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I. A correlational fornnrla. elimiiiating “accidental ’) eri’ors OJ 

measurement. 

A FEW years ago I called attention to the fact that the apparent 
degree of correspondence between any two series of measurements is 
largely affected by the size of the “accidental” errors in the process of 
measurement‘. It was pointed out tliat, this disturbance is not in the 
least bettered by making the series longer. As a remedy, a correctiou 
formula was proposed, based on the idea that the size of these 
“accidental” errors can be measured by the size of the discrepancies 
between successive measurements of the same thingsa. 

Now, all experimenters seem to be unanimous in finding that such 
discrepancies are liable to be startlingly large. The importance of the 
point is therefore established. For an estimate of the correlation 
between two things is generally of little scientific value, if it does not 
depend unequivocally on the nature of the things, bu t  just as much on 
the mere efficiency with which they happen to have been measured. 

But nevertheless the formula has met with much opposition. 
When first published, some eminent authorities a t  once declared it 

This illusion is, of course, just as bad when the correspondence is judged by general 

Am. J. Psych. Vol. xv. 1904. 
impression instead of by coefficients ; in fact, worae, as then no correction is possible. 
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to be mathematically incorrect. This attitude appears now to have 
been abandoned in favour of a more moderate line of resistance. The 
formula is allowed to bc true for really “accidental” errors; but it is 
urged that, in psychology at  all events, the discrepancies between suc- 
cessive measurements often cannot properly be termed “accidental,)) 
but may arise from the fact that the second later measurement does 
not deal with the same function as the earlier one, owing to  the 
modifications introduced by practice, fatigue, etc. Hence, the cor- 
rection formula becomes invalid; indeed, m i t  throws together two 
different functions, it is even meaningless. 

Some idea of this sort will be found already in my original paper’; 
and i t  was quickly and clearly emphasized by Wisslera. But the crucial 
point was reached when Udny Yule gave a new and much simpler 
proof of the formula, putting its validity beyond further cavil, but 
showing in the plainest light the assumptions on which it is basedS. 
These are, that the errors of measurement are not correlated with one 
another or with either of the series measured. Clearly, such assump- 
tions are far from carrying conviction a priori. And, finally, Dr W. 
Brown has furnished some actual experimental instances of their 
invalidity, as well as some interesting theoretical discussion4. 

One remedy that has been suggested is to make the measurements 
so efficient, that the correction will not be needed. But how are we to 
tell whether our measurements really are efficient enough, except by 
trying with the correction formula? The suggestion is like telling a 
man to brush his coat until it is clean but never look whether it is so. 
Also, the half measure has been advised, of making the successive 
measurements prescribed by the formula, noting whether there is much 

3 In  a private letter sent to me in October, 1908 ; his proof is attached in appendix e. 
My own far less elegant proof makes, I think, a little less extensive assumptions; but the 
difference is unimportant. He has also had the great kindness to look through this paper 
and to suggest numerous criticisms, to which it is very much indebted. I have, further, 
the pleasure of acknowledging helpful criticisms and remarks from Dr Nunn, Mr Sheppard, 
Mr Burt, and Dr Betz. 

4 The experimental evidence brought by him at the Geneva Congress cannot be 
admitted. Let z denote the true measurement, z, and zz the first and second measure- 
ments actually obtained, d, and d2 their errors; for s he substituted sl, which = z + d , ,  
thus illicitly bringing in d, ,  the very quantity in question. He, further, advanced the 
view, that the formula ceases to hold good whenever ability (measured by z) is correlated 
with ‘‘ variability” (measured by z, -z2) ; but he appears to have based this on the mistaken 
notion, that correlation with s1 - z z = 4  .-d2 proves correlalion with either d, or 4. In a 
later paper, however, he brings more satisfactory experimental evidence ; also, he Seems 
to give up the view about variability (Biometrika, Vol. VII. p. 352). 

Ibidem, pp. 254, 255. 1 Science, Vol. xxn. pp. 309 ff. 
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discrepancy, but not proceeding to use the formula for evaluating the 
effect of the discrepancy on the coefficient. This is equally futile; for 
the seriousness of the discrepancy call only be gauged by its effect on 
the coefficient. 

To begin with, we 
may note that in a large number of cases, the questioned assumptions 
are legitimate enough, for instance, in the measurement of physical 
objects. Unfortunately, this is not very helpful; for in most physical 
measurements the errors are exceedingly small; and the correction 
formula has proved that such very small errors affect the coefficient too 
little to demand, for most purposes, elimination. This elimination is 
needed rather in such sciences as psychology and sociology; in testing, 
for instance, a person’s power of bisecting a line, we find that almost 
every successive trial yields a distinctly different result. But it is just 
in such sciences that the assumptions become most dangerous. 

Here, however, we can fall back on the universal and invaluable 
device of analysing, in thought, such variations into components of 
two kinds. Firstly, there are the variations of a regular, generally a 
continuously progressive character. These demand and admit of in- 
vestigation, explanation, and, in large degree, control. In  our above 
example, we should find that the accuracy of bisection was being in- 
creased by practice, diminished by fatigue, etc. It is with regard to  this 
kind of component that Wissler, Yule and Brown are unquestionably 
right in calling att,ention to the dubious validity of the old formula’s 
assumptions; it is certainly inore than hazardous to assume, for instance, 
that fatiguability in one performance is uncorrelated with ability in 
that performance, or with fatiguability in another performance. At  the 
same time, recent research seems to indicate that such correlations are 
far smaller than popularly supposed; 1 am not myself aware of any 
conclusions arrived a t  by means -of the old formula which would 
probably be upset on taking such correlatioris into account. 

Secondly, superposed on the above regular variations, we find others 
of such a discontinuously shifting sort, that investigation, explanation, 
and control are almost baffled. Hence, we call these by some such 
name as “accident.” Of course, exceptional cases may be conceived 
where the line demarcating the accidental from the regular components 
becomes obscure, but in the immense majority of cases it is perfectly 
clear and usable. 

Now, it is the superposed accident that the present paper attempts 
to eliminate, herein following the custom of all sciences, one that 

J. of Psych. 111 18 

The difficulty must be met more drastically. 
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appeam to be an indispensable preliminary to getting at nature’s laws. 
This elimination of the accidents is quite analogous to, and serves ju s t  
the same purpose as, the ordinary processes of “taking means” or 
“ smoothing curves.” The underlying regular variations, on the other 
hand, do not in general require elimination, but only determination. 
Every mental performauce, for instance, must necessarily be a t  some 
stage or other of practice or fatigue ; every stage is equally “true,” and 
forms an equally legitimate subject of investigation. All that can 
reasonably be demanded of a formula is to produce the coefficient for 
some definite stage, and we will here choose the average stage during 
the period of measurement. 

But, as regards this second or “accidental” component to be elimi- 
nated, the assumptions as made by the old formula seem to possess 
an exceedingly wide validity. This paper proposes, then, to suggest a 
new formula, or rather to raise the old one to a higher generality, such 
as to involve these assumptions only as regards the “accidental” 
componeuts, where they are legitimate; not as regard8 the regular 
components, where they may be called in question. We will take, 
however, the precaution of discussing the circumstances under which 
the assi~mptions may conceivably become invalid even as regards the 
“ accidents.” 

Let each individual be measured several 
times with regard to any characteristic to be compared with another. 
And let his measurements be divided into several-usually two-groups. 
Theti take the average of each group; this we will term the “group 
average.’’ The division into groups i s  to be made in such a way, that 
any diferences between the diferent group averages (for the same 
individual) may be regarded as quite “accidental.” It is further de- 
sirable, that the sum total of the accidental variations of all the 
individuals should be not very unequal in the different groups; 
ordinarily, this will occur without further trouble, but in any case it 
can be arranged’. 

Such a division seems feasible in most psychological and sociological 
work. A test of verbal memory, for instance, might well consist of 
memorizing twenty series of words (exclusive of some preliminary series 

The method is as follows. 

It must be noted that we can rarely assume the “accidents” in the measurements 
of a single individual eventually to cancel one another on taking an average. This would 
postulate a much larger number of measurements than usually attainable. And as the 
errors thus introduced for each individual are squared in calculating the coefficient, they 
would not tend mutually to cancel one another when added together, but would exercise 
a definite and often large bias. 



C. SPEARMAN 275 

for ‘’ warming up”). Then series 1, 3, 5, ... 19 would suitably furnish 
one group, while the even numbers gave the other. Any discrepancy 
between the averages of the two groups might, as a rule, be regarded 
as practically all due to the “accidents.” 

Quite n small number of measurements will suffice when they 
extend over a brief period or when the variation may be assumed to 
proceed uniformly. If the variation is sensibly uniform-an assumption 
always valid if the period is sufficiently brief,-three measurements 
will be enough; one group can consist of 1 and 3;  the other can be 
represented by 2. If four groups are available, one can consist of 1 and 
4, the other of 2 and 3 .  When there is no lapse of time between the 
measurements, each one of them may replace a group; a common 
instance is that of measurements of children which consist in classifi- 
cations or orders of rnerit derived from the general impressions of their 
teachers. 

The result ot this division into group averages (or classifications, 
etc.) is that each of these has two components, the average underlying 
“regular” measurement, and the average superposed “accidental” 
disturbance. And as regards the latter component, there appears no 
reasonable objection to assuming it to be uncorrelated both with the 
accidental components of the other group averages and with the 
underlying ‘‘ regular” measurements. On making this assumption, we 
obtain the following equation (for proof, see app. c ) :  

where rz[17, iLl1 denotes the average correlation between the single groups 
averages for 3; ryL1,,yIIJ does the same for y; rsrpl,lJPqJ denotes the corre- 
lation of the average of p group averages for x with the average of q 
for y ;  and rzy is the desired correct correlation, i.e., that between the 
average values of the underlying regular measurements of x and y 
respectively. 

Here, p and q may have any chosen values, but it is best to make 
them = t h e  total number of groups formed of x and y respectively; for 
thus the greatest possible approximation to the correct value of the 
correlation is obtained directly, and the least possible influence is left 
to the factor expressed in (I) as a square root. The number of groups 
should generally be two only, since thus concentrating the measure- 
ments into few groups facilitates the complete elimination of all the 

18-2 
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‘‘ non-accidental” discrepancies between the group averages. The 
formula then becomes : 

It may be noted that, by putting p = q = 1, we return to my original 
formulal, the only difference being the present improved method of 
constituting the groupsa. 

If rzul,zI1, or ~ y l l l , y D l  is unknown, there is no resource but putting 
it equal to 1,  as is tacitly done in the Bravais formula as ordinarily cal- 
culated. The result, however, as in that formula, is not the correct 
coefficient] but merely the minimum which the correct coefficient cannot 
fall short of. 

The “probable error” of sampling is, approximately, 

(II)* ..................... 

here p and q denote the total number of groups of x and y respectively; 
K denotes the square root in (I), and n is the number of individuals. 
Thus, the p.e. of the correct coefficient = the p.e. of the Bravais 
coefficient calculated in the ordinary manner divided by the ratio of 
the latter to the correct coefficients. 

Let us  now consider the possible exceptions even to the above 
curtailed assumptions. For simplicity, we will take the case of 8 and y 
each furnishing two group averages, which we will term xa Xb, ya and Yb. 
The assumptions made are, then, that the “accidental” components in 
these four terms respectively are uncorrelated with one another and 
with x and y. 

Take, first, the possibility of correlation of the accidents of xa with 
those of xb. This could only mean that the accidents had a general 
bias in favour of some individuals as compared with others. Then, 
clearly, the formula will give the correlatiou, not between the true 
values of x and y, but, in general, between these values as biassed. 
And i t  could hardly be expected to do more. Such a bias can only be 
eliminated by improving the methods of obtaining the data. 

The 
above again holds good, except that in this special case statistics do 

a It is often useful to choose two di,ferent values for p and also for q ,  and to eee 
A large discrepancy indicates 

3 It thus coincides with the approximation suggested by me to Mr Burt and published 

Take next any correlation of the accidents in xa with x or y. 

Am. J.  Psych. Vol. XVIII. p. 168. 

whether they lead to two very discrepant values for rzv. 
something wrong in the assumptions or eleewhere. 

by him in the British Journal of Psychology, Vol. 1x1. p. 111, 1909. 
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furnish a possible means of retnedying the faultiness of the data, namely, 
Yule’s formula for eliminating irrelevant factors. This will be dis- 
cussed in the next section. 

It remains to consider the possibility of correlation of the accidents 
in some of the x measurements with those in some of the y measure- 
ments. I n  experimental psychology, for instance, it is not uncommon 
for each individual to  be tested separately, and for each test in x to be 
accompanied by a test in y. Suppose, now, any individual to be 
accidentally indisposed: his results for both x and y will be accidentally 
depressed; the same will occur, more or less, for the other individuals; 
hcnce arises a spurious correlation between x and y. It may, how- 
ever, easily be avoided; let the accidents in the p th  tests of x and y bc 
called d,, and ep; w c  necd only arrange so as to  omit d, .e ,  from 
s (dub. cab), see appendix a. Of coursc, it is advisable, where possible, 
to get better data to start with; in the above case, i t  might be 
practicable to test x and y on separate occasions; or means might be 
devised of ascertaining when the individuals are indisposed, etc. 

A point to be noticed about this formula is that, like the former 
one proposed by me, it will occasionally produce coefficients greater 
than unity. Somc authors have strongly objected to this’. But the 
objectioii would only be justifiable if the coefficient pretended to be 
perfectly accurate. At most, it is only the true coefficient plus the 
error due to testing a limited sample instead of the whole class; the 
general magnitude of such an error is indicated by the so-called 
“probable error.” And though a true coefficient cannot exceed unity, 
there is no reason why a coefficient plus an error should not do so. I n  
such case, of course, the coefficient must be taken as= 1, this being its 
most probable value. 

I n  view of the easy statistical elimination of the accidental errors, 
it might be thought no longer necessary to make long careful measure- 
ments. But this would be a grave mistake; for as seen from equation 
(11), such accidents swell the correct coefficients probable error. Hence 
the function of the formula here proposed is by no means to replace 
accurateness of original data, but on the contrary to emphasize the 
necessity of such accurateness, to estimate the degree of its realization, 
and only in the last instance to supplement its defectiveness. 

It should be noted that the above proposed elimination of acci- 
dental variations bases itself on the original Bravais coefficient, this 

His other principal criticisms will be dis- Cf. Pearson, Biometrika, Pol. III. p. 160. 
cussed in Section VI. 



278 Correlation Calculated from Faulty Data 

appearing to me the most generally satisfactory one hitherto invented. 
But a t  the same time, it must be admitted that this coefficient has 
many weaknesses and that other coefficients have many advantages‘. 
It must, however, be demanded of these other coefficients, no less than 
of the Bravais one, that they be analogously modified so as to eliminate 
the effect of the accidents. 

11. 
Difficulties are not yet over. 

Yule’s Correction fo r  Irrelevant Factors. 
So far, we have only eliminated from 

our coefficient the effect of “accidents” in our measurements. But our 
data are no less liable to be affected by non-accidental or general 
tendencies. To avoid such disturbing tendencies is primarily, of course, 
the concern ot‘ the method of obtaining the data. There is, however, 
one important case where faultiness of the data in this respect admits 
of subsequent correction statistically; i t  is t.he case where the undue 
tendency consists in the character under estimation being influenced 
by some irrelevant factor. These arise from the fact that the scientific 
conquest of nature is essentially achieved by artificially simplifying 
her processes; the factor that we happen to be investigating is allowed 
to vary, while the remaining factors are kept as constant as possible, 
their effect being regarded as irrelevant for the purpose in hand. 
Suppose, for instance, we wanted to ascertain the correlation between 
ability for composition and for mathematics. It would not be legiti- 
mate to pool together schools devoting different amounts of time to 
instruction. Otherwise, the fact that the children high in the one 
subject tended to be high in the other also might merely mean that 
these children came from schools giving more instructioii in both 
subjects than the other schools. Such difference of amount of instruction 
constitutes a factor irrelevant and disturbing to our purpose; it requires 
elimination. 

Unfortunately, these irrelevant factors are innumerable and ubiqui- 
tous. The shallow, or careless worker, or one trying to make statistical 
calculations replace special knowledge of the subject, is at their mercy. 
Even the most thorough and competent investigator, after completing 
his experiments, working out his correlations, and eliminating the 
influence of accidents, will still have many a misgiving about the 
irrelevancies; some factor may now occur to him of which he did not 

1 See the very interesting paper of Thorndike on ‘‘ Empirical Studies in the Theory of 
Measurement,” Archives of Psychology, Vol. 111. 1907. Also, H. Bruns, Wahrdteinlieh- 
keitsrechnung und Kollektivmaaslehre, 1906; and G.  F. Lipps, Die Thewie der Kollektiv- 
gegenstunde, 1902. 
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think before; or he may now see reason to take a more serious view of 
some factor previously tolerated under the belief of its harmlessness; 
or he may be facing some factor whose gravity he has all along realized 
well enough, but whose presence he has seen no way of escaping. 

At  this point, therefore, we have urgent need of some further 
statistical process, to enable us to estimate and eliminate such dis- 
turbing elements. And such has actually been discovered for us by 
Udny Yule. The fundamental significance of this event for the 
development of correlational research appears-both for the above 
rcasons and for others of even greater importance-scarcely to admit 
of overcstirnation. The nature and usage of his corrective process have 
bceu fully explained elsewhere’. I need only mention here that it must  
be applied after eliminating the effect of the “accidents,” not vice 
versa. 

111. Errors still persisting in the coqfi ie i i t .  
Unfortunately, Yule’s corrective process can rarely be carried out 

very completely; for though tlie calculations are simple enough, we 
almost always have great difficulty in rightly conceiving the nature 
of the chief irrelevant factors and also in  obtaining sufficient informa- 
tion about them2. Hence it is useful to consider in what inanner the 
coefficient will be affected by any errors still adhering to it. 

8 (xy  + xt + ys +s t )  
_______. -~ 

s (q) Let FOv = -=-- __ 
4s (q. x (y2) d S 5  + 2xs + s2) x (y2 + 2yt + t‘) ) 

where Fz!, denotes the coefficient obtained finally; s and t represent the 
errors in x and y that have still escaped elimination. Then S(xt), S(ys), 
S (st), S(xs), X(s2)), S (y t )  and S (P) are the values still possibly disturbing 
the coefficient. The above expression serves to show whether the dis- 
turbance tends to make the coeficient too large or too small. 

We will take some cases that might occur in psychological experi- 
ments. S(x t )  would retain an appreciable value when there had been 
imperfect elimination of any correlation between lc and the bias in the 

Bee Yule, PTOC. R. S.  Londou, Vol. LX. Also my own paper, Am. Journ. Psychology, 
Vol. XYIII. p. 161. 

This raises a vital question. At what point can the corrective process be considered 
as perfectly complete? This point is often not reached, I believe myself, until the corrected 
coeficient becomes=complete unity, or else zero. Here, and here only, the law under 
investigation has been completely disentangled from all other interfering factors. This 
consideration should, I think, dominate correlational research. In it is revealed the 
extreme significance of Yule’s formula. 
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measurement of y .  This would occur, for example, if the individuals 
who had a weak ability for the performance x were allowed to notice 
their inferiority, and thereby gained an extra stimulus to do well in y: 
the effect would be to make the final coefficient too large. If the indi- 
viduals were not stimulated but only depressed by their insuccess in x, 
S(xt)  would take a negative value, and the final coefficient would be 
too small. On the whole, with moderately good experimentation, this 
source of error should generally be negligible. &’(yt) is, of course, 
similar. 

S(xs) ,  or S ( y t ) ,  becomes appreciable when there is an uneliminated 
correlation between an ability and the bias in its measurement. This 
might occur, for instance, when the method of marking tended to 
exaggerate the differences between the good performances as com- 
pared with the bad ones. Its effect is to make the final coefficient too 
small. It can be avoided by basing the cqlculation on ranks instead 
of on measuretnents. 

This 
occurs when the bias in the measurement of x is correlated with that its 

regards y .  For instance, if two performances are tested always in the 
morning, the measurements of those individuals who cannot do their 
best until the evening will be unfavourably biassed in both perform- 
ances. Such a correlation, it may be noticed, will almost always be 
positive and there tend to make the final correlation too large. 

For the 
errors entering into these sums, being squared, become positive and 
thereby lose all tendency to neutralize one another on being added up. 
To reduce this danger is, in fact, the purpose of the correlational 
formula proposed in this paper. And this formula will be quite 
effectual in  so far as two measurements can be obtained of x, such that 
the errors in the one are really independent of those in the other. But 
often it will be found impossible to avoid the same bias pervading more or 
less both measurements, A notable instance is when the “intelligence” 
of a class of children is estimated by two different teachers. Under 
ordinary circumstances, it is found that the two estimates show high 
correspondence, about .SO or more. But when i t  can be arranged that 
the two teachers really form their estimates independently of one 
another, do not discuss the children together, nor hear of the same 
examination results, etc., then this correspondence shows a sixrprising 
shrinkage, thus revealing the previous high coefficient to have been 
spurious. In  this way, however, the coefficient given by the proposed 

In  any case i t  does not seem formidable. 
More serious is the liability to appreciable values of S(st). 

But by far the greatest danger lies in S(s2), or S(ta). 
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formula can only become too small; that is to say, the correction 
introduced by the formula is quite right as far as it goes: its only 
fault is in not going far enough, owing to the defectiveness of the data. 

On the whole, i t  is clear that to obtain an approximation to the 
true correlational coefficient is by no means a simple matter. My own 
experience leads me to think that the sources of error considered above 
are more insidious even than the error arising from taking a small 
sample. The very large and imposing series of cases, which have been 
obtained at the expense of all the other moments of accuracy, are but 
as “ whited sepulchres.” 

IV. Amount qf increased reliability to be obtained by increasimJ 
the number of measurements. 

A very convenient conception is that of tlic “rcliability coefficient” 
of any system of measurements for any character. By this is meant 
the coefficient between one half and the other half of sevcral measure- 
ments of the same thing, the division of the measurements into two 
halves or groups being done as described on p. 274. 

I t  is often very useful to be able to estimate how much this 
reliability coefficient will probably be increased by any given additional 
number of measurements, or how much it will probably be reduced 
by any given diminution in the number of measurements. It can 
be shown that the following relation holds good : 

where r x ~ P l , x ~ q l  is the known reliability coefficient of x when the latter 
has been measured 2p x i  times, i being any number, and rxlPl,xlpl is 
the required most probable reliability coefficient if x be measured 2p  x i 
times. 

Here, and also in the following section, all the measurements of x 
(or of y) are supposed to have been of equal general accuracy. But the 
case of unequal accuracy also admits of solution, see appendix b. 

V. Increase of correlation between two diferent characters to be 

The above principle can be usefully applied to the correlation 

obtained by increasing the number of measurements. 

between two different characters. 

For proof, see appendix b. 
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It will be found that’ 

where rx[ll,y[ll denotes the correlation of the average of any number, 
say i, measurements of x with that of any number, say u, of y ;  rxcp,,v[p, 
denotes the  correlation of the average of p x i measurements of x with 
that of q x u of y, and rxy is, m before, the correct correlation between 
x and y. 

This formula may cspecialiy be of service in supplementing the 
previous method, equation (I). For any inadequate fulfilment of the 
assumptions of both methods will, in general, affect their respective 
results differently. Hence, concordance of the results by both methods 
will greatly strengthen the evidence for the assumptions being valid. 

An empirical formula was previously given by me for the same 
purpose (Am. Jozw. Psych., Vol. xv. pp. 88-91). Though of a different 
form from the above, it gives very similar results under the usual 
values of the terms entering into it. Still more accurately correspond- 
ing with the above theoretical formula are the empirical results given 
by Thorndike in his above-mentioned papera. 

VI. Discussion of some criticisms. 
Some time ago I had to take exception to the work of Professor 

Karl Pearson, on the ground that i t  is vitiated by observational errors 
and irrelevant factors3. But I am 
sorry to firid that he has very seriously misrepresented my views, and 
even misquoted my figures. I can only regret all obscurities on my 
part that doubtlessly have contributed to this confusion, and hope thttt 
the following may elucidate matters. 

My chief weakness he finds in what he takes to be the treatment of 
the “probable errors,” about which he makes many strong comments. But 
here it is necessary to distinguish clearly between errors of two different 
sorts, those of sampling and those of observation. Suppose, for instance, 
that we wanted to investigate the head-length of skulls of prehistoric 
Tliebes. We should only be able to obtain a limited number of them, 
and would have to assume that these were an adequate sample of the 

For proof, see appendix c. The formula simplifies greatly in the usual case that p = q .  
Archives of PSyChologfJ, VOl. 111. p. 41, 1907. 
Am. J .  Psycli. Vol. xv. pp. 96-8. 

To this he has made two replies4. 

4 Biometriku, Vol. III. p. 160. Drayera’ Conipiiny Reseurch Memoirs, Biometric Series, 
IV. 1W7. 



C. SPEARMAN 

whole; hereby an error is involved, whose general magnitude is 
measured by thc “probable error” of sampling. But a totally new 
danger comes on the scene in  the process of actually observing the 
head-lengths; if our instrument or method of observation is sufficiently 
crude, we may make here additional errors, even far exceeding those of 
sampling. Now, i t  is to these accidental errors of observation that my 
attention has been chiefly drawn. Pearson, on the other hand, while 
he has made widely and justly appreciated contributions to the theory 
of sampling errors, has scarcely touched on the errors of observation. 
And he seems to have remained “eingestellt” for sampling errors when 
reading my papers ; for he takes in this sense everything that I really 
wrote about the errors of observation. Hence, of course, nothing but 
cross-purposes. 

Take, to begin with, the main point at issue, correlation by ranks as 
compared with that by measurements. Suppose that there has been 
an exaniination in Latin and in Mathematics; we want to see how 
far a boy’s success in the one subject agrees with that in the other. 
Evidehtly, there are two ways possible. We citn note that he has got, 
say, 98 inarks in Latin, but only 49 in Mathematics; this is called the 
methdd of measurements. Or we can remark that, out of 100 boys, he 
is firstt in Latin, but only 60th in Mathematics; this is the method of 
ranks. Under certain circumstances the method of ranks had seenied 
to me to be the less affected by the observational errors. This is 
especially the case where these errors increase in size towards one 
or bobh extremities of the range under consideration. I n  physical 
measurements, indeed, this will be rare; a large head is measured as 
easily as a small one, and in neither case should the error be excessive. 
But in  psychology this is otherwise; the following, for instance, are the 
different thresholds for pitch found for 24 children, the unit being 
113 v.d.: 5, 8, 10, 10, 13, 14, 14, 15, 17, 17, 18, 18, 20, 24, 25, 28,33,40, 
4.5, 60, 70, 70, 70, 90. Any experienced psychologist will know that 
the error of determination at the bottom of this scale is a t  least some 
twenty times as great as at the top; to ignore this large inequality is 
to distribute “weight” very wrongfully, and therefore to do much injury 
to  the reliability of the calculated coeficient. Translation from measure- 
ments into ranks is in such cases equivalent to a readjustment of the 
“weights” so as to equalize the upper and lower halves of the scale 
and reduce the importance of the extremities ; no doubt, such device 
admits of much improvement. Now, Pearson takes all this about the 
observational error to refer to the error of sampling, expresses his 
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disapproval most emphatically, and thinks to overthrow it by demon- 
strating that ranks and measurements produce, on the assumption of 
Gaussian distribution, sampling errors of quite equal magnitude. This, 
of course, has nothing to do with the point1. 

Let us take the next most important matter, the question of 
In our above example, the moat natural 

way of estimating the degree of correspondence between the two 
examinations would be to notice the differences between the results of 
the one and those of the other (in doing so, we might either regard the 
differences of marks or those of rank). But the Bravais method 
of ‘‘ product moments” introduces a refinement ; it bases itself, not on 
these differences simply, but on their squares. I suggested in this 
Journal (Vol. 11. Part 8, 1006) that under certain circumstances the 
omission of the squaring might reduce the accidental error (using this 
expression as cquivalent to the observational error plus sampling 
error). I gave a formula for that purpose, which we will here term 
the R formula. In  answer to this Pearson demonstrated that the 
sampling error by the R method is not less, but greater than that by 
the Bravais or r method, which he uses. But, as before, his denion- 
stration does not touch the error of observation. Further, i t  is based 
on the assumption of a Gaussian distribution; and this assumption is 
a most precarious one, especially as regards the latter kind of error. 
It could easily be shown that there are other distributions where, on 
the contrary, the squaring is disadvantageous, just as, under similar 
circumstances, the average becomes less reliable than the median. 
Muller, Kraepelin, and others have shown such distributions to occur 
largely in psychological work, and my experience has often led me to 
suspect their influence in correlations also. It must be remembered 
that squaring lays stress on the extreme discrepancies between the 
series compared (not, as some people have said, on the extreme values 
in the series); arid the reliability of these is often gravely in question. 
To take an example, suppose that all the individuals with one single 
large exception have shown a close relation between their perforniances 
in one experiment and in another; is there no ground for fearing that 
the one exception may be due to some accident, such as misunderstand- 
ing the procedure required, etc.? Only in this way can I explain that 

As regards the general question of ranks and measurements, it is pleasing to find that 
Udny Yule totally disagrees with Pearson’s adverse comments and, on the contrary, finds 
my proposal of ranks “ a very important step in the simplification of methods dealing with 
non-measurable character” (Stat. Soe. Journ. Vol. LXX. 1907, p. 656). 

squaring the differences.” 
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I have often found successive samples from the same class of events 
to fluctuate less when calculated by R than by r. The fact is that the 
Gaussian assumption is only a mathematical make-shift ; we may often 
conveniently enough reckon formulae from it; but in actual application, 
we should constantly bear in mind its real limitations. 

Seeing that, at any rate on the Gaussian assumption, the R method 
has a slightly larger probable error, Pearson severely criticizes the 
fact that I had found this to be only about .43&, whereas that of T 

shows a rnuch larger figure, *67 2/)21. To explain this “paradox ” he 
points out that, while the R method is only applicable to positive corre- 
lations, its probable error is taken from both positive and negative ones; 
and that the latter have a smaller range than the former. But there 
is no real paradox a t  all. We can no more argue that a probable error 
of .43 by one method is smaller than a probable error of *67 by another 
method, than we can say that 5 pounds are less than 10 francs. Two 
different methods, as a rule, are expressed in terms of different value; 
before making any such comparisons we must reduce them to common 
terms. And on doing so, the apparent superiority of R, of course, dis- 
appears. As regards the discrepancy emphasized by Pearson between the 
extreme positive and the extreme negative values, this seems to be of 
minor importance ; he overlooks my empirical evidence that the mean 
positive and negative variations are nearly equal; and this is now 
corroborated by his own tables, as these show that the asymmetry 
between the positive and negative values only becomes marked in the 
extreme ranges, where the frequency-and therefore the effect on the 
probable error-is very small. 

More serious is the charge against the R method, that i t  cannot 
deal directly with large negative correlations, but has first to convert 
these into positive ones by inverting one of the orders compared ; and 
sometimes this is impossible, for even after the inversion the correlation 
may still remain negative. On looking into this more closely, however, 
its formidable appearance greatly diminishes ; for it occurs solely when 
the correlation is so small as practically to be equivalent Lo zero, and 
therefore has no need of inversion a t  all; even in the extreme case 
selected by Pearson, the negative correlation is less than its own probable 
error. 

Still such an anomaly, however harmless in actual practice, does 
indeed, I must admit, disqualify the R method from setting up to be 
a perfectly independent method ranking equally with the method, 
still less claiming a large superiority over it, But how Pearson ever 
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came to conceive that I made such a claim I have failed to discover. 
Far from doing so, and despite the above-mentioned occasional superiority 
of the R, I expressly entitled it a footrule,” as lying half-way between 
the r method with its complications (which I likened to an (( elaborate 
micrometer ”) and judgment without mathematical method at all (which 
I compared to a “ mere glance of the eye ”). It is hard to understand 
how such strong expressions as these should ever have been taken 
to mean j u s t  the contrary. R’s chief mission is merely to gain 
quickly an approximate valuation of r. As an example of the 
kind of work for which it was intended, I had occasion to put some 
50 persons through a number of tests, principally as a demonstration ; 
the work was rough, but still not so bad as to prevent all interest in the 
results. As there were 270 correlations to calculate, I could not possibly 
have attempted the task but for the extreme facility of R. Further, the 
method seemed well adapted for the schoolmaster who wants to know 
how far this year’s examination tallies with that of last year, how far 
success in one subject has gone with that in another, how closely two 
teachers agree with one another in their estimates of children, and 
many more such problems. Seeing that R is meant to be subsidiary 
to r, the only real question is whether or not it actually produces values 
sufficiently approximating to the latter. Pearson selects a number 
of cases t o  prove discrepancy between the two; but he overlooks 
the fact that the discrepancy is never more than double the probable 
error, and that he himself declares any result less than 2-3 times 
the probable error to be devoid of significance1. If we take a general 
impartial review of the evidence hitherto adduced (for instance, that of 
Burt, Wimms, and Brown2), the correspondence of R with r appears 
to be amply good enough for the purpose in view; in fact R seems 
quite usable, not merely for assay purposes as originally contemplated, 
but even sometimes for research. 

And even such discrepancies as do occur between the two coefficients 
are by no means wholly chargeable to the fault of R, as Pearson 
assumes*. For the differences between the two are only that R uses ranks 
and omits squaring; and both these differences, as we have seen, are 
often advantageous, so that then the discrepancies are more the fault 
of r. It may seem contradictory that R should under any circumstances 

Burt, B. J .  P., Vol. IV. p. 107. Wimms communicated his data to the Brit. Psych. 
Boa., Jan. 1910. For Brown, who is much the fullest on this point, see his paper quoted, 

1 For instance, Drapers’ Company Research Memoirs, Biom. Series, IV. p. 15. 

p. 357. 
* Ibidem, p. 38. 
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claim to be more accurate than its own ideal, r. But we must remember 
that its ideal is the true r ,  not the actually calculated one ; the latter 
is the true one plus various errors (sampling, observation, irrelevant 
factors, etc.). 

Pearson remarks repeatedly, and even italicizes, that I state the 
probable error of R to be .4266/&, instead of *426G/dnX. It is 
gratifying that criticism should have to turn so much to such a trivial 
matter. As it happened, however, I really made neither statement, but 
the quite accurate one, that the probable error is ‘‘.431d\jn with two 
correct decimals, when n is not less than lo’.” 

I n  spite of his attack on ranks, he has made an interesting contri- 
bution towards their use. He has worked out the relation between the 
coefficients of ranks (or rather “ grades ”) and those of measurements, 

assuming Gaussian distribution. p , where p denotes 

the coefficient for ranks. On calculation, r and p turn out to be 
almost identical, thus corroborating my empirical observation to the 
same effect. 

He  has also done us the service of demonstrating, on the Gaussian 
assumption, the relation between squaring and non-squaring. 

It is r = 2 sin G 1 

It is 

T T .  sin - p = cos - (1 - R) - 1. 6 3 

I had found by actual observation the empirical formula 

p = s i n ( F R ) .  

The theoretical values, it will be found, fit the observa.tional ones with 
admirable closeness, the mean discrepancy being under a 0 1  and the 
maximum only about .02, amounts that are negligible, at any rate in 
psychology. Hence, it is no small surprise that Pearson several times 
reproaches the empirical formula with being “ erroneous.” Even had 
there been any significant discrepancy between the two, i t  would not 
have affected the validity of the empirical value expressing actual 
observations, but only of the theoretical one based on such a weak 
assumption. And as, on the contrary, the discrepancy is so completely 
insignificant, there appears no great advantage, even on the Gaussian 
assumption, in abandoning the use of the older and simpler formula for 
ordinary rough purposes. 

’ Brit. J. Psych. Vol. 11. p. 108. 
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On the whole, if we eliminate all these misapprehensions and over- 
sights, there seems to be no serious difference of opinion on all these 
points between Pearson and myself And to judge from the continually 
rising importance attributed by his school to observational errors and to  
irrelevant factors, even here the gap between us would appear to be 
rapidly closing. 

APPENDIX. 

a. 

Let x (fk) denote the Lth measurement of the j l h  individual. 
Let the superposed ‘‘ accidental ” disturbance be denoted by d (6) ; 

the underlying “ regular ” measurement by x‘ (6) ; the average value 
of x’ ( fk) by x (f) ; and the Icth “ regular ” deviation from this average 

Coejicient in the c u e  of 2 groups of measurements. 

by u(fk>. 
Then 

Let the measurements of each individual be divided into two groups, 
say a and b, in such a manner that any discrepancies between the 
averages of the two groups may be regarded as quite “accidental” 
(see p. 274). 

Let the average of the values of x (fk), x’ (fk), d (fk) that occur in 
group a be denoted by xa (f ), x,’ (f ), da (f ). And let the average of 
all the values of I(: (fk), x’ (fk), u (fk) be denoted by xab (f ), Sacad (f), 
uab (f >. 

$a (f) = G’ (f) + da (f) = xacnd (f) + da (f>, 

x ( f k )  = X’(fk) + d (fk) = x (f) + 21 (fk) + d(fk) .  

Then 
since by assumption I(:,’ (f) = x; (f) = Xa;  (f), 

= x (f) + uab (f) -k 
= x (f) + da (f >, since uab (f) = 0. 

(f) 

And 

Analogously 
xab (f) = X (f) + uab (f) dab (f> = x (f) -k dab (f 

f i b  (f) = (f> + db (f), 
Ya (f> = Y (f) + 6, (f>* 
yb (f) = Y (f) + eb (fh 

yab (f) = y (f> -k (f>- 
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Hence, summing for all individuals, 

(I), S(rcy) - - rxy ................................. - - _ _ _ _ _  ~~ 

4s (52) . s (f) 
since each of the sums s (xe ) ,  S(yd), 8(de) ,  etc. = 0, as we will assume, 
in accordance with pp. 273-4, that the d's and the e's are uncorrelated 
with one another and with x and y. 

Further, S(d2) and S(db*) will be assumed to have not very dis- 
similar magnitudes (see p. 274). Hence a f o r t i o r i  S (xan") and (xb*)  will 
not be very unequal, so that approximately 

dX (.,2j .S = 4 [s ( s a g )  + s ( X ~ , ) ] .  .............. (2). 

........................ And, similarly, 1 + - -  1 - 2SJ%!"> (4). 
rx,ab s ( Y a Y b i  

Then, as 

__- 
we get by (l), (3) and (4) 

b. Proqf of formula I I I .  
Take now the more general case of p ,  instead of 2, groups of 

measurements for x,  denoted by 

X I ,  x2, ... x k  ... xh ... X ,  = 

where x is the underlying regular measurement, while the d's are the 
superposed accidental components. 

J. of Psych. III 19 

+ d,, x + d,, ... x + d,, 
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dl +cia+...+ d 
+ xp be denoted by x [p], by d[PI. 

Let Zl+ Xa + * * 

P P 
Let yl, ya, ... yw ... yv ... ys, el, G, ... e,, y[s], e[s] have similar 

Since, as we have seen, such sums as S(ze), (zd), s ( d k d h )  each = 0, 
meanings with regard to y. 

we get, summing for all individuals, 

8 (z [PI . y [sl) = S(x: + d [ p ] )  (y + e [sl) = S (zy), 

8 (yuyv) = s (Y + a) (y + en)  = s (y". 
8 ( z k z h )  = (s + &) ( x  + d h )  = (&)s 

and 
So that 

the additional S denoting summation for all groups. 
But, from (a), 

= average correlation between x k  and X h  = say, rxLl1, x[ll.. .(7). 
From (6) and (7), putting y = x,  we get 

or, writing q for p, 
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And the two last equations give, on reduction, 

Although this formula applies immediately to groups of approxi- 
mately equal liability to accidental disturbances, it can easily be extended 
to cases of unequal liability. For an actual measurement of any degree 
of accuracy is, clearly, equivalent to the average of a number of measure- 
ments of an inferior degree of accuracy. So that two actual measure- 
ments (or groups of such j of unequal accuracy may be conceived as the 
averages of two unequal numbers of measurements all of equal (inferior) 
accuracy. Thus p could represent &',(mkgk), where m indicates the 
number of groups, and g their respective precisions. 

c. 

I n  ( 5 )  let each of the groiips, a and b, be composed of - sub-groups 

Proof of formulae I and 17. 
P 
2 

each satisfying all the assumptions we made about a and b. 
Then ( 5 )  may be written as 

where the indices in brackets have the same signification as in 
appendix b. 

This, owing to (S), becomes 

- ~~~ 

The two factors on the right 
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Hence, from (11) (putting there p = q = 1) and (12), 

+R',say ...... (13). 
We will neglect R', which vanishes when the two coefficients (rz~ll,zcll 
and ryllJ,u[ll) and also the two numbers of groups ( p  and q)  tend to 
equality; it becomes largest, and then positive, when the coefficient 
and also the number of groups for one character compared are both 
much greater than those for the other character. 

We get then, finally, on reduction, 

d. Proof of formula II. 
Let z denote 

where 1, 2, 3, 4, 5, 6 indicate any values. 
Taking logs, 

log z = log r12 + 9 log [ 1 + ( p  - 1) rg] - 4 log pr, 
+hlog[I  +(y-l)r,]-&logr,, 

and differentiating 
dz - dr,, 1 dr34 1 dr,  
z 

- -- - - 
T,, 2 r, [ 1 + ( p  - 1) r%] 2 ?*% [ 1 + ( q  - 1) rail ' 

Sqnare all such equations, add, and divide by the number of equations, 
then 

See Pearson and Filon, Phil. Trans. A, Vol. CXCI. p. 262. I am greatly obliged to 
Professor Filon, not only for his valuable paper, but also for being kind enough to send me 
equation (15) deduced by its means for the c a ~ e  that p = q = 2 .  Above I give his deduction, 
but generalized to include all values of p and q. 
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1 -rl; 
Also, from the same paper, a,.l2= ____. 2/12 
Thus we have 

(1 - rYi2)a _~____-- rial ( 1  -r1a2)at -- (1 - r.&y 
~ ~- - - 

Z2 y122 4rg;L[1 + ( p  - 1) T ~ ] ’ ~  4rsi [1 + ( q  - 1) Ts]’ 

1 

1 

(9-13 - Tlzr23) (rz4 - TZIT3.I) 

+ (7.1, - 7.?4T12) (Tu - rur:,) 

(7.15 - 9.127.52) (7.26 - 7.2dr65) 

+ (9.15 - r l6rm) (.rzfi - 7.21?*tid 

+ (?I3 - ~ ~ ~ 1 . ~ ~ )  (ra - rl2rlJ 

+ (Tlfi - 7.12ra2) (7.25 - TlL(Ys) 

(Ib - 9*.&r,) (7.46 - 1.457.firJ 

+ (7.36 - r*(firs) (7.*s - r*3rfi3) 

- ~l,rs) (yz5 - rzlr51) 

+ (r, - V . & ~ , J  (r45 - r4tiras) 

+ (TI4 - T.341.13) (TZ3 - r12r13) 1 + 
2rI9ra [1 + ( p  - 1 ) ra] 

1 
+ .. ~ 

2rl2rs [I + (y - 1) l;g] + 

+ (T36 - r%r65)  ( r 4 5  - r#J7.53) 

(15). 

1 
.~ ~~ . ~~ 

+ s?., ,~,  [i + ( p  - 1) 9 * 3 4 ] p  + ( q  - 1) rsi 

...... 
This equation (15) holds good for all values of the indices 1, 2, 3, 4, 
5, 6. Let them now be replaced by x[p], y[q], Lzk, xh, yuJ yv, where 
these terms have the same meaning as in appendix b. 

Then, as the indices k and h indicate groups of measurements 
differing from one another only in the distribution of the accidental 
disturbances among the individuals, k and IL may legitimately be 
conceived to have such values that, in general, the correlations produced 
both by xk and by Lch are equal to the average of the correlations 
produced by all the groups for x. Analogously, as regards the indices 
u and v. 

We get, then, 
r12 = rZrPl, l/[ql = say, f ........................ (16), 

r, = rye,,, ycIl  = say, h ........................ (18). 
r, = rZrll, Z[ll = say, g ........................ 

and 
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And r, = r, = r, = r, = rzIll, Ucll, which, utilising ( i i ) ,  

Correlation Calc.ulated from Faulty Data 

d l  + (q  - 1 ) h  
r16 = r16 = rZ [PI, y [l] = f --- ............ (23). 

substituting from (16)-(23) in equation ( l s ) ,  we get finally 

..... .( 24). 

The three terms on the right are usually small. Neglecting them, 
we get with sufficient approximation for most psychological purposes, 

or the probable error of the correct coefficient r,, 

= -6745 - Fzh% ?r[ql . rw 
4; rZcP1, UCPI ' 

where rScP,, ,,LP3, as in (11), denotes the correlation between the average 
of all the p group averages for x and the average of all the 9 ones for Y. 

e. 

xl and yl are measures of x and y at a. certain series of measurements. 

Yule's proof of the correction formula. 

8 1  23 yz 9, 9 ,  ,, another ,, 1 ,  

Let X~=C+&, xz=x++a, Y ~ = Y + s ,  ya=y+ei, 

Then, if it is assumed that 6, 6,  the errors of measurement, are 
all terms denoting deviations from means. 

uncorrelated with each other or with x or y, 

Z (x6) etc. = 0, Z (XI yl) = Z (xy). 
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or 

But also, since 8 (88) = 0, = s?, 
and ~ . C , X ,  Qx, QX2 = 

or 




