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A B S T R A C T

Can a relatively short but intense exposure to frontier research alter the career trajectories of potential
innovators? To answer this question, we study the careers and productivity of 3075 medical school graduates
who applied to the Associate Training Programs (ATP) of the National Institutes of Health (NIH) during the
turbulent period of the Vietnam War, 1965–1975. Carefully selecting on observables, we compare physicians
who attended the program to those who passed a first admission screen but were ultimately not selected. We
find that program participants were twice as likely to choose a research-focused position after training, and
considerably less likely to switch to purely clinical endeavors as their careers unfolded. Over the life cycle, NIH
trainees also garnered publications, citations, and grant funding at a much higher rate than synthetic controls,
and went on to mentor more trainees who themselves became successful researchers. The direction of their
research efforts was durably imprinted by their training experience. In particular, NIH trainees appear to have
acquired a distinct ‘‘translational’’ style of biomedical research which became an implicit training model for
physician-scientists as ATP alumni came to occupy the commanding heights of academic medicine throughout
the United States.

‘‘[The ATP] did not help [my career], it made it. . . I followed a pathway

that was a combination of hard work, some talent and being in the right

place at the right time. . .None of that would have happened had I not

come down here as a Clinical Associate. . . [I would have] gone to Vietnam

for a few years in the Navy, [and then] I would have probably returned

to New York Hospital. I would probably be practicing medicine right now

on 69th Street and First Avenue. The Clinical Associate program put me

on a career track that I am still on’’.

Anthony Fauci, Director, NIAID

Oral History (1998)
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1. Introduction

It has become a truism among policy-makers that innovation and

technological advances are a key determinant of economic growth

(Aghion and Howitt, 1992; Romer, 1990; Solow, 1957). But innovation

is fundamentally constrained by the supply of innovators—those indi-

viduals whose skills and knowledge put them at risk of bringing forth

a useful ‘‘new-to-the-world’’ idea. Innovators are made, rather than

simply born, and growth possibilities are shaped by the institutions,

incentives, and norms that nudge would-be innovators to receive the

training necessary to bring themselves to the frontier. Indeed, over the

past century, macro evidence suggests that only by steadily increasing
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the number of workers engaged in formal R&D activities has a steady
growth rate in income per capita been sustained (Jones, 1995).

In the medium run at least, designing institutions that might in-
crease the supply of potential innovators is therefore of crucial policy
importance. Yet, severe headwinds frustrate efforts to broaden the
innovator pipeline. First, because scientific and engineering training is
protracted, individual career choices are often shrouded in uncertainty,
both with respect to the monetary payoffs and the direction of human
capital investments likely to earn the best labor market returns. Wit-
ness, for example, the dismal track record of ‘‘manpower analysis’’ and
the perennially flawed predictions of ‘‘innovator shortage’’ (Freeman,
1975; Teitelbaum, 2014). Second, innovative careers are fragile (Milo-
jevic et al., 2018) both because of the winner-take-most aspect of the
scientific reward system, and because skills at the frontier depreciate
rapidly, leading many initial entrants to abandon the idea sector and
reenter the production sector (Deming and Noray, 2020). Third, espe-
cially for countries with domestic training capabilities, restrictions on
high-skilled immigration can act as a brake on plugging leaks in the
innovator pipeline (Kerr, 2018). As a result of these headwinds and the
elimination of mandatory retirement in academia in the mid-1990s, the
scientific workforce is aging rapidly (Blau and Weinberg, 2017).

Despite the paucity of research examining the allocation of talent
to innovative activities, some recent evidence points to an important
friction, that of exposure to research during an individual’s formative
years. In a telling anecdote, pro-footballer turned Math Ph.D. student
John Urschel recounts how his athletic prowess was identified and
nurtured from a young age, whereas his mathematical talents were
left undeveloped until a chance encounter with an inquisitive college
instructor (Urschel and Thomas, 2019). More systematically, Bell et al.
(2019), using IRS tax records linked to U.S. patent data, provide
evidence of a strong association between fathers and sons’ propensity
to patent in the exact same narrow patent class, a finding most easily
explained by early socialization opportunities regarding the feasibility
and desirability of a research career.

The existence of exposure effects might at first blush appear sur-
prising, but their potential importance is better appreciated if one
remembers that early research careers exhibit both brittleness—in the
sense that small negative shocks can shift individuals back to the pro-
duction sector of the economy (Hill, 2018)—and malleability—in the
sense that the flexibility to alter one’s research trajectory declines over
the life cycle (Higgins, 2005). Together, brittleness and malleability
suggest that transient but intense formative experiences in the early
career may significantly influence potential innovators’ decision to
enter the ‘‘ideas sector’’ of the economy, as well as their choice of
research trajectory, domain, or methodology.

Despite the empirical plausibility of exposure effects, providing con-
vincing evidence of their existence and magnitude presents seemingly
insurmountable challenges. Three necessary ingredients are required.
First, one needs to identify a population of ‘‘naïve to research’’ indi-
viduals who nonetheless possess much of the human capital required
to propel themselves to the research frontier. Second, one requires an
intervention consisting of a short but intense exposure to research in
a rarefied intellectual environment to a (preferably random) subset of
this population. A final requirement is the opportunity to observe these
individuals for a long period with minimal loss to follow-up, and see
their career unfold.

In this paper, we study an intervention in physician training that
comes close to bringing together these three ingredients: The Associate
Training Program (ATP) of the National Institutes of Health (NIH). The
ATP brought recent MD graduates to the intramural campus of the
NIH in Bethesda, Maryland for two to three years to participate in
research under the supervision of NIH investigators. A unique aspect
of the program is that participation fulfilled a draftee’s military service
requirement (Berry, 1976). After the war ended, trainees began to
refer to themselves ironically as ‘‘Yellow Berets’’, a derogatory term
used to contrast draft dodgers with the elite Green Berets—the U.S.

Army Special Forces (Baskir and Strauss, 1978; Klein, 1998). Though
quite small when the program was founded in 1953, its scale steadily
grew with applications dramatically increasing during the years of the
Vietnam War. The ATP can be considered a large human capital inter-
vention not because it selected a particularly large cohort (even at its
1973 peak, the program drafted only 229 associates, or approximately
2.5% of graduating male students) but because it induced a very high
proportion of eligible participants to actually apply, from around 20%
in 1963 to close to 80% in 1971.1 Though some applicants had prior
exposure to biomedical research in medical school or during their un-
dergraduate studies, the unpopularity of the war drove many physicians
who otherwise would not have been interested in a research career to
apply for one of those coveted positions (Varmus, 2009). This unique
confluence of events provides us with a quasi-experimental lever to
disentangle the role of sorting from that of training and mentorship,
always a vexing challenge in empirical studies of the scientific labor
market.

We study the careers and productivity of all 3075 male medi-
cal school graduates who applied to the ATP and were interviewed
on campus between 1965 and 1975. We build a rich hand-collected
dataset containing the complete training and career histories for these
individuals, including all publications, patents, NIH grants, and cita-
tions. Carefully selecting on observables, we compare physicians who
attended the program to those who passed a first admission screen
but were ultimately not selected. Despite lasting only two to three
years, we find that the ATP had a large and sustained impact on the
careers of those who attended. Relative to synthetic control applicants,
program participants were twice as likely to sort into research-focused
positions, and dramatically less prone to switch to purely clinical en-
deavors as their careers unfolded. Over the life cycle, NIH trainees also
garnered publications, citations, and grant funding at a much higher
rate than synthetic controls, with over a 75% higher odds of joining
the biomedical research elite.2 They also mentored more trainees who
themselves became successful researchers, providing a way their impact
could persist through the training of the next generation. Moreover, the
direction of their research efforts was durably imprinted by their train-
ing experience. In particular, ATP attendees appear to have acquired a
distinct ‘‘translational’’ style of biomedical research which became an
implicit training model for physician-scientists as ATP alumni came to
occupy the commanding heights of academic medicine throughout the
United States (Khot et al., 2011).

In addition to the unique historical importance of the NIH ATP
(Klein, 1998), our study sheds light on the forces that shape skill
acquisition in medicine, and how medical training influences the rate
and direction of medical progress. Much of the training physicians
receive in medical school, internship, and residency is fungible between
medical care and medical research. Early in their career, physicians
invest heavily in human capital, but then typically go on to apply
their skills narrowly, for the benefits of their (private) patients. These
same skills, however, can be redeployed in research activities, where
physician effort also generates social returns. In fact, it has been a long-
standing policy goal of the medical elite to steer a larger number of
physicians towards research careers (Wyngaarden, 1979). As a result,
studying the NIH training programs in the Vietnam War era provides a
unique window on the long-term consequences of exogenously shifting
a well-defined population from the ‘‘production sector’’ of the econ-
omy (i.e., clinical care) to its ‘‘ideas sector’’ (i.e., biomedical research,
including bench, clinical, and translational research).

1 Since records on the total number of applicants in each year have not
survived, the first figure comes from a back of the envelope calculation
(see footnote 4), whereas the second stems from anecdotal accounts that are
plausible, but hard to substantiate empirically.

2 Defined as receiving the Nobel Prize, being appointed Howard Hughes
Medical Institute investigator, being elected to the National Academy of
Science/Medicine, or winning an NIH R37 MERIT award.
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Our study also speaks to how the institutional environment of sci-
entific training programs shapes their participants’ research careers. A
limited number of studies have examined how mentorship during or af-
ter training (Ginther et al., 2020; Shibayama, 2019), funding level and
source (Blume-Kohout and Adhikari, 2016; Broström, 2019; Ginther
and Heggeness, 2020; Jacob and Lefgren, 2011), and their interaction
with trainee background (Graddy-Reed et al., 2019) may impact the
outcomes of pre- and post-doctoral scientific training programs. By
studying medical doctors who were pushed to seek research training by
a unique confluence of historical events but many of whom ultimately
received training in other settings, the NIH ATP provides a lens on how
the content of training programs shapes the type and quality of the
scientific talent it nurtures.

The rest of the manuscript proceeds as follows. Section 2 pro-
vides institutional background on the NIH ATP program, including
the procedures used to select the trainees. Section 3 describes our
sample construction, provides descriptive statistics, and discusses our
econometric approach. Section 4 presents our main results. Section 5
puts the results in context, and discusses their implications for the
design of scientific training programs in the twenty-first century.

2. Institutional setting

Relative to other professional or creative endeavors, the scientific
labor market is notable for the extent to which, at any given point of
time, a handful of research institutions are responsible for training a
disproportionate share of the future elite in a field while simultaneously
providing an extraordinary environment for breakthrough discoveries.
Examples abound from a wide variety of scientific fields. In physics,
the Cavendish laboratory was the prime breeding ground of atomic
physicists in the first half of the twentieth century (Rhodes, 1986);
the Laboratory of Molecular Biology, also located at the University
of Cambridge, played a similar role for biomedical research after the
second world war (Bynum, 2012; Rubin, 2006). This phenomenon is
not limited to the physical sciences. For example, the MIT economics
department stands out from those located at other universities in the
extent to which it spawned a community of academics who went on to
exert a profound influence on the discipline (Svorencík, 2014).

During the period of our study, the intramural campus of the NIH,
located in Bethesda, Maryland, was widely recognized as one of the
preeminent biomedical research institutions. One aspect setting it apart
from other elite institutions, however, was its unique ability to attract
recently minted physicians eager to pursue a research career. Due to
the confluence of multiple factors—the Doctor Draft, plentiful federal
funding, and the opening of a massive clinical research center in
1953—the NIH had probably no equal in the world with respect to the
training of ‘‘physician-scientists’’ (Park, 2003). We draw on historical
evidence, including a large archive of oral histories curated by the NIH
Office of History to describe this setting in more detail, review the
genesis and development of the Associate Training Program (ATP), and
describe how trainees were selected and trained during this period (see
Appendix E for additional details).

2.1. The Associate Training Program

The NIH ATP started in 1953 with about 15 medical graduates to
provide research training to physicians (Klein, 1998). Associates would
come to Bethesda and do research under the supervision of NIH inves-
tigators, usually after completing a portion of their residency training.
Two years were typically spent in the program, with the option to
extend training an additional year. From the start, the program was
focused on turning physicians into independent medical investigators
well-grounded in scientific knowledge and methods. The goal was on
learning how to do research more than simply doing research itself
and on bringing the physicians into close contact with accomplished

scientists. In addition to the research, the NIH also hosted a set of after-
hours basic sciences courses for program participants that could rival
the offerings of major universities. Christian Anfinsen, a Nobel Laureate
and NIH investigator during the early years of the program, describes
its key features as ‘‘. . . the importance of having the [associates] work on
problems of [their] own choice rather than be ‘servants’ in the research prob-
lems of the preceptor, and the importance of providing the student[s] with
some integrated and organized basic knowledge as a foundation that would
permit them to do their own integrating of knowledge later’’ (Anfinsen,
1963). While the focus was on research, some participants were able
to get credit for their time at the NIH towards their required clinical
training for board certification.

By the early 1960s, the Associate Training Program had been ex-
panded to include three separate tracks. Clinical associates would
divide their time between clinical care at the NIH Clinical Center and
laboratory research. Research associates would spend most of their time
on research and had limited clinical responsibilities. Staff associates
also had training in research administration as well as undertaking
clinical or laboratory research.

Oral histories from NIH staff are replete with claims attesting to the
cutting edge research, breadth of expertise, and concentration of talent
in biomedical research within the confines of the intramural campus
that resulted in a rarefied environment (Appendix E). In addition,
many ATP fellows came to view the focus on what would later be
called translational research as a distinctive element of the approach to
research at the NIH. This was no accident. James Shannon, one of the
early leaders of the NIH, carefully structured the intramural program to
facilitate close cooperation between basic and clinical research (Gold-
stein and Brown, 1997; Park, 2003). Anthony Fauci, an ATP alumni and
prominent HIV/AIDS researcher, recalls, ‘‘What the Clinical Associate
Program does is it gives you a very interesting perspective on the relationship
between disease and the basic science that you have to study to be able to
approach disease. . . Also the link, as we used to say, between ‘the bed and
the bench,’ you see something at the bedside, you bring it back and ask
the question at the bench or you make a discovery at the bench and you
go back and apply it to the bedside, that bedside to bench phenomena was
really what the Clinical Associates program was all about’’ (Fauci, 1998).

Since the NIH, through historical accident, grew out of a laboratory
within one of the U.S. Navy Marine Hospitals, ATP applicants applied
to the program under the auspices of the U.S. Public Health Service
and those selected became commissioned officers. This allowed service
with the U.S. Public Health Service to fulfill any military service
obligation a physician may have if drafted.3 The interest in and level
of competition for spots in the program increased in proportion to
the perceived hardship of military service. The program, however,
was highly competitive even before the increased interest during the
Vietnam War. Unfortunately, there is no reliable information on the
total number of applicants to the program, except in a single year
before the start of our information period: 1963. That year 53 of 1464
physician applicants were selected (NIH Office of Research Information,
1963).4 At its peak, in 1973, the program included 229 associates
(Klein, 1998). In contrast, in the year following the 1973 Paris Peace
Accords which effectively led to an end to the military draft, the NIH
was not able to fill its associateship quota for the year, and by 1976
included only 108 physicians, down over 50% from its peak (Klein,
1998).

3 Of note, in addition to the NIH, the U.S. Public Health Service had other
programs through which physicians could apply to spend two years of service,
including at the Center for Disease Control, the Food and Drug Administration,
and the Indian Health Service.

4 In 1963 there were 7265 graduates from US Medical Schools (Association
of American Medical Colleges, 2016), an estimated 5.6% of which were female
(Snyder, 1993). Using this, we can conclude approximately 21% of eligible
male medical students actually applied to the NIH ATP in 1963.
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While certainly some of the physicians would have applied to
and attended the program regardless of the war, avoiding the draft
was a significant motivation. Donald Fredrickson, a former director
of the NIH and one of the first clinical associates in the program in
1953, later played a role in determining who to admit to the program
during the 1960s and 1970s. He recalled, ‘‘The NIH Associates program
would never have been as popular or as competitive as it was without
the draft’’ (Fredrickson, 1998). Anthony Fauci, a program alumni and
Director of the National Institute of Allergy and Infectious Disease,
echoed these sentiments ‘‘. . . every single physician went into military
service. . . essentially, I came down to the NIH because I didn’t have any
choice’’ (Fauci, 1989).

2.2. The application process

Applications to the NIH ATP were typically submitted two years
in advance, during the final year of medical school with a planned
program start date after completing internship and the first year of resi-
dency training. Applications included academic transcripts, references,
publications, and planned post-graduate training institutions. After a
first screen based on these documents, a small number of applicants
were invited to interview on campus at the NIH in order to match
with a particular laboratory and mentor. Unfortunately, much of this
written documentation was destroyed, leaving only the application
index cards of the subset of candidates who cleared the first admission
hurdle and attempted to match with a laboratory. There is also no
official record of the labs with which each participant attempted to
match or offers made. The data can only tell us that out of these
second round applicants, roughly 63% accepted an ATP position and
attended the program. According to the NIH’s official documentation,
these final appointments were made based upon intellectual attainment
and demonstrated research interest and ability (NIH, 1968).

Applicants were undoubtedly positively selected from the eligible
population—male medical school graduates. In Appendix C, Table C1,
we can see that compared to a random sample of non-applicants drawn
from the American Medical Association (AMA) Physician Master File,
applicants graduated from more selective medical schools (as measured
by NIH grants) and published at significantly higher rates than non-
applicants before application (0.9 vs. 0.3 publications on average).
However, it would be wrong to conclude from this evidence that ap-
plicants displayed a preternatural disposition for research career prior
to application. For instance, the median number of publications for
applicants is zero; the overwhelming majority of applicants do not hold
a PhD degree; and applicants do not appear particularly precocious,
relative to the eligible population (kernel densities corresponding to
the age distribution at the time of application for applicants and
non applicants is depicted in Figure C1; the two curves are nearly
identical).5

The oral and written historical records also speak to the difficulty
in evaluating research potential and making decisions between can-
didates. Donald Fredrickson, an ATP alumnus who later served on
the selection committee for the program in the 1960s and 1970s,
recalls that ‘‘. . . the main objective was getting people who would use this
environment to turn into scientists’’, but also notes selecting participants
was ‘‘extremely difficult because all we really had was the scholastic record
of most people. Very few had done any research. . . so the art of picking out
of a whole group of qualified people those who might become successful

5 An additional piece of evidence argues against viewing the applicant
population as being dominated by science ‘‘geniuses’’: matching carefully the
applicant roster with the Directory of Rhodes Scholars, we found only seven
matches (four treated physicians and three control physicians). Note that
comparisons with ‘‘non-applicants’’ are subject to an important caveat: since
we do not know the identity of the first-round applicants, our sample of
non-applicants could in fact include individuals who did not pass the first
application screen.

scientists was extremely difficult. . .We would have to pick them with a
certain amount of variety because our programs needed people of diverse
interests’’ (Fredrickson, 1998). Harry Kimball, another alumnus of the
program who was also later involved in applicant selection remembers
‘‘It was truly astonishing how qualified these people were and the kind of
close decisions you had to make as to who to offer a spot in the program’’
(Kimball, 1997). Harold Varmus describes how the decisive factor in his
own selection into the program likely did not hinge on his promise as a
budding scientist. Rather, he writes that during his interview with Ira
Pastan ‘‘My schooling in literature turned out to be more important than
my interest in endocrinology, Ira’s field, because Ira’s wife Linda, a poet,
had often complained that Ira’s colleagues seldom talked about books. Ira,
himself an enthusiastic reader, thought it might be helpful to have someone
with my background in his lab’’ (Varmus, 2009).

2.3. Prior evaluations

A handful of prior studies have examined the program. Klein (1998)
provides a thorough description of the ATP and the NIH during the
Vietnam era grounded primarily in the conduct and review of historical
documents and interviews. We have drawn on her analysis to provide
much of the necessary institutional background required to guide our
empirical analysis. Khot et al. (2011) analyze the careers of NIH ATP
attendees from 1955 to 1973, comparing them to a random sample
of medical school faculty that graduated in the same years selected
from the Association of American Medical Colleges Faculty Roster. The
authors show that relative to these controls, ATP participants were
150% more likely to achieve the rank of full professor, twice as likely
to become a department chair, and three times as likely to become
a medical school dean. Matching the population of attendees with a
series of prestige markers appropriate for biomedical researchers, they
found in their sample nine winners of the Nobel Prize in Physiology or
Medicine, ten recipients of the National Medal of Science, 44 members
of the National Academy of Sciences, and 125 members of the Institute
of Medicine. Our study improves on their design with a more appropri-
ate control group, that of unsuccessful applicants to the ATP, which
helps shed light not simply on the effect of ATP attendance on the
intensive margin—articles, citations, grants, patents—but also on the
extensive margin: how did selection shape applicants choice of career,
in particular participation in research activities as opposed to purely
clinical endeavors?

3. Empirical design, data, and descriptive statistics

3.1. Data

The application index cards for the NIH Associate Training Pro-
grams form the raw material for the creation of our dataset. While the
cards for successful applicants had been previously digitized and used
in prior research efforts (e.g., (Khot et al., 2011)), the index card for
applicants who did not attend the program were previously thought to
have been destroyed. In 2015, carton boxes containing a subset of these
index cards—those corresponding to applicants who interviewed on
campus but were ultimately not offered a position—were discovered at
the National Archives by the NIH archivist, Barbara Harkins. Fig. 1 dis-
plays the number of index cards in our dataset in each year belonging to
our observation window, 1965 and 1975. While the ratio of successful
to unsuccessful applicants is approximately 2:1 over the entire period,
this average masks large swings, with the years 1970, 1971, and 1972
exhibiting a greater proportion of unsuccessful applicants. These years
correspond to the height of the Vietnam War mobilization effort.

We limited our analysis to those who applied to the program
between 1965 and 1975. To arrive at the final list of 3075 applicants,
we eliminated 22 applicants who did not hold an MD degree, three
unsuccessful applicants who applied at the very start of medical school
(and did not reapply), and eight who died while in training, or soon
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Fig. 1. NIH ATP interviewed candidates by year. Note: Number of second-round applicants, by year and treatment status. N = 3075 applicants (1929 attendees; 1146 non-attendees).
Sources: ATP Index Cards.

thereafter. We also excluded 33 female and 22 foreign medical school
graduates as their motivations to apply may have been very different
from applicants subject to the draft. Despite our best effort, we also
lost 13 applicants to follow-up (less than 0.42% of the total). In the
case of repeated applications for the same applicant, we retained only
the latest one.

For each of these physicians, we manually collected their training
and career history using a mix of Google, Doximity, and LinkedIn
searches; medical licensure records; professional profiles and CVs;
Who’s Who profiles; and other publicly available internet sources.
These were supplemented with physician biographical information
contained in the AMA Physician Masterfile. To ascertain treatment
status, participation in the ATP was verified with the biographical
resources above as well as NIH telephone directories and internal
human resource records (additional details on dataset construction are
available in Appendix A).6 Applicants who were appointed to the Public
Health Service Commissioned Corps but served at the Center for Disease
Control (CDC) or the Indian Health Service (IHS) were assigned to the
control group. Of course, many members of the control group received
research training in traditional academic medical settings, some of
them after a period of military service, though only one applicant in
the sample appears to have served in the Vietnam military theater. The
final sample contains the records of 3075 physicians (1929 program
attendees and 1146 non-attendee controls).

We distinguish between three career phases for all applicants. First,
the education, or pre-application phase, which ends at the end of
medical school. Second, the training phase, which covers internship,
residency, post-residency fellowships, as well as national service re-
gardless of the setting where it was served (Army/Navy, NIH, CDC,
IHS). Finally, the independent phase of the career begins immediately

6 Our set of treated applicants include fellows who completed their training
outside of the confines of the NIH intramural campus in Bethesda, such as the
Baltimore Cancer Research Center or the Food and Drug Administration (FDA).
Other NIH locations were even more far-flung such as the Rocky Mountain
Laboratory (located in Hamilton, Montana) or the Panama Control Zone. As a
robustness check, we repeated our analysis excluding the 267 ATP attendees
not located on the main NIH campus in Bethesda with similar results obtained.

after the end of the training phase, and ends with retirement or death.
When referring to career choice in the rest of the paper, we refer to the
choice of employment in this last career phase. 277 (9.01%) applicants
pass away prior to their retirement; 762 (24.78%) retire prior to 2017,
the end of our observation period; and for 2036 applicants (66.21%),
the career is still ongoing as of 2017. Though these observations are
technically censored, it is important to acknowledge that the youngest
applicant in our sample was 65 years old in 2017 and in his thirty-
first career year. To a first order of approximation, these physicians are
therefore at the twilight of the active phase of their research or clinical
careers.

Publications, citations, patents, and NIH grants were collected for
each individual from PubMed, the Web of Science, the U.S. Patent
and Trademark Office (USPTO), and the NIH’s Consolidated Grant
Applicant File, respectively, and carefully name-disambiguated. For
publications we include only original research articles, excluding other
types of publications such as letters, editorials, and review articles.
Importantly for our analysis, we use the richness of the individual
profiles collected to measure participation in research independently
of the applicants’ employers. For instance, the career of many of our
applicants unfolds within academic medical centers in purely clinical
positions where there is no expectation of publication. In contrast,
other applicants work in industry or other non-academic institutions
and yet amass a respectable publication record in the context of non-
traditional research careers. Since our motivation is to understand how
early career interventions might influence long-run engagement with
the idea sector of the economy, distinguishing between career locus
(academic versus non-academic jobs) and career focus (research jobs
versus clinical jobs) is important.

3.2. Descriptive statistics

Pre-application characteristics. Table 1a presents descriptive statis-
tics regarding ATP applicants at the time of application. Applicants
with stronger academic credentials, or with evidence of involvement
in research activities are also more likely to attend the program.
For instance, applicants holding a PhD degree, those with a publica-
tion record, those inducted in an elite medical school honors society
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Table 1a
Descriptive statistics: Pre-application data.
Sources: ATP Index Cards, PubMed, CGAF.

Unweighted sample Lasso IPTW Reweighting

Non-attendees Attendees t -stat Non-attendees Attendees t -stat

Ph.D. 0.013 0.036 3.738 0.030 0.027 0.216
(0.003) (0.004) (0.011) (0.003)

Age in the Year of Last Application 25.931 26.016 1.596 26.021 26.145 0.923
(0.042) (0.033) (0.056) (0.139)

Applies more than once 0.027 0.028 0.154 0.043 0.028 1.434
(0.005) (0.004) (0.010) (0.004)

Number of Applications 1.028 1.029 0.093 1.044 1.029 1.426
(0.005) (0.004) (0.010) (0.004)

Number of Institutes Applied For 2.948 3.933 11.789 3.501 3.596 0.730
(0.061) (0.053) (0.115) (0.057)

Number of Associate Tracks Applied For 1.828 2.068 7.811 1.962 1.991 0.729
(0.025) (0.019) (0.034) (0.021)

A𝛺A Honor Medical Society 0.257 0.383 7.162 0.305 0.328 0.894
(0.013) (0.011) (0.019) (0.016)

Pre-ATP Nb. of Publications 0.582 1.005 7.367 0.841 0.846 0.063
(0.037) (0.039) (0.080) (0.045)

Pre-ATP JIF-weighted Nb. of Publications 3.288 6.595 6.835 6.107 5.289 0.854
(0.292) (0.330) (0.967) (0.330)

NIH Grants for Applicant’s Medical School 170.323 207.006 6.879 185.481 189.629 0.428
(3.792) (3.438) (6.033) (7.441)

NIH Grants for Applicant’s Internship Hospital 90.915 97.153 1.978 90.758 92.300 0.294
(2.590) (1.882) (3.505) (3.863)

Attended Harvard Medical School 0.075 0.142 5.614 0.101 0.121 1.238
(0.008) (0.008) (0.014) (0.008)

Attended Johns Hopkins School of Medicine 0.047 0.059 1.356 0.043 0.056 1.576
(0.006) (0.005) (0.007) (0.006)

Attended Columbia University 0.050 0.044 0.725 0.051 0.042 0.965
(0.006) (0.005) (0.008) (0.005)

Note: N = 3075 applicants (1929 attendees; 1146 non-attendees). Means, standard errors, and 𝑡-statistics are reported; reweighting
is performed using average treatment effect inverse probability of treatment weights. T-statistics are calculated using IPTW-weighted
OLS regression of the variable of interest on an indicator variable for ATP attendance. Harvard, Johns Hopkins, and Columbia are
the three most common medical schools attended in the sample. For NIH grants, original amounts were deflated using the Biomedical
R&D Producer Price Index (2015 dollars) and presented in units of millions of dollars. JIF—journal impact factor.

Table 1b
Descriptive statistics: Career choice.
Sources: ATP Index Cards, AMA Physician Masterfile, doximity.com, state licensure records, NIH telephone directories.

Non-Attendees Attendees

Mean Std. Dev. Mean Std. Dev.

Deceased 0.075 0.264 0.100 0.299
Years of Post-graduate Training 5.864 1.688 6.425 1.556
Nb. of Career Years (censored in 2017) 37.651 5.805 38.149 6.389
First Job in Academia 0.572 0.495 0.757 0.429
Ends Career in Academia 0.381 0.486 0.546 0.498
Researcher First Job 0.460 0.499 0.694 0.461
Ends Career as Researcher 0.300 0.459 0.519 0.500
First Job in Clinical Practice 0.535 0.499 0.296 0.457
Ends Career in Clinical Practice 0.657 0.475 0.441 0.497

Note: Academia includes both universities/medical schools and research settings such as the NIH or private non-profit
institutes (e.g., The Salk Research Institute). Researcher jobs is different from academia in that it includes for-profit
industry research positions but excludes clinical university faculty. Clinical practice includes both those in community
practice as well as medical school clinical faculty. All variables except years post-graduate training and number of
career years are indicator variables.

(𝐴𝛺𝐴),7 and those having graduated from elite medical schools (as
proxied by the NIH funding received by its affiliated faculty members)
are more likely to be selected.8 Recall that these applicants all survived
a first screen, so one might have expected that covariates observable

7 Criteria for selection into 𝐴𝛺𝐴 varies by school, but typically weighs
academic and clinical excellence most heavily.

8 Appendix Table B1 lists the 10 most frequent medical schools from which
physicians in the sample graduated, separately for attendees and non-attendee
controls. Appendix Figure B1 provides a histogram for the distribution of the
number of original publications published up to the year of ATP application,
weighted by the journal impact factor of the publication outlet in which they
appeared.

before this initial screen would not influence the selection decision

at the interview stage. The fact that observable markers of ‘‘research

preparedness’’ do in fact predict selection imply that interviewing

‘‘skills’’ are correlated with these markers, or alternatively, that the

ultimate decision makers place positive weights on them even at the

second stage of the process. However, one must remember that due to

the young age of the applicants, the signals of research potential upon

which the selection decision relies are necessarily noisy. For instance,

59.4% of applicants have no publication to their name within two

years of their ATP application (67.4% for attendees; 54.7% for non-

attendees). ATP attendees also applied to more NIH institutes (3.9 vs.
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Table 1c
Descriptive statistics: Research outcomes.
Sources: ATP Index Cards, PubMed, CGAF, USPTO, Marx and Fuegi (2020) ‘‘reliance on science’’ publication-to-patent
linkages.

Non-Attendees Attendees

Mean Std. Dev. Mean Std. Dev.

Nb. of Pubs, Training Period 2.400 4.079 6.050 6.389
Career Nb. of Pubs 37.313 80.078 77.773 109.584
Career Citations 1988 5345 5131 10,391
Nb. of Patents 0.657 3.729 1.738 6.569
Career Citations to Patents in Patents 7.506 53.651 20.227 106.080
Career Citations to Pubs in Patents 80.095 347.028 252.029 914.263
NIH Grant Recipient 0.206 0.405 0.442 0.497
Career NIH Grants ($ 2015) 4,511,372 35,192,232 12,436,209 42,898,984
Career NIH R01 Grants ($ 2015) 1,193,642 5,035,673 3,149,951 8,197,320
Nb. NIH-R01-funded Trainees 0.214 0.885 0.758 1.914
Trainee Career NIH R01 Grants ($2015) 1,167,519 6,091,129 4,722,876 14,203,229

Note: Except in the first row, all outcomes should be understood to be restricted to output in the post-training (i.e.,
independent) phase of the career. NIH grant recipient is an indicator variable equal to 1 if an individual ever received
an NIH grant.

Table 1d
Notable achievements.
Sources: ATP Index Cards, CGAF, Nobel Prize, HHMI, and NAS web sites.

Nobel Prize Natl.
Academies
Member

Howard Hughes
Med. Investigator

NIH MERIT [R37] Awardee

Non-Attendees 0 (0.00%) 14 (1.12%) 0 (0.00%) 14 (1.22%)
Attendees 7 (0.36%) 90 (4.67%) 32 (1.66%) 79 (4.10%)
Total 7 (0.23%) 104 (3.34%) 32 (1.04%) 93 (3.02%)

Table 1e
Descriptive statistics: Research style.
Sources: ATP Index Cards, PubMed.

Non-Attendees Attendees

Mean Std. Dev. Mean Std. Dev.

Basic Science Articles 0.107 0.200 0.199 0.248
Translational Medicine Articles 0.209 0.234 0.273 0.232
Clinical Trial Articles 0.097 0.161 0.107 0.162
Other Clinical Articles 0.467 0.324 0.338 0.292
Articles Appearing in ‘‘Translational’’ Journals 0.012 0.065 0.016 0.039
Inspires Translational Research 0.088 0.135 0.118 0.137
Builds on Translational Research 0.068 0.131 0.078 0.130
Articles Cited in Patents 0.109 0.149 0.162 0.162

Note: N = 2584 scientists (491 scientists with zero publications cited at least once in the independent phase
of the career are excluded). Statistics correspond to the fraction of each scientist’s work with the corresponding
characteristic.

2.9), perhaps signaling greater interest in or motivation for research
undertakings.9

Career choice. Table 1b provides basic statistics regarding career out-
comes, with a particular focus on the first job following the end of the
training phase and the last job held by each applicant before the earliest
of 2017, retirement, or death (Appendix Tables B2 and B3 provide a
finer-grained occupational breakdown). It is immediately apparent that
ATP attendees choose academic (76% vs. 57%) and research (69% vs.
46%) careers at a more pronounced rate, relative to non-attendees,
following the end of their training. These differences reflect in part
time spent in training, though this contrast is not especially stark:
On average, ATP attendees spend an additional 6.7 months in post-
graduate training prior to achieving career independence, relative to
non-attendees. The gap does not seem to narrow as their career unfolds,
though one can observe attrition in the subsample of attendees. The

9 The right-most columns of Table 1a provide a comparison of means
in the reweighted sample which reflects the methodology presented in Sec-
tion 3.3 and Appendix F. In the pseudo-population of trainees created by this
procedure, the differences in baseline covariates are no longer statistically
significant.

proportion of fellows in research positions falls from 69% to 52% be-
tween the beginning and the end of the career. Overall, these univariate
comparisons corroborate the claims made by ATP alumni regarding the
effect of their training on career orientation. For instance, Harry Keiser,
an ATP alumnus and later clinical director of the National Heart, Lung
and Blood Institute, mentions that ‘‘if I had gone back to Northwestern. . . I
would have almost certainly gone out into private practice. . . I certainly
would not have continued to devote the rest of my life to research’’ (Keiser,
1998).

Research outcomes. Table 1c reports descriptive statistics on a variety
of research outcomes. ATP attendees garner over twice the number of
career publications on average (77.8 vs. 37.3). Similar differences can
be observed for patents (1.7 vs. 0.7), NIH extramural grant funding
($12.4 vs. $4.5 million), and citation impact (5,131 vs. 1988 for article-
to-article citations; 20.2 vs. 7.5 for patent-to-patent citations). ATP
attendees’ publications are also more heavily cited in patents (252 vs.
80). Attendees receive greater NIH R01 funding as well, with $3.1
million compared to $1.2 million over their career.

We also examine the ‘‘fecundity’’ of ATP applicants by identifying
the set of individuals they train over their career who go on to be
awarded NIH R01 funding, a key marker of research independence in
U.S. academic medicine. In this way, the impact of training institutions
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can ripple through a much larger community of scholars as yesterday’s
trainees become the trainers of today. In the context of our data, a
trainee is an individual who, in a window centered on the time of her
highest degree, appears as first author on a publication jointly with the
ATP applicant in last authorship position. We then match the names
of these individuals with the NIH Consolidated Grant Applicant File,
allowing us to identify the subset of trainees who go on to be awarded
NIH funding (more details are provided in Appendix H). This is a
relatively sparse outcome, but there again, successful applicants appear
more prolific than unsuccessful ones (0.76 vs. 0.21 R01-funded trainees
and $4.7 vs. $1.2 million in trainee career R01 grants on average).

Panels A, B, and C of Appendix Figure B2 display histograms for
the distribution of career publications, citations, and NIH funding by
treatment status. The differences in achievement between attendees
and non-attendees are even more pronounced in the right-tails of these
distributions. This is also reflected in the rate at which attendees
accrue markers of research excellence over the career, relative to non-
attendees (Table 1d). In the control group, no physician ever receives
a Nobel Prize or a Howard Hughes Medical Institute (HHMI) Investiga-
torship (the corresponding numbers in the treatment group are 7 and
32, respectively). The differences in the rate at which treatment and
control physicians become Members of the National Academies or NIH
MERIT awardees are less stark, but still large in magnitude.

Research style. We develop a battery of measures to capture dif-
ferences in research style across physicians in the sample. In particular,
we take a first stab at measuring ‘‘translational’’ biomedical research.
Translational research does not have an agreed-upon definition (Butler,
2008; Woolf, 2008). For the purposes of this paper, we will build upon
the view of David Nathan, an NIH ATP alumni and former president of
the Dana-Farber Cancer Institute (Nathan, 2005):

‘‘Translational clinical investigators come in at least two fla-
vors. . .One class includes physician-scientists interested in disease
mechanisms. . . But these almost never interact in their research
with an intact patient/subject. Such disease-oriented researchers
are content to study tissue samples, cell lines, and model systems
such as mice, fish, and yeast and do so with great benefit. . . Their
career paths are only slightly distinguishable from those of basic
scientists. . . The other class of physician-scientists include patient
oriented researchers. They actively search for patients who may
enable them to uncover the secrets of complex diseases, care for
those patients, and with their permission, undertake to explore new
diagnostic and therapeutic approaches to treating their diseases’’.

As a concrete (and famous) example of translational research of the
first type, consider the work of NIH ATP alumni Joseph Goldstein and
Michael Brown, recipients of the 1985 Nobel Prize for Medicine and
Physiology. Their initial investigations were inspired by observations of
patients with familial hypercholesterolemia they saw at the NIH Clini-
cal Center (Goldstein and Brown, 1997). Through patient-inspired basic
investigations performed at the laboratory bench, they identified the
underlying root cause of this disease as a lack of low-density lipoprotein
receptors. These discoveries in turn informed drug development efforts,
ultimately leading to the market introduction of statins. The work of
Goldstein and Brown illustrates well the importance of both the ‘‘bench
to bedside’’ and ‘‘bedside to bench’’ transitions which are a recurring
theme in the oral histories of ATP alumni.

Conversely, Philip Pizzo personifies an approach to translational
research closely connected with patient care. After his clinical asso-
ciateship, Pizzo stayed on at NIH, becoming Chief of Pediatrics and
Scientific Director of the Division of Clinical Sciences at the National
Cancer Institute before being named Physician-in-Chief of Boston Chil-
dren’s Hospital and later Dean of Stanford Medical School. An expert
in infectious disease and cancer, examples of his contributions include
the first use of antiretroviral medication in children with HIV, a phase I
trial of a solubilized receptor used by HIV for cell attachment, assessing
the effectiveness in cancer patients of a diagnostic test for invasive

fungal infection previously studied only in animal models, and in
vitro testing of approaches to rescue neutrophil dysfunction using HIV
patient samples.

The MeSH thesaurus from the National Library of Medicine provides
the raw material necessary to create our measures of research style.
MeSH consists of terms arranged in a hierarchical structure that permit
searching at various levels of specificity (there are over 29,000 descrip-
tors in the 2019 edition of MeSH). Almost every publication in PubMed
is tagged with a set of MeSH terms (between 1 and 68 in the current
edition of PubMed, with both the mean and median approximately
equal to 10). For each article published by a scientist in the sample, we
measure disease orientation by the presence of a disease MeSH term.
To capture bench research, we take note of the presence of MeSH terms
for molecular biology techniques—such as nucleic acid amplification
techniques or cell migration assays, MeSH terms corresponding to model
organisms—such as the nematode caenorhabditis elegans or the fruit fly
drosophila melanogaster, MeSH terms related to cellular structures and
macromolecules—e.g., DNA topoisomerase IV, or MeSH terms denoting
biochemical and cellular processes—e.g., oxidative phosphorylation (See
Appendix G for further details).

In a second step, we partition the bibliome into four mutually
exclusive styles: (i) Basic science articles are not disease-oriented, are
tagged by at least one bench science keyword, and are not clinical
trials; (ii) translational articles are disease-oriented, tagged by at least
one bench science keyword, and not clinical trials; (iii) clinical trials
(identified using MeSH terms and the publication type field in PubMed);
and (iv) ‘‘other’’ clinical articles, which are disease-oriented, not clinical
trials, and not tagged by any bench MeSH keywords.10

We create four additional approaches to uncover the empirical
signature of a translational research style. First, a natural way for the
transition from bench to bedside to take place is for clinical researchers
to further develop translational work, for example by performing a clin-
ical trial. We designate an article as ‘‘inspiring translational research’’
whenever it is translational according to the above criteria and is cited
by a clinical trial publication. Second, in the same spirit, we iden-
tify work that ‘‘builds on translational research’’: articles that report
the results of a clinical trial and also list a translational publication
in their references. Third, we identify papers published in six high-
impact journals that prominently advertise their translational focus (the
Journal of Clinical Investigation, the Journal of Translational Medicine,
Science Translational Medicine, Nature Medicine, Translational Research:
The Journal of Laboratory and Clinical Medicine, and the Journal of
Experimental Medicine). Finally, a different way to facilitate the bench-
to-bedside transition is to enable biopharmaceutical firms to build on
the applicant’s published research, since many health-related innova-
tions cannot reach patients unless firms invest in bringing them to
market (Azoulay et al., 2009). To capture this, we tag each article that
garners at least one citation in the header of a patent subsequently
granted by the USPTO (Marx and Fuegi, 2020). This provides a crude
way to capture the extent to which biopharmaceutical firms build on
the work of the scientists in the sample to inform their applied R&D
efforts.

Table 1e reports descriptive statistics for the research style mea-
sures. Because these measures are only meaningfully defined for pub-
lishing researchers, we create a subsample that only includes the 2584
scientists (1730 treated and 854 controls) who publish at least one
article after the end of their training. Rather than focusing on the levels
of these variables, we normalize them by the total number of articles
published by each scientist in the independent career phase.

Non-attendees and attendees differ markedly in the style composi-
tion of their published work. The proportion of basic science articles
is almost twice as high for successful applicants (19.9% vs. 10.7%);

10 Jointly, these styles comprise 93% of the applicant’s published output. For
the style analysis, we ignore the residual unclassifiable publications.
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the proportion of translational articles is approximately 30% higher;
and the proportion of clinical trials is approximately 10% higher.
This means that a higher fraction of the non-attendees’ output falls
into the ‘‘other’’ clinical category. Similarly, univariate comparisons
point to higher translational orientation for attendees, relative to non-
attendees, using additional measures of research style. For instance, a
higher fraction of attendees’ articles appear in a small set of explicitly
translational journals, are referenced in patents, or inspire follow-on
translational research. Below, we explore whether these differences
subsist when comparing treated and control physicians with similar
observable characteristics.

3.3. Econometric considerations

The univariate comparisons point to large differences in outcomes
between attendees and non-attendees of the NIH ATP. It would be haz-
ardous to interpret these differences as reflecting the causal effect of the
ATP ‘‘treatment’’, since it is obviously a goal of NIH laboratory heads to
admit applicants with the most research promise. Recall that all appli-
cants in our sample already passed a first selection screen. Yet residual
sources of selection might remain at the interview stage, e.g., the
admissions committee might extract relevant information regarding an
applicant’s suitability for a research career in a series of relatively short
interviews. To address this fundamental identification challenge, we
adopt a propensity score weighting methodology which belongs to a
broad class of ‘‘selection-on-observables’’ techniques (additional details
are provided in Appendix F).

Inverse probability of treatment weighted estimation. Let us as-
sume that the NIH principal investigators recruiting fellows at the
interview stage are unable to select applicants on the basis of covari-
ates unobserved by the econometrician and correlated with research
career success—the ‘‘unconfoundedness’’ assumption. This assumption
is not refutable and it places strong demands on the data generating
process. In addition, we must assume that, for all included values of
the covariates predicting treatment, the likelihood of being selected
to attend is positive—the ‘‘common support’’ assumption. Under these
assumptions, Hirano and Imbens (2001) show that various treatment
effects of attending the NIH ATP, conditional on exogenous applicant
characteristics, can be recovered by weighted least squares or weighted
maximum likelihood estimation where the weights correspond to the
inverse probability that each observation is treated. Our weighting pro-
cedure effectively creates a pseudo-population of applicants in which
observable covariates no longer predict assignment to treatment and
the causal association between treatment and the outcome variable
is unchanged from the original population. We refer to this as the
Inverse Probability of Treatment Weighted (IPTW) estimation (Austin
and Stuart, 2015; Xu et al., 2010).

Informative censoring. Although we focused on the problem of non-
random selection into treatment, a second problem arises because
some applicants might fail to engage in research activities for the sole
reason that their chosen position does not afford them the possibil-
ity to publish, seek external grants, or train the next generation of
scientists. This problem is distinct from informative loss to follow-
up. These physicians’ careers are observed in full and yet it does not
seem meaningful to compare the research productivity of a full-time,
tenure-track academic researcher with that of a clinician who very
occasionally dabbles in research. We deal with this problem by treating
early exit from research as another treatment. As Robins et al. (2000)
note, adjusting for this type of informative censoring is tantamount
to estimating the causal effect of ATP attendance on an outcome if,
contrary to the fact, all applicants had remained engaged in research
rather than followed their censoring history. We model the exit decision
as a function of the same pre-application covariates used to model
selection into treatment, and compute weights corresponding to the
probability of exit given these observables. The final weight, obtained

by multiplying the weights corresponding to the inverse probability
of treatment and inverse probability of censoring, is the probability
an applicant would have followed his own treatment and censoring
history, conditional on observables. We label this methodology Inverse
Probability of Treatment and Censoring-Weighted (IPTCW) estimation
in what follows.

Selection on unobservables. Despite a long list of observable covari-
ates to predict selection into the ATP, IPTW estimation does little to
address the threat to identification due to factors unobservable to the
econometrician. The time period of the study suggests an instrumental
variable approach based on draft eligibility, as in Angrist (1990). How-
ever, medical school graduates, having already deferred their service
for educational purposes, were not, in effect, eligible to participate in
the lottery (Crowell, 1971; Rousselot, 1971). Table D1 in Appendix D
verifies that having one’s number called in the lottery does not help
predict ATP attendance.

Estimation procedure.Many of the outcomes we study, including pub-
lication counts and NIH grants awarded, are skewed and non-negative
with a large mass point at zero (see Figures B2a, B2b, and B2c). For ex-
ample, 426 (13.9%) of the applicants do not publish after their training;
approximately two thirds of the sample never receive any NIH grant
funding over the career. Following a long-standing tradition in the
study of scientific and technical change, for these skewed outcomes we
present Poisson quasi-maximum likelihood (hereafter QML) estimates
(Santos Silva and Tenreyro, 2006). Because the Poisson model is in the
linear exponential family, the coefficient estimates remain consistent
as long as the mean of the dependent variable is correctly specified
(Gouriéroux et al., 1984). QML (i.e., ‘‘robust’’) standard errors are
computed using the outer product of the gradient vector (and therefore
does not rely on the Poisson variance assumption).

4. Results

The exposition of the econometric results proceeds in stages. We
first explore empirically the determinants of selection into the ATP. Us-
ing the predicted probabilities from these models as regression weights,
we then report estimates of the effect of ATP attendance on (i) career
choice outcomes; (ii) research productivity (including trainee mentor-
ship outcomes); and (iii) research style outcomes. Finally, we per-
form a battery of robustness tests to probe the plausibility of the
unconfoundedness assumption in our context.

4.1. Selection into the NIH ATP

We model the likelihood of selection in a logit framework using an
extensive list of covariates observed at the time of selection (Table 2).11

We capture the research orientation of the medical school and intended
internship hospital for each applicant with the NIH funding that accrue
to principal investigators in these institutions. We also include an indi-
cator variable for applicants who received a PhD before they applied,
and an indicator variable for election to the 𝐴𝛺𝐴 Honor Medical
Society. The most informative indicator of research promise is probably
demonstrated engagement in research activities, as ascertained by an
applicant’s list of scientific works published, or soon-to-be-published at
the time of application. We weight each of these student publications
by the impact factor of the journal in which they appeared as a crude
quality adjustment (raw counts produce similar results).

Columns 1a and 1b report logit coefficients and find the signs
for most of the covariates are in the expected direction. Relative to

11 In fact, most of these factors might have been observed at the initial
selection stage (e.g., medical school attended) while for others the timing is
more ambiguous as they might become known to the applicant between the
first and second stage of the ATP selection process (e.g., intended internship
hospital, accepted or forthcoming journal publications).
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Table 2
Modeling selection into the NIH ATP.
Sources: ATP Index Cards, PubMed, CGAF.

Program selection Informative censoring

Parsimonious Model Saturated Model Parsimonious Model Saturated
[Logit] [Lasso] [Logit] Model [Lasso]

(1a) (1b) (1c) (2a) (2b) (2c)

Log(Pre-ATP Nb. of Publications) 0.307∗∗ 0.329∗∗ −0.192∗∗ −0.210∗∗

(0.071) (0.071) (0.064) (0.066)
Ln(NIH Grants for Applicant’s Medical School) 0.357∗∗ 0.317∗∗ −0.193∗∗ −0.158∗

(0.090) (0.091) (0.067) (0.066)
Ln(NIH Grants for Applicant’s Internship Hospital) 0.019∗ 0.017† −0.031∗∗ −0.029∗∗

(0.009) (0.010) (0.008) (0.009)
Ph.D. 0.932∗∗ 0.577† 0.794∗ −1.347∗∗ −1.036∗∗ −1.141∗∗

(0.334) (0.342) (0.311) (0.354) (0.358) (0.359)
No Internship 1.962∗ 1.763∗ 1.117 −2.716∗ −2.583∗ −3.936∗∗

(0.839) (0.849) (0.981) (1.056) (1.068) (0.879)
Applies more than once −0.039 −0.091 0.071 0.076 0.115 −0.028

(0.300) (0.295) (0.273) (0.246) (0.249) (0.242)
A𝛺A Honor Medical Society 0.688∗∗ 0.701∗∗ 0.661∗∗ −0.346∗∗ −0.346∗∗ −0.347∗∗

(0.105) (0.106) (0.101) (0.087) (0.088) (0.087)
Constant −3.278† −2.649 3.049∗ 2.329†

(1.748) (1.775) (1.311) (1.310)

Medical School Fixed Effects No No Yes No No Yes
Internship Hospitals Fixed Effects No No Yes No No Yes

Nb. of Non-zero Predictors 151 168
Nb. of Potential Predictors 372 372
𝜒2 Test Statistic 67.96 51.23
Pseudo-R2 0.251 0.265 0.056 0.073
Log-likelihood −1521 −1493 −1945 −1910
Nb. of Applicants 3075 3075 3075 3075 3075 3073

Note: The dependent variable is an indicator variable equal to one for attendees, zero for non-attendees (first three columns) or an indicator variable equal to
one for attendees who exit research immediately after training (last three columns). Estimates are displayed as coefficients from logit specifications. All models
incorporate a full suite of medical school graduation year effects; a set of indicator variables for the applicant’s age at the time of application; indicator variables
for the number of distinct NIH component institutes that received the application; indicator variables for the number of tracks applied to within the Associate
Training Program; indicator variables for the number of years between the application and the medical school graduation year; and a series of indicator variables
capturing if the applicant (1) intended to postpone his internship until after training, (2) intends to perform his internship abroad, (3) intends to intern in a
hospital affiliated with the Veterans Affairs Administration, or (4) has missing information regarding his intended internship hospital. All models except (1a) and
(2a) also include an indicator variable for applicants without any publication before application. Estimates in columns [1c] and [2c] correspond to the results of
a cross-fit partialling-out lasso logit procedure with ten folds, as described in Chernozhukov et al. (2018). The specification includes all the covariates mentioned
above, plus a full suite of medical school indicator variables and a full suite of internship hospitals indicator variables, but only a subset of this list is selected
for inclusion (151 out of 372 in model [1c]; 168 out of 372 in model [2c]. In both models [1c] and [2c], a Wald test rejects the hypothesis that the ‘‘coefficients
of interest’’ (i.e., those that are constrained to appear in the model, and for which inference is performed) are jointly equal to zero. Robust errors in parentheses
(†p < 0.10, ∗p < 0.05, ∗∗p < 0.01).

applicants without publications and at the mean of all other covariates,
computed marginal effects suggest applicants with one publication are
7% more likely to be selected; those with two publications or more,
20% more likely.

Estimates in column 1c correspond to the results of a cross-fit
partialling-out lasso logit procedure with ten folds, as described in
Chernozhukov et al. (2018). The specification includes all the covari-
ates mentioned above, plus a full suite of medical school indicator
variables and a full suite of internship hospitals indicator variables,
for a total of 372 covariates, 151 of which the procedure selects for
inclusion as control variables. This procedure allows for statistical
inference to be performed on five covariates of interest also included in
the specification in column 1b, enabling the coefficients and standard
errors to be compared across columns.12

Columns 2a, 2b, and 2c perform a similar exercise, but the response
variable is not selection in this case, but rather exit from research at the
end of training. The signs of the coefficient estimates for the predictive
covariates are flipped, relative to the specifications in columns 1a, 1b,
and 1c.

The specifications used to compute selection probabilities and re-
gression weights for each applicant depart ever so slightly from those

12 Note that medical school and internship hospital funding variables are not
separately identified from the fixed effects and drop out of the specification.
The 𝜒2 test statistic (i.e., the Wald test of the hypothesis that the coefficients
of these five covariates are jointly equal to zero) is equal to 78.85 (𝑝 < 0.01).

in columns 1c (for the selection weights) and 2c (for the informative
censoring weights). Since the estimation of the propensity score is
solely a prediction exercise, we favor an abundance of explanatory
variables in these models. Our least restrictive specification includes
94 fixed effects for medical schools and 238 indicator variables for
intended internship hospitals. We constrain the model to include the
same variables as the specification in column 1c and 2c as well as the
inverse hyperbolic sine of medical school and internship hospital NIH
grant funding. The other variables are selected via a logit procedure
with a lasso penalty term, using ten-fold cross-validation to prevent
overfitting the data. The predicted probabilities from this model are
used to generate the benchmark set of lasso weights used below to
estimate treatment effects.13,14

Table 1a confirms that pre-application covariates appear balanced
across treated and control observations in the sample appropriately

13 We test the quality of our predictions by splitting the sample into a
prediction subsample (2460 or 80% of the observations) and a hold-out sample
(615 or 20% of the observations). The out-of-sample deviance ratio (a measure
of goodness of fit for logit models) is equal to 0.70 of the corresponding
in-sample value, which is acceptable.
14 As a robustness exercise, we repeat our analysis using logit weights
computed using the model in Table 2, columns 1b and 2b (Figure B3, Tables
B4a and B4b). Note that the correlation between the predicted selection
probabilities from column 1b and that of the model with lasso regularization
is 0.919. As a result, the magnitudes and precision of the IPTCW estimates are
not very sensitive to the choice of weights.
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Table 3
Career choice outcomes.
Sources: ATP Index Cards, AMA Physician Masterfile, doximity.com, state licensure records, NIH
telephone directories.

X-Sect. Lasso weights

Naive ATE ATET

Poisson estimates

Years of Post-graduate training 1.091∗∗ 1.082∗∗ 1.069∗∗

(0.012) (0.015) (0.019)

Nb. of career years 0.988† 0.988† 0.989
(0.006) (0.007) (0.008)

Logit estimates

First Job in Academia 0.160∗∗ 0.113∗∗ 0.085∗∗

(0.018) (0.021) (0.025)

Ends Career in Academia 0.146∗∗ 0.132∗∗ 0.111∗∗

(0.020) (0.032) (0.027)

Researcher First Job 0.212∗∗ 0.170∗∗ 0.153∗∗

(0.018) (0.022) (0.026)

Ends Career as Researcher 0.216∗∗ 0.192∗∗ 0.175∗∗

(0.019) (0.030) (0.025)

First Job in Clinical Practice −0.212∗∗ −0.171∗∗ −0.155∗∗

(0.018) (0.022) (0.026)

Ends Career in Clinical Practice −0.215∗∗ −0.189∗∗ −0.174∗∗

(0.019) (0.029) (0.025)

Joins the Research Elite 0.056∗∗ 0.025∗ 0.032∗

(0.013) (0.012) (0.013)

Number of applicants 3075 3075 3075

Note: Each cell contains an estimate for the treatment effect in a separate regression. The dependent
variables are listed in the left-most column. All models incorporate a full suite of medical school
graduation year effects as well as an indicator variable for holding a Ph.D. degree at the time of
application. Column 2 and 3 perform inverse probability of treatment weighted estimation for first
career position and training length outcomes (rows 1, 2, 3, 5, and 7) and inverse probability of
treatment and censoring weighted estimation for all other outcomes; the corresponding estimates
can be interpreted as the ATE/ATET of NIH training, under the assumption of unconfoundedness.
On the first two rows, the estimates stem from Poisson regressions. Exponentiated coefficients are
presented; subtracting 1 yields magnitudes interpretable as elasticities. For example, the estimate
in the top cell of the first column imply that attendees stay 100×(1.091]-1) = 9.1% longer in
training, relative to non-attendees; the effect is highly statistically significant. On the next six
rows, the estimates stem from logistic regressions. The marginal effects for the treatment indicator
are reported. For instance, the coefficient in the third row of the first column implies that attendees
are 16.0% more likely than non-attendees to be initially placed in academia after completing their
training. Robust errors in parentheses (†p < 0.10, ∗p < 0.05, ∗∗p < 0.01).

weighted using the fitted selection probabilities to construct the se-
lection weights according to the method described in Section 3.3 and
Appendix F.

4.2. Career choice

Table 3 reports estimates of the treatment effect of ATP attendance
on career outcomes. For each outcome (which differ across rows), the
first column reports the naïve cross-sectional estimate. The remaining
columns report the average treatment effect (ATE) and the average
treatment effect on the treated (ATET) using inverse probability of
treatment and censoring lasso weights (computed using the model in
Table 2 columns 1c and 2c).

The first two rows of Table 3 report the ATP effect on the length of
the training period as well as the length of the career overall. Each esti-
mate in the table corresponds to the coefficient on a treatment indicator
variable (and its associated robust standard error) from a Poisson model
where the outcome of interest is regressed on an indicator variable
for holding a PhD degree at the time of application and a full suite
of medical school graduation year effects in addition the treatment
variable.

Exponentiated coefficients are presented; subtracting one yields a
magnitude interpretable as an elasticity. For example, the estimates in
the first cell of Table 3 imply that ATP attendees spend 100×(1.091−1) =

9.1% longer in training than non-attendees—an additional six months
on average. This is a meaningful yet rather small increase relative to the
time of commitment of the ATP (two years). It underscores the extent to
which our results pertain to the effect of the content of training, rather
than to the mere fact that training was received. We also find that NIH
training reduces slightly the length of the overall post-independence
career, but the effect is small (between 1 and 2%, or seven months on
average), and imprecisely estimated in some specifications.

The next six rows of Table 3 pertain to the effect of the program
on the choice of career. We report the marginal effects from logistic
regressions of these career choice indicators on the treatment indica-
tor and our usual set of controls. Across columns, we observe that
attending the ATP greatly increases the likelihood of embarking on an
academic or research career. For instance, using the average treatment
effect estimated using lasso weights, the marginal effect of starting in
academia is 0.11, which corresponds to an odds ratio of 1.77. The
program increases the probability of a research-focused initial job even
more (the marginal effect is 0.17, which translates into an odds ratio
of 2.17) for treated physicians, relative to controls. The effects are
also persistent, with similar magnitudes observed when analyzing the
program’s impact on end-of-career positions. Conversely, attending NIH
ATP appears to make it markedly less likely to choose a clinical career
(an odds ratio of 0.46).

We also create a composite outcome for joining the biomedical
research elite over the course of one’s career, which we define as either
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Table 4
Research outcomes.
Sources: ATP Index Cards, PubMed, Web of Science, CGAF, USPTO, Marx and Fuegi (2020) ‘‘reliance
on science’’ publication-to-patent linkages.

X-Sect. Lasso Weights

Naïve ATE ATET

Career Nb. of Pubs 1.922∗∗ 1.639∗∗ 1.668∗∗

(0.146) (0.128) (0.152)

Career Nb. of Pubs,
First/Last Authorship Position

1.970∗∗ 1.673∗∗ 1.701∗∗

(0.146) (0.131) (0.157)

Career Citations 2.316∗∗ 1.775∗∗ 1.884∗∗

(0.227) (0.190) (0.220)

Nb. of Patents 2.515∗∗ 1.635∗ 1.559†

(0.521) (0.368) (0.406)

Career Citations to Pubs in Patents 3.015∗∗ 1.892∗∗ 1.938∗∗

(0.511) (0.386) (0.454)

Career NIH Grants 2.558∗∗ 1.846∗ 1.807∗

(0.591) (0.489) (0.517)

Career NIH R01 Grants 2.285∗∗ 1.668∗∗ 1.774∗∗

(0.352) (0.296) (0.340)

Nb. NIH-R01-Funded Trainees 2.410∗∗ 1.621∗ 1.689∗

(0.365) (0.349) (0.429)

Trainee Career NIH R01 Grants 2.677∗∗ 1.890∗∗ 2.039∗∗

(0.501) (0.423) (0.541)

Number of Applicants 3075 3075 3075

Note: Each cell contains an estimate for the treatment effect in a separate regression. All estimates
stem from Poisson regressions. The dependent variables are listed in the left-most column. All
models incorporate a full suite of medical school graduation year effects as well as an indicator
variable for holding a Ph.D. degree at the time of application. Exponentiated coefficients are
presented; subtracting 1 yields magnitudes interpretable as elasticities. For example, the estimate
in the first cell imply that attendees publish 100×(1.922-1) = 92.2% more original articles during
the independent phase of their career, relative to non-attendees; the effect is highly statistically
significant. Columns 2 and 3 perform inverse probability of treatment and censoring weighted; the
corresponding estimates can be interpreted as the ATE/ATET of NIH training, under the assumption
of unconfoundedness. Robust errors in parentheses (†p < 0.10, ∗p < 0.05, ∗∗p < 0.01).

(i) receiving the Nobel Prize; (ii) being elected to the National Academy
of Sciences or the National Academy of Medicine; (iii) being appointed
Investigator of the Howard Hughes Medical Institute; or (iv) getting a
MERIT designation from the NIH in at least one R01 grant cycle. Only
173 (5.6%) of the applicants belong to this select group by career’s end
(7.7% of the attendees; 2.2% of the non-attendee controls). Adjusting
for selection and censoring based on observable covariates dampens
somewhat this difference: the average treatment effect corresponds to
an odds ratio of 1.77.

4.3. Research outcomes

Whereas Table 3 focused on the effect of NIH training at the
extensive margin (i.e., the choice to begin a research career or to stay
in one), Tables 4 and 5 hone in on the effect of the program at the
intensive margin (the intensity of research effort over the career, as it
is being converted into publications, patents, and grants).

Table 4 reports estimates of the treatment effect of ATP attendance
on various metrics of research output over the career. Each outcome
variable has been constructed to exclude output that results from re-
search undertaken as a student or a trainee: they correspond to research
output for the entire post-training (i.e., ‘‘independent’’) career. We
consider nine different outcomes: publication count; publication count
excluding those where the applicant is in the middle of the authorship
list;15 cumulative citation count accrued by 2015; USPTO patent count

15 A robust social norm in the life sciences systematically assigns last
authorship to the principal investigator, first authorship to the junior author
who was responsible for the conduct of the investigation, and apportions the

(by 2016); count of references to the scientist’s publications appearing
on the front page or within the body of patents (Marx and Fuegi, 2020);
cumulative NIH grant funding received as a principal investigator;
cumulative NIH R01 grant funding received as a principal investigator;
count of trainees who go on to receive NIH R01 funding during their
own independent careers; and the amount of NIH R01 funding accrued
by these trainees.

Synthesizing the results across rows and columns of Table 4, a
number of patterns emerge. First, the magnitude of the treatment
effects are large, even when they filter out the effect of selection and
censoring under the maintained assumption of unconfoundedness. Us-
ing the lasso weights, for example, the ATE for publications corresponds
to an increase of 63.9%, and the ATET to an increase of 66.8%. Second,
modeling selection based on observable covariates does shrink the
magnitude of the estimated effects by 25 to 50%, depending on the
outcome. Third, the ATE and ATET typically have similar magnitudes,
which is logical since control scientists are drawn from the same
underlying population. All estimates are precisely estimated, although
the ATET specification for patents is only significant at the 10% level.16

Citation analysis. The estimates for the effect on overall citations
in Table 4 conflate the effect of treatment on the quantity of output with

remaining credit to authors in the middle of the authorship list, generally as a
decreasing function of the distance from the extremities (Dance, 2012; Sauer-
mann and Haeussler, 2017). Therefore, the first- and last-authored publications
correspond to those associated most closely with each applicant.
16 This is not entirely surprising since applicants in clinical research careers
are at very low risk of patenting (only 20% of the physicians on the sample
are awarded at least one patent over the course of their career). In contrast,
all applicants in the sample are at risk of publishing.
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Table 5
Publication outcomes, by citation quantiles.
Sources: ATP Index Cards, PubMed, Web of Science.

X-Sect. Lasso weights

Naïve ATE ATET

Career Nb. of Pubs, Total
(with citation data available)

1.951∗∗ 1.637∗∗ 1.680∗∗

(0.151) (0.130) (0.156)

Career Nb. of Pubs
Top 50% of the Citation Distribution

2.065∗∗ 1.696∗∗ 1.735∗∗

(0.169) (0.146) (0.175)

Career Nb. of Pubs
Top 25% of the Citation Distribution

2.157∗∗ 1.717∗∗ 1.771∗∗

(0.189) (0.162) (0.194)

Career Nb. of Pubs
Top 5% of the Citation Distribution

2.348∗∗ 1.800∗∗ 1.884∗∗

(0.247) (0.202) (0.240)

Career Nb. of Pubs
Top 1% of the Citation Distribution

2.653∗∗ 1.963∗∗ 2.176∗∗

(0.347) (0.284) (0.322)

Career Nb. of Pubs
Top 0.1h of the Citation Distribution

2.814∗∗ 1.968∗∗ 2.195∗∗

(0.533) (0.401) (0.424)

Number of Applicants 3075 3075 3075

Note: Each cell contains an estimate for the treatment effect in a separate regression. All estimates
stem from Poisson regressions. The dependent variables are listed in the left-most column. All
models incorporate a full suite of medical school graduation year effects as well as an indicator
variable for holding a Ph.D. degree at the time of application.
Exponentiated coefficients are presented; subtracting 1 yields magnitudes interpretable as elas-
ticities. For example, the estimate in the bottom cell of the first column imply that attendees
publish 100×(2.814-1) = 181.4% more articles in the top 0.1h of the citation distribution during
the independent phase of their career, relative to non-attendees; the effect is highly statistically
significant. Columns 2 and 3 perform inverse probability of treatment and censoring weighted
estimation; the corresponding estimates can be interpreted as the ATE/ATET of NIH training, under
the assumption of unconfoundedness. Robust errors in parentheses (†p < 0.10, ∗p < 0.05, ∗∗p <
0.01).

the effect of treatment on the quality of output. Table 5 sheds light on
the effect of NIH training on citation impact (a reasonable proxy for
publication quality) specifically. For each publication, we use the Web
of Science to ascertain its percentile in the vintage-specific article-level
citation distribution.17 This makes it possible to meaningfully aggre-
gate, for each applicant, the number of his post-training publications
whose eventual impact falls above the 𝑗th-percentile of the citation
distribution, even though these publications might have appeared at
different times. The structure of Table 5 is otherwise identical to that
of Table 3.

The first row of Table 5 replicates the first row of Table 4, with
the caveat that we exclude from the publication count variable those
for which citations are not available because they appear in a journal
indexed by PubMed but not the Web of Science.18 The next five rows
progressively restrict the count to those whose citations put them above
an impact percentile threshold: above the 50th, above the 75th, above
the 95th, above the 99th, and above the 99.9th percentile. Looking
across rows, the magnitude of the treatment effects increases slightly
as one moves up the tail of the impact distribution (except when
focusing on the one in a thousand ‘‘citation hits’’). The more important
conclusion is that ATP attendance increases dramatically the number
of low-impact as well as the number of high-impact publications over
the career.

17 When referring to the vintage-specific, article-level distribution of cita-
tions, the relevant universe to compute quantiles is not limited to the articles
authored by scientists who belong to our applicant sample. Rather, the relevant
universe includes the entire set of 17,312,059 articles that can be cross-linked
between PubMed and the Web of Science.
18 These account for 13,853 of 192,785 (7.2%) of all post-independence
original research publications for the sample of applicants.

4.4. Research style

Table 6 examines the impact of NIH training on the style of the
research published by applicants to the ATP. Since the style measures
cannot be computed absent publications, we limit the analysis in this
section to the 2584 applicants (1730 attendees and 854 non-attendees)
who publish at least once in the post-training phase of the career.19 The
effect on the overall number of publications for the restricted sample
of publishers appears in the first row of Table 6 as a benchmark.

A hallmark of the training received at NIH was exposure to labo-
ratory research for young physicians that might have had only limited
exposure to the bench as undergraduates or medical school students
(and might be unable to receive that style of training in postgraduate
fellowships outside of NIH), with an emphasis placed in the oral his-
tory on facilitating the ‘‘bench to bedside’’ transition of translational
research. Recall that we partition the bibliome into four mutually
exclusive styles—basic science, translational medicine, clinical trials,
and ‘‘other’’ clinical. The results imply that the program increases
output regardless of style, but not evenly. The effect on the number
of basic science publications is unambiguously the largest in magni-
tude, followed by translational and clinical trial publications, with the
‘‘other clinical’’ experiencing only modest and imprecisely estimated
increases.20 We also find that relative to controls, treated physicians
publish much more in six high-impact journals prominently advertising

19 The inverse probability of treatment and censoring weights are recom-
puted on the restricted sample to take into account the fact that the publication
constraint disproportionately drops unsuccessful applicants from the data.
20 Estimating these four specifications jointly enables us to compare the mag-
nitudes explicitly. 𝜒2 tests strongly reject the hypothesis that the coefficient for
basic science is equal to any of the other three categories (𝑝 < 0.01). Similarly,
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Table 6
Research style.
Sources: ATP Index Cards, PubMed.

X-Sect. Lasso Weights

Naive ATE ATET

Career Nb. of Pubs 1.609∗∗ 1.478∗∗ 1.505∗∗

(0.117) (0.112) (0.131)

Basic Science Articles 2.787∗∗ 2.197∗∗ 2.184∗∗

(0.320) (0.291) (0.348)

Translational Medicine Articles 1.830∗∗ 1.542∗∗ 1.570∗∗

(0.196) (0.179) (0.207)

Clinical Trial Articles 1.584∗∗ 1.544∗∗ 1.674∗∗

(0.188) (0.178) (0.205)

Other Clinical Articles 1.056 1.121 1.132
(0.092) (0.108) (0.121)

Articles Appearing in
Translational Journals

2.545∗∗ 2.048∗∗ 2.188∗∗

(0.424) (0.357) (0.457)

Inspires Translational Research 1.799∗∗ 1.583∗∗ 1.623∗∗

(0.211) (0.186) (0.207)

Builds on Translational Research 1.692∗∗ 1.595∗∗ 1.728∗∗

(0.213) (0.197) (0.224)

Articles Cited in Patents 2.138∗∗ 1.767∗∗ 1.800∗∗

(0.226) (0.215) (0.262)

Number of applicants 2584 2584 2584

Note: Each cell contains an estimate for the treatment effect in a separate regression. All estimates
stem from Poisson regressions. The dependent variables are listed in the left-most column. All
models also include a full suite of medical school graduation year effects as well as an indicator
variable for holding a Ph.D. degree at the time of application. Exponentiated coefficients are
presented; subtracting 1 yields magnitudes interpretable as elasticities. For example, the estimate in
the cell at the bottom left imply that attendees publish 100×(2.138-1) = 113.8% more articles cite
by patents, relative to non-attendees; the effect is highly statistically significant. Columns 2 and
3 perform inverse probability of treatment and censoring weighted; the corresponding estimates
can be interpreted as the ATE/ATET of NIH training, under the assumption of unconfoundedness.
Robust errors in parentheses (†p < 0.10, ∗p < 0.05, ∗∗p < 0.01).

Table 7a
Robustness analyses.

IPTC Lasso weights Zero Pre-ATP Pubs

No Winsoring, Winsoring, CEM Top 10 Med Other Med
Winsoring 95th pctl. 90th pctl. Schools Schools

Career Nb. of Pubs 1.639∗∗ 1.516∗∗ 1.457∗∗ 1.921∗∗ 2.695∗∗ 1.675∗∗

(0.128) (0.124) (0.123) (0.219) (0.426) (0.235)

Log Pseudo-Likelihood −152,478 −129,712 −113,235 −53,656 −47,084 −49,882
Number of applicants 3075 2,69 2461 1036 849 988

Note: Each cell contains an estimate for the treatment effect in a separate regression. All estimates stem from Poisson regressions. All
models incorporate a full suite of medical school graduation year effects as well as an indicator variable for holding a Ph.D. degree
at the time of application. Exponentiated coefficients are presented; subtracting 1 yields magnitudes interpretable as elasticities. For
example, the estimate in the first column imply that attendees publish 100×(1.639-1) = 63.9% more articles during the independent
phase of their career, relative to non-attendees. The first three columns vary the sample to reflect the winsorization of the inverse
probability of treatment and censoring (IPTC) regression weights. In the fourth column, CEM refers to coarsened exact matching, a
blocking technique to guarantee balance on a small set of covariates. The last two columns restrict sample to the set of applicants with
no research experience prior to application, separately for those having graduated from elite and non-elite medical schools. Robust
errors in parentheses (†p < 0.10, ∗p < 0.05, ∗∗p < 0.01).

a translational focus. In addition, attendees both greatly ‘‘inspire’’

clinical researchers to further develop their translational work, and

‘‘stand on translational shoulders’’ by publishing clinical trials that

backward-reference translational articles. Finally, we find that the NIH

ATP increases published output that will eventually be cited in one or

more USPTO patents.

we can reject the hypothesis that the coefficient for translational medicine and
clinical trials are equal to the coefficient for ‘‘other clinical’’ articles. However,
we fail to reject the hypothesis that the translational medicine and clinical trial
coefficients are in fact equal.

Considered as a whole, these results points to a durable intellectual

imprint associated with the training received at NIH. Some of the

trainees became bench scientists, indistinguishable in their output from

PhD-holding scientists trained in biology or other basic science depart-

ments. Harold Varmus, who went on to win the Nobel Prize in 1989

for his discovery of oncogenes with J. Michael Bishop, is an exemplar

of the subset of trainees who leveraged their training to embark on a

career at the laboratory bench. Many others, however, did not forsake

clinical work completely, but rather acquired in Bethesda an approach

to clinical research that was informed by basic research advances,

seeding academia with a new generation of who saw themselves as

‘‘physician-scientists’’ rather than ‘‘clinician-researchers’’.
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Table 7b
Robustness analyses.

Nb. of Pubs sinh−1(Nb. of Pubs)

IPTC Lasso Double Lasso IPTC Lasso Double Lasso
Weights weights

ATE
27.776∗∗ 25.776∗∗ 0.901∗∗ 0.868∗∗

(3.981) (4.000) (0.114) (0.085)

Number of Applicants 3075 3075 3075 3075

Note: Each cell contains an estimate for the average treatment effect in a separate regression. All estimates stem
from OLS regressions. The dependent variable is either the number of post-training publications in levels (first pair
of columns) or the inverse hyperbolic sine of the number of post-training publications (second pair of columns). The
first and third columns perform inverse probability of treatment and censoring (IPTC) weighted estimation as in Table
4. The second and fourth column report an estimate of the average treatment effect using the ‘‘post-double-selection’’
lasso estimator due to Belloni et al. (2014). Robust errors in parentheses (†p < 0.10, ∗p < 0.05, ∗∗p < 0.01).

4.5. Mechanisms

It is likely that attending the NIH ATP may impact career and re-
search trajectories through multiple mechanisms, including skill build-
ing, signaling, status, peer, and network effects, or instilling values
and aspirations (Argote and Fahrenkopf, 2016). Distinguishing between
these mechanisms is difficult with the data available, and indeed more
than a single mechanism might be responsible for the treatment effects
we estimate.

It is notable that many physicians in the control group had exposure
to research opportunities outside of the NIH; there was only a small
difference in total training time compared to ATP attendees relative to
the length of the program. This suggests that the NIH treatment entails
more than mere exposure to research. In line with this, we repeat
our main analysis, but exclude the 218 applicants who did not attend
the ATP and started their independent career immediately upon finish
residency training, those individuals in the control group least likely to
have had substantive research exposure during postgraduate training.
The treatment effect magnitudes using this control subsample are, if
anything, higher than those observed when using the entire sample
(Appendix B, Table B5). This reinforces our contention that the treat-
ment effect should be interpreted as the effect of receiving NIH training
relative to ‘‘traditional training’’ and emphasizes the importance of the
content rather than the quantity of training received.

Dose–response relationship. Table B6 in Appendix B reports the
results of an analysis contrasting the effect of different levels in the
intensity of treatment, as proxied by the number of years spent in
the ATP. Within the set of 1929 attendees, 12 (0.6%) spent a year or
less at NIH, which we interpret as reflecting the decision to quit the
program and receive training elsewhere; 1321 (68.5%) spent exactly
two years as trainees; and 596 (30.9%) three years or more.21 In
these analyses, we model ATP attendance as a multi-valued treatment
(Imbens, 2000), and use an ordered logit specification to generate
inverse probability of treatment weights. The results uncover a strong
dose–response relationship. Across several outcomes, ‘‘quitters’’ and
non-attendees exhibit similar outcomes (with the caveat that the effect
of quitting is very imprecisely estimated). The effect of spending an
additional year within the program is large, and precisely estimated.
For example, relative to non-attendees, those staying 3 years publish
more over their careers (106% vs. 49%), gather more citations (153%
vs. 42%) and are more likely to enter a research job after training (26%
vs. 17%) than those staying only the two years necessary to fulfill their
service obligation. Once again, we must interpret these results with a
great deal of caution, since exposure length is endogenous, and after
two years, preceptors are presumably better able to ascertain correctly
the research potential of a trainee. While not rejecting selection as a

21 This last category includes a small set of about sixty attendees who
transitioned from the ATP to another postdoctoral fellowship within NIH,
before securing a permanent position.

plausible mechanism, this dose–response relationship appears inconsis-
tent with an interpretation of the results based on signaling or status,
since it is unlikely that additional years spent in the program would
shift future employers’ perceptions, or elevate one’s status even more
in the minds of collaborators, funders, editors, and referees. In addition,
the research style evidence seems hard to reconcile with a simple status
or signaling story.

Research independence. Another potential mechanism is research
independence during training (Shibayama, 2019). This emphasis was
reflected in the oral histories of the ATP (see Section 2.1). A particular
lens on research independence is to examine the extent to which
NIH trainees ‘‘outperform’’ their mentors once they leave the nest
and become responsible for their own agenda. To provide evidence
on this point within the constraints of our data, we first identify the
peak vintage-adjusted citation percentile achieved by articles published
during training for each trainee. Then, looking only at last-authored
publications during career independence, we record the number of
articles the former trainee published that exceeded this citation bench-
mark. Despite having higher peak citation percentiles during training,
ATP attendees more frequently exceed their training peaks, relative to
non-attendees (Tables B7a and B7b).

Coauthorship-driven peer effects. ATP Fellows could avail them-
selves to a much broader peer community than in the typical laboratory
or clinical fellowship where non-attendees might have completed train-
ing, and the oral histories are replete with mentions of the concentra-
tion in talent at the NIH brought about by the draft (see Appendix E).
ATP attendees may have pushed their colleagues to work harder,
to hold higher internal standards of scientific excellence, or helped
instill values such as the inherent worth of translational investigations.
Unfortunately, while we can observe the cohort of each ATP trainee,
we cannot do the same for the non-attendee controls. But we can shed
light on the importance of a particular variety of peer effects, those
driven by coauthorship.

In Appendix B, Table B8b, we estimate the total number of coau-
thored papers using a Poisson model with an offset for the total number
of publications after career independence. The coefficients are small
in magnitude and not statistically significant when comparing all ATP
attendees to non-attendees (except for the subset of ATP attendees who
stay at NIH after the completion of their training). While we do not find
evidence supporting a large role for coauthorship-driven peer effects,
this does not preclude an important role for other types of peer effects.

In summary, it is not feasible, within the limitations of our data,
to unambiguously pin down a set of mechanisms for the treatment
effect magnitudes we estimate. However, the collage of evidence above,
together with the results on research style (Section 4.4) imply that skill-
based explanations must have played a meaningful role in driving the
outcomes we observe. In the conclusion, we argue that in spite of the
tentative nature of the evidence regarding mechanisms, some of the
ATP’s distinctive features provide clues to policy makers as they design
training programs adapted to the challenges faced by the 21st century
scientific ecosystem.
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4.6. Robustness analyses

We perform a number of robustness checks to probe the sensitivity
of our estimates to alternative modeling assumptions and subsamples.
Recall that in addition to unconfoundedness, the validity of IPTW
estimates requires common support. Fig. 2 displays the histogram
corresponding to the predicted probabilities generated by the selection
model in column 1c of Table 2. One can readily observe that the
common support assumption is violated in the tails: our model predicts
a high probability of selection for very few controls, and low probability
of selection for very few treated applicants. The first three columns of
Table 7a vary the extent of winsorization for the regression weights:
no winsorization (as in Table 4), winsorization at the 5th and 95th
percentiles of the distribution of lasso weights; and winsorization at
the 10th and 90th percentile of the distribution of lasso weights. The
magnitudes of the average treatment effect (corresponding to a single
outcome, the number of post-training publications) increases slightly.
The violation of the common support assumption is therefore not a
first-order concern to assess the robustness of our results.

Rather than weighting by the inverse probability of treatment, the
next set of estimates uses coarsened exact matching (Iacus et al., 2011)
to match attendees and non-attendees on a handful of covariates: year
of medical school graduation, medical school attended, and quintile
of the distribution of the pre-application publication count, weighted
by journal impact factor. Any treated applicant for whom we cannot
find a matched control based on this list of pre-application covariates
is simply dropped from the estimation sample. We find that the esti-
mated treatment effect is similar in magnitude to that reported earlier
(Table 4).

The last set of two columns in Table 7a focuses on the subset of
1837 applicants (59.7% of the sample) who had little—if any—research
preparation at the time they applied for the program, as ascertained by
a lack of any published output. It is of course possible that interviewers
were able to divine research potential at the second stage of the
selection process, but they would not have had a strong evidentiary
record to back up their intuition. The results show that the magnitude
of the average treatment effect is just as high, if not higher, in this
subpopulation.

Table 7b reports estimates using the ‘‘post-double-selection’’ lasso
(hereafter pds-lasso) estimator due to Belloni et al. (2014). This esti-
mator uses the lasso to select covariates to predict both the treatment
and the outcome variable, and then estimates the treatment effect
of interest by the linear regression of the outcome on the treatment
variable and the union of the set of variables selected in the two
variable selection steps. The resulting estimator is ‘‘doubly robust’’ in
that it allows for imperfect variable selection in either (but not both) of
the covariate selection steps. Since the theoretical properties of the pds-
lasso estimator have been demonstrated for a linear model, we apply it
to our data using ordinary least squares to model the impact of the NIH
ATP on the count of post-training publications.22 The estimates yielded
by this procedure are once again large in magnitude, very similar
to those associated with IPTW estimation using OLS, and precisely
estimated. The point estimate of 26 extra publications, corresponds to
64% of the raw mean difference in the number of publications between
attendees and non-attendees.

We also use the bounding technique recently proposed by Oster
(2019) to gauge the sensitivity of our results to a failure of the uncon-
foundedness assumption. The intuition behind this approach is that the
stability of the coefficient for the treatment effect when varying the set
of control variables included in the model, scaled by movement in 𝑅2,

22 We also use the inverse hyperbolic sine function to transform the publi-
cation count. This generates estimates that can approximately be interpreted
as elasticities, and therefore compared to those presented in Table 4.

Table 7c
Robustness analyses.

Oster’s 𝛿

Career Nb. of Pubs 1.743
Career Nb. of Pubs, Top 5% of the Cit. Distrib. 1.789
Career Nb. of Pubs, Top 1% of the Cit. Distrib. 1.767
Career Citations 1.748
Nb. of Patents 2.282
Career NIH Grants ($ 2015) 1.516

Note: The score reported corresponds to the 𝛿 parameter from Oster (2019), the
ratio between the covariances of the outcome with observed and unobserved
covariates, respectively. All outcomes are transformed using the inverse hyper-
bolic sine function, and 𝛿 is computed using OLS regression and the list of
covariates selected by the pds-lasso estimator of Belloni et al. (2014), and chosen
to produce an estimate of the treatment effect equal to zero. We follow Oster’s
recommendation of setting Rmax = 1.3×R2 from the fully saturated specification.

provides information about the potential impact of unobserved covari-
ates. To generate these bounds, the analyst must assume proportionality
between the covariances of the outcome with observed and unobserved
covariates, and posit a maximum value for 𝑅2 if the regression could
include all observed and unobserved covariates. Oster’s technique gen-
erates a bound 𝛿, the covariance ratio that would be required to reduce
the magnitude of the treatment effect to zero. Table 7c reports the
results of this exercise for a number of research outcomes. In all cases, 𝛿
is far above one, the threshold value recommended by Oster to suggest
robustness to the influence of unobservable covariates.

Appendix B includes a number of other robustness checks and an-
cillary analyses, including: isolating the effect of informative censoring
from selection into treatment (Table B10), dynamics of treatment effect
over time (Figure B5a and B5b), evidence of imprinting during training
(Table B11), heterogeneity in treatment effect by year of program atten-
dance (Table B12), and heterogeneity in treatment effect by program
track within the ATP (Table B13).

5. Conclusion

We examine the role of early career exposure to research on sorting
into the ‘‘ideas sector’’ of the economy, as well as research trajectory
and productivity within this domain. The NIH ATP had a large impact
on attendees’ careers on both the intensive and extensive margins.
Attendees entered research positions at higher rates after training and
remained in them for longer. They not only published more and earned
more grant funding, their influence persists through training more
second generation scientists and their work was more impactful as
measured by citations. More specifically, ATP attendees acquired at
NIH a more ‘‘translational’’ style of research, with a greater focus on the
bench-to-bedside transition. Remarkably, these changes were sustained
throughout their subsequent careers. It is notable that, while there are
more ‘‘superstars’’ among ATP attendees than in the set of non-attendee
controls, the average physician showed a substantial treatment effect
as well. All in all, it is a remarkable impact for a two- to three-year
training experience.

Our conclusions depend on the maintained assumption that, con-
ditional on an extensive list of covariates observable at the time of
application, selection into the program was essentially random. At first
blush, this would appear to be an untenable assumption. While we
have adopted a variety of econometric strategies to minimize omitted
variable bias, we recognize that at least some of our results could be
explained by factors observed by the scientists in charge of selecting
the trainees, but not by the econometric analyst. Yet, the institutional
setting and the details of the selection process suggest that decision-
makers were equally unaware of whom, among the applicants, was
decidedly poised for research greatness.

Our control group includes only those who have also applied to the
program, which eliminates interest in the program as a potential omit-
ted variable (Jones et al., 2019). In addition, the set of non-attendee
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Fig. 2. Predicted probability of selection. Note: Predicted probabilities from the lasso penalized logit procedure described in the last paragraph of Section 4.1 of the manuscript.

controls consists exclusively of those who reached the final interview
stage for program admittance and are therefore already highly selected.
While we would of course prefer to have interview notes to model
the influence of unobservable covariates directly, a large literature
suggests that unstructured interviews provide only limited additional
information, relative to what is observable on a curriculum vitæ (Dana
et al., 2013; Huffcutt et al., 1996; McDaniel et al., 1994; Wiesner and
Cronshaw, 1988; Wright et al., 1989). In fact, psychological research
has shown that the addition of noisy signals may in fact impair the
quality of decision making (Hall et al., 2007; Nisbett et al., 1981). Our
reading of this literature leads us to doubt that the unstructured NIH
ATP interviews enabled the selection of individuals poised for research
greatness. Indeed, medical education is one of a handful of settings
where the limited usefulness of interviews has been documented in
the field (Milstein et al., 1981).23 In line with this literature, the
oral histories corroborate the difficulty faced by the interviewers in
discerning the scientific potential of applicants at such an early career
stage. Finally, the evidence on research style does not appear to be
consistent with the view that selection alone accounts for the results. It
strains credulity that the demand side of this labor market might have
been able to evaluate aptitude for translational research specifically, in
addition to more general research abilities.

Many of the ATP alumni’s oral histories evoke the feeling of ‘‘being
in the right place at the right time’’. In light of these accounts, the
sociological concept of imprinting offers a powerful lens to interpret our
results. This stream of research finds that organizations and individuals
often exhibit a sensitive period, during which they are susceptible to
external influences and come to reflect aspects of this environment,
and these aspects can persist despite subsequent environmental changes
(Marquis and Tilcsik, 2013; Stinchcombe, 1965). While much of the
work on imprinting has focused on firms, there is evidence that im-
printing also occurs in the context of individual careers (Baron et al.,
1999; Boeker, 1988; Burton and Beckman, 2007; Hannan et al., 1996;

23 For instance, the University of Texas Medical School at Houston was
forced to admit an additional 50 students, all of whom were initially rejected
for admission post-interview, due to a legislative decree in 1979; these students
had no meaningful difference in clinical performance, academic performance
and honors, or attrition at either the end of medical school or the first year of
postgraduate training (Devaul et al., 1987).

Higgins, 2005). During career imprinting, individuals absorb a set of
capabilities, connections, and cognitive models from one employer
which persist as they change employers later on. Careers are more likely
to exhibit the characteristics of an early imprint when their current
environment allows them to be surrounded by colleagues with the same
imprint, offers them considerable freedom in how they might express
an imprint, and if they believe the imprint contributed to prior success
(Higgins, 2005). The NIH ATP and the academic medicine context
would appear particularly conducive to career imprinting: not only was
the ATP an intense experience early in the career, when an imprint is
more likely to be absorbed, but the program also had many alumni who
seeded the expansion of U.S. Medical Schools in the period immediately
following the end of the Vietnam War.24 Finally, academic research
offers a considerable degree of leeway to investigators in structuring the
direction and style of their research, and the senior NIH investigators
who had acted as mentors to the ATP trainees during the program
exemplified the creative use of this autonomy.

The pool of ATP applicants is not diverse by today’s standards.25

This may pose a challenge to external validity if members of dif-
ferent socioeconomic groups respond differently to the mechanisms
of the ATP treatment effect. In particular, interventions that provide
a status boost to young scientists can have very different impacts
along gender lines (Graddy-Reed et al., 2019). While status is one
potential mechanism for the NIH ATP treatment effect, the ‘‘dose–
response’’ relationship between the length of training at the ATP and
career outcomes argues strongly against an interpretation of the effect
mostly, or solely reflecting status considerations. Rather, this evidence
is consistent with the idea that trainees are durably imprinted with

24 Between 1975 and 2005, the number of faculty members at US Medical
Schools increased by a factor of more than two (AAMC Data Book, various
editions; (Jolly, 1988)).
25 We came across two African–American physicians in the entire sample.
Similarly, we found 36 female applicants (include 2 foreign medical graduates
and 1 lost to follow up) in the NIH index cards (15 attendees, 21 non-
attendees), who may have been discriminated against in the application
process because any spot occupied by a woman entailed that a male physician
would serve in the armed forces, possibly in the Vietnam theater (although in
fact few among our control appear to have served in South Asia, if they did
serve at all).
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specific research skills during their stay at NIH. If this view is correct,
then there is less reason to fear the findings would not be observed in
a more demographically-balanced cohort of trainees.

In light of the unique historical circumstances within which physi-
cian research training took place at NIH during the period of our
study, we must exercise caution to suggest wider policy implications.26

Certainly, part of the effectiveness of the ATP in turning physicians
into researchers owes much to the extreme concentration of talent in
one institution that was facilitated by the Vietnam War. The effects of
the ATP may have been large and long-lasting precisely because the
exposure received was intense. Yet, this program provides an existence
proof for the proposition that it is possible to design interventions to
turn individuals who in the main would not have had scientific careers
into frontier researchers. This stands in contrast with many other active
labor market policies often studied by economists. The effects of these
programs are typically modest in magnitude, and their effects relatively
transitory (Heckman et al., 1999). Conversely, the labor market effects
of military service appear to mostly correspond to loss of experience, as
the earnings profiles of veterans and non-veterans converge relatively
quickly (Angrist, 1990; Angrist et al., 2011).

There have been attempts to recreate the ‘‘hot house’’ environment
that characterized the intramural campus of the NIH in the 1960s
and 1970s (Rubin, 2006). But which characteristics of the NIH ATP
were instrumental in its ability to push attendees towards the heights
of the biomedical research elite? The unique set of circumstances is
unlikely to occur again, and it would be depressing to suggest that
the exigencies of wartime are a necessary condition for the design of
effective scientific training programs. Such pessimism is not warranted.
We emphasize three features of the ATP relevant for the design of
training programs today, within and beyond the setting of biomedicine.
First is the timing of training receipt, which for many ATP attendees
was their first serious engagement with scientific investigation. In many
respects, the ATP was more akin to a ‘‘pre-doc’’ than a graduate school
or postdoctoral experience. Second is the size of each cohort. The ATP
cohorts were much larger than those in the typical Medical Scientist
Training Program or other research fellowships. This may intersect in
important ways with the role of peer effects, facilitated by the concen-
tration of talent in one location during the NIH ATP. Third, the ATP
stressed building independence. This is very different from the modern
setting, where typically all papers are automatically coauthored with
the principal investigator, there is often little scope to deviate from the
principal investigator’s research agenda, and many budding scientists
linger in training, typically in a sequence of post-doctoral positions
(Kahn and Ginther, 2017).

Yet, despite these distinctive features, it is difficult to offer firm
guidance for scientific training programs. Our evidence unfortunately
does not allow us to empirically isolate the individual mechanisms
explaining the effect of ATP attendance. This is an opportunity. The
very success of the ATP suggests policy makers should experiment with
design features that were its hallmarks. We conclude with a call for
more systematic and rigorous evaluation of training programs. It is an
unfortunate paradox that Randomized Control Trials (RCTs) are a staple
of the biomedical research enterprise, and yet seem to be viewed as
out of place in the context of funding and training policies. In our
view, the lowest hanging fruit available to designers of training pro-
grams—especially those with more applicants than available seats—is
to build in evaluation in the design phase, instead of treating it as an
afterthought.

26 Appendix E contains a discussion of the estimated program costs and
return on investment.
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