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In everyday language we call random these phenomena where we 

cannot find a regularity allowing us to predict precisely their 

results. Generally speaking there is no ground to believe that a 

random phenomenon should possess any definite probability. 

Therefore, we should have distinguished between randomness proper 

~s absence of any regularity) and stochastic randomness (which is 

the subject of the probability theory). 

There emerges a problem of finding the reasons for 

applicability of the mathematical theory of probability to the 

phenomena of the real world. As fo~me, personally, my first 

experience to tackle the problem in this direction was the paper 

[I]. (It was published in an edition of a methodological nature). 

Since randomness is defined as absence of regularity, we should 

primarily specify the concept of regularity. The natural means of 

such a specification is the theory of algorithms and recursive 

functions; the first attempt of its application in probability 

theory was that made by Church [2]. 

The aim of my report is to acquaint the audience with this 

range of concepts in the first approximation. 

Paying a tribute to the tradition we shall begin with the 

classic definition of the probability as the ratio of the number of 

favourable outcomes to the total number of outcomes 

P=--~-~ , 

where n is the total number of all possible outcomes (of one tria~ 

is the number of favourable outcomes. This definition actually 

reduces the problem of calculating the probability to the 

combinatorial problems. 

However, this definition cannot be applied in many practical 

situations. This is what gave an impetus to the emergence of the so- 

called statistical definition of probability 

P ~--~ , (*) 

where N is the total number of trials which is assumed to be 

sufficiently large, ~ is the number of successes.This 

definition,its initial form, is, strictly speaking, not a 

mathematical one. For this reason the formula (*) contains the 

symbol of an approximate equality. 
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The first attempts to make the definition (*) sound more exact 

were made by R.von Mises. But before we start describing his 

approach, let us discuss (from the viewpoint of the classic 

definition of probability) the question of why we so often observe 

the stability of frequences in natural phenomena. 

Consider the set of all 0-l-sequences of length n containing 

exactly m units and assume all such sequences equally probable. 

Let a certain way be given of dividing any 0-l-sequence of 

length n into two subsequences. Then for each sequence it is 

possible to compare the frequences of units in both subsequences 

having calculated the difference 

(n~ and n z are lengths of subsequences, ~4 and ~z are the 

numbers of units in them, n~+ nz= n, ,~+~z=m ). We would like to 

expect the difference to be small almost surely in the sense that 

Certainly, to make the assertion true, it is necessary to 

narrow down the class of possible rules of selecting subsequences 

(in particular, having forbidden the following rule: to select in 

one subsequence only zeros, and into the other only units). 

The paper [3] contains necessary specifications to the 

concept of the admissible rule of selecting a subsequence based on 

the ideas by Mises. The concept of admissible rule plays a crucial 

part in Mises frequency approach to the concept of probability. 

According to Mises, the infinite sequence xl,x~,.., of zeros and 

units is called a Bernoulli one if: 

(1) there exists the limit P=lim-~4 ~ X~ 

(2) the limit remains constant if we pass from 

the entire sequence to its subsequence obtained 

by means of the admissible rule of selection: 

lim ~ ~ X~=P. 

As to the rule of selection, Mises here gave only a general 

outline and examples. As a matter of fact, they are reduced to the 

fact that the selection of the next chosen member of the 



subsequence must not depend on its value, but must be defined by 

the values of the already selected members. This is, of course, not 

an exact definition ,but no such definition could be expected to 

arise since the concept itself of the rule had no strict 

mathematical analogue at that time. The situation changed 

essentially when there appeared the concepts of an algorithm and a 

recursive function. With their help, Church [2] specified Mises' 

definitions. In the abovementioned paper [3] a class of 

selection algorithms was proposed broader than that by Church. 

According to [3] , the rule of selection is given by means of an 

algorithm (or, if you like, by Turing machine). Selection of the 

next member of the subsequence takes place in the following way. 

The input information consists of the finite sequence of the 

numbers n 4,n~ ,...,n K and values x~ ,x~,...,x~ of the 

members of the initial sequence. The output of the algorithm is, 

firstly, the number n~.~ of the next scanned element x~,~ 

(this number must coincide with none of those n4,...,n K ~ as to 

the order of the numbers n4,...,n ~ ~ no restrictions are laid to 

it); secondly, the indication whether x~+{ is selected only to be 

scanned or the algorithm decided to include xmK,{into the sequence 

selected. 

On the next step of the algorithm's work its input consists 

already of a longer sequence of numbers n4,...,n~, ~ and 

values Xn~ ~... ~ X~.4 ; the algorithm naturally starts its work 

from the empty set. 

Expansion, as compared to [2] , consists in the fact that the 

order of members in the selected subsequence should not 

obligatorily coincide with their order in the initial subsequence. 

Another, even more important difference of [3] from the papersby 

Church and Mises consists in a strictly finite nature of the entire 

conception and in introducing the quantitative eva~ion of the 

frequencies stability mentioned above. 

Passage to the finite sequences unavoidably requires the 

introduction of the restrictions to the complexity of the selection 

algorithm. Exact definition of the complexity of a finite object 

and pattern of applying it to the probability theory foundations 

were proposed in the papers [3], [6]. 



Results obtained under the frequency approach and the complexity 

one are compared in Shen' [4] 

Now let us return to the initial idea that "randomness" 

consists in the absence of "regularity" and show in what way the 

concept of complexity of a finite object allows us to attach exact 

meaning to it. A lot of papers have been devoted to the concept of 

complexity; they are majorly divided into two groups: papers on the 

complexity of calculations and those on the complexity of 

definitions. We will deal with the latter. Below is given the 

definition of complexity from [6] . We define conditional 

complexity of a constructive object with respect to a certain 

algorithm A under the condition that the constructive object Y 

is known. To be more precise, define the conditional complexity 

~A~/y)of the object X , Y being known, as a length of the 

minimal program by means of which algorithm A can obtain X 

from Y: 

(x/y) = {  (p)lA (p ,Y )  = x } .  

Here ~(p) is a length of 0-l-sequences regarded as a program. 

There exists an "optimal" algorithm A such that for any algorithm 

A I there exists such a constant C that for all X and Y 

if A 4 and A~ are optimal algorithms, the complexity functions 

given by them differ no more than by a constant (independent of X 

and Y ). 

Now we can define the concept of a "random", or , to be more 

precise, A-random object in a given finite set M (here A is a 

number). Namely, we shall say that X M is ~-random in M if 

KA(X/ ) 
where M denotes the number of elements in M . We shall call 

random in M the ~-random objects in M , A being comparatively 

small.Thus we receive the definition of a random finite object 

which can be regarded as a final one. 

If we take as M the set D n~ all the 0-l-sequences of the 

length n , we come to the condition : ~A(X/~n)~ ~- ~ ° 

It may be proved that for the sequence having this property, 

being sufficiently small, there is, in particular, fulfilled the 

property of frequencies stability in the selection of subsequences. 



Thus, requirements to randomness formulated by Mises, prove 

to be a particular case of our requirements. Further results in this 

direction may be found in the papers [5] , [7] - [12]° 
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