fast

passage through narrow gaps via dynamic motion in well-

known environments (Falanga et al., 2017; Loianno et al.,

2017; Riviere et al., 2018). Moreover, state-of-the-art

studies increasingly focus on aerial manipulation

(Bonyan Khamseh et al., 2018) as a means of replacing

human labor at high elevations. Generally, an additional

actuator, such as a gripper (Mellinger et al., 2011) or an arm

manipulator (Heredia et al., 2014), is attached to the bottom

of the multirotor body to enable grasping or physical in-

teraction. However, the main challenge of such a coupled

system is that the multirotor part is required to generate

sufficient force and moment (wrench) to balance the

translational and rotational loads that arise from the physical

interaction. For instance, the reaction force on the end-

effector can induce a large rotational load on the multirotor

and cause saturation in the moment control. Therefore, the

number and size of the propellers must be increased to the

handle reaction force. However, such a bulky platform is

inefficient and also limits the mobility in confined

environments.

Another platform design that can mitigate the above

issues is a modular structure in which the entire body can

serve as an arm manipulator (Yang et al., 2018) or gripper

(Gabrich et al., 2018). A common characteristic of these

aerial modular structures is that each module unit is an

independent multirotor composed of more than four pro-

pellers. However, if all the propellers are unidirectional, the

physical interaction that involves all degrees-of-freedom

(DoF) is still impossible. Therefore, to achieve the full-pose
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control for each module unit, a two-DoF rotor vectoring

apparatus was proposed in our previous work (Zhao et al.,

2018a), and an articulated aerial robot named DRAGON

(Figure 1(a)) has been developed. This vectoring apparatus

enables omnidirectional operation for the individual rotors

(i.e., individual thrust force), and thus maximizes the ef-

ficiency of the thrust force for counteracting the gravity and

external force. This enables the superior performance of

DRAGON in terms of physical interaction.

In this study, we develop a comprehensive flight control

methodology for the vectorable thrust force with the aim of

considering the influence of vectoring actuators’ dynamics

on flight stability, and further investigate the versatility of

this articulated aerial structure in object manipulation and

grasping as shown in Figure 1(b) and (c), which demon-

strate the novel solution of blurring the line between

floating- and fixed-base manipulators.

1.1. Related work

To achieve aerial manipulation or grasping, the design of the

aerial robot is critical. Generally, a model with unidirec-

tional propellers (e.g., quadrotor) is applied, and an actuator

attached either to the bottom (Lippiello et al., 2016;

Mellinger et al., 2011; Orsag et al., 2017; Yüksel et al.,

2015) or to the side (Scholten et al., 2013; Alexis et al.,

2016; Fumagalli et al., 2014) of the body performs the

physical interaction. Given the under-actuation of the

unidirectional propellers, compensating the reaction wrench

using the thrust force is challenging, and most of the tasks

accomplished so far only involve simple grasping or precise

end-effector pose control with an N-DoF arm manipulator.

Then, a fully- or over-actuated model with tilted (Ryll et al.,

2019; Tognon et al., 2019; Trujillo et al., 2019) rotors are

adopted to enhance the controllability against the reaction

wrench. However, if the attached arm manipulator is rel-

atively long, the reaction wrench can still induce a large

rotational load on the moment control of the multirotor.

Moreover, the gravity of a long arm manipulator can also

induce a large rotational load on the multirotor when the

CoG of the arm is far from that of the multirotor. Although

the contact force can be handled by larger propellers in

greater, such a bulky platform limits mobility in confined

environments. Then several omnidirectional multirotor

structures are presented (Brescianini and D’Andrea 2016;

Kamel et al., 2018; Park et al., 2016). The entire body can be

considered as an end-effector (Bodie et al., 2019;

Brescianini and D’Andrea 2018; Park et al., 2018), and thus,

joint actuators for the manipulator are not required, leading

to another advantage of weight-saving. Furthermore, the

thrust forces generated by the rotors are distributed over the

robot body, which can handle a larger rotational load

compared with the coupled platform. However, a common

disadvantage of such omnidirectional designs is the large

wasted internal force.

Modular aerial robots can be considered as an effective

solution to overcome the shortcomings of both the coupled

platform and the omnidirectional aerial robot because rotors

are highly distributed across all units, and the highly flexible

rotor configuration can considerably suppress the internal

force. A general two dimensional structure composed of

unidirectional rotors and joints was developed by Zhao et al.

(2018b) and Gabrich et al. (2018). Both models demonstrate

the ability to grasp objects using the entire body. The main

difference between these designs is that the former has an

actuated joint between two neighboring units and a single

rotor embedded in each unit, whereas the latter has a free

joint connecting two neighboring quadrotors. Similarly,

Nguyen and Alexis (2021) developed a chain of quadrotors

connected by rigid rods with three-DoF joints, and attaches

Figure 1. Versatile articulated aerial robot DRAGON. (a) Ability to transform from the normal form in air. (b) Performing aerial

manipulation to move a plate away. (c) Grasping various objects using the lateral thrust force generated from the rotor vectoring

apparatus.

2 The International Journal of Robotics Research 0(0)



an additional finger-like end-effector on the rigid rod to

perform manipulations such as valve-turning. However, the

DoF of the end-effector pose in these types of modular

structure is limited because each module unit is not om-

nidirectional and thus the end-effector cannot track an ar-

bitrary pose. Then, a serial chain connecting

omnidirectional aerial robots is presented by Park et al.

(2019), which enables manipulation using the end of the

chain (Yang et al., 2018) like a single arm manipulator.

However, the root of this robot is fixed to the environment.

Moreover, the omnidirectional module contains eight pro-

pellers (Park et al., 2018), which shows limited mobility in

confined environments. To achieve a minimum number of

rotors for the module unit, a two-DoF rotor vectoring ap-

paratus was proposed in our previous work (Zhao et al.,

2018a), which utilizes two servo motors to change the rotor

direction. This vectorable apparatus can greatly benefit the

articulated robot DRAGON in avoiding the internal force,

which is a crucial issue in omnidirectional structured

composed of tilted but fixed propellers. Another advantage

of DRAGON is the ability to squeeze through small

openings by deforming like a snake (Zhao et al., 2018c).

The traversal can be kept slow and stable, which is safer for

the exploration in unknown environments than the motions

described in Loianno et al. (2017) and Falanga et al. (2017)

in which the ballistic motion through vertical gaps is only

available in well-known environments.

For the modeling and control of DRAGON, Zhao et al.

(2021) revealed several types of singular configurations and

also developed a flight control methodology to solve these

singularities by using the thrust force from the rotor vec-

toring apparatus. In this previous work, the dynamics of

actuators (especially the vectoring apparatus) were omitted.

Thus, all actuators were assumed to be able to track the

target position or speed instantaneously. However, this

assumption can cause the rotational oscillation regarding the

entire dynamics due to the non-negligible rotational inertia

of the vectoring actuators, and thus renders the flight un-

stable. In terms of actuator dynamics, Faessler et al. (2017)

proposed a control framework for general multirotor which

combines the rotor dynamics model in an optimal control

manner. For the vectoring apparatus, Allenspach et al.

(2020) presented a control method for a special omnidi-

rectional multirotor composed of tiltable rotors with one-

DoF vectoring apparatuses. In this control method, the

derivatives of the thrust force and vectoring angle are treated

as the control input, which enables the involvement of

actuator dynamics. Inspired from these works, we are

motivated to reveal the mechanism of oscillation caused by

the two-DoF thrust vectoring in our robot model, and further

develop a control method to suppress the influence of the

actuator’s inertia on the entire dynamics by using a special

control allocation strategy.

Regarding aerial grasping, general methods depend on

either the joint torque (Zhao et al. 2018b; Shi et al. 2020)

or the rotor drag moment (Falanga et al., 2019; Gabrich

et al., 2018); however, the grasping force by these

paradigms is limited because the joint servos embedded

in the aerial robots are relatively small and the rotor drag

moment is also considerably weak. The special rotor

vectoring apparatus in our proposed robot DRAGON can

directly transit the thrust force to the grasping force, as

shown in Figure 1(C), in which the rotors are tilted inward

to yield sufficient lateral force to grasp objects, rather

than using the joint torques. This lateral force can be

considered as an internal wrench which should not in-

fluence the stability of the flight. Thus, the integration of

such internal wrenches into the control flight is an im-

portant issue. Another important issue is the online thrust-

level planning to generate the desired internal wrenches

for grasping. In the optimization method proposed in

Zhao et al. (2020) which plans the kinematic motion (e.g.,

joint angles) in the air, the thrust force and joint torque are

considered in an equality constraint that guarantees the

balance with gravity and external wrenches. However, the

thrust force for grasping belongs to the null space of this

equilibirum, which indicates that the equality constraint

used in this previous work cannot handle such internal

wrenches. Moreover, the planning targets differ in the

kinematic motion and the thrust planning. Therefore, it is

necessary to design a totally different optimization

problem and its online solution for the thrust-level

grasping planning.

In terms of object manipulation, the styles can be

categorized into grasping type and graspless type (Aiyama

et al., 1993) depending on the contact condition. The

former type is manipulation by holding, leading to force

closer during manipulation. Most of the object manipu-

lation by aerial robots belongs to this type (Kim et al.,

2015; Lippiello et al., 2016; Orsag et al., 2017). In contrast,

graspless manipulation is more difficult, owing to the

contact between the target object and the environment

which yields the external wrench (e.g., friction). In this

work, we apply the proposed control method to perform

graspless manipulation on object that has more than two

DoFs in motion (i.e., both the translational and rotational

motion) to evaluate the integration of external wrenches in

our control framework.

An overview of this work is depicted as Figure 2, and the

main contributions can be summarized as follows:

1. We reveal the mechanism of the oscillation caused

by the two-DoF vectoring apparatus during flight,

and further develop an extended flight control

method based on Zhao et al. (2021) to suppress the

oscillation. This control method can also handle the

integration with the external wrench for manipula-

tion and internal wrench for grasping.

2. We present an online thrust-level planning method

for bimanual object grasping by using the vectorable

thrust force as internal wrench instead of joint torque.

A closed-form solution to the thrust optimization

problem is developed to enable realtime planning

and integration with the proposed control method.

Zhao et al. 3



3. We perform challenging flight, object manipulation,

and object grasping experiments using quad-type

DRAGON to demonstrate the feasibility of the

proposed control and planning methods. To the best

of our knowledge, this is the first time to successfully

use the thrust force to the grasping motion.

1.2. Notation

All the symbols in this paper are explained at their first

appearance. Boldface symbols (most are lowercase, e.g., r)

denote vectors, whereas non-boldface symbols (e.g., m or I)

denote either scalars or matrices. A coordinate regarding a

vector or a matrix is denoted by a left superscript, for ex-

ample, Af gr expresses r with reference to (w.r.t.) the frame

{A}. We define {W} as a unique frame to represent the

inertial reference frame. Then subscript are used to express:

a target frame for a vector or matrix, for example,
Wf g

rfAg
represents the 3D position of the frame {A} w.r.t {W}; or/

and a relation or attribute for a scalar, for example,
Wf g

rðAÞx
represents the scalar position of the frame {A} along the x

axis of the frame {W}. As a special case,
Af g
vfAg refers to a

vector (e.g., linear velocity, angular velocity, and linear

acceleration) of the frame {A} w.r.t the frame {W} as seen

by the frame {A}.

1.3. Organization

The remainder of this paper is organized as follows. The

brief introduction to robot design and the modeling of ki-

nematics and dynamics are described in Section 2. The

flight control method using the two-DoF vectoring thrust

force is presented in Section 3. Then, the online thrust-level

planning object grasping using the vectorable thrust in

Section 4. Finally, we show the experimental results using

our quad-type DRAGON in Section 5 involving the flight in

challenging configuration, along with object manipulation

and grasping. The conclusion is presented in Section 6.

2. Design, modeling

In this section, we first explain the basic mechanical design

and the kinematics model for the articulated robot

DRAGON, and then derive the vectorable thrust model

associated with vectoring angles. The method to quantify

the controllability of the vectorable thrust force is also

presented. We further present the dynamics model for ac-

tuator, which is followed by the approximation of the

multilinked dynamics model under a quasi-static assump-

tion on the joint motion.

2.1. Mechanical design and vectorable

thrust model

The kinematics model of DRAGON is depicted in Figure 3.

As shown in Figure 3(B), each joint module is composed

from two orthogonal joint axes actuated by independent

servo motors, whereas a two-DoF force vectoring apparatus

is embedded in each link module that contains two rotating

axes as shown in Figure 3(C). f and θ denote the first roll

axis and the second pitch axis, respectively. Besides, a dual-

rotor module is developed to counteract the drag moment

and gyroscopic moment. It is notable that we count the pair

of rotors as an integrated rotor that generates a combined

uni-directional thrust λ2 ½0, λmax� for each link module.

Based on this kinematic model as shown in Figure 3, the

force {CoG}fi and torque {CoG}τi related to the i-th rotor

module can be written as

CoGf gf i ¼ λ
fCoGg
i RfLigðqÞ

fLigRfGi rollgðfiÞ
fGigRfFigðθiÞb3,

¼ λ
fCoGg
i ui

(1)

CoGf gτi ¼ λ
fCoGg
i pfFigðq,fiÞ×

fCoGgui,

¼ λ
fCoGg
i vi

(2)

Figure 2. Overview of this work. The blocks with bold font are the main contributions proposed in this work. (A) kinematic and dynamic

modeling for our articulated model presented in Section 2; (B) flight control method using the vectorable thrust force presented in

Section 3; (C) planning method for bimanual object grasping using the vectorable thrust force as internal wrench presented in Section 4.

The proposed flight control method is also able to handle the external wrench for end-effector object manipulation of which the planning

method is based on our previous work (Zhao et al., 2020). The details on arrows will be explained in each section, whereas related

symbols will be explained in Section 2.
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where b3 ¼ ½0 0 1�T, and Af g
RfBg denotes a rotation matrix

of the frame {A} w.r.t. the frame {B}. Definition of the frame

{Li}, {Gi} and {Fi} can be found in Figure 3.
CoGf g

pfFig in

equation (2) is the position of the frame {Fi}, which depends

on the joint angles q2RNJ (NJ: number of joints in the

whole model) as well as the vectoring roll angle fi because

there is an offset from {Gi} to {Fi} as shown in Figure 3(c).

Then the total wrench in the CoG frame can be given by

CoGf gf
CoGf gτ

� �
¼

2

66664

XNr

i¼1

CoGf gf i

XNr

i¼1

CoGf gτi

3

77775
¼ Qλ (3)

Q ¼

CoGf gu1
CoGf gu2 /

CoGf guNr

CoGf gv1
CoGf gv2 /

CoGf gvNr

" #

(4)

λ ¼ ½ λ1 λ2 / λNr
�T

where Nr is the number of rotors. {CoG}ui,
{CoG}vi, and λi

correspond to equations (1) and (2).

2.2. Controllability of vectorable thrust force

To quantify the controllability of two-DoF vectoring ap-

paratus, the feasible control volume (Park et al., 2018) is

introduced for our robot model.

2.2.1. Feasible control force polygon. The vectoring angles

have a smaller influence on the translational motion along

the z axis than that along other axes because all rotors must

be vertical to counteract gravity during flight. Then, to

quantify the controllability of the x and y axes, a normalized

feasible control force polygon VF is introduced to address

the nonlinearity due to the rotation matrix operation in

equation (1)

VF : ¼

(

f xy 2R2
��f xy ¼

XNr

i¼1

XNF

j¼1

γijuxyij, � 1 ≤ γij ≤ 1

)

(5)

where uxyij denotes the special unit vector, which has two

types for two-DoF vectoring rotor (NF = 2): uxyi1 ¼ ½1, 0�T

and uxyi2 ¼ ½0, 1�T. γij denotes the normalized range for uxyij,

which takes a value in ½�1 1� corresponding to the full

range of a vectoring angle in ½�π π�.
For convenience, uxyij is rearranged in a combined set

IF : ¼ f1, 2,…,NrNFg, and the distance from the origin to

each edge of the polygon can be written using the re-

arranged unit vector uxyi as follows

d
fxy
i ¼

X

j2IF

��uxyi × uxyj

��, i2IF (6)

where �×� here denotes the cross product of the 2D vectors.

Finally, we introduce the guaranteed minimum control

force fmin, which corresponds to an inscribed circle of VF

fmin ¼ min d
fxy
i i2IF (7)

Then, fmin can be used as a criterion to evaluate the

controllability of the force for the arbitrary robot pose.

Figure 4(a) shows the feasible control force polygon and

circle of the guaranteed minimum control force. It is notable

that VF would be always a square regardless of the robot

pose, and thus fminðq,RfL1gÞ ¼ Nr is always established.

However, if the vectoring angles f are fixed, the VF will

shrink significantly, and fmin will also decrease greatly. This

truncated operation is used in our flight control method,

which is presented in Section 3.

2.2.2. Feasible control torque convex. Similar to the fea-

sible control force polygon, a normalized feasible control

torque convex VT can be given by

VT : ¼

(

τ 2R3
��τ ¼

XNr

i¼1

XNT

j¼1

γijv
0
ij, � 1 ≤ γij ≤ 1

)

(8)

where v0ij has three types for the two-DoF vectoring rotor

(NT = 3): v0i1 ¼ pfFig× ½1; 0; 0�
T
, v0i2 ¼ pfFig× ½0; 1; 0�

T
and

v0i3 ¼ pfFig× ½0; 0; 1�
T, which are similar to equation (2);

however, ui is replaced by the three orthogonal vectors

above to resolve the nonlinearity due to the rotation matrix

operation in equation (2), and γij is the normalized range

for v0ij. Again, we rearrange v0ij in another combined set

Figure 3. (A) Kinematics model of the aerial robot DRAGON,

{Li} is a frame attached to the start point of the i-th link, and the x

axis is aligned with the direction of link rod. (B) two DoF joint

module composed of two orthogonal joint axes (qi_yaw, qi_pitch); (C)

two DoF force vectoring apparatus (θi, fi). {Gi} is a frame

attached to the origin of vectoring apparatus, and the x axis is

aligned with the x axis of {Li} and rotates around it with fi. {Fi} is

a frame in the middle of the dual rotors, and the z axis, where the

combining the thrust force λi is attached, is parallel to the rotor

rotation axis and is titled from the z axis of {Gi} with θi; (D1)/(D2)

schematic diagrams of the vectoring actuator’s inertia.

Zhao et al. 5



IT :¼ f1, 2,…,NrNTg which yields v0i. Then the distance

from the origin to the plane of convex VT along a normal

vector v0i × v
0
j and the guaranteed minimum control torque

can be written as

dτ
ij ¼

X

k2IT

��

�
v0i × v

0
j

�T

��v0i × v0j
�� v0k

��, i, j2IT (9)

τmin ¼ min dτ
ij, i, j2I T (10)

Figure 4(b) shows the feasible control torque convex and

the guaranteed minimum control torque sphere for the robot

pose in Figure 3(A). As discussed in the feasible control

force polygon, if the vectoring angles f are fixed, the

guaranteed minimum control torque τmin will decrease

significantly, which is a criterion to determine singularity in

the flight control method presented in Section 3.

2.3. Dynamics of actuators

2.3.1. Rotor. The actual control command to the rotor is the

rotor speed, and the rotor dynamics can be approximated as

following first-order damped system as proposed in Faessler

et al. (2017)

λi ¼ cFV
2

i (11)

_Vi ¼
1

TV

�
V

des

i �Vi

	
(12)

where Vi and V
des
i are the actual and desired rotor speeds,

and cF and TV are the speed-force ratios and the time

constant of rotor motion. In our model, the inertia of the

rotor is sufficiently small due to the small ducted design.

Thus, TV can be considered sufficiently small (TV ≈ 0). This

leads to the further approximation: λi ≈ λ
des
i , which allows us

to use λi directly as control input.

2.3.2. Vectoring apparatus. The vectoring apparatus are

composed from two servo motors which perform position

control to track the desired vectoring angles fi and θi,

respectively.

To properly reflect the influence of actuator inertia on the

dynamics, we use a second-order system to model a servo

motor with a general PD control

If€fi ¼ τf ¼ If
�
kf, p
�
fdes

i � fi

	
� kf, d _fi

	
(13)

Iθ€θi ¼ τθ ¼ Iθ
�
kθ, p
�
θdesi � θi

	
� kθ, d€θi

	
(14)

where If, Iθ are the inertial moments around the f and θ

rotating angle, respectively. fdes
i , θdesi are the desired vec-

toring angles. k∗, p, k∗,d are the P and D control gains for each

servo motor.

As shown in Figure 3 (D1) and (D2), the CoG of the two

rotors, are aligned along the vectoring axis of θi. Thus, the

inertial moment can be considered significantly small

(i.e., Iθ ≈ 0). In contrast, since the CoG of the two rotors are

at opposite sides of the vectoring axis of fi, the inertia

moment around fi can be approximated as

If ¼ 2mrotorl
2 (15)

where mrotor is the rotor module mass and l is the distance

from the rotating axis to the rotor as shown in Figure 3 (D1).

In our previous work (Zhao et al., 2021), the influence of

inertial moment If is also considered significantly small.

However, we found the inertial moment can affect the flight

rotational control significantly. Thus in this work, we

Figure 4. Example of feasible control volume with the robot configuration of Figure 3(A). (a) feasible control force polygon and

minimum control circle in 2D. (b) feasible control torque volume and the minimum control sphere in 3D.
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provide a comprehensive analysis on the influence of in-

ertial moment If on the dynamics of the robot body in

Section 2.4, and also reveal the mechanism of oscillation

due to this inertial moment in Section 3.1.

2.4. Dynamics of multilinked model

The dynamic model of the proposed multilinked robot w.r.t.

the entire CoG frame {CoG} can be written as follows

Wf gP_Σ ¼
Wf g
RfCoGg

CoGf gf � mΣg þ
XNex

i¼1

Wf gf exi (16)

CoGf g
L_Σ ¼ CoGf gτþ

XNex

i¼1

�
CoGf gτexiþ

CoGf gpexiðqÞ×
CoGf gf exi

	

(17)

MJ ðqÞ€qþ c
�
q, _q
	
¼ τq þ

XNex

i¼1

JTexi
f exi

τexi

� �

þ
XNr

i¼1

JTri f i þ
XNs

i¼1

JTsi msig

(18)

where the first equation denotes the dynamic motion of

entire linear momentum which is described in the inertial

frame {W}, whereas the second equation denotes the dy-

namic motion of the entire rotational momentum which is

described in the CoG frame of the entire multibody model

(i.e., {CoG}). The third equation corresponds to the joint

motion. {W}PΣ and
CoGf gLΣ are the total linear and angular

momentum, respectively, which are both affected by the

joint angles, vectoring angles, and their velocities

(i.e., q, _q,f, _f, θ, _θ). We refer the reader to Appendix A,

where we provide the detailed derivation of these mo-

mentums. {CoG}f and {CoG}τ are the total wrench described

in (3). Wf gf exi and
Wf gτexi are the external force and torque

w.r.t. the world frame {W}, and Nex is the number of ex-

ternal wrenches. g is a three-dimensional vector expressing

gravity. CoGf gpexiðqÞ is the position of the acting point of the
i-th external wrench w.r.t. the robot CoG frame and is

determined by the joint angles q. In the last equation (18),

MJ(q) denotes the inertial matrix, whereas cðq, _qÞ is the term
related to the centrifugal and Coriolis forces in joint motion.

The symbols “r” and “s” stand for “rotor” and “segment” in

multilinks. It is notable that there is no explicit reference

frame described in equation (18) and the frame of the root

link {L1} is generally used. Jexi 2R6×NJ , Jri 2R3×NJ , and

Jsi 2R3×NJ are the Jacobian matrices for the frames of the

i-th interaction point, the i-th rotor, and the i-th segment’s

CoG, respectively. τq 2RNJ is the vector of joint torque and

fi is the vectoring thrust force corresponding to equation (1).

The entire dynamics model as shown in equations (16)–

(18) is highly complex owing to the joint motion and the

dynamics of vectoring actuators. Thus, the realtime

feedback control based on such a nonlinear model is

significantly difficult with an onboard computational

resource. For the joint motion, a crucial assumption is

proposed in our work to simplify the dynamics, that is, all

the joints are actuated slowly by servos motors

ð _q ≈ 0; €q ≈ 0Þ. Then, the joint velocity and acceleration can

be considered zero during the joint motion. Under these

assumptions, the original dynamic model can be ap-

proximated as follows

mΣ
fWg

€rfCoGgðqÞ ¼
Wf g
RfCoGg

CoGf gf � mΣg þ
XNex

i¼1

Wf gf exi

(19)

CoGf gIΣðqÞ
CoGf g

ω_ þ CoGf gω × CoGf gIΣðqÞ
CoGf gωþ Δ _LAp

¼ CoGf gτ þ
XNex

i¼1

�
CoGf gτexi þ

CoGf gpexiðqÞ×
CoGf gf exi

	

(20)

0 ¼ τq þ
XNex

i¼1

JTexi
f exi
τexi

� �
þ
XNr

i¼1

JTri f i þ
XNs

i¼1

JTsi msig (21)

Δ _LAp ¼
XNr

i¼1

CoGf g
RfGig

If€fi

0

0

2

4

3

5, (22)

where Wf g
rfCoGg,

Wf g
RfCoGg, and CoGf gω are the position, attitude,

and angular velocity of the CoG frame calculated based on

the forward-kinematics from the root link states (i.e., Wf g
rfL1g,

Wf g
RfL1g, and L1f gω) with joint angles q.mΣ is the total mass and

Wf g
rfCoGgðqÞ is the CoG position. CoGf gIΣðqÞ is the total inertia

tensor only influenced by the joint angles q. Please refer to

Appendix B for the detail of the deviation from equations

(16) and (17) to (19) and (20).

The essential difference compared with our previous

work is the consideration of Δ _LAp
in equation (20), which

denotes the influence of the dynamics of vectoring actuators

on that of the whole body. If is the inertial moment around

the vectoring angle around fi as shown in equation (13),

which was ignored in our previous control method. In

Section 3, we will reveal the oscillation caused by this

neglect in the previous control method, and subsequently

introduce the improved method to handle this problem.

3. Flight control

In this section, we describe the flight control method for

vectorable thrust force as shown in Figure 5. The output of

the control framework is the desired thrust forces λdes and

the vectoring angles fdes and θdes. We first reveal the

mechanism of oscillation owing to the rotational inertia of

the vectoring actuator, and then present a two-stage control

allocation to effectively avoid such an oscillation and en-

hance the flight stability. This framework further enables the

integration of external wrench for manipulation and internal

wrench for grasping. Furthermore, we also introduce two

special strategies to address challenging configurations.
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3.1. Oscillation caused by vectoring actuators

We first briefly introduce the conventional control method

proposed in Zhao et al. (2021) that may cause the oscil-

lation. This control method contains two parts: the full pose

control and the control allocation.

3.1.1. Full pose control. For the approximated dynamics

equations (19) and (20), feedback control based on a

common PID control is used in Zhao et al. (2021) as follows

CoGf g
f des ¼ m

fWg
Σ

RTfCoGg
�
Kf , per þ Kf , i

Z
er þ Kf , d _er

	

þ
Wf g
RTfCoGgf ff

(23)

er ¼
Wf g
rdesfCoGg �

Wf g
rfCoGg (24)

f ff ¼ mΣg �
XNex

i¼1

Wf gf exi (25)

where K
f ,* are the PID gain diagonal matrices.

The attitude control follows the SO(3) control method

proposed by Lee et al. (2010)

CoGf g
τdes ¼ IΣ

�
Kτ, peR þ Kτ, i

Z
eR þ Kτ, deω

	

þω × IΣωþ τff

(26)

eR ¼
1

2



RTRdes � RdesTR

�⋁
(27)

eω ¼ RTRdesωdes � ω (28)

τff ¼ �
XNex

i¼1

�
CoGf gτexi þ

CoGf gpexi ×
CoGf gf exi

	
(29)

where ½∙�⋁ is the inverse of a skewmap, and R :¼ Wf g
RfCoGg ,

ω :¼ CoGf gω for convenience.

Then, the desired wrench can be summarized as follows

wdes ¼
CoGf g

f des

CoGf g
τdes

" #

(30)

3.1.2. Control allocation. The control objective is to cal-

culate the desired thrust λdes and the desired vectoring

angles fdes, θdes from the desired CoG wrench w
des from

equation (30). For an over-actuated model (i.e., Nr > 2),

there is infinite solution of (λ, f, θ) according to equation

(3). A straightforward method for optimal geometry allo-

cation is proposed in our previous work (Zhao et al., 2021)

as follows

min
λ, θ,f

kλk
2

(31)

s:t: wdes ¼ Qðθ,fÞλ (32)

where Q is derived from equation (4).

3.1.3. Oscillation of vectoring actuator. The dynamics of

vectoring actuator have no explicit influence on the trans-

lational dynamics of equation (19), and the positional

stability by equations (23) and (31) is presented in Appendix

C; whereas, the dynamics of vectoring actuator has a rel-

atively complex influence on the rotational dynamics of

equation (20) because of the non-negligible rotational

Figure 5. Overview of the control framework developed in this work, which is a part of the whole system as depicted in Figure 2. The

main flow, which is from “Model Approximation” to “Robot”, is drawn in thick arrows and blocks. “Model Approximation” is

presented in Section 2. “Splitted Full Pose Control” is presented in Section 3.2, whereas two blocks regarding the allocation are presented

in Section 3.3. The integration of external and internal wrenches (Section 3.5) is developed to enable aerial manipulation and grasping.

Besides, two special strategies are presented in Section 3.6 to address challenge configurations (“Singularity Avoidance” and “Large

Thrust Force Avoidance”).
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moment If in equation (22). To provide a more clear insight

into the mutual influence, we first focus on the dynamics of a

single vectoring actuator related to fi as shown in equation

(13). Furthermore, we introduce a special angular velocity

ωL0 for the robot body which ensures the conservation of

entire angular momentum and assume there is only fi that

performs vectoring. With the assumption of no thrust force

generated, the conservation of entire angular momentum

can be established as follows

�
IΣ � If

	
ωL0 þ If

�
ωL0 þ

_f
	
¼ 0 (33)

where IΣ is the overall rotational inertia. For convenience,

we omit the subscript i for fi.

Then ωL0 can be considered as the angular velocity that

has no influence on the overall rotational dynamics of

equation (20).

We further perform the Laplace Transform for the dy-

namics of f from equation (13)

s2ΦðsÞ ¼ kf, pΦ
desðsÞ �

�
kf, pΦðsÞ þ kf, dsΦðsÞ

	
(34)

To obtainΦdes(s), it is necessary to consider the nonlinear

mapping from the desired wrench wdes to the desired

vectoring angle fdes. However, equations (31) and (32)

only involves geometry allocation. Thus, the characteristics

in frequency domain should not change after such alloca-

tion. Focusing on the desired torque obtained from equation

(26), following Laplace transform can be established for

Φ
des(s)

Φ
desðsÞ ¼ β

�
kτ, pERðsÞ � kτ, ds

�
VL0ðsÞ þV

0ðsÞ
��

(35)

where β is a constant that denote the nonlinear map from

torque to vectoring angle in frequency domain. ER(s) is the

Laplace transform of the one-dimensional rotational error

which can be converted from eR. VL0ðsÞ and V
0(s) are the

Laplace transform of ωLo defined in equation (33) and the

residual one-dimensional angular velocity, respectively. kτ, p
and kτ, d are the one-dimensional feedback gains converted

from Kτ, p and Kτ, d . The I control term in equation (26) is

ignored, because it is only responsible for the steady-state

model error.

Performing the Laplace transform for equation (33) and

substituting the result along with equation (35) into equation

(34), we can finally obtain the Laplace transform for the

actuator dynamics as follows

ΦðsÞ ¼ GðsÞUðsÞ (36)

UðsÞ ¼ kτ, pERðsÞ � kτ, dsV
0ðsÞ (37)

GðsÞ ¼
kf, pβ

s2 þ
�
kf, d � k 0

	
sþ kf, p

(38)

k 0 ¼ kf, pkτ, dβ
If

IΣ
(39)

To ensure the stability of Φdes(s), all poles of the transfer

function G(s) should be negative, which means kf, d � k0 >

0 in equation (38) should be guaranteed. For considerably

small actuator rotational moment If, it is easy to achieve all

negative poles; however, for non-negligible rotational

moment as shown in equation (15), the absolute value of

poles may decrease because of equation (39). If there is a

pole that closes to zero, then the actuator will become

oscillated, and propagate the oscillation to the robot body

according to equation (33), which is the mechanism of

resonance.

Here, we reconsider the role of β in equation (35). It can

be considered as an influence factor of the desired torque on

the vectoring angle. This indicates that β would change

according to the robot pose as shown in Figure 6. Smaller β

denotes less influence of the desired torque on f, but larger

influence on other actuators (e.g., the thrust force λ).

Therefore, under the pose of Figure 6(a), β is zero for all fi.

However, under the pose of Figure 6(b), β has a large value

for f1 and f3 because these angles significantly contribute

to the torque around the x axis (the red axis). Furthermore,

under the pose of Figure 6(c), β is non-zero for all fi be-

cause all fi contribute to the torque control. Consequently,

these vectoring actuator amplifies the oscillation on the

Figure 6. Different robot poses to show different β of equation (35). (a) horizontal robot pose. β for all fi is zero, because none of fi

contributes to the torque control. (b) vertical robot pose where the first and third links are horizontal. β forf2 andf4 is zero. However, β

for f1 and f3 has a large value, because these angles significantly contribute to the torque around the x axis (the red axis). (c) vertical

robot pose where all links have a tilt angle of 45 deg from the x axis. β for all fi is non zero, because all fi contribute to the torque control.
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robot body, which leads to the singularity of this pose in the

conventional control method. This fact reveals the reason

why the stable flight under Figure 6(a) and (b) can be

achieved by the conventional control method in (Zhao et al.,

2021), but the flight under Figure 6(c) is unstable (which

will be presented in Section 5.2.2).

To conclude, we attribute the reason of the resonance

between the vectoring actuator and the robot body to the

non-negligible rotational moment of vectoring actuator as

shown in equations (38) and (39). The influence of such

rotational moment depends on the robot pose as shown in

Figure 6.

3.2. Splitted full pose control

Our goal is to ensure the stability of G(s) in equation (38) to

be stable. If there is a way to remove the terms related to kτ, d
in equation (35), k

0

in equation (38) will be zero, and G(s)

will be always stable with proper actuator control gains

ðkf, p, kf, dÞ. Therefore, in this work, we propose a spliited

full pose control based on equations (23) and (26) as follows

CoGf g
f des ¼

CoGf g
f destr þ m

fWg
Σ

RTfCoGgKf , d _er (40)

CoGf g
f destr ¼ m

fWg
Σ

RTfCoGg
�
Kf , per þ Kf , i

Z
er
	
þ f ff (41)

CoGf g
τdes ¼

CoGf g
τdestr þ IΣKτ, deω þ ω × IΣω (42)

CoGf g
τdestr ¼ IΣ

�
Kτ, peR þ Kτ, i

Z
eR
	
þ τff (43)

where
CoGf g

f destr and
CoGf g

τdestr are truncated, which both

have no D control terms.

Then, the truncated desired wrench can be given by

wdes
tr ¼

2

4
CoGf g

f destr

CoGf g
τdestr

3

5 (44)

It is notable that in an ideal hovering state, wdes
tr ¼ wdes,

because the robot is static.

3.3. Two-stage control allocation

The truncated desired wrench is only used for calculating

the desired vectoring angles of f to avoid the oscillation as

described in Section 3.1. Therefore, a two-stage allocation

strategy is developed in this work, which first calculates the

proper vectoring angles f based on the truncated desired

wrench wdes
tr , and then calculates the rest of the control input

θ and λ based on the complete wrench wdes.

3.3.1. Rough allocation based on truncated desired

wrench. We first calculate the desired vectoring angles f

(along with θ and λ) based on wdes
tr

min
λ, θ,f

kλk
2

s:t: wdes
tr ¼ Qðθ,fÞλ (45)

Zhao et al. (2021) proposed an iterative solution for this

nonlinear optimization problem; however, the rigorous

convergence proof is not presented. Therefore, we develop

an enhanced iterative solution using gradient to guarantee

the convergence to the optimal (or at least suboptimal)

solution in this work. We first follow the method proposed

by Kamel et al. (2018), which applies the vectored forces

f i 2R3 from equation (1) as an intermediate variable and

introduces a combined vector F ¼
h

L1f g
f T1

L2f g
f T2

/

LNrf g
f TNr

iT
. Then the above optimization problem can be

modified as follows

min
F

kFk
2

(46)

s:t: wdes
tr ¼ ~QF (47)

~Q ¼ ~Qcol1
~Qcol2

/
~QcolNr

h i
(48)

~Qcoli
¼

"
E3×3
 CoGf g
pfFig×

�
#

fCoGgRfLig (49)

where E3×3 is a 3 × 3 identity matrix and ½� × � denotes the
skew symmetric matrix of a three dimensional vector.

Then, the closed-form for equations (46) and (47) and the

desired thrust and vectoring angles can be directly given by

F ¼ ~Q
#
wdes

tr (50)

λi ¼
�� Lif gf i

�� (51)

fi ¼ tan�1

 
� Lif gfiy

Lif gfiz

!

(52)

θi ¼ tan�1

 
Lif gfix

� Lif gfiysinðfiÞ þ
Lif gfizcosðfiÞ

!

(53)

where (�)# denotes the MP-pseudo-inverse of a full-rank

matrix.

As a unique mechanical feature of the two-DoF vectoring

apparatus depicted in Figure 3(c), the result of vectoring

anglesf and θ from equations (52) and (53) will deviate the

position
CoGf g

pfFig in equation (49) because of the offset

from the frame {Gi_roll} to frame {Fi}. Then, the results of

equations (51)–(53) will no longer satisfy the constraint

equation (47) because ~Q has changed.

Then, we introduce the residual term for equation (45)

using the results of equations (51)–(53), and also compute

the derivative with respect to λ, f, and θ

ϵ ¼ wdes
tr � Qðθ,fÞλ (54)
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δϵ ¼ Jw½ δλ δf δθ �
T

(55)

Jw ¼


Jw=λ Jw=f Jw=θ

�
(56)

Jw=λ ¼ �Qðθ,fÞ 2R6×Nr (57)

Jw=f ¼
∂w

∂f
�
∂ðQðθ,fÞλÞ

∂f
2R6×Nr (58)

Jw=θ ¼
∂w

∂θ
�
∂ðQðθ,fÞλÞ

∂θ
2R6×Nr (59)

The partial derivative elements in equations (58) and

(59) can be calculated from the multilinked kinematics

model.

Our objective is to find a solution of λ, f, and θ to

achieve zero ϵ. Then we start from the initial values λ0, f0,

and θ0 calculated from equations (51)–(53), and perform the

following linear iteration with the objective of minimizing
PNr

i¼1kδλik
2 þ kδfik

2 þ kδθik
2
at each iteration

½ λk ,fk , θk �
T ¼ ½ λk�1,fk�1, θk�1 �

T þ J #
wϵk�1 (60)

ϵk ¼ wdes
tr � Qðθk ,fkÞλk (61)

where J #w is the psuedo-inverse matrix of Jw, and

k 2 ½0; 1; 2,/� is the iteration number. Note that the most

computationally intensive operation in this iteration process

is the calculation of the inverse matrix with a size of the 6 ×

6 for J #w, which can be solved instantaneously for realtime

control. In most of the cases, it only requires 2 or 3 iterations

to get a sufficiently small value of ϵ (i.e., kϵk ∼10�6). This

may be attributed to the initial values λ0, f0, and θ0 being

relatively close to the convergent solution. We define the

convergent solution as λdestr , fdes
tr , and θdestr , which are in-

dependent of the D control terms in equations (40) and (42).

Thus, we treat fdes
tr as the final control input to the robot

(i.e.,fdes ¼ fdes
tr ), which can perfectly enable k0 in equation

(38) to be zero (and thus avoid the oscillation of the vec-

toring actuators and the whole body).

3.3.2. Refined allocation for all control terms. Given that

λdestr , fdes
tr , and θdestr can only track the truncated desired

wrench wdes
tr , it is necessary to further modify λ and θ to

track the complete desired wrench wdes which contains the

D control terms. With the fixed vectoring angles of

fdesð¼ fdes
tr Þ, λ and θ are refined by an iteration similar to

equations (60) and (61)

½ λk , θk �
T
¼ ½ λk�1, θk�1 �

T
þ J 0#

w ϵ
0
k�1 (62)

ϵ
0
k ¼ wdes � Q

�
θk ,f

des
	
λk (63)

J 0
w ¼



Jw=λ Jw=θ

�
(64)

For fast convergence, the initial states λ0 and θ0 are

calculated from following rough allocation

~F ¼ ~Q
0#
wdes (65)

λ0, i ¼
�����
fGi rollg~f i

����� (66)

θ0, i ¼ tan�1

0

B@
fGi rollg~f ið0Þ

fGi rollg~f ið1Þ

1

CA (67)

~Q
0
¼

�
~Q
0

col1
~Q
0

col2
/

~Q
0

colNr

�
(68)

~Q
0

coli
¼

"
E3×3
 CoGf g
pfFig ×

�
#

fCoGgRfGi rollg
�
fdes

i

	 1 0

0 0

0 1

2

4

3

5

(69)

where fGi rollg~f i 2R2 is the truncated vectored force w.r.t.

the frame of fGi rollg, and ~F is a combined vector:

~F ¼

�
fG1 rollg~f

T

1
fG2 rollg~f

T

2 /
fGNr rollg~f

T

Nr

�T
. λ0,i,

θ0,i, and fdes
i are the i-th elements of λ0, θ0, and fdes,

respectively.

Finally, we obtain the convergent λ, θ from equations

(62) and (63), which are the desired control input λdes and

θdes.

3.4. Stability analysis

The analysis on complete stability is presented in Appendix

D in detail, which demonstrates that the trackability to the

desired position and attitude can be achieved by the propose

two-stage control allocation.

In the proposed control method, the dynamics of vec-

toring actuator is not explicitly considered; however, this

method can still suppress the influence of vectoring actuator

on the fight stability. This significantly reduces the com-

plexity of the control framework. Such implicit consider-

ation of actuator dynamics is the crucial strengthen

compared to other explicit control methods (Allenspach

et al., 2020; Faessler et al., 2017).

3.5. Integration with external and

internal wrenches

3.5.1. External wrench. An external wrench is the com-

bination of force Wf gf exi and torque Wf gτexi exerted by the

environment or object during the manipulation by an end-

effector and is integrated into the control framework by

equations (25) and (29). fff and τff in those equations are

constant against λ,f, and θ, except for the torque caused the

external force CoGf gpexi ×
CoGf gf exi in equation (29). Be-

cause the robot CoG is influenced by the vectoring angles f

and θ,
∂ CoGf gpexi

∂f
and

∂ CoGf gpexi
∂θ

are not zero. Those partial
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derivatives should be considered when calculating ∂w
∂f

and ∂w
∂θ

in equations (58) and (59).

The stability with the external wrench is also presented

in Appendix D in detail, which demonstrates the ability

to compensate the external wrench that performs as a

step input, and keep tracking the desired pose at the

same time.

3.5.2. Internal wrench. An internal wrench is a force or

torque which has no influence on the entire CoG motion

(i.e., equations (19) and (20)), but has influence on the joint

motion equation (21). We define the internal wrench as a list

of the additional vectored thrust forces of R3:

f in1, f in2, / , f inNr

�
which have the following

attributes

XNr

i¼1

CoGf gf ini ¼ 0 (70)

XNr

i¼1

CoGf g
pfFig ×

CoGf gf ini ¼ 0 (71)

XNr

i¼1

JTri
CoGf gf ini ≠ 0 (72)

where
CoGf g

pfFig is the position of the frame of the i-th rotor

w.r.t the robot CoG frame, and Jri is the Jacobian matrix for

this frame. Note that fexi is an external force exerted on the

end-effector, whereas fini is a vectored thrust force generated

by a rotor.

Given the above attributes, this internal wrench can

contribute to grasping object with the two ends of multilinks

instead of the joint torque, which is a unique characteristic

of the robot DRAGON. The calculation of the thrust forces

f ini is presented in Section 4. Here, we discuss the inte-

gration of such an internal wrench into the control

framework.

Since the desired CoG wrench wdes and the truncated

wrench wdes
tr cannot reflect the internal wrench, we

modify equation (51) with the following linear

combination

λi ¼
���

Lif g
f 0i

��� (73)

Lif g
f 0i ¼ Lif gf i þ

Lif gf ini
(74)

where Lif gf ini is the vectored force related to the internal

wrench w.r.t. the i-th link frame {Li}. Then, fi and θi are

calculated from equations (52) and (53) using
Lif g
f 0i instead

of Lif gf i.

This linear combination can further cause the deviation

of the desired wrench as indicated in equation (54).

However, the proposed iteration process of equations (60)

and (61) can ensure the convergence to the desired wrench

of wdes
tr despite the modification of equation (73). The same

modification is also applied in equation (66) for the refined

allocation with wdes.

3.6. Challenging configurations

In our proposed two-stage allocation method, there are three

types of control input: λ,f, θ2RNr ; however, the vectoring

angles f are not used in the second (refined) allocation. This

indicates that the DoF of control input at the second stage of

allocation decreases from 3Nr to 2Nr. In certain configu-

rations, such a decrease can lead to an undesirable increase

in the command value (e.g., large λ). Furthermore, the

decision of f at the first stage of allocation also results in

singularities.

3.6.1. Avoidance of large thrust force. The proposed refined

allocation as stated in Section 3.3.2 may result in relatively

large thrust force under certain robot configurations where

the controllability is relatively low and may exceed the

range that rotor can generate. In other cases, since the D

control terms in equations (40) and (42) contain the linear

and angular velocity which are sensitive to the mechanical

vibration, undesirable fluctuations may occur because of the

refined allocation.

To avoid the invalid command for the thrust force, we

first evaluate the difference between the thrust forces λdestr

from the rough allocation and λdes from the refined allo-

cation. A large gap between the two vectors implies that the

truncated motion related to wdes
tr has a significantly different

direction from the non-truncated motion. If the gap λdestr �
λdes is larger than a certain threshold, λdes must be modified

to suppress the gap within the threshold. To achieve this, the

SR-inverse method (Nakamura and Hanafusa 1986) is

applied

~F ¼ ~Q
0∗�
wdes � wdes

tr

	
þ ~Ftr (75)

~Q
0∗
¼ ~Q

0T�
~Q
0
~Q
0T
þ ϵsrE6 × 6

	
�1 (76)

~Ftr ¼

�
fG1 rollg~f

T

tr, 1
fG2 rollg~f

T

tr, 2 /
fGtr,Nr rollg~f

T

tr,Nr

�T

where fG1 rollg~f tr, i 2R2 is a truncated vector thrust force

which can be obtained from the inverse operations of

equations (66) and (67) using θdestr, i and λdestr, i. ϵsr is a rate for

the SR-inverse.

To avoid a heuristic decision on the dimensionless

quantity ϵsr, we also introduce a search method for ϵsr with

two basic criteria:
��λdestr � λdes

��
∞
and

��wdes � wdes
tr

��, where
the first one is the L-Infinity norm. ϵsr → ∞ corresponds to��λdestr � λdes

��
∞
→ 0, whereas ϵsr → 0 corresponds to��wdes � wdes

tr

��
→ 0. An incremental process summarized as

Alg. 1 is proposed to find the desirable control input. Since
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the deviation of the target wrench has a higher priority, we

start from a value not too small (e.g., 1) for ϵsr, and

gradually decrease it by half. Two thresholds, namely, Δλ

and Δw are introduced, which are easier to determine than

ϵsr. The results of Alg. 1 are the final desired control input

(i.e., λdes and θdes), which replace the output from equations

(62) and (63). Thus, if
��λdes � λdestr

��
∞
>Δλ, the arrow from

“Refined Allocation” to “Robot” in Figure 5 will disappear,

and the arrow from the “Large Thrust Force Avoidance” to

“Robot” will be activated.

Algorithm 1 Modification of λdes, θdes by iterative

SR-inverse

ϵsr ← 1

while
��λdes � λdestr

��
∞
>Δλ or

��wdes � wdes
tr

�� >Δw

do
~F←ð75Þ
λ ← (66) with ~F

θ ← (67) with ~F

ϵsr←
ϵsr

2

end while

λdes ←λ

θdes ←θ

return λdes, θdes

3.6.2. Singular configuration. In the two-stage allocation

strategy, the desired vectoring angles f that are deter-

mined at the first stage can significantly affect the de-

cision on the desired vectoring angles θ and thrust forces

λ at the second stage. For instance, if all links of robot are

aligned on a vertical plane, the desired f will render all

rotors almost vertical to balance gravity with minimum

thrust force. This makes rotors significantly difficult to

generate the lateral force that is perpendicular to the vertical

plane, because θ determined at the second stage cannot

contribute to this lateral force in most of the time. To quantify

the influence of the early decision of f on the controllability,

we introduced a truncated feasible control force polygon V 0
F

and torque convex V 0
T with fixed f as follows

V 0
F : ¼

(

f xy 2R2
��f xy ¼

XNr

i¼1

γθuθi, � 1 ≤ γθ ≤ 1

)

(77)

V 0
T : ¼

(

τ2R3
��τ ¼

XNr

i¼1

X2

j¼1

γijv
00
ij, � 1 ≤ γij ≤ 1

)

(78)

where uθi and v00ijðj ¼ 1; 2Þ are defined as follows

uθi ¼


cos
�
fdes

i þ ψfLig

	
, � sin

�
fdes

i þ ψfLig

	�T
(79)

v00i1 ¼
CoGf g

pfFig ×
�

CoGf g
RfLig

Lif g

RfGi rollg
�
fdes

i

	
½1, 0, 0�

T

�

(80)

v00i2 ¼
CoGf g

pfFig
×
�

CoGf g
RfLig

Lif g

RfGi rollg
�
fdes

i

	
½0; 0; 1�T

�

(81)

where fdes
i is the desired vectoring angle obtained from the

first stage of allocation as presented in Section 3.3.1,

whereas ψfLig indicates the yaw direction of the i-th link.

Figure 7 shows V 0
F and V 0

T in the case of the vertical pose

shown in Figure 6(c). fdes
i is calculated based on Section

3.3.1 with wdes
tr ¼ ½0 0 mΣg 0 0 0�T. It can be confirmed

that the torque controllability around the x and z axes is

significantly small. As discussed in Section 3.1.3, the pose

of Figure 6(c) is a singularity in the conventional control

method due to the oscillation caused by vectoring actuators;

however, this pose is still singular in the proposed control

method due to the early decision off in two-stage allocation

strategy. To avoid such singularity, additional constraints

related to V 0
F and V 0

T should be considered in the first

(rough) allocation. This leads to following extended opti-

mization problem for rough allocation

min
λ, θ,f

kλk
2

s:t: wdes
tr ¼ Qðθ,fÞλ

f 0minðfÞ > f (82)

τ0minðfÞ> τ (83)

where fmin(f) and τmin(f) are the guaranteed minimum

control force and torque of V 0
F and V 0

T that are obtained from

equations (7) and (10). f and τ are the lower bounds for the

force and torque controllability.

We literally solve the above problem with nonlinear

optimization method (i.e., SQP) under the pose of

Figure 6(c), and compare with the result that does not in-

cludes equations (82) and (83). Then, following phenomena

are found from the comparison

sgn
�bf

des

i � vi
	
¼ sgn

�
fdes

i � vi
	

(84)

bf
des

i � vi } τ (85)

where vi is the vectoring angle for fi that make the i-th rotor

entirely vertical (jvij ¼
π
2
rad in the case of Figure 6(c)). bf

des

i

is the optimal result of the above extended optimization

problem, whereas fdes
i is the optimal result excluding

equations (82) and (83). sgn (*) is a function to get the sign

of the variable. Note that the gradient of f 0minðfÞ and τ
0
minðfÞ

required for SQP is presented in Anzai et al. (2019).

The inequality constraints of equations (82) and (83) not

only significantly increase the calculation cost, but also

prevent the usage of the fast convergence solution as pre-

sented in equations (46)–(61). Thus, to consider fmin(f) and
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τmin(f) in a realtime control framework, we seek for a

method that implicitly consider equations (82) and (83).

According to equation (85), there must exist a deviation

vector Δf that satisfies f 0minðvþ ΔfÞ> f , τ0minðvþ ΔfÞ> τ,
and wdes

tr ¼ Qðθ, vþ ΔfÞλ , where v is the vector of vi.

Although it is difficult to search all elements of Δf si-

multaneously, we can first focus on a single element Δfi and

then find other elements by using equations (50)–(61). This

is performed as follows:

1. First, according to equations (84) and (85), a constant

offset Δf (e.g., 20 deg) is added for the Nr

2
-th rotor

f0des
i ¼ fdes

i þ Δfsgn
�
fdes

i � vi
	
; i ¼

Nr

2
(86)

wherefdes
i is the optimal result without equations (82) and (83).

2. Then, by fixing this vectoring angle, the rest of f0des

can be recalculated with the same allocation se-

quence of equations (50)–(61) with a modification on

equation (50) as follows

F00 ¼ ~Q
00#
wdes

lq (87)

~Q
00
¼

�
~Q
00

col1
~Q
00

col2
/

~Q
00

colNr

�
(88)

~Q
00

coli
¼

8
>>><

>>>:

~Q
0

coli

�
f0des

i

�
i ¼

Nr

2

~Qcoli
else

(89)

where ~Qcoli
and ~Q

0

coli
are defined in equations (49) and (69),

respectively.

3. If f 0minðf
0desÞ> f , and τ0minðf

0desÞ> τ are not estab-

lished, a larger Δf is introduced to repeat the process

of equation (86) to update f0des. Such iteration

process won’t stop until the latest f0des satisfies the

above constraints.

The deviation of fdes
i →f0des

i

�
i ¼ Nr

2

	
induces a lateral

force on the Nr

2
-th rotor. Thus, other rotor should also

generate proper lateral forces to satisfy wdes
tr ¼ Qðθ,fdesÞλ,

which is achieved by equations (50)–(61). Lateral forces by

other rotors indicate the certain deviation from vi for these

rotors, which finally guarantees the satisfaction of equations

(82) and (83).

It is also notable that the above calculation on Δf

(= f
0des � fdes), which is related to the block of “Singu-

larity Avoidance” in Figure 5, is only performed when fdes

from the rough allocation does not satisfy equations (82)

and (83). The enhanced controllability for the singular pose

of Figure 7 can be confirmed in Figure 8. The guaranteed

minimum control torque τmin increases from 0.02 Nm to

0.26 Nm, indicating the significant improvement in rota-

tional controllability.

4. Object grasping

In this section, we present the unique object grasping ability

of the robot DRAGON, which can use the vectored thrust

force as an internal wrench instead of the joint torque. We

first describe the statics for the multilinked model involving

Figure 7. Singular configuration, where the robot is aligned on a vertical plane in a rhombus shape. All rotors are nearly vertical to

counteract the gravity. (a) and (b) are the feasible control force polygon and torque convex without using the vectoring anglesf (they

are fixed atfdes). The rotational controllability decreases significantly, which can only generate sufficient torque around the y axis if we

do not use f. The guaranteed minimum control torque τmin decreases to 0.02 Nm, which clearly quantify this singularity.
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the equilibrium between the vector thrust force, contact

force, and joint torque during grasping, which is extended

from our previous work (Zhao et al., 2020).

Then, we derive the vectored thrust force for grasping

based on this statics model. Finally, we present an online

estimation method for the object mass to ensure the flight

stability in an aerial grasping task as shown in Figure 9.

4.1. Statics of multilinked model for grasping

The object is grasped by two ends of the multilinked model

as shown in Figure 10. Then a truncated statics model based

on equations (19)–(21), which focuses on grasping, can be

given by

XNr

i¼1

CoGf gf ini ¼ 0

XNr

i¼1

CoGf g
pfFig×

CoGf gf ini ¼ 0

τq þ
X2

i¼1

JTci f ci þ
XNr

i¼1

JTri f ini ¼ 0 (90)

where f ini and τq are the thrust force and the joint torque

generated by the robot, whereas f ci is the contact force

which is orthogonal to the object surface as shown in

Figure 10. Equations (70) and (71) indicate that f ini belongs

to the null space of the thrust force that satisfies the balance

with the gravity and external wrenches.

Considering the force closure of the object grasping, the

contact forces can be further written as follows

Figure 8. Modified configuration for the singularity of Figure 7. All rotors are tilted vertically. (a) and (b) are the feasible control force

polygon and torque convex with modified fdes. The rotational controllability is significantly enhanced, and the guaranteed minimum

control torque τmin increases from 0.02 Nm to 0.26 Nm; whereas the guaranteed minimum control force fmin shows a slight decrease from

0.41 N to 0.31 N.

Figure 9. Overview of the framework for object grasping using

the vectored thrust force as internal wrench, which is a part of the

whole system as depicted in Figure 2. Based on the statics of

multilinked model (Section 4.1), the internal wrench planner

calculates the desired vectored thrust force for grasping (Section

4.2). Online mass estimation method is also developed (Section

4.3) to update the robot configuration during grasping.

Figure 10. Statics model of bimanual object grasping. f c1 and f c2
are two contact forces. f ini is the vectored thrust force which

contributes to grasping as internal wrench, whereas τqi is joint

torque for grasping.
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f c1 ¼ �f c2 ¼ fcnc (91)

where fc is the norm, and nc is a contact normal vector. It is

notable that this pair of contact forces counteracts the

mutual influence on the robot translation and rotational

motion (no appearance in equations (70) and (71)).

Then the purpose of planning the grasp is to find the

proper vectored thrust force f ini and joint torque τq to ensure

sufficient contact force fc.

4.2. Internal wrench planning

There are two different objectives for planning the vectored

thrust force grasping: minimization of the joint torque or

maximization of the contact force.

4.2.1. Minimization of joint torques. Based on the statics

model of equation (90), the optimization problem with the

objective of minimizing the joint torques along with thrust

forces can be given by

min
Fin, τq

FT

inW1Fin þ τTqW2τq (92)

s.t. (70), (71), and (90)

Fin ¼
h
f Tin1 f Tin2 / f TinNr

iT

where the first and second terms of equation (92) are in-

troduced to balance the minimization of thrust force and

joint torque by the diagonal weight matrices W1 and W2.

A desired contact force f refci
with a norm of f refc is

substituted into equation (90). Then, by substituting

equation (90) into equation (92), we can obtain an opti-

mization problem that is only related to Fin. Then the

closed-form solution for (92) can be derived using Lagrange

multiplier

Fin ¼ �
�
E � ΦAT2

�
A2ΦA

T

2

	�1
A2

�
ΦAT1W2b (93)

Φ ¼
�
W1 þ AT1W2A1

	�1
(94)

b ¼
X2

i¼1

JTci f
ref
ci

(95)

A1 ¼
h
JTr1 JTr2 / JTrNr

i
(96)

A2 ¼
h
bJ 1

bJ 2 / bJ rNr

i
,bJ i ¼

"
E3×3
 CoGf g
pfFig×

�
#

(97)

where E in equation (93) is a 3Nr × 3Nr identity matrix.

The diagonal weight matricesW1 andW2 in equation (92)

balance the effort of thrust force and joint torque on

grasping. W1 >> W2 indicates that only the vectoring thrust

force is used to achieve grasping, and no joint torques is

used. In contrast,W1 <<W2 indicates that only joint torques

are used for grasping, which is the case for general grippers.

Given that the closed-form solution of equation (93) can be

performed in realtime, no explicit boundaries for the thrust

force f ini are introduced as inequality constraints for

equation (92). Instead, more weight for the thrust force

(i.e., W1 > W2) is designed to avoid the saturation of thrust

force. For our robot, the diagonal values of W1 and W2 are

set as 4 and 1. Finally, the result of the vectored thrust forces

f ini from equation (93) is sent to the flight control framework

as shown in Figure 9.

4.2.2. Maximization of contact normal force. Optimization

problem depicted by equation (92) for realtime control is

calculated with the known contact forces f refci
; however, it is

also important to know the maximum contact normal force

that can be generated by our multilinked aerial robot. Then

the static model (90) can be further derived as follows

fcJ
T

c nc ¼ �τq �
XNr

i¼1

JTri f ini (98)

Jc ¼ Jc1 � Jc2 (99)

The term JTc nc at the left side of equation (98) is constant

because the contact points and joint angles are all fixed.

Therefore, it is possible to obtain the maximum norm of the

contact normal force fc via following optimization problem

max
fc ,F

_
f 2c (100)

s.t. (70), (71), and (98)

f 2inix
þ f 2iniy

≤ f
2

(101)

0 ≤ τqi ≤ τmax (102)

Regarding the vectoring thrust force, although it is better

to directly constraint the vectoring angles (fi, θi) and force

scalar λi for each rotor, the constraint of equation (101) that

restrains the lateral force ½ finix, finiy� can be considered

equivalent in the case of grasping. This is because the upper

limit of the lateral force f can be approximately obtained

from the maximum tilted angle ζ (a combined vectoring

angle of f and θ) and the thrust force in the hovering state

fT0: f ¼ sinðζ ÞfT0.
Given that this optimization problem contains the non-

linear constraint (98) and several inequalities, the closed-

form solution is not available and the realtime calculation

with an onboard computation resource is significantly

difficult. Instead, the numerical validation of this optimi-

zation method will be explained in Section 5.

4.3. Robot model modification

Another important issue in grasping is the compensation of

the inertia of grasping object. The grasped object can be
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treated as one of part of robot. Then, the overall mass mΣ in

equation (19), inertia tensor {CoG}IΣ in equation (20), and the

rotor position
CoGf g

pfFig in equation (49) should be updated

for flight stability during object grasping. Although the P

and I control in equations (23) and (26) can passively

compensate for the model error, the compensated term in P

and I control terms will render the flight unstable again once

the robot releases the object.

Compared with the rotational inertia of the object, the

mass estimation is more important because it affects the

rotor position
CoGf g

pfFig w.r.t the CoG frame, and further

influences the control allocation. We first estimate the ex-

ternal wrench exerted on the entire CoG by the momentum-

based method (De Luca and Mattone 2005):

Rewriting equations (19) and (20) with external wrench

gives

_P ¼ M _v ¼ Jwþ we � N (103)

M ¼

2

4mΣE3×3 03×3

03×3 IΣ

3

5,

J ¼

2

4
Wf g
RfCoGg 03×3

03×3 E3×3

3

5,

N ¼

2

4 mΣg

ω × IΣω

3

5

where, P and v are the generalized momentum and ve-

locity, respectively, and w and wex are the overall wrench

generated from the rotor thrust and the external wrench,

respectively. According to De Luca and Mattone (2005),

the estimated overall external wrench can be written as

follows

bwex ¼ Kw

�
PðtÞ � Pðt0Þ �

Z t

t0

�
Jwþ bwex � N

�
dt

�
(104)

where, Kw 2R6×6 is a positive-definite diagonal observer

matrix which has a smoothing function.

Then the estimated mass can be given by

bmobj ¼ bwexð3Þ=g (105)

where bwexð3Þ is the third element of the estimated external

wrench.

Grasping an object from the ground can provide a long

term estimation of equation (104) which can provide better

convergence to the estimated mass. However, to grasp an

object handed over in the air, instantaneous mass estimation

and active compensation are necessary; otherwise the flight

will become unstable. Therefore, we propose Alg. 2 to find

the optimal estimation mass and update the dynamics model

for control in a short time. While releasing the object, the

flight stability can be ensured by simply removing the object

mass from the robot dynamics model.

Algorithm 2 Estimation of the mass of grasped object

t ← 0; mmax ← 0

while t < tmax do

bmobj←(104), (105)

if bmobj >mmax then

mmax←bmobj

update mΣ in (19), {CoG}IΣ in (20), and
CoGf g

pfFig

in (49) with bmobj

end if

end while

m ← mmax

return m

5. Experiments

In this section, we first describe the robot used in each ex-

periment. Then, we present the experimental results, including

the evaluation of flight stability based on the proposed control

method, object manipulation using an end-effector, and object

grasping using the vectored thrust force. Videos of the ex-

periments are available at https://youtu.be/fJA4Rch0biE.

5.1. Robot platform

A quad-type DRAGON composed of four links was de-

veloped in our previous work (Zhao et al., 2018a). In order

to perform manipulation and grasping, soft spherical end-

effectors made of sponge were designed with the aim of

obtaining sufficient friction and compliance at the inter-

action surface (two different designs were developed as

shown in Figure 11 A1 and A2). The main specifications of

this robot can be found in Table 1. An external motion

capture system was applied in our experiment to obtain the

state of the root link (i.e.,
Wf g

rfL1g,
fWg _rfL1g,

Wf g
RfL1g, and

Wf g
ωfL1g), which were used to calculate the state of CoG

motion based on forward kinematics. Furthermore, all

processes related to motion planning and flight control were

performed using the on-board compact computer (i.e., an

Intel Atom x7-Z8700 Quad core CPU). A maximum joint

speed (0.31 rad/s) was set to satisfy the quasi-static as-

sumption in the presented control framework.

There are two LiHv batteries (1300 mAh, 22.8 V) at each

link to provide power for a pair of rotors, and the maximum

flight time is 3 min. The modeling and control parameters

used in the experiments are summarized in Table 2.

5.2. Flight stability

We evaluated the feasibility of the enhanced flight control

method presented in Section 3 by comparing with the
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performance obtained by the previous control method (Zhao

et al., 2021). The crucial difference between the two

methods is the use of the vectoring angles f.

5.2.1. Aerial transformation. We first testified the stability

during aerial transformation from a normal form to the form

as shown in Figure 12: q ¼
h
0

π

2
0

π

2
0

π

2

i
rad→

h
�0:6 �

π

2
�0:6 0 0

π

2

i
rad. The RMS of er in

equation (23) were [0.07, 0.05, 0.03] m for the new method,

and [0.09, 0.05, 0.03] m for the previous method; whereas

the RMS of eR in equation (26) were [0.04, 0.03, 0.04] rad

for the new method, and [0.03, 0.03, 0.05] rad for the

previous method. Both control methods ensured sufficiently

small errors in the CoG position and rotation. However,

more fluctuation can be observed from the vectoring angles

and the onboard gyroscope as shown in Figure 13(b) and (d)

compared with the results of Figure 13(a) and (c). This

demonstrates that, because the previous control method

used the vectoring angles f for the D control terms, the

dynamics of the vectoring apparatus, especially the rotational

inertia, affected the dynamics of the whole body, and induced

oscillation. This proved our analysis on the mechanism of

oscillation caused by the vectoring actuators. We further an-

alyzed the frequency spectrum of the gyroscope data depicted

in Figure 14, which shows that the proposed new control

methods can suppress the oscillation across all frequency

ranges. This result demonstrated the feasibility of the new

Figure 11. Quad-type DRAGON robot for performing the aerial manipulation and grasping. (A1/A2) Models for single end-effector

manipulation and two-point grasping, respectively. The soft end-effector is composed of a sponge ball. (B) two DoF joint module

composed of two identical units (torque estimation based on current). (C) Compact ducted fan rotor for vectoring control.

Table 1. Main specifications.

Attribute Description

Link length 0.42 m

Total weight 7.6 kg

Max payload 3.4 kg

Max flight time 3 min

Max rotor thrust 30 N

Max joint torque 7.0 Nm

Max joint speed 0.31 rad/s

End effector Sponge ball (radius: 0.03 mm)

Table 2. Parameters for quad-type DRAGON.

Parameter Value Equation

Kf , p diag (3.6, 3.6, 2.8) (23)

Kf , i diag (0.03, 0.03, 1.2)

Kf , d diag (4, 4, 2.8)

KT , p diag (15, 15, 10) (26)

KT , p diag (0.3, 0.3, 0.1)

KT , d 5E3 × 3

Δλ 1.5 Alg. 1

Δw 0.05

Δf 0.5 (86)

er 0.32 (170)

eψ 0.5

kψ 1

W1 0.001E12 × 12 (173)

W2 E3 × 3

W1 4E12 × 12 (92)

W2 E6 × 6

f 30 (101)

τmax 7.0 (102)

Kw diag (5, 5, 5, 2.5, 2.5, 2.5) (104)

tmax 1 Alg. 2
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Figure 12. Aerial transformation from the normal form to a unique form. The flight performance by the proposed control method

(Section 3) is compared with the previous control method (Zhao et al., 2021).

Figure 13. Comparison the flight performance between the proposed control method (a c and e) and the previous control method (b d and

f) during the transformation as shown in Figure 12. (a)/(b): changes in vectoring angles f, the forth angle f4 in (b) shows a rapid

fluctuation during 28 s–30 s. (c)/(d): changes in onboard gyroscope data. (d) Shows larger fluctuation.

Figure 14. Frequency spectrum of onboard gyroscope data of Figure 13(c) and (d).
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control method in terms of suppressing the influence of the

actuator dynamics on the flight stability.

5.2.2. Stable flight under challenging configurations. The

configuration shown in Figure 15 is a singularity in the

previous method control (Zhao et al., 2021) as discussed in

Section 3.1.3. This can be confirmed from Figure 16(b), (d)

and (f), where the rotational motion oscillated significantly

around the x axis (axes are depicted in Figure 6(c)). In

contrast, the proposed control method can solve this sin-

gularity as discussed in Figure 8. Thus, stable hovering

under this challenging configuration has been achieved as

shown in Figure 15 and Figure 16(a), (c) and (e), and the

RMS of er and eRwere [0.06, 0.08, 0.02] m, and [0.05, 0.03,

0.07] rad, respectively. This result further demonstrated the

effectiveness of the control framework of Figure 5 in

suppressing the influence of vectoring actuator on the fight

stability.

5.3. Object manipulation

The framework of the graspless manipulation is presented in

Appendix E. We extended the previous work (Zhao et al.,

2020) by adding a feedback loop with the object pose to

update the end-effector position and the desired external

wrench in realtime.

Manipulation of a rectangular plate was evaluated using

our robot. The target plate was considered a hatch cover

(e.g., manhole cover) that was required to be moved by the

robot. Since there was no rail under the plate, the motion of

this plate belonged to SEð2Þ, which indicated the necessity

of orientation manipulation. Several parameters were as-

sumed be known in the online manipulation planning phase.

Figure 15. Stable hovering under the challenge configuration by

the proposed control method. This configuration is a singularity

in the previous control method (Zhao et al., 2021). The related

video can be found in https://youtu.be/fJA4Rch0biE.

Figure 16. Comparison the flight performance between the proposed control method (a, c, and e) and the previous control method (b, d,

and f) under the challenging pose as shown in Figure 15. (a)/(b) Changes in the rotational errors which are converted to RPY Euler

angles ðeR → ½eroll , epitch, eyaw�Þ. (c)/(d) Changes in the positional errors er. (e)/(f): changes in the angular velocity of the {CoG} frame.
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Figure 17. Moving the hatch plate from the side. The orientation of plate was kept constant. Experiment video is available at https://

youtu.be/fJA4Rch0biE.

Figure 18. Plots related to Figure 17. (a) Object orientation ψobj. The target angle ψ
des
obj is the initial value. (b) Position of the end-effector

and the object along the x axis of the inertia frame as depicted in Figure 17. The target object position rdesobjx
is the initial value. (c)

Position of the end-effector and the object along the y axis of the inertia frame. The target object position rdesobjy
is 1.15 m. (d) Position of the

end-effector along the z axis of the inertia frame.
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For instance, the plate width was 0.8 m, and the weight plate

was 1 kg. The friction force ( ffric in equation (177)) was

measured, which was around 3.5 N. The object pose was

measured from the motion capture system.

Two different experiments were performed according to

the contact point on the plate.

5.3.1. Case1: Manipulation at the side of the plate. In this

case, the contact point is set as the side of the plate with a

thickness of 0.05 m, as shown in Figure 17. The approach

trajectory to this contact point (➀ and➁ in Figure 17) was

planned in realtime according to the object pose, which

was based on the planning method proposed in Zhao et al.

(2020). The contact between the end-effector and the

object side demonstrated the precise end-effector control

by the proposed control method. Then, during ➁–➄, the

plate was pushed by the end-effector, and the goal pose of

object for end-effector position control (equations (171)

and (172)) was r
fdesg
obj ¼ ½0:07 1:15� m,ψ

fdesg
obj ¼ 0 rad,

which was a pose moving parallel from the initial pose

along the y axis. In terms of the external force for ma-

nipulation, since the contact force was parallel to the

friction force, the reaction force fη in equation (177) was

set as zero. Finally, the plate was successfully moved

away from the hatch, and the orientation of the plate was

kept almost constant during the manipulation. As shown

in Figure 18(a), the deviation of the plate orientation ψobj

once increased up to 0.08 rad. However, the end-effector

position reex was updated to compensate for this deviation

as shown in Figure 18(b), and the rotational deviation was

convergent and close to zero a the end. The object po-

sition also reached the goal position as shown in

Figure 18(b) and (c). The small change in the end-effector

height reez as depicted in Figure 18(d) also showed the

steady contact between object and end-effector during

manipulation. Although the previous motion planning

method (Zhao et al., 2020) can also achieve physical

interaction, there was no closed loop to control the object

pose. Thus, the plate was moved with an undesirable

orientation. The comparison of the manipulation

Table 3. Comparison of object manipulation performance.

Experiment Case1 Case2 Case3

Control method Zhao et al. (2018a) Proposed method (Section 3) Proposed method (Section 3)

Planning method Zhao et al. (2020) Zhao et al. (2020) Appendix E

Final error of Side contact (Figure 17) 0.70 0.26 0.03

jψobj � ψdes
obj j [rad] Bottom contact (Figure 19) 0.20 0.10 0.02

Figure 19. Moving the plate from the bottom. The orientation of plate was kept constant. Experiment video is available at https://youtu.

be/fJA4Rch0biE.
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performance using different flight control and motion

planning methods is summarized in Table 3. A significant

improvement in rotational manipulation of the object can

be confirmed. This experimental result demonstrated the

feasibility of the proposed online motion planning for

manipulating an object in more than two DoFs.

5.3.2. Case2: Manipulation at the bottom of the plate. In

this case, the robot was under the plate as shown in

Figure 19. Then, the movement strategy was modified to

pull the bottom surface of the plate. As such, it was nec-

essary to impose a certain contact normal force (i.e., fη in

equation (177)) on the surface to ensure steady contact. The

contact point was set close to the edge of the plate; therefore,

this force was set as half of the plate weight
���f η

�� ¼ 10
2

N
	

to reduce the contact area between the plate and the

black frames. The goal pose of object for end-effector

position control (equations (171) and (172)) was

r
fdesg
obj ¼ ½�0:04 0:6� m,ψ

fdesg
obj ¼ 0 rad. A relatively large

deviation of �0.15 rad in rotational error can be confirmed

in ➃ of in Figure 19 and in Figure 20(a), which then de-

creased quickly owing to the end-effector position control

and force control as presented in Appendix E. Finally, the

plate was successfully moved away from the hatch as

shown in Figure 20(b) and (c), and the final orientation of

the plate was nearly identical to the initial value as shown

in Figure 20(a). The superior performance can be also

confirmed by comparing with the results obtained from

the previous method (Zhao et al., 2020), as shown in

Table 3.

Figure 20. Plots related to Figure 19. (a) Object orientation ψobj.

The target angle ψdes
obj is the initial value. (b) Position of the end-

effector and the object along the x axis of the inertia frame as

depicted in Figure 19➀. The target object position rdesobjx
is the initial

value. (c) Position of the end-effector and the object along the y

axis of the inertia frame. The target object position rdesobjy
is 0.6 m.

(d) Position of the end-effector along the z axis of the inertia frame.

Figure 21. Grasping a box-shape object (0.3 kg) using vectored thrust force instead of joint torque. The object mass was unknown and

was estimated and compensated by robot based on Alg. 2. The experiment video is available at https://youtu.be/fJA4Rch0biE.
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Two experiments required the robot to manipulate the

object from the differential direction and using a differential

robot pose, which demonstrated not only the successful

integration of external wrench into our propose control

method, but also the dexterity of our articulated model in

manipulation.

5.4. Object grasping

5.4.1. Evaluation of the maximum grasping

force. According to the optimization problem as presented

in equations (100)–(102), we first investigated the maxi-

mum contact force that could be generated in the model

shown in Figure 11(A2). The joint angles q were first

calculated based on a given target object of width 0.1 m.

Since the grasping was performed in a two dimensional

manner, all of the pitch joints (see Figure 11(B)) were set as

zero. In addition, the center yaw joint q2_yaw was fixed as π
2

rad, and the four points (i.e., two contact points, first and

third joint points) formed a trapezoid. Then, the three yaw

joint angles were calculated as [1.53, π
2
, 1.36] rad. Besides,

the boundary of the vectoring force f was set as 10 N, which

rendered the maximum tilted angle ψ of approximately

0.45 rad in the hovering state. Finally, the maximum contact

force fc in equation (98) was 21.3 N, which was almost twice

that of the maximum value generated by the joint torques

alone (i.e., 10.7 N). Although applying a lower gearing can

produce much greater joint torques (and thus grasping

forces), a major disadvantage is the difficulty of handling

the high torque load by a compact gearbox. Furthermore,

our rotor vectoring apparatus demonstrates the possibility of

replacing the joint servo with a fully passive joint structure

for grasping. However, development of the control meth-

odology to handle multi-rigid-body dynamics based on

passive joints is necessary, which is one of the challenges of

future work.

5.4.2. Grasping and transporting objects. As mentioned in

Section 4, calculating the maximum contact force for

grasping involves extensive computation. Therefore, to

achieve online grasping planning, calculation of the vec-

toring thrust force for grasping from equation (93) to relax

the load of joint torques was performed on the onboard

computer.

The target object was handed over to the robot when the

robot form was opened (q ¼


0, π

4
, 0, π

2
, 0, π

4

�
rad). After a

trigger was sent to the robot, the robot gradually increased

the joint angles of q1_yaw and q3_yaw. Meanwhile, the robot

performed contact detection by checking the joint torque on

q2_yaw with a preset threshold. The joint torque was esti-

mated from the current of each servo motor. As observed

from the general hovering test, the change in the joint torque

on q2_yaw was less than 1.5 Nm. Therefore, the threshold for

contact detection was set as 1.8 Nm. Once the contact was

detected, the additional vectoring force f ini is continuously

calculated from equation (93) with the actual joint angles

and added to the proposed control framework as shown in

Figure 9. To generate enough contact force on the object, the

desired norm of the contact force
��f refc

��was set as 10 N. It is
also notable that the object mass was unknown, and thus

mass estimation based on Alg. 2 was also performed after

grasping

The experiments were performed with two different

objects:

· Box. The box mass was 0.32 kg and the width was

0.2 m, as shown in Figure 21. The robot detected

contact with the object in ➁. Then the joint angles of

qi_yaw were fixed at ½1:51, 1:47, 1:44� rad as shown in
Figure 22(a). The robot instantaneously calculated

and applied the vectored thrust force fin for grasping

based on the joint angles. The rotor then tilted in-

wardly to use the thrust force as an internal wrench for

grasping as depicted in Figure 21➁. According to the

grasping planning method detailed in equations (92)

Figure 22. Plots related to Figure 21. (a) Changes in the joint

angles of qi_yaw from the pre-grasping phase (➀) to the grasping

phase (➁→➂) and to the transportation phase (➃→➅). (b)

Changes in the joint torques for qi_yaw. (c) Change in the estimated

wrench bwexz for object mass estimation. (d) Changes in the robot

rotational errors which are converted to RPY Euler angles. (e)

Changes in the robot position rfCoGg.
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and (93), if we only use the joint torques to grasp, the

necessary torques for qi_yawwould be ½4:22, 5:83, 1:4�
Nm, where the joint of q2_yaw required a relatively

large load. However, with the help of the additional

vectoring force for grasping, these joint torques could

be significantly reduced to ½2:95, 3:26, 0:78� Nm.

During grasping, the average of the actual joint torque

are ½1:65, 2:56, 0:77� Nm as shown in Figure 22(b),

which were all smaller than the planned (predicted)

values. Nevertheless, the steady grasp can be con-

firmed from Figure 21, which involves a variety of

motion such as ascending/descending (38–48 s in

Figure 22(d)) and horizontal movement (50–60 s in

Figure 22(e)). In terms of object mass estimation,

after the object was released by human hand at➁, the

robot orientation diverged quickly as shown in

Figure 21➂ and Figure 22(d), as the object mass was

unknown at first. However, Alg. 2 was performed at

the same time to estimate the object mass and update

the robot model, which contributed to the rapid

recovery from this divergence (less than 1 s). Be-

sides, the estimation result was 0.33 kg which was

significantly close to the ground truth of 0.32 kg. It is

notable that there was an offset and drift in the es-

timated wrench bwexz as shown in Figure 22(c) because

of the model error inside the dynamics modeling;

however, the relative change in the estimated wrench

demonstrated high reliability in mass estimation.
· Cylinder. The weight was 1.0 kg (much heavier than

the box-shape object), and its diameter was 0.125 m as

shown in Figure 23. Most of the phenomena were

similar to those of the box case, such as the suppression

of joint torque for grasping as depicted in Figure 24(b).

However, since the object was relatively heavy, after

the object was released from human hand, the rela-

tively large divergence in the robot height and position

can be confirmed from Figure 24(d). Nevertheless, the

object mass was rapidly estimated and compensated by

the robot, and the flight stability was recovered quickly

within 1 s. Besides, the mass estimation result was

Figure 23. Grasping a cylinder-shape object (1 kg) using vectored thrust force instead of joint torque. The object mass was unknown and

was estimated and compensated by robot based on Alg. 2. The experiment video is available at https://youtu.be/fJA4Rch0biE.
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1.05 kg which was also considerably close to the

ground truth of 1 kg. It is also notable that, during the

aggressive rotational divergence, the object was held

steadily by the robot, which indicating the effective-

ness of the vectored thrust force for grasping. After the

robot was back to the hovering state, we then actively

changed the robot orientation as shown in Figure 23➄

and 58–70 s in Figure 24(e). The object can be still

held stably by the robot, which demonstrated the

potential to change the orientation of an large object by

grasping-based manipulation.

These two experiments demonstrated not only the ef-

fectiveness of the proposed grasping planning method, but

also the feasibility of the proposed control method in terms

of handling an additional vectored thrust force as the in-

ternal wrench.

6. Conclusions and future work

In this paper, we presented a comprehensive framework

including the flight control, object manipulation, and grasping

for an articulated aerial robot named DRAGON that has

rotors embedded in each link and is able to change the force

direction via a vectoring mechanism. First, we revealed the

mechanism of oscillation caused by the rotaional inertia of

vectoring actuators, and further developed a two-stage

control allocation to suppress the influence of actuators

dynamics on the flight stability. This control framework can

also handle the external wrench for manipulation and internal

wrench for grasping. Second, we proposed online thrust-level

optimization method for object grasping, which utilizes the

vectorable thrust force rather than the joint torque as an

internal wrench. The related experiments, including (1) flight

stability evaluation; (2) manipulating a plate that has surface

contact with the environment; and (3) grasping an object

using the vectored thrust force instead of the joint torque,

demonstrated the feasibility of each control and planning

methods, and the consistency of the entire framework.

One key issue that remains in this work is the recognition of

the target object by using onboard sensors such as an RGB

sensor. Further, the estimation of the external wrench during

object manipulation% is another crucial issue. A straightfor-

ward measurement by the force sensor attached to the end-

effector is an effective solution; however, a hybrid external

wrench observer (Shi et al., 2019) which combines the

momentum-based method presented in Section 4.3 and the

distributed IMU system can be applied to our articulated robot

to avoid the additional payload owing to the force sensor. Last

but not the least, the efficiency of the thrust usage inDRAGON

is considerably high due to the omnidirectional operation of

the individual rotor; however, the energy efficiency of the

entire system is lower than that of a general multirotor of the

same size, because there are much more actuators and metal

components for this articulated model, leading to a signifi-

cantly shorter flight duration compared to the general multi-

rotor. In terms of power supply, wired charging from a tether

can be an effective solution. From the perspective of me-

chanical design, free joints for the link connection can be

investigated to reduce the overall weight, and further, it is

necessary to develop a control methodology that can handle

non-approximated multibody dynamics in the air.
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Figure 24. Plots related to Figure 23. (a) Changes in the joint

angles of qi_yaw involving the pre-grasping phase (➀), the

grasping phase (➁→➃), the rotating phase (➄), and release phase

(➅). (b) Changes in the joint torques for qi_yaw. (c) Change in the

estimated wrench bwexz for object mass estimation. (d) Changes

in the robot rotational errors which are converted to RPY Euler

angles. (e) Changes in the robot position rfCoGg.
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Appendix A. Linear and angular momentum

of the multilinked model

This appendix presents the derivation of linear and an-

gular momentum {W}PΣ and CoGf g
LΣ in equations (16)

and (17).

Wf gPΣ ¼
XNr

i¼1

�
Wf gPLi þ

Wf gPAri
þ Wf gPApi

�
(106)

Wf g
LΣ ¼

XNr

i¼1

�
Wf g
LLi

þ Wf g
LAri

þ Wf g
LApi

�
(107)

where Li, Ari, and Api
stand for the i-th link component, the

component between the vectoring angles of fi and θi, and

the component of dual rotors, respectively, as shown in

Figure 3.

Then, the linear and angular momentums for each

component can be further given by

Wf gPsi ¼ msi
Wf gr_si (108)

CoGf g
Lsi ¼

CoGf gpsi ×
�
msi

CoGf gp_si

	

þ CoGf g
RfsigIsi

CoGf g
RTfsig

CoGf g
ωfsig

(109)

s2
�
L,Ar,Ap




where Wf grsi in equation (108) is the CoG position of each

segment siw.r.t. the frame {W}. Equation (109) denotes two

part of angular momentum: the offset from the origin of the

frame {CoG} to the CoG of segment, and the segment

inertia term. CoGf gpsi is the CoG position of each segment

w. r.t the frame {CoG}.
CoGf g

Rfsig is the orientation of the

local frame for each segment w.r.t. the frame {CoG}, and
CoGf g

ωfsig is the angular velocity of the local frame w.r.t. the

frame {CoG}. Isi is the constant inertia tensor expressed in

the local frame {Si}.
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It is also notable that the joint angles q and vectoring

angles f, θ have influence on the position of Wf grsi and
CoGf gpsi. Thus, the derivatives of these positions

fWg
_rsi and

fCoGg
_psi, and the angular velocity

CoGf g
ωfsig are also deter-

mined by the joint velocities _q, and the vectoring velocities
_f, _θ.

Appendix B. Approximation of the dynamics

of multilinked model

This appendix presents the derivation from equations (16)

and (17) to equations (19) and (20).

Entire translational dynamics

We focus on the derivative of the linear momentum

Wf gP_si ¼ msi
Wf gr€si (110)

We discuss the above derivation with different types

of si:

• Link module Li. Since we assume the joint angles move

slowly (i.e., _q ≈ 0, €q ≈ 0), the second derivative of the link

position is only effected by the joint angles

Wf gPLi ¼ mLi
Wf gr€LiðqÞ (111)

where Wf grLiðqÞ is the CoG position of link module w.r.t. the

frame {W}.

• Vectoring module Ari. The offset from the vectoring axis

fi to the CoG position of Ari is significantly small. Then

Wf gPAri
can be given by

Wf gP_Ari
¼ mAri

�
Wf g
r€fGigðqÞ þ

Wf g
Δr€Ari

�
fi,

_fi,
€fi

	�
,

≈ mAri

Wf g
r€fGigðqÞ (112)

where rfGigðqÞ is the position of the frame {Gi} which is

attached to the vectoring axis fi as shown in Figure 3(b),

and Wf g
ΔrAri

ðfi,
_fi,

€fiÞ is the offset from the vectoring axis

to the CoG, which can be ignored.

• Vectoring module Api
. Wf gP_Api

can be given by

Wf gP_Api ¼ mApi

�
Wf g
r€fGigðqÞ þ

Wf g
r€fGig→ fFig

�
fi,

_fi,
€fi

	

þ Wf g
Δr€Api

�
θi, _θi, €θi

		

≈mApi

Wf g
r€fGigðqÞ

(113)

where rfGig→ fFigðfi,
_fi,

€fiÞ is the offset from the frame

{Gi} to the frame {Fi} that is attached to the vectoring axis

θi as shown in Figure 3(b), and
Wf g

Δ€rApi
ðθi, _θi, €θiÞ is the

offset from the frame {Fi} to the CoG position of module

Api
. These offset can be also ignored due to their relatively

small values.

Then, the derivative of total linear momentum can be

given by

Wf gP_Σ ¼
XNr

i¼1

�
mLi

Wf gr€LiðqÞ þ mAri

Wf g
r€fGigðqÞ

þmApi

Wf g
r€fGigðqÞ

	
¼ mΣ

Wf g
r€fCoGgðqÞ, (114)

where mΣ is the total mass of the entire robot and
Wf g

rfCoGgðqÞ is the position of the entire CoG point. This

eventually gives the result of equation (19).

Entire rotational dynamics

We first define a function _Lðm, I ,pÞ that can be described as

_Lðm, I , pÞ : ¼ mbpbpTfCoGg _ωþ I fCoGg _ωþ fCoGgω × IfCoGgω

(115)

where m2R, p2R3, and I 2R3×3 are the mass, the CoG

position, and the inertia tensor of a rigid body. The hat map

⋀ transforms a vector in R3 to a 3 × 3 skew-symmetric

matrix. {CoG}ω is the angular velocity of the entire CoG

frame {CoG} expressed in the same frame.

We then discuss the derivation of equation (109) ac-

cording to the different types of si:

• Link module Li. Since we assume the joint angles move

slowly (i.e., _q ≈ 0, €q ≈ 0), the angular velocities of all links

module are identical to that of the entire CoG frame:
CoGf g

ωfLig ≈
CoGf gω.

Then the derivative of the angular momentum of

equation (109) can be given by

CoGf g
L_Li ¼ _L

�
mLi,

CoGf gILiðqÞ,
CoGf gpLiðqÞ

	
,

CoGf gILiðqÞ ¼
CoGf g

RfLigðqÞILi
CoGf g

RTfLigðqÞ
(116)

where ILi is the constant inertia tensor of a link described in

its own coordinate.

• Vectoring module Ari. The angular velocity of this

module can given by

CoGf g
ωfGig ¼

CoGf gωþ CoGf gηfi

_fi (117)

where ηfi
2R3 is the unit vector that denotes the direction

of vectoring axis of fi.

Then the derivative of the angular momentum of

equation (109) can be given by
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CoGf g
L_Ari ¼

_L
�
mAri

, CoGf gIAriðqÞ,
CoGf gpAri

ðqÞ
	
þ Δ _LAri

(118)

Δ _LAri
¼mAri

CoGf gP̂Ari

CoGf g
ΔP̂

T

Ari

CoGf gηfi

€fi

þ CoGf gIAri
CoGf gηfi

€fi

þωfGig×
CoGf gIAri

CoGf g
ωfGig

� CoGf gω× CoGf gIAri
CoGf gω, (119)

where CoGf g
ΔP̂Ari

is the offset from the frame origin to the

CoG position that can be ignored, and IAri
is inertial tensor of

this vectoring module that is significantly small. Therefore,

Δ _LAri
can be ignored: Δ _LAri

≈ 0.

• Vectoring module. Api
. The angular velocity of this

module can given by

CoGf g
ωfFig ¼

CoGf gωþ CoGf gηfi

_fi þ
CoGf gηθi

_θi (120)

where ηθi 2R3 is the unit vector that denotes the direction of

vectoring axis of θi.

Then the derivative of the angular momentum of

equation (109) can be given by

CoGf g
L_Api¼

_L

�
mApi

, CoGf gIApiðqÞ,
CoGf gpApi

ðqÞ
�
þΔ _LApi

þΔ _L
0

Api

(121)

Δ _LApi
¼ mApi

CoGf g
ΔP̂Api

CoGf g
ΔP̂

T

Api

CoGf gηfi

€fi

þ CoGf gIApi
CoGf gηfi

€fi

þ CoGf g
ωfFig×

CoGf gIAri
CoGf g

ωfFig

� CoGf gω × CoGf gIApi
CoGf gω

(122)

Δ _L
0

Api
¼ mApi

CoGf g
ΔP̂Api

CoGf g
Δp̂

T

Api

CoGf gηθi
€θi

þ CoGf gIApi
CoGf gηθi

€θi

(123)

CoGf gIApi ¼
CoGf g

RfFigdiag
�
If, 0, If

	 CoGf g
RT
fFig

(124)

where CoGf g
ΔpApi

is the offset from the frame origin to the

CoG position that can be ignored. diag (…) forms a di-

agonal matrix with the variables, and If is the inertial

moment around the vectoring angle f. Zero moment around

the vectoring axis θi and the zero offset of
CoGf g

ΔpApi
lead to

Δ _L
0

Api
≈ 0. However, Δ _LApi

cannot be ignored because of If,

and thus the last three terms of equation (122) are non-zero.

The sum of the last two terms is related _f
fCoGg

i ω and

θ
fCoGg
i ω, which can be considered relatively smaller than fi

::

or θi
::

because of the multiplication between two angular

velocities. Therefore, equation (122) can be further ap-

proximated as follows

Δ _LApi
¼ CoGf g

RfGig

If€fi

0

0

2

4

3

5 (125)

Finally, the derivative of the total angular momentum can

be given by

CoGf g
L_Σ ¼

XNs

i¼1

_L
�
msi,

CoGf gIsiðqÞ,
fCoGgpsiðqÞ

	
þ
XNr

i¼1

Δ _LApi

¼ CoGf gIΣðqÞ
CoGf gω_

þ CoGf gω× CoGf gIΣðqÞ
CoGf gωþ Δ _LAp

(126)

CoGf gIΣðqÞ ¼
XNs

i¼1

�
msi

CoGf gq̂siðqÞ
CoGf g

q̂
T

si
ðqÞ þ CoGf gIsiðqÞ

�

(127)

which gives the result of equation (20).

Appendix C. Stability analysis of conventional

positional control

This appendix presents the stability analysis on the trans-

lational dynamics (19) controlled by the conventional PID

controller shown in equation (23) with actuators that have

the dynamics of equations (12)–(14). The following deri-

vation flow will be also used in Appendix D to analyze the

stability of the proposed control method presented in

Section 3.2 and Section 3.3.

Because TV in equation (12) and Iθ in equation (14)

are significantly small, following approximation is

available

λi ≈ λ
des
i (128)

θi ≈ θ
des
i (129)

Then, the dynamics of the total force {CoG}f (see equation

(3)) is associated with that of the vectoring angles f. Al-

though there is a complex nonlinear mapping between these

two physical quantities as shown in equations (31) and (32),

they should have the similar behavior in frequency domain

that all belong to the second-order system. We further de-

couple {CoG}f into three independent dimensions, and per-

form the Laplace transform for each dimension as follows

FðsÞ ¼
kf, p

s2 þ kf, dsþ kf, p
FdesðsÞ (130)

where F(s) is the Laplace transform of arbitrary dimension of
{CoG}f, and Fdes(s) is the Laplace transform of arbitrary di-

mension of the desired value {CoG}f des in equation (23). kf, p
and kf, d are the gains corresponding to equation (13).
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For simplicity, we assume
Wf g

RfCoGg to be an identity

matrix. Then, the Laplace transform of (19) can be given by

mΣs
2RðsÞ ¼ FðsÞ þ FexðsÞ (131)

FexðsÞ ¼
XNex

i¼1

FexiðsÞ (132)

where R(s) is the Laplace transform of the arbitrary di-

mension of
Wf g

rfCoGg, and FexiðsÞ is the Laplace transform
of the arbitrary dimension of Wf gf exi. We ignore the Laplace

transform for gravity gwhich can be included in the external

force Wf gf exi as a step input.

Similarly, the Laplace transform of equation (23) can be

given by

FdesðsÞ ¼ mΣ

�
kf , p þ

kf , i

s
þ kf , ds

��
RdesðsÞ � RðsÞ

	

�FexðsÞ

(133)

where Rdes(s) is the Laplace transform of arbitrary di-

mension of
Wf g

rdesfCoGg.

Then substituting equations (133) and (130) into equa-

tion (131), the transfer function regarding R(s) can be

written as

RðsÞ ¼ GRðsÞR
desðsÞ þ GFexðsÞFexðsÞ (134)

GRðsÞ ¼
kf, p
�
kf , ds

2 þ kf , psþ kf , i
	

DðsÞ
(135)

GFexðsÞ ¼
s3 þ kf, ds

2

mΣDðsÞ
(136)

DðsÞ ¼ s5 þ kf, ds
4 þ kf, p

�
s3 þ kf , ds

2 þ kf , psþ kf , i
	

(137)

The necessary and sufficient condition to have a stable

transfer function of GR(s) and GFex
ðsÞ is to ensure all poles

of D(s) to be negative. This can be achieved by choosing

proper feedback gains for position control (kf , p, kf , i, and

kf , d) and vectoring actuator ðkf, p, kf, dÞ. Generally, kf, p and
kf, d are first chosen according to equation (13) to ensure

stable servoing performance for rotor vectoring. Then, the

PID control gains kf , p , kf , i, and kf , d are selected to achieve

the stable position control.

We further analyze the position error er in the steady

state. Assuming step input for both the desired position
Wf g

rfCoGg and the external forces Wf gf exi, the Laplace

transform of er can be given by

ErðsÞ ¼ RdesðsÞ � R

¼ ð1� GRðsÞÞR
desðsÞ � GFexðsÞFexðsÞ

¼ ð1� GRðsÞÞ
1

s
� GFexðsÞ

1

s

¼
s4 þ kf, ds

3 þ kf, ps
2

DðsÞ
�
s2 þ kf, ds

mΣDðsÞ

(138)

According to the final value theorem, the position error in

steady state can be obtained by

es ¼ lim
s→ 0

sErðsÞ ¼ 0 (139)

which demonstrates each dimension (axis) of {W}r can

converge to the desired value.

Appendix D. Stability analysis of proposed

control method

This appendix presents the stability analysis on the whole

dynamics controlled by the proposed control method pre-

sented in Section 3.2 and Section 3.3.

Position control

Because the vectoring anglesf is responsible for the truncated

control terms presented in equation (41), the residual D control

term is related to other types of actuators that have fast dy-

namics as presented in equations (128) and (129). Therefore,

equation (130) should be reformulated as follows

FðsÞ ¼
kf, p

s2 þ kf, dsþ kf, p
Fdes
tr ðsÞ þ Fdes

D ðsÞ (140)

Fdes
tr ðsÞ ¼ mΣ

�
kf , p þ

kf , i

s

��
RdesðsÞ � RðsÞ

	
� FexðsÞ

(141)

Fdes
D ðsÞ ¼ mΣkf , ds

�
RdesðsÞ � RðsÞ

	
(142)

Then the transfer function regarding R(s) can be re-

written as follows

RðsÞ ¼ G0
RðsÞR

desðsÞ þ G0
Fex
ðsÞFexðsÞ (143)

G0
RðsÞ ¼

N 0ðsÞ

D0ðsÞ
(144)

G0
Fex
ðsÞ ¼

s3 þ kf, ds
2

mΣD0ðsÞ
(145)

N 0ðsÞ ¼ kf , d
�
s4 þ kf, ds

3
	
þ kf, p

�
kf , ds

2 þ kf , psþ kf , i
	

(146)
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D0ðsÞ ¼ s5 þ kf, ds
4 þ kf, ps

3 þ N 0ðsÞ (147)

If poles of D0(s) are all negative, the transfer functions of

both G0
RðsÞ and G0

Fex
ðsÞ will be stable because they are

strictly proper. This can be achieved by choosing proper

control position gains as already discussed in Appendix C.

Further, the zero position error in the steady state can be

confirmed by substituting equation (143) into equations

(138) and (139). This not only demonstrates the trackability

to a constant desired position, but also the stability against

the external force Wf gf exi.

Attitude control

We focus on the analysis on the stability for tracking a

constant desired attitude, and assuming the error from this

desired attitude is relatively small. Then, we introduce

RPY Euler angles α to denote the deviation from the

desired attitude ð
CoGf g

RdesT CoGf gRÞ. We further use the

approximation of ω ≈ _α to linearize equations (20), (42),

and (43) as follows

IΣ€αþ Δ _LAp ¼ τþ τex (148)

τdes ¼ τdestr þ IΣKτ, d _eα (149)

τdestr ¼ IΣ

�
Kτ, peα þ Kτ, i

Z
eα

�
� τex (150)

τex ¼
XNex

i¼1

�
τexi þ pexi × f exi

	
(151)

Δ _LAp ¼
XNr

i¼1

RfFig

2

6664

If€fi

0

0

3

7775

where eα = αdes� α. Note that αdes should be zero, because α

itself denotes the error to the desired attitude. However, a

small step input of αdes can denote the behavior to track a new

desired attitude that is close to the last one. _α× IΣ _α in

equations (148) and (149) can canceled each other, and thus is

omitted.

We then decouple equations (148) and (149) into three

independent dimensions, and perform the Laplace transform

for each dimension as follows

IΣs
2AðsÞ þ Ifs

2
ΦðsÞ ¼ TðsÞ þ TexðsÞ (152)

T des
tr ðsÞ ¼ IΣ

�
kτ, p þ

kτ, i

s

��
AdesðsÞ � AðsÞ

	
� TexðsÞ

(153)

T des
D ðsÞ ¼ IΣkτ, ds

�
AdesðsÞ � AðsÞ

	
(154)

ΦðsÞ ¼
XNr

i¼1

γiΦiðsÞ (155)

where A(s), Ades(s), T(s), and Tex(s) are the Laplace

transform of arbitrary dimension of α, αdes, τ, and τex(s),

respectively. IΣ 2R is a decoupled inertial moment of IΣ. γi
2 [� 1 1] denotes the influence rate of each vectoring angle

fi due to RfFig.

To further derive the transfer function for Φi(s) in ΦðsÞ,
we approximate the nonlinear mapping from τdestr to fdes

i

(see Section 3.3.1) as a linear conversion in frequency

domain

Φ
des
i ðsÞ ¼ βiT

desðsÞ (156)

It is notable that similar mapping from f destr to fdes
i should

be also introduced. Since f destr converges to a constant value

when t → ∞ (which is obvious from the result of equation

(143)), both _f
des

tr and €f
des

tr converge to zero. Thus, we can

ignore the influence of f destr .

By substituting equation (156) into the Laplace trans-

form of (13), equation (155) can be further derived as

ΦðsÞ¼
ckf, p

s2 þ kf, dsþ kf, p
T des
tr ðsÞ, c ¼

XNr

i¼1

γiβi (157)

Similar to equation (140), the transfer function from

Tdes(s) to T(s) can be written as

TðsÞ ¼
kf, p

s2 þ kf, dsþ kf, p
T des
tr ðsÞ þ T des

D ðsÞ (158)

Substituting equations (153), (154), (157), and (158) into

equation (152), the transfer function for A(s) can be sum-

marized as follows

AðsÞ ¼ GAðsÞA
desðsÞ þ GTexðsÞTexðsÞ (159)

GAðsÞ ¼
NðsÞ

DðsÞ
(160)

GTexðsÞ ¼

�
1þ ckf, pIf

	
s3 þ kf, ds

2

IΣDðsÞ
(161)

NðsÞ ¼ kτ, d
�
s4 þ kf, ds

3
	
þ kf, p

�
kτ, ds

2 þ kτ, psþ kτ, i
	

�kf, pcIf
�
kτ, ps

3 þ kτ, is
2
	

(162)

DðsÞ ¼ s5 þ kf, ds
4 þ kf, ps

3 þ NðsÞ (163)

The necessary condition to ensure stability of both GA(s)

and GTexðsÞ is to ensure ai > 0 for D(s) =
P

i=0 ais
i. Then a3

and a2 can be given by

a2 ¼ kf, p
�
kτ, d � cIfkτ, i

	
(164)

a3 ¼ kf, dkτ, d þ kf, p � cIfkf, pkτ, p (165)
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To provide the upper bound of the c for equations (164) and

(165), βi in equation (156) should be estimated. The moment

generated by vectoring a rotor can be given as follows

τi ¼ fidi ≈
mΣgsinðfiÞ

Nr

di ≈
mΣgfi

Nr

L (166)

This approximation is performed around a hovering

state, where each rotor generates thrust force that is ap-

proximately equal to
mΣg

Nr
. Thus, the lateral force by vectoring

is equal to
mΣgsinðfiÞ

Nr
, which is further approximated tomΣgfi,

due to the small value of fi. L is the length of link which

approximates the distance from the robot CoG to each rotor.

Therefore, βi can be approximated as

βi ¼
fi

PNr

i¼1

τi

≈
fi

Nrτi
¼

1

mΣgL
(167)

Then c in equation (157) can be approximated as follows

cIf ¼ If
XNr

i¼1

γiβi ≤ If
XNr

i¼1

βi ¼
IfNr

mΣgL
≈

If

mLgL
(168)

where mL is the average weight of a link unit which also

includes the vectoring actuators. Given If << mLL
2, cIf <

1 is available. Therefore, a2 > 0 is always established. If

kf, d kr, d > kf, pkr, p, a3 > 0 will be also valid.

An effective strategy to find valid gains to make all

poles of (163) negative is to, first set c zero for searching

gains under a similar condition with position control; then set

c as (168) and use Routh-Hurwitz stability criterion to check

the stability of each poles. If there are any unstable poles, we

can repeat the first step to enhance the stability of poles.

With stable GA(s) and GTexðsÞ, α is stable in the near

hovering state. Further, the zero rotational error in the steady

state can be confirmed by applying (138) and (139) for A(s)

with (159). This not only demonstrates the trackability to a

constant desired attitude, but also the stability against the

external torque τexi.

Appendix E. Planning method for

object manipulation

In this appendix, we present an online motion planning

method for graspless manipulation in a feedback manner,

which is based on our previous work (Zhao et al., 2020).

The total framework is depicted in Figure 25. We first

describe the end-effector position controller involving the

feedback of object state. Then, we present the realtime

planning method for the entire robot body (i.e., the root

pose and joint angles) to track the desired end-effector

position. Further, we derive the external wrench required

for object manipulation, which is compensated by the

proposed flight control method presented in Section 3.

Position control of end-effector

We assume that the target object has surface contact with the

environment, and thus, object motion is restricted to SEð2Þ:
two DoFs of translation motion on the contact surface, and

one DoF of rotational motion around the surface normal.

Then graspless manipulation with a single end-effector can

be depicted as Figure 26. The end-effector can only exert two

DoFs from the three-dimensional force along the surface,

which indicates it is impossible to control all three DoFs of

the object motion. However, it is still possible to manipulate

the object rotation using the end-effector force in cooperation

with the friction force. Thus, one DoF of the force is for

rotational manipulation, and the other DoF is for translational

manipulation. Then the goal of manipulation is to reach (or

keep) a desired orientation angle ψdes
obj and move to a desired

position rdesobj as close as possible, as depicted in Figure 26.

The outer feedback loop for controlling the end-effector

position to move an object from robj(t), ψobj(t) to rdesobj ,ψ
des
obj

can be given as follows.

reeðt þ 1Þ ¼ reeðtÞ þ ΔrðtÞ (169)

ΔrðtÞ ¼ n1sat
�
erðtÞ, er

�
þ n2kψsat

�
eψðtÞ, eψ

�
(170)

erðtÞ ¼
�
rdesobj � robjðtÞ

�
� n1 (171)

Figure 25. Overview of the framework for graspless manipulation. The position of the end-effector is controlled by the feedback of

object pose. Then the robot configuration (i.e., the root pose and joint angles) is updated in realtime during manipulation. Meanwhile,

the external wrench to move the object is calculated for compensation.
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eψðtÞ ¼ ψdes
obj � ψobjðtÞ (172)

where n1 is a unit vector which is aligned to the traveling

direction of the object as shown in Figure 26, whereas n2 is

another orthogonal unit vector. kψ is the feedback gain for

controlling the rotation angle of the object. sat (∗, ∗) is a

saturation function, and er and eψ are the upper limit for

translational and rotational errors, respectively. ree(t) is the

three dimensional position of the end-effector at time t. Note

that there is no gain for the translational error er, because er
and ree(t) have the same metric unit.

This feedback control for the end-effector position

cannot ensure that the object reaches the desired position

robj(t), because it allows the translational error along the

direction of n2 (i.e., ðr
des
obj � robjðt∞ÞÞ � n1 ¼ 0). In contrast,

the desired orientation can be achieved (i.e., eψ(t∞) = 0).

This manipulation style can contribute to pushing an object

towards a wall.

Whole body planning for

end-effector manipulation

The operation state of manipulation is the Cartesian motion

of the end-effector; whereas the configuration state is an

integrated vector ξ composed of the root pose and joint

angles ξ : ¼ ð Wf g
RfL1g,

Wf g
rfL1g, qÞ. The first two compo-

nents denote the orientation and position of the root link

{L1} w.r.t the world frame {W}.

For motion planning of such a multilinked model, we

follow the method based on differential kinematics pre-

sented in Zhao et al. (2020). Differential kinematics is used

to plan a continuous trajectory for a multilinked model by

solving the differential motion in multiple iterations. The

end-effector position control of (169) can be considered as

the desired differential motion of the end-effector. Then it

is possible to convert the motion of the end-effector to the

kinematic motion of the robot by the following planning

iteration:

1. Find the optimal small motion δξt at time t satisfying

the following local optimization problem:

min
δξðtÞ

δξðtÞ
T
W1δξðtÞ þ δxeeðtÞ

T
W2δxeeðtÞ (173)

s:t: bi ≤Ai

�
ξðtÞ, δξðtÞ ≤ bi

�
(174)

where ξ(t) is the current state in the configuration space.

In equation (173), the first term is introduced to minimize

the change in ξ(t) at each step, which corresponds to the

velocity of the joints and the root pose. The second term

corresponds to the Cartesian motion error of the end-

effector which is given by

δxeeðtÞ ¼ JeeðξÞδξðtÞ � ΔrðtÞ (175)

where Δr(t) is defined in equation (170), and

JeeðξÞ 2R3×ðNJþ6Þ is the Jacobian matrix regarding the

position of the end-effector. Generally, the Cartesian

motion error is set to zero (i.e., δxee(t) = 0) in most of

the planning cases, and then an equality constraint is

required; however, setting equality constraints can

easily lead to unexpected results (e.g., large δξk). Thus,

we provide a soft constraint to minimize the residual

term shown in the second term of equation (173). The

positive definite diagonal weight matrices W1 and W2

are introduced to balance the two terms in equation

(173). In terms of the constraints shown in equation

(174), Ai (i = 1, 2, … ) are the linearized matrices for

inequality constraints, and bi and bi are the lower And

upper limit vectors for these inequality constraints. All

inequality constraints and the derivation of the linearized

matrices Ai are presented in Zhao et al. (2020). Among the

constraints, we also consider the thrust force and joint

torque within their valid ranges. This is achieved by

making a quasi-static assumption for the manipulation

motion. Then, the static thrust force can be calculated

from the joint angles and the root pose. Further, the joint

torque can be also retrieved from equation (21). Since

these static values depend only on the kinematics

model, the corresponding Jacobian matrix can be de-

rived regarding δξk, and thus, the inequality constraints

for thrust force and joint torque are also available. The

detail can be also found in Zhao et al. (2020).

2. Update the state in the configuration space by adding

the resulting infinitesimal motion

ξðt þ 1Þ ¼ ξðtÞ þ δξðtÞ (176)

Figure 26. Graspless manipulation by a single end-effector to

move an object which has surface contact with environment.

The goal is to move the object to a desired position rdesobj with a

desired orientation angle ψdes
obj . External force fee(t) contains the

manipulation force and the constraining force fη.
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where ξ(t + 1) is the next desired configuration for the

robot (ξdesdξ(t + 1)). Then, the desired robot CoG pose

ð
Wf g

rdesfCoGg,
Wf g

RfCoGgÞ can be calculated from the

desired root pose ð
Wf g
rdesfL1g,

Wf g
RfL1gÞ and the desired

joint angles qdes based on forward kinematics. As

shown in Figure 25, the desired CoG pose are then sent

to the flight control framework presented in Section 3,

and the desired joint angles qdes are sent to the joint

actuators.

External wrench compensation

It is also important to exert proper force to move an object,

because the reaction (external) force also influences the

flight stability. Although the reaction force can be com-

pensated by the P and I control in the flight control

framework, such passive compensation significantly de-

grades the tracking performance of the robot (and the end-

effector) trajectory. Thus, an additional force must be ex-

erted by the end-effector for active compensation. We as-

sume that the object moves with a constant velocity, then the

end-effector is required to exert a three-dimensional force to

counteract the friction owing to the surface contact. Then

the desired reaction force can be calculated as follows

f eeðtÞ ¼ �ffric
ΔrðtÞ

kΔrðtÞk
þ f η (177)

where ffric is the scalar of the friction force. fη is the re-

action force from the surface to ensure steady contact

between the end-effector and the object as shown in

Figure 26.

This reaction force is updated at every iteration of

equations (169)–(172), and is substituted into equations (25)

and (29) for active compensation. Generally, the actual

friction force is measured by a force sensor attached to the

end-effector. However, we assume that coefficient ratio of

the object material and the object mass are well known, and

thus, the friction force can be estimated feed-forwardly. The

offset from the actual external force value, which can be

considered as a steady-state error, can be compensated by

the proposed flight control method as presented in

Appendix D.
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