Accurate and Efficient Simulation
of Rigid Body Rotations

Samuel R. Buss*
Department of Mathematics

University of California, San Diego

October 30, 2001

Abstract

This paper introduces efficient and accurate algorithms for simulating
the rotation of a three-dimensional rigid object and compares them to
several prior methods. The paper considers algorithms which exactly
preserve angular momentum and either closely preserve or exactly
conserve energy.

First, we introduce a second-order accurate method that incorporates
a third-order correction; then a third-order accurate method; and finally
a fourth-order accurate method. These methods are single-step and the
update operation is only a single rotation. The algorithms are derived
in a general Lie group setting. Second, we introduce a near-optimal
energy-correction method which allows exact conservation of energy.
This algorithm is faster and easier to implement than implicit methods
for exact energy-conservation. Our third-order method with energy
conservation is experimentally seen to act better than a fourth-order
accurate method.

These new methods are superior to naive Runge-Kutta or predictor-
corrector methods, which are only second-order accurate for sphere-valued
functions. They are also superior to the explicit methods of Simo-Wong.
The second-order symplectic McLachlan-Reich methods are observed to
be excellent at approximate energy-conservation for extended periods of
time, but are not as good at long-term accuracy as our best methods.
Finally we present comparisons with fourth-order accurate symplectic
methods, which have good accuracy but higher computational cost.
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1 Introduction

In this paper we consider the problem of simulating accurately and efficiently
the motion of a three dimensional, rigid object. We are firstly interested in
methods which preserve, or nearly preserve, the physical quantities of angular
energy and angular momentum, and secondly interested in methods which are
highly accurate over a period of time.

For simplicity, this paper considers primarily the situation where the body is
moving freely, with no applied forces or torques; however our methods are stated
generally so as to still apply when forces and torques are present. Our algorithms
are designed so that angular momentum is exactly preserved, and therefore the
quality of our algorithms will be judged by the two criteria of how well they
conserve energy and how accurately they predict orientation. Conservation
of energy is a physical law and of course energy should be conserved by any
accurate simulation, but conservation of energy is desirable even in simulations
where accuracy is not important, since if a simulation conserves energy, then
the simulation is guaranteed to be stable.

Section 2 of this paper introduces our notation and reviews the mathemati-
cal /physical theory of rigid rotation. In section 3, we list a variety of methods
for simulation of rigid rotation. These methods are loosely characterized as
“first-order,” or “second-order,” or “third-order,” or “fourth-order.”’ Our
new simulation methods are essentially Taylor series methods adapted to the
non-linear situation of rigid rotations. One important new aspect of section 3 is
the introduction of additional third-order terms which dramatically improve
the performances of a traditional second-order or third-order simulation.
The additional third-order term is obtained by an analysis of the effect of
time-varying rotation vectors: since the space of rotations is not a Euclidean
space, an additional third-order term is introduced. Later (in section 5) we
show how to derive the additional third-order term in the general setting of
Lie algebras, and further how to derive higher-order methods. Because of the
additional third- and higher-order terms, the traditional methods of solving
differential equations, such as Runge-Kutta and predictor/corrector methods
which are fourth-order correct in a Fuclidean space, are only second-order
correct for orientation a rigid body. ¥ Section 3 also describes the second-order
accurate McLachlan-Reich explicit symplectic methods and their extensions to
fourth-order accurate methods.

Section 3 concludes with a rough calculation of the relative computational
costs of the most effective simulation methods.

TThe order of accuracy refers to the accuracy in orientation: thus “second-order” means
that angular velocity is computed with first-order accuracy and orientation is computed
with second-order accuracy, etc.

¥Since preparing the first version of this paper, we have become aware of work by
Munthe-Kaas [26, 27], Crouch-Grossman [5], and Marthinsen-Owren [21, 29], who have given
third- and fourth-order accurate implementations of Runge-Kutta algorithms on arbitrary
Lie manifolds. We have not carried out experiments with any of these more sophisticated
Runge-Kutta algorithms: see the end of section 3 for our speculative comparisons with our
own algorithms.



Section 4 introduces a method of correcting simulation so as to preserve
energy. The energy correction is applied after a simulation step (or series of
simulation steps) and readjusts the rigid body orientation so as to preserve
its angular energy. This is done by solving a 3x3 matrix equation for the
orientation which restores the previous energy value. The adjusted orientation
is obtained by moving at almost right angles to the path of the correct
orientation so very little simulation error is introduced by the energy correction
step.

Section 5 derives our third-order correction term in the setting of Lie
algebras. This derives a fourth-order accurate algorithm as well, and is extended
to even higher-orders. In addition, it means that our higher-order (third- and
fourth-order) methods can be extended from the rotation group to general Lie
groups.

In section 6 we show the results of experiments. We focus first on energy
preservation in the case where the energy correction is never applied. This
measures how well the simulation preserve energy, and is an important indication
the stability of the simulations. Our results here show the importance of the
inclusion of the correct third-order terms, since our “augmented” second- and
third-order methods greatly outperform second-order methods such as Runge
Kutta and predictor/corrector. However, the outstanding performer in terms
of energy preservation is the symplectic algorithm of McLachlan-Reich. It is
seen to have a very small energy drift even over as many 200,000,000 simulation
steps when doing large rotations in each time step.

In the second part of section 6, we measure the long-term accuracy of
the simulations. First we consider the behavior of the sub-fourth-order
accurate methods. Here our third-order method vastly outperforms the
augmented second-order method, and the augmented second-order method
significantly outperforms the traditional Runge-Kutta and Adams-Bashforth-
Moulton methods. To quantify this, if one considers the trade-off between
accuracy and computational effort, then our augmented second-order method
is approximately six times more efficient than either Runge-Kutta or Adams-
Bashforth-Moulton; whereas the third-order method is yet significantly more
accurate. The McLachlan-Reich second-order methods showed somewhat mixed
results since its long-term accuracy depended heavily on the order in which the
axes were considered. For the worst axis ordering, it performed comparably
to the other second-order methods, whereas in the optimal axis ordering, the
long-term accuracy was like that of a third-order algorithm. Interestingly, the
McLachlan-Reich symplectic method usually gained long-term accuracy when
combined with our energy-conservation correction (especially with the worst
axis-ordering). Overall, the best long-term accuracy was obtained by our
third-order method with the energy correction applied, which showed better
than fourth-order accuracy. The computational cost per step of this method is
only slightly worse than the second-order McLachlan-Reich symplectic methods,
and they are both a little cheaper than Runge-Kutta methods. Finally,
section 6 considers fourth-order accurate methods. Here the McLachlan-Reich
fourth-order method takes the fewest steps to achieve a given level of accuracy,



but has the downside that 13 separate rotations must be taken per step.
The large number of rotations per step takes time and also means additional
opportunity for roundoff errors to accrue. The fourth-order method performed
quite well either with or without energy preservation, but for some unexplained
reason, the third-order method with energy preservation still outperformed the
fourth-order method.

The experiments reported in section 6 confirm that our new third-order and
fourth-order methods are correct and achieve third-order and fourth-order (re-
spectively) accuracy. When combined with our energy-preservation method, the
third-order method behaves like a better-than-fourth-order accurate method.

In prior work, a number of authors have considered the problem of accurately
simulating rotation and of ensuring stability through energy conservation.
Massoud and Youssef [22] considered the general problem of numerically solving
first-order sphere-valued differential equations and found that the Runge-Kutta
algorithm was not even as good as merely using the average of the current and
the next rotation matrix. This method is only second-order accurate and does
not even preserve orthogonality of the rotation matrix. A couple papers have
designed energy-conserving algorithms based on Newmark’s algorithm: Simo
and Wong [33] have given a second-order accurate algorithm which exactly
preserves momentum and energy and Géradin and Rixen [12] have developed
a related second-order accurate algorithm which also preserves energy. These
algorithms preserve energy and momentum exactly, but have the drawback of
being implicit algorithms which means that they are computationally inefficient
since the calculation of single time step requires an iterative procedure based
on Newton’s method to find the next configuration. By comparison, our
algorithms are quite simple and do not involve any iteration. Simo and
Wong [33] also gave an explicit algorithm based on Newmark’s algorithm which
preserves momentum but not energy. Their best explicit algorithm, ALco_C1
with v =1 and 8 = 0, is compared with our algorithms in section 6: it is
seen that this algorithm is essentially equivalent to our simplest “first-order
algorithm”, i.e., that it is quite inaccurate and does not preserve energy
well. Another approach to simulating rigid body motion is the symplectic
algorithm of Ge and Marsden [11]: their algorithm has long term stability, but
is only first-order accurate, does not exactly conserve energy and it has the
disadvantage of being implicit. Further implicit symplectic algorithms for rigid
body rotation have been given by Channell and Scovel [4], Ge [10], Lewis and
Simo [19], McLachlan and Scovel [25] and Reich [30, 31]. McLachlan [23] and
Reich [31] introduced an explicit symplectic algorithm for rigid body rotation,
which exactly preserves momentum. As discussed above, we compare below the
performance of the McLachlan-Reich explicit algorithm to our other algorithms:
it generally lives up the high reputation of symplectic algorithms and, in
particular, is excellent at approximately conserving energy over the long-term.
Dullweber-Leimkuhler-McLachlan [6] report experiments on the accuracy of
rigid body movements for molecular dynamics; they also include comparisons
with Runge-Kutta style algorithms. Holder-Leimkuhler-Reich [15] give another



symplectic algorithm for rigid body rotation which is time-symmetric with
variable step size.

For a survey of symplectic algorithms, the reader can refer to Channell
and Neri [3]. According to them, symplectic algorithms frequently do not
have good accuracy or exact energy preservation, but do often succeed in
preserving the global, long-term behavior of a system. Theoretical reasons for
the long-term stability of symplectic algorithms have been given by [1, 14, 32].
There are various methods of extending explicit symplectic methods to higher-
order explicit symplectic methods [3, 35, 24]. Using one of these methods,
we implemented and tested a fourth-order version of the McLachlan-Reich
symplectic method. It is compared with our third- and fourth-order method in
section 6.

Acknowledgements. We thank R. McLachlan and S. Reich for suggestions
and for pointing out a error in a preliminary draft of this paper. We thank
also Jay Fillmore and Nolan Wallach for discussions on Lie theory. Finally, the
referees’ comments on the first draft of the paper helped improve the proofs of
our paper considerably.

2 The theory of 3D rotations

This section reviews the basic theory of 3D rotations and establishes notation.
We include a description of Poinsot’s inertial ellipsoid since this will greatly
help intuition about the accuracy of our algorithms and will form the basis for
our energy preserving algorithm. The contents of this section are standard and
well-known (see, e.g., [13] or [34]).

Rotation matrices and vectors. Since translational motion may be decou-
pled from orientation and rotational method, we will be interested in only the
orientation and rotational motion of a rigid body. We presume that we have
a rigid body which is changing orientation over time according to some fixed
trajectory, and that the center of mass is fixed while the body’s orientation
changes as a function of time. There are two frames of reference: the world
(or spatial) coordinate system which is a fixed frame of reference, and the body
coordinate system which is a frame of reference attached to the body and which
moves with the body. The two frames of reference have a common origin which
is presumed to be at the center of mass of the body. The orientation of the
body at time ¢ can be specified with an orientation matrix 2 = Q(¢) such that
if v is a vector specified in body coordinates, then Quv is the vector expressed
in world coordinates. We have Q7' = Q7 , where the superscript ” indicates
the transpose.

A rotation vector w is a vector which specifies an action of rotation of
||w]|| radians around the axis w with the direction of rotation specified by
the right-hand rule. It is known that every orientation matrix corresponds to a
rotation vector (see [12] for a comprehensive survey of various representations of



orientation and rotations); and we write R,, for the orientation matrix which
corresponds to the rotation vector w .

Rotation vectors can be used to express instantaneous angular velocity: in
fact, there is a vector w = w (¢) such that if x is a point on the body specified
in spatial coordinates, then the velocity of point x is given by

T = wxz.
This is proved as follows: let X = Q 'z = QTx be the (constant) vector

specifying the point @ in body coordinates. Then & = OX = Q0T x, since
X is constant. The matrix QQ7 is skew-symmetric, since

d . . . .
E(QQT) = QQ7 + Q07 = QQF + (QQT)T = 0.
Now, if v = (v1,v2,v3) and w is an arbitrary vector, then v xwu = Du where
0 —vV3 V2
v is the matrix v = vs 0 —v; |. It follows that every skew-symmetric

—v2 U1 0
matrix, in particular the matrix Q07 has an associated rotation vector. We let
w = w(t) be the vector associated with QQ7, i.e., w(t) is the instantaneous
rotation vector at time ¢, and & = w xa« for any point x fixed on the body.
In the previous paragraph, X was a constant vector (in body coordinates).
When X varies with time and x = QX , then the time derivative of x in
spatial coordinates is

& = QX +0X = wxQX 40X = wxz +0X. (1)

Arguing dually, we have

%(Q_lw) = X = —(V'oxX+07'e = O —wxz+x) (2

The inertia matrix, momentum and energy. For translational motion,
the fundamental equations of motion are that p = mv and F = %va
where p,m, v, E are momentum, mass, velocity and energy, respectively and
v? = v - v = ||v]|2. The physics of rotational motion is analogous but more
complicated. Most notably, the rotational analogue of the scalar mass is a 3x3
matrix I called the inertia matriz (or, ‘inertia tensor’). The matrix I changes
with the body’s orientation: letting J denote the inertia matrix expressed in
body coordinates, then .J is constant and I = QJQ~!. It is known that J
is positive definite and self-adjoint (hermitian) and in particular, it is possible
to choose the body coordinate system so that J is a diagonal matrix with
all entries on the diagonal positive. Likewise, I is real, positive definite and
symmetric. The self-adjointness (or the fact that J is diagonal) implies that
u-(Iv)=(u)- v, for all vectors u, v, where ‘-’ denotes the dot product.
The angular momentum is denoted L and is constant unless external

torques are applied. If T is the applied external torque then L = T'. The



fundamental equation of angular motion for rigid bodies is:
L = Jw. (3)

This implies w = I"'L, so the instantaneous rate of rotation can be
determined from knowledge of L . In the situation where there are no externally
applied torques, L is constant, however, w is not constant in general since
the inertia matrix changes with the body’s orientation. This corresponds to the
fact that spinning objects will be observed to wobble when the rotation vector
is not an eigenvector of the inertia matrix.

Taking the time derivative of equation (3) using the chain rule and equations
(1) and (2), we obtain Euler’s equation for the derivative of the momentum:

- d d
W) = =( w)
= wx(QJQ W)+ QI H(~wxw + W)
= wx(Iw)+Iw
wxL 4 Iw (4)
Solving for w yields
w =I"YL -wxlw) = I"'Y(L —wxL). (5)

Taking the time derivative of equation (4), and again using the chain rule
and equations (1) and (2), we obtain a formula for the second derivative of
momentum:

L = XL +wxL+wxlo—T(wxw)+1d. (6)
Using equation (4) to rewrite the third term gives:
L = XL +2wxL —wx(wxL)—I(wxw)+1&. (7
Solving for w gives:
O = wxWHIT YL —wxL —2wxL +wx(wxL)). (8)
Differentiating (8) and simplifying gives the third derivative of rotation as:

W = 2wXd—wx(wxw)
+ I YL — 3wx L — 3wx L — &x L + ax(wxL) (9)
+2wx (WX L) + 3wx (wx L) — wx(wx(wxL)).
Equations (5), (8), and (9) will appear as higher order terms in our simulation

algorithms in section 3.
The angular kinetic energy of a rigid body can be defined as

E=1iL w. (10)

)



An alternative definition of energy can be given as follows. For non-zero w, let
n be the unit vector n = w/||w]| in the same direction as w. The angular
inertia around the instantaneous axis of rotation is defined as Z = n - Im . Note
that 7 is a scalar and a function of time. Then clearly the energy FE is equal to
17||w||?, which is a familiar formula from the case of a constant rotation axis.

For our purposes, the important aspect of energy is that it is constant in the
absence of external torques. To prove this, take the derivative of equation (10)
to get

E = YL-wo+w- L) = }((w)- TN (L -wxL)) +w- L)

(w-(L-—wxL)+w-L) = w-L—%w-(wa)

€ o=

L (11)

where we have used equation (5) and the self-adjointness of /. When there are
no external torques, L = 0 and the energy is constant.

The inertial ellipsoid. Poinsot’s inertial ellipsoid is a an ellipsoid rigidly
attached to the rigid body that provides a good qualitative description of
the orientation and angular velocity of the body. It is convenient to work
mostly in body coordinates, especially because the inertial matrix J in body
coordinates is a constant, diagonal matrix. Accordingly, let ¥ = Q2 'w be the
instantaneous rotation vector expressed in body coordinates. Define the vector

p as p = IIUIIII N The direction of p is the same as v, and its magnitude

depends on only its direction. Of course, m = v/Z Qp and therefore,

p-Jp = 1 (12)

Letting J’s diagonal elements be Ji1,J22,J33 and p = (p1, p2, p3), equa-
tion (12) states Ji1p3 + Jo2p3 + Jazpi = 1. Therefore the set of p’s satisfying
p - Jp =1 is an ellipsoid, called the inertial ellipsoid.

Let F(p) = p-Jp. The outward normal to the inertial ellipsoid at the
point p is in the direction of the gradient, VF(p), of F at p. Expressing the
gradient in body coordinates, we have

VF = <2J11p1,2J22/)2,2J33/)3> = 2Jp (13)

or, letting Ly; = Q7' L be the angular momentum in body coordinates,

2 2 [2
VEF =207'1Qp = ————Q 'L = ——— Ly = \/ =Lw. (14)
lwl[VZ lwl[VZ E

Thus the outward normal of the surface F' =1 at p is in the direction of the
momentum vector.
Finally, since

w- L 2F
p- Ly = = = V2E, 15)
l|w||VT V2F (
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Figure 1: This figure shows the inertial ellipsiod, the invariable plane, the
polhode and the herpolhode. The angular momentum is downward, so the
invariable plane is horizontal. The herpolhode is a curve traced out on the
invariable plane, and the polhode is a curve on the surface of the inertial
ellipsoid.

the vector p must lie in the plane perpendicular to the momentum vector
consisting of points whose dot product with Ly equals v2E: this plane is
called the invariable plane. Under the assumption of no externally applied
torques, E and L are constant (in spatial coordinates), so the invariable plane
is a spatially fixed, unvarying plane.

To summarize what the Poinsot construction has established so far: at any
given instant in time, the inertial ellipsoid is tangent to the invariable plane
at the point p and the rotation axis passes through the point p. Assuming
there are no external torques, this means that the inertial ellipsoid rolls along
the invariable plane without slipping. The vector p traces out a closed curve
(loop) on the inertial ellipsoid, called the polhode. It also traces out a curve on
the invariable plane; this curve is called the herpolhode.’

There is one further fact about the polhode that we mneed for our
constructions in section 4; namely, the polhode is equal to the intersection
of the inertial ellipsoid with a second ellipsoid which is also fixed in the body
frame of reference. Equation (14) implies that the points p on the polhode

§ As Goldstein [13] remarks, this gives rise to the jabberwockian statement: the polhode
rolls without slipping on the herpolhode lying in the invariable plane.



satisfy ||[VF(p)||? =2||L||?/E. From equation (13), we compute

2L

IVE(p)|I* = 4J301 +4T5005 +4J5305 = =

(16)
The last equation defines an ellipsoid of course and since p is in body
coordinates, this ellipsoid is fixed in the body frame of reference. Therefore
the polhode is the intersection of two ellipsoids fixed in the body frame; or
more precisely, the polhode is one of the two connected components of the
intersection of the ellipsoids.

The intuition of the inertial ellipse rolling on the invariable plane will give
us good insight into why certain simulation methods work well or poorly.
Furthermore, in section 4 we will use the polhode and invariable plane and the
characterization of the polhode as the intersection of two ellipsoids to develop
a method for preserving energy during simulation of rotation.

3 Simulation methods

Our algorithms for simulation of the rotation of a rigid body use discrete
time steps to calculate the orientation and momentum of the body at times
tp < tg < tg < ---. Our goal is to compute, at each instant of time, the
orientation matrix ; = Q(t;). We assume that the angular momentum L
is given exogenously; that is to say, the angular momentum (and sometimes
its derivatives) is given as an input and we do not compute it. For the
experiments reported in section 6, there are no external torques and the angular
momentum L is constant and L = L = 0. In more general applications,
the angular momentum will change with applied torques and impulses — in
some applications, the applied torques will depend on the angular velocity or
the angular acceleration; however, in any event, the computation of applied
torques is application-dependent and beyond the scope of the present paper.
We write L, Li, f/i, etc., for the externally given angular momentum and
its derivatives at time ¢;.

Under the assumption that the angular momentum is known, then com-
puting the orientation €; at time ¢ is sufficient to fully specify the rest of
the parameters of the motion of the rigid body, including angular velocity and
angular acceleration, by use of equations (5) and (8). Since the body is rigid,
the inertia matrix in body coordinates is a constant matrix J, and in world
coordinates, the inertia matrix at time t; is I; = €;J Q;l.

All the algorithms given below compute €2;41 from 2; by first computing a
“average rotation” vector @ and then setting

Qit1 = Ruaoll,

where h = t; 1 —t; is the time increment and R} g is the rotation matrix which
corresponds to the rotation vector h@, a rotation around the axis @ of h||@||
radians. The algorithms presented below do not require that the time intervals

10



t;+1 —t; are all equal, with the two exceptions of the Adams-Bashforth-Moulton
predictor-corrector method and the Simo-Wong method. The latter method is
easily modified to handle unequal time intervals.

The first-order method. We first discuss the (poorly performing) first-order
method. For this method, we just calculate the instantaneous velocity at time t;
according to equation (3) and apply this velocity during the entire time step:

THE FIRST-ORDER METHOD
w=w;=I'L;.
Update orientation as ;11 := Rpo

It is easy to qualitatively analyze the behavior of the first-order method with
the aid of the inertial ellipsoid. Let us view the momentum as pointing straight
down (in spatial terms): then the invariable plane is horizontal and at time ¢;
the inertial ellipsoid is above and tangent to the invariable plane, P;, at a point
with body coordinates p,. We call this point the ‘lowest point’ on the inertial
ellipsoid. The rotation vector w; passes through this lowest point. When
the inertial ellipsoid is rotated around this rotation vector, then clearly the
new lowest point on the inertial ellipsoid will be below the original invariable
plane P;.

Therefore, after one step of the first-order method, the next time step will
find that the lowest point on the inertial ellipsoid is lower than the previous
lowest point. That is to say, p;,y+ L > p; - Lw, under the assumption of
constant momentum. By equation (15), E = (p - Ly/2)?, and this means that
the energy has increased from one time step to the next.

Therefore, the first-order method will cause the energy to increase cumula-
tively and monotonically; and the experiments below show that this increase
in energy can be quite quick and dramatic, even for relatively small rotation
increments. Therefore the first-order method is almost never an appropriate
method, except in applications where the rotation increment is very small or
where accuracy and energy conservation are unimportant.

The second-order method. To improve on the poorly performing first-order
method, we try a second-order method. The average rotation is now estimated
as w = w+ %d) , where the instantaneous rate of change of the rotation vector
is calculated using equation (5).

THE SECOND-ORDER METHOD
w;=I;'L;.
vi=I"YL; — wixL,)
Wi i 4 Wi i)
Let @ = w; + %wz
Update orientation as ;11 := Rpo

In terms of computational effort, the second-order method is only slightly
slower than then first-order method.

11



The experiments below show that the second-order method is substantially
better than the first-order method. However, the experiments still reveal a
steady and monotonic increase in the energy, and we therefore seek yet better
methods.

The false third-order method. The obvious next method to try is a
third-order method based on the second time derivative of the angular velocity.
We include this method for completeness sake, however, the analysis of the
“augmented second-order method” shows that this method is not truly third-
order at all. This is confirmed by the experiments below, which show that the
false third-order method is not much better than the second-order method.

FALSE THIRD-ORDER METHOD
w;=I;'L;.
wi=1I"(L; - wixL;).
O =wixw;+ I (Li—@wixL; —2w;xL; + wix(w;xL;)).
Let @ (= w + %wh—l— %C&hQ.
Update orientation as ;11 := Rpo

Augmented second-order method. The justification for the second-order
method and the false third-order method above are based on using the
derivatives of the rotation vector w to estimate the average rotation vector
during the current time interval. However, since rotation operators are not
commutative, the average of the rotation vectors is not the equal to the
“effective” rotation vector: that is to say, merely taking the average of the
applied rotation vectors does not yield a rotation vector which correctly gives
the overall rotation of the body in the next time interval. Instead, one must
also account for the order in which the rotations are applied.

We give a simple calculation which illustrates this point and then will
use this to obtain an adjustment to the rotation vector which is second-order
accurate. Suppose that a disk is rolling along a line. The motion of the disk can
be described as a series of infinitesimal rotations: if the disk starts at position p
on the line and rolls at velocity v, then at time ¢, the disk is rotating at a rate
of w radians per second around the point at position p + vt. Thus, the line
along which the disk is rolling is also the line through which the instantaneous
rotations occur. After time ¢y has elapsed, the disk has moved distance vty and
rotated ¢ = wty radians, where w = v/r. The overall motion of the disk during
this time is equivalent to a rotation of wty radians around a fixed point ¢ as
illustrated in Figure 2. This ¢ is an “effective average” of the instantaneous
rotations even though it does not lie on the line of instantaneous rotations.

In figure 2, the disk has moved a considerable distance, so the point ¢ is
high above the line of instantaneous rotations. We will be considering the
net effect of rotations over a short period of time, and in this case, ¢ will
be seen to be close to the line of instantaneous rotations. We wish to give a
second-order accurate approximation for the position of the point ¢. First of

12



p+ vt p + vl

Figure 2: This shows the starting and stopping position of a disk which has
rolled along the line. The rolling motion is equivalent to rotation by angle ¢
around the point ¢. The points a,b are fixed points on the circumference of
the disk; the point c is the center of the disk. The positions of the points after
the disk has finished rolling are labelled o', ¥, c’.

all, by symmetry, the point ¢ must lie above the midpoint p+ %vto of the line.
In fact, a first-order accurate approximation for ¢ is simply ¢ ~ p + %vto .

Let h be the height of ¢ above the line. From geometric considerations,
letting ¢ and ¢’ be the starting and ending positions of the center of the disk,
the lines g and ¢/q both make an angle of ¢/2 with the vertical (refer to
Figure 2). Therefore,

Using the approximation tan(y/2) &~ ¢/2+ ¢3/24, and solving for h, we obtain

- 9027” —~ L,

STl 3P
So, the position of ¢ is approximately a height of (1/12)p?r above the midpoint
of the line. This estimate for h and ¢ is clearly (better than) second-order
accurate.

To transfer our calculation of ¢’s position to the setting of 3D rotations,
consider the situation where the rigid body is undergoing an instantaneous
rotation given by rotation vector w and its rate of change has been computed
as w. We wish to compute the motion of the body over time interval h
as a pure rotation based on a rotation vector @. In the second-order and

13



the false third-order method we approximated this with the rotation vector
w + hw/2. When w is parallel to w, this is fine; but in the situation where
w is perpendicular to w, we can give a better approximation by modeling
the rotation with a planar disk which is rolling with a total rotation of h||wl||
traveling a total distance h||w]|. According to the analysis of a rolling plane,
the net rotation should be approximated by using w + hw /2 plus a lateral
displacement of Lh||w]| - hl|w|| (under the assumption that w and w are
perpendicular). To simultaneously handle the components of w perpendicular
to and parallel to w, one can use

- h - ﬁ
w—w+2w+12wxw.

Note how the cross-product neatly handles only the perpendicular components
and correctly chooses the displacement direction.

We still need to verify that modeling the 3D rotations in terms of rolling
in the plane does not introduce additional significant error and that the above
approximation for w 1is second-order accurate. This could be proved using
a more careful proof than we gave above; however, we shall not do this.
Instead we shall obtain, in section 5, a second, more general proof of the above
approximation based on general Lie algebras.

We thus have derived the following algorithm incorporating the third-order
energy correction term:

AUGMENTED SECOND-ORDER METHOD

w;=1I;7'L;.

(.:Ji = Iz_l(]_'/z — Ww; X Lz)

Tet @ = h - hZ /.

et Wi=w;+ 3w+ T5(wixw;).
Update orientation as ;11 := Rpo
The experiments reported below confirm that the inclusion of the third-

order term significantly improves conservation of energy. The computational

complexity of the augmented second-order method is quite good: it requires
only one more cross-product calculation than the earlier second-order method.

True third-order method. By incorporating the above third-order correc-
tion, the correct third-order simulation algorithm is obtained:

TRUE THIRD-ORDER METHOD
w;=I;'L;.
(.:Ji :Iz_l(]_'/z — w; X Lz)
w = wixwi +Iz_1(L1 — (.c.JiX Li — 2wi>< Li + wix(wixLi)).
— . 2 .. 2 . ..
Let @ = w;+ 20+ %20, + L (0 +2&)xw,).
Update orientation as ;11 := Rpo

Our experiments confirm that this method is third-order correct.
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The difference between the computational complexity of the augmented
second-order method and the third-order method is one instance of multiplying
a matrix and a vector and one instance of vector cross-product.

The algorithm above includes a fourth-order correction term, %C&ixwi.
This is included only because (w;+ %wz) is an estimate for the average rate of
change of w over the time step. There is no other theoretical justification for
this term, since there are other fourth-order terms that could equally well be
included. However, in our experiments we have found that energy conservation
is somewhat improved with inclusion of this term — in our experiments this
term reduces the energy drift by a factor of approximately one-third.

True fourth-order method Section 5 derives a fourth-order 3accurate
method which includes the additional fourth-order correction term }2‘—46&ixwi
into the calculation of @ .

TRUE FOURTH-ORDER METHOD

w,=1"L;.

(.:Ji :Iz_l(]_'/z — w; X Lz)

w = wixwi +Iz_1(L1 — (.c.JiX Li — 2wi>< Li + wix(wixLi)).

w; :2wixdbi—wix(wixwi)+1_1[i—Swixf/i—SwixLi—@ixLi
—|—(.:Ji><(wi>< Li)+2wix(wixLi)+3wix(wixLi)
—w;x(w;x(w;x L;))].

- h - h2 . h2 . h3 h3 .
Let @ '=w;+5w;+ Fw;+ 5wiXw; +37w;+ 57w Xw;.
Update orientation as ;11 := Rpo

Simo and Wong’s explicit algorithm. As discussed above, Simo and
Wong [33] gave several algorithms for simulation of rigid rotations. Their
energy preserving algorithm is unfortunately implicit and requires an iterative
use of Newton’s method in each time step; in addition, it is much more difficult
to implement than the algorithms above. Simo and Wong also gave a couple
explicit algorithms which are much faster and easier to implement. Their
best explicit algorithm, ALGO_C1 wWiITH v =1 AND 8 = 1, preserves angular
momentum exactly, but does not exactly preserve energy, very similar to own
algorithms.

SIMO-WONG EXPLICIT METHOD (7 =1 AND 8=0)
w;=1I;7'L;.
Let v; = Qi_lw .
Set a; = (v;—v;_1)/h.
Let v :=v; + %ai.
Update orientation as ;11 := Q; Rpp .
The Simo-Wang algorithm is not self-starting since it requires knowledge of

v;_1: thus some other algorithm must be used in the first time step to start
the simulation.
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The essential idea of the Simo-Wong explicit algorithm is to use the current
and previous angular velocities to estimate the angular acceleration in body
coordinates and then use this to forward estimate the angular velocity as w .
From the intuition of the Poinsot inertial ellipsoid, it is clear that this will place
the rotation vector @ below the invariable plane. This is in contrast to our
third-order adjustment 11—2(<.b><w) introduced in the augmented second-order
method above, which pushes the rotation vector up above the invariable plane.
We therefore expect the Simo-Wong method to be worse than our second-order
method above: this is borne out by our experiments, which show that the
Simo-Wong method has accuracy almost identical to the accuracy of the simple
first-order method.

McLachlan’s and Reich’s explicit symplectic algorithm. McLach-
lan [23] and Reich [31] describe a simple explicit symplectic algorithm for
simulation of rigid body rotation, which exactly preserves angular momentum.
We present here an equivalent, but somewhat complicated, version of their
algorithm based on the use of spatial coordinates instead of body coordinates.
The essential idea of this algorithm is that the rotation vector is computed in
body coordinates, and then is separated into its components along the body’s
x, y and z axes. One of these components of the rotation is performed and
then the process is repeated (a total of five times).

MCcCLACHLAN-REICH EXPLICIT SYMPLECTIC ALGORITHM
UPDATE[1, $h]
UPDATE[2, 31]
UPDATE([3, h]

[

[
UPDATE[2, 31]

[

1,1n]

2
where UPDATE[x, 7] is the algorithm:

UPDATE[z, 7] (x specifies one of the body’s principal axes)
Compute Ly = Q' L, angular momentum in body coordinates.
Let v :=J 1 Ly.
Set v be the vector which is the component of v in the direction of the
principal axis = of the body.
Update orientation as 2 := QR 5.

Some explanation is in order here: the above algorithm updates the
orientation in five steps, each step being a rotation around one of the body’s
principal axes. Accordingly, the best implementation of the algorithm uses body
coordinates. Thus each of the five rotations involves calculating and applying
a rotation in a two-dimensional subspace. Calculating this rotation requires
computing sin# and cos 6 for a rotation through angle 6, and doing a 3x2 by
2x2 matrix multiplication to update the orientation. The body’s momentum
vector in body coordinates can be updated with a 2x2 matrix multiplication
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(using the transposed matrix). Since J is diagonal it is easy to compute the
body rotation vector from the body momentum vector.

Therefore, the computational cost of the McLachlan-Reich update step
is dominated by the time required to compute 10 trigonometric functions:
i.e., five pairs of sines and cosines. A commonly used way to reduce the
computational cost is to use Cayley transforms which use sinx ~ t/(1 + t2/4)
and cosz ~ (1 —t2/4)/(1 + t2/4) — this has the advantage of preserving the
matrix orthogonality as well as the symplectic property of the algorithm. Note
the Cayley transforms give third-order accurate approximations to sinz and
COS .

The algorithm chooses an arbitrary ordering of the axes to determine the
order in which the rotations are applied. (We used the 1-2-3 ordering above.)
Our experiments (not all reported below) found that the ordering of the axes
made a large difference in the performance of the algorithm. Experimental
results are reported below for both the overall best-performing ordering (2-3-1)
and the overall-worst performing ordering (1-2-3) of the axes.

One of the common benefits claimed for symplectic algorithms is long-term
stability, e.g., as measured by fluctuating energy which never leaves a bounded
region (see, e.g., [3]). This claim was amply borne out by our experiments.

Yoshida [35] gives a general method of transforming a m-order explicit
symplectic method into an (n + 2)-order explicit symplectic method. For
n = 2, this coincides with earlier constructions of Neri and Forest-Ruth [9], and
allows the above second-order method to be transformed into a fourth-order
method, albeit at a substantial increase in computational cost.

The basic algorithm can be described as follows: let zo = 1/(2 — 2'/3) and
let z; = —2'/3/(2 —21/3) (note x1 < 0 and 2z¢ + x; = 1). For fourth-order
accurate update for time step h, first run the second order symplectic method
for a time step of xgh, then again for a time step of x1h, and then once
again for a time step of xgh. This can be streamlined a little into an update
procedure that contains 13 updates around the principal body axes:
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MCLACHLAN-REICH FOURTH-ORDER, EXPLICIT SYMPLECTIC ALGORITHM
UPDATE[1, $zoh]
UPDATE[2, $x0h]
UPDATE|3, zoh]
UPDATE[2, $x0h]
UPDATE[1, (20 + z1)h]
UPDATE[2, 121h]
UPDATE|[3, 21 h]
UPDATE[2, $x1h]
[
[
[
[
[

UPDATE[1, 3(zo + 1)h]

UPDATE[2, $zoh]

UPDATE|3, zh]

UPDATE[2, $x0h]
UPDATE[1, $z0h]

Runge-Kutta and Adams-Bashforth-Moulton methods. Our exper-
iments compare the above methods also with the standard fourth-order
Runge-Kutta method and the Adams-Bashforth predictor/AdamsMoulton
corrector (AB-AM) method. These two methods are very widely-used and
for Euclidean-valued functions are well-known to be fourth-order accurate.

To implement Runge-Kutta and predictor/corrector methods for the sphere,
one must be able to take weighted averages of rotations. To do this, we
expressed the averages as quaternions, and then averaged them in Euclidean
4-space.¥ Our experiments show that these two methods are only second-order
accurate in simulating rigid rotations: the reason for this is that the sphere is
not a linear space.

Recently, a number of authors, including Munthe-Kaas [26, 27], Crouch-
Grossman [5], and Marthinsen and Owren [21, 29], have given more sophis-
ticated Runge-Kutta and predictor-corrector algorithms which are applicable
to differential equations on Lie manifolds. We have not tried implementing
these algorithms for rigid body rotations. These Lie manifold Runge-Kutta and
predictor-corrector algorithms are multistep, similar to the standard (euclidean)
Runge-Kutta algorithms. The standard fourth-order Runge-Kutta algorithms
require four rotations per update step, and therefore are somewhat slower than
our new algorithms, which need to perform only one rotation per step (see
the discussion about runtimes below). We would expect similar computational
costs for the fourth-order Lie manifold Runge-Kutta algorithms. However,
an advantage of the Lie manifold Runge-Kutta methods is that they could
presumably be implemented so as accommodate the situation where momentum
is varying, say in response to external forces, without needing to know L, L,

IWe experimented also with using the spherical weighted averages introduced by Buss
and Fillmore [2], but this gave only a very small improvement relative to the additional
computation cost and we abandoned this approach.
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and L explicitly. In comparison, our own algorithms, based on Taylor-series
expansions, can accommodate changes in momentum but only if L, L, and

L are known or can be calculated.

Comparative runtimes We now compare the runtimes of some of the
above algorithms. The first-, second-, third- and fourth-order algorithms are
most efficiently implemented by converting the momentum vector into body
coordinates, since this means that the inertia matrix can be kept as a diagonal
matrix. Once they compute the average rotation vector @, the rotational
update of the orientation matrix may be performed in body coordinates.
The straightforward implementation of the rotation requires two trigonometric
functions, one square root, one divide, and 21 multiplies. In addition to
this rotation, the first-order method uses 15 multiplies, the second-order
27 multiplies, the augmented second-order 36 multiplies, the third-order 61
multiplies and the fourth-order 99 multiplies. All these counts assume that the
derivatives of the momentum are zero, and otherwise, additional cross-product
calculations would be needed, increasing the numbers of multiplies. (Since the
symplectic algorithms we are comparing with make no provision for the rate
of change of the momentum, this seems only fair to assume the momentum is
fixed.)

The symplectic algorithms do rotations only around principal axes, which
reduces the computational cost of the rotations, but they do many more
rotations per time step. A single step of the McLachlan-Reich 2™¢-order method
uses 85 multiplies and 10 trigonometric function evaluations. A single step of
the symplectic fourth-order method uses 221 multiplies and 26 trigonometric
function evaluations.

The energy preservation procedure discussed in the next section can be
optimized to use 32 multiplications, one divide, three square roots and one
rotation. We include its relative computational cost in the table below too.

We experimentally determined (on a Pentium II) that a sine or cosine
evaluation is about the same cost as eight multiplications, a square root the
same as five multiplies, and a divide the same as three multiplications. This
allows us to calculate the relative computational costs of a single step of
each algorithm. The values in the table are scaled so that the 3"%-order
method with energy preservation has unit computational cost per step. The
other computational costs are scaled accordingly (smaller numbers for faster
algorithms). Of course, one should treat the relative computational costs as only
approximations since, in practice, minor differences in software and hardware
configurations can cause significant changes in run times.

If the symplectic algorithms are implemented with Cayley transforms to
avoid the use of trigonometric functions, their runtimes improve to be about
two-thirds of the runtimes reported above. This makes sense especially for
the second-order algorithm since it is still second-order accurate with the use
of Cayley transforms. For instance, the symplectic second-order method with
Cayley transforms would have relative computational cost values of 0.53 and
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Base Without energy ~ With energy

algorithm preservation preservation

1% order 0.30 0.77

274 order 0.37 0.83
Augmented 27 order 0.41 0.87

374 order 0.54 1.00

4 order 0.73 1.19
Symplectic 2"¢ order 0.84 1.20
Symplectic 4" order 2.19 2.65

Figure 3: Relative computational costs of various algorithms.

0.98 (with and without the energy preservation, respectively).

Because they are multistep, the standard euclidean Runge-Kutta algorithms
have runtime that is somewhat worse than even our fourth order method.
The Runge-Kutta’s runtime is dominated by the time needed to perform four
rotations, so its relative cost would be about 1.20 without energy preservation
and about 1.67 with energy preservation. These relative costs levels do not
include the cost of averaging four rotation values for the final rotation substep.
The fourth-order Lie manifold Runge-Kutta algorithm of [26, 28], need to
use five rotations. Both the euclidean Runge-Kutta and the Lie manifold
Runge-Kutta algorithms can be improved as all but the last rotation update
can be applied to a single vector — further speed improvements for rotation
updates can be obtained using the Rodrigues formula or quaternions. Thus,
the computation cost of the Runge-Kutta algorithms is only slightly worse than
than our fourth-order algorithm and is significantly better than the fourth-order
symplectic algorithm.

4 Preservation of energy

In this section we introduce a simple and computationally quick method of
preserving energy. The scenario is as follows: we presume that we know the
energy F = F; of the rotating object, at time ¢;, which can be computed from
the orientation €; and the momentum by equation (10). To preserve energy,
we wish the body to have the same energy at the next time step ¢;11 (perhaps
updated according to equation (11) if external torques are applied). Then one
of the above methods is used to compute an orientation ;41 at time ¢;41. Of
course, none of the above methods preserve energy, so in general, the energy
at time t;11, as given by equation (10), will be slightly different from the
desired energy E. Our goal is to slightly perturb the orientation ;41 so as
to reorient the body to have energy exactly equal to E. To avoid confusion,
we will temporarily call this perturbed orientation €2}, , but in the end we set
Qi—i—l = Q;—i—l .

Recall from the earlier section that the point p lies on the Poinsot inertial
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ellipsoid and the outward normal of the ellipsoid at p is parallel to the
momentum vector (see the discussion around equation (14)). Energy is correctly
preserved if and only if the point p remains on the correct polhode curve. The
idea behind the energy-preservation perturbation is as follows: we first compute
the point p,,; on the inertial ellipsoid from the momentum L = L;;; and
the orientation €;4;. Then find a point pj,; which lies on the correct polhode
and is close to p, ;. Finally, reorient the rigid body so that the surface normal
vector of the Poinsot inertial ellipsoid at the point pj, ; is parallel to the
momentum vector.

The only non-straightforward part is how to choose the point pj,,. For
this, recall that the polhode is the intersection of the two ellipsoids

Ji1pt + Ja2ps + Jagps =1
and )
L]
2F
The level surfaces of the left hand sides of these equations have normals in

the directions of (J11p1, Joopa, J3zps) and (JE p1, Jaap2, Ja3ps). Taking the
crossproduct and multiplying by p1p2ps3, the vector

J121/)% + J222/)§ + J§3P§ =

(Jo2J33(J33 — J22)p3p3p1, J11J33(J11 — J33)pip3pe, JozJi1(Jaz — Ji1)pip3ps)

is orthogonal to the two ellipsoid normal vectors. Holding p;,; =
(po,1, P02, Po,3) constant, let aq,aa, ag be the three values

ar = JaoJ33(J33 — J22) 3 205 35 oy = Ji1Jss(J11 — J33) 05105 35
az = JaaJ11(Ja2 — J11) 05 105 -

and define
h(p1, p2, p3) = c1pi + aaps + asps
The level surfaces of h are hyperboloids and the point p;,; lies on the surface
defined by
{</)1,/)27P3> : h(/)17/)27/)3) = h(/)o,17/)0,27/)0,3)}-

From the definition of A, the level surface hyperboloids intersect the polhode
perpindicularly.

Now we can define the point pj, , by solving three simultaneous linear
equations

J11p7 4 Jozps 4 Jazps = 1
Tt + J5aps + J5ap5 = ||LI?/(2E)
a1pt + azps +aspy = h(po,1, po.2, Po,3)

for the values p?. Then set p] ; equal to (++/p}, £+/p3, £1/p3) where the
signs of the square roots are chosen to agree with the signs of pg 1, po,2, p0,3-
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The calculation of pj,; has the effect of moving the point p,,, along
the surface of the hyperboloid at more-or-less right angles to the polhode —
therefore little error is introduced by this process. The most computationally
difficult part of computing pj,, is the calculation of the three square roots.
The three simultaneous linear equations are easily solved, especially since the
first two equations are fixed and thus pivoting and Gaussian elimination can be
performed with them ahead of time.

The overall algorithm for conservation of energy is as follows:

Input: Q;11, Momentum L = L;;, Energy E.
Compute w;41 = Iz'_—i-ll L,y and v = Q;_:lw .
Compute p,; | = W where T=v - Jv.

Solve for p’ = pj,, as above.

Let 7 = Quy1(J11p}, Jooph, Ja3p5), a vector normal to the inertial ellipsoid
at the point p’ (in spatial coordinates).

Let w be the rotation vector in the direction of 7 x L with magnitude
equal to the angle 6 between the two vectors: w =67 xL/||TxL||.

Let Q;—i—l = Rin—i-l .
Set Qi+1 = Q;-i-l'

In the next to last step, the rotation vector w has been chosen to make
R, be the rotation which aligns 7 to be parallel to L .

It should be noted that there is no guarantee that the linear equations for
p’ will be solvable. For the free rigid body this can happen when the rotation
vector is fixed, so there there is no ‘wobble’ or energy loss anyway. In addition,
it can happen when very large rotations occur in a single step: in practice, we
have never seen this condition arise, but it could be dealt with by letting the
perturbation consist of a tilt towards or away from the principal axis which has
either the highest or lowest moment of inertia.

5 Higher-order methods over Lie algebras

We shall now give a second derivation of the non-linear adjustment term
%(d)i X w;) which was included in the calculation of the @ in the augmented
second-order and in the true third-order methods. This second derivation will
be based on the (inverse) exponential function on Lie algebras, and therefore
applies in the general setting of Lie algebras where w(¢) can be replaced by
any time dependent member of the Lie algebra. Simultaneously, we derive
the non-linear adjustment term %C&ixwi for the fourth-order method, and
show that there is no non-linear adjustment needed with a term involving
wix(wixwi).”

lOur original proof was based on the Baker-Campbell-Hausdorf formula. The referees
suggested the more direct proof, based on the (inverse) exponential function, which is
presented below.
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To move to the setting of a Lie algebra, we write [u, v] for uxv. We
also write [u,v,w] for [u,[v,w]], [u,v,w,x] for [u,[v,[w,x]]], etc.
Adjoints ad(w) are defined as usual, with ad(u)(v) = [u,v]. We write
(ad(w))™ for the n-fold iteration of ad(w). Thus if f(z) is a polynomial or a
power series, f(ad(w)) denotes an operator on the Lie algebra. We shall work
with right-invariant Lie algebras, as they are more elegant for our setting. We
follow roughly the methods and notation of [28]

The reader who is unfamiliar with Lie algebras can translate the above
notation into the setting of rigid body rotations: the elements X,Y,Z of
the Lie algebra are merely rotation vectors. The associated Lie group is the
group SO(3) of orientations of a rigid body. The notation exp(Z) denotes the
operation Rz of rotating the rigid body according to the rotation vector Z.

Suppose W (t) is a time-varying Lie algebra element. (In the setting of rigid
body rotations W is w(t).) Let Wy denote W(0), Wy denote W (0), W
denote W (0), etc. Then we can approximate W (t) with its Taylor series

W(t) = Wo+tWo + 5Wo + L0 + O(tY).

Let h > 0. We wish to find a fixed Lie algebra element Z such that
exp(h - Z) is equivalent to the result of applying the Lie algebra element W (t)
over the time interval t = 0 to t = h. This Z corresponds to the w of our
first- through fourth-order algorithms. We can express exphZ as a “product
integral”, namely the limit at N — oo of

1, |, exp((h/N)W(in/N)),

We write y(h) for the limit of this product. The value of Z is of course a
function of the time, Z = Z(h). We write Y (h) = h - Z(h) and then we have
that exp(Y(h)) = y(h). Taking first derivatives gives:

(dexp)y(Y'(t) = ¥'(t), (17)
or, using the inverse exponential function,
Y1) = (dexp)yly (v (1)) (18)

From the definition of y(t), we have the following power series for ¢ (t) = W(t):

y'(t) = Wo+tWo+ H2Wo + Ht3TWo + - -. (19)
Since Y (0) = 0, we write Y () as a power series
Y(t) = tYp 4 52V 4 5;°Ya + 55t Vs + - -, (20)

and its derivative is Y'(t) = Yy + Yit + %YQtQ + %Yg,t?’ + .+.. In addition, we
have the following power series for (dexp)y ) and (d exp);}t): (c.f. [28])

(dexp)yy = 1+ %ad(Y(t)) + %(ad(Y(t)))2 + %(ad(Y(t)))3 +-0, (2D
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and
(dexp)y(y = 1= 3ad(Y(t) + 15(ad(Y (1)))* = sgg(ad(Y (1)))* +---, (22)

where the general term in the final power series is (By/q!)(ad(Y (¢)))™ for
n=0,1,2,4,6,8,... where B, are the Bernoulli numbers.

We can now calculate Yj, Y7, Ys, ... by substituting the above power series
into either equation (17) or equation (18), then expanding out both sides of the
equation as a power series and equating coefficients of common powers of ¢.
We illustrate this procedure for the lower order terms using equation (17).

First, consider the constant terms on both sides of (17): on the right hand
side it is just Wy of course. On the left hand side, it is immediately seen to be
just Yy. Therefore Yy = Wy.

Second consider the coefficient of ¢ on both sides of equation (17). Again on
the left hand side it is just Wy. On the left hand side, a quick calculation shows
itis Y — %[YO,XO]. Since Yy = Xy, this left hand equals just Y;. Equating
the two sides gives Y1 = X3 .

Third, consider the coefficient of t2. On the left hand side, it equals

1Yy + 1 ([Yo, V1] + 2[V1, Y)) + &[¥0, Yo, Vo] = 1Y — [V, Y.

Setting this equal to the coefficient %Wg on the right hand side gives Yy =
Wo + 2[Wo, Wo).

From the above we get that a second-order accurate formula for Z is
Z(h) =Y (h)/h =Yy + $Y1h + 3;Y2h?* + O(h?) equals

Z = Wo+ BWo + BV, + B [Wo, Wo] + O(R%).

This has the same extra term as was introduced in section 3 in the augmented
second-order and the true third-order algorithms, proving the correctness of the
third-order algorithm.

Continuing the above style of computations by hand, yields Y3 = Wy +
[Wo, Wo]. For higher-order terms the number of terms grows exponentially and
it is more convenient to use a computer algebra systems. We coded some
custom re-write rules in Mathematica to compute these terms; alternately the
symbolic computation Matlab package Diffman [7] can be used. The next few
results are

Yy = Wo+ 2[Wo, Wo + [Wo, Wo] + 3[Wo, Wo, Wo] — £[Wo, W, Wi
_%[W07W07W07W0]7

Y5 = Wo+ g[Wo,Wo] +2[Wo, Wo + 2[Wo, Wo, Wo) + %[WO,WO, Wo
—1[Wo, Wo, Wo] — %[WO,WO,WO, Wo) — [Wo, Wo, Wo, Wo).

This immediately gives higher-order formulas for Z; namely, for sixth-order
accuracy, use as the approximation for Z:

. 2 . .
Z = Wo+ bW+ Wy + Sh2[Wo, Wo] + 217
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+§[W0,W0] + %WO + %[Vf/o, Wo] + 1h—;O[WO7WO]

I W, Wo, W] — 255 [Wo, Wo, Wo) — o5 [Wo, Wo, W, Wol
o + L (W0, Wol + 455010, Wol + 5 [Wo, Wo, Wo)
+%[W0,W0,Wo] - %[W(),WOyWO] - %[WmWO; Wo, W

— 1 [Wo, W, Wo, Wo] + O(h°),

Unfortunately, the number of terms apparently grows exponentially with the
degree of the algorithm: so far the only cases where a term was unexpectedly
dropped was the [Wy, Wo, Wo] term from the fourth-order accurate algorithm,
and the term [Wy, Wy, Wy, Wo, Wpo] from the sixth-order algorithm.

To the best of our knowledge, the above-derived higher-order methods
are novel; however, they are closely related the Fer [8] and Magnus [20]
expansions: in fact, both expansions are based on the same ‘product integral’
as we used above. Recently, the use of the Fer and Magnus expansions for
numerically solving differential equations has been investigated by a number
of people [16, 17, 18, 28, 36]. [28] discusses the use of graded Lie algebras
and implementation issues for deriving Lie bracket identities in computational
software.

6 Experimental results

We ran a number of experiments to compare the performance of the various
simulation methods described above. All the experiments reported here were
performed on a freely moving rigid body with no externally applied forces. The
rigid body was a rectangular prism of uniform density with ratio of dimensions
1:4:18. In the reported experiments the body was started with momentum
placed at an angle of 45 degrees to the two principal axes of least angular
momenta. The 1:4: 18 length ratio gives the dimensions in the third, the first
and the second axes (in that order).

Our first set of experiments measured the conservation of energy, for the
algorithms described in section 3. The results are reported in Figures 4 and 5.
In all the experiments, the rigid body was initialized with energy equal to
82.1053 and the closer energy values are to this value, the better the simulation
preserved energy. The mean rotation values are the average amount of rotation
performed in a single simulation step by a perfect algorithm.

Examination of the figures reveals that as far as energy preservation is con-
cerned, the algorithms fall into four groups: ‘Group-0’ has the McLachlan-Reich
symplectic algorithms and these are by far the best at energy conservation. (The
fourth-order McLachlan-Reich algorithm was also tested and did even better
at energy conservation, but the results are not reported in the tables.) The
augmented second-order, the third-order and the fourth-order algorithms we
call ‘Group-1’ and were relatively good performing. The ‘Group-2’ algorithms
are the second-order, the false third-order, the Runge-Kutta and the AB-AM
predictor/corrector algorithms: these did passably well, but definitely less well
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Number of steps (N); Time interval (h); Mean rotation ()

N=10° N =8x10° N =4x10° N =2x10° N =10°
h=0.0001 h=0.0006 h=0.001 h=0002 h=0.004
Algorithm 6=041° 9=20° f=4.1° f=81° 6=16.3°
1% order 109.663 150.0 150.0 150.0 150.0
274 order 82.1054 82.5637 85.8535 115.058 150.0
False 3" order 82.1054 82.6471 86.5584 121.164 150.0
Augmented 2"¢ order 82.1053 82.0749 81.8636 80.2222 69.6595
3" order 82.1053 82.1154 82.1866 82.7686 88.0158
4" order 82.1053 82.1053 82.1056 82.1177 82.4979
Simo-Wong explicit 109.661 150.0 150.0 150.0 150.0
McLachlan-Reich 1-2-3  82.1051 82.1028 82.1040 82.0482 81.8740
McLachlan-Reich 2-3-1  82.1053 82.1053 82.1053 82.1054 82.1057
Runge-Kutta 82.1053 82.3810 84.3364 101.328 149.811
AB-AM 82.1055 82.5159 85.4372 111.305 149.999

Figure 4: Energy after N steps: small steps. Initial energy was 82.1053.
The highest possible energy is 150.0 and represents complete failure of energy
preservation.

than the Group-1 methods. Finally, the ‘Group-3’ algorithms, including the
first-order and the Simo-Wong explicit algorithms, are quite poor at energy
conservation.

In general, all the non-symplectic algorithms steadily gained energy during
the simulations, with the sole exception of the augmented second-order
algorithm, which usually steadily lost energy. Since momentum is conserved,
steadily gaining energy meant that the rigid body came to rotate more-and-more
smoothly, with less and less wobble. For the fixed momentum, the maximum
value for the energy is 150.0, and values near 150.0 represent a complete failure
of energy preservation.

The first table, Figure 4 shows the results of simulations with relatively
small simulation steps, with mean rotation per step between 0.41 degrees
and 16.3 degrees. The first column shows the results of simulating 10
seconds of rotation, whereas the other columns all show the results of 400
seconds of simulation. (The reason for the shorter simulation time in the
first column is that otherwise it was essentially impossible to get any of the
poorest algorithms to have any meaningful preservation of energy at all.)
Here we see that the Group-3 algorithms have substantial degradation in
energy preservation, while the other algorithms do quite well. The Group-1
algorithms performed dramatically better than the other algorithms. The
Group-1 algorithms performed consistently better than the Group-2 algorithms
in all these experiments — this shown particularly dramatically in the last two
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columns of Figure 4 where the mean rotations are between 8.2 degrees and 16.3
degrees per simulation step.

These results are meaningful also because the Group-1 algorithms and, to
a lesser extent, the Group-0 algorithms are computationally much faster and
easier to code than the Group-2 algorithms.

# of steps (N); Time interval (h); Mean rotation ()

N = 1000 N = 500 N = 250 N =200

h = 0.004 h = 0.008 h =0.016 h =0.020

Algorithm 0 =16.3° 0 = 32.5° 0 =65.1° 0 =81.4°
Augmented 2"¢ order 81.9528 81.0002 76.3078 74.5092
37 order 82.1603 82.6283 89.2196 101.390

4™ order 82.1092 82.2288 86.0610 94.9191
McLachlan-Reich 1-2-3 81.9601 82.0779 79.3202 77.6101
McLachlan-Reich 2-3-1 82.1057 82.1069 82.1083 82.1063
Runge-Kutta 83.4575 91.8125 132.808 149.855
AB-AM 84.4914 101.429 149.736 149.999

Figure 5: Energy after N steps: large steps. Initial energy was 82.1053.
The highest possible energy is 150.0 and represents complete failure of energy
preservation.

Figure 5 shows the results of similar experiments for large simulation steps
for some of the Group-0, 1 and 2 algorithms. For these experiments, 4 seconds
of the motion the same rigid body was simulated, with mean rotations ranging
from 16.3 degrees to 81.4 degrees per time step. Once again the Group-0
methods were outstanding at energy conservation. Also, as expected, the
Group-1 algorithms consistently and substantially more accurate in terms of
energy conservation than the Group-2 algorithms.

Table 5 was designed to show the ranges in which the augmented second-
order, the third-order, and the fourth-order algorithms give reasonable energy
conservation. However, the McLachlan-Reich method had good energy stability
over a much longer period of time. We repeated the experiment from the last
column of Table 5 except with N = 200,000,000. Even with the large step
size of 81.4° per step on average, the energy after 200 million simulation steps
was equal to 75.2587 (for the 1-2-3 ordering) and 82.1218 (for the 2-3-1), which
represents a very modest drift in energy.

Our second set of experiments measured the relative efficiency of the
simulation methods. In each experiment, we choose a total time T, and a
target accuracy e€: we then calculated, for each method, what step size h is
sufficient for the simulation to yield an answer which is correct to within an
error € in orientation. To be precise, we actually calculated the number of
steps, N, needed — of course h = T/N. The two tables below report both N
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and the mean rotation angle, 6, during each step (the values of 6 are expressed
as degrees). The error value € is measured in terms of radians however; for
example, an error of € = 1072 means that the final error in orientation was less
than 1/1000 of a radian.

The results of our experiments are reported in the tables in Figures
6 and 7. Each algorithm is tested both with and without the use of the
energy preservation method of Section 4.

In order to analyze the data in Figures 6 and 7, it is useful to group the
simulation methods into three classes, based on their order of accuracy. Group A
is the fourth-order accurate algorithms. Group B contains the third-order
accurate methods, of which the 37%-order method is the only representative
(however, the 3"? order method with energy preservation showed better than
4th_order accuracy, and belongs to Group A). Group C contains the second-order
accurate methods; namely, the 2"¢-order method, the false 3"%-order method,
the augmented 2"?-order method, the McLachlan-Reich symplectic method,
Runge-Kutta and the AB-AM predictor-corrector method. In some cases, the
McLachlan-Reich algorithm did sufficiently well to be categorized as a Group B
algorithm. Group D contains the first-order accurate methods; namely, the
1%t -order method and the Simo-Wong explicit method. Generally, the Group A
methods outperform the Group B method, which outperforms the Group C
methods, which outperform Group D.

The Group D methods performed poorly in comparison to the Group C
methods. In fact, without energy preservation, the Group D methods failed to
give enough accuracy to even measure their relative performance. With energy
preservation, they did much better and in fact, using the energy preservation
caused the Group D algorithms to act like second-order accurate algorithms. In
column 1 of Figure 6, we see that the 1%*-order method with energy preservation
could keep the overall error rate to 0.001 after 514 steps, with a mean rotation
of 8 = 3.17 degrees in each step. Reported in column two, the same algorithm
needed 15356 steps, with a mean rotation of 0.11 degrees, to perform the same
simulation with an accuracy of 107%. The Simo-Wong algorithm performed
almost identically to the 1%¢-order algorithm.

The Group C algorithms all acted like second-order accurate systems,
but still encompassed a fairly wide range of performance levels. The worst
performance came from the AB-AM method without energy preservation. The
AB-AM method with energy preservation, the Runge-Kutta methods and the
274_order methods had very similar performance levels as measured by the
number of steps N. Finally, the augmented second-order method was the
most efficient method of Group C, requiring only about one-half as many
steps as the other Group C algorithms. For example, in the second column
of Figure 6, the augmented second-order method can achieve in 6513 steps
the same accuracy that the Runge-Kutta method can achieve in 12771 steps.
Actually, this grossly understates the performance advantage of the augmented
second-order method: the running time to carry out a single Runge-Kutta
step is approximately three times as long as the time to compute a single
step of the augmented second-order method. Thus, roughly speaking, the
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T=04 T=04 T=4.0

Algorithm e = 0.001 e=10"6 e = 0.001
1% order N > 20480 N > 20480 N > 20480
(non-preserving) failed failed failed
1% order N =514 N = 15356 N = 16216
(energy-preserving) 0 =3.17 0 =0.11 0 =1.00
2" order N =387 N = 11509 N = 14546
(non-preserving) 0 =4.22 0=0.14 0=1.12
2" order N = 364 N = 11500 N = 11505
(energy-preserving) 0 =4.48 0 =0.14 0 =1.41
False 3" order N =412 N = 12768 N = 15056
(non-preserving) 0 =3.95 0 =0.13 0 =1.08
False 3" order N =404 N = 12784 N = 12773
(energy-preserving) 0 =4.04 0 =0.13 0 =1.27
Augmented 2"¢ order N =195 N =6513 N = 5573
(non-preserving) 0 =210 0 =0.25 0 =292
Augmented 2"¢ order N =210 N = 6617 N = 6616
(energy-preserving) 0="17.78 0 =0.25 0 = 2.46
37 order N =82 N =789 N = 3661
(non-preserving) 6 =20.09 0 =2.06 0 = 4.45
37 order N =37 N =209 N =652
(energy-preserving) 0 =45.17 0 =17.83 0 = 25.00
4™ order N =53 N =236 N = 1304
(non-preserving) 0 =31.29 0 =6.93 0 =12.49
4™ order N =39 N =219 N =688
(energy-preserving) 0 = 42.85 0 = 7.47 0 = 23.69
Simo-Wong ex.plicit N > 20480 N > 20480 N > 20480
(non-preserving) failed failed failed
Simo-Wong explicit N =513 N = 15356 N = 16209
(energy-preserving) 0 =317 9 =0.11 0 =1.00
McLachlan—Reich 1-2-3 N =514 N = 16250 N =16131
(non-preserving) 0 =3.17 6 =0.10 6 =1.01
McLachlan—Reich 1-2-3 N =193 N = 6063 N = 5210
(energy-preserving) 0 =8.48 =027 =312
McLachlan—Reich 2-3-1 N =39 N =1192 N = 1191
(non-preserving) 0 = 42.86 =1.37 6 =13.68
McLachlan—Reich 2-3-1 N =31 N = 955 N = 945
(energy-preserving) 6 =54.19 =171 6 =17.23
MR 4*"-order 2-3-1 N =26 N =135 N =431
(non-preserving) 6 = 64.92 0 =12.15 6 =37.85
MR, 4""-order 2-3-1 N=18 N =173 N =196
(energy-preserving) 0 =95.13 0 = 22.60 0 = 83.45
Runge-Kutta N = 405 N = 12771 N =13512
(non-preserving) 6 =4.03 6=0.13 6 =1.20
Runge-Kutta N =404 N = 12785 N = 12773
(energy-preserving) 0 =4.04 9 =0.13 0 =1.27
AB-AM N =782 N > 20480 N > 20480
(non-preserving) 6 =2.08 failed failed
AB-AM N =451 N = 14274 N = 14279
(energy-preserving) = 3.62 =0.11 0=1.14

Figure 6: Number of steps (N ) and mean rotation in degrees (6) required to
achieve a given accuracy. 29



T=4.0 T =40.0 T =40.0

Algorithm e=10"° e =0.001 e=10"°
MCLachlanfReic.h 2-3-1 N > 40960 N = 37533 N > 163, 840
(non-preserving) failed 0 =434 failed
MCLachlanfReich. 2-3-1 N > 40960 N = 29760 N > 163, 840
(energy-preserving) failed 0 =5.47 failed
MR 4" order 2-3-1 N = 2364 N = 17526 N = 41617
(non-preserving) 0 =6.89 0 =21.63 0 =392
MR 4" order 2-3-1 N = 1034 N = 3282 N > 163,840
(energy-preserving) 0 =15.76 0 = 49.60 failed
3" order N = 36552 N > 40960 N > 163, 840
(non-preserving) 6 =0.45 failed failed
3" order N = 3700 N = 11621 N = 65631
(energy-preserving) 0 = 4.40 0 = 14.01 0 =2.48
4™ order N = 5294 N = 32656 N = 131473
(non-preserving) 0 =3.07 0 =4.98 0=124
4™ order N = 3888 N = 12275 N = 69254
(energy-preserving) 0 =4.19 0 =13.26 0 =2.35

Figure 7: The performance of algorithms in high-accuracy simulations.

augmented second-order method is approximately six times as efficient as the
Runge-Kutta method when execution speed is taken into account. Similarly,
even the (non-augmented) second-order method is approximately three times
as efficient as the Runge-Kutta method.

The worst performing McLachlan-Reich implementation, with axis ordering
1-2-3, acted very much like the second-order algorithms of Group C. It also
tended to gain in accuracy when combined with energy-preservation. The
best-performing McLachlan-Reich implementation, with axis ordering 2-3-1,
acted more like a third-order accurate algorithm than a second-order algorithm.
The latter tended to benefit less from the use of energy-preservation.

The 3"%-order method when combined with energy preservation, was
substantially superior to every Group B, C or D method. For example,
in column 3 of Figure 6, the third-order method with energy preservation
needs only 652 steps to achieve the same accuracy as 5573 steps of the
augmented second-order method — an almost nine-fold increase in efficiency!
It is impressive to note that this level of accuracy was obtained with a mean
rotation of 25 degrees per simulation step. Even better speed improvements
are realized with higher levels of accuracy: in column 2, only 209 steps of the
third-order algorithm with energy preservation have the same overall accuracy
as 6513 steps of the augmented second-order method — a more than 30-fold
increase in efficiency!

The closest competitor to the 3"%-order method with energy-preservation
from Groups B, C, D, is the McLachlan-Reich 2-3-1 method. Here we note
that the more accuracy that is required (10=% versus 1073) and the longer
the period of the simulation, then the greater the advantage of the 3"%-order
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method with energy preservation. Of course, this should be expected when
comparing a third-order method with a second-order method, but it should be
noted that that this advantage is occurring already with fairly large simulation
steps (e.g., for the long-term simulations reported in Figure 8, the simulation
performs mean rotations of 4.40 degrees, 14.01 degrees and 2.48 degrees). From
the table of relative computational costs at the end of section 3, we see that,
modulo implementation issues, the speeds of the two methods are more-or-less
comparable; therefore, the third-order method is overall more efficient in terms
of accuracy than the McLachlan-Reich second-order methods.

Figure 7 shows more clearly the impressive accuracy of the third-order
method with energy preservation. In column 2, we see that 11621 simulation
steps with mean rotation of just over 14 degrees per step still maintain an
accuracy of 0.001. And, 65631 steps of mean rotation 2.48 degrees gives an
accuracy of 1076,

The rest of Figure 7 shows the relative performance of the other best-
performing simulation methods. Measuring in terms of number of steps,
the symplectic fourth-order MR, method with the 2-3-1 ordering (non-energy
preserving) was able to achieve higher accuracy than the third-order method
with energy-preservation — the symplectic algorithm consistently needed about
2/3 as many steps as the third-order energy preserving algorithm. However,
since the former algorithm has a computational cost of more than twice that
of the latter, the third-order algorithm with energy preservation enjoys an
advantage in this regard.

The fourth-order method without energy preservation predictably did signif-
icantly than the third-order method without energy preservation. With energy
preservation, we observed the surprising result that the third- and fourth-order
algorithm has essentially equivalent accuracy. Both experimentally exhibited
better than fourth-order accuracy, but we have no theoretical justification for
why the third-order algorithm with energy preservation performed as well as
the fourth-order algorithm.

One other somewhat odd feature of Figure 7 arises in the comparison of
the MR 2-3-1 algorithm with energy preservation to the MR 2-3-1 algorithm
without energy preservation. First, since the symplectic algorithms are so good
at preserving energy it is surprising how much adding energy preservation helps;
furthermore, adding the energy preservation to the symplectic algorithms is
somewhat inelegant and presumably destroys the symplectic properties. Second,
although about half as many steps were needed by the energy preserving version,
the energy preserving version failed to converge at all in the most demanding
simulation (the last column of the table). This was presumably due to the fact
that so many operations are performed per step (13 rotations plus the energy
correction operation), and that roundoff errors accumulated more quickly than
in the other algorithms, rendering the algorithm incapable of converging to the
target accuracy.

To verify that our higher order algorithms are correct and actually have
the expected higher-order accuracy, consider a simulation for a total time T,
where T is held constant. If N steps are used, then the time step h is
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proportional to 1/N, so a third-order algorithm would have error O(1/N?3)
per time step, so the overall error for the entire simulation is expected to be
O(1/N?). Likewise a fourth-order algorithm should have overall error O(1/N3).
Actually, the overall error should be somewhat lower than this since we expect
some cancellation of errors. Our experiments with the third- and fourth-order
methods without energy preservation confirmed that this algorithms are indeed
third- and fourth-order (respectively). The third-order method with energy
preservation was seen to be substantially better than third-order: indeed
comparing the last two columns of Figure 7 or comparing the last column
of Figure 6 and the first column of Figure 7, we see that a six-fold increase
in the number of steps yields a 1000-fold increase in overall accuracy! This
performance was generally seen in other situations, in that we typically saw that
doubling the number of steps caused the overall error to be divided by about
15. Thus the experimental evidence indicates that the third-order method with
energy preservation acts like a better than fourth-order accurate algorithm.**

In viewing the data in Figure 6, we see that the use of energy preservation
improves the simulation accuracy substantially in the case of the Group D
algorithms; in fact, our empirical observations suggest that the Group D
algorithms with energy-preservation act very much like second-order accurate
Group C methods. The AB-AM method, the 3"¢-order method, the second-
order 1-2-3 McLachlan-Reich method, and the fourth-order 2-3-1 symplectic
method also benefited substantially from energy preservation. The remaining
methods had only a modest improvement with the use of energy-preservation,
and the augmented 2"?-order method had a small decrease in accuracy when
combined with energy-preservation.

7 Conclusions

We have introduced several new algorithms for the simulation of rigid rotations.
We derived a third-order term which can be used to improve the energy
preservation of a second-order simulation method (in the “augmented second-
order algorithm”) or which can be used to formulate an third-order method
which is correctly third-order. We further derived fourth-order correction terms
in the general setting of Lie algebras and gave a corresponding fourth-order
accurate algorithm. These algorithms can be readily extended to higher
orders and applies to general Lie algebras. Secondly, we gave a simple and
easy-to-calculate method for preserving energy exactly based on re-orienting the
body slightly so as to preserve both momentum and energy. This reorientation
is done at right angles to the direction of movement and thus introduces
very little error. First-order methods combined with energy preservation
were experimentally observed to act like second-order accurate methods. The

**A fourth-order algorithm would nominally have the overall error drop by a factor of 8
when the number of steps is doubled, but in fact it would sometimes do better due to
cancellation of errors. The observed factor of 15 means that the algorithm was between
fourth-order and fifth-order accurate for our test scenario.
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third-order method combined with energy preservation was experimentally
observed to act like a better than fourth-order accurate method.

Our experiments were carried out on torque-free bodies, but since the
algorithms were designed without any special assumptions regarding torques,
our methods should also work well in the presence of torques.

Traditional implementations of algorithms such as Runge-Kutta or the
Adams-Bashforth-Moulton predicator-corrector method are not as nearly as
efficient at simulating rotation as the augmented second-order method or the
third-order method or the symplectic methods. The augmented second-order
method is approximately six times as efficient as Runge-Kutta when compu-
tational speed is accounted for, and the third-order methods are substantially
even more efficient for high long-term accuracy.

Let us consider the question of which algorithm is best to use. In general,
we recommend the use of one of the following: the augmented second-order, the
third-order, the fourth-order, the McLachlan-Reich algorithm, or the fourth-
order symplectic algorithm. The first three (especially the third- and fourth-
order methods) can combined with our energy preservation and also thereby
achieve better accuracy as well as stability. The symplectic algorithms can
also be combined with our energy preservation method, but this would seeming
destroy the symplectic property and would be a somewhat inelegant choice.

The answer to which algorithm is best will depend largely on the application.
First, if one is interested mainly in long-term stability with large time steps,
then the McLachlan-Reich second-order method is a strong candidate. This
method allow only a small fluctuation in energy and is simple to implement
with a reasonable computational cost, especially if Cayley transforms are
used. The fourth-order symplectic method has even better energy stability
and significantly more accuracy, albeit at a higher computational cost per step.
A similar stability can be obtained by using our second-order or third-order
methods with the energy-preservation method; and they can provide very good
accuracy and require somewhat lower computational resources. Second, if one
is interested in absolute long-term accuracy, then the third-order method with
energy preservation gives the best accuracy per computational cost. Third, if
one can estimate the derivatives of the angular momentum, then the second-,
third- and fourth-order algorithms can incorporate these derivatives directly.

As a general observation, if one is simulating the rotation of a single isolated
rigid body, then there are number of ways to do this more directly: one could
use elliptic functions for instance, or one could use any of our algorithms to
simulate the body through one ‘wobble’ to very high accuracy and then can
predict the future positions of the rigid body very accurately. Thus, any
interesting use of the rigid body rotation algorithms should work well in the
presence of external torques. This is potentially an important advantage for the
our second-, third- and fourth-order algorithms, since if one can estimate the
external torque, or more generally, the derivatives of the angular momentum,
then this can be directly incorporated into these algorithms.
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