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A B S T R A C T   

This paper examines whether declining research productivity can be explained by fishing out—is the production 
of new knowledge decreasing in the level of existing knowledge? We estimate the knowledge production function 
for US firms and find instead that knowledge production is increasing in the knowledge stock. This is reinforced 
by the observations that maximum research productivity across firms is increasing over time, and that research 
productivity year effects continue to exhibit decline after modeling contributions from knowledge and research 
labor. Given that fishing out appears unable to explain the decline in research productivity, we offer preliminary 
evidence of contingent factors that might contribute to the decline.   

We have known for several decades that innovation is the primary 
source of economic growth (Solow, 1957). While Solow was silent on 
where innovation itself comes from, Romer (1990) articulated a theory 
in which growth is endogenously driven by purposeful investment in 
R&D. An important proposition from Romer's theory is a “scale effects 
prediction” that growth should be proportional to the level of R&D. 

This prediction held in the United States from 1950 until 1980. 
Nominal GDP growth tracked the rise in R&D spending in the 1950s and 
early 1960s, as well as the decline from the mid-1960s to the late 1970s 
(Fig. 1). However, the relationship fails to hold after that. As R&D rose in 
the 1980s, GDP growth never followed. In fact, it has declined ever 
since. 

The leading explanation for the recent failure of the scale effects 
prediction is that knowledge is subject to “fishing out” (Jones, 1995). 
The intuition for this theory is that there is a finite number of ideas and, 
as the best ideas are consumed, we are left with increasingly lower- 
quality ideas. Technically, this is implemented as decreasing returns to 
the knowledge stock in the production of new knowledge. 

The first implication of Jones's theory, if correct, is that we will al-
ways need increasing amounts of R&D to maintain a given level of 
growth. The second and more important implication is that growth from 
R&D will ultimately converge toward zero. When it does, no amount of 
R&D will generate growth—there will be no point in either public or 
private investment in R&D. 

Recently, Jones and colleagues (Bloom et al. (2020) (BJVW) 

purported to test the fishing out hypothesis. They developed a measure, 
research productivity, calculated as growth in knowledge, divided by the 
research investment to advance that knowledge. The authors looked 
within several domains, using a context-specific measure of knowledge 
for each: semiconductors (transistor density), agriculture (bushels/ 
acre), health care (life expectancy), and pharmaceuticals (new molec-
ular entities), and they found that research productivity has declined in 
each of them. 

However, they never tested fishing out directly. Rather they 
demonstrated that research productivity is declining “virtually every-
where we look” (Bloom et al., 2020, p.1138). In essence, they showed 
that the macro-level observation of declining research productivity (U.S. 
GDP growth/U.S. R&D), evident in Fig. 1, holds at micro levels as well. 

Because the issue of whether growth from innovation converges to-
ward zero has tremendous implications for both public policy and firm 
strategy, we attempted to test the fishing out hypothesis directly. We 
used BJVW's data to test Jones's model structurally. We found no evi-
dence of fishing out. Instead, we found increasing returns to the 
knowledge stock. This finding resonates with real-world evidence of 
several important, yet fairly recent, general-purpose innovations like the 
internet, GPS, and smartphones. We would not expect such important 
innovations to be so recent if ideas are being fished out. 

The finding that knowledge exhibits increasing returns is encour-
aging, in that it restores the expectation that R&D investment can 
generate growth in perpetuity. However, it leaves the problem of 
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declining R&D productivity. We propose that contingent factors are 
driving the decline. If so, it may be possible to restore R&D productivity 
and revive growth by addressing those factors. Until then, we will need 
increasing amounts of R&D merely to maintain even the recent low 
growth levels we have experienced. 

Our work is similar in spirit to Clancy (2018), who built and 
empirically tested a model of innovation-driven growth that allowed for 
both “learning” (new combinations of technological components) and 
“fishing out” (pre-existing combinations of components). He found that 
learning effects dominate fishing out, which seems consistent with the 
results here. However, Clancy's definition of fishing out differs from 
Jones's. Accordingly, his results are not directly comparable to ours. 

This work is also similar to that of Furman et al. (2002), who utilized 
Romer's model to evaluate differences in national patent productivity. 
Their baseline specification indicated that there are increasing returns to 
the knowledge stock, which matches our main result. Thus, their results 
and ours are inconsistent with fishing out. 

The paper proceeds as follows. First, we review our conceptual 
framework, which builds on Romer's model, and Jones's adaption. 
Following that, we translate the conceptual framework into our empir-
ical approach. We then present the results. We follow that with a dis-
cussion of alternative explanations for declining research productivity. 
Finally, we discuss the implications for public policy. 

1. Conceptual framework 

Romer's (1990) theory of endogenous growth generates an equilib-
rium of balanced economic growth, in which the rate of knowledge 
growth drives output growth. Moreover, it yields a specific “scale effects 
prediction” that growth, g, should be proportional to the level of 
research labor, HA (Eq. (1)). Recent U.S. experience, first documented by 
Jones (1995), is at odds with that prediction. In particular, while R&D 
spending has been rising, GDP growth has been declining. This decline 
in research productivity at the macro level has been replicated at the 
micro level across a number of domains (BJVW). 

g =
Ẏ

Y
=

Ȧ

A
= δ HA (1) 

Jones (1995), who first documented the prediction's failure, pro-
posed that the problem lies with the prediction itself. In particular, 
Romer's equilibrium of balanced growth is based in part on an 

assumption of constant returns to scale for each input in the knowledge 
production function, which generates new ideas (knowledge) from the 
stock of prior ideas, At, and research labor, HA (Eq. (2)). 
Ȧ = δHAAt (2) 

Jones allowed for the possibility of non-constant returns by intro-
ducing λ, the elasticity of research labor and φ, the elasticity of the 
knowledge stock (Eq. (3)). Jones argued that there may be duplication in 
the R&D process, “externalities,” such that λ is <1. He further argued 
that the discovery of new ideas may be decreasing in the level of 
knowledge, “fishing out,” such that φ is <1. Only when λ and φ are both 
equal to 1 does Eq. (3) reduce to Romer's knowledge production 
function. 
Ȧ = δHλ

AA∅ (3) 
If the knowledge production function is captured by Eq. (3), then the 

corresponding growth equation is given by Eq. (4). Accordingly, if Jones 
is correct that λ and φ are both <1, then growth from R&D converges to 
zero. Conversely, if φ is greater than or equal to 1, there is no fishing out, 
and growth from R&D continues in perpetuity. 
g = δHλ

AA∅−1 (4) 
We empirically tested Jones's production function (Eq. (3)) to 

determine if it exhibited fishing out for U.S. firms. This is an economi-
cally meaningful test, because 71 % of R&D in the United States is 
conducted by firms. 

2. Empirical specifications and data 

2.1. Test of the knowledge production function 

We utilized the research productivity measure in BJVW to test Jones's 
knowledge production function. BJVW constructed research productivity 
α by dividing growth by the number of researchers used to achieve that 
growth (Eq. (5)).1 

Fig. 1. Relationship between R&D spending and GDP 
growth 
Notes: In this figure we compare U.S. GDP growth (current 
dollars/current dollars) to U.S. R&D intensity (total R&D 
from all sources/GDP). GDP growth tracks the rise in R&D 
spending in the 1950s to the mid-1960s, with a lag. GDP 
growth also tracks the decline in R&D spending from the 
mid-1960s to 1980, but it continues to decline even after 
R&D spending rose in the 1980s. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the web version of this article.)   

1 Equations 5 and 14 in Bloom et al. (2020). 
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α =

(

Ȧt

At

)/

HA (5) 

To test Eq. (4), we needed to distinguish between research produc-
tivity, α, in BJVW and the productivity parameter, δ in Eqs. (1)–(4). To do 
so, we rearranged the terms in Eq. (5) to express growth in terms of 
research productivity: g = α HA, and then substituted for g in Eq. (4), and 
divided both sides by HA (Eq. (6)): 
α = δHλ−1

A A∅−1 (6) 
We tested Eq. (6) using the following empirical specification (Eq. 

(7)): 
ln(researchproductivityit)=β0+β1 ln(KnowledgeStockit)+β2 ln(ScientistsAit)

+γi+δt+εit (7)  

which includes industry fixed effects, γi, and year effects, δt. We used 
industry fixed effects rather than firm fixed effects, because firm fixed 
effects subsume selection effects and the treatment effects of research 
productivity. 

Once we obtained coefficient estimates of Eq. (7) for the Knowl-
edgeStock, Ait, and Scientists, HAit, we converted them to values in the 
production function as follows: φ = β1 + 1 and λ = β2 + 1. If the 
knowledge stock is subject to fishing out, we would expect −1 < β1 < 0. 

2.2. Testing across the research productivity distribution 

The observed declines in firms' research productivity in BJVW pertains 
to the mean. If knowledge production is subject to fishing out, the 
decline should be evident across the entire distribution of firms' research 
productivity, not merely the mean. In other words, if ideas are truly being 
fished out, then the quality of the best idea each year should, on average, 
be worse than the best idea in the prior year. Accordingly, we examined 
the time trend in maximum research productivity as a supplemental test. 
(We ignored the minimum because it is bounded by 0.) As in the main 
empirical model, we included industry fixed effects, except when look-
ing across the entire economy, where there was only one observation per 
year. If ideas are getting harder to find, we expected the coefficient of β1 
in Eq. (8) to be negative and significant. 
Maximum Research Productivityit = β0 + β1 yeart + γi + ε it (8)  

2.3. Data 

Data on firms' effective research (which we labeled scientists) and 
research productivity came from data and codes made available by BJVW 
through the American Economic Review data-availability policy.2 Their 
source data is the Compustat Fundamentals Dataset, which provides 
financial data on firms publicly traded on U.S. exchanges. BJVW formed 
four separate measures of decadal-average research productivity, which 
differed in the form of growth: sales revenue, market capitalization, 
employment, and revenue labor productivity (sales/employment). The 
use of firm-decade rather than firm-year was intended to smooth out 
fluctuations. 

BJVW formed effective research in each firm-year by dividing firms' 
R&D expenditures by the mean U.S. wages of male workers with four or 
more years of college. This restricted the sample to firms reporting non- 
zero R&D (approximately 40 % of publicly traded firms). In addition, 
BJVW discarded (a) firms with less than three annual growth observa-
tions in a given decade, (b) firm-decades in which growth was negative, 
since negative growth is not a consequence of R&D, and (c) firms lacking 
data on both growth and R&D for two consecutive decades. 

While BJVW's use of the wages of male college graduates seems to be 

an odd (and possibly controversial) choice, it stems from the fact that 
science and engineering (S&E) wage data are only available for three 
years (1995, 2003, 2017), whereas college graduate (BS) wage data are 
available annually. Comparison of S&E wages to male BS wage data for 
the three years in which both are available indicates that male BS wages 
closely approximate mean S&E wages. Male S&E wages are well above 
male BS wages, while female S&E wages are well below male BS wages. 
However, in robustness checks, we employed two alternative measures 
of effective research: (a) advanced degrees: firm R&D divided by the U.S 
mean wage for employees with advanced degrees, and (b) inventors: the 
number of inventors on all patents filed by a firm in a given year. 

Effective research enters Eq. (7) both directly as ln(scientists) and 
indirectly as the denominator for firm research productivity (growth/ 
scientists). As mentioned previously, BJVW used four alternative forms of 
firm growth. Since their results are comparable across the four growth 
measures, we utilized only one form of growth, sales revenue. Our only 
deviation from the BJVW data is that they utilized decadal summaries of 
research productivity. This was sufficient for BJVW because they merely 
reported decadal declines. However, our econometrics require greater 
resolution, so we interrupted their code to extract firm-year measures of 
revenue growth and effective research. We then created annual research 
productivity by dividing average revenue growth over the prior ten years 
by median effective research over the same period. 

The biggest data challenge in testing the knowledge production 
function was constructing measures for the knowledge stock, A. The 
convention is to accumulate and depreciate either R&D expenditures or 
patent counts. We cannot accumulate R&D because that would 
confound the knowledge stock with effective research. Accordingly, we 
utilized firms' patents. We constructed three proxies for firms' knowl-
edge stocks using the U.S. patent dataset released by Kogan et al. (2017) 
and updated by Stoffman et al. (2020). To form each of the proxies, we 
began by counting all patent applications in each cooperative patent 
classifications group per year. We then constructed the yearly stock of 
patents per technology group using a depreciation rate of 20 %. This is in 
line with prior studies, indicating that estimates are insensitive to 
depreciation rates from 8 % to 25 % (Hall et al., 2010).3 Next, for each 
patent, p, we formed its knowledge stock, KSPatp, as the average of all 
groups' knowledge stocks in the patent, weighted by the number of times 
each group was used to classify the patent.4 

We then constructed two proxies from KSPatp as follows.Patent-
KnowledgeStoc is the average knowledge stock per patent filed by firm i 
in year t: (ΣpitKSPatp)/#patentsit. CitationKnowledgeStockit averages out 
the KSPatp of its citations. PatentKnowledgeStockit captures the knowl-
edge a firm is creating, while CitationKnowledgeStockit captures the 
knowledge upon which a firm is building. Finally, we constructed a third 
measure, CitationValueit, which captures the value of all patents cited by 
the focal firm in a year, as estimated by Kogan et al. (2017). All measures 
of knowledge stock use a rolling ten-year window to be consistent with 
the research productivity measure. 

To merge the BJVW data with the knowledge stock measures, we 
followed Kogan et al. (2017) in using the CRSP-COMPUSTAT link table 
in the CRSP/Compustat Merged Database. The final dataset comprises 
all U.S.-traded firms that conducted R&D and filed patents from 1983 to 
2015, with sufficient observations to form research productivity (a min-
imum of three years of data, to be consistent with BJVW). These data are 
summarized in Table 1. The table indicates that, on average, firms have 
$5.3 billion in revenues and invest $214 million in R&D each year, 
which translates to 1833 effective researchers. Note that the restrictions 
mentioned above reduce the set of firm-year observations for firms 

2 https://www.aeaweb.org/articles?id=10.1257/aer.20180338. 

3 The results are robust to depreciation rates of 40 %, 60 %, and 80 %, likely 
because stocks and flows are econometrically equivalent in steady-state (Gri-
liches and Mairesse, 1984) 

4 The patent is classified at the subgroup level. Thus, a patent can be classi-
fied into multiple subgroups that share the same group. 
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conducting R&D by roughly two thirds—from 103,000 firm-year ob-
servations to 38,000. The firms in our dataset represent a broad swath of 
the economy, as shown in Fig. 2. They are larger on average than the 
broader set of firms. They average $5.3 billion in annual revenues versus 
$2.3 billion. However, the R&D intensity (R&D/revenues) is similar 
across the two groups. The $214 million average R&D represents a 4.0 % 
R&D intensity compared to the $89 million average R&D and 3.9 % R&D 
intensity on the broader dataset. 

3. Results 

3.1. Test of the knowledge production function 

Table 2 presents the test results of the knowledge production func-
tion (Eq. (7)). Looking first at fishing out, the coefficient estimates for 
the knowledge stock measures, β1, are always positive and significant. 
The estimates for β1 (0.02 to 0.24) imply values for φ of 1.02 to 1.24 (φ 

= β1 + 1). Thus, we failed to find support for fishing out. Instead, we 
found mild evidence of increasing returns to the knowledge stock. A 10 
% increase in the knowledge stock increases new knowledge creation by 
10.2 to 12.4 %. 

Looking next at externalities, the coefficient β2 on ln(scientists) is 
negative and significant in all models. The estimate for β2 (−1.1) implies 

Table 1 
Descriptive statistics.  

Variable Obs. Mean St. Dev. Min Max 
Ln(Research Productivity)  37,971  −7.53  2.50  −18.82  0.93 
Research Productivity  37,971  0.01  0.03  0.00  2.55 
Ln(Research Productivity_inventors)  36,927  −4.40  2.14  −15.96  0.94 
Research Productivity_inventors  36,927  0.05  0.10  0.00  2.56 
Ln(Scientists)  37,971  5.25  2.00  −1.90  11.74 
Scientists  37,971  1833.40  7630.04  0.15  1.3e+05 
Ln(Inventors)  36,927  2.11  1.53  0.00  8.95 
Inventors  36,927  51.47  241.75  1.00  7685.10 
Ln(Patent Knowledge Stock)  35,543  8.31  1.00  3.09  11.38 
Patent Knowledge Stock  35,762  12,069.39  14,465.03  19.91  1.7e+05 
Ln(Citation Knowledge Stock)  35,762  8.80  1.14  2.99  12.04 
Citation Knowledge Stock  35,543  6529.53  7109.57  22.00  87,322.38 
Ln(Citations Total Value)  36,318  5.32  2.46  −5.61  14.76 
Citations Total Value  36,927  5204.70  39,128.53  0.00  2.6e+06 
Revenue  22,269  5264.49  23,478.47  0.01  4.8e+05 
Ln(Revenue)  22,269  5.67  2.49  −4.96  13.07 
R&D  22,267  214.34  817.82  0.00  12,540.00 
Ln(R&D)  22,267  3.15  2.07  −6.91  9.44 

Notes: Research productivity is calculated as the average revenue growth over the prior ten years by median effective research over the same period. Research pro-
ductivity_inventors is calculated as the average revenue growth over the prior ten years by average number of inventors over the same period. Scientists is the average 
R&D divided by U.S. mean wage for employees with advanced degrees over the prior ten years. Inventors is equal to the average number of distinct inventors over the 
prior ten years. Patent knowledge stock is the average knowledge stock per firm in the current year. Citation knowledge stock is the average knowledge stock contained 
in the firm's citations in the current year. Citations total value is the value of all patents cited by the focal firm in the current year. Revenue and R&D are in $millions. 

26%
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15%
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11% Other

Business Services
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Electronic Equip .

Controlling Instr .

Machinery and Computer Equip .

year 2000

Number of firms per SIC industries

Fig. 2. Industry distribution of firm sample 
Notes: In this figure we characterize the distribution of the sample across in-
dustry for 2020. Note that this distribution differs from the universe of U.S. 
firms in three ways: (a) all firms in the sample are publicly traded (approxi-
mately one third of U.S. employment), (b) all firms in the sample conduct R&D 
(approximately 40 % of publicly traded firms), (c) all firms in the sample file 
patents (approximately 50 % of firms who conduct R&D). 

Table 2 
Test of the knowledge production function   

Ln(Research Productivity)  
(1) (2) (3) 

Log(Scientists) −1.10*** −1.10*** −1.11***  
(0.01) (0.01) (0.01) 

Log(CitationKS) 0.18***    
(0.02)   

Log(PatentKS)  0.24***    
(0.03)  

Log(Citation value)   0.02***    
(0.01) 

Constant −3.41*** −3.74*** −1.84***  
(0.19) (0.22) (0.06)     

R-squared 0.80 0.80 0.80 
Observations 35,761 35,542 36,318 
Industry FE SIC 4 SIC 4 SIC 4 
Year FE Yes Yes Yes 

Notes: In this table we examine the transformed knowledge production function 
to estimate the elasticity of the knowledge stock, for three separate measures of 
the knowledge stock. Column 1 uses CitationKnowledgeStock, Column 2 uses 
PatentKnowledgeStock, and Column 3 uses citation value. We include industry 
(defined by 4-digit SIC code) fixed effects, and year effects. Standard errors 
clustered at the firm level are in parentheses. 
*** p < 0.01. 
** p < 0.05. 
* p < 0.1. 
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a value for λ of −0.1 (λ = β2 + 1). This suggests that a 10 % increase in 
research labor would reduce new knowledge creation by 1 %, which 
seems implausible. It is likely an artifact of BJVW's use of scientists to 
form research productivity. 

Robustness checks with two alternative measures of effective 
research (advanced degrees and inventors) match those in Table 2. The 
coefficient estimates for β1 range from 0.03 to 0.20, and the estimates for 
β2 range from −1.08 to −1.20. 

3.2. Testing decline across the research productivity distribution 

The results for test of the trend in maximum research productivity are 
presented in Table 3. For reference, Model 1 presents the time trend for 
mean firm research productivity. The coefficient on year in Model 1 is 
negative, reflecting the decline in mean research productivity observed 
by Jones (1995). Looking next at maximum research productivity across 
the entire economy (Model 2), the coefficient estimate on year (0.146) is 
positive and significant. This means that the most productive firm in 
each year grows revenues 14.6 % faster than the most productive firm in 
the prior year. Thus, results with this supplementary test are consistent 
with those from the formal test in Table 2. We found no evidence of 
fishing out. Rather, the results suggested that there are positive spill-
overs in knowledge production. 

Because this result was unanticipated, we explored it further to see if 
by narrowing domains, we could mimic the results in BJVW, who looked 
within domains. Models 3 through 6 examine increasingly narrowed 
domains, where domains are defined as the firm's primary SIC code. 
Model 3 estimates the trend in maximum research productivity within 1- 
digit industries, Model 4 within 2-digit industries, Model 5 within 3- 
digit industries, and Model 6 within 4-digit industries. Across Models 
3 to 6, coefficient estimates are positive and significant. However, their 
magnitude decreases as domains are narrowed. For example, while 
maximum research productivity grows 15 % per year across the economy, 
it only grows 2 % per year within 1-digit industries, 0.4 % within 2-digit 
industries, 0.2 % within 3-digit industries and 0.1 % within 4-digit in-
dustries. This implies that opportunity is greater across industries than 
within them. 

While the results in Table 3 utilize SIC definitions of industry, we 
obtained similar results when using NAICS definitions of industry. For 
either industry definition, maximum research productivity is always 
increasing over time, but it increases at lower rates as industry definition 
is narrowed. Note that BJVW's measure of research productivity repre-
sented a firm mean—growth divided by effective research. When we 
replicated the test using a measure of marginal productivity (the firm's 
output elasticity of R&D), the coefficient on year became negative for 2- 

digit industries and became increasingly negative as industry definition 
was narrowed. Thus, when using a marginal measure, maximum research 
productivity is decreasing within industries over time. 

Taken together, the results for maximum research productivity suggest 
that opportunity within industries decays over time. However, as it does, 
it appears that firms create new industries with greater opportunity. This 
matches Schumpeter's (1942) notion of creative destruction. A classic 
example is automobiles replacing horses and buggies. A more recent 
example is personal computers replacing electronic typewriters. At the 
U.S. peak, the installed base of electronic typewriters reached 10 million 
units. By contrast, the installed base of the PCs replacing them reached 
316 million units in 2008. Thus, not only did the PC replace the elec-
tronic typewriter, but it also seems to have created much greater value. 

While this finding of decreasing opportunity within industry, yet 
increasing opportunity across industries is interesting in and of itself, the 
goal of this exercise was a robustness check of the main results in 
Table 2. As in the main test, here again, we failed to find support for 
fishing out. 

3.3. Summary 

In summary, for both a structural test of the knowledge production 
function, and an alternative test across the research productivity dis-
tribution, we failed to find evidence of fishing out. In fact, the elasticity 
of the knowledge stock in generating new knowledge was positive and 
significant for all measures, suggesting there are positive spillovers in 
the production of knowledge, rather than fishing out. This result is 
reinforced by the observation that maximum research productivity is 
increasing over time, which we would expect if there were positive 
spillovers in the production of knowledge. 

4. Alternative explanations for declining research productivity 

While we failed to find evidence of fishing out, there was substantial 
evidence that aggregate research productivity has declined. What, other 
than fishing out, might explain that? We propose that the research 
productivity parameter, δ, in Eq. (1), is itself declining. Indeed, the year 
effects in estimating Eq. (7) continue to exhibit decline after modeling 
the contributions from knowledge and research labor (Fig. 3). We 
further propose that the decline in δ may be due to contingent factors at 
both the macro and micro levels. We discuss one factor at each level. At 
the economy level, there is growing imbalance between research and 
development. At the firm level, there is evidence of deterioration in R&D 
practices. Note these two factors are not intended to be exhaustive. 
Rather their role, together with Fig. 2, is to provide suggestive evidence 

Table 3 
Assessing the trend in maximum research productivity.   

Mean a Maximum Annual Research Productivity, aMAX  
(1) (2) (3) (4) (5) (6) 

Year −0.000** 0.146*** 0.020** 0.004** 0.002*** 0.001***  
(0.000) (0.053) (0.008) (0.002) (0.001) (0.000) 

Constant 0.26** −288.83** −38.83** −8.37** −3.66*** −2.40***  
(0.117) (105.957) (15.400) (3.354) (1.219) (0.802)        

Observations 55,988 33 297 1633 5238 8082 
R-squared 0 0.16 0.184 0.186 0.144 0.141 
Industry FE NO NO sic1 sic2 sic3 sic4 

Notes: In this table, we examine the trend in maximum research productivity, defined as the maximum observed value of research productivity in a given year. For 
reference, Column 1 presents the trend in mean research productivity. Column 2 estimates the trend in maximum research productivity across the entire economy in each 
year, Column 3 captures the mean trend within 1-digit industries, Column 4 captures the mean trend within 2-digit industries, Column 5 captures the mean trend 
within 3-digit industries, and Column 6 captures the mean trend within 4-digit industries. Standard errors are clustered at the industry level. Robust standard errors are 
in parentheses. 
*** p < 0.01. 
** p < 0.05. 
* p < 0.1. 
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that contingent factors (rather than fishing out) are responsible for the 
declines in research productivity and economic growth. 

4.1. Increasing imbalance between research and development 

For research (R) to generate growth, it must be commercialized or 
otherwise diffused. This requires development (D). Development ex-
penditures within a firm typically dwarf the associated research ex-
penditures. For example, in the case of pharmaceuticals, total 
expenditures for clinical development are approximately twice those for 
pre-clinical research. For any given drug, the ratio is even more pro-
nounced—development expenditures are 16 times pre-clinical expen-
ditures (Mestre-Ferrandiz et al., 2012). The difference between total 
expenditures and drug-specific expenditures arises from the need to 
carry a portfolio of pre-clinical drugs to compensate for ones that do not 
survive to clinical stages. Historically U.S. federal R&D expenditures 

have mimicked the ratio of R to D within firms. In 1961, federal research 
expenditures comprised 0.51 % of U.S. GDP, while development ex-
penditures comprised 1.23 % of GDP. Since that time, however, the 
relative proportions have reversed. Research funding has remained near 
its prior level (0.38 % of GDP in 2018), while development funding has 
fallen to roughly half that (0.22 % of GDP) (Fig. 4). Moreover, this 
decline in federal development funding has coincided with the decline in 
aggregate research productivity (Fig. 5). Thus, the shift in federal allo-
cation of R&D investment may be contributing to the decline in U.S. 
research productivity. What seems likely, though we cannot observe it, 
is that the federal shift in R&D allocation, may have generated “excess 
research”—meaning that the number of inventions generated by uni-
versities and federal labs may now exceed industrial capacity to develop 
them. 
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Fig. 3. Year effects from estimating research productivity 
Notes: In this figure we plot the year effects obtained from estimating Eq. (7). 

Fig. 4. Evolution in allocation of federally funded R&D 
Notes: In this figure we plot allocation of federally funded R&D to all performers on research (basic plus applied), and on development from 1960 to 2018. Source: 
National Patterns of R&D Resources: 2017–18 | Detailed Statistical Tables| NSF 20–307 | January 08, 2020. 
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4.2. Deterioration in research practices 

Just as management practices affect firms' total factor productivity 
(TFP) (Bloom and van Reenen, 2010; Knott, 1996), R&D practices affect 
firms' research productivity. However, while firms tend to evolve toward 
better management practices, there is emerging evidence that they 
evolve toward inferior R&D practices. The divergence may stem from 
the fact that R&D outcomes have long lags, so it is harder to understand 
the relationship between practices and performance for R&D than it is 
for other functions. 

Three documented trends toward inferior R&D practices are (a) a 34 
% decrease in the level of R&D centralization (Argyres and Silverman, 
2004; Arora et al., 2011; Cummings, 2018), (b) a six-fold increase in the 
intensity of R&D outsourcing (Knott, 2020), and (c) a 67 % increase in 
the rate at which CEOs are hired from outside the firm (Cummings and 
Knott, 2018). Each of these practice changes is associated with lower 
research productivity. 

With regard to decentralized R&D, Argyres and Silverman (2004), 
and Arora et al. (2011), both found that it leads to patents that are less 
broad and less impactful. Cummings (2018) further found that decen-
tralization is associated with significantly lower patent intensity and 
R&D productivity. 

With regard to outsourced R&D—R&D funded by one company, but 
performed by another—Knott (2020) found the mean output elasticity of 
outsourced R&D was precisely estimated at zero, versus a firm mean of 
0.13 for internal R&D. This means that a 10 % increase in internal R&D 
increases firm revenues by 1.3 % on average, whereas outsourced R&D 
has no impact on firm revenues. 

With regard to outside CEOs, Cummings and Knott (2018) found that 
R&D productivity decays with each year of an outside CEO's tenure. 
They further found that there is less decay if the CEO is from the same 
industry, suggesting that the decay stems from lack of expertise. Kluppel 
and Cummings (2019) extended this work to examine whether outsiders 
without the requisite expertise change the direction of R&D in detri-
mental ways. They found instead that outside CEOs seem to do the 
opposite. They maintain the existing technological trajectory, which 
itself is detrimental if technology is moving in a different direction. 

Taken together, evidence at both the macro and micro levels suggests 
that the organization and conduct of R&D has changed over the period 
of declining research productivity. Moreover, there is theory and evi-
dence to suggest that these changes are associated with lower R&D 

productivity. 

5. Discussion 

Innovation is the primary source of economic growth, yet it is failing 
to deliver that growth in the United States, because research produc-
tivity has been declining. Scientific labor has been increasing, while GDP 
growth has been decreasing. The leading explanation for the decline is 
that there are decreasing returns to the knowledge stock, or “fishing out” 

(Jones, 1995). If correct, then the United States will need to spend 
increasing amounts of R&D to maintain even the current level of growth. 
Ultimately R&D will produce no growth. In other words, there would be 
no point in either public or private investment in R&D. 

We tested the fishing out explanation by empirically characterizing 
the knowledge production function for U.S. firms. We failed to find 
support for fishing out. Instead, we found that there were increasing 
returns to the knowledge stock. In addition to this formal test, we con-
ducted a supplemental test by examining trends in maximum research 
productivity. Here too, we found that maximum research productivity has 
been increasing over time, which we would expect if there are increasing 
returns to the knowledge stock. 

While our tests failed to find evidence of fishing out, they do support 
the observation that firms' research productivity has declined. Given 
that fishing out cannot explain the decline, we proposed that the 
research productivity parameter, δ, in Romer's knowledge production 
function, is itself declining. Indeed, research productivity year effects 
continued to exhibit decline after we modeled contributions from the 
knowledge stock and research labor. We identified contingent factors 
that may contribute to the decline in δ, and we provided preliminary 
evidence of their role. At the economy level, we documented an 
increasing imbalance between research and development, and we 
showed that the decline in federally funded development coincides with 
the decline in aggregate research productivity. At the firm level, we 
documented three trends in R&D practices: increased decentralization of 
R&D, increased outsourcing of R&D, and increased use of outside CEOs. 
We then reviewed the empirical literature demonstrating the correlation 
of these newer practices with lower R&D productivity. Thus, it appears 
plausible that contingent factors are responsible for at least some of the 
decline in research productivity. 

In summary, our results failed to find support for fishing out. Rather 
we found positive spillovers of the knowledge stock in the production of 

Fig. 5. Relationship between federally funded development 
and research productivity 
Notes: In this figure we plot federally funded development to 
all performers from 1950 to 2018. We compare this to 
aggregate research productivity measured as GDP growth 
(constant dollars/constant dollars) divided by research labor 
(measured as 1000 full-time equivalent scientists and engi-
neers). Source: National Patterns of R&D Resources: 2017–18 | 
Detailed Statistical Tables| NSF 20–307 | January 08, 2020.   
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new knowledge. Thus, we do not need to be concerned that R&D is 
getting harder, or accordingly that growth from R&D will decline to 
zero. Rather, these results support Romer's original form of the knowl-
edge production function, as well as its expectation that R&D investment 
can generate growth in perpetuity. 

However, and this is critically important, both the government and 
firms need to recognize that U.S. research productivity has declined 
dramatically. It had declined 70 % at the time of Jones's first docu-
mentation (Jones, 1995). It has declined again by the same amount in 
the period since then, as Fig. 5 shows. Therefore, to avoid expending 
increasing amounts of R&D to maintain even the current levels of 
growth, we need to identify and ameliorate contingent factors contrib-
uting to the decline. We provide evidence of such factors at the macro 
and micro levels. 

While our analysis pertains to firms, the findings have important 
implications for public policy. First, the vast majority of R&D is per-
formed by industry. This likely warrants greater attention to firms in 
federal innovation policy. The main existing policy instrument for firms 
is the R&D tax credit. Because of its structure, the tax credit rewards 
firms for increasing research, but not for increasing development. Thus, 
the tax credit is likely contributing to the problem of excess research 
associated with the federal shift from D to R. 

Even ignoring an issue of excess research, aggregate data suggest that 
R&D spending has increased on average 0.014 % per year since 1978, 
when expressed as share of GDP. In absolute dollars, the increase is even 
more pronounced. Thus, it does not appear that firms need incentives to 
increase R&D investment. Rather, they need incentives to improve R&D 
productivity. One policy approach to accomplish this is tying the R&D 
tax credit to improvements in R&D productivity rather than increases in 
research spending. 

The second implication of our firm-level analysis for public policy is 
that development, which is required to commercialize or diffuse in-
ventions, is almost exclusively performed by industry. Therefore, if in-
dustry R&D is unproductive, then research done by universities and labs 
becomes de facto unproductive. It may continue to appear productive 
when measured by patents and publications, but if there is no capacity to 
develop those inventions, they cannot contribute to economic growth. 
To remedy this, policymakers could move toward restoring prior ratios 
of federal funding for development relative to research. 
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