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a b s t r a c t

Social interactions influence our thoughts, opinions and actions. In this paper, social interactions are

studied within a group of individuals composed of influential social leaders and followers. Each person

is assumed to maintain a social state, which can be an emotional state or an opinion. Followers update

their social states based on the states of local neighbors, while social leaders maintain a constant desired

state. Social interactions are modeled as a general directed graph where each directed edge represents an

influence from one person to another. Motivated by the non-local property of fractional-order systems,

the social response of individuals in the network are modeled by fractional-order dynamics whose states

depend on influences from local neighbors and past experiences. A decentralized influencemethod is then

developed to maintain existing social influence between individuals (i.e., without isolating peers in the

group) and to influence the social group to a common desired state (i.e., within a convex hull spanned

by social leaders). Mittag-Leffler stability methods are used to prove the asymptotic convergence of the

networked fractional-order system.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Social interactions influence our emotions, opinions, and be-
haviors. Technological advances in social media provide more
rapid, convenient, andwidespread communication among individ-
uals, which leads to a more dynamic interaction and influence.
For example, recent riots (Bright, 2011) and ultimately revolu-
tion (Gustin, 2011), have been facilitated through social media
technologies such as Facebook, Twitter, YouTube, and BlackBerry
Messaging (BBM). Marketing agencies also have begun to take
advantage of influence due to social media, especially through
the internet. The company Razorfish, for example, works with
online peer influencers to transform them into brand advo-
cates through the execution of Social Influence Marketing (SIM)
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Strategy, which aims to influence marketing primarily through
online, small groups, peer pressure, reciprocity or flattery (Singh,
2009).

Various dynamicmodels have been developed to study the indi-
vidual’s social behavior, such as the efforts to model the emotional
response of different individuals (Ghosh, 2010; Sprott, 2004, 2005).
In Sprott (2004), the time-variation of emotions between individ-
uals involved in a romantic relationship is described by a dynamic
model of love, and in Sprott (2005) a set of differential equations
are developed to model the individual’s happiness in response to
exogenous influences. Fractional-order differential equations are
a generalization of integer-order differential equations, and they
exhibit a non-local integration property where the next state of a
system not only depends upon its current state but also upon its
historical states starting from the initial time (Monje, Chen, Vina-
gre, Xue, & Feliu, 2010). Motivated by this property, many re-
searchers have explored the use of fractional-order systems as a
model for various phenomena in natural and engineered systems.
For instance, theworks in Sprott (2004, 2005)were revisited in Ah-
mad and El-Khazali (2007) and Song, Xu, and Yang (2010), where
the models of love and happiness were generalized to fractional-
order dynamics by taking into account the fact that a person’s emo-
tional response is influenced by past experiences and memories.
However, the models developed in Ahmad and El-Khazali (2007),
Sprott (2004, 2005) and Song et al. (2010) only focus on an individ-
ual’s emotional response, without considering the interactionwith
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social peers where rapid and widespread influences from social

peers can prevail. Other results, such as Blondel, Hendrickx, and

Tsitsiklis (2009) and Cucker and Smale (2007) and the reference

therein, studied the interaction of social peers using an opinion dy-

namics model, and derived conditions under which consensus can

be reached.However, agents in Blondel et al. (2009) andCucker and

Smale (2007) only update their opinions by averaging the neigh-

boring agent opinions, without taking into account the influence

of agents’ past experience and memory on their decision making.

When making a decision or forming an opinion, individuals

tend to communicate with parents, friends, or colleagues and

take advice from social peers. Social connections such as friend-

ship, kinship, and other relationships can influence the decisions

they make. Some individuals (e.g., parents, teachers, mentors,

and celebrities) may exhibit more powerful influences in others’

decision making, and the underlying social network enables the

influence to pass from influential individuals to receptive individ-

uals. Containment control is a particular class of consensus prob-

lems (see Olfati-Saber, Fax, & Murray, 2007 and Ren, Beard, &

Atkins, 2007 for a comprehensive literature review for consensus

problems), in which follower agents are under the influence of

leaders through local information exchange in a leader–follower

network. In results such as Cao and Ren (2009), Cao, Ren, and

Egerstedt (2012), Mei, Ren, and Ma (2012) and Notarstefano,

Egerstedt, and Haque (2011), distributed containment control al-

gorithms are developed for agents with integer-order dynamics

where the group of followers is driven to a convex hull spanned

bymultiple leaders’ states under an undirected, directed or switch-

ing topology. This paper examines how suchmethods can be lever-

aged tomanipulate a social network. This work specifically aims to

investigate how peer pressure from social leaders affects consen-

sus beliefs (e.g., opinions, emotional states, purchasing decisions,

political affiliation, etc.) within a social network, and how an in-

teraction algorithm can be developed such that the group social

behavior can be driven to a desired end (i.e., a convex hull spanned

by the leaders’ states).

By modeling human emotional response as a fractional-order

system, the influence of a person’s emotions within a social net-

work is studied, and emotion synchronization for a group of in-

dividuals is achieved in our recent preliminary work (Kan, Klotz,

Pasiliao, & Dixon, 2013; Kan, Shea, & Dixon, 2012). However, the

emotion synchronization behavior in Kan, Shea et al. (2012) only

considers an undirected network structure: the one-sided influ-

ence of social leaders is not considered. This work aims to inves-

tigate how the social beliefs (e.g., emotional response, opinions,

etc.) of a group of individuals evolve under the influence of so-

cial leaders. Similar to Kan, Shea et al. (2012), the social group is

modeled as a networked fractional-order system, where the so-

cial response of each individual is described by fractional-order

dynamics whose states depend on influences from social peers, as

well as past experiences. Since social leaders are considered, the

undirected network topology in Kan, Shea et al. (2012) is extended

to a directed graph, where the directed edges indicate the influ-

ence capability between two individuals (e.g., the leaders can in-

fluence the followers’ state, but not vice versa). The goal in this

work is to develop a decentralized influence algorithm where in-

dividuals within a social group update their beliefs by considering

beliefs from social peers and the social group achieves a desired

common belief (i.e., the social state of the group converges to a

convex hull spanned by social leaders). Since an individual gen-

erally only considers others’ beliefs as reasonable if their beliefs

differ by less than a threshold, social difference is introduced to

measure the closeness of the beliefs between individuals. In con-

trast to the constantweights considered in Cao andRen (2009),Mei

et al. (2012) andNotarstefano et al. (2011), the social difference is a

time-varying weight which depends on individuals’ current states.

Moreover, instead of assuming network connectivity (i.e., there al-

ways exists a path of influence between any two agents) such as

in Cao and Ren (2009), Mei et al. (2012) and Notarstefano et al.

(2011), one main challenge here is to influence the followers’ so-

cial states to a desired end by maintaining consistent interaction

among social peers and influential leaders (i.e., individuals can al-

ways be influenced by social peers, instead of being isolated from

the social group) within a time-varying graph. When modeled as a

networked fractional-order system, the development of a contain-

ment algorithm can be more challenging compared to the integer-

order dynamics in Cao and Ren (2009), Cao et al. (2012), Mei et al.

(2012) and Notarstefano et al. (2011), which can be considered as a

particular case of generalized fractional-order dynamics. The first

apparent result that investigated the coordination of networked

fractional systems is Cao, Li, Ren, and Chen (2010). However, only

linear time-invariant systems are considered in Cao et al. (2010),

where the interaction between agents is modeled as a link with a

constant weight. Due to the time-varyingweights considered here,

previous stability analysis tools such as examining the eigenval-

ues of linear time-invariant fractional-order systems (cf. Cao et al.,

2010, Chen, Ahn, & Podlubny, 2006 and Song et al., 2010) are not

applicable to the time-varying networked fractional-order system

in this work. To address these challenges, a decentralized influence

function is developed to achieve containment control for the net-

worked fractional-order systems while preserving continued so-

cial interaction among individuals. Asymptotic convergence of the

social states to the convex hull spanned by leaders’ states in the

social network is then analyzed via LaSalle’s invariance theorem

(Khalil, 2002), convexproperties (Boyd&Vandenberghe, 2004) and

a Mittag-Leffler stability (Li, Chen, & Podlubny, 2009) approach.

2. Preliminaries

Consider a Fractional Order System (FOS)

t0D
α
t x (t) = f (t, x) (1)

with initial condition1 x (t0), where t0D
α
t denotes the fractional

derivative operator with order α ∈ (0, 1] on a time interval [t0, t],
and f (t, x) is piecewise continuous in t and locally Lipschitz in x.

Similar to the exponential function used in solutions of integer-

order differential equations, the Mittag-Leffler (M-L) function

given by Eα,β (z) =
∞

k=0
zk

Γ (kα+β)
, where α, β > 0 and z ∈ C,

is frequently used in solutions of fractional-order systems (Monje

et al., 2010). Particularly, when α = β = 1, E1,1 (z) = ex is an

exponential function. Stability of the solutions to (1) is defined by

the M-L function as follows Li et al. (2009).

Definition 1 (Li et al., 2009 (Mittag-Leffler Stability)). The solution

of (1) is said to be Mittag-Leffler stable if ∥x (t)∥ ≤


m [x (t0)]

Eα,1 (−λ (t − t0)
α)
b
, where t0 is the initial time, α ∈ (0, 1), b >

0, λ > 0, m (0) = 0, m (x) ≥ 0,m (x) is locally Lipschitz, and Eα,1

is defined as Eα,β with β = 1.

Lyapunov’s direct method is extended to fractional-order systems

in the following lemma to determineMittag-Leffler stability for the

solutions of (1) in Li et al. (2009).

1 The initial condition x (t0) is defined as a linear combination of internal states

zk (t0) , k = 1, . . . , J , where zk (t0) contains all historical information of the system

for t < t0 based on the work in Trigeassou and Maamri (2011). The infinite state

model approach to resolve the initialization in Trigeassou andMaamri (2011) is also

used in the subsequent simulation section.
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Lemma 1 (Li et al., 2009). Let x = 0 be an equilibrium point for the

fractional order system (1), and D ⊂ R
n be a domain containing the

origin. Let V (t, x) : (0, ∞]×D → R be a continuously differentiable

function and locally Lipschitz with respect to x such that

α1 ∥x∥a ≤ V (t, x) ≤ α2 ∥x∥ab ,

0D
β
t V (t, x) ≤ −α3 ∥x∥ab ,

where t ≥ 0, x ∈ D, β ∈ (0, 1), and αi (i = 1, 2, 3), a, and b are

arbitrary positive constants. Then x = 0 is Mittag-Leffler stable, which

implies that the equilibrium point of (1) is asymptotically stable.

Definition 2 (Boyd & Vandenberghe, 2004). For a set of points

X , {x1, . . . , xn}, the convex hull Co (X) is defined as the

minimal set containing all points in X , satisfying that Co (X) ,

n

i=1 αixi


xi ∈ X, αi > 0,
n

i=1 αi = 1


.

Graph theory (cf. Merris, 1994 and Mesbahi & Egerstedt, 2010) is

widely used to represent a networked system. Let G = (V, E)

denote a directed graph, where V = {v1, . . . , vN} and E ⊂ V × V

denote the set of nodes and the set of edges, respectively. Each

edge


vi, vj



∈ E represents the neighborhood of node i and node

j, which indicates that node i is able to access states of node j,

but not vice versa. The neighbor set of node i is denoted as Ni =


vj|


vi, vj



∈ E


. A directed path from node v1 to node vk is a

sequence of edges (v1, v2) , (v2, v3) , . . . , (vi, vk) in the directed

graph G. If graph G contains a directed tree, every node has exactly

one parent node except for one node, called the root, and the root

has directed paths to every other node in graph G. The adjacency

matrix is defined as A ,


aij


∈ R
N×N with aij > 0 if



vi, vj



∈ E ,

and aij = 0 otherwise, where aij represents a weighting factor

for the associated edge


vi, vj



. A matrix with positive or zero off-

diagonal elements is referred to as a Metzler matrix (Luenberger,

1979). The Metzler matrix L for the graph G is defined as L ,

A − D ∈ R
N×N , where D ,



dij


∈ R
N×N is a diagonal matrix with

dii =
N

j=1 aij. To facilitate the following development, a lemma in

Moreau (2004) is introduced as follows.

Lemma 2 (Moreau, 2004). Consider a linear system ẋ (t) = A (t)
x (t), and a Lyapunov function V (x) = max {x1, . . . , xn}−min {x1,
. . . , xn}, where x (t) = [x1, . . . , xn]

T ∈ Rn is a n dimensional state.

If the time-varying matrix A (t) ∈ Rn×n is a piecewise continuous

function of time with bounded elements, A (t) is a Metzler matrix with

zero row sums, and the time-varying graph corresponding to A (t) has

a spanning tree for all t ≥ 0, then V̇ ≤ 0 for all t ≥ 0 and consensus

is achieved exponentially fast, i.e., x1 = · · · = xn.

3. Problem formulation

3.1. Individual social behavior

Consider a social network composed of n individuals. Each

individual imaintains a state qi(t) ∈ R
d in a social network, which

can represent opinions on social events, or human emotional states

such as happiness, love, anger or fear. It is assumed that the current

state qi(t) of an individual i can be detected from other social

neighbors such as close friends or family in the social network.

Generally, the opinions or emotional states formed by individuals

about social events are not only influenced by the information

gathered through communication with their social neighbors,

but also depend on their personal experiences. To capture the

evolution of individual social states by taking into account not only

exogenous influence (e.g., information from friends or family) but

also their own character (e.g., past experience, memory), inspired

by theworks of Ahmad and El-Khazali (2007), Blondel et al. (2009),

Cucker and Smale (2007) and Song et al. (2010), qi(t) is modeled as

the solution to the fractional-order dynamics

0D
α
t qi(t) = ui(t), i = 1, . . . , n, (2)

where ui ∈ R
d denotes an influence (i.e., control input) over the

social state, and 0D
α
t qi(t) is the αth derivative of qi(t) with α ∈

(0, 1].
Note that the model in (2) is a heuristic approximation to a

social response, which indicates that a person’s social state has

a direct relationship with external influence integrated over the

history of a person’s emotional states. On-going efforts by the

scientific community are focused on the development of clinically

derived models; yet, to date, there is no widely accepted model to

describe a person’s social response in a social network.

3.2. Social interaction

Let G (t) = (V, E (t)) denote a directed graph, where the node

set V = {1, . . . , n} represents individuals and the edge set E ⊂
V × V represents the interactions between individuals in a so-

cial network. Suppose that there exist m followers i ∈ VF , i =
1, . . . ,m, and n − m leaders j ∈ VL, j = m + 1, . . . , n, where

VL and VF denote the leader and the follower set, respectively,

satisfying VL ∪ VF = V . It is assumed that the leaders’ states

qi ∈ R
d, i ∈ VL, are desired and immutable. For each follower,

its state qi(t), i ∈ VF , evolves according to the dynamics (2) under

the influence from both followers and leaders directly or indirectly

by the underlying network.

A directed edge (i, j) ∈ E in G represents the neighborhood

of nodes i and j. Each edge (i, j) is associated with a time-varying

weighting factor called the social difference Sij ∈ R
+, which is

defined as Sij =


qi − qj




2
. Since individuals are assumed that they

fail to incorporate the information provided by neighbors whose

states are far from their own, the designed social difference Sij aims

to capture the closeness of the states between two neighboring

nodes i and j. It is also assumed that there exists a threshold δ ∈ R
+,

and individuals i and j are able to influence each other only when

their social difference Sij ≤ δ. In other words, an edge (i, j) in

graph G does not exist if the social difference Sij is greater than the

threshold δ. The neighbors of individual i in graph G are defined

as Ni =


j|Sij ≤ δ


, which determines a set of individuals who can

influence the social states of individual i. A directed path fromnode

v1 to node vk is a sequence of edges (v1, v2) , (v2, v3) , . . . , (vi, vk)
in the directed graph. If graph G contains a directed spanning tree,

every node has exactly one parent node except for one node, called

the root, and the root has directed paths to every other node in

graph G.

Assumption 1. For each follower i ∈ VF , there exists at least one

leader that has a directed path to the follower i in the initial graph

G (0).

Assumption 1 implies that there exists a directed spanning tree

for the initial graph G (0), where the set of leaders acting as the

roots in the directed spanning tree has an influence directly or indi-

rectly on all followers through a series of directed paths in the net-

work. Note that a connected graph (i.e., a directed tree structure)

is only assumed in the initial graph, and the controller developed

in the subsequent section will preserve the network connectivity

to ensure consistent influence between social neighbors.

3.3. Objectives

Let q (t) , qF (t), and qL (t) denote the stacked vector of all

states qi (t) , i ∈ V , the followers’ states qi (t) , i ∈ VF , and
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the leaders’ states qi (t) , i ∈ VL, respectively. The convex hull

spanned by the states of leaders, and all states (i.e., both leaders

and followers), are then represented as Co


qL (t)


and Co (q (t)),

respectively. Since the leaders’ states are static, the convex hull

Co


qL (t)


is constant, while the convex hull Co (q (t)) is time

varying and depends on the states of the followers. After formu-

lating the social network as a networked fractional-order system

described by (2), the objective is to regulate the states of followers

to a desired region, which is a convex hull spanned by all station-

ary leaders’ states (i.e., qi(t) → Co (VL) ∀i ∈ VF ). To ensure that

each individual is able to be influenced by social leaders through

a path of directed edges by communication with their local neigh-

bors only, another goal is to preserve the network connectivity for

the underlying social network (i.e., maintain the social difference

Sij ≤ δ so that peers remain peers) when given an initially con-

nected graphG. Since the systems in (2) along different dimensions

are decoupled, for the simplicity of presentation, only a scalar sys-

tem (d = 1), that is qi(t) ∈ R, is considered in the following anal-

ysis. However, the results are valid for a d dimensional case by the

introduction of the Kronecker product.

4. Distributed influence design

The artificial potential field based approach is one of the most

widely used methods in the control of multi-agent systems, which

consists of an attractive potential encoding the control objective

and a repulsive potential representing the motion constraints (cf.

Koditschek & Rimon, 1990). To apply the potential field based

approach to a social network problem, inspired by the work of

Dimarogonas and Johansson (2010) and Kan, Dani, Shea, and Dixon

(2012), a decentralized potential function ϕi : R
d → [0, 1]∀i ∈ VF

is developed to influence the followers’ states to a desired end as

ϕi =
γi



γ k
i + βi

1/k
, i ∈ VF (3)

where k ∈ R
+ is a tuning parameter, γi : R

d → R
+ is the goal

function, and βi : R
d → R

+ is a constraint function. The goal

function in (3) is designed as

γi =


j∈Ni

1

2



qi − qj




2
, (4)

which aims to achieve consensus for node i with its neighbors j ∈
Ni. To ensure consistent influence from neighbors (i.e., maintain

the social difference Sij ≤ δ), the constraint function in (3) is

designed as

βi =
1

2



j∈Ni

bij, (5)

where bij = δ − Sij ∈ R
+. For an existing interaction between

individuals i and j, the potential function ϕi in (3) will approach

its maximum whenever the constraint function βi decreases to 0

(i.e., the social difference Sij increases to the threshold of δ).

Based on the definition of the potential function in (3), the

distributed influence algorithm for each follower is designed as

ui = −Ki∇qiϕi, i ∈ VF (6)

whereKi is a positive gain, and∇qiϕi denotes the gradient ofϕi with

respect to qi. Applying (6) to (2), the closed-loop dynamics of social

response for all individuals in a social network can be obtained as



0D
α
t qi(t) = −Ki∇qiϕi i ∈ VF

0D
α
t qi(t) = 0 i ∈ VL.

(7)

Since leaders’ states are stationary, the input to leaders in (7) is

zero, and ∇qiϕi can be computed as

∇qiϕi =
kβi∇qiγi − γi∇qiβi

k(γ k
i + βi)

1
k
+1

. (8)

From (4) and (5),

∇qiγi =


j∈Ni



qi − qj


(9)

and

∇qiβi = −


j∈Ni

b̄ij


qi − qj


(10)

respectively, where b̄ij ,


l∈Ni,l≠j bil ∈ R
+. Substituting ∇qiγi and

∇qiβi into (8), ∇qiϕi is rewritten as

∇qiϕi =


j∈Ni

mij



qi − qj


, (11)

where

mij =
kβi + b̄ijγi

k(γ k
i + βi)

1
k
+1

(12)

is non-negative, based on the definition of γi, βi, k, and b̄ij.

5. Convergence analysis

To show that the followers in the fractional-order network

converge to a convex hull spanned by the static leaders’ states,

the following analysis is segregated into three proofs. The first

proof shows that the existing interaction between individuals is

maintained by the influence function designed in (6) (i.e., the social

difference Sij ≤ δ for all time, meaning influential peers remain

influential), and thus the connectivity for the social network is

preserved. The second proof indicates exponential stability for an

integer-order representation of the dynamic system in (2),which is

then used to establish asymptotic convergence to the equilibrium

set of consensus states for the fractional-order system by using a

Mittag-Leffler stability analysis in the third proof.

5.1. Maintenance of social influence

If a directed graph G (t) does not have a directed spanning tree,

there must exist a follower to which all leaders do not have a

directed path to influence the follower’s states. Hence, the state

of the follower is independent of the influence of leaders, and thus

cannot converge to the stationary convex hull spanned by leaders.

To ensure the continued influence from leaders to all followers,

a directed spanning tree structure must be maintained all the

time. The following theorem shows that, given an initial graph

containing a directed spanning tree as in Assumption 1, the tree

structure will be preserved under the influence function in (6)

(i.e., network connectivity is maintained and social peers do not

become isolated from the social group).

Theorem 1. The influence function in (6) guarantees a directed

spanning tree structure in G for all time.

Proof. Based on Assumption 1, the initial graph G (0) has a

directed spanning tree. If every existing edge in G (0) is preserved,
the tree structure will also be preserved. Since an individual only

considers a local neighbor’s opinion as reasonable when their

social difference Sij ≤ δ, peer influence is maintained when each

edge Sij ≤ δ all the time. Consider a state q0 for individual i,

where the interaction between individual i and neighbor j ∈ Ni
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satisfies bij


q0, qj


= 0, which indicates that their social difference
is too large to influence each others’ opinion, and the associated
edge is about to break. From (5), βi = 0 when bij = 0, and
the navigation function ϕi achieves its maximum value from (3).
Since ϕi is maximized at q0, no open set of initial conditions
can be attracted to q0 under the negative gradient control law
designed in (6). Therefore, the social bond between individual i
and j is maintained less than δ by (6), and the associated edge
is also maintained. Repeating this argument for all pairs, every
edge in G is maintained and the directed spanning tree structure
is preserved. �

5.2. Convergence analysis

To establish asymptotic convergence to the equilibrium points
(i.e., the convex hull Co



qL (t)


) for the fractional-order dynamics
in (2), an integer-order system q̇i(t) = ui(t) with α = 1 in (7) is
considered first in the following theorem.

Theorem 2. Consider a network composed of stationary leaders and
dynamic followers described by (7). The followers i ∈ VF exponentially
converge to the equilibrium points (i.e., a convex hull Co



qL (t)


spanned by the leaders states only), if there always exists at least one
leader j ∈ VL that has a directed path to any follower i (i.e., a directed
spanning tree is maintained).

Proof. This theorem is proven by using LaSalle’s invariance
principle and convex properties. Let V (q (t)) be the volume of
the convex hull Co (q (t)) formed by all leaders’ and followers’
states. First, we show that there exists a compact set Ω such that if
qi (0) ∈ Ω for ∀i ∈ V , then qi (t) ∈ Ω for all t ≥ 0, which implies
that Ω is a positively invariant set. Second, let E be the set of all
points in Ω where V̇ = 0 (i.e., the volume of Co (q (t)), q (t) ∈ E,
stays constant). It is then shown thatM is the largest invariant set,
where M is the set of points in the convex hull Co



qL (t)


formed
by stationary leaders only.

Substituting (11) into (7) with α = 1 yields the following

closed-loop emotion dynamics







q̇i(t) = −


j∈Ni

Kimij



qi (t) − qj (t)


i ∈ VF

q̇j(t) = 0 j ∈ VL,

(13)

which can be rewritten in a compact form of a time-varying linear

system as

q̇ (t) =



q̇F (t)

q̇L (t)



=



π (t)
0(n−m)×n



q (t) , (14)

where 0(n−m)×n denotes the (n − m)× nmatrix with all zeros, and

the elements of π (t) ∈ R
m×n are defined as

πik (t) =















−


j∈Ni

Kimij i = k

Kimik k ∈ Ni, i ≠ k

0, k ∉ Ni, i ≠ k.

(15)

Each follower i ∈ VF in (13) evolves according to the dynamics:

q̇i(t) = −


j∈Ni

πij (t)


qi (t) − qj (t)


. (16)

To facilitate the analysis, (16) can be written in discrete time as

qi(t + 1) =



1 − T


j∈Ni

πij



qi (t) + T


j∈Ni

πijqj (t) , (17)

where T is a sufficiently small sampling period. From (17), it is
clear that qi(t + 1) is a convex combination of its current state

qi (t) and its neighbors’ states qj (t), j ∈ Ni, which implies that the

follower imoves towards the convex hull spanned by itself and its

neighborhood set Ni. Since the leaders’ states are stationary and

the followers’ states are evolving within the convex hull, V (q (t))
is uniformly non-increasing, and thus V (q (0)) is the compact set

Ω .
The next step is to show that all followers’ states will exponen-

tially converge to their equilibrium points. To see that the equilib-

rium points are indeed the stationary convex hull Co


qL (t)


, let

qi,eq be an equilibrium point for a follower i ∈ VF . For an equilib-

rium point, q̇i,eq = 0, and (16) can be written as

−


j∈Ni

πij (t)


qi,eq (t) − qj,eq (t)


= 0,

which yields that

qi,eq =
1

−πii (t)



j∈Ni

πij (t) qj,eq (t) (18)

by using (16). Due to the fact that −πii (t) =


j∈Ni
πij (t) ∈ R

+

from (15), (18) indicates that the equilibrium point qi,eq lies in a

convex hull spanned by its neighbors’ states (i.e., leaders and/or

followers). Since every follower ends up in a convex hull spanned

by its neighbors’ states and the leaders’ states are static, every fol-

lower will end up in a convex hull spanned by the leaders states

only (i.e., Co


qL (t)


). Using the fact that mij is non-negative from

(12) and Ki is a positive constant gain in (6),



π (t)

0(n−m)×n



in (14) is

a Metzler matrix with zero row sums. According to Lemma 2 and

following a similar procedure as in Moreau (2004), the convex hull

Co (q (t)) is shrinking (i.e., V̇ (q (t)) < 0), since the difference of

the extremes max {x1, . . . , xn} and min {x1, . . . , xn} is decreasing.
If all followers states are initially within the convex hull Co



qL (t)


,

the states will always stay within Co


qL (t)


(i.e., V̇ = 0).
A proof by contradiction can now be used to show that M (i.e.,

Co


qL (t)


) is the largest invariant set. Let M ′ ⊃ M be a larger

invariant set in E. Suppose that there is a follower whose state

qi (0) ∉ M , and qi (0) is on the boundary of M ′. Since M ′ ⊂ E,

the volume of the set M ′ stays constant. The only way for the vol-

ume of M ′ to stay constant is that qi (0) = qi (t) for all t ≥ 0.

However, for this to happen, we must have πij (t) = 0 for ∀j ∈ Ni

from (16), which indicates that the follower i is isolated from the

group. This isolation is a contradiction with network connectiv-

ity. Hence, M is the largest invariant set. Also, note that for linear

systems, uniform asymptotic stability is equivalent to exponential

stability (Khalil, 2002, Theorem 4.11). Therefore, the followers ex-

ponentially converge to the largest invariant set M (i.e., the equi-

librium points Co


qL (t)


) by using LaSalle’s invariance principle

(Khalil, 2002). �

Since exponential stability for the integer-order system (13) is

established in Theorem 2, a similar proof procedure in our recent

work (Kan, Shea et al., 2012) can be followed to prove asymptotic

stability for the fractional order system in (7) by using Mittag-

Leffler stability analysis and a Converse Lyapunov Theorem.

Theorem 3. The follower i ∈ VF , with closed-loop fractional-order

dynamics in (7) with α ∈ (0, 1), asymptotically converges to the

convex hull spanned by stationary leaders if at least one leader j ∈ VL

has a directed path to the follower i.

Proof. Let xi (t) , qi (t) − qi,eq, and xF (t) , qF (t) − qF
eq, where

qF
eq denotes the stacked vector of qi,eq. Since the leaders’ states are

constant, the closed-loop fractional-order dynamics in (7) can be

written in a compact form as

0D
α
t x

F (t) = g(xF ), (19)
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for all followers where g(xF ) is a function of follower states. Since

stability of a fractional-order system is defined by Definition 1,

and Mittag-Leffler stability implies asymptotic convergence as

discussed in Li et al. (2009), the following development aims to

show that (19) is Mittag-Leffler stable.
Since γi and βi are not zero simultaneously, and γi, βi and

their partial derivatives are bounded from (9) and (10) within

the workspace, ∇xig(x
F ) (i.e., the Hessian of ϕi) is bounded by a

constant l ∈ R
+, as shown in the work of Kan, Dani et al. (2012).

Lemma 3.1 in Khalil (2002) is invoked to establish that g(xF ) is

locally Lipschitz,



g(xF )






xF




≤ l. (20)

Since exponential stability is established in Theorem 2 for the

integer-order system of (17), a Converse Lyapunov Theorem,2

(i.e., Theorem4.14 in Khalil, 2002) is invoked to establish that there

exist a function V


t, xF


: [0, ∞) × R
m → R and strictly positive

constants k1, k2, and k3 such that

k1


xF


 ≤ V


t, xF


≤ k2


xF


 (21)

V̇ ≤ −k3


xF


 . (22)

Let β = 1−α ∈ (0, 1). From Theorem 8 in Li et al. (2009) and (22),

the fractional derivative of V is computed as

0D
β
t V


t, xF


= 0D
1−α
t V



t, xF


= 0D
−α
t V̇

≤ −0D
−α
t



k3


xF






. (23)

Using (19), (20), and the fact that




0D
−α
t g(xF )



 ≤ 0D
−α
t



g(xF )




from Li et al. (2009),

0D
β
t V


t, xF


≤ −
k3

l
0D

−α
t



g(xF )






≤ −
k3

l





0D
−α
t g(xF )





≤ −
k3

l



xF


 . (24)

Mittag-Leffler stability of the solutions to (19) with α ∈ (0, 1)

can be obtained as


xF (t)


 ≤


V(0,xF (0))
k1

E1−α,1



−
k3
k2 l

t1−α


1
α

, by

applying Lemma 1 to (21) and (24) with a = b = 1, which implies

that the equilibrium points qF
eq for the followers in the closed-loop

fractional-order system in (19) are asymptotically stable. �

6. Simulations

To illustrate the proposed control algorithms, simulations are

performed on a karate club network described in Zachary (1977).

The karate club network considered in this section consists of 3

social leaders and 7 followers, and is represented as a directed

graph in Fig. 1. The solid arrow connecting two individuals in

Fig. 1 indicates an established social bond (e.g., friendship) and

the directed influence between individuals. Note that the leaders

cannot be influenced, while the followers can be influenced by

social peers as well as social leaders. Based on the topology

2 Since (21) and (22) indicate exponential stability as shown in Theorem 4.10 (for

the case α = 1) in Khalil (2002), a variant of Theorem 4.14 in Khalil (2002) is used

in the current work. Similar to Theorem 4.14 in Khalil (2002), where exponential

stability is established by V̇ ′ ≤ −
k3
k2
V ′ provided a Lyapunov function V ′ (t, x) exists

with k1 ∥x∥2 ≤ V ′ ≤ k2 ∥x∥2 and V̇ ′ ≤ −k3 ∥x∥2 , the conditions in (21) and (22)

also establish exponential stability of V̇ ≤ −
k3
k2
V .

Fig. 1. Zachary’s karate club network is modeled by a directed graph.

Fig. 2. Evolution of social states. The followers’ states converge to the convex hull

formed by social leaders, where the leaders’ social states are denoted as squares,

and the followers’ initial and final social states are denoted by circles and dots,

respectively.

described in Fig. 1, each individual is randomly assigned a social

state (e.g., an opinion on an event or an emotional state such

as happiness, fear and anger). Without loss of generality, we

assume that the social states of individuals are two dimensional

(i.e., qi(t) ∈ R
2). The control law in (6) yields the simulation

results shown in Fig. 2, which illustrates that the followers’ states

converge to the convex hull formed by the social leaders.3

7. Conclusion

By modeling the group social response as a networked

fractional-order system, a decentralized potential field-based

3 An infinite state model is developed in Trigeassou and Maamri (2011) to

represent a Fractional-order Differential Equation (FDE), as a means to solve the

initial condition challenges associated with FDEs. As indicated in Trigeassou and

Maamri (2011), the internal state z (t) in the infinite statemodel contains historical

information of the FDE. Since the current work focuses on showing how the

individual’s behavior can be influenced under the designed influence function, for

simplicity, the simulation is based on the assumption that z (t0) is known. When

z (t0) is unknown, various observer models could be used to estimate the unknown

z (t0) (e.g., see Trigeassou & Maamri, 2011); however, estimating the initial state

for a FDE is a challenge that remains a topic of on-going research. Given that the

fractional-order dynamics in (2) is written as qi (t) = In (ui) where In (ui) is the

nth fractional integral of control input ui , the trajectory of qi (t) is simulated by

following the infinite state approach in Trigeassou andMaamri (2011). An alternate

initialization approach is to account for the initialization function (cf. Lorenzo &

Hartley, 2008 and Sabatier, Farges, & Trigeassou, 2014).
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influence algorithm is developed in this work to ensure that all

individuals’ states achieve consensus asymptotically to a desired

convex hull spanned by the stationary leaders’ states, while main-

taining consistent influence between individuals (i.e., network

connectivity). This work considers individuals whose social re-

sponse is modeled by a FOS with α ∈ (0, 1]. Since some individu-

als may respond with a more complex dynamic (e.g., α ∈ (1, 2]),
future efforts will focus on generalizing the development to in-

clude networks with heterogeneous members with higher order

dynamic response. Future effort will also consider different influ-

ence capabilities between individuals. For instance, a person tends

to have a larger tolerance for a difference of opinions for a certain

social event in a close friend than a loose acquaintance, and thus,

can be more easily influenced by the close friend.
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