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Preface

This volumeis designed to be an introduction to demography,the study ofpopulation processes.

It attempts to impart an understanding of the behavior of human populations by describing

carefully the basic measures, models, and observational procedures devised by generationsof

demographers.

Our greatest debt is to the five giants of twentieth-century demography: William Brass,

Ansley Coale, Louis Henry, Nathan Keyfitz, and Alfred Lotka. Their influence is reflected

in every chapter of the volume. While inventing numeroustools of practical analytic value,

perhapstheir greatest contribution wasto create a subject that, at its best, radiates a compelling

order and elegance. We owe a moredirect debt to our own mentors,a list that includes Nicolas

Brouard, Ansley Coale, Thomas Espenshade, Douglas Ewbank, Henri Leridon, RolandPressat,

and James Trussell.

Writing a text that covers a sizable field is fraught with dangers of omission. No matter

how muchthey would like to avoid such responsibility, the authors appear to be distinguishing

between more important and less important work. So let us be very explicit: whatever the

underlying merits of the work, the authors are also distinguishing between work with which

they are more andless familiar — and the work with which they are most familiar is inevitably

their own. Readers who seek supplementary coverageofthe field are referred to Shryock and

Siegel (1973) and to the extensive compilation of original contributions in Bogueet al. (1993).

Smith and Keyfitz (1977) provide more detailed information about the origins of technical

demography.

Muchof the material appearing in these pages wasrehearsed in a graduate class in demog-

raphy at the University of Pennsylvania. We are grateful to the hundreds of students in this

class whose queries sharpened the arguments and exposition that they encountered. We are

also grateful for comments received from George Alter, Tom Burch, Irma Elo, Herbert Smith,

James Vaupel, and John Wilmoth. Ken Hill’s astute reading of the entire manuscript helped

prevent many perplexing momentsfor both authors and readers. The preparation of this volume

was supported by a grant from the National Institute of Aging, AG 10168.

Readers areinvited to contribute comments, annotated references, problem sets, or other

material to the volume’s website, www.demographytext.upenn.edu.

Samuel H. Preston

Patrick Heuveline

Michel Guillot
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1.1 Meaning of “Population”

To a Statistician, the term “population”refers to a collection of items, for example, balls in an

urn. Demographersuse the term in a similar way to denote the collection of personsalive at

a specified point in time who meetcertain criteria. Thus, they mayrefer to the “population of

India on April 1, 1995,” or to the “population of American black females in the Northeast on

June 1, 1900.” In both casesthe criteria for inclusion in the population need further elaboration:

do we count “legal residents” or simply those who can be found within the borders on that

date? What do we mean by “black,” or by “Northeast”? Do werefer to midnight or noon on

the specified date? It is clear that “the population of India on April 1, 1995” is a shorthand

description of what may be a rather long set of operational choices designed to minimize

blurriness at the boundaries.

But demographers also use the term “population”to refer to a different kind of collectivity,

one that persists through time even though its members are continuously changing through

attrition and accession. Thus, “the population of India” may refer to the aggregate of persons

who haveever been alive in the area we define as India and possibly even to those yet to be

born there. The collectivity persists even though a virtually complete turnoverof its members

occurs at least once each century.

Demographic analysis focuses on this enduring collectivity. It is particularly addressed to

studying changesin its size, its growth rates, and its composition. But while the emphasis

is on understanding aggregate processes, demographyis also attentive to the implications of

those processes for individuals. Many of the indexes in common use in demography, such

as life expectancy at birth and thetotal fertility rate, translate aggregate-level processes into
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statements about the demographic circumstances faced by an average or randomly-chosen

individual. In turn, a frequent concern in demography is to trace out the consequences of

changesin individual-level behavior for aggregate processes. Demographyis oneofthe social

science disciplines where micro- and macro-level analyses find perhaps their most complete

and satisfactory articulation.

1.2 The Balancing Equation of Population Change

No matter how a populationis defined, there are only two waysofentering it: being born into

it; Or migrating intoit. If the definition of the population includes a social element in addition

to the customary geographic/temporal elements, then “migration” can include a changein the

social label, a process often referred to as “social mobility.” For example, the population of

American high school graduates can be entered by achieving a high school diploma, a form

of social migration or mobility. Note in this example that the population cannotbe entered at

birth since the acquisition of the label of high school graduate requires the investmentof years

of life. Populations defined by marital status or occupation are other examples of populations

that cannot normally be entered by birth (except for the default options, unmarried and no

occupation). On the other hand, populations defined by characteristics fixed at birth, such as

sex, race, or nativity, cannot be entered through migration but only throughbirth. So there are

at most two waysof entering a population, birth and in-migration (= immigration).

Likewise, there are at most two ways of leaving a population, death and out-migration

(= emigration). All populations can be left through death, but only those defined by charac-

teristics not fixed at birth can be exited through migration. If one is born in the UnitedStates,

one cannotleave the population of persons born in the United States by migration, but one can

obviously leave the population resident in the United States by migration.

Because there are only four possible ways of entering or leaving a population, we can be

sure that changesin the size of the population mustbe attributable to the magnitude of these

flows. In particular,

N(T) = N(O) + B[O, T] — DIO, T] + 1[0, T] — O[0, T], (1.1)

where

N(T)  =numberof personsalive in the population at time 7,

N(O) |= numberof personsalive in the population at time 0,

B[(O, 7] = numberofbirths in the population between time O andtime 7,

D[0, T] = numberof deaths in the population between time 0 and time T,

I(0, 7] number of in-migrations between time 0 and time 7,

O[0, 7] = numberof out-migrations from the population between time 0 andtime T.

The unit of time in this equation, and throughoutthe book unless otherwise noted, is number

of years. Thus, the time period in whichbirths, deaths, and migrations are occurring is T years

in length. T may be fractional and need not be an integer number.

Kenneth Boulding has called this equation the most fundamental in the social sciences.It

is Clearly an identity rather than an approximationor a hypothesized relation. However, when

data are used to estimate the elements of this equation, it is no longer the case that both sides

must be equal. Error in measuring any element will cause an imbalance in the equation, unless

two or moreerrors happen to be exactly offsetting. An imbalance in the equation is sometimes
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2 Box4.1.Thee Balancing Equation ofPopulation Change

: Na)=(0)+BIO T]— D{O, Tr) + 1{0, Te-O10. T|

| _ Example: Sweden.1988

Ending Starting Births Deaths In-migrations Out-migrations

population population between between between between

Jan. 1,1989 Jan. 1,1988 Jan. 1, 1988 Jan. 1, 1988 Jan. 1, 1988 Jan. 1, 1988

and and and and

Jan. 1, 1989 Jan. 1, 1989 Jan. 1, 1989 Jan. 1, 1989
 

N(1989.0) = N(1988.0) + B[1988.0, 1989.0] — D[1988.0, 1989.0] + 7[1988.0, 1989.0] — O[1988.0, 1989.0]
   

8,461,554 = 8,416,599 + 112,080 — 96,756 + 531,092 — 21,461

Data source: United Nations, Demographic Yearbook (various years).

 
 

referred to as an “error of closure.” Box 1.1 demonstrates the application of the equation to

data from Sweden, which are among the world’s mostreliable.

1.3 The Structure of Demographic Rates

The balancing equation of population change breaks down the changes in the size of the

populationinto four flows. Each flow is the sum ofeventsor transitions occurring to individuals.

Three of the four types of events can be related to an individual present in the population prior

to the event. While death and out-migration can be related to one individual, birth can be

related to two individual parents, assuming that both belong to the population of interest.

Analytical insight can be gainedbyrelating the size of these flows (numberof occurrences) to

the size of the population producing them. This task is normally accomplished by constructing

a demographic “rate.”

The term “rate” is used in many fields and its meaningis not consistent. An unemployment

rate, for example, 1s simply a ratio of the unemployedto the total labor force at a moment

in time. In demography, rates are normally (but not invariably) what are knowninstatistical

parlance as “occurrence/exposure rates.” The typical form of demographicrates reflects the

fact that the frequency of occurrences can be expected to be higherin a larger population, and

that the total numberof occurrences can also be expected to be higher the longer the members

of the population are exposed to the “risk” of the occurrence. The amount of exposure in

the denominator of an occurrence/exposure rate combines these two features — the number of

persons in the population and the length of the time frame in which exposure is counted. The

most conventional occurrence/exposure rate in demography takes the form of:

Number of Occurrences
Rate = 

Person-years ofExposure to the Risk of Occurrence

Demographic rates thus contain in the numerator a count of the number of events occur-

ring within some defined time period, and in the denominator an estimate of the number of

“person-years” lived in the population during that time period. The number of person-years
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functionsin part as an indicator of the population’s amountof exposureto therisk of the event,
hence the term occurrence/exposure rate. When person-years are used in the denominator, a
rate is referred to as an “annualized”rate.

Unlike occurrences, the numberof person-yearslived is rarely directly observed or counted.

Nevertheless, the conceptis central in demography. To deal with the concept in a population

that is continuously changing its membership,it is useful to represent individual exposures
as “‘life-lines.” A life-line extends from an individual’s birth (A) to the point where he or she
experiences someterminal event (B), usually death. Occurrencesof interest, 6;, can be added

to the life-line, as illustrated below:

A 0, 0, 0, B
[| | | |. Time

In order to better connect events and exposureto the risk of experiencing the event, a life-line

is sometimesrestricted: if we are interested in the risk of giving birth, for instance, we may

restrict analysisof life-lines to a certain age range. In our exposition, event A and B are simply

birth and deathrespectively, but the concept can readily be extendedto other types of bounding
events.

For a group of individuals, however the group might be defined, the concept of the

occurrence/exposure rate can be illustrated by a set of life-lines for each member of the

group G:

 

 

 

 

Ay 0; 0, 0; B,
L_ | | | ]

A; 0, B,
[ | |

A; B;
| |

| | |

=
> Time 

where 0; are the event occurrences in group G and A; and B; representthe birth and death of

individual i in the group. The rate for the group defined overtheir entire lifetimesis

icG Ni

ies i

Rate’ =

where WN;1s the total numberofoccurrencesin the lifetime ofindividual 7, 7; is the length of time

between A; and Bj, and |; - g is an instruction to take the sum acrossall individuals (7) who

are a memberof group G.
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1.4 Period Rates and Person-years

A period rate for a population is constructed by limiting the count of occurrences and exposure

times to those pertaining to membersof the population during a specified period of time:

NumberofOccurrences between Time 0 and T
 Rate [0, T] =

ate| Person-years Lived in the Population between Time 0 and T

If a person lives one year between time O and time7, he or she has contributed one person-

year to the denominator of the period rate. If a person lives 24 hours between O and T, he

or she has contributed 1/365th of a person-year. The contributions from all individuals who

were alive in the population at any time between O and 7 are simply addedtogetherin order

to produce the denominatorfor ourrates.

The idea is easily grasped by referring again to life-lines. If we are interested in period

0 to 7, all life-lines can be truncated to the “window” 0 to 7, since we will not count any

occurrences outside that interval. Figure 1.1 shows the life-lines of 7 individuals in a small

hypothetical population during the period from 12:00 A.M., January 1, 1981 to 12:00 A.M. on

January 1, 1982.

Person 1, for example, is a member of the population for the entire year, whereas person

6 is born on April | and dies on October 1, thereby contributing only 6 months or one-half

of a person-year to the sum of person-years. Adding exposure across individuals would be a

convenient way to estimate person-years lived in country that had a population register which

recorded exact dates of birth, death, and migration for each individual.

An alternative method of computing period person-years is to ignore individualhistories,

such as those providedby a population register, and simply record the numberof personsalive

1 1
2 3/4

Person 3 3/, Person-years
number 5 \ contributed by

26 tf each person

7 "Ia

 

Total = 43/4

a. Life-lines for seven individuals wholive in a population at any time between

Jan. 1, 1981 and Dec. 31, 1981

 
 

  

— 4, 6*1/, 5*1/4 4*/, Total = 43/4     

7 |

6 |

Number of 5!-

persons 3
alive 5

1

0 
Jan.1,1981 April1,1981 July 1,1981 Oct.1,1981 Jan.1, 1982

Time

b. Life-lines converted into numbers of personsalive at each moment

Figure 1.1 Demonstration of the equivalence of the two methodsfor recording person-years
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at various points in time during the year. In our example, there were 4 persons alive from

January 1, 1981 to April 1, 1981, so that this quarter-year contributed 4(4) = | person year.

The next quarter contributed 6(4) = 1.5 person-years, and so on to a total of 4.75 person-years

contributed during all of 1981. This value is of course the same numberderived by following

personal histories, as demonstratedin figure 1.1.

In this alternative approach, what wehave doneis to estimate the area under the N(t) curve

between January 1, 1981 and January 1, 1982. N(t) is defined as the numberof personsalive

at time ¢. An area is found by taking the heightof a figure times its width. In our case, N(t) is

the height and the proportion of the year that corresponds to our measurement of N(f) is the

width. Since height represents persons and width represents fractionsof a year, it is natural to

measurethe product in units of person-years.

In our example the number of person-years was:

PY[1981.00, 1982.00] = 4(.25) + 6(.25) + 5(.25) + 4(.25) = 4.75

This sum can be written in conventional notation as:

4

PY[1981.00, 1982.00] = }° Nj Aj
i=]

where N; is the number of personsalive in the 7th quarter and A; is the fraction of a year

represented by that quarter. Had we measured the size of the population each dayinstead of

each quarter, the sum would be representedas:

1PY[1981.00, 1982.00] = N(Jan. 1, 1981) - 365

1
N (Jan. 2, 1981) - ——+ N(Jan ) 365

1
N(Dec. 31. 1981) - ——

+ Nec ) 368
365

=) N;-Ai
i=]

If we were able to measure the height, M(t), in tiny intervals of time dt, where dt represents

the width of the interval, the area under the curve could be represented more accurately as:

1982.00

PY[1981.00, 1982.00] = | N(t)- at

1981.00

Here an integral sign has replaced the summationsign andforthe fraction of a year represented

by the time interval, dt has replaced Aj.

We have seen that areas under a curve can be represented in two ways, using either

algebraic or calculus notation. In demography, algebraic notation satisfies a practical need

that arises when measurementoccursin discrete intervals. But calculus is often preferred for

its compact notation andforits far more extensive body of theorems having direct applicability
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to population processes. We will use algebra and calculus interchangeably in this volume. One

of the most frequent uses of calculus will occur in the issue we have already encountered,

representing the area under a curve.

1.5 Principal Period Rates in Demography

We can now apply the concept of period rate to demographic events of interest, in particular

the four components of the balancing equation of population change. When the elements of

equation (1.1), the balancing equation of population growth, are each divided by the number

of person-years lived between O and 7, we define fourrates:

The Crude Birth Rate between times O and 7:

Numberof births in the population between times 0 and T
 CBR [0, T] = — : :

0.7] Numberof person-years lived in the population between times 0 and T

The Crude Death Rate between times 0 and T:

Numberof deaths in the population between times 0 and T
 CDR [0, T] = : ; ; :
Numberof person-years lived in the population between times O and T

The Crude Rate of In-migration between times O and T:

Numberof in-migrations into the population between times 0 and 7
 CRIM [0, T] = — : ;
Numberof person-years lived in the population between times O and T

The Crude Rate of Out-migration between times 0 and T:

Numberof out-migrations from the population between times 0 and T
 CROM [0, T] = — : :
Numberof person-years lived in the population between times O and T

We could label the crude birth rate as we have definedit as the “true” crudebirth rate, since

it includes the actual births and actual person-years in the numerator and denominator, respec-

tively. Throughout the book, the term “rates” will refer to the true or actual rates prevailing in

a population. These should be distinguished from the “recorded”or“estimated”rates that are

produced whendata are used to estimate the value of the truerate.

A person is normally counted as having migrated during the period 0 to T if he or she has

changed his or her principal place of residence during the period in a way that crosses the

administrative boundaries defining “the population”of a region.

As is especially clear from our definition of the crude rate of in-migration, the connection

between exposure and event is not always very precise in demography. No memberof a

population is literally exposed to the risk of in-migrating into that same population; those

at risk are all outside of the population. Like any definitions, these contain an element of

arbitrariness, and we could have chosen to put another element in the denominator. What the

crude rate of in-migration expressesis the rate at which the population is growingasa result

of in-migration. The other rates also indicate the rate at which the population is changing as

a result of births, deaths, or out-migration. Using person-years as the denominatorforall the

major rates in demographyprovidesa firm basis for developing and integrating many different

functions and formulas involving population growth. This advantage should becomeevident

in the course of this volume.
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It is important to keep in mind the distinction between the reference period to which rate

pertains(i.e., the period for whichthe valuesare calculated) and the unit in which exposure time

is measured. As noted, the conventional practice is to count exposure in the form of person-

years lived, thus creating “annualized” rates. They express the numberof events occurring per

yearof exposure. But a period rate need notrefer to a single yearofthe population’s experience.

For example, we can readily define a crude death rate for 1990—1. Here the numberof eventsin

the numerator would includeall deaths for calendar years 1990 and 1991, and the denominator

would include all person-years lived in 1990 as well as those lived in 1991. Since both the

numerator and denominatorare, in size, approximately double what they would be if they

referred to only a single calendaryear, defining the rate over a 2-year period does notaffect the

scale of the rate.It is still an annualized rate, expressing the numberof events per person-year.

Likewise, we could define a crude death rate for May 1992, in which both numerator and

denominator would be approximately one-twelfth of their value for all of 1992. The scale of

the rate, and its annualized nature, is preserved.

Althougha period rate in demography apparently can accommodate any length of reference

period, it is important to recognize that it must have some reference period. The phrase, “‘the

crude birth rate of the United States,” has no meaning and there is no way to calculate its

value. We must know in whatperiod to count births for the numerator and person-years for

the denominator.

1.6 Growth Rates in Demography

71.6.1 Crude growth rate

Let us rearrange the balancing equation of population change (1.1), by subtracting N(0) from

both sides and then dividing both sides by the total of person-years lived between 0 and T,

PY (0, T}:

N(T)—N(QO) _ BO, T] D0, T] [[0, T] Ol0, T]
PY{0,T]  PY{0,T] PY[0,T] PY{0,T] PY{0,T]

CGR [0, T] CBR [0, T] — CDR [0, T] + CRIM [0, T] — CROM [0, T]

= CRNI[0, T] + CRNM [0, T |

  

(1.2)

Here wehave defined the crude growth rate between 0 and 7, CGR[O, 7], as the changein the

size of population divided by person-years lived between 0 and T. If N(T) exceeds N(O), then

the growth rate will be positive; if N(O) exceeds N(T), it will be negative. Clearly, the crude

growth rate as we have definedit is simply equal to the crude birth rate minus the crude death

rate plus the crude rate of in-migration minusthe cruderate of out-migration.

The difference betweenthe crude birth rate and the crude death rate is usually termed the

cruderate of natural increase (CRNJ); also, the difference between the cruderate of in-migration

and the crude rate of out-migration is usually termed the crude rate of net migration (CRNM).

So the crude growth rate will equal the crude rate of natural increase plus the crude rate of

net migration. Box 1.2 illustrates the calculation of crude demographic rates, again using the

Swedish data in box 1.1 and estimating the person-years lived in 1988 by the population size

on July 1, 1988. Table 1.1 presents the estimated value of demographic rates for major regions

of the world.
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"Box1.2| PrincipalPeriod Rates in| Demography

:NC)-NO)BIO, T] Do. T [0,7] 00,T\
PY(0,T) ~PY(0, T) ~ PY[O, YT] PY,7~PY{0,T]T|-

7a6CGR10,T== CBRIO,T]— CDR{0, T] +CRIM(0. T)- CROM|0,a

=8 CRNIIO,Bee+_ CRNM(0,1

  

 

Example: Sweden,1988

Person-years lived in Sweden between January 1, 1988 and January 1, 1989 = 8,438,477 (mid-year population)
 

 

 

 

 

 

 

   

N(1989.0) — N(1988.0) —  B[1988.0, 1989.0] D[1988.0, 1989.0] 7{1988.0, 1989.0] — _O[1988.0, 1989.0]

PY[1988.0, 1989.0] — PY{1988.0, 1989.0] PY (1988.0, 1989.0] PY{1988.0, 1989.0] PY (1988.0, 1989.0]

CGR [1988.0, 1989.0] = CBR[1988.0, 1989.0] — CDR[1988.0, 1989.0] + CRIM [1988.0, 1989.0] — CROM [1988.0, 1989.0]

8,461,554 — 8,416,599 __ 112,080 96,756 + 51,092 _ 21,461

8,438,477 7 8,438,477 8,438,477 8,438,477 8,438,477

0.00533 = 0.01328 — 0.01147 + 0.00605 — 0.00254

CGR [1988.0, 1989.0] = CRNI (1988.0, 1989.0] + CRNM [1988.0, 1989.0]

0.00533 = 0.00182 + 0.0035 1

Data source: United Nations, Demographic Yearbook (various years).

 

 

The crude growth rate is only oneof several types of growth rate encountered in demography.

The term “growth rate” is used to refer to other measures as well, and it is important to

distinguish the various forms.

71.6.2 Instantaneous growth rate

Asanyrate, the crude growth rate can be computedfor any period of time. What happens when

we compute the growth rate during a very short period of time, between time ¢ and t + Af, as

At approaches 0? Denote the population change, N(t + At) — N(t), as AN(t) and the growth

rate as r(t). Since the person-yearslived over the period [t, t + At] is now N(t) At, the crude

growth rate for the period is r(t) = AN(t)/N(t)At. But the limit of AN(t)/At when At

approaches0 is simply the derivative of the N(t) function, designated dN (t)/dt. Therefore:

 

 

dN(t)

r(t) = AN(t) dt _ d \n[N(t)] (1.3)

aim N(t) At N(t) dt

where “In”refers to the natural logarithm. The timeinterval is very short, dt years, so that r(t)

pertainsto the tiny interval of time between t and t + dt. Becauseit is measured in time units

of years, r(t) continues to be an annualizedrate. It is referred as “the growthrate at time ¢”or

“the instantaneous growthrate at time ¢.” It is, of course, also the crude growthrate in the tiny
interval of time from f to t + dt.

  



Table 1.1: Population size and components of change in majorareas of the world, 1995-2000
 

Major area Population size Births Deaths Net Crude Crude Crude Crude rate Crude rate

(thousands) (thousands) (thousands) international growth birth death of natural ofnet

migrants rate rate rate increase migration

(thousands) (percentage) (per 1000) (per 1000) (per 1000) (per 1000)
 

 

1995 2000 1995-2000 1995-2000 1995-2000 1995-2000 1995-2000 1995-2000 1995-2000 1995-2000

World 5,666,360 6,055,049 649,050 260,360 0) 1.33 | 8.9 13.2 0.0

Africa 696,963 784,445 140,575 51,655 — 1,435 2.37 38.0 13.9 24.1 —().4

Asia 3,436,281 3,682,550 389,765 137,460 —6,035 1.38 21.9 7.7 14.2 —0).3

Europe 727,912 728,887 37,465 41,240 4,750 0.03 10.3 11.3 —1.0 1.3

Latin America and 479,954 519,143 57,770 16,225 —2,355 1.57 23.1] 6.5 16.6 —0.9

the Caribbean

Northern America 296,762 309,63 1 20,860 12,640 4,650 0.85 13.8 8.3 5.5 3.1

Oceania 28,488 30,393 2,635 1,135 405 1.30 17.9 7.7 10.2 2.8
 

Source: United Nations, 1999.
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The concept of the instantaneous growth rate enables us to develop a new expression for

population change over a longer time interval. Integrating formula (1.3) between exact times

O and T (also measured in years), gives:

T T

rma =[Sa —inN«)]
dt 0

0 0

So:

h N(T)
[ro dt =n (so) (1.4)

0

Taking exponentials on both sides we have:

ole r(t)dt _ NU)
N(0)

Or

N(T) = N(d)elo "Oat (1.5)

Formula (1.5) is extremely important in demography. It appears in many guises in many

different applications. It expresses the change in population size during a particular discrete

time period (in this case from 0 to 7) as a simple function of the set of instantaneous growth

rates that prevailed during that period. Note that the proportionate growth in population over

the period, N(T)/N(Q), is a simple function of the sum of growth rates. The order in which

those growth rates are applied is immaterial; all that matters is their sum.

Viewing r(t) as a continuously varying function raises questions about the commonly

encountered term, “exponential growth.” Any growth that occurs, including zero growth or

negative growth, must obey equation (1.5). An exponential appears in that formula because we

have defined our measure of growth — the growth rate — in proportionate terms. In this sense

the term “exponential growth”is a redundancy;all growth is exponential by our measure of

growth as the proportionate rate of changein population size. When peopleusethe term “expo-

nential growth”they are often (but not invariably) referring to an N(t) sequence produced by

a constant positive growth rate within some timeinterval. Such a sequenceis probably more

precisely characterized by the term Malthus choseforit, “geometric growth,” or by “constant

growthrate.” If the instantaneous growthrate is in fact constant between time 0 and time T at

some value r*, then equation (1.5) simplifies to:

N(T) = N(O)e”7 (1.6)

This formula follows from the fact that:

T
T

frase =r*.T—r*-0=r"*-T
0

0
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Rearranging equation (1.6) and taking natural logarithmsgives:

N(T)
” ( N(O)

r=rr (1.7)

Equation (1.7) showsthat, if the instantaneous growthrate is constant during the interval 0

to T, one can solve for its value by observing the population size at the beginning and end of

the interval.

71.6.3 Mean annualized growth rate

If we divide both sides of equation (1.4) by 7, the length of the timeinterval over which growth

is occurring, we have:

 

, in| Ai?
Jo r@at NO)

T 7 T

The left-hand side of this equation is simply the meanvalue of the instantaneous growthrate

over the period 0 to T, which we will designate as r[0, J]. It is the area underthe r(t) function

between O and T, divided by the length of the time interval. Thus:

NOnN —___.

r(0, T] = _LNO)
T

Note that the right-hand side of equation (1.8) is identical to that of (1.7); if the growth rate is

constant between 0 and 7’, equation (1.8) provides a way of estimating its value. But (1.8) is

clearly a more general expression since it requires no assumption of constancy. Performing the

simple operation given bythe right-hand side of equation (1.8) provides the “mean annualized

growth rate between 0 and 7.”

(1.8)

1.6.4 Doubling time

If population size doubles between time 0 and time 7, then N(T)/N(Q) = 2 and:

In[N(T)/N(O)] = In[2] = .693

A population thus doubles in size beyond someinitial date whenever the sum ofits annualized

growth rates beyondthat date equals 0.693. If the growth rate is constant at r*, the population

will double whenever the product of r* and T, the length of time (in years) over whichit is

applied, is 0.693.

So with constant growth rate r*,

693
Doubling time = ——

r*

Under a constant annual growth rate of 0.03, the population will double in .693/.03 =

23.1 years. With a constant growth rate of 0.01, it will double in .693/.01 = 69.3 years. Since

e693 — | /e-3 = 0.5, a population will be reduced to half of its initial size whenever the

sum of annual growth rates equals —.693.
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7.6.5 Comparison of crude growth rate and mean annualized growth rate

Wehave now developed two formulas for period growth rates overthe discrete interval between

Q and T: the crude growth rate and the mean annualized growth rate. This section, which is

included for completeness and can be skipped by many readers, compares the two rates. The

basic lessonis that the two growth rates will be the same whenthe instantaneous growthrate

is constant during the period 0 to 7. Otherwise, the two rates will not, in general, have the

same value. However, differences between them can usually be ignored for practical purposes

unless the period of measurementis very long (say, longer than 10 years) and the growth rate

function, r(t), is very irregular.

From (1.2), the crude growth rate between 0 and T can be written as:

_ B(0, T]— D[0, T] + 10, T] — O[0, 7)
Jo Naat

N(T) — NO)
Jo N(t)at

CGR[0,T] 

Asis clear in (1.8), 7[0, T] does not dependonthe order in which growth rates occur between

Q and T. The numerator of CGR[0, T] in (1.9) is also independentof the order in which growth

rates occur. But the denominator of CGR[0, T] in (1.9), person-years lived between 0 and 7,

does depend onthe order in which growth rates occur. A distribution of positive growth rates

that is heavily skewed toward the beginning of the period will raise person-yearslived relative

to a distribution that is skewed toward the end of the period. This tendencyis illustrated in
figure 1.2.

So it is clear that, in general, there can be no equality between CGR and 7. An “early”

distribution of growth rates will lower CGR relative to r, and a “late” distribution will

-

   
Early growth

Constant
e j

growth |.” /

Population

size N(t)

oot
wwe

ween
were ~~

aoone” ~~
aooneen® _——

aooeee® aal
ni peeppeapnn | | | | | | |0

T

Time t

 
T

The sum of growth rates, |r(t)dt, is the same in the three cases, since N(0) and N(T) are the same.
0

Person-yearslived — the area under the N(t) curve — are different, however.

Figure 1.2 Population growth sequences betweentimes 0 and T underthree different
assumptions about the time sequence of growthrates
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raise CGR relative to r. There is, however, one circumstance in which CGR will equal r.

This occurs when the growth rates are constant between 0 and 7. Supposethat r(t) = r* for

QO <t<T. Then:

TT T

[ vc@ar= [ n@e"ar=No | ear

0 0 0

*
l T N(O)-etL

=NO) Set)=O
r*

_ M(T)- NO)
r*

(1.10)

Substituting expression (1.10) for person-years lived between 0 and T into equation (1.9) gives:

_ N(T)-NO) _ ,
CGR[0, T | = PRD OT =r

r*

 

In the case of a constant growth rate, we also have:

T

I
r(0, t=_ [rar

0

So in the case of constant growth rates — and, exceptfor rare circumstances, only in this case —

the crude growth rate will equal 7. Differences between the two will normally betrivial in size

unless the growth rate sequence is extremely erratic and the time period (0 to 7) very long,

say a decade or more.

If one wantsto ensure that the crude growthrate calculated by (1.9) is in fact equal to the mean

of annualized growthrates, then a simple rule for computing person-yearsis indicated: compute

person-yearslived during the period as though the growth rate were constant throughout. Under

this circumstance, the denominatorfor calculating all crude rates would be:

r N(T)-N(QO) — [N() —~NQO)]-T
r(0,T] N(T)

| NW ars m ( NO)
0. T - N(O), ifr = 0

  if7 £0

Although we defined the “mean annualized growth rate” as the average of period rates,

in equation (1.8) it does not have person-years in the denominator, which was said to be

a typical feature of a demographic rate. In this format, it shares the characteristic of many

rates in commonusage, such as a mean rate of speed or meanrate ofinflation. But under the

simplifying assumption that the “mean annualized growth rate” is constant duringthe interval

of measurement, its value is in fact identical to that of the crude growth rate, which does

explicitly contain person-years in the denominator.
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1.7 Estimating Period Person-years

The above argument suggeststhat, if one knew nothing aboutthe path of V(t), or r(t), during a

particular year, one should assume constancy of the growth rate during the period and estimate

person-years lived during the yearas:

N(1)-N(O) NC) -— NO)

rf(0.1] N(\)

||

PY [0,1] = 

More generally, when the period is not necessarily one year long,

[N(T) — N(O)]-T

ioIn
N(0)

Using equation (1.11) to estimate person-years has the advantage of forcing consistency

between the crude growth rate for the period and the mean annualized growth rate for that

period, and it would be exactly correct if the growth rate were constant during the period.

But it does require observations on population size at the beginning and endofthe period.It

is often the case (e.g., in the United States) that population size estimates are only available

at mid-year. It will usually be perfectly acceptable to use the mid-year population size as an

estimate of person-years lived during the year. The mid-year approximation to person-years

will be exactly correct if the N(t) sequence is linear between the beginning and end of the

year, as demonstrated in figure 1.3. Even if the N(t) sequence is a product of a constant

growth rate, the error in using the mid-year approximation will be very small. For example,

if r = 0.03 (rapid by historical standards), the ratio of true person-years lived in a year to

the mid-year population will be 1.00004. The mid-year population will always underestimate

the true numberof person-yearslived if the population is changing at a constant rate, whether

positive or negative.

More caution is necessary in using mid-period approximations to estimate person-years

when the interval of time for which an estimate is sought extends far beyond a year. For

example, if we estimate the person-years lived during a 10-year period in a population growing

at 3 percent a year by taking the mid-period population times 10 (i.e., mid-height times width),

then the ratio of true person-years lived to our estimated person-years will be 1.0038. This

error of about four-tenths of | percent is too large to ignore for most purposes. Note thatif

we hadusedthe arithmetic mean of beginning and end-period populations (times 10) as our

estimate of person-yearslived in this example, we would have overestimated true person-years

by the factor 1.0075. So this procedure provides an even poorer estimate of person-years than

does the mid-period population in a population having a constant positive growthrate.

If mid-year population estimates are available for each year during a 10-year period, a

sensible way to estimate person-years lived during the period would be simply to add up the

10 estimates. If observationsare available at the beginning, middle, and endofthe period, then

it is possible to ascertain whether growth is more nearly linear or exponential and to use the

corresponding approximation for each half-period.

Althoughit is convenient andfairly accurate to estimate person-yearslived during a particular

year as the population size in the middle of the year, it is important to rememberthat the

resulting demographic rate should not be expressed as a numberof occurrences divided by a

PY[0,T)]= (1.11) 
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WhenN (t) follows a linear growth
pattern, the estimate of person-years

lived using the mid-period population
times period length will be accurate

: because the overestimate for thefirst
Nit) . half-period is exactly offset by the

underestimate for the second half-
Lhe bee pip py) period, i.e., the two triangles have

0 7/2 T equal areas.

Time t

Population

size N(t)

 

When (tf) follows an exponential

growth pattern, the two shaded surfaces

 

  
Population have different areas and the mid-year
size N(t) approximation, N (7/2)- T, will under-

eatimate person-yearslived during

N(t) the period.

Ltt | ft tt ft | LJ} | | | ji ft ft tf

0 T/2 T

Time t

Figure 1.3 Approximation of person-years lived by midperiod population times period length

number of people. The unit in which exposure-time is measured (usually, person-years) must

not disappear, or confusionts inevitable. We are using the mid-year population as an estimate

of person-years lived during the period, and not as a substitute for person-years. The risk of

confusion is greatest when an annualized rate is being estimated for a period that is not one

year in length. Box 1.3 illustrates the computation of growth rates and person-years lived

during a 10-year period in a hypothetical population with a constant annualized growth rate

of 0.03.

1.8 The Concept of a Cohort

Almost as important to demographyas the concept of a population is the concept of a cohort.

A cohort is the aggregate of all units that experience a particular demographic event during

a specific time interval. As in the case of a population, a cohort always has some specific

geographic referent, whetherit is explicit or implicit. A cohort usually consists of people, but

it may also consist of entities (e.g., marriages) formed by a demographic event. The cohort

is usually identified verbally both by the event itself and by the time period in whichit is

experienced. Some examples of cohortsare:

“US birth cohort of 1942,” which refers to all persons born as US citizens in calendar year

1942;
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1. Calculating the mean annualized growth rate between t = 0 and t = 10:

 
In0 (SCO) in (Se

100,00
r[0, 10] =aae— 0.0300

Estimating person-years lived between t = 0 and t = 10:

a) Assuming a constant growthrate:

PY{0, 7) = N(T)—N@) _ N(0)—N(Q) _ 134,986 - 100,000 _ 166.200

"#10, T])—ti—<“<«*é‘ ftCzCOOSCti‘(<«Cs 0.03 ne
   

b) Assuming growth is linear and using the mid-period approximation:

PY{0, T] = N(T/2)-T

PY [0, 10] = N(5)- 10 = 116,183 - 10 = 1,161,830

c) Assuming growthis linear and using the meanofinitial and final population sizes:

 

rN(O) +N(T
PY[0, T] =|.T

; 2

rN (0) N(10
PY[O, 10] = ae-10

- 100,000 + 134,986
— 5 - 10 = 1,174,930 

Calculating crude growth rates based upon various estimates of person-years lived:

34,986
CGR (0, T] = —2-— = 0.0300

a) 0. 1 7766.00
34.986

b) CGR[0, T] = —— — 0.0301
) 0. T1= T6930 0

34,986
c) CGR[0,T] = ~~ = 0.0298

1,174,930
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‘French marriage cohort of 1990,” whichrefers to all marriages contracted in France during

the calendar year 1990;

‘French female marriage cohort of 1990,” which refers to all women who married in France

in 1990;

“Austrian immigrant cohort of 1995,” whichrefers to all immigrants into Austria in 1995.

The most frequently encountered type of cohort is a birth cohort. Persons who are born

during the same period are destined to pass through life together, in the sense that they will

reach their xth birthday during a period exactly x years beyond that which defined their cohort

membership. For the US birth cohort of 1942, all would reach their 10th birthday (assuming

that they survived) in 1952, their 15th birthday in 1957, and so on. The time period that

circumscribesthe cohort need not be one yearin length; it is commonto deal with such entities

as the US birth cohort of 1918-22, for example.

To calculate a rate for a cohort, we simply restrict the counting of occurrences and person-

years of exposure to people who were born during the period that defines membership in the

cohort. The lines below show the counting schemafor a birth cohort defined by birth in the

period do to ay:

 

 

 

 

Ay 0; 9, 05 B,
| | i |

| | J

A; B,
L J

Ag 0, B,
L { |

Ay ay

| T > Time

Although those life-lines refer to a birth cohort, the concept can clearly be extended to other

types of cohorts.

1.9 Probabilities of Occurrence of Events

Wecandefine an additional conceptfor a cohort that is impossible for a population: the concept

of a probability. The term is used in demography in a mannersimilarto its usagein statistics.

It refers to the chance that some event will occur, rather than to the rate at which it occurs.

Thus, for example, we may computethe probability that a marriage would endin a divorce for

a given birth cohort by counting, over all membersof the cohort, the numberof marriages and

the number of divorces over the cohort’s lifetime:

p _ NumberofDivorces
 

~ NumberofMarriages

In doing so, we have used a “relative frequency” approach to estimating the probability

of divorce. We havesaid, in effect, that our best guess about the true underlying probability
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of divorce in the cohort is the observed frequency of divorce. The situation is analogous to

drawing balls out of a very large urn. If we draw a sample of 10 balls and 2 of them are red,

then the relative frequency of red balls in that drawing is 0.2. This relative frequency is also

the maximumlikelihood estimatorof the true proportion of balls in the entire urn that are red,

assuming that the outcome of drawings is independent. That is, a proportion in the entire urn

of 0.2 is more likely than any other proportion to have given rise to the observed sample of

10 balls of which 2 are red. Many introductory statistics texts contain a clear discussion of

maximum likelihoodestimation.

The structure of a probability in demographyis thus quite different from the structure of

a rate:

NumberofOccurrences
Rate = 

NumberofPerson-years Lived

NumberofOccurrences
 Probability =

rooantty NumberofPreceding Events or Trials

The denominatorof the probability indicatesthat it is not possible to define a probability unless

there is someevent or trial (equivalent to the act of drawing balls out of an urn). Since each

occurrence in the numerator (e.g., divorce) must be preceded by an event in the denominator

(marriage), the number of occurrences cannot exceed the numberof preceding events. Thus

the probability cannot exceed one and, since we are only dealing with positive quantities,

probabilities cannot be negative.

Populations do not have probabilities except insofar as they pertain to cohorts that are

included in the population. Although we could count the number of marriages in a population

during some calendar year and the numberof divorces during that year, the two numbers

combined do notgive a sensible estimate of the probability of divorce because they don’t apply

to the same cohort. Weare, in effect, counting events (or trials) in one urn and occurrences in

another. If we happened to choosea year in a small population where no one married but there

was a divorce, our population’s probability of divorce g? would be 1/0 = oo,an obviously

absurd outcome. Only when we count the events pertaining to the cohort at risk of the event

can we properly define a probability.

The concepts of cohorts and of probabilities that certain events will occur to cohorts can

be applied to a vast numberof situations extending well beyond demography’s customary

range. They are central to all analysis of longitudinal data in the social and health sciences.

Perhaps their major utility derives from the fact that they translate aggregate-level measures

into implicationsfor individuals. They help “locate” the individual in an otherwise amorphous

and undifferentiated population.

Despite its conceptual simplicity, analysis of data on actual cohorts suffers from several

major practicallimitations. First, computing cohort rates and probabilities requires complete

information on each individual until he or she has died (or at least has ceased to be “at risk”

of the event of interest). We maylose track of some individuals, for instance, when they move

out of the area of the study. Out-migration is part of a more general problem called “loss to

follow-up.” We deal with one way of coping with this problem in chapter 4. A more serious
practical problem is that, by the time the cohort’s experience is completely observed, much

of the experience maybeancient. In order to provide more timely information, demographers

rely primarily on data for recent periods. The measuresthat are constructed from periodrates
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include life expectancy, expected years to be lived in the single state, total fertility rate, net

reproduction rate and gross reproduction rate. They also include probabilities of dying, giving

birth, migrating, and so on. In constructing these and other measures, demographers rely

on the concept of a cohort, but adapt that concept to deal with data pertaining to a period.

The principal adaptation is the introduction of “hypothetical cohorts,” a concept that will be

encountered frequently in the remainder of this volume.
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In nearly every population, the rate of occurrence of demographic events varies very sharply

with age.In fact, the rates defined in chapter 1 are called “crude” rates precisely because they

fail to account for age variation in the underlying rate schedules. In the case of mortality and

fertility, this variation mainly reflects age differences in physiological capacity. Age variation

in migration rates seemsto reflect primarily age differences in the economic and social gains

from movement.

Becauseofthis age variation, it is commonto define andstudy age-specific rates. These have

the samestructure as crude rates, with a count of events in the numerator and of person-years

in the denominator. However, the age range within which the events and person-years are to

be tallied is restricted.

2.1 Period Age-specific Rates

The following notation is conventional for defining a period age-specific death rate:

Numberof deaths in the age range x to x +n between time 0 and T
 nM,[0, T] = . . .
Number of person-years lived in the age range x to x + n between time 0 to T

Note that, just like the crude death rate, a period age-specific death rate must pertain to some

specified time period.

It is clear from the definition that x, the right subscript of ,M,[0, T], refers to the age at

the beginning of the age interval and n, the left subscript, to the length of the interval. Both

are measured in exact numberofyears. Thatis, they refer to the elapsed time since one’s birth

in years, including decimal or fractional years. So 5M39, the death rate between ages 30 and

35, refers to events occurring to and person-years lived by persons who are aged 30.0000 to

34.9999 in exact years since birth. This concept of exact years of age differs from the one in

normal use in most countries. When asked their age, most people give a numberindicating



22 AGE-SPECIFIC RATES AND PROBABILITIES

how manyyearsoflife they have completed. That is, they omit the decimals altogether. This

latter concept of age is sometimes termed “‘agelast birthday.”If the data one usesare classified

in termsof agelast birthday, then the ages(at last birthday) to which 5 M39 pertainsare 30,31,

32, 33, and 34. Often the analyst will have to determine which age grouping is being used in

published data by observing whetherthe age rangesare stated as 30-5, 35-40, 40-5... (i.e.,

in exact age) or as 30-4, 35-9, 40-4... (age at last birthday).

Table 2.1 displays the number of deaths by age for females in Sweden, 1992, as well as the

estimated mid-year population by age. The formatusesagelast birthday. The data are converted

into age-specific death rates in the fourth column (MSW), using the mid-year population as the

estimate of person-years lived in an age interval. The table also shows the same information

for Kazakhstan, 1992.

Note that the crude death rate, shown at the bottom of the table as the death rate for “all”

ages, is higher in Swedenthan in Kazakhstan (0.01055 vs. 0.00742). This result seems on the

face of it inconsistent with the fact that the age-specific death rates in Sweden are lower than

those in Kazakhstan at every age. To understand this apparent anomaly,let us show explicitly

how the crude death rate is related to age-specific death rates. Designate , N, as the number

Table 2.1: Comparison of crude death rates and age-specific death rates in two populations
 

 

 

 

Sweden, females, 1992 Kazakhstan, females, 1992

Age Mid-year Deaths Death Proportion Age Mid-year Deaths Death Proportion

group population during rate inage group population during rate in age

1 year category 1 year category

S S S S K K K KN°” D>?” M>?* Cc?” N; D; M, C;

0 59,727 279 0.00467 0.0136 0O 174,078 3,720 0.02137 0.0200

14 229,775 42 0.00018 0.0524 1-4 754,758 1,220 0.00162 0.0868

5-9 245,172 31 0.00013 0.0559 5-9 879,129 396 §=0.00045 0.1011

10-14 240,110 33. 0.00014 =0.0548 =10-14 808,510 298 0.00037 0.0929

15-19 264,957 61 0.00023 0.0604 15-19 720,161 561 0.00078 0.0828

20-4 287,176 87 0.00030 0.0655 20-4 622,988 673 0.00108 0.0716

25-9 311,111 98 0.00032 0.0709 25-9 733,057 752 0.00103 0.0843

30-4 280,991 140 0.00050 0.0641 30-4 732,312 965 0.00132 0.0842

35-9 286,899 197 0.00069 0.0654 35-9 612,825 1,113 0.00182 0.0704

40-4 308,238 362 0.00117 0.0703 404 487,996 1,405 0.00288 0.0561

45-9 320,172 643 0.00201 0.0730 45-9 284,799 1,226 0.00430 0.0327

50-4 242,230 738 0.00305 0.0552 SO-4 503,608 2,878 0.00571 0.0579

55-9 210,785 972 0.00461 0.0481 55-9 301,879 3,266 0.01082 0.0347

60-4 216,058 1,640 0.00759 0.0493 60-4 374,317 5,212 0.01392 0.0430

65-9 224,479 2,752 0.01226 0.0512 65-9 256,247 6,866 0.02679 0.0295

70-4 222,578 =4,509 0.02026 0.0508 70-4 154,623 6,182 0.03998 0.0178

75-9 184,102 6,745 0.03664 0.0420 75-9 149,917 8,199 0.05469 0.0172

80-4 =140,667 39,587 0.06815 0.0321 80-4 88,716 9,013 0.10159 0.0102

85+ 110,242 17,340 0.15729 0.0251 85+ 58,940 10,627 0.18030 0.0068

All 4,385,469 46,256 0.01055 1.0000 All 8,698,860 64,572 0.00742 1.0000
 

CDR 10.55 p. 1,000 CDR 7.42 p. 1,000
 

Data source: United Nations, Demographic Yearbook (variousyears).
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of persons aged x to x +n at mid-year anduseit as an estimate of person-years lived in the

age interval x to x +n during the year. N ts the size of the total population and functions as an

estimate of total person-years lived. D is the total numberofdeaths during the year. To simplify

the notation, we will not use any indicator of the time period to whichtherate pertains.

The crude death rate, using this simplified notation,1s:

nDx
nN

a
r
s
e

cor = 2 a duxaonPx _ xs0nNx
N N

  

 

  

c
e

=

“= DaMyx + nCx (2.1)

where ,Cy = »N,/N = the proportion of total population that belongs to the age interval x

tox +n.

This equation says that the crude death rate 1s determined by two functions:the set of age-

specific death rates (,, M,,) and the proportionate age distribution of the population (,,C,). In

particular, the crude death rate is a weighted average of age-specific death rates, where the

weights are supplied by a population’s proportionate age distribution (strictly speaking, the

proportionate distribution of person-years lived). The sum of these weights, of course, must

be unity:!

 = 1.000

SS . x=0 N~

Nowit is easy to see how Kazakhstan could have a lower crude death rate than Sweden even

though Sweden had a lower death rate at each age: Sweden’s age distribution gives greater

weight to the older ages, where age-specific death rates are higher, than did Kazakhstan’s.

An equation equivalent to (2.1) can be written with regard to any categorization of the

population into subgroups. For example, we could express the crude death rate in terms of

height-specific death rates and the proportion of the population that falls into various height

classes. There are four reasons for emphasizing the role of age composition:

2
/
2

1. Death rates show very great variation with age, as demonstratedin table 2.1;

2. Human populations differ very considerably from one another in age composition, also as

illustrated in table 2.1:

3. The age distribution of the population is itself a demographic variable, being uniquely

determined by a population’s history of birth, death, and migration rates by age;

4. Data on age-specific deaths and population size are commonly available.

Just as there is nothing unique to age in the derivation in equation (2.1), neither is there

anything init that restricts its applicability to the crude death rate. The developmentthere shows

explicitly how anyrate (or proportion) in a population is determined by category-specific rates

(or proportions) weighted by the proportions of the population that fall into various categories.

Another common way of writing a sum over different ages in demographyis to use i to

denote the ith age group. So the age group used for the youngest age group becomes i = 1;

the next youngest becomes i = 2, and so on. The sum cangoto the highestinterval or simply
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to oo, since beyondthe highest interval the values of any age series are zero. So equation (2.1)

can also be written as:

CO

CDR =) M;- C;
i=]

The main advantage of using the 7 notation instead of notation with x and n subscripts is

that the 7 notation can accommodate age groupsofirregular size. It is common for deaths to

be tabulated in age (last birthday) intervals of 0, 14, 5-9, 10-14... A series of death rates

in such intervals cannot be represented using the summation sign with ,M, because n is of

variable length (1, 4, and 5 yearsin thefirst three age intervals). To show explicitly how the

age-specific death rates and population proportions shown for Swedenin table 2.1 combineto

produceits crude death rate, we used the i notation.

2.2 Age-standardization

The example of Sweden and Kazakhstan showedthat differing age structures in the two pop-

ulations were having a major influence on the comparison of crude death rates. In comparing

the levels of mortality in two populations,it is often desirable to eliminate or at least minimize

the influence of age composition. One way of making such a comparison would be to assume

that Kazakhstan, for example, had the same proportionate age composition as Sweden. The

formula for the crude death rate that would result under these circumstancesis straightforward:

CDR* = 9° Ms -C?*
i

CDR*is the estimated death rate in Kazakhstanif it retained its own age-specific death rates

but had the age distribution of Sweden. In makingthis estimate we have assumedthat adopting

the age distribution of Sweden would haveno influence on the age-specific death rate schedule

in Kazakhstan. CDR*is a special case of what is commonly termed an age-standardizedrate.

An age-standardized crude death rate for population j, which we will denote as ASCDR’, has

the following structure:

00 *

ASCDR! =) M! -C;
i=]

where C* is the proportion ofthe population thatfalls in the ith age interval in some population

chosen as a “standard.” Of course,

OO

Y °C} = 1.00
i=]

What we have done by choosing some population’s age distribution as a standard is simply

to weight the age-specific rate schedule in population 7 not by its own agedistribution (such a

weighing wouldjust reproduceits observed crudedeathrate), but by that of another, “standard,”

population.

Standardization is normally used to control or “standardize” the effects of “extraneous”

influences when comparing conditions among populations. In the case of age standardiza-

tion, the extraneous influence that is “standardized” among the populations involved in the
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comparisons is their age composition. The procedure is applicable to any rate or proportion.

For example, the age-standardized proportion literate (ASPL) in population j would be:

OO

ASPL! = 9° L!-.C}
i=l

where Li is the proportion literate in the ith age interval in population j. This index indicates

what population j’s proportion literate for all ages combined would be if it had the standard

age distribution.

As noted above,there is nothing about standardization that restricts its applicability to age.

We might, for example, want to standardize the effects of differences in birth-orderdistributions

between two populations whose infant death rates we are comparing.Infant death rates usually

vary with birth order and for some purposesit is desirable to control for differences in birth

orderdistributions in making infant death rate comparisons. The birth-order standardized infant

death rate in population / is:

00 .

BOSIDR! =) M6, -C?
i=l

where Mo ; = death rate between exact ages 0 and | in population j for births of order7,

and C; = proportionofall births in a “standard” population which areof orderi.

Note that the 7 index now refers to the birth order rather than to age. As before:

OO

y Cc} = 1.00
i=]

Mostprice indexes, such as the ConsumerPrice Index computed by the US Bureau of Labor

Statistics, have the form of a standardizedrate. They are weighted averagesofpricesofdifferent

goods, with the weights supplied by a “standard market basket of goods.”

In performing a standardization, the question arises of what population structure to adopt

as a standard. To illustrate that this selection can be consequential, let us examine Mexican

and English crude death rates standardized using two different standards (table 2.2). One is a

young population age distribution, the other old.?

When a young standard is used, both countries’ crude death rates decline; when an old

standard is used (with relatively high fraction in the older ages), both rates rise. But the curious

result is that when a youngstandard is used, England has a lower age-standardized crude death

rate than Mexico’s; but when an older standard is used, Mexico hasthe lowerrate. Obviously,

Table 2.2: Comparison ofcrude death rates and age-standardized crude death rates using

a “young” and an “old” age distribution as standard
 

Female Crude death rate Age-standardized crude death rate (per 1000

population (per 1000 persons) persons) by standard age distribution used
 

“Young” distribution “Old” distribution
 

Mexico, 1964 9.30 9.20 11.50

England and Wales, 1931 11.61 8.76 13.13
 

Data source: Preston, Keyfitz, and Schoen, 1972: 254 and 458.
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the choice of standard here affects not only the amountofdifference between standardizedrates

but even the direction ofthat difference. Such a result could occur only if England had higher

death rates at older ages and Mexico had higher death rates at younger ages; the age-specific

death rates functions mustcrossat least once on the age axis. In this case, Mexico’s deathrates

are higher than England’s at young ages and lowerat old ages.

In view of the possible sensitivity of results to the choice of a standard,it is regrettable

that there are no simple rules for selecting one. In fact, the selection inevitably has a large

elementof arbitrariness. Arbitrariness is scientifically unhealthy, since it allows the researcher

to manipulate results to his or her owntaste. So let us set downa pair ofrules:

a) When comparing only two populations, A and B, use the average of the two population

compositionsas the standard:

che?
2

Since both CA and C3 sum to unity, so must C;. This procedure for selecting a standard has

some important interpretive advantages, as we will see in the next section. Box 2.1 illustrates

the application of standardization for a two-population comparison by applying the procedure

to the data for Sweden and Kazakhstan shownin table 2.1. Once age-standardized, the CDR

for Kazakhstan becomes higher than the CDR for Sweden, reflecting the higher mortality

conditions in Kazakhstan.

b) When comparing many populations, use a standard that is close to the mean or median

of population structures in the populations under investigation. The only instance wherethis

rule should be ignored is when somepeculiarity in structures makes the average or median

somehow unrepresentative of human experience. For example, population compositions may

be quite distorted by a recent war and a more “normal”structure might be soughtfor a standard.

It should be clear that the technique of standardization is useful when three conditions

are met:

1. One is comparing an aggregate-level variable (usually a rate or proportion) among two or

more populations, or in the same population over time;

2. The variable takes on different values from subgroup to subgroup within each population

(e.g., from age group to age group);

3. One wishes to minimize the effect on the comparison of differences in the composition of

the population according to these subgroups.

Standardization requires data by subgroup both on the composition of population and on

the numberof events of interest, e.g. on both population and deaths by age group.It is clear

from equation (2.1) that an operation closely related to age standardization can be performed.

Instead of asking what population A’s crude death rate would beif it had population B’s age

distribution, we could ask whatit would be if it had population B’s age-specific death rates.

This type of question is frequently asked if data are lacking on age-specific death rates in

population A itself. The answer provides a meansofindirectly comparing the (unknown)rate

schedule in A to the (known) schedule in B. A ratio of the actual number of deaths in A to

the expected numberbased on B’s rate schedule is sometimes called a Comparative Mortality

Ratio (CMR):

_ NAMA D*CMR =5OF=
- A B >) A B
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: Formulas:

LS ascon™=SuM:Sw ‘C==Age-standardized crude death:rate for Sweden
: : ee 8 . S

- Ascn®=3M;*S CG] ==Age-standardized crude deathratee for Kazakhstan

, fos»+ck) oo
E cra|— =Average age distribution

Example:sweden and Kazakhstan, females, 4992

Age Age Age

 

 

  

Average “Age--specific Age-specific

group distribution distribution age death rate in death rate in

l of Sweden ofKazakhstan distribution Sweden Kazakhstan

cow +ck cov +cK cow +ck
cee os MY MP MB MB

0 0.0136 0.0200 0.0168 0.00467 0.00008 0.02137 0.00036

1-4 0.0524 0.0868 0.0696 0.00018 0.00001 0.00162 0.00011

5-9 0.0559 0.1011 0.0785 0.00013 0.00001 0.00045 0.00004

10-14 =0.0548 0.0929 0.0738 0.00014 0.00001 0.00037 0.00003

15-19 0.0604 0.0828 0.0716 0.00023 0.00002 0.00078 0.00006

20-4 0.0655 0.0716 0.0686 0.00030 0.00002 0.00108 0.00007

25-9 0.0709 0.0843 0.0776 0.00032 0.00002 0.00103 0.00008

30-4 0.0641 0.0842 0.0741 0.00050 0.00004 0.00132 0.00010

35-9 0.0654 0.0704 0.0679 0.00069 0.00005 0.00182 0.00012

40-4 0.0703 0.0561 0.0632 0.00117 0.00007 0.00288 0.00018

45-9 0.0730 0.0327 0.0529 0.00201 0.00011 0.00430 0.00023

50-4 0.0552 0.0579 0.0566 0.00305 0.00017 0.00571 0.00032

55-9 0.0481 0.0347 0.0414 0.00461 0.00019 0.01082 0.00045

60-4 0.0493 0.0430 0.0461 0.00759 0.00035 0.01392 0.00064

65-9 0.0512 0.0295 0.0403 0.01226 0.00049 0.02679 0.00108

70-4 0.0508 0.0178 0.0343 0.02026 0.00069 0.03998 0.00137

75-9 0.0420 0.0172 0.0296 0.03664 0.00108 0.05469 0.00162

80-4 0.0321 0.0102 0.0211 0.06815 0.00144 0.10159 0.00215

85+ 0.0251 0.0068 0.0160 0.15729 0.00251 0.18030 0.00288

Sum 0.00737 0.01188

  
1.0000 1.0000 1.0000
 

 

_ASCDRS*==A37 1,000

Data source: United Nations, Demographic Yearbookk (variousyears). oe

~ascprK =11.88p.1,000

 

where

  
D4 =recordeddeathsatall ages combined in A,

NA = numberof personsin the ith age interval in A,

M? = death rate in the ith age interval in B.

This index was used for many years by the Registrar-General of Great Britain to compare the

death rates of different occupational groups. If the ratio is greater than one, the implication is
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that the (unknown)age-specific death rates are in general higher in A than in B, thoughstrictly

speaking this need be true only in one ageinterval. This procedure is part of a demographic

method called “indirect standardization” that is now rarely used in its complete form (see

Shryock and Siegel, 1973: 421—2). The truncated portion of the procedure just described finds

extensive application in historical studies of fertility (see section 5.1).

2.3 Decomposition of Differences between Rates or Proportions

A closely-related question is, “How muchof the difference between death rates in A and B is

attributable to differencesin their age distributions?” This latter question is addressed through

a technique known as decomposition (Kitagawa, 1955).

We should note at the outset that there is no unique answerto the question addressed by

decomposition. There are many ways to decomposea difference and the choice among them

is, to an important extent, arbitrary. However, one technique has an advantage of economy

and expositional cleanness, and that is what we shall develop here. Let us suppose that we are

interested in decomposing the difference between crude death rates in populations A and B.

Define the original difference as A.

B A B B A AA = CDR’ — CDR“ =) CP -MP-S°cA- mM,
i i

Now wewill divide each of these terms into two equal parts and add and subtract certain

additional terms, thereby keeping the difference (A) constant:

Lich MP eich MP Lich Meh Vil

MA

2 2 2 2
,CP-MA SC? -MA X,CA-MB yD, CA. MB

2 - > 72 -

A  

 

Wenow combinethe eight terms in A into four and then into two:

MP + MA MB + MA
a= Dep MEME) es. MEME

1 l

Eee tee

Ear[ESSE
M2 + MA cA+cB% (cP cf) MEME] 4 (up a) |EEE

1

. ; ; . . weighted b
__ difference in age weighted by average difference in rate avee ea >

~ composition age-specific mortality schedules Bf Be
composition

contribution of age compositional contribution of rate schedule

differences to A differences to A
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We have decomposed the difference into two terms, one of whichis clearly interpretable

as the contribution of age distributional differences and the other as the contribution of rate

schedule differences. Between them, they completely accountfor the original difference. Note

that the “contribution of rate schedule differences” term is precisely the difference between

age-standardized death rates in B and A, when the “standard” population age composition

applied to both populationsis the average age composition in A and B.

Interpreting this version of decomposition is straightforward. Any other decompositional

procedure introducesa residual, or interaction, term whose meaning 1s not always clear-cut.

For example, by including a different set of terms in the expansion of A and then rearranging

and simplifying again, we can develop analternative formula:

(A= och. (MB - MA) +SomB- (cP -cA)— 3° (mB - MA). (cP - cf)
l 1 |l

The right-most summation term in this expression looks something like a covariance term;it

is positive if MA tends to be high relative to M? at ages where CA is high relative to Cp ,

Such a pattern would contribute negatively to A (since the sign of the last term is negative),

because A was expressed as the crude death rate in B minus the crude death rate in A.

But it is awkward and unnecessary, in general, to deal with residual terms. The earlier

procedure obviated the need for them. And it used an approach to decomposition that is

perhapsleast arbitrary, since it accepted the average of their rate schedules to weighttheir age-

compositional differences and the average of age structures to weight their rate differences.

For most applications, it seems preferable.

Box 2.2 demonstrates the application of the recommendedprocedure to the decomposition

of differences between the crude death rates in France, 1991, and Japan, 1992. France’s crude

death rate is higher than Japan’s by 0.003116. Differences in age composition account for

75 percent (.002333/.003116) of the difference between crude death rates and differences in

rate schedules account for the remaining 25 percent. In this case, both factors contribute in

the same direction to the difference. But in many applications, one of the factors will account

for more than 100 percent of the original difference. This happens when the two factors

work in opposite directions, and there is no reason to expect that they will normally work in

concert.

Both standardization and decomposition procedures can be applied simultaneously to more

than one variable (see Das Gupta, 1993, for a thorough developmentof multivariate standard-

ization and decomposition). The same standard can also be applied to many populations to

producestandardized rates. However, the decompositional procedure described above must be

limited to the two populations being directly compared. Comparisons among more than two

populations require more complex procedures (Das Gupta, 1993; Smith et al., 1996).

Note that, as in the case of standardization, there is nothing to require that age be oneof the

variables involved in decomposition. For example, one could decomposea difference between

two nations’ infant death rates into differences due to birth-order distributions and differences

due to rate-schedule differences (that is, differences in their death rates for children of the

same birth order). When ageis one of the variables in a standardization or decomposition of

demographicrates, it is strongly recommendedthat age categories be no wider than 5 years

when data permit. Age variation in vital rates is sufficiently great that the age composition

within a 10-year age interval can have a substantial effect on the value of an age-specific rate
pertaining to that interval.



 

 

Box 2.2 Decomposition of Differences between Rates

A = CDR‘ — CDR! = difference between crude death rates in France and Japan

MF + M!

-E(-4)[5
J+ (orm)[Fe]

Example: France, 1991 and Japan, 1992, females
 

 

 

F J F J

age CF} MPa (cP). [SEY (nat = ay |5%]
group I

0 0.0133 0.0089 0.0061 0.0040 0.000022 0.000023

14 0.0467 0.0349 0.0004 0.0004 0.000005 0.000000

5-9 0.0508 0.0734 0.0002 0.0001 —0.000003 0.000006

10-14 0.0541 0.0720 0.0002 0.0001 —Q.000003 0.000006

15-19 0.0746 0.0811 0.0003 0.0002 —(0.000002 0.000008

20-4 0.0686 0.0674 0.0005 0.0003 0.000000 0.000014

25-9 0.0730 0.0703 0.0006 0.0003 0.000001 0.000021

30-4 0.0749 0.0618 0.0007 0.0004 0.000007 0.000021

35-9 0.0794 0.0581 0.0009 0.0007 0.000017 0.000014

40-4 0.0768 0.0789 0.0014 0.0011 —().000003 0.000023

45-9 0.0533 0.0677 0.0022 0.0016 —(Q.000027 0.000036

50-4 0.0507 0.0649 0.0029 0.0024 —Q.000038 0.000029

55-9 0.0551 0.0602 0.0042 0.0037 —Q.000020 0.000029

60-4 0.0544 0.0554 0.0064 0.0056 —0.000006 0.000044

65-9 0.0528 0.0470 0.0096 0.0090 0.000054 0.000030

70-4 0.0317 0.0365 0.0184 0.0158 —Q.000083 0.000089

75-9 0.0360 0.0286 0.0279 0.0303 0.000216 —Q.000078

80-4 0.0298 0.0197 0.0589 0.0587 0.000596 0.000005

85+ 0.0240 0.0132 0.1605 0.1356 0.001599 0.000462

Sum 1.0000 1.0000 0.002333 0.000783   
CDR* =) Cf. Mf = 0.008996

i

CDR' = )_C}- M; = 0.005880
i Original difference = CDR™ — CDR! = 0.008996 — 0.005880 = 0.003116

Contribution of age compositional differences = 0.002333

Contribution of age-specific rate differences = 0.000783

Total contribution = 0.002333 + 0.000783 = 0.003116
Proportion of difference attributable to differences in age composition = 0.002333/0.003116 = 0.749

Proportion of difference attributable to differences in rate schedules = 0.000783/0.003116 = 0.251

Data source: United Nations, Demographic Yearbook (variousyears).
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2.4 The Lexis Diagram

Wecandefine cohort age-specific rates by restricting occurrences and exposuresto the relevant

ages, exactly as we did for period age-specific rates. Thus, the age-specific death rate between

ages 25 and 30 for a cohort born in 1940 (denoted with a 1940 superscript) is:

 

yi940e — Number of deaths to the 1940 cohort between ages 25 and 30

yo 25 ~ Numberof person-years lived by the 1940 cohort between ages 25 and 30

Note that counting deaths and person-years for this cohort requires including experience that

stretches from calendar year 1965 (whenthey all reach age 25) through calendar year 1970

(whenthey all reach age 30), or over a span of 6 calendar years (1965, 1966, 1967, 1968, 1969,

and 1970).

Asnotedalready, cohort rates and period rates have the same structure but take into account

different exposure segments. The Lexis diagram (Lexis, 1875) is a useful device to clarify

relations between exposure segments for cohorts and exposure segments for periods. It is

simply a two-dimensional figure in which age (in this case) is one dimension and calendar

time the other. Units of age and time are normally the same (e.g., years), and these units are

displayed in equal increments along both axes. What goes onto the diagram varies from one

application to the next. Sometimesit is counts of events; sometimesit is symbols that represent

counts; and sometimesit is life-lines.

On a Lexis diagram with the same time unit on both the time and ageaxis, a cohort advances

throughlife along a 45° line. The exposureofinterest in a cohort rate is thus delineated by two

45° lines that demarcate the time interval that defines membership in the cohort. Figure 2.1

delineates the age-time exposure region pertaining to the cohort born between 1.000 and 3.999.

16 |—

er yj

10 }-

Age

(in years)

 

    
4 ZL

Leh A-P

Zo Zi
0 2 4 6 8 10 12 14 16

Time (in years)

o
O

 

Figure 2.1 Lexis diagram representations of exposure for age (A), period (P), and cohort (C)
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Period rates would be constructed from regions of exposure delineated by twovertical lines,

shown on the figure for the period between 9.000 and 11.999.

An age-specific cohort rate thus restricts measuring exposure and counting occurrencesto a

parallelogram formed by two 45°lines defining the cohort and the two horizontal lines defining

the age range (A-C onfigure 2.1). An age-specific period rate restricts the measurement

of exposure and occurrences to a rectangle formed by the two vertical lines defining the

period and the two horizontal lines defining the age-range (A—P on figure 2.1). One can also

define a cohort-specific period rate, which restricts exposure and occurrencesofinterest to a

parallelogram delineated by twovertical lines defining the period and two 45° lines defining

the cohort (C—P in figure 2.1). This latter construction is rarely encountered.

2.5 Age-specific Probabilities

Just as in the case of rates, the computation of probabilities can also be restricted to a certain

age range. The conventionalnotation for a probability of dying between age x and x +n (with

both x and n measured in exact age) is ,gx. The probability that a birth in the 1940 cohort

would die before reaching age oneis thus:

1940¢ __ Numberof deaths to 1940 birth cohort between ages 0 and 1

m0 7 Numberofbirths in the 1940 birth cohort
 

In the above example, the events (or “trials”) that were counted in the denominator were the

numberof births in the 1940 cohort. If we had been dealing instead with the probability that

a memberof the 1940 birth cohort who reached age 25 died before he or she reached age 30,

we would have:

1940c Numberof deaths to 1940 birth cohort between ages 25 and 30

S425 Numberof personsin the 1940 birth cohort who reachedtheir 25th birthday
 

Recall that the calculation of a probability requires having a numberof events in the denom-

inator. The number of events in the denominator of 545840¢ is the numberof 25th birthdays

achieved by the 1940 cohort.

The infant deaths occurring to the birth cohort of 1940 will stretch over two calendaryears,

1940 and 1941 (since the cohort will reachitsfirst birthday, on average, about halfway through

1941). Likewise, the infant deaths occurring in 1941 will pertain to two annual birth cohorts,

those born in 1940 and those born in 1941. The counting rules for calculating probabilities are

also usefully displayed on a Lexis diagram.

Figure 2.2.a is a Lexis diagram containinglife-lines of 6 persons during a two-year segment

of age and timethat begins with birth in calendar year 1995. The 1995 cohort’s life-lines clearly

mustall fall within a parallelogram formed by two 45° lines that originate on January 1, 1995

and on January 1, 1996. A line ends when a person dies. Twopersonsout of the original cohort

of 6 persons die before reaching age 1, so the probability of infant death for the cohort born in

1995 is

2
19= = = 3333

We cannot calculate, on the basis of the information presented, the probability that a person

whoreaches age | in 1996 dies before reaching age 2 because some of the members of the
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0 Vh
1995.00 1996.00 1997.00

Time

Figure 2.2a Lexis diagram containinglife-lines for a birth cohort of 1995
Note: Time = 1995.00 refers to January 1, 1995.
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(1)
Age 4

{

(1)
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Figure 2.2b Lexis diagram containing counts of events pertaining to a birth cohort of 1995
Notes: From a birth cohort of 6 births in 1995: (1) death in 1995 and 5 survivors to the beginning of
calendar year 1996; (1) death at age O in 1996 and 4 survivors at age 1 (4 first birthdays in the cohort,all
occurring in 1996); (1) death to the cohort at age 1 during 1996 and 3 survivors to the beginning of calendar
year 1997.

cohort may have died, before reaching age 2, in calendar year 1997. That year is not shown on

the Lexis diagram.

The mortality experience represented by those6 life-lines is summarizedin series of counts

presented on figure 2.2.b, where the interpretation of the various numbersis also presented.

The counts are placed within the same parallelogram that contains the cohort’s experience.If a

census were taken on January 1, 1996,it should have counted 5 persons aged0 (last birthday);

the only persons aged 0 at that date would have to have been born during calendar year 1995.

A censustaken at any time other than the beginning of a year would mix persons from two

different birth cohorts at age 0. Counts adjacentto horizontal lines show the numbersarriving

at a particular age in the cohort (6 births and4 first birthdays).
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Age ,|__ 81095) B;(96)

pD0(95) pD0(96)

sD0(95)

Bo(95)

1995.00 1996.00 1997.00

Time

Bo(95) = Numberof births in 1995.
B,(95) = Numberoffirst birthdays in 1995.
B,(96) = Numberoffirst birthdays in 1996.

sD0(95) = Numberof deaths at age 0 in 1995 to people who reached age0 in the sameyear.(95

pDo(95) = Numberof deaths at age 0 in 1995 to people who reached age0 in the previous year.

(96) = Numberof deaths at age 0 in 1996 to people who reachedage in the previous year.

Figure 2.2c Lexis diagram containing main symbols used to represent counts of events

Part c of figure 2.2 presents symbols that can be used to represent the counts presented in

part b. For example,

s Do(95) = numberofdeaths at age 0 in 1995 to persons whoreached age 0

(i.e., who were born) in the same year that they died

= |

So Dx (Y)is the total numberof deaths at age x (last birthday) in year Y. The S and P subscripts

on the left divide those deaths between those occurring to the birth cohorts who reached age x

during the same year in which they died (S) and those occurring to the cohort that reached age

x during the previous year (P). The “separation factor” at age x, year Y, separates the deaths

at age x last birthday into two birth cohorts to which they occur. The separation factor at age

x, year Y, is the proportion of deaths at age x (last birthday) in year Y occurring to persons

who reached age x during year Y:

sD, (Y) _ sDx(Y)

OPO) = DY) SDilY) + PDs)
 

In terms of these symbols, the probability of death before reaching age one for the birth

cohort of 1995 is:

 1995c _ SD0(95) + PDo(96)

fg = Bo(95)
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| |Box2.2.3 Calultng RatesandProbabilities

teoe _ Numberofdeaths tothecohortc betweenages xand x+n -

"Number ofpemanyearslivedbythe cohortcbetween ages x and x +nAo

_ NumberofdeathsiinWeage range3xto x+nduring yeart

ce ~Number ofperson-years.livediin the age rangexto x + n during yeart S

toa2 | Number ofdeaths tothecohort C bewween agesx and x-+n

anx GNumber ofpersons|in the cohort c* who reached inetx birthday

 

The probability of dying before reaching age 2 for the birth cohort of 1995is:

1995¢ _ SDo(95) + pDo(96) + sD) (96) + pD1 (97)

2100 Bo(95)
 

The probability of dying before reaching age 2 for a member of the 1994 birth cohort who

survived to age | is:

gi99de =_ sD(95) + pD(96)

m Bo(94) — sDo(94) — pDo(95)
 

This type of measure cannot be computed without data that separate deaths occurring during

a certain calendaryearat a particular age into the two birth cohorts that contribute those deaths.

Box 2.3 summarizes the main cohort and period mortality indexes developed in this and

previoussections.

2.6 Probabilities of Death Based on Mortality Experience of a Single
Calendar Year

For many purposesit is desirable to have measures of mortality that pertain to a particular

time period rather than to a particular cohort. But we have seen that two annual birth cohorts

contribute to the deaths recorded during any year at any particular age. How are these two

cohorts’ experiences to be synthesized in producing an estimate of age-specific mortality for

that calendar year? Such a synthesis for infantsis facilitated by writing the probability of death

before age | as:

probability that if a child

survives his year of birth, he

" dies in the next calendar year

before reaching age 1

probability that a probability that a

190 = child dies in his + child survives his

calendar year of birth calendar year of birth

Let us insert the appropriate elements in this formula and show that it produces a correct

formula for a cohort born in year Y:

gt’ = sDo(Y) BY) -sDoV) — PDoV +!) _ sDo(Y) + pDo(Y + 1)

r Bo(Y) Bo(Y) Bo(Y) — sDo(¥) Bo(Y)
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The idea underlying the synthesis is to take all the death terms in the numerator from the

same calendaryear, rather than from twodifferent years (as required for calculating a cohort’s

probability). Thus we can write the probability of dying between ages 0 and 1 for calendar

year Y as:

sDo(Y)  B(Y)—sDo(Y) | pPDo(Y)

Bo(Y) Bo(Y) Bo(Y — 1) —sDo(¥ — 1)
  190(Y) = (2.2)

A more general formula appropriate for any age interval x to x + 1 would replace age O with

age x in equation (2.2) and would use B,(Y) as the number of xth birthdays achieved in

year Y.

A closely related concept is the “infant mortality rate,’ one of the most common indexes

used in demography. The conventionally defined infant mortality rate for year Y is defined as

infant deaths in year Y divided by births in year Y:

Do(Y) _ sDo(¥) + pDo(Y)IMR(Y) = =
Bo(¥) Bo(Y)
 (2.3) 

Unfortunately, this infant mortality “rate” is structured as a probability rather than as a conven-

tional demographicrate, since it has a count of events in the denominator. But in factit not only

fails as arate but as a probability: it is counting trials in one urn (birthsin year Y ) but events from

parts of two (deathsto births that occurred in years Y and Y — 1). It will equal the probability

of dying before age one for the cohort born in year Y only if pDo(Y) = pDo(Y + 1). Such

equivalence would occurif births were constant from yearto year and if age-specific mortality

conditions were also constant. Underthese restricted circumstances, the infant mortality rate

will also equal the period probability of dying before age 1 given by(2.2).

But the infant mortality rate is simple to define and materials for its calculation do not require

the division of infant deaths by calendar year of birth. Its value should not be seriously mis-

leading as an estimate of the probability of dying before age | (assuming that data are accurate)

unless the numberofbirths varies greatly from year to year. As a simple expedient, it probably

deserves tolerance more than condemnation. Table 2.3 presents estimates of infant mortality

rates in major regions of the world in recent years, and box 2.4 defines other conventional

measuresof fetal and early-life mortality.

An alternative procedure for converting data on mortality in a particular period into estimated

probabilities of dying is used more frequently than the method describedin this section.It is

developed in the next chapter.

Table 2.3: Infant mortality rates in major areas,

1995-2000 (deaths per 1,000 live births)
 

 
Major area IMR 1995-2000

Africa 87

Asia 57

Europe 12

Latin America and the Caribbean 36

Northern America 7

Oceania 24
 

Source: United Nations, 1999.
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Box.24‘Conventional MeasuresofFFetal and earlyinfancyMortality

| Fetal mortality rerate: |

"FetalDeaths icon yeart

Fetal Deaths + Births duringyear t

eePerinatalmortality rate:

 

|FatalDeaths >> 28 weeks ofpregnancy) + (Deaths<lweekofage) dorigyyearb

"Births + (FetalDeaths2> 28 weeks)ceyeart

=Neonatalmortality rate:

Deaths“ 1month of age duringyyearb

 

i thsduring dest

_ Post-neonatalmortalityrate:

Deaths L11 months of ageduring:yeart

.- Births«duringyyenft

| Infant mortalityrate:

Deaths<1yearroe age= duringyear t

--Birthsaeyst |

 

NOTES

1. In equation (2.1), the CDR can be seen as the sum of a mortality level indicator and of a covariance

between twodistributions: the population by age and the age-specific death rates. Indeed, (2.1) can

be rewritten as:

CDR =)[(nMy — M)-(nCy — C)] + M
x=0

where M is the (unweighted) mean of age-specific death rates and C is the (unweighted) mean

of proportions of the population in an age interval. For a given set of age-specific death rates, the

CDRis thus higher the higher is the covariance of the population by age with these age-specific
rates.

2. Age composition only matters as long as the variable ofinterest varies with age. If age-specific
mortality rates were constantby age, the CDR wouldnot dependonthe agestructure ofthe population.
If »M, = M atall ages, then equation (2.1) becomes: CDR = YiM-,C, =M- Yi nCy = M
(since }) ,Cx = 1). The assumption of constant age-specific rates is an unrealistic assumption for
mortality.

3. In particular, the “young”structure is that of a model “West” female stable population with r = .02
andlife expectancy at birth of 45 years; the old structure has anr = .01 and life expectancyatbirth
of 65 years (Coale and Demeny, 1983: 46 and 64). The concept ofa stable population is developed
in chapter 7 below and modellife tables are described in chapter9.
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3.1 Period Life Tables

3.2 Strategies for Choosing a Set of ,a, Values and/or for Making the
nM, — ndx Conversion

3.3. The Very Young Ages

3.4 The Open-ended AgeInterval

3.5 Review of Steps for Period Life Table Construction

3.6 Interpreting the Life Table |

3.7 The Life Table Conceived as a Stationary Population

3.8 Mortality as a ContinuousProcess

3.9 Life Table Construction Revisited

3.10 Decomposinga Difference in Life Expectancies

3.11 Adaptation of the Life Table for Studying Other Single Decrement
Processes -

Appendix 3.1: Life Table Relationships in Continuous Notation  
 

Thelife table is one of the most important devices used in demography.In its classical form,it

is a table that displays various pieces of information about the dying outof a birth cohort. One

column of a classicallife table is invariably “age.” The remaining columnstabulate age-related

functions pertaining to mortality, such as the numberof survivors to various ages, deaths in

particular age intervals, age-specific death rates, probabilities of death in variousage intervals,

and so on. Thelife table is only one way of summarizing a cohort’s mortality experience; other

ways, for example, are in graphical form orin the form of a mathematical function.

As an accounting device, the life table poses few conceptual difficulties. However, the

profusion of columns and functions creates a cumbersome notational baggage. Probably the

easiest wayto elucidatethe life table is to return to the conceptof life-lines. These are normally

displayed on a Lexis diagram. But if we imagine that a cohort is all born at the same instant

of time, then the two dimensions of a Lexis diagram (age and time) can be collapsed into

one. Figure 3.1 displays the life-lines of 10 individuals born on January 1, 1800. From these

life-lines alone,all of the information available in a life table can be derived. Table 3.1 displays

the life table corresponding to the 10 life-lines shown onfigure 3.1.

The verbal description of life table columns is included on table 3.1, so there is no need

to reiterate them in the text. The most frequently-used column of a life table is probably

“expectation of life at age x” or “life expectancy at age x,” usually denoted ef . It refers to
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71.55

- 1.22

62.91

59.60

- 0.07

22.12 (i.e. date of death was recorded as February 13, 1822)

71.14

16.41

64.05

76.79  | | | | | | |
0 10 20 30 40 50 60 70 80

Age in years ——>

Figure 3.1 Age at death and life-lines of a hypothetical cohort of births (10 in all); date of birth:
January 1, 1800

the average numberof additional years that a survivor to age x will live beyond that age.

It is calculated simply by dividing the total number of person-years lived by the cohort above

exact age x by the numberof survivors to that age.! Life expectancy at birth (7), the sum

of all person-years lived by the cohort divided by the original numberin the cohort, is also

equal to the average age at death for the cohort, since life ends at the exact age when death

occurs. The average age at death for someone whosurvives to age 50 is equal to 50 + e§p,

or 67.673 in table 3.1. Note that life expectancy at age | in this table exceedsthat at age 0, a

phenomenonthat is not uncommon.Very high levels of infant mortality often mean that those

who survive this hazardous year can actually look forward to more years of additional life than

could newborns themselves.

The other column that needs an introduction is the ,a, column. This refers to the average

numberof person-yearslived in the interval x to x +n by those dyingin the interval. It is found

by dividing the total number of person-years lived in the interval x to x + n by those dying

in that interval by the total number dying in the interval. For example, in age interval 60-70,

two people died, at ages 62.91 and 64.05. Thus, they lived (2.91 + 4.05) = 6.96 years in the

interval. So 19a69 = 6.96/2 = 3.48. The utility of this columnis not obviousat this point but

will becomeso in the next section.

It should be clear that some functions (/,, Ty, e¢) refer to a single (exact) age, while other

functions (nd, nPx.n9x»nMx,ndx) refer to age intervals that begin with exact age x and extend

for exactly n years. The length of these intervals need not be, and usually is not, constant within

the samelife table. Perhaps the most conventional format for a life table has a length of 1 year

for the first age interval (i.e., the functions in the first row pertain either to exact age 0 or to

the age interval 0 to 1); a length of 4 years for the second ageinterval (i.e., the functions in

the second row pertain either to exact age one orto the age interval 1 to 5); and a length of 5

years thereafter (i.e., functions in the third row pertain either to exact age 5 or to age interval

5 to 10). Another convention is to use lower-caseletters to refer to the numberof deaths (,,d,)

and deathsrates (,m, ) in a cohort whose experience is summarized in a life table, rather than

using the ;, D, and , M, notation that pertains to equivalent functions in a population.



Table 3.1: Life table for hypothetical cohort of 10 births showninfigure 3.1

 

 

        

 

 

 

 

 
7

= 41.166   

Exact Number Number Probability Probability Person-years Person-years Expectation Death rate Average person-years

age left alive dying ofdying ofsurviving lived lived above of life at in the cohort lived in the interval

at age x between ages between ages fromage x between ages age x age x between ages by those dying in

xandx+n xandx+n |toagex+n| xandx+n xandx +n the interval
OO

xX ly nd nqx n Px nLx T, = » nla ey = T,/ly ny nax
a=Xx

0 10 l 1/10 9/10 9+ .07 436.79 + 9.07 445.86 | 07

= 9.07 = 445.86 10 9.07
= 44.586

l 9 | 1/9 8/9 8-4+4 .22 404.57 + 32.22 436.79 ] 22

= 32.22 = 436.79 9 32.22
= 48.532

5 8 0 0 | 8-5 = 40 364.57 + 40 404.57 0 —

= 404.57 8
= 50.571

10 8 l 1/8 7/8 7-10+4+6.41 288.16 + 76.41 364.57 | 6.41

= 76.41 = 364.57 8 76.41
= 45.571

20 7 l 1/7 6/7 6-104 2.12 226.04 + 62.12 288.16 l 2.12

= 62.12 = 288.16 62.12  



30

40

50

60

70

 

 

    

0 ] 6-10 = 60 166.04 + 60 226.04 0 —
= 226.04 6

= 37.673

0 1 6-10 =60 106.04 + 60 166.04 0 —
= 166.04

= 27.673

1/6 5/6 5- 10+ 9.60 46.44 + 59.60 106.04 l 9.60
= 59.60 = 106.04 6 59.60

= 17.673

2/5 3/5 3-10+4 6.96 9.48 + 36.96 46.44 2 (2.91 + 4.05) /2
= 36.96 = 46.44 5 36.96 = 6.96/2

= 9.288 — 3.48

3/3 0 9.48 9.48 9.48 3 (1.55 + 1.14 + 6.79)/3

9.48 = 9.48/3
= 3.16 = 3.16        
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Because the columnsofthe life table are so closely related to one another, there are many

arithmetic relations among the columns.For example:

ndx — ly — lye-tn,

i.e., the number of deaths between age x and age x + n is equal to the difference between the

numberof survivors to age x and the numberof survivors to age x + 7;

ndx = ly “nx,

i.e., the number of deaths between age x and age x +n is equal to the numberof survivors to

age x times the probability of dying between age x and age x +n; and

len ly ~~ ndx

nPx = = =1- nx,
ly ly
 

i.e., the probability of surviving between age x and age x + n is equal to one minusthe

probability of dying between thoseages.

3.1 Period Life Tables

Asillustrated in table 3.1, the construction ofa life table for a cohort poseslittle difficulty. But

because cohort data might be outdated, unavailable, or incomplete, actuaries and demographers

have developed whatis termed a “period”life table (sometimesalso referred to as a “current”

life table). This table presents exactly the same type of information as that contained in a cohort

life table. But the information attempts to show what would happen to a cohortifit were sub-

jectedforall ofits life to the mortality conditions of that period. Such a cohort is usually termed

a “synthetic” or “hypothetical” cohort, as opposedto a “real” cohort consisting ofactual births.

Whereasthe cohortlife table (i.e., that pertaining to a real birth cohort) simply records infor-

mation about whatactually happenedto that cohort, a periodlife table is a model of what would

happen to a hypothetical cohort if a certain set of mortality conditions pertained throughout

its life.

Howshould the period’s “mortality conditions” be operationalized to producea periodlife

table? Almost always, the answeris “by the set of age-specific death rates for that period.” These

rates must then be transformed into other columnsof the table. The key to this transformation

is a conversion from the set of observed period age-specific death rates, , Mx, to a set of age-

specific probabilities of dying, .gx. This conversion is usually accomplishedbyreferring to the

relation between age-specific death rates and age-specific probabilities of dying in an actual

cohort:

 

 

nadx

nMy =
na-x

_ Numberofdeaths in the cohort between ages x and x +n

~ Numberofperson-years lived in the cohort between ages x and x +n

nax

nqx = T_
lx

__ Numberofdeathsin the cohort between ages x andx +n
 

Numberofsurvivors to age x in the cohort
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The formula for the conversion can be derived by replacing the /, term in the formula for n@x
by an equivalent expression. Notethat:

| nLx = N-lyin + nAx,

Number of person- Number of person- Number of person-years lived in
years lived by the years lived in the the interval by members of the
cohort between ages interval by members cohort whodie in the interval
xandx-+n of the cohort who

survive the interval

or

nLx = N-lyin + nax . ndx

Mean number Number of

of person-years membersof the

lived in the cohort dying in

interval by those the interval

dying in_ the

interval
Rewriting this equation, we have:

nly =Nn(ly — pdx) + nax * ndx

n-ly =yLyx +n-ndy — nay + nd

1
lL. = a [nlx + (n — nax)- ndx |

Nowsubstituting this expression for /, into the formula for ,g,, we have:

nds _ n= nds
ly nLy + (n — nax)ndx

 ngx =

Finally, we divide both numerator and denominatorofthis last expression by »L,, giving:

 

  

  

ndx

u L N+ yMy
ndx = L ix d = 1 (3.1)

nlx + (n — pax) nex + (nN — nax)ynmMy

nlx nLx

Equation (3.1), due to Greville (1943) and Chiang (1968), says that, for a cohort, the conver-
sion from ,m,x to nq, depends on only one parameter: ,.a,., the average numberofperson-years
lived in the interval by those dying in the interval. No other information is required to perform
this conversion, and any other information is redundant.

If persons dyingin the interval do so, on average, half-way through theinterval, then equa-
tion (3.1) becomes:

N+ yjMy 2n - nM,
(3.2)an~+>4yn.

1+ —=,m, 2+N-nMy

The ,a@, functionis of little interest in a cohort life table because nqGx and ,m, can both, in
principal, be directly observed.It gainsits importance fromits utility in making the p,m, > ngx
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conversion for use in a period life table. In particular, if it is assumed that the hypothetical

cohort in a period life table is to experience an observedset of period age-specific deathrates,

, M,, then all that remains to complete the period life table is the adoption of a set of ,a, values

in order to make the , My — ngx conversion. If we choose this commonroute, then we have

assumedthat the observed period age-specific death rates (, My) are to be reproduced inthe

hypothetical cohort passing through life in the periodlife table (,m,). All that remains is to

convert the ,7,’s to ngx's. Whether the strategy is implicit or explicit, techniques for period

life table construction that start out with a set of ,m,s are focused uponthe choice of set of

dy values. We now mention several diverse strategies that are sometimes employed.

3.2 Strategies for Choosing a Set of ,a, Values and/or for Making the
nMx — ngx Conversion

3.2.1. Direct observation

If data on exact ages at death are available for a population (e.g. 60.19, 23.62, ...), then it

is clearly possible to take all of the deaths during a period that fall within a particular n-year

wide age interval and compute ,,@, directly. Note that this value would pertain to a population,

rather than to a cohort. Such informationis rarely available, and evenif it were it 1s not always

advisable to use it. The reason is that the ,a, values observed in a population are influenced

by that population’s age distribution within the n-year wide age interval. Suppose, to take an

extreme example, that a certain population had 100 times as many people aged 60 as those in

the combined age-group 61-4. Then 5a¢9 would almost certainly lie between ages 60.00 and

61.00, regardless of mortality conditions. But it would not, in general, be sensible to suppose

that those dying in a cohort passing from ages 60 to 65 would all die before age 61. For reasons

discussed below, using observed ,a,'s will usually reinforce biases already present in data

subject to age-distributional anomalies.

3.2.2. Graduation of the ,m, function

Thelevel and slope of the ,m, function itself provide strong clues about the ages of persons

dying within an age interval. Given two populations with the same 5/60 values, the population

in which mortality rises more rapidly with age during the interval will have a higher concen-

tration of deaths at the upperpart of that interval and, hence,a higher value of 5a¢69. While we

cannot normally observethe slope of death rates within the 5-year age interval 60 to 65, we can

observe the general slope of death rates based on, for example, 5755, 560, and 5me¢5. In addi-

tion to being affected by the slope of the death rate function, the value of ja, is also affected

by the level of mortality. Given a certain slope, the higher is mortality within a particular age

interval, the more will deaths be concentrated at the beginning of that interval because fewer

people will survive to be at risk of death near the end oftheinterval. This is the logic on which

several systemsoflife table construction are based. Greville (1943) assumedthat age-specific

death rates were log-linearly related to age (a hypothesisfirst set forth in Gompertz’ law of

mortality, as we will see in section 9.1), and then showed how the ym, — nqx conversion

could be madeoncethe slope of that log-linear relation was ascertained.

Another approach consists of estimating ,a, from information on the age distribution of

deathsin the life table, assumingthatthis distribution, d(a), follows a polynomial function of

the second degreein the interval x — n to x + 2n (Keyfitz, 1966):

d(a) = A+ Ba+Ca’, forx -—n<a<x+2n
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Underthis assumption, one can show that

n n n

~5qnda-n + nda + agnaxtn

nA dx

nay = 

Note that this equation produces an estimate of ,a, = n/2 when deaths are symmetrically
distributed in the three relevant age groups. This equation for ,ay requires having estimates
of ,d,, which is usually estimated from the ,M, > nx conversion itself and thus requires
information on ,;,a,;. To solve this circularity problem, one mustuseiteration. It makes most
sense to begin by taking pay = n/2 in the ,M, — y»gx conversion to obtain

a

first set of
ndx estimates, and then using these ,d, to obtain a new set of ,,a, estimates with the above
equation. This new set of ;,a, values can then be reused in the , M, > ndx Conversion until
stable estimates of ,a, and ,d, are obtained. Twoorthreeiterations are typically sufficient to
producestable estimates. Limitations of the methodarethatit does not permit the estimation
of dx in the first and last age groups andit requiresthat all age groups used in the estimation
have the same width,n.

Keyfitz and Frauenthal (1975) have developed another approach to estimating ,g, which
assumesthat the age distribution and age-specific death rates are both linear between ages
(x —n) and (x + 2n), conditions that may be mutually inconsistent. These assumptions produce
the following estimation equation:

 
l n
7 = €xp -n nM, — 48,e- — nNx+n)(nMx+n — Me»)

where , Nx = population aged x to x +n.

Keyfitz and Frauenthal’s equation appears to produce satisfactory results in situations where
the age distribution is rather smooth, but it does not necessarily give better estimates than other

methods whenthe agedistribution is erratic (Pressat, 1995).

3.2.3 Borrowing nax values from another population

If there are reasonsto believe that the level and shape of the ,m, curve is similar to that of
another population for which ,a, values have been accurately estimated, then a simple and
reasonable expedient is to adopt that set of values. The borrowed values should correspond
to the sex for which they are being used because ,a, values vary significantly between the
sexes. Keyfitz and Flieger (1968 and 1990) provide sets of ,,a, values for populations based
on graduation techniques above age 10. Examples of several sets of these functions are shown
in table 3.2. Note that at older ages the values of say tend to exceed 2.5 years, reflecting the
rapid rise in mortality with age so that deaths are concentrated towards the upper end of the
age range. Atthe very highest ages, the values of 5a, start to decline as the increasingly high
mortality levels leave fewer survivors available to die at the upper end of an age range.
A traditional methodoflife table construction due to Reed and Merrell (1939) amounts to

borrowing 4, values from another population, although it is not usually recognized in this
guise. Reed and Merrell usedlife tables for the US in which ,.a, had been estimated for actual
cohorts, based upon very detailed USvital statistics. They compared the ,m,. values to the nx
valuesin the resulting life tables andfit a statistical relation between the twoseries. They then
recommendinserting the values of ,m, into the resulting equation in order to derive ndx. This
operation is equivalent to reproducing (with an error term) the ,a, values in the USlife tables
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Table 3.2: Average person-years lived between ages x and x +n for persons dying in

the interval (,ax)
 

ey Sweden, 1900 Sweden, 1985 United States, 1985 Guatemala, 1985

Males Females Males Females Males Females Males Females

51.528 54.257 73.789 79.830 71.266 78.422 60.582 64.415
 

 

Age x Average person-years lived for people dying in the interval x tox +n

0 0.358 0.375 0.083 0.081 0.090 0.086 0.165 0.150

l 1.235 1.270 1.500 1.500 1.500 1.500 1.500 1.500

5 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500

10 2.456 2.469 3.006 2.773 3.014 2.757 2.469 2.390

15 2.639 2.565 2.749 2.617 2.734 2.644 2.711 2.665

20 2.549 2.536 2.569 2.578 2.564 2.552 2.628 2.601

25 2481 2.514 2.561 2.665 2.527 2.588 2.573 2.563

30 2.505 2.509 2.600 2.649 2.571 2.632 2.593 2.627

35 2.544 2.521 2.638 2.625 2.622 2.678 2.545 2.566

40 2.563 2.522 2.695 2.662 2.666 2.706 2.541 2.543

45 2.572 2.561 2.705 2./22 2.688 2.702 2.604 2.592

50 2.574 2.578 2.706 2.694 2.684 2.683 2.596 2.627

55 2.602 2.609 2.687 2.670 2.657 2.671 2.623 2.661

60 2.602 2.633 2.673 2.689 2.626 2.650 2.635 2.623

65 2.591 2.628 2.643 2.697 2.608 2.642 2.616 2.676

70 2.561 2.585 2.607 2.706 2.571 2.631 2.557 2.607

75 2.500 2.517 2.547 2.650 2.519 2.614 2.486 2.532

80 2415 2.465 2.471 2.607 2.460 2.596 2.409 2.447

85+ 3.488 3.888 4.607 5.897 5.455 6.969 4.611 4.836
 

Source: Keyfitz and Flieger, 1968: 491; and 1990: 310, 348 and 528.

on whichtheir statistical relation was based. Since there is no special reason to believe in the

widespread applicability of this US table, it seems better, in general, to borrow from a more

suitable lender.

3.2.4 Using rules of thumb

There are two rules of thumb that are commonly implemented in choosing ya, . Except for

infancy and possibly age 1, each of these works extremely well — leadsto trivial error — when

data are arrayed in one-year wide ageintervals. One rule of thumbis that ,a, = n/2: deaths are

assumedto occur, on average, halfway throughthe interval. This assumption leads immediately

to equation (3.2).
The other assumptionis that the age-specific death rate is constant in the age interval x to

x +n. In this case, as will be shown below,

—n-,mM
nDx =1l—ngdx =e uo

Here no conversion involving ,ax is required. Of course, a value of ,a, is implicit in this

conversion formula; in particular, for this assumption,

] n
 

ndx =N+ on)
nimny l—e N-nMx
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It can be shownthat ,,a, in this case is necessarily less than n/2. The reason is that, with a
constant death rate in the interval, the number of deaths at any point in that interval will be
proportional to the numberof survivors, a number which declines throughoutthe interval. So
there must be more deathsin thefirst half of the interval than in the secondhalf.
The shape of the human mortality curve is sharply upward-sloping beyond age 30 or

so. Therefore, the second rule of thumb tends not to be very attractive for this set of
ages. It is often used, however, in nonmortality applications and has convenient aggregation
properties.

Whichofthese four strategies should be used? The answer dependson data quality and on the
demographic conditions generating the observations. Graduationis the most time-consuming
alternative but perhaps the one in which most confidence can beinvested. Adoptionofa set of
ndax Values from another, similar, populationis probably a close second in terms of accuracy,
and is exceedingly easy to apply. Direct computationis usually difficult and, in a population
subject to age distributional disturbances, not advisable.
The strategy chosen should depend in part upon the sensitivity of results to error in choosing

na@x. Here the results are reassuring. Examining the formula for the ,m, > ndx Conversion,

N+ yMy

7 l+(— ndx )nMx

 nx

we see that ,a, 1s being multiplied by ,m, before it enters into the formula. With a death
rate of 0.012, which is about that prevailing in the world at present, an error of as much as
0.2 years in ,ay, which is relatively large error, would affect n@x in the proportion of only
0.2(.012) = .0024, or about a quarter of 1 percent. Of course,if that erroris repeated over
and over again from age group to age group,it will cumulate in its effects. But even if every
age has an ,a, that is in error by 0.2 in the same direction, life expectancyat birth will be in
error by only about 0.2 years. We can agree with the World Health Organization (1977: 70)
in its conclusionthat “Although these various methods [oflife table construction] are based
upon very different assumptions, when applied to actual mortality rates they do not result in
significant differences of importance to mortality analysis.”

3.3 The Very Young Ages

Life expectancy estimates are most sensitive to procedures used in the very young, high mor-
tality ages. When estimation of ,g, for these ages can be made by assigning deaths to the
appropriate birth cohorts, as describedin chapter 2,it is usually best to do so. But when con-
verting a death rate into a probability of dying, it is important to recognize that the value of
nax 1s (empirically) a function of the level of mortality itself. Generally speaking, the lower
the level of mortality, the more heavily will infant deaths be concentrated atthe earliest stages
of infancy; the influence ofthe prenatal and perinatal environment becomes increasingly dom-
inant relative to the postnatal environment. Coale and Demeny (1983: 20) have reviewedthis
relation in many populations andhavefit a line to the international and intertemporal data. In
particular, they havefit the relation between values of 149 and 4a, andthe values of {go. We
have adaptedtheserelations to the typical circumstances encounteredin life table construction.
Results are shownin table 3.3. In the absence of other information, the formulas presented in
this table can be recommendedforuse in deriving ,a, values below age5.
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Table 3.3: Values ofnay for use belowage 5
 

 

Males Females

Value of ido

If jmo > .107 330 350

If jmo < .107 045 + 2.684 - 1m .053 + 2.800 - imo

Value of 4a

If jmp > .107 1.352 1.361

If ;mo < .107 1.651 — 2.816- ;mo 1.522 — 1.518- mo
 

Source: Adapted from Coale and Demeny (1983) West modellife tables.

3.4 The Open-ended AgeInterval

The formulas presented so far are incapable of dealing with the open-ended (or terminal) age

interval. In this intervaln is, in effect, infinity. A conventional way of dealing with this interval

is to return to the formula for the death rate in a cohort. Since

 

  

m __ ndx

nh x ’

nLx

when n = & we must have

oo dx oodx
ooM, = or oo Lx — .

oo Lx oOoMNx

But the number of persons dying in the cohort above age x, whether the cohort is real or

hypothetical, must equal the numberof persons surviving to age x (oodx = /x), SO:

lx

ooMN

 coobx =

soM,x is observed and /, can be calculated on the basis of mortality at all ages below x. So the

numberof person yearslived above x can be calculated and used to completethelife table. Of

COUFSE, oogx = 1.00 and oo px = 0.00.

Procedures for dealing with the open-ended interval have become increasingly important

as more people have survived to its beginning. The most commonly encountered open-ended

interval begins with age 85, to which age nearly half of females in recentperiod life tables for

developed countries will survive. Where data permit, the analyst should clearly adopt a high

enough age for starting the open-endedinterval that only a small fraction of the population

survivesto that age. In section 7.8, we will describe a more elaborate procedure for estimating

person-years in the open-ended ageinterval.

3.5 Review of Steps for Period Life Table Construction

a. Calculate the set of age-specific death rates to be used (,m,). The usual procedureis to

assume, for each age-interval, that ,m, = nM,. This equality means that we choose to repro-

duce, in the life table ,m, values, the set of ,M, values observed in a population during a

particular period.
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nde | |
_ calculatedfrom Coale and Demeny equations nly ly dea

| shownin table 3.3 under age 5, borrowed Tenby = lean + nx nde ; -

fromKeyfitz and Flieger above age 5 _— (open-ended interval: .Ly=——)

3— N+ nM, oe reDeaa)

me

8 = ial,

— 20985 =1.00 Tr -
Oe 9 &=: 4, nPx= 1— nde | x l. 2 |

Ce Example: Austria, males, 1992

Agex Ny Dy nM nay nx n Px ly nx nLy T ex
0 47,925 419 0.008743 0.068 0.008672 0.991328 100,000 867 99,192 7,288,901 72.889
| 189,127 70. 0.000370 1.626 0.001479 0.998521 99,133 147 396,183 7,189,709 72.526
5 234,793 36 0.000153 2.500 0.000766 0.999234 98,986 76 494,741 6,793,526 68.631
10 238,790 46 0.000193 3.143 0.000963 0.999037 98,910 95 494,375 6,298,785 63.682
15 254,996 249 0.000976 2.724 0.004872 0.995128 98.815 481 . 492,980 5,804,410 58.740
20 326,831 420 0.001285 2.520 0.006405 0.993595 98.334 630 490,106 5,311,431 54.014
25 355,086 403 0.001135 2.481 0.005659 0.994341 97,704 553. 487,127 4,821,324 49.346
30 324,222 441 0.001360 2.601 0.006779 0.993221 97,151 659 484,175 4,334,198 44.613
35 269,963 508 0.001882 2.701 0.009368 0.990632 96,492 904 480,384 3,850,023 39.900
40 261,971 769 0.002935 2.663 0.014577 0.985423 95,588 1,393 474,686 3,369,639 35.252
45 238,011 1,154 0.004849 2.698 0.023975 0.976025 94,195 2,258 465,777 2,894,953 30.734
50 261,612 1,866 0.007133 2.676 0.035082 0.964918 91,937 3,225 452,188 2,429,176 26.422
55 181,385 2,043 0.011263 2.645 0.054861 0.945139 88,711 4,867 432,096 1,976,988 22.286
60 187,962 3,496 0.018600 2.624 0.089062 0.910938 83,845 7,467 401,480 1,544,893 18.426
65 153,832 4,366 0.028382 2.619 0.132925 0.867075 76,377 10,152 357,713 1,143,412 14.97]
70 105,169 4,337 0.041238 2.593 0.187573 0.812427 66,225 12,422 301,224 785,699 11.864
75 73,694 5,279 0.071634 2.518 0.304102 0.695898 53,803 16,362 228.404 484.475 9.005
80 57,512 6,460 0.112324 2.423 0.435548 0.564452 37,441 16,307 145,182 256,070 6.839
85 32,248 6,146 0.190585 5.247 1.000000 0.000000 21,134 21,134 110,889 1 10,889 5.247

Data source: United Nations, 1994.

 

 

b. Adopt a set of ,a, values. For example,

under 5, use Coale~-Demeny equations shownin table 3.3:
e above 5, use values borrowed from another population (e.g. in Keyfitz and Flieger, 1990).

For actuarial application where a great deal of precision is required, graduation procedures
will usually be preferred for estimating ,a,.

c. Compute jg as:

nx
N+ ypMy
 

7 I+(n- nax )nMx
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For the open-endedcategory, oqgx = 1.00

d. Compute » py = | — ndx.

e. Choose a value of Jp, the “radix” of the life table. This is the Latin term for root; its

value will determine most of the remaining values of the life table. The choice of the radix is

arbitrary. Values that have been used range from | to | million; 100,000 is perhaps the most

conventional. /,, ,dx, ,Lx, and TJ, columns will vary in exact proportion to the radix chosen.

Thusthe scale of a period life table is completely arbitrary andis totally unrelated to the size

of the population whose mortality is being describedin the table. Failing to grasp this pointis

a commonsource of confusion.

f. Calculate x4, = ly +n px, working sequentially from the youngest age tothe oldest, e.g.,

I; =lo-1Po

Is =l)-4pi

lio =/!5 + 5)ps

g. Derive ndx as ly — ly+n (or as Ly + ngx).

h. Derive the person-years lived between ages x and x +n as:

nLby =Nn- lyin + nx + ndx

This formula wasusedin deriving the ,m™— ngx conversion. Once wehaveselected the pax

values for that conversion, we have used up our degrees of freedom in making the conversion

from 1, to , Ly. This point is often overlooked. For the open endedinterval that begins with

age x*, set

Ly*
 

ninx*

i. Derive
OO

Ty, = y- nha

a=x

This is simply an instruction to add up the , ZL, column from age x to the final row ofthelife

table, in order to derive person-yearslived above age x. This operationstarts at the bottom of

the life table (i.e., the highest age) and proceeds to the top.

j. Derive life expectancy at age x as e? = T;//,. This formula for eS divides the number of

person-yearsthat will be lived above age x by the numberof persons who will live them.7

Box 3.1 shows an example of period life table construction using data from Austria.

A life table in whichall age intervals are one year wide is often referred to as a “complete”

life table, whereas tables containing larger age intervals, usually 5 years wide, are sometimes

referred to as “abridged” life tables. Figures 3.2 and 3.3 show graphically some important

columnsoflife tables. Figure 3.2 presents the ,m, columnfor males and females in the US in

1992, and figure 3.3 showsthe ,mx, /y, and ,d, columns from Swedish female life tables in

1895 and 1995. The age intervals in theselife tables are one year wide (n = 1).

Table 3.4 presents estimatesof life expectancy at birth in the major regions of the world

for a recent period. These life expectancies are obtained by aggregating life expectancies at

birth across individual countries. One way to aggregate life expectancies is by merging deaths
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Figure 3.2 Age-specific death rates (mx) by age, US, 1992, males and females
Data source: National Center for Health Statistics, 1996.

and population at risk in the larger unit, and recalculating a life table in the conventional
way described above using the aggregated age-specific mortality rates. It should be noted
than when using the merging procedure,the resulting aggregatelife expectancy could under
rare circumstancesbe outside the rangeof life expectancies in the original populations being
merged. A second wayis to calculate a weighted average of country-levellife expectancies.
Because of the conventionalinterpretation givento life expectancy at birth, one appropriate set
of weights to use might be the numberofbirths in the respective regions. Relative population
size is perhaps an equally attractive alternative.
The two procedures give similar results when the populations being mergedare relatively

homogeneous,but the difference can be substantial when aggregating populations that have
diverse patterns andlevels of mortality. Lutz and Scherbov (1992) recommend using the merg-
ing procedure rather than the averaging procedure becauseit may be more appropriate when
dealing with populations open to migration and with changing mortality. The United Nations —
shifted from the averaging to the merging procedure in 1990,a shift that producedan increase
of 2.5 years in their estimateofthe globallife expectancyat birth for the period 1980—5 (United
Nations, 1989, 1991).

3.6 Interpreting the Life Table

A period life table summarizes the mortality experience of a population. Each parameter
presented correspondsto a specific age or ageinterval, e.g. the probability of surviving or of
dying between age x and x +n (y py and nq respectively), the age-specific death rate between
age x and x + n (,M,), or the life expectancy at age x (e?). The verbal interpretation of each
columnwasprovidedin table 3.1. Additional information can be gained by combining twoor
more ages. For example, the ratio 1, //, indicates the probability of surviving from age x to
age y in the population,i.e., in a hypothetical cohort constructed from data on the population.
Box 3.2 illustrates some of the most important interpretations that can be drawn fromlife table
columns.
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Figure 3.3 Age-specific death rates (jm), survivors (/x), and deaths (;d,) in Swedish female

life tables, 1895 and 1995
Data source: Statistiska Centralbyran and Berkeley Mortality Database.

http://demog.berkeley.edu/wilmoth/mortality

Assumingthat the mortality experience of the population applies to an individual throughout

his or herlife,i.e., that at every age he orsheis subjectedto the mortality rates from which the

life table is constructed, then thelife table also illustrates the expected life experience of the

individual. The most salient exampleis life expectancy. Life expectancy at age x is the average

number of additional years to be lived by a memberof the cohort who survives to age x. If

we knew nothing else about an individual exceptthe fact that he or she survived to age x, life
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Table 3.4: Life expectancy at birth, by major areas, 1995-2000
 

 

Major area Both sexes Males Females

Africa 51.4 50.0 52.8

Asia 66.3 64.8 67.9

Europe 73.3 69.2 77.4

Latin America and the Caribbean 69.2 66.1 72.6

Northern America 76.9 73.6 80.2

Oceania 73.8 71.4 76.3
 

Source: United Nations, 1999.

expectancy at age x would be our best guess about how longthat individual would live. Hence,
it is an expected value for a randomly-chosenindividual.
A useful simplification has gained widespread currency and will be used later in this vol-

ume: the probability of surviving from birth to age x is designated p(x) and the cumulative
probability of dying between birth and age x is designated g(x). So

l
p(x) ==

lo

ly Ip—ly xd
g(x) =1—- p(x) = 1-2=2 27 22%

lo lo lo

 

3.7 The Life Table Conceived as a Stationary Population

The stationary population is the first of two important population models that are described in
this volume. The other modelis that of a stable population, developed in chapter 7. In fact, the
stationary population modelis a special case of the more general stable population model. The
conceptofa stationary population is independentofthe life table apparatus,butit is convenient
to develop its features by referenceto life table notation.
A stationary population results from the continued operation of three demographic

conditions:

1) Age-specific death rates that are constant over time (but usually not constant over age);
2) A flow ofbirths that is constant over time; the same numberof newbornsare addedto the

population per unit of time, whetherthe unit is a year, a month, or a day;
3) Net migration rates that are zero atall ages; in effect, the population is assumed to be

closed to migration.

The conversion of a life table into a stationary population model simply requiresa little
notational sleight-of-hand. If we assumethat /p is the annual numberof births in a population
that meets the three conditions of a stationary population, then manyof the other columns and
elementsof a life table take on a new meaning:

[, 1s the numberof persons whoreach age x in any calendar year, /,y =1o-po;
nL, is the numberof personsalive at any point in time between ages x and x +n;
Ty is the numberof personsalive at any point in time above age x, so that
To 1s the total size of the population;

ndx is annual numberof deaths between ages x and x +n;
€p is the mean ageat death for persons dying in any particular year.
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Box 3.2 Interpreting the Life Table

1. The basic columns:

x =Exact age x nLy = Person-years lived between ages x and

l, ==Numberof peopleleft alive at age x X +H

,d, = Number of people dying between ages x T, == Person-years lived above age x

andx +n e° = Expectation oflife at age x
n9x == Probability of dying between ages x nM, = Age-specific death rate between ages x

and x +n and x +n

n Px = Probability of surviving from age x toage ay = Average person-years lived between

x+n ages x and x + n for persons dying in

the interval
 

2. Additional information:

(ly) /ly = y—x Px = Probability of surviving from age x to age y

1 — (ly)/l, = y—x9x = Probability of dying between ages x and y

ly — ly = y-xdy = Numberof people dying between ages x and y

T, — Ty = y-xLy |= Numberof person-years lived between ages x and y

(ndx)/Co) == Probability that a newborn will die between ages x and x +n

(lx —ly)/lo = Probability that a newborn will experience his death between ages x and y

(Tx — Ty)/lo == Numberof years that a newborn can expect to live between ages x and y

Example: Austria, males, 1992 (data shownin box 3.1)
 

  
Life expectancy at birth = 72.889 years

Life expectancy at age 50 = 26.422 years

(a male who has reached age 50 can expectto live 26.422 additional years)

Probability of surviving from birth to age 40 = l49//o = 95,588/100,000 = .95588

Probability that a person whosurvived to age 40 would die before age 60

= (lag — 169) / lag = 1 — loo / lao = 1 — 83,845/95,588 = .12286

Numberof years that a newborn male could expectto live in the age interval 25-50

= (Ts — Ts9)/Ip = (4,821,324 — 2,429,176)/100,000 = 23.9 years

Probability that a newborn will die between ages 70 and 75

5d79/ lg = 12,422/100,000 = .12422

Probability that a newborn will die between ages 70 and 85

= (I79 — 1g5)/1o = (66,225 — 21,134)/100,000 = .45091

 
 

The most difficult connection to understandis that involving , L,. Table 3.5 demonstrates

why the person-years lived between ages x and x +n by a cohort of Jp births, the function

that we have previously designated , L, must also equal the number of persons alive between

ages x and x +n ina stationary population with /g annual births. In this table, we assume

that a stationary population exists in which there are 365,000 annualbirths, a process that

has extended indefinitely throughout the past. These births are evenly distributed over time

so that there are 1,000 births per day. The probability of surviving from birth to various ages

(expressed in days) is assumedto be as shownin the x po column. With these assumptions, and

no migration, the population size and age structure within the first year of life will be constant

  



THE LIFE TABLE AND SINGLE DECREMENT PROCESSES 55
 

Table 3.5: Life table and age structure ofa stationary population
 

 

 

Age in Probability of Population alive on:

days surviving to age x

x x Po Jan. 1 Jan.2 Jan.3 Jan.4 Jan.5 Jan.6 ..... Dec. 31

0 1.000 1,000 1,000 1,000 1,000 1,000 1,000 _..... 1,000
I .970 970 970 970 970 970 a... 970
2 950 950 950 950 950... 950
3 .946 946 946 946... 946
4 942 942 942... 942

364 0900 900
 

(hence the name,stationary population). This is readily seen by beginning with the cohort of
1,000 babies born on January 1 and following it forward asillustrated in the rest ofthe table.

It is clear that the number of persons at any particular age becomes constant over time
becauseit is the product of a constant numberofbirths and constant probabilities of survival.
The numberofpeople alive at any pointin time(e.g., January 5) between exact ages 0 and 1 is:

1No = 1000 + 970 + 950 + 946 + 942 + --- + 900

The number of person-years lived in the first year of life by an annual cohort of births will
equal the numberofdaily cohorts, 365, times the person-years lived by each daily cohort. Each
daily cohort lives 1000 - (1/365) person-years on January 1, 970

-

(1/365) on January 2, and
so on downto 900 - (1/365) on December31. So the total number of person-years lived in the
first year of life by an annual cohort of birthsis:

1 Lo = 365 - [1000/365 + 970/365 + 950/365 +... 900/365]

= 1000 + 970 + 950 + --. +900,

Thus, }Lo9 = ;No; the number of person-years lived by an annual cohort of births in an
age interval will equal the numberalive in that interval at any momentoftime. Finally, note
that both quantities will also equal the number of person-years lived in the age-time bloc
jointly circumscribed by ages 0 and 1 and by a calendar year that extends from January 1
to December 31. Since there are ; No personsalive at any point in time between ages 0 and
1, there will be ; No - (1/365) person-years lived in that age interval on January 1, another
1No - (1/365) lived on January 2, and altogether 365 - 1No - (1/365) = 1 No over the course
of the year.

Usinglife table notation to describe the functions of a stationary population, the birth rate
is equal to the annual numberofbirths divided bythetotal size of the population, or /g/ To.
Since life expectancyat birth is Ty /Jo, it must be the case that, in a stationary population:

CBR = 1/e?

The crudebirth rate is the reciprocaloflife expectancy at birth. Whythis reciprocal relationship
exists can perhaps be understood by imagining a population in which no onediesuntil age 60,
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at which point everyone dies. Then life expectancy at birth would obviously be 60 years.If

annualbirths are B, then the size of the population must be 60 B andthe crudebirth rate must

be B/(60-B) = 1/60. Eachbirthlives 60 years; every 60 person-years lived in the population

each year producesonebirth.

Since a stationary population must be constant in size because the numberof personsat each

age is constant, then the crude death rate must equal the crude birth rate:

CDR = CBR = 1/e®

Since the numberof persons above age x must also be constant, then the numberof persons

arriving at age x each year, /,, must equal the numberof persons dying above age x that year.

Therefore:

l.. 1 1
M, = — = ———_ =

we Ty [Ty / lx] ey

So in a stationary population, the death rate of any open-ended population segment above

age x must equal the reciprocalof the life expectancy at age x.

The proportion of the stationary population that is aged x to x + | is:

L Lics _ 1£x _ 1“4x £0 ~ x+0.5 -CBR

To lo To lo
   

In developing this final expression, we have assumed that ;L, is approximately equal to

140.5, which would be exactly correct if the /, function were linear in the interval between x

and x + 1.

Thus, the stationary population model provides explicit expressions that connect the major

demographic parameters to one another:life expectancy, birth rates, death rates, and age struc-

ture. The explicitness of these relations is one reason whythe stationary population has become

an important demographic model. The model can be invoked in order to estimate one demo-

graphic parameter on the basis of another. For example, an archeologist who encounters a

collection of skeletons and assigns ages to them (producing the equivalent of the ,d, function

of a life table) can estimate the birth rate of the populationthat gaverise to the skeletonsas 1 /ep.

Or a demographer who encountersthe age distribution of the 1881 census of India (equivalent

to the , Ly function of a stationary population) can estimate probabilities of survival from one

age interval to the next (5L.+45/s5L,). In both cases, of course, the assumption of stationarity

is required. Thefact that, until the eighteenth century, the world population was growing very

slowly meansthat, on average, the assumptionof stationarity may not be too distortive in many

applications. Atleast, the direction of bias would be hardto predict.

The fact that every human population has an underlying life table, whether or notit 1s

accurately estimated, means that every population can form the basis of a model stationary

population. This modelis the population that would eventually emerge if age-specific mortality

rates remained constantat values containedinthe life table,if births were constant, and if there

were no migration. What time span is implied by “eventually?” For full precision,it is equal to

the humanlife span, the maximum ageattained by any individual. For other purposes where

less than complete precisionis required, it could be a shorter period.

As noted earlier, the scale of the life table is set by /p, the arbitrarily-chosen radix whose

value has a proportionate effect on /,, » Lx, Ty, and nd. Because of this arbitrariness, the scale

of the life table bears no necessary relationship to the size of the population that produced
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: Box3.3, The Life Table Conceivedas aStationaryPopulation

Ig= Annual numberofbirths and annual number ofdeaths
_ ly =Numberofpersons whoreach age x inany calendaryear

_ nLy = Numberofpersonsalive at any pointin time betweenages xandx +n
_ T; = Numberofpersonsaliveat any point in time above agex

To =Totalsize of the population ee oe
nd, =Annual numberof deaths between ages x andx +n| :
- @j =Mean age atdeath for persons dying in anyparticular year |

CrudeBirth Rate = Crude Death Rate = a
oo oo.
Death Rate above age x = — = =

2 - x Og

AgeStructure = ,CS = “= ~ 21" -n CBR
) To lo a

Example: Austria, males, 1992 (data shown inbox3.1)

  

Numberof annual births = /) = 100,000

Numberof people reaching their 20th birthday in any calendar year = In) = 98,334

Numberof people alive between ages 30 and 35 = 5139 = 484,175

Numberof people above age 60 = Ten = 1,544,893

Total size of the population = Ty = 7,288,901

Annual numberof deaths between ages 50 and 55 = sdsy = 3,225

Meanageat death= e) = 72.889 years
CBR = CDR = 1/e5 = 1/72.889 = .01372

Death rate above age 60 = 1/Cog = 1/18.426 = .05427

Proportion of people aged 25 to 30 = 5L25/T) = 487,127/7,288,901 = .0668
or

 

 

los + la 97,704 + 97,151
197.5 2 2CS. ~ £2 .5.CBR~ —+— .5. CBR= -5-.01372 = .06685-25 Ip lo 100,000

  
 

it. Likewise, the scale of the model stationary population produced by anylife table is also
arbitrary and should not be confused with thesize of the actual population to whichit pertains.
Any population — any collection of individuals meeting some definedcriteria for member-

ship in the population — hasa set of attrition rates that describe the process of leaving the
population. These rates can be arrayed by duration of membershipin the population. Hence,
any collectivity has a life table that can be converted into a modelstationary population. With-
out making direct reference to the stationary model, analysts often make use of stationary
population relations in thinking about these collectivities. For example, a graduate program
that matriculates 10 students per year and has a student body of 40 can be assumed to have a
mean duration in graduate school of 4 years (€5 = To/ lo). If one million new cases of cancer
are diagnosed each year and someone with newly-diagnosed cancer can be expected to live 8
years, then the population of persons with diagnosed cancer numbers 8 million (To = lo - €).
If persons remain with a firm an average of 5 years, then the annualattrition rate is 0.20
(CDR = 1/e5).
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In order to be accurate, these inferences require that the population be stationary. In many

instances,this is a reasonable approximation. In someinstances, especially when mean dura-

tion in the population is long, they can be very misleading. The most important demographic

example of seriouserror that can result from a casual invocation of stationary relations involves

the relationship between the mean ageat death in a population and life expectancy at birth

in that population. In a stationary population, the mean age of people dying in any partic-

ular year is equal to life expectancy at birth in that population. The mean age at death in

a cohort (life expectancy at birth in the cohort) results from combining age-specific death

rates (,,mx) with the distribution of years lived by the cohort (,, L,). The mean age at death

in the population results from combining those same death rates (,m,) with the age struc-

ture of the population (;,N,). But we have already seen that, in a stationary population,

nNy = nL. So the mean age at death in the population must be the same asthat in a

cohort.

If the population is not stationary, however, the mean age of persons dying in a particular

period can be very different from life expectancy at birth. The reasonis that a particular set of

age-specific deathrates, ,m,., are being applied to two agestructures that can be very different

from one another. The agestructure in the life table is, as before, , L,. But in the absence of

stationary conditions, there is no necessary connection betweenthe , L, columnin the period

life table (whichis entirely a product of current age-specific death rates) and the , Ny column,

representing the actual age structure of the population. For example, if the annual numberof

births has been growing over time instead of constant (as assumedin the stationary population

model), then the actual age structure of the population will be youngerthan that implied by the

stationary population model. Relative to births 30 years ago, for example, there will have been

morebirths in the past year. So the ratio of persons underage | to persons aged 30 in the actual

population will be higherthan in the stationary population. So will the ratio of 30-year-oldsto

60-year-olds.
Because annual births have been growing in most developing countries, this example rep-

resents the typical pattern of discrepancy between the age structure of actual populations and

the age structure of the stationary population implied by current mortality. For example, males

in Colombia in 1964 had a life expectancy at birth (based on vital statistics) of 58.2 years.

But the mean age of males dying in Colombia in 1964 wasonly 26.1 years, less than half

as large (Preston, Keyfitz and Schoen, 1972). The mean age of persons dying in 1964 would

have been a horribly biased estimator of life expectancy at birth in that year. The reason for

the discrepancy is simply that births in Colombia had been growing in the years prior to 1964,

rather than constant as assumedin the stationary model.

The stationary model is applicable to the analyses of all populations. Consider the pop-

ulation of US graduate students. The mean duration of time in graduate school spent by

persons receiving their Ph.D. in any particular year has been drifting steadily upwards, lead-

ing to calls for program reform. But the main reason for the drift is not that progress has

been slowed for persons entering graduate school but that the number of entrants has been

declining, lengthening the mean duration of persons in the graduate student population at

any momentin time regardless of their attrition rates. Since the base populations became

“older,” the mean duration in graduate school of persons achieving the Ph.D.in any year grew

higher.

In these examples, the stationary model helps us understand how commonsense can go

seriously awry. By understanding the stationary model, we can gain some novelinsights; by

recognizing whenit does not apply, we can identify and avoid someseriouserrors.
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3.8 Mortality as a Continuous Process

Byits tabular nature the life table can display mortality functions only at particular ages or for
discrete age intervals. But the risk of death surely acts continuously on cohorts; persons in no
age interval, no matter how small, are exempt from the risk. Development of the mathematics
of this continuousprocessilluminates some of what has already been discussed andsets the
stage for some of what is to come.

Let us consider the dying out of a cohort using life table notation. Since the risk of death
acts continuously on membersofthe cohort, the numberleft alive at age x, ],, changes contin-
uously and can be represented by a continuous function, denoted /(x). Mortality also changes
continuously rather than by discrete leaps. The numberofdeaths among membersofthe cohort
between ages x and x + n is:

ndx = I(x) — I(x +n)

and the death rate is, as before, ,xm, = ndy/;,L,. We now let the age interval n identifying
the death rate grow shorter and shorter. The key concept in the continuous developmentis the
“force of mortality,’ denoted (x), and defined as:

 _ nay .
w(x) = lim = lim ,»mx

nO nly n—->0O

It is essential to recognize that, by dealing with a tiny intervalof age insteadof, say, an interval
of n = |, weare notaltering the scale of ,m,. For example:

 

1430 Deaths in a cohort between ages 30 and 31
Wn = ———_ =

mee 1439  Person-yearslived in the cohort between ages 30 and 31

and

0.5430 Deaths in a cohort between ages 30 and 30.5
0.54130 = —  

0.5139  Person-years lived in the cohort between ages 30 and 30.5

By reducingthe ageinterval () from one yearto half a year, we have reduced both numerator
and denominator by approximately one-half, thereby retaining the same approximate level of
the ,mx function. The sameresult would obtain if we were to have made n equal to 0.25,
to 0.10, or to a very tiny value. The force of mortality function retains the character of an
annualized rate; it is a death rate per person-year of exposure*. Since ndy =I(x) —Il(x +n),
and since , Ly, = n-I(x) for an interval n so small that person-years within the interval are
negligibly reduced by death, we can write:

 

[weeny (3.3)= |i = |i
MG) =tnx =lim |n—O

Bythe definition of a derivative, the expression,

— I(xa

nh

lim
n—->0O
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is simply the derivative of the /(x) function at x multiplied by (—1) (the derivative itself has

I(x +n) —1(x) in the numerator). When wedivide the derivative of /, by the value of /;, we

produce the derivative of the natural logarithm of /(x). So:

 

fone} = oe” (3.4)— jj

p(x) fim n-I(x) dx0

Let us now take the negative of (3.4) and integrate both sides between two exact ages y and z:

— | w(x) dx = Inl(z) — Inl(y)

y

Nowtaking exponentials of both sides we have:

— fr (x) dx _ Lz) 3.5

. 1(y) (3.9)

I(z) =Uyyen fx BOA (3.6)

Equation (3.6) is one of the most important equations in formal demography. It expresses

the proportionate changein the size of a cohort between two ages completely in terms of the

force of mortality function prevailing betweenthose ages.It says that the proportionate change

in cohort size between y and z is a simple function of the sum ofthe force of mortality function

between those ages. The order in which the death rates occuris immaterial; all that matters1s

their sum. If the younger ageis zero andthe olderis a, then:

l(a) = 1(0)e~ fo HO) ax (3.7)

Note the similarity between equation (3.7) and equation (1.5):

N(T) = N(O)elo r(t) dt

The latter equation expresses the size of the total population at time T in termsofits size at

time zero and the sum ofintervening growth rates. Likewise, the size of a cohort at age a can

be expressed in termsofits size at age zero and the sum of intervening death rates. The death

rate at age x is simply acting as (in this case, negative) growth rate at age x for the cohort.

Because we choose to define death rates (u(x) and ,m,x) as positively valued functions, the

negative sign must appear in equation (3.7) to make the analogy with growth rates complete.

All life table functions can be expressed in termsof /(x) and w(x). For instance, the number

of person-years in the interval [x, x +n] 1s:

X-++n

nly = | l(a) da

x
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Since ndy = y»Ly - nm, the numberof deaths in a small interval da is /(a)w(a)da and the

continuous formula for ,d, is:

X-+n

ndy= f Wawa) da
x

Note that, since the numberof survivors to any age is equal to the numberof deaths above that

age, the following relationship must hold:

CO

(x) = [r@uw da

Xx

Anotherinternal relationship represents the equivalence ofcalculating person-yearslived above

a certain age as the sum overage of the numberof survivors versus the sum over survivors of

the time lived until death. As noted above, there are /(a)(a)da persons dying in the small

interval [a, a + da] and each onelives (a — x) years beyondage x, so:

[taac = [t@mava xa

Life expectancy can then be written in two equivalent forms,using the tworelationships above:

O f, U(@pla)(a —x)da _ [> la) da

“ fPiayu(ayda (x)
 

The expression on the left corresponds to the definition of life expectancy in terms ofagesat

death whereasthe expression on the right showsthatit is also a sum of person-yearslived.

Since /(x) itself can be expressed in terms of /(0) and w(x) (equation 3.7), all life table

functions can further be expressed in terms of /(0) and w(x) alone. Such expressions are

provided for reference in appendix 3.1, at the end of this chapter.

3.9 Life Table Construction Revisited

From the above expressions for ,d, and ,,Ly, we can derive the continuous expression for

nM, as:

per I(a)w(a) da

per l(a) da
 (3.8)nm, =

The expression for ,m, illuminatesa featureoflife table construction that we have heretofore
suppressed. It showsthat a cohort’s death rate in the interval x to x +n is a weighted average
of the force of mortality function between ages x and x +n. The weights are supplied by the
/(a) function, the number of survivors in the cohort at age a, within the interval x to x +n.
Now suppose that we are observing the age-specific death rate between ages x and x +n in
some population, rather than in a cohort. The population’s age-specific death rate is denoted
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nM,. Given a certain underlying force of mortality function in that population, its death rate

between ages x and x +n will be:®

[27" N(a)p(a) da
M,=

os [2"" N(a)da

 (3.9)

where N(a)da = numberofpersonsin the interval of age a to a + da. A comparison of 3.8

and 3.9 showsthat, even when a cohort and a population have exactly the same j(a) function

in the interval x to x +n, the value of,m, for a cohort subjectto that force of mortality function

may not equal the value of , M, for the population subject to that same function. The reason is

that the (a) function is being weighted by /(a) in the cohort and by N(a) in the population.

There are only two conditions in which we can be certain that »m, = ,M,:

1) (a) is constant in the interval x tox +n: w(a) =p", forx <a<x+n.

In this case, the constant value comes out of the integral sign in the numerators of (3.8)

and (3.9) and: ym, = ,M, = yp".

Substituting this constant value into equation (3.5) gives:

 nPx = fxn = eran (3.10)
lx

Equation (3.10) is, in effect, performing the ,m, — yg, conversion (actually, it is an

nM, — nqx conversion) when mortality is constant in the interval x to x +n. A formula

for ascertaining the value of ,,a, in this case was presented in section 3.2.4. But the step

involving ,a, can be skipped and onecanascertain the value of , L, directly from:

L.= ndx ly —letn
nex — a
 

nM, nM,

2) The other case where ,, M, will always equal ,m, (providing that the j.(a) function is the

same for the cohort and population) occurs when N(a) is proportional to /(a) throughout

the interval x to x +n. Substituting N(a) = k -1(a) into (3.9) gives the same expression

as (3.8). This proportionality condition applies when the population’s age distribution

(N(a)) is stationary in the age interval x to x + n. It will be stationary, of course, when

the preconditions described above for establishing a stationary population are met(or,

possibly, by chance).

The most commonly observed departure from stationarity is that a population’s age

distribution is younger than that of the stationary population produced by the same w(a)

function. Most likely, it is younger because of a history of rising numbersof births or

falling mortality, both of which are manifest in positive growth rates. In contrast to the

first assumption,that j.(a) is constant between x and x -++n, this assumptionofstationarity

does not automatically supply formulas for calculating all other life table functions, e.g.,

ndy and ,L,. One must use one of the procedures described in section 3.2 to complete the

life table.

Becauseneither of these assumptionswill apply in manycases,it should not be an automatic

choice that the ,m, function chosen for a period life table simply be the set of ,M, values

observedin the population. Anomalousfeatures of the population’s age distribution may render

the ,, M, function a poorestimator of ,m,., although within 5-year age intervals the distortions

would rarely be large. One could, of course, simply argue thatthe periodlife table is designed
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to reproduce the , M, function, that , M, is how we chooseto operationalize period mortality

conditions. But a more precise indication of those conditions is given by the w(x) function.

This function cannotbe directly observed becauseit pertains to infinitesimal intervals of age.

But its main features can be inferred from the , M, function,particularly if the latter is adjusted

for age-distributional disturbances.

Keyfitz (1966, 1968a) has been a principal exponentof adjusting , M, before it is incor-

porated into the life table in the form of ,m,. In particular, his iterative life table system

attempts to purge , M, of the effects of population growth. When the population is growing,

the age distribution of the population within an n-year wide interval will be younger than the

age distribution of years lived by a cohort having the same p(a) function. For age intervals

in which the death rate rises with age (usually, those beyond age 30), ,m, will exceed , M,

because thelatter is “biased” downwardsby the population’s youthful age distribution, just

as the crude death rate is reduced by a young agedistribution. Although Keyfitz’s procedure

is a useful advance on earlier ones, the difference that it makes for actual life table functions

computed from data is, just as for other advancesin life table construction, rather small. For

this reason weshall not develop it in detail here. However, nonstationarity typically makes a

larger difference in the highest, open-ended interval and we defer a discussion of how to deal

with it to section 7.8. Table 3.6 showsthe relationship between ,m, and ,,M, and the growth

rate of selected age groups in the US in 1985.

Let us now return briefly to the issue of using an ,a, function that is directly observed in

a population. We have seen that , My is, in general, biased downwardsrelative to ,my in a
growing population. Likewise,it is intuitively clear that ,a,, the mean numberofyearslived in
the interval for persons dyingin the interval x to x +n, is also biased downwardsin a growing
population relative to the equivalent function in a cohort having the same force of mortality
function. Suppose we convert , M, into ,qgx using the formula:

_ n- 7M,

1+ (n — nay) -n7My

 nx

nx Will be biased downwardsbecause ,, M, is too low (the proportionate downwardbiasin the
numeratoris greater than that in the denominator). Now supposethat we choosea value of ,ay
that is directly observed for the sameperiod (e.g., by getting detail on the exact ages at death
for persons dying between ages 60 and 65 in 1996). Since ,,a, itself will be biased downwards,
the denominator will be biased upwards by this choice. The bias in using the observed ,,.ay
values doesn’t compensate forthe bias in using , M,, it exaggeratesit.
The developmentofthe relations in this section was deterministic. For what is often a more

elegant developmentof someoftheserelations using probabilistic reasoning, see Mode (1985),
Hoem (1972), or Chiang (1968, 1978).

Table 3.6: Comparison of»M, and nm, US, females, 1985
 

 

Age nM, nM, Ratio nlx

(1) (2) (2)/(1) (growth rate ofage group

between 1/1/1985 and 1/1/1986)

15-19 0.000466 0.000466 1.0000 —0.001

70-5 0.025997 0.026048 1.0020 0.011

75-9 0.040951 0.041186 1.0057 0.024
 

Data source: Keyfitz and Flieger, 1990.
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3.10 Decomposing a Difference in Life Expectancies

Whenanalyzing changesin life expectancyat birth or studying differences in life expectancy

between two populations, it is sometimes useful to estimate what mortality differences in

a specific age group contribute to the total difference in life expectancy. The estimation

method involves decomposition proceduresthat are not as straightforward as those developed

in chapter 2. The main reason for complicationsis the interdependence among age groups in

the determination of life expectancy. A change in the death rate between ages 20 and 25 has a

direct effect on 50, but it also has an indirect effect on all the , L, above age 25 because of

the change in the numberof survivors at age 25. This latter change will have a biggereffect

on life expectancy at birth when 25-year-olds have a longerlife expectancy.

There are two main approaches in decomposing a difference in life expectancies, a con-

tinuous approach (Pollard, 1982) and a discrete approach (Arriaga, 1984). Although both

procedures are formally identical (Pollard, 1988), Arriaga’s formula is easier to apply to tra-

ditionallife table data. The total effect, , Ay, of a difference in mortality rates between ages x

and x + n on the life expectancy at birth can be expressedas:

i nly Lh Ten i Len
ate | 72 ~ TT + 7 : 2 Pp (3.11)

0 x Xx 0 x x-tn

   

where /,, , Ly and T, are conventional functionsof the life table and where superscripts | and

2 refer to time | and 2 or to population | and 2.

Thefirst term in the right-hand side of equation (3.11),

Ie (nkx _ nbs
Ib \& yh?

correspondsto the direct effect of a change in mortality rates between ages x and x +n, 1.e.,

the effect that a change in the numberof years lived between ages x and x + n produces on

the life expectancy at birth. The second term of the equation,

2 1
Vein (i _2

1 2 2 ,
lo ls [ran

corresponds to the sum of the indirect and interaction effects, i.e., the contribution resulting

from the person-years to be added because additional survivors at age x + n are exposedto

new mortality conditions. For the open-ended ageinterval, there will be only a direct effect,

and the following equation applies:

| (T2 T!
oAr= 4-4 - = (3.12)

WAR L

  

It can be demonstrated that ef (2) — e§ (1) = 2g n Ax.
Equations (3.11) and (3.12) pertain to the decomposition of differences of life expectancy

at birth. The same equations can be used for decomposing a changein life expectanciesat age

a, replacing Ig by J, and estimating , A, for x > a. Box 3.4 shows an example of the method

to decomposing change in e5 among American females between 1935 and 1995. In chapter4,

we will examine how we can further decomposedifferences in life expectancies by calculating

the contribution of various causes of death.
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ef(2)=-(1)== Din Ax

Age x 1935
le

 

 

in life expectancyat birth

aleqi=: Life table functions at timei (oriin populationD

Foal US, females, 1935-95

1995
ly nAx

: pes 3.4“AgeDecomposition DifferencesinceExpectancies at Birth |

oe x? n

e.nee,72 == Life table functions at time2 (oriin population2

eal ri ona)| nxes ne a ane + W2721: Sonibulan of mortality differenceiin age group x

,a oe ee =tox +nto differences |in life expectancyat birth
| 2 1 a |
cooks =ZiG — +) 4 contribution ofmorality differenceiinnopen-ended age grouptodifferences

 

  

1 L193 71935 —_ ; L1995 71995 Percent

0 100,000 96,354 6,332,064 100,000 99.410 7,900,065 3.06 19.5%

1 95,458 377,877 6,235,709 99321 396,947 7,800,655 1.11 7.1%

5 93,887 467,474 5,857,833 99,179 495,676 7,403,708 0.46 2.9%

10 93,174 464,534 5,390,358 99,096 495,275 6,908,032 0.32 2.0%

15 92,613 460,915 4,925,823 98,999 494,459 6,412,758 0.45 2.9%

20 91,681 455,193 4,464,909 98,772 493,254 5,918,299 0.64 4.1%

25 90,341 447,783 4,009,717 98,524 491,863 5,425,046 0.69 4.4%

30 88,746 439,466 3,561,935 98,206 489,996 4,933,183 0.65 4.1%

35 86,997 429,742 3,122,468 97,769 487,383 4,443,186 0.69 4.4%

40 84.847 418,269 2,092,726 97,152 483,743 3,955,802 0.67 4.3%

45 82,368 403,859 2,274,456 96,298 478,583 3,472,059 0.78 4.9%

50 79,012 384,356 1,870,596 95,048 470,679 2,993,477 0.84 5.4%

55 74,539 358,766 1,486,241 93,085 458,397 2,522,798 0.87 5.6%

60 68,688 324,494 1,127,475 90,071 439,689 2,064,401 0.95 6.1%

65 60,779 279,761 802,981 85,504 411,580 1,624,711 0.93 6.0%

70 50,757 223,797 523,220 78,775 372,191 1,213,130 0.96 6.1%

75 38,276 155,169 299,422 69,655 318,738 840,940 0.89 5.7%

80 23,930 89,054 144,253 57,275 248,061 522,201 0.48 3.1%

85+ 12,281 55,200 55,200 41,424 274,139 274,139 0.26 1.7%

Sum

  

 

e Total difference: €9(1995) — e8(1935) =
- Contribution of mortality change before age1 =3.06 years(19.5%of total dieciey

 

79.00-- 63.32=1S.68years”

15.68 100.0%

Data source:: Bell, F.C., A. H. Wade,and S.C.Goss, 1992, Life Tables Jor the UnitedStatesSocial

 

 

SecurityArea: 1900-2080. Baltimore, Maryland,USSocialPepany Administration, Otheeo the

_ Actuary, Actuarial Study No. 107. | . oe
 

3.11 Adaptation of the Life Table for Studying Other Single Decrement Processes

  
A single decrement process is one in which individuals have only one recognized mode of

exit from a defined state. Mortality is one such process. Life tables can be used to study all

single decrement processes. In each case, they describe quantitatively the processofattrition

from a defined state arrayed by duration in that state. Individuals would always enter the
state at duration zero and the cohort entering the state would typically be traced until the last
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memberhad exited. In the case of the “classic” life table that we have developed, the defined

State 1s “being alive” and the mode ofexit is death. The functions of a classic life table are

displayed by age because, in this case, age corresponds exactly to the duration of the state

of being alive. Age is used in a life table only whenit is a perfect surrogate for duration in

the state.

Processes in which there are more than one recognized mode of exit are termed “multiple

decrement processes.” Empirically, multiple decrement processes are far more commonthan

single decrement processes. In fact, for a real cohort, mortality is the only single decrement

process. For any state that we can define other than beingalive (e.g., being single; living in

one’s placeofbirth) one can leave the state by some form ofstatus change(e.g., getting married,

migrating to another place) as well as by death. This additional risk of status change exposes

a person to multiple decrements. None of these additional risks is able to cancel out the risk

of death; a real cohort is always subject to the risk of dying at the sametimethatit is subject

to otherrisks.

Although the apparatus for studying single decrement processes may appear to be very

specific to mortality, there are three circumstancesthat increase its applicability:

1) The multiple sources of decrement can often be collapsed analytically into one

Even mortality can be considered a multiple decrement process if the analyst chooses to

recognize different causes of death. But for many purposes, including the calculation oflife

expectancy, this complication 1s often irrelevant. Likewise, the different modes of exit from

marriage, from the labor force, or from anyotherstate of interest can under some circumstances

be ignored depending on the question asked. For example, we can calculate expected years to

be spentin a firm by a new hire from data on entrancesand exits without distinguishing among

modesof exit.

2) Life histories are often available for surviving members of a cohort

It is very commonin surveys to ask questions about events that have occurred in the past.

These questions are addressed only to living members of a cohort. Although these persons

were subject to the risk of mortality, we can be sure that none of them succumbedto therisk.

Forthese persons,the force of mortality function was,in effect, zero at all prior ages. Therefore,

their progress from one state to another need not be studied by multiple decrement processes

but can be viewed as a single decrement process, assumingthat there is only one remaining

mode of leavinga state.

For example,let us define the state weare interested in as “never married.” Supposethat we

take a survey of 50-year-old women and ask about their marital histories. These women could

have left the state of being “never-married” only by getting married. Thus, getting married

in their nuptiality table would be analogous to dying in the classic life table. The force of

nuptiality function (the rate of first marriage for the never-married population aged x) replaces

the force of mortality function. Other obvioustranslations of life table concepts and notation

in this case are the following:

/, =number of women whoare never marriedat age x.

n Px = probability of staying unmarried in the age interval x tox +n

for a never-married womanaged x.
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-_Example:Bangladesh. cohortof655 jomen aged45-9in1993-4, who all married

 

 

)5 Application of Life TableConstruction toAnalysis,ofMaritalHistories

| beforeeee30.State of interest:“never married”

> oe ® be — z = Ty
 

 

 

 

oeaa== firstmarriages between agesxandx+n oe
->nde=eeofaafirst meeebetween:AESxandxiYn

an ‘yying inue imtseval Gaanpida,nd=senn2)

oAly.=-numberofeneeslivediinnthenever-

 

oe S

&=

 

_ Data source: Mitra, S. N., et al., 1994, BangladeshDemographic aeHealth Survey, _ .|
oSA1993-1994. Dhaka, Bangladesh,National InstituteofFopulauonResearch and Training (NIPORN),::

ndx nax nLx ey

0 5 655 0 0.00000 2.5 3275.0 9202.5 14.05

5 5 655 0 0.00000 2.5 3275.0 5927.5 9.05

10 2 655 119 0.18168 1.0 1191.0 2652.5 4.05

12 3 536 388 0.72388 1.5 1026.0 1461.5 2.73

15 3 148 106 0.71622 1.5 285.0 435.5 2.94

18 2 42 16 0.38095 1.0 68.0 150.5 3.58

20 2 26 13 0.50000 1.0 39.0 82.5 3.17

22 3 13 7 0.53846 1.5 28.5 43.5 3.35

25 5 6 6 1.00000 2.5 15.0 15.0 2.50

CE.1 =Siniberofwomen whoare neverfaredat age1x

  
rariedstatebetween ages x-andx +58
arriedstate aboveage x   

 

 

nLx = person-years lived in the never-married state between ages x and x +n.
O

person aged x./

é, =expected numberof years to be spent in the never married state for a never married

The natural radix of this nuptiality table, /9, is simply the numberof50-year-old women who
are reporting on their first-marriage histories. It is important to recognize that the experience
describedin the resulting nuptiality table (or marriagelife table) pertains only to the surviving
membersof the cohort. This experience may notberepresentative of the full cohort that began
life at age zero, or of the cohort members whosurvivedto age 20. If the surviving membersof
the cohort had, age for age, higher or lower risks of marriage than the members whodied, then
the experience of the surviving members would clearly differ from that of the full cohort. The
biases for many purposes are small and usually must be tolerated because the retrospective
information from surviving membersof the cohort is the only information available. Box 3.5
presents an exampleofa life table for first marriage constructed from a retrospective survey.
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3) Single decrement processes can be modeled for cohorts subject to
multiple decrements

Although a real cohort is always subject to mortality in addition to any other decrementthat is

operating, we can easily perform a thought experimentin which a hypothetical cohort is subject

to only one form of decrement. Actuaries, biostatisticians, and demographers have developed

techniquesto carry out this experiment. These are used to produce what are sometimescalled

“associated single decrementlife tables.” The term “associated” conveysthat the single decre-

ment table is associated with a multiple decrement process. The methods for constructing

associated single decrementtables are developed in the next chapter.

Table 3.7 presents a few examples of the many processesthat can be profitably studied by

meansofa life table. In general, a life table is valuable whenthe risk of leaving a state depends

on the duration of time spentin the state. Without such duration dependence,thereislittle to

be gained by arraying all functions by duration.

The life table apparatus, developed centuries ago, has acquired new salience because of

recent statistical developments. These enable researchers to study simultaneously the dura-

tion dependence of somerisk ofattrition and the influence of identifiable characteristics, or

covariates, on the level of that risk. These procedures, termed life tables with covariates or

proportional hazards procedures, were introduced by Cox (1972) and have been elaborated

by manyothers, including Kalbfleisch and Prentice (1980). A textbook on these proceduresis

Collett (1994).

Table 3.7: Examples ofsingle decrement processes that can be studied by meansofa life table*
 

 

Process State studied State entered State leftwhen... Vertical dimension

when... of the table

Mortality Being alive Born Die Duration oflife

(age)
Nuptiality Being unmarried Born Marry Duration of single

(first marriage) life (age)

Migration from Living in Bom Moveto Duration of

place of birth place of birth another place residence (age)

Entering the Having never Born First enter Duration of

labor force worked labor force life (age)

Becoming a Having no births Bom Havefirst Duration of

mother birth life (age)

Subsequent Not having an Have abirth Have an Duration since

childbearing additional birth additional birth having a birth

Marital survival Beingin intact Marry Marriage ends Duration of

marriage marriage

Unemployment Being unemployed Become Leavestate of Duration of

spells unemployed unemployment unemployment

Incarceration Being in jail Enterjail Leavejail Duration of

incarceration
 

4 All of these processes can also be conceived as multiple decrement processes. Here we ignore otherrisks

of leaving the state of interest.
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Appendix 3.1: Life Table Relationships in Continuous Notation

I(x) =la)e~ Ja HAY forx sa

l X-+Nn— (EM _ oe" wa) da
nPx =

 

 
 

I(x)

X-+n x-+n X-+n

ndx = / I(a)p(a) da = / lxjew fe HOV 4Y (a) da = I(x) / ew ds MO) AY (a) da
Xx Xx Xx

d X-+n

nQx = ex / ows MOY) 4Y 1g) da
I(x)

X

x-+n xX-+n X-+n

nlx = / l(a) da = / I(x)ew dx MO 4Y da = I(x) / eo Sr MOAY gag
XxX Xx Xx

ndsLEayplayda _feeL #0)(a) da
nity Ly per l(a) da yen on fe 0) dy da

[2*" a)playa—x)da 2" WFP HO) 4(aya — x) da
nax = = 7

[2"" l(a) ula) da [20 eH MO) ay (a) da

OO

1.= |
Xx

CO

l(a) da a(x) fel MO) dy dg

X

00 OO

ee = Ie = JeMa) dai(a) da = Jes bey) dy da
* I(x)

Xx

[e Ua)pla)(a — x) da
{e° Ua)p(a)da
 

NOTES

1. In the first chapter, we demonstrated the equivalence of two methods for computing person-years,
one summing time across individuals, one summing individuals across time (figure 1.1). A similar
equivalence exists in computing person-years above age x, either as a sum across age-groups begin-
ning with the age-interval x to x +n or as a sum across individuals. The formula used in table 3.1
computes person-years lived above age x by adding person-years lived within each age-interval
above age x. Alternatively, we could compute the person-years lived above age x for each member
of the cohort and sum across individuals. For example at age 0, Ty is also the sum of the age at death
of all membersof the cohort.
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Since exposure is here measured in person-years, life expectancy is measured in years. If the

time/age dimension ofa life table were months, then ,,L, would refer to person-monthslived and

life expectancy would be measured in months.

Actually, the stationary population modelcan be generalized to include non-zerorates of migration as

long as age-specific rates of migration are constant over time. But we will not pursuethis elaboration.

The argumenthere parallels the one for r(t) in chapter 1. The annualized growth rate, continuously

compounded,refers to an infinitesimal period butis still an annualizedrate as long as time is measured

in years.

Again, note the formal similarity between p(x) in equation (3.4) and r(t) in equation (1.3).

Actually, the expression for , M,.[0, T] 1s slightly more complicated because we can only measure

that rate over a discrete period in which N (a) and (a) do not usually remain constant. So what we

are really observing is rather:

M.[0. T] = Io. er N(a, t)w(a, t) da dt
A ral ’ |= fi pe NC

0 X a, t)dad
t

 

where N (a, t) = numberof persons aged a toa + da at time t tot + dt, and

(a, t) = death rate in the age interval a toa + da at timet tot + dt.

We have simplified this expression by assuming that N (a, f) and w(a, t) do not vary overthe time

interval in which death rates are being measured.

In the case where information is available for the cohort of survivors only up to age 50, and if some

women remain single at that age, e? must be truncatedat that age. So it would beinterpreted as the

“expected number of years before age 50 to be spent in the never-married state for a never-married

person aged x.”
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In the previous chapter, we defined a single decrement process as one in which individuals

have only one modeofexit from a defined state. A multiple decrementprocess is one in which

individuals have more than one modeof exit. As we noted, multiple decrement processesare

far more commonin demography than are single decrement processes. Thesesituationsarise,

for example, in fertility analysis when individuals are viewed as being exposedto the risk

of pregnancy and to discontinuance of use of contraception; in migration, when individuals

are exposed to the risk of moving to different places; in nuptiality, when married personsare

exposedto the risks of divorce and widowhood;and in many other circumstances. And as we

noted earlier, persons in a particularstate in a real cohort are always exposedto the risk of death,

in addition to whatever other risks they may have of leaving that state. Multiple decrement

processes are sometimesreferred to as situations of “competing risks.”

4.1 Multiple DecrementTables for a Real Cohort

Conceptually, the construction of a multiple decrementtable for a real cohort is no more chal-
lenging than the construction of a single decrementtable. It is only necessary to add columns
equivalent to other columnsin a single decrementlife table but which pertain exclusively to
particular causes of decrement(i.e., to particular modesof exit from the table). The functions
in these columnshavea straightforward interpretation:

nd, = numberof decrements from causei in the age interval x to x +7

1 = probability of leaving the table from cause i between ages x and x +n for
someone whoreached age x

— nd /ly



72 MULTIPLE DECREMENT PROCESSES

,, = rate of decrement from cause in the age interval x to x +n

= nds /n Ly

/t = numberof persons reaching age x who will eventually succumb to cause i

© .

__ » } I
~ n 2a

a=x

The /, values in these formulas pertain to the number of cohort members who reach age

x, 1.e., who have survived al/ causes of decrement before age x. Likewise, the , L, column

pertains to all person-years lived between x and x + n by the cohort members who have

survived all causes of decrement. All of the columns customarily found in a single decre-

ment table are also found in a multiple decrement table, where they refer to “all causes of

decrement combined.” Although weare using age x as the basic dimension of the multiple

decrement table for illustrative purposes, it is representing the more general dimension of

duration since entry into thestate.

Note that we have not defined columnsfor ,,L!., T!, ,a/, or e!.. The reasonis that e', (for
whichthe other columnsare needed asinput) does not admitto a straightforward interpretation.

In one sense, it could be “the life expectancy at age x for persons who will succumbto cause

1.” But those who will later succumb to i cannot be identified at age x. They will only be

identifiable at later stages as the competing risks work themselvesout. It is pointless to compute

an expectation for unidentifiable people. A similar problem of interpretation arises in regard

to It, the number of persons aged x whowill eventually exit from cause 7. Butthis is a useful

column becauseit can be usedto calculate /t /l,, the proportion of persons aged x who will

eventually leave the table from cause i. One of its major uses, for example, is to calculate the

probability that a marriage will end in a divorce. The base ofthis proportionis /,, all persons

surviving to age x, and this numberis indeed identifiable by age x. It is when /i is made the

base of a probability or expectation that conceptual difficulties becomeintractable.

Added up overall causes 7, the decrements must sum to the total numberleaving the defined

state:

yond = nadx

l

By our formulasfor ,,m'. and ,,q/, these must also sum to the equivalent function in thelife

table for all causes combined:

 

and
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 (M) 27.42
- (D) 1.22

(M) 17.62
 (D) 59.60

- (D) 0.07

(M) 17.22

(M) 22.47

(D) 16.41 (M) = Marriage; (D) = Death
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Figure 4.1 _Life-lines in the single state for a hypothetical cohort of 10 births; date of birth,
January 1, 1800

Also, since

OO
io ) } i

ly —_ nda»
a=x

oO

~h=yd aia=d, a =, (4.1)
i =x a=x1 a=

The relation in (4.1) simply says thatall of the survivors to age x in the cohort must leave the
defined state from one or another recognized cause of decrement abovethat age.

Figure 4.1 presents life-lines for a cohort of 10 individuals each of whom was born on
January 1, 1800. Thestate of interest is being single, i.e., never-married. Exits from thestate
are to marriage and death,as indicated on the figure. Thelife lines are converted into certain
columnsof a multiple decrementlife table in table 4.1.

4.2 Multiple DecrementLife Tables for Periods

Constructing a multiple decrement table for real cohorts involves preparing a basiclife table
for all causes of decrement combined, and then adding the columnsthat pertain to decrements
from the individual causes. This latter task is simply a matter of recording what has happened.
But very often the analyst wants to draw forth the implicationsofthe intensities of a multiple
decrementprocessthat are recorded during somespecific period of time. Almost always, these
intensities will be represented by sets of decrement rates from various causes, ,Mt So the
basic problem is one of converting these observed rates into the probabilities of exiting the
table from various causes.



Table 4.1: Life table in the single state for a hypothetical cohort of 10 births shownin figure 4.1
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|
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|
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|
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x ly nda nde ndx = ,dy nx nde nx =nIx I. iM nbx

ndy tide

0) 10 | 0 l 1/10 0 1/10 4 6 9.07

| 9 l 0 l 1/9 0 1/9 3 6 32.22

5 8 0 0 0 0 0 0 2 6 40.00

10 8 I 3 4 1/8 3/8 A/8 2 6 70.88

20 4 0 3 3 0 3/4 3/4 Il 3 23.36

30 ] 0 0 0 0 0 0 l 0 10.00

40) l 0 ) 0 0 0 0 1 0 10.00

50 | l 0 | 1/1 0 1/1 | 0 9.60

60 0 0 0
 

 



MULTIPLE DECREMENT PROCESSES 75

In order to make this conversion, refer back to the relation between rates of decrement and

probabilities of decrement for a cohort:

 

I
i nay

nly = L
nbhx

and

l

i _ ndx
nx —_ |

x

Note that, just as in the basic life table of chapter 3, the numerators of ,m!. and ,q/ are the
same whereas the denominators of the former is , Ly and ofthe latter, /;. So we can use the
relation between /, and , Ly derived in chapter 3 to develop a conversion formula. Substituting
(nLx + (n — ndx)nd,)/n for l, in the expression for ,,q!. gives:

m!

x (4.2)
I+ (n — nay)nmy

Ny
 

to
ndx =

This formula for,gp is very similar to formula (3.1) for ,g,. The denominators are identical:
the only difference between the formulasis that (4.2) has ym. in the numerator where (3.1)
has ,m,. The values of yay and ,m,, in the denominatorof (4.2) are not specific to cause i but
are the values pertaining to all causes of decrement combined.

It is commonto write the rate of decrement from causesotherthan i in the age interval x to
x +nas nm! . S80 ,7My = jm. + nm! . Inserting this relation in formula (4.2) gives:

l

nde = Ants (4.3)
1+ (1 — nax)(nmy + nmx’)

 

Now the competing nature of the multiple decrements comesinto full view. Holding constant
,im'., the higheris nm," in (4,3), the lowerwill be n7x- In other words, given a certain death
rate from cancerin the age interval 65-9, for example, the proportion of 65-year-olds who die
from cancer between ages 65 and 70 will be lower the higherare death rates from othercauses.
Thereason for this dependenceis that, when ,,m{' is higher, moreof the potential victims of
cancer will be carried off by other causesin the ageinterval. Because of this dependence, nde
is commonlyreferredto as a “dependent probability.”
Does this dependence mean that when the death rate from other causes declines the death

rate from cancer must rise? Notat all. This commonconfusion results from a mistaken view
that the rates of decrement are necessarily dependent on one another, that “people must die
of something, after all.” But nothing requires that the rate of cancer death per person-year of
exposure be increased whenother causes decline. Whatis clear is that the number of person-
years of exposure to the risk of cancer deaths will increase when other causes decline, so
that the number of cancer deaths will increase. Given the same number Starting out an age
interval (/,), the numberof deaths from cancer, and hencethe probability of cancer death, will
be increased in the interval. The necessary relationship that governs the multiple decrement
processrelates not to the rates but to the probabilities; all persons starting life must die of
something, andif the probability of exiting from one cause declines, the probability of exiting
from some other cause(s) must increase.
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Formula (4.2) for ,g! will provide a straightforward way of converting ,m'. to ,qi and

thereby completing the multiple decrementlife table. However, it is unnecessarily tediousto

implement. Note that, by dividing ,,qg). by ngx, we get:

I I 1
ndx _ nay _ nin,

ndx ndx nny

   

So:

i
1 ny _

ndx = n&qx- d. = nx °
nax nx

i
nity 

Once we have computedthelife table for all causes combined, we can simply take the ,qx

series from that table and apportionit to various causes of decrement accordingto their relative

rates of decrement, since the probabilities are in the same ratio as the rates, or the recorded

decrements, themselves.

So the steps for constructing a period multiple decrementlife table are the following:

a) Compute a life table for all causes of decrement combined. The basic ingredientin this

table is

__ y } l
nm, —_ nly,

I

the rate of decrement from all causes combinedin the age interval x to x + n. The usual

procedure consists of assuming for each cause that Mi = ,m'. (which also implies

nMx = nmx), where ,Mf is the observed decrement rate from cause i between ages x

and x +n in the population. This must be converted to ,gx, as described in chapter3.

b) Compute the probability of exit from cause i in the age interval x to x +n as:

l
x a n

ndx = nx °
ny

Note that if we have accepted , M! = ,,m!., then the relationship becomes:

i l
1 nM, _ nD

n4x = n@x* Ty = Wx °
nM, nDx

 

where ,, D! is the observed number of decrements from cause i between ages x and x +n

in the population and ,, D, is the observed numberof decrementsfrom all causes combined

in the interval.

c) Compute the number of decrements from cause i in the age interval x to x +n as:

i I
nay = nx ‘Ly

d) Compute the number of persons aged x* who will eventually leave the table from

cause 1 as:

OO
bo ) I
Ls ~— nay

x=x*
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Data source: National Center for Health Statistics, 1996, oS

 

Age x nDx nD. ly nx nWi nd, l
All deaths Deathsfrom

neoplasms

0 15,758 63 100,000 0.00783 0.00003 3 21,205
1 3,169 275 99,217 0.00168 0.00015 14 21,201
5 1,634 268 99,050 0.00092 0.00015 15 21,187
10 1,573 217 98,959 0.00090 0.00012 12 21,172
15 3,955 318 98,870 0.00236 0.00019 19 21,160
20 4,948 467 98,637 0.00262 0.00025 24 21,141
25 6,491 856 98,379 0.00314 0.00041 41 21,117
30 9,428 1,924 98,070 0.00425 0.00087 85 21,076
35 12,027 3,532 97,653 0.00584 0.00171 167 20,991
40 15,543 5,958 97,083 0.00818 0.00314 304 20,823
45 19,264 8,434 96,289 0.01330 0.00582 561 20,519
50 25,384 11,673 95,008 0.02095 0.00963 915 19,958
55 37,211 17,078 93,018 0.03371 0.01547 1,439 19,043
60 59,431 25,263 89,882 0.05155 0.02191 1,969 17,604
65 88,087 33,534 85,249 0.07669 0.02920 2,489 15,634
70 114,693 36,695 78,711 0.11552 0.03696 2,909 13,145
75 143,554 36,571 69,618 0.17427 0.04439 3,091 10,236
80 164,986 30,220 57,486 0.27363 0.05012 2,881 7,146
85 320,578 32,739 41,756 1.00000 0.10212 4,264 4,264

All I 047,7114 246,085 21,205

 

  Proportion of female newboms that will| eventuallydiefromneoplasms underthe US age-cause-specific
death rates of1991: 21, 205/100, QO00=212%

- Proportion of females who surviveto age 75that willdiefrom neoplasms: 10, 236/69,618==14T%o

 

 

Box 4.1 presents several columns for a multiple decrement life table for US females in
1991, using the /, and ,q, columnsfor the “master” life table in the US in 1991. Thestate
of interest is being alive and decrements from that state are attributed to neoplasms (cancer)
and all other causes of death. The chance that a newborn would die from neoplasmsis 0.212
(21,205/100,000).
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4.3 Some Basic Mathematics of Multiple Decrement Processes

Recall that in chapter 3 we defined the force of mortality as:

w(x) = lim pm,
n—>0

Wecan correspondingly define the force of decrement from cause / as:

w! (x) = lim ym
n—0

The force of decrement from cause i at age x is simply the rate at which personsare leaving

the defined state from causei in the tiny interval of age from x to x + dx. It is an annualized

rate because its units are numberof events (i.e., decrements) per person-year of exposure.

Since, with k causes of decrement,

My + m2 +--- +m‘ = nMx,

as we take the limit of both sides as n approaches zero we must have

p(x) + WP (a) + + BE) = BO)

where (x) is the “force of decrement from all causes combined.” The force of decrement

functions from various causes are additive and their sum equals the force of decrement from

all causes combined as long as we define the set of decrements to be mutually exclusive and

exhaustive (i.e., we haven’t left any out and we haven’t counted any decrements twice).

Weasserted in chapter 3 that one of the most important relations in demographyis:

nD wer deBODAY

In a multiple decrement process we can express w(y) as the sum of w! (y) overall 7, so that:

ofwy)+u(y)+t(dyx =enp

nSWOoddy oSBOdy oo eo LO wh) dy

Or,

nPx = AD. BPy AP

where

ph =e deMOY (4.4)

is the probability of remaining in the defined state during the interval x to x +n if only

decrement i were operating.

Equation (4.4) says that the probability of remaining in the defined state between x and

x +n when manycausesare operating(i.e. the probability of surviving all decrements) is the

product of each of the probabilities of remaining in that state if individual decrements were

acting alone. The analogy to coin-tossing is obvious. If we define an event as tossing a head,

then the probability that no event will occur in three tosses is the product of the probabilities
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than no head will appearon eachofthe three tosses: 0.5 -0.5-0.5. This multiplicative property
pertains only when the outcomesofthe three tossesare statistically independent: when one
outcome does not depend on the others. Clearly, the assumption of independence hasalso
slipped into our derivation of (4.4). It entered at the point where we defined membersofthe set
of decrements to be mutually exclusive and exhaustive. Thatis, the process of assignmentof a
cause to each particular decrement created a set of wholly separate and “independent”entities.
That thesestatistical entities are independent — admit no overlap or combinations or Synergistic
relations — does not mean that the underlying processes that they represent are independent.
For example,it is very likely that an increasein the incidenceof influenza in a population will
raise death rates from certain cardiovascular diseases as well as from influenza. But whatever
this synergistic relation among disease processes, the data will always cometo the analyst in
a set of cause-of-death assignments in which influenza and cardiovascular diseases are tidily
separated; equation (4.4) will continue to hold.

Other functions in the life table from all decrements combined can be similarly expressed
in terms of the various force of decrement functions by substituting pw! (x) + w2(x) +--+. +
wk (x) for w(x) in the corresponding continuous notation formula (see appendix 3.1). For
example:

OO OO

e = / en Jo Ba)dayg, / ew Ip (wl (a)-+p7(a)+--+pk (a) daay

0 0

In addition, functions from single decrementi can be derived by noting that deaths from cause
1 over a small age interval da are /(a)w' (a) da. Then:

X-+n

 

~ dif?" Ya)pi (a) da i |
pi mex _ ek — ~ Je BOY i

XxX

X-+n

— / eIIMOtO)t-+HOEYNig) da

Xx

“nd SMeMOMpiCaracX

nly per en Je BOYga
 e

o

fOr? om Lele O)+WO)++mMOdyWig) da
per ew Se EEO)+WO)++Bdy aa

The formulafor,,gf showsagain whythe probability of succumbing to causei in a discrete age
interval depends uponthe valueof other decrements; the higheris any other force of decrement,
the lowerwill be ,,q/.
The formula for ,,m!. shows thatits value is also “dependent” on the force of decrement

from causes other than i. However, the direction ofthis dependenceis not predictable, since
both numerator and denominatorincludethese terms.

In a cohort, the age composition ofperson-yearslived in the age interval x to x-+n will depend
only on the /(a) functionin thatinterval, i.e. on yw! (a)+ p- (a)+-+-+ wk (a)forx <a <x-+n.
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For a population at a momentin time, the age composition, N (a), depends not only on those

force of decrement functions but also on the preexisting age composition of the population.

So the mortality rate from decrement 1 between age x and x +n observed in the population,

,M... will be:

f2" Nai(a) da
[2"" N(a) da
 

a
nM, =

X-+n

= | c(a)p!(a) da (4.5)

where c(a) is the proportion of the population aged a to a + da within the age group x to

x +n. Asin the case of the basic life table, it need not be the case that , M' in a population

equal ,,m', in a cohort with the same force of decrement functions from 7 and —i. But, as in

the case of the basic life table, it is common to assumethatthe life table ,,m'. in a population

equal ,MLjin the population (for an exception, see Preston, Keyfitz, and Schoen, 1972).

4.4 Associated Single Decrement Tables from Period Data

Associated with each decrement i in a multiple decrement process is a force of decrement

function, w! (x). Very often the analystis interested in knowing what a life table would look

like if only that cause of decrement were operating to diminish a cohort. The life table that

results from asking this question is called an associated single decrementlife table (ASDT).

The decrement weare interested in may equally well be —i (all decrements other than 7). If

a table is constructed based on yw! (x), it is sometimes called a “‘cause-deleted” table, since

cause i has been arbitrarily deleted from the set of multiple decrements. Such a table would

still be considered an associated single decrementtable since cause —i can be considered one

of two decrements — along with i — in a multiple decrement process.

Almost always, the activity of a particular decrementi will be observed as it worksitself out

within a multiple decrement process. Normally, we don’t observe directly associated single

decrement processes: processes in which one decrementalone is operating. The construction

of an associated single decrementtable therefore involves a thought experiment in which we

ask “what would happen if ... ” In an associated single decrement table for a period,this

feature involves an additional layer of hypothesizing beyond that involved in constructing a

hypothetical cohort.

We denoteall functions of an associated single decrementtable with a as a superscript on

the left. It is easy to specify what the functions in an associated single decrementtable should

be in terms of wp! (x). They are the same functions defined for the basic life table in chapter

3. The formulas of appendix 3.1 can readily be adapted for these functions, by replacing

w(x) by w! (x). Equation (4.4) expresses the formula for ;, pl, the probability of surviving

from age x to x +n in an associated single decrementlife table where cause 1 is the only

decrement.

It is not necessary to repeat all these formulae but it might be useful to review the three

types of functions encountered so far. Functions involving all decrements combined are

obtained by computing both survivors and deaths with p(x) = pi(x) +--+ pK(x). Sim-

ilarly, associated single decrement functions are obtained by computing both survivors and

deaths with w'(x) alone. Functions referring to one of the decrements in a multiple decre-

mentlife table have a “mixed”structure since survivors to any age must be computed with

the w(x) functions whereas deaths from cause i must be computed using p! (x). For example,

66K 99
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compare:

x+n

ndy = I(x) / eo Ie BO) 4 (a) da
x

X-+n

dt —* [' (x) / ode bY) dy ni (a) da

xX

X+n

d' = I(x) / ew Ie BO) 4y(a) da

Xx

Although we can readily define associated sinelt decrementfunctions in termsof w! (x), we
cannotdirectly observe ju’ (x). We can observe ,,m'‘, in a cohort (or ,M,‘ina population). Butit
is important to note that the value of ,, Mt' we observe when multiple decrements are operating
to generate the observation would not typically be the same value we would observe if only
decrement i were operating. We observe ,,m‘, in a cohort but we need *yim. for the ASDT:

_ LeeBOOni @)da
[20 ea Ie MOD AY ga

pfekBOMB a@)da
mM, = -

pen end MOAY da
X

 

 whereas=
%

e
e
™
-

nox

In general, the rate of decrement from pw'(x) if i were the only decrement (ns ) differs from
whatit would be if i were working in the presence of other decrements (,,m'.). Since at all
ages (a) > w'(a), the age-distribution of person-years lived in the interval is older when a
single decrementis operating than when multiple decrements are operating. This weighting
differential raises 7m‘. relative to ,m'. if pw! (x) is rising in the interval. If we use conventional
procedures, we will already have ‘accepted the , M..' function to estimate ,m;, in the multiple
decrementtable. How can wethen turn aroundand say that we want to reproduce that same
nM. functionin the associated single decrementtableto estimate *m'. ? But if we don’tstart
with 7M , where do we begin?

There are several solutionsto this dilemma,none of them completely satisfactory:
(a) Ignore the disparity between ;,m', and ,,m\.. The disparity is produced bya process exactly

analogousto the age distributionaldisturbances that can produce a disparity between ,m, and
nM, even whenthe force of mortality functions are the same in a cohortas in a population. We
have generally ignored this latter disparity in producing

a

basiclife table, so we might do the
same in moving from a multiple decrement table to an ASDT.In this case we would proceed
as in chapter 3 for the basic life table. The ,,m, — nqx conversion would be:

 

KOT a l
nin, ~~ nM, ~ nil,

and

l
*g! _ M+ pM,

T+(n = fab)am'
The remaining problem oflife table construction is then to adopta set of * ' values, a prob-
lem which could be solved by procedures similar to those outlined in chapter 3. Graduation
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procedures becomerelatively more attractive since “borrowing” *aal. functions from other

populationsis difficult (practically none are published) and hazardous.

Procedure (a) risks committing relatively large errors in some circumstances. In cause-

of-death life tables at high ages (say, above 65), mortality is high from many causes and is

rising rapidly with age. The changesin age structure induced through the thought experiment

performed in producing an ASDT can berelatively large if the causes deleted have high

death rates. So fairly substantial changes can be inducedin the death rates from remaining

causes.

However, when the causes deleted in the ASDTare relatively minor, this approach should

work quite well because the age structural changes induced bythe deletion within 5-year-wide

intervals could not be very large.

(b) A second solution is to make the assumption that the force of decrement function for 1

is constant at some value y in the interval x to x +n. By substituting y for the w! (x) function

in the expressions for *m‘, and ,m'. we find that m‘. and ,,m‘. are both also equal to y. So in

this case, ,m', = «mi = _M!. Ifthe force of mortality function jis constant with age in the
interval, then‘the rate of decrementiis undisturbed by any agedistributional changes induced

by deleting a cause. Also, if the force of mortality function is constant in the age interval at

m'_, then:

* yt _ onde vm. dx __ ootnM,

*]! __ x To
epi x x +n

_ nMy
and the rest of the table can be readily completed.

This procedureis logically consistent and simple to apply. When the assumptionis tenable,it

is the preferred approach. But the assumptionis rarely very satisfactory unless the age interval

is small.
(c) A third approachis proposed by Chiang (1968). Assumethat the force of decrement func-

tion from cause i is proportional to the force of decrement function from all causes combined

in the age interval x to x +n:

w!(a) — R'. w(a) forx <a<x-+nN,

where R’is the constant of proportionality for decrement / in the interval. This assumption,of

course, meansthat ’ (a)and ' (a) have exactly the same shape between ages x and x +n,

although their levels will generally differ. Since, by assumption,

. xX+n | XA ;
* — f° ‘(a)da _ ,— |. R'-pla)da*pi =e fo" pada _ 6 J, (a)

then

. ji fX+Hn X+H R;
ei Rf" pla)da _ ,— Je ela) da
nPx ~ =e :

R'

= [npx]

So in this case, the , py function in the ASDTbears a simple relation to the » px function in

the “parent”life table for all causes combined. It is equal to the , py in the parent life table

raised to the power &;.
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Furthermore, by the assumption of proportionality, the value of R; in the interval will
simply equalthe ratio of the observed decrements from cause i to the decrementsfor all causes
combined:

nD fe" N(a)R' pla) da _

nDy ——[**" N(a)p(a) da
Xx

i
 
 

So makingthis substitution for R! gives:

 nDx
nA DxKOE

nPx = nPx

This ingenious device solves the »m, —> ng conversion problem in producing the ASDT.
However,it does not tell us what value of *,mt should be usedin thelife table or, what amounts
to the samething, whatvalue of *a‘ should be used. Noris there any obvioussolutionto this
problem. In the official US cause-of-death life tables of 1959-61 (NCHS, 1968), which used
this approach, the values of *a!. were set equalfor all i to ,a, in the parentlife table. But a
moment's thought suggests that, with the same shape ofthe force of mortality functions as for
all causes combined,a life table that reflects the operation of a decrement with higher values
of ! (a) in the interval will have a younger age distribution of person-years lived and hence
a lower value of jax. In fact, by the Chiang assumption, the ,a, value in the parentlife table
mustfall short of the *a!. values forall i.
The mostsatisfactory approachtoestimating *au is probably to graduate the eat function in

successive intervals and infer the value of *a!. from the general conformation ofthis schedule,
similar to an approach suggestedforall causes (section 3.2.2). Ifwe assumethat the distribution
of deaths from cause i follows a quadratic function over the age interval x — 5 to x + 10, then
the simple graduation formula for data tabulated in 5-year age or duration intervals is:

5. 5
——*q! +2.5%*dq' + —*q!. 5 x—5 5 5 x+5

tqi = 24° * “24° * (4.6)* 71
54,

 

Noiteration is required in this case because the *d' function is directly calculable without
knowing <avl
An approachthat is adaptable to intervals of irregular length is to approximate the value of

ax by interpolation between two extreme situations. The first one is when there are no deaths
from cause i in that age interval. The average numberof years livedin the interval by those
dying from causei, eql , 1s then undetermined, but clearly the numberofyears lived in the
interval by thosealive at the beginning of the interval must be n. The other extremesituation
is whenall deathsin the age interval are from causei. Then, the average numberofyears lived
in the interval by those alive at the beginning of the interval must be the same in the ASDT
andin the parentlife table. Since R! represents the proportion of deathsin the ageinterval due
to cause i, the two extremesituations correspond to R' = 0 and Ri = | respectively. In the
intermediate cases, we can interpolate between these extremes:

me _ Ri nlx 47
Toy" (»- a) 4.7)
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In both the ASDTandthe parentlife table the following relationship must hold:

nlx
I(x)

=n — (N— pdx) + n|x

 
N+nPx tnx * nx

So equation (4.7) can be written as:

nx

«1
nx

 *q! —=n+ R'

=

(nay —n) (4.8)

This equation can also be derived through a Taylor expansion.

Whichof the general approachesto constructing an ASDTshouldbe usedin any particular

application obviously depends uponthenatureofthe data and tenability of assumptions. Elandt-

Johnson and Johnson (1980) have compared several of these approaches and concluded that

results are not very sensitive to the procedure used, as should have been anticipated on the

basis of the discussion in chapter 3. If the interval n is short, approach (b) is best since it

is completely consistent and fully developed. If one is constructing cause-deleted tables in

whichrelatively small causes of decrement are deleted, then approach (c) is best because the

assumption of proportionality must be very good (the decrements that remain are a very high

proportion of total decrements to which they are assumed proportional). In other situations,

convenience may dictate the approachselected.

Box 4.2 presents an associated single decrement table for causes of deaths other than neo-

plasms. It is based upon the data for US females in 1991 that were presented in box 4.1. The

table is constructed by Chiang’s method (approach c), with the ay' values developed by

graduation (equation 4.6) for x = 10 to 75, and using equation (4.8) for x = 0, 1, 5, and 80.
: *pl _ i: * 1:

For the last age group, we use here the assumption that ;m!, = ,m),, in which case .dg¢ 1s

simply e¢./ R7!. In chapter 7, we will investigate how to obtain a better estimate of Solgs:

The table showsthat, in absence of neoplasms,life expectancy at birth would have been 82.46

years, a gain of 3.54 years relative to the life table with all causes present.

4.5 Cause-specific Decomposition of Differences in Life Expectancies

In section 3.10, we presented a methodfor estimating the contribution of age-specific mortality

differences to differences between two life expectancies. This method can be easily extended

to estimate the contribution of differences in cause-specific death rates by assumingthat the

distribution of deaths by cause is constantwithin each age group in each population. Underthis

assumption,the contribution of differencesin all-cause mortality in a specific age group can be

distributed proportionately to the difference in cause-specific mortality in the corresponding

age group (Arriaga, 1989). The specific contribution of differences in mortality rates from

cause i between ages x and x +n,,, A‘ , can be estimated with the following equation:

- ,m(2) — ,m'.()
nx “pm(2) — nmx (1)

RE (2) » nm(2) — p REG) + nm)
nM, (2) _ nm, (1)

 

(4.9)
 



 

5Box.42Aeseceted SeleDevsent Life TableforCausesofDDeath
SMicdigtesvviasee 0)

.os
AonPe:nde&,=“functionsiin themasterlifetable

te=-Inpsl®Ce

=oeoo-
ny calculated from Shuaion (4.8)fforax== 0, 1,5, 80.

_ from equation(4. for,x:==10 to75

ES Sotasace2
OOiS= 3ke

 

Age x

Example: US, females, 1991; causei . neoplasms

 

 

  
ly n Px nax e pel “Ty! nx “ex!

0 0.99600 100,000 0.99217 0.152 78.92 0.99220 100,000 0.152 82.46
] 0.91322 99,217 0.99832 1.605 78.54 0.99846 99,220 1.605 82.10
5 0.83599 99,050 0.99908 2.275 74.67 0.99923 99,068 2.275 78.23
10 0.86205 98,959 0.99910 2.843 69.74 0.99922 98,992 2.875 73.29
15 0.91960 98,870 0.99764 2.657 64.80 0.99783 98,915 2.653 68.34
20 0.90562 98,637 0.99738 2.547 59.95 0.99763 98,700 2.548 63.48
25 0.86813 98,379 0.99686 2.550 55.10 0.99727 98,467 2.577 58.63
30 0.79593 98,070 0.99575 2.616 50.26 0.99661 98,198 2.585 53.78
35 0.70633 97,653 0.99416 2.677 45.46 0.99587 97,866 2.582 48.96
40 0.61668 97,083 0.99182 2.685 40.72 0.99495 97,462 2.637 44.15
45 0.56219 96,289 0.98670 2.681 36.03 0.99250 96,969 2.672 39.36
50 0.54014 95,008 0.97905 2.655 31.48 0.98863 96,242 2.695 34.64
55 0.54105 93,018 0.96629 2.647 27.10 0.98162 95,148 2.703 30.00
60 0.57492 89,882 0.94845 2.646 22.95 0.97003 93,399 2.695 25.51
65 0.61931 85,249 0.92331 2.631 19.05 0.95178 90,600 2.696 21.22
70 0.68006 78,711 0.88448 2.628 15.42 0.91991 86,231 2.686 17.16
75 0.74525 69,618 0.82573 2.618 12.09 0.86701 79,325 2.676 13.42
80 0.81683 57,486 0.72637 2.570 9.08 0.77017 68,776 2.637 10.07

0.00000 7.283
85

: Probability 6of surviving to age 85 for all causescombined: 0.42

0.89788 41,756 6.339 6.54 0..00000

Probabilityofsurviving to age 85 in the absence of neoplasms:0.53°
_ Lifeexpectancyatbirth for all cause combined: 78.92 years.
: Life:expectancy at birth in the absence of neoplasms: 82.46 years. oe

.Data source: NationalCenter for Health Statistics, 1996.

52,969 7,28
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where

h Rt (j) = proportion of deaths from cause i in age group x tox +n (, Dt /, Dx) in population

j (or at time j), and

Ay =contribution of all-cause mortality differences in age group x to x +n to differences

in life expectancies, as expressed in equation (3.11)

It can be easily shownthat

rac= Donde and ef2)— eG) = Tnde = Dad
i x xj

The age- and cause-specific contribution to differences in life expectancies can thus be pre-

sented in a two-by-twotable where the elementary contributions add upto the total difference in

life expectancies. Box 4.3 presents an application of the age and cause decomposition method

to analyzing the difference in male life expectanciesat birth between China and India in 1990.

It shows that about 68 percent of the 8.2 additional years oflife expectancy at birth in China

is attributable to lower rates of communicable diseases below age 5 in this country. However,

the total difference in e5 is reduced by about one year due to lower rates of noncommunicable

diseases in India in 1990.

4.6 Associated Single Decrement Tables from Current Status Data

Wenoted in chapter 3 that a restricted associated single decrement process can be directly

observed when cohorts are asked about their eventhistories. Since the membersof the cohort

who respond in the survey have clearly had a force of mortality function of zero, we need

not view them as subject to a multiple decrement process. Therefore,it 1s possible to proceed

directly to the construction of an ASDTfor the process under investigation. The only restriction

on the kind of functions that can be displayed will result from limitations in the data. For

example, a question might be asked on “what was your marital status five years ago,’ rather

than the more complex set of questions needed to construct a complete marital history. From

the 5-year question, it will be possible to estimate 5 pv , the probability that a person who was

aged x five years earlier (i.e. who is aged x + 5 at the time of survey) will have remainedsingle

to the time of the survey. But no information will be available on tay . It should be reiterated

that tables constructed from such datawill pertain only to the surviving membersof the cohort

who did not emigrate. Their force of decrement function may differ from that of the original

membersof the cohort.

Such applications require retrospective questions. John Hajnal (1953) was apparently the

first to recognize that certain ASDT’s could also be constructed from current status data.

In particular, he proposed that an associated single decrement table for first marriages be

constructed from data on the current marital status of the population, without any resort to

retrospective questions. In our example,the proportion never-married at age x, which can be

obtained by question on current status in a survey, is closely related to the /, column of the

birth cohort’s ASDT. Underthe assumption that there is no differential mortality or migration

by first-marriage status, the /, column of the cohort’s ASDT(with a radix of one) will exactly

equal the proportion single at age x.

To see this more formally, let us assume the population to be closed to migration. Then the

force of decrement from all causes combinedfor the single population at age x will be:

we (x) = pPS (x) +p (x),
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: Box 4.3 Ageand Cause Decomposition of Difference in Life Expectanciesat Birth

- nm.), nm12)=all-cause mortality ratebetween ages xand x +n at time | and time2
— (or in population 1 and 2) oe —

| np R,(1),»Ry (2) = proportion of deathsfromcause i between ages x and x + n at time |andtime 2
—(or in population1 and2) ee ee

_ nAx = contributionofall-cause mortality differences in age groupx to x +. to differencesin ef
_____ (fromequation 3.11) - :  .

See
: nM(2) — ,m,(1) a

Example: India and China,males, 1990*

 

Age x India China nd, ,AlL Az A3

nx rR nRe nRy | ninx nRy rRe nRy

 

 

 
0 0.0267 0.882 0.073 0.046 0.0084 0.677 0.174 0.149 5.6 5.5 0.1 —0.0
5 0.0025 0.504 0.188 0.309 0.0009 0.174 0.337 0.488 0.8 0.6 0.1 0.2

15 0.0021 0.382 0.223 0.394 0.0015 0.068 0.380 0.552 03 04 —-0.1 —0.0
30 0.0043 0.429 0.315 0.257 0.0028 0.101 0.573 0.326 06 06 —0.1 0.1
45 0.0139 0.304 0.592 0.104 0.0102 0.095 0.796 0.109 0.8 0.7 0.0 0.1
60 0.0388 0.248 0.722 0.030 0.0342 0.070 0.879 0.051 0.3 05 —-0.1 —0.0
70 0.0929 0.247 0.728 0.025 0.1003 0.084 0.877 0.039 -0.3 0.7 —09 —0.1
Sum 8.2 90 —1.0 0.2

*In this example: a
|

Cause 1 = Communicable diseases, maternal,perinatal andnutritional conditions;
Cause 2 = Noncommunicable diseases: |
Cause 3 = Injuries. |
ee ee a

_ Total Difference = e5(China) —e((India) = 66.5 — 58.3 =8.2 years= )) )> AL
x=0i=1

Datasource:Murray, C. J. and A. D. Lopez,1996. The GlobalBurdenofDisease: A ComprehensiveAssessmentof—| MortalityandDisabilityfrom Diseases, Injuries, andRisk Factors in1990andProjected to 2020. Boston, HarvardUniversity, Schoolof Public Health, —  
where w(x) is the force of mortality at age x for the single population and w™ (x) is the
force offirst marriage (defined of course only for the never-married population). By relations
developed above, the numberof single personsin a cohort at age x, S(x), will be found by
cumulating the forces of decrement:

S(x) = S(O) - y po = S(O). e7 oH@da

— §(0)- e~ Jo [»* @)+n™ (@)] da

where $(0) is the number who were Single in the cohortat birth.
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The total population aged x in the cohort, N(x), can be similarly derived as:

N(x) = N(O)e~ fo Hede

where p.?! (a)is the force of mortality function for the total population at age a. Now form

the ratio of the single to the total population at age x:

Xx

S(x)  S(0)-e7 Ip (we?(@+n™ @)] da
  

N(x) N(0) -e7 fo HPT @) da

— pe. {5 (we! @+(s (a)—w?" (a)] da (4.10)

since §(0) = N(O). This expression includes a term in [w?S(a) — pw? l(a) ], the difference

between the force of mortality functions for the single andtotal populations. If we assumethat

this difference is zero at all ages — there is no differential mortality by marital status — then:

S(x) — fe M
— = 9 (a)da _ * M 4.11

N(x). xPO (4.11)

where > Pi is the probability of remaining in the single state between ages 0 and x in the

cohort’s ASDT,based ontheforce offirst marriage alone. So we see a very simple connection

between an observed proportion single for a cohort at age x, S(x)/N(x), and the ASDT for

that cohort.

If the assumption of nodifferential mortality by marital status is wrong, then S(x)/N (x) is

biased as an estimatorof the cohort’s > Po . Supposethatthe death rate for the single population

exceeds thatof the total population at some orall ages. Then S(x)/N (x) will be biased as an

estimate of * pi’ by the factor:

Xx

exp

|

—| [nP5(a) — nTa) da
0

The proportion single at x will underestimate the probability of remaining single in the cohort

ASDTbecause single persons have higher mortality; a smaller fraction of them will have

survived to report their marital status in the survey. Nevertheless, 5(x)/N(x) is an unbiased

estimate of*Py for the cohort members whosurvived.

A single-round survey asking about current maritalstatus thus yields one pieceofinformation

about the ASDTfor each cohort interviewed. But suppose we can assumethat the force of

nuptiality has been constant over time. Then each cohort would trace out the same history as

every other cohort and features ofthat history could be inferred by comparisonsacross cohorts.

This is the logic of Hajnal’s procedure.

Hajnal’s methodis typically applied in 5-year age intervals. Define the proportion single

(i.e., never married) at ages x to X+5 as:
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The person-years lived in the single state below age 50 could then be estimated by adding up
successive values of 5T1, and multiplying by 5, the numberof years the cohort will spend in
each ageinterval:

45

PY* (0,50) =5- 2 sx
x=0,5

This value could serve as an estimate of the mean ageat marriage for the hypothetical cohort
except that not all membersof the cohort will have married by age 50. Hajnal estimates the
proportion who will not marry by age 50 as:

1
II(50) = 5 (5I]45 + 51150)

He then calculates the mean age at marriage over the base of those who doin fact marry by
age 50:

5 Po5 sly — 50 - 11(50)
SMAM =

l — I1(50)
 

Those not marrying are excluded from the denominator andtheir person-years lived in the
single state below age 50 are excluded from the numerator. SMAM is called “the singulate
mean age at marriage,” becauseit refers only to marriage occurring to the single population.
Box 4.4 illustrates the computation of SMAM for Turkish males in 1990.
The value of SMAMis the mean ageat first marriage for a cohort of women (or men)

who marry by age 50. Its computation from current-status data in a single census or survey
assumesthatfirst marriage rates have been constant over time andthat differencesin mortality
or migration rates by marital status are negligible. If rates have been changing, the value of
SMAMis a hodge-podgeofratesin the recent anddistant past. Nevertheless, because it requires
only a censustabulation of marital status by age,itis the only measure of marriage age available
in manyhistoric populations.

Although wehave illustrated the concept of deriving ASDTsfrom current-status data with
examples drawnfrom first marriage, the procedure can be applied to a wide rangeofprocesses.
Amongthese are the process of becoming a mother, of moving from place of birth, of ever
using contraception, of becomingsterilized, entering school, entering the work force, and other
processes. The proportion of a cohort who have remainedin

a

state is clearly a product ofits
cumulative rates of leaving the state, as shown in equations (4.10) and (4.11). Current-status
data are notas informative about the timing of events as vitalstatistics or retrospective survey
data. But they can be informativeif interpreted correctly, and sometimes they are the only data
available.

4.7 Stationary Populations with Multiple Sources of Decrement

In section 7 of chapter 3, we introduced one of the two mostbasic models in demography,
the stationary population model. Recall that a stationary population would result from the
maintenanceof three conditions: a constant flow ofbirths per unit of time; a constantset of
age-specific mortality rates; and zero net migration ratesat all ages. Let us now extend the
assumption about mortality rates to include constancy of age-specific risks from each of the
multiple sources of decrement. Since we have already shownthata stationary population with
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Box 4.4 Associated Single Decrement Tables from Current-status Data: Calculation

of Singulate Mean Age at Marriage

s5N, =Total population aged x tox +n

 

 

 

 

 

 

  

5S, |= Numberof single persons aged x tox +n

S
sl, = OPE proportion single at ages x tox +n

5 Nx

11(50) = 5fl45 + 5150
2

SMAM=> yeesly — 50+ 11(50)
1 — 11(50)

Example: Turkey, males, 1990

Age x 5 Nx 5 Sx 5 TT

0 3,052,255 3,052,255 1.000

5 3,541,409 3,541,409 1.000

10 3,560,900 3,560,900 1.000

15 3,165,061 3,030,203 0.957

20 2,581,153 1,853,222 0.718

25 2,435,765 629,077 0.258

30 2,096,899 180,767 0.086

35 1,784,121 77,134 0.043

40 1,418,784 43,412 0.031

45 1,111,113 28,627 0.026

50 980,115 22,527 0.023

45

Ys, = 5.119
x=0

11(50) = O20025 == .0245

5- 5.119 — 50- .0245
SMAM = = 25.0 years 

1 — .0245

Data source: Turkey. Basbakanlik DevletIstatistik Enstitusu. Statistical Yearbook ofTurkey, 1995. [Turkiye istatistik

yilligi, 1995.] Ankara, Turkey, Basbakanlik Devlet Istatistik Enstitusu, 1996.

 
 

i) annual births would have , Ly persons at each age (where each function pertains to the same

life table), it must also be the case that each year it would have »Lx - n=,d' deaths from

cause i at age x tox +n. Thus, the sum of annual deaths from cause i over all ages must be

equalto / i the numberofpersonsin an annual cohort of births who will eventually succumb

to cause I.
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In other words, in a stationary population the probability that a newborn will eventually
die from cause i is equal to the annual numberof deaths from cause i divided by the annual
numberofbirths (or of deaths from all causes, since the annual numberof births must equal
the annual numberof deaths). Likewise, the probability that someone aged x will eventually
die of cause i is equal to the proportion of annual deathsat ages x-+ that are attributable to
cause1.

These relations have wide applicability in populations that can be assumedto be Stationary:

1. The probability that a marriage will end in divorce could be estimated by the ratio of annual
divorces to annual marriages.

2. The probability that someone entering graduate school will eventually receive a Ph.D.
could be found by dividing the annual number of Ph.D.s by the numberof entrants to
graduate school.

3. The probability that a newborn will be diagnosed with cancer at some point in his or her
life will be equal to the numberof annual cancer diagnoses divided by the annual number
of births.

4. The probability that someone with newly diagnosed cancerwill eventually die from cancer
would equalthe ratio of cancer deaths to cancer diagnoses. This probability is typically
called a “case-fatality ratio” in epidemiology and its value is often estimated by resorting
to stationary population assumptions.

5. The expected numberofyears spent with morbidity from a newly-diagnosed disease would
equal the numberof persons suffering from the disease at a momentin time divided by
the annual numberof new diagnosesof that disease. This is equivalent to life expectancy
at birth being equal to population size divided by the annual numberofbirths.

6. The “incidence”ofa disease can be defined astheratio ofnew casesofthe disease diagnosed
in a particular period divided by the person-years lived in the population duringthat period.
The “prevalence” of a disease can be defined as the proportion of the population having
the disease at a momentin time. If the number having the disease at a momentin time
is H and the annual numberof new diagnosesofthe disease is [7 , then in a stationary
population

H _ It H
To 7 To jH
prevalence incidence expected duration of the disease
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5.1 Period Fertility Rates

5.2 Decomposition of Period Fertility

5.3 Cohort Fertility

5.4 Birth Interval Analysis

5.5 Reproduction Measures  
 

Mortality refers to the decrement process by which living membersof a population gradually

die out. Fertility refers to the increment process by which living members of a population

producelive births, that is, new living membersof the population. Although often associated

with fertility, the term “reproduction” in demographicparlance refers to the process by which

new membersofa population replace outgoing members,a processthat may comprise mortality

as well as fertility.

Fertility analysis is more complex than mortality analysis in several respects. First, human

fertility involves two individuals of opposite sexes. The difficulties are typically skirted in

demography byrelating births to one individual only, traditionally the mother. This tradition

mayreflect the fact that data on births are moreoften available for the motherthanfor the father.

In this volume, wefollow this tradition, although the measures described here for women could

be readily transposed to men.

Fertility analysis must also take into account that, as opposed to the risk of mortality,

fertility — or the “risk” of producing

a

live birth — is not universal in the female population.

First, every member of the population is not necessarily capable of producing a live birth.

In demography, fecundity refers to this biological component of fertility (the definitions of

fertility and fecundity are reversed in biology).! Fecund women may experience some tem-

porary infecundity, whereas the term “sterility” refers to a woman’s or a man’s permanent

inability to conceive under any circumstances. Lifetimesterility is usually called “primary

sterility,” while sterility that develops during the reproductive years is termed “secondary

sterility.” Among nonsterile individuals, fecundity varies with age. In particular, fecundity is

restricted to the period between two age-dependent processes, menarche and menopause, a

period referred to as the reproductive span. Age 1s thus, as in mortality analysis, an important

dimensionoffertility analysis.

Amongfecundindividuals,the risk of giving birth depends on their behaviors and foremost

on their sexual activity. The fact that sexuality is socially regulated and often limited to visible

social structures partly alleviates the difficulty from a demographer’s point of view. In some

settings, marriage delineates the members of the society at risk of giving birth and in these
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cases only the behavior of married women needsto be considered. Evenif there is some out-
of-wedlock childbearing, the fertility rates of married women and unmarried women typically
differ so that fertility analysis is usually made more precise by considering separately in-
wedlock and out-of-wedlock births.

Fertility rates also depend on whether sexual partners attempt to influence the likelihood
that their sexual activity will result in a live birth. Behaviors intended to reduce the chance of
conception are referred to as contraceptive, whereas behaviors intended to increase the chance
are sometimesreferred to as proceptive. A conception may not producea birth but may instead
be terminated by an abortion.” Abortions may be spontaneous or may be inducedin orderto
preventa birth.

These multiple aspects of the process of giving birth complicate fertility analysis, but the
main conceptualdifference between fertility and mortality is that giving birth is a repeatable
event. Therefore, fertility must be analyzed not only as a multidimensional process but also
as a cumulative one: giving birth may be experienced more than once and only temporarily
removes a womanfrom therisk of giving birth.

Given these various degrees of complexity, fertility analysis often begins by defining sub-
groups of the female population according to characteristics affecting the exposureto the risk
of giving birth, such as age, marital status, or parity (the cumulative number of a woman’s
live births). Once the population is divided into subgroups, a commonanalytic strategy is to
show how subgroup behavior combines with population composition by subgroup to produce
some aggregate measureoffertility. Some of these approachesrely on the standardization and
decompositional methodsintroduced in chapter 2. More complex methodsare invokedto study
the biomedical determinantsoffertility.

5.1 Period Fertility Rates

Fertility rates relate the numberof births in a population during a period of time to some
measure of exposure. In chapter 1, we defined the period Crude Birth Rate (CBR), as the
numberofbirths in a particular period divided by the number of person-years lived in the
population during the sameperiod:

Births in the period 0 to T
CBR [0, T] = : : : :Person-yearslived in the population between time 0 and T
 

The CBRonly loosely approximates an occurrence/exposurefertility rate because only women
in their reproductive agescan actually give birth. The length of the reproductivelife span varies
from one womanto anotherbut, in most settings, the vast majority of births occurs to women
aged 15 to 50. This refinement of exposure gives rise to the General Fertility Rate (GFR):

Births in the period 0 to TGFR [0, T] = —, .;Person-years lived in the period 0 to T by women aged 15 to 50
 

The CBR remains, however, a more frequently used measure of fertility, in part becauseit is
easier to calculate than the GFR, which requires that population be tabulated by age and sex.
In addition, the CBR indicates how muchbirths are contributing to population growth:it is the
rate at which the population is growing byvirtue of the arrival of newborns. Clearly the CBR
and the GFRarerelated by:

CBR [0, T] = GFR[0, T] - 3sC*,(0, T] (5.1)
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Table 5.1: Comparison ofcrude birth rates and generalfertility rates in selected countries, 1985-90

 

 

Country Total Number of Proportionof Annual Crude General rank rank

population womenaged women aged births birth fertility CBR GFR

(thousands) 15-49 15-49 (thousands) rate rate

(thousands)

Zaire 34,569 7,601 0.220 1,652 0.0478 0.2173 1 2

Kenya 21,747 4,522 0.208 1,002 0.0461 0.2216 2 1

Senegal 6,851 1,530 0.223 312 0.0455 0.2039 3 3

South Africa 35,055 8,401 0.240 1,153 0.0329 0.1372 4 4

India 809,412 191,970 0.237 25,339 0.0313 0.1320 5 5

Tunisia 7,671 1,865 0.243 228 0.0297 0.1223 6 6

Indonesia 175,072 44,325 0.253 4,974 0.0284 0.1122 7 7

Lebanon 2,612 674 0.258 73 0.0279 0.1083 8 8

Argentina 31,436 7,469 0.238 686 0.0218 0.0918 9 9

USA 244,195 64,203 0.263 3,900 0.0160 0.0607 10 10

Australia 16,265 4,243 0.261 246 0.0151 0.0580 Il 11

France 55,944 13,801 0.247 772 0.0138 0.0559 12 12

Japan 122,187 31,111 0.255 1,321 0.0108 0.0425 13 13
 

Data source: United Nations, 1995.

where 3.C(0, T | is the proportion of person-years lived in the population that are lived by

females between the exact ages 15 and 50. Although the GFR seems to approximate better

an occurrence/exposure rate than the CBR,the quantity 35 Cr varies relatively little across

populations, even with quite different demographic regimes. Comparing GFRsacross popula-

tions often provideslittle additional insight relative to a comparison of CBRs, a measure more

readily available. Such a comparison is shownin table 5.1.

Despite the multiplicity of demographic influences on fertility, many of the measures of

fertility are based exclusively on age. Fertility varies by age because biological fecundity

varies with age but also because social, behavioral, or motivational determinants vary with

age. As opposedto the relative size of the age group 15—49 in the population, the age structure

within the age range of 15 to 50 years may vary substantially across populations, whichjustifies

the computation of age-specific rates.

Age-specific fertility rates are defined in a way exactly analogousto age-specific mortality

rates. The numeratorrestricts births to those occurring to mothers of a certain age interval and

the denominatorconsists of person-years lived by womeninthat age interval:

Births in the period 0 to T to women aged x tox +n
A Fy [O, T] =
 

Person-yearslived in the period 0 to T by women aged x tox +n

Asin the case of age-specific mortality rates, age-specific fertility rates can be defined for very

short age intervals as n tends toward zero. The age pattern of fertility can then be represented

by a continuous density function, f(q@).

To comparefertility across populations in a way that removes the influence of differences in

age and sexstructures, one could use the technique of standardization introduced in chapter2.

Breaking the reproductive life span into / age intervals, and using a standard age and sex
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distribution, C> , an age and sex standardized crudebirth rate can be defined as:

I

ASCBR [0,T] =) F, -C8
i=]

where C> is the proportion of the total population (male and female) that consists of women
in age group 7, and F; is the age-specific fertility rate for womenin the ith age interval. The
population age structure is functioning as a proxyfor the person-years lived in different age
intervals.

If we wish to limit the analysis to the female population,then the birth rate and fF; schedule
would count only female births and C> wouldrefer to the proportion of the female population
that consists of womenin age groupi.

In chapter 2, we showedthatthe choiceofa standardis crucial in comparing age-standardized
rates. The needfor this choice introduces an unfortunate elementofarbitrarinessintotherates.
Fertility analysis has avoidedthis arbitrariness by settling on a different means of combining
age-specific fertility rates in the form of a measure called the Total Fertility Rate (TFR).

In discrete notation, the total fertility rate (TFR) can be written as:

Bn

TFR[0,T] =n- > nF,{0, T] (5.2)
A=

where @ and # are the minimum and maximum ages at childbearing. The TFRis the single
most important indicator of fertility. It achieves this status not merely because it is one of
the many possible age-standardized measures of fertility, but also because it has a powerful
interpretation: the TFR is the average numberof children a woman would bearif she survived
through the end of the reproductive age span and experienced at each agea particularset of
age-specific fertility rates. These rates may pertain either to a birth cohort of women passing
throughlife or, more commonly,to the set of age-specific fertility rates of a particular period.
The period TFR measuresthe average numberofchildren who would be born to a hypothetical
cohort of women whosurviveto the endoftheir reproductive period and whobearchildrenat
eachageat the rate observed during a particular period. The term, n, appearsas a multiplier of
age-specific rates in formula (5.2) because a woman spendsn yearsin (each) n-year-wide age
interval, during which she is bearing children at annual rate nf. The cohort TFR is further
described below, but we will refer to the period TFR unless otherwise specified. Box 5.1
illustrates the calculation of age-specific fertility rates and the Total Fertility Rate for the US
in 1992, and table 5.2 presents estimates of TFRs in major regions of the world in recent
years.

Note that, in most populations, the numberofpersonsalive between ages 15 and 49 declines
with age. Therefore, the CBR, a weighted average of the age-specific fertility rates using the
actual population distribution as weights, gives more importance to younger age groups than
does the TFR, which gives equal weight to all ages. The CBR would,in general, be more
responsive to a postponementof marriage or offirst birth than would the TFR, whereas the
TFR would be more responsive than the CBRto fertility changeslater in the reproductive span.

Although notas popular as age-specific rates, other fertility rates are sometimes constructed
based on characteristics such as marital status, parity (a women’s numberof previouslive
births), or contraceptive method used. Anyrestriction must be consistently applied to both the
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Box 5.1 Example of Computation of Age-specific Fertility Rates and the TotalFertility

Rate

,W, = Mid-year number of women aged x to x +7

, By = Numberof births to women aged x to x +n during the year

nly =
n Bx __

nW,

 

B-n

TFR=n- )> Fy
X=Q,n

= Age-specific fertility rate for age interval x tox +n

Example: US, 1992

 

 

   
Age x 5 Wy 5B, 5 Fy

10 8,831,206 12,220 0.0014

15 8,324,273 505,415 0.0607

20 9,344,413 1,070,490 0.1146

25 10,047,198 1,179,264 0.1174

30 11,165,144 895,271 0.0802

35 10,619,275 344,644 0.0325

40 9,519,450 55,702 0.0059

45 7,820,172 2,008 0.0003

Sum
0.4128

45

\) 5 Fr = 4128
x=10,5

TFR =5- .4128 = 2.064 children per woman

Data source: National Center for Health Statistics, 1996.

 
 

Table 5.2: Total fertility rate, by major areas, 1995-2000
 

 

Majorarea TFR

Africa 5.06

Eastern Asia 1.77

South-central Asia 3.36

South-eastern Asia 2.69

Western Asia 3.77

Europe 1.42

Latin America and the Caribbean 2.70

North America 1.94

Oceania 2.38

 

Source: United Nations, 1999.
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numerator and denominatorof the rate. For instance, one can define a parity-specific fertility
rate as:

Births in the period 0 to T to womenat paritF,[0, T] = p parity p
 

Person-yearslived in the period 0 to T by womenat parity p

Combining age and marital status specific rates, age-specific marital fertility rates are
defined as:

Births in the period 0 to T to married women aged x to x +7
 Fy (0, T] = —— ) ,n By 10. 7] Person-yearslived in the period 0 to T by married women aged x tox +n

Summing this latter rate over all age groups, one can derive a total marital fertility rate
(TMFR)that is analogous to the TFR. The comparison of the TMEFRand the TERindicatesthe
contribution of a given nuptiality pattern to the level of fertility. The force of the comparison
is diminished by out-of-wedlock conceptions, which can artificially inflate marital fertility
rates if they are quickly followed by marriage, or render marital status less relevantif they are
not. If there are no out-of-wedlockbirths, then ,, F.x=,)FVe *n®, , where » ®, is the proportion
of women whoare married at ages x to x +-n. In this case, the ratio of the TER to the TEMRis

TFR n-ye_ Fen®y
=A NX

TMER ~~.8_FE
nF=)» (=) n® (5.3)

  

The ratio, TFR/TMER,appears as a weighted average of the proportion married in each age
interval, the weights being the contribution of an age group to the total marital fertility rate.
Theratio is thusa fertility-weighted average of proportions married by age. The comparison
of fertility rates standardized on two dimensions (age and marital status in the TMFR) and on
one of these dimensions (age only in the TFR) provides an assessment ofthe impactof the
other dimension (marriage) onfertility.

In order to comparefertility levels in historical European populations for which births were
not alwaystabulated by age of the mother and thus did not allow computation of age-specific
fertility rates, Coale (1969) proposed a similar standardization to evaluate the contribution of
the nuptiality pattern to fertility levels. The procedure requires data on the age distribution
of the female population, W;. Using the observed marital fertility rates of the Hutterites, a
well-documented and highly fertile population living in the United States and Canada, the
numberofbirths in the population was compared to the numberof births that would occur if
the womenin each age-group had the same fertility rates as the marital fertility rates observed
for the Hutterites,? H;. This age-standardized index of generalfertility is thus:

_ B vA Ww,

iar HW LLW,
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If we assume again that births only occur within marriage and denote wh the number of

married women in age group/, then

I I

SF Wi =B=Bl =)oF Wy,
i=] i=]

where FL is rate of childbearing among married womenin the ith age interval.

Now we can write /¢ as:

I L L I
i=l F; W; i=l H;- Wr

I I
S-) i WE ay Ai: Wi

= Ig ‘Im

 If =

Thefirst term of the product, denoted J, and called the index of marital fertility, is the ratio

of the number of marital births to the number that would occur if all married women had

Hutterite fertility. Although the numeratoris written with rates to illustrate the standardization

procedure, computationofthe rates is unnecessary since the sum in the numeratoris simply the

observed numberof births. The second term, denoted J, and called the index of proportions

married, indicates the impactof the nuptiality pattern on the standardized index of fertility /+.

Althoughthe weights are differentin the twocases,Jy, has a structure similar to the TEFR/TMFR

ratio in equation (5.3). In both relationships, the point is to decompose an age-standardized

measureoffertility into an age- and marriage-standardized measureoffertility (TMFR or Ig)

and an index of the contribution of nuptiality to fertility (TFR/TMFR or J). Box 5.2 shows

an application of Coale’s fertility indexes to data from a French village at the beginning of the

nineteenth century.

Whenthere is substantial out-of-wedlock childbearing, the double standardization on age

and marriage is slightly more complicated but follows the samestructure. In this case, Coale’s

index of generalfertility can be decomposedas:

Tp =In-+ Ig + CU — Im) > Th

where /;, is the ratio of the numberof out-of-wedlock births to the numberthat would occurif

all unmarried women borechildren at the Hutterite rate:

B— BL
I, =

Si) Hi (Wi — WS)

(5.4) 

The second term in the more elaborate equation for 1+ decomposesillegitimate births* into

the index of the proportion unmarried and an index ofillegitimate fertility. In many histori-

cal European populations where out-of-wedlockbirths are infrequent, this componentoftotal

fertility can be ignored. Comparison betweendifferent fertility levels could be based on the

index of marital fertility and the index of the proportion married alone. In many contempo-

rary Western countries, however, nonmarital fertility has become an important componentof

total fertility. In the United States, 33 percent of childbearing occurred outside marriage in

1995 (National Center for Health Statistics, 1996). The proportion is even higher in parts of

Northern Europe. In some populations,the distinction between marital and nonmarital births is
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Box5.2Computation of Coale’sFertility IndexesIm, 17, Ig ¢with assumptionof no

.Wee Numberofmarried women inagegroup i
os;=Numberof women in age groupi
Hy=Maritalfertility rates of the Hutteritesll
CB‘=Actual numberofbirths during theconsideredyear

      

 

= index of proportionsmarried

— _ Example:Tourouvre-au-Perche(France),1801

Age group Age wl Wj H; H; - wi H; - W;lL
l

 

15-19 1 73 0.300 0.3 21.9
20-4 19 87 0.550 10.5 47.9
25-9 33 49 0.502 16.6 24.6
30-4 58 66 0.447 25.9 29.5
35-9 48 56 0.406 19.5 22.7
40-4 42 56 0.222 9.3 12.4
45-9 37 SI 0.061 2.3 3.1

Sum 84.3 162.1

S
T
N
N
P

W
N
Y

  
Estimatedtotal births in 1801: B =So
Tf=59/162.1 =0.364
Ty=59/84.3 =0.700
Im=84.3/162.1 =0.520

   

  ‘Patasource:Charbonneau,Hubert, 1970,Tourousre-au-PercheauxXVIFetXVIIsidcles. Pars,PUR

 

clouded by frequent nonmarital conceptionsthatare later legitimated by marriage, introducing
important imprecision into Coale’s measures.

5.2 Decomposition of Period Fertility

To attribute differences in period fertility to the various dimensions of the process, demo-
graphers have decomposedoverallfertility in a numberofdifferent ways. Forinstance,in their
analysis of the early phase of the postwar baby boom, Grabill, Kiser, and Whelpton (1958)
suggested the following decomposition of the numberof births in year T:

M(T) O(T) B(T)
OO = WT)oy O(T)
 (5.5)
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where

B(T) =numberof births in year T;

W(T) =number of womenaged 15 to 49 in year T;

M(T) = numberof married women aged 15 to 49 in year 7;

O(T) =numberof mothers (womenof parity one or more) aged 15 to 49 in year T.

The numberof births then appears as the productof:

the number of womenaged 15 to 49;

the proportion of women aged 15 to 49 who are married;

the proportion of married women whoare mothers(i.e. who have ever given birth);

the average numberof births per mother.

There have been many other decompositions of numbersofbirths or of standardized fertility

rates. We mentioned Coale’s decomposition of a index of general fertility into an index of

marital fertility and an index of the proportion married. Bongaarts (1978) has developed

a decompositional model offertility that begins with the TFR/TMEFRratio but introduces

measures designed to reflect other bio-behavioral influences on fertility.

In Bongaart’s scheme,thetotalfertility rate is first expressed as an identity involving ratios

of different factors that cancel out:

TFR TMFR TNFR
TFR =

TMFR TNFR’ MTFR
-MTFR 

where TNERisthe total natural fertility rate and MTFRis the maximum potentialfertility

rate. These various ratios are then made operationalin a series of indexes:

TFR TMFR TNFR

TMFR TNFR MITFR

= Cm: (Ce- Ca) > C+ 15.3 (5.6)

 TFR= -MTFR

where 15.3 is the assumed value of maximum potential fertility, MTFR, and the ratio,

TMEFR/TNER,is expressedin the form of a product of two indexes, C-:C,. The three ratios are

thus related to four indexes, each onerepresenting

a

setof fertility determinants, often called

“proximate determinants”of fertility. C; first compares the maximum potential fertility to the

natural fertility level (TNFR) by reflecting breastfeeding behavior which affects the length of

postpartum nonsusceptible period. Natural fertility is further related to the total marital fer-

tility rate (TMFR) by contraceptive use and induced abortion, each represented by an index,

C,. and C, respectively. Lastly, total marital fertility is related to total fertility by the index

Cyn. The index Cy is simply the TFR/TMFR shown in equation (5.3). As noted above, this

decomposition implicitly assumesthat there 1s no out-of-wedlock childbearing or that unions

are broadly defined to cover all sexual relationships.

The relationships between the proximate determinantsandthe four indexes were empirically

estimated. For example, the indexoffertility reduction due to contraception is estimated as:

Co =1-—1.08-u-e (5.7)

where u is the proportion of womenusing contraception and e is the average use-effectiveness

of contraception. The average use-effectivenessis defined as the proportionate reduction in the
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monthly probability of conception that results from the use of contraception (Trussell et al.,
1993). The estimation of contraceptive use-effectiveness is based on life table techniques
described in chapter 4. More specifically, it requires the derivation of an associated single
decrementlife table to separate conception from other potential reasons to discontinue contra-
ceptive use (a hypothetical example is provided in box 5.3). The coefficient 1.08 in equation
(5.7) is added to accountfor the factthatsterile couples may not use contraception knowing
that they are notat risk of conception. The index should thus reach zero with less than 100
percent effective contraceptive use.
The index of proportionate reduction in TFR due to abortion, Cy, is estimated as:

TFR_ (5.8)TFR +0.4(1 + u)TA
 Ca

where TA is the total abortion rate (the sum of age-specific abortion rates that is equivalent
in its computational design to the Total Fertility Rate). The coefficient .4(1 + u) represents
the number of births prevented by one abortion. This number is smaller than one because
an abortion “uses up” less of a woman’s reproductive life than does a live birth. Bongaarts’
relation suggests that, with no contraception, an abortion prevents 0.4 births, and thatif all
women are contracepting, an abortion prevents 0.8 births.

Finally, C; is the index ofreduction due to postpartum infecundity. The indexis estimatedas:

20
C; = —__— 5.9‘18.543 (5.9)

wherei is the length of postpartum infecundity in months. If i is 1.5 months, then there is no
reduction to the maximum natural fertility regime. Whena direct estimate ofi is not available,
it can be approximated from the mean months of breast-feeding, BF (Bongaarts, 1982: 188):

i = 1.753 exp (.1396 BF — .001872 BF’) (5.10)

The maximum potentialfertility is estimated at 15.3. This figure suggests that in a population
without contraception, without induced abortion, with a minimum nonsusceptible period of
1.5 months, and in which all women marry at 15 and remain married to age 50,thetotal fertility
rate would be 15.3. This figure is higher than that observedin any knownhigh-fertility popu-
lation, including the Hutterites. No population pulls out all of the stops in order to maximize
fertility.

Stover (1998) reviews the performance of the Bongaarts model in more than a hun-
dred applications and suggests some modifications of the indexes. Perhaps the mostsignif-
icant modification is the use of sexual activity rather than marriage to indicate exposure to
pregnancy.

5.3 Cohort Fertility

Like mortality analysis, fertility analysis can benefit from a cohort perspective. In fertility
analysis, however, the cohort approach gains additional relevance from the fact that total
fertility is a cumulative process and that a woman’s past birth history may affect her future
fertility. In chapter 2, we defined cohort age-specific rates. Cohort age-specific fertility rates
can be summedto give the cohort’s total fertility rate. The cohort TFRis the average number
of children who would be born to an actual birth cohort of womenif they had all survived to
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Box 5.3 Contraceptive Failure Rates using Associated Single Decrement Life Tables

(with assumption of a constant failure risk within each interval)

x — Duration since beginning of contraceptive use (in months)

1,

|

=Numberusing contraception at the beginningof the interval

h dP — Number becoming pregnant during the interval

, a? =Numberdiscontinuing use during the interval

(lean — le) on
nx — Person-months of use during the interval, assuming constantfailure rate

In@x+n/ ly)
d: . ; ; ;

,MP=a = Contraceptive failure rate in the interval x tox +n
ni-xpn. MP vy: a . ,

*pP =e hn Mx — Probability of survival in the interval if contraceptive failure was the only reason

to discontinue contraceptive use

*]Pp — numberusing contraception at the beginning ofthe intervalif contraceptive failure was the

only reason to discontinue contraceptive use

Theoretical example

 

 

    

Ix ndy n dy nly n My nPx “ly

0 100 5 15 268.89 0.0186 0.9457 1,000

3 80 4 6 224.67 0.0178 0.9480 946

6 70 5 5 194.61 0.0257 0.9258 897

9 60 2 2 173.93 0.0115 0.9661 830

2 56 802

#7 P

Probability of survival in first year of use = aP = .802

e *P .

Probability of contraceptive failure in first year of use = 1 — WP = 198 =19.8% ©
| : | | 0 |
 
 

the end of their reproductive period, and born children at each age at the rate observed for the

surviving membersof the cohort at each age. If cohort members who died had the samerate

of childbearing at each age as the women who survived, then the cohort’s total fertility rate

would be identical to the mean numberof children ever born to womenin that cohort who

survived to the end of childbearing.

The cohort TFR can only be calculated whenall surviving women in the birth cohort have

reached the end of their reproductive years. If demographic rates at every age are constant

over time, there would be no difference between the longitudinal (cohort) and cross-sectional

(period) measures. In somesituations, however, period measures may provide a misleading

indicator of the behavior of any real cohort. Henry (1953), in France, and Ryder (1965 and

1986), in the United States, have contributed mostto the discussion of relations between period

measures of fertility and cohort measures. Cohort measures and period measuresof fertility

will differ even when the cohorttotal fertility rate is constant over time if the age-pattern of
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fertility is changing. Imagine a population in which women normally have 5 births, one in
each of the age-intervals 15-19, 20-4, 25-9, 30-4, and 35-9. But because of extraordinary
conditions there are no births in a certain 5-year period. Woman experiencingthis “lost birth”
are assumed to “catch up” by having one additional birth between age 40 and 44.In this case,
as shown in table 5.3, the period TFR would fluctuate between 0 and 6 whereas the cohort
TFR

—

identifiable by tracking a cohort diagonally downthe table — would remain unchanged
at 5.0.

A simple wayto analyze the effect of changing fertility schedule from one cohort to another
is to decomposethe period TFR, TFR? , into a timing component and a volume component:

 

TFR? = s FP = S Fi . TFR©!
Ly! — TFRC
i=l i=l

I
— > pp . TFRC

i=]

where TFRC' is the cohort TER of the cohort Cj which occupied ageinterval i in the period
P. Thus Pp; can be interpreted as the proportion of the total numberof children born (TFR) in
cohort C; that actually occurred in period P (i.e., in the age interval 7). This expression thus
shows explicitly how the period TFR depends on the volume of childbearing achieved by the
cohorts bearing children during that period (TFR“') and a timing component, py , representing
the fraction of those children who were born during the period.
To compare the actual period TFR to a hypothetical period TFR devoid of timing effects,

one could compute a timing-standardized period TFR using a standard distribution, p; , of the
cohortfertility distribution over the lifetime of the cohort. Kiser, Grabill, and Campbell (1968:
255-64) use this approach to show that, in the United States, this standardization of timing
factors would sharply reduce the amountoffluctuation in period TFRs.In other words, timing
factors have reinforced volumefactors in the cohort TFR, making the period TFR morevolatile
than the cohort TFR.Periods of high fertility had both a high volumeof fertility among cohorts
then bearing children (i.e., a large completed family size) and an unusually high concentration
of fertility in such periods. During the postwar baby boomin the US,the period TFR peaked
at 3.7 whereas no cohort then bearing children achieved a value higher than 3.3.

Table 5.3: Illustration of the distinction between period and cohort totalfertility rates
 

 

Age Age-specificfertility rates
Period

1930-4 1935-9 1940-4 1945-9 1950-4 1955-9 1960-4 1965-9 1970-4

15-19 2 2 0 2 2 2 2 2 2
20-4 2 2 0 2 2 2 2 2 2
25-9 2 2 0 2 2 2 2 2 2
30-4 2 2 0 2 2 2 2 2 2
35-9 2 2 0 2 2 2 2 2 2
40-4 0 0 0 2 2 2 2 2 )
Period TFR 5.0 5.0 0 6.0 6.0 6.0 6.0 6.0 5.0
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The approachjust described requires completed fertility histories to implement. It does not

address an issue of great current interest: to what extent the very lowfertility in parts of the

industrialized world are attributable to timing factors — the stretching out of births through

time as the mean age of childbearing increases — or to volume factors. Bongaarts and Feeney

(1998) have developed a procedure designed to purge period TFRsoftiming fluctuations, but

assumptions required to implementit limit its applicability (Kim and Schoen, 2000).

Attention to the differences between period measures and cohort measures of fertility is

required in the interpretation of fertility measures derived from period data. Whether period

or cohort age-standardized fertility rates are more appropriate is not a measurementissue but

dependsonthe relative importance of period and cohort influences on fertility. There is no

consensuson this conceptual issue in demography (Bhrolchain, 1992).

A cohort’s total fertility rate can be readily estimated through a census or survey question

about parity, the numberof live births a woman has had. The meanparity, or mean number

of children ever born, of a cohort of women who have completed childbearing, is equal to the

cohort’s total fertility rate if reporting is accurate andif there are no differentials in mortality

or migration by parity. (The role of mortality or migration differentials can be studied using

the same logic that produced equation (4.10).)

The fertility process can be represented not only through a woman’s movement from one

age to the next but also by her movementfrom oneparity to the next. This latter movement

can be represented by parity progression ratios, introduced by Henry (1953: 22). A woman’s

parity is the numberofher live births, so the parity progression ratio from parity i to parity

i + 1 is the proportion of a cohort who hadatleast i live births who went on to have at least

one more:

Number of womenat parityi + lormore P+
 PPRi+1)= — =>

umber of womenat parity 7 or more P;

This cohort measureis usually calculated only for cohorts who have completed their child-

bearing. From a survey of 50-year-old women,the cohort total fertility rate is retrospectively

estimated as the total number of births among womenin the cohort divided by the number of

womenin the cohort. These can be added across age groups, as in the conventional TFR,but

they can also be addedacrossbirth orders of the children (first births, secondbirths,etc.). If we

denote as P; the number of womenat parity i or more and

W

asthetotal number of women,

then the numberoffirst births will equal P,, of second births P9, etc., and

P, Po P3

Ww r Ww r Ww r

Pr Py Po Py PQ OPS
~ wow P| WP, Po

= PPRio1) + PPR(o,1) - PPR(.2) + PPR0,1) - PPR(,2)- PPR(2,3) + °° (5.11)

TFR©

A cohort’s total fertility rate can in this fashion be derived entirely from its set of parity

progression ratios. Parity progression ratios are especially useful in studying the patterns of

fertility-limiting behavior in a population, which are often keyed to the numberof children a

womanhasalready born (Henry, 1961a; Feeney and Feng, 1993). An application of the parity

progression ratio methodologyis presented in box 5.4.

It is interesting to note that the volume offertility often looks different from a child’s

perspective than from a woman’s perspective. The average numberofchildren born to a child’s



 

ayBox5.4‘Cleilation of ParityProgression Ratios foraCohort that hasCompleted
—

  S W, =se namberofwomen atparity ii orgreater
WW, =number 0ofwomen at parityi. Be y

oe oe :oe

a=“numberof binths of parity isa5(forall39)
i]

oo ..Pay se :-. 3

So PPR.en-na =a PPR»Le8=T]PPRa+)
. a. Te a=0

Si 1
B ~,B |

i=

_Example903 ever-manicd Esyotianwomen aged 45 ¢or morein 1980, asked
2 abouttheirnumber of children everborn

 

  
Parity i W; P; B; PPR(i+1) PPR(o,i)

0 33 903 0.9635
Il 37 870 870 0.9575 0.9635
2 38 833 833 0.9544 0.9225
3 33 795 795 0.9585 0.8804
4 65 762 762 0.9147 0.8439
5 85 697 697 0.8780 0.7719
6 9] 612 612 0.8513 0.6777
7 117 521 521 0.7754 0.5770
8 108 404 404 0.7327 0.4474
9 101 296 296 0.6588 0.3278

10 9] 195 195 0.5333 0.2159
1] 4] 104 104 0.6058 0.1152
12 37 63 63 0.4127 0.0698
13 12 26 26 0.5385 0.0288
14 9 14 14 0.3571 0.0155
15 2 5 5 0.6000 0.0055
16 2 3 3 0.3333 . 0.0033
17 I 1 ] 0.0000 0.0011
18 0 0 0 0.0000

 

-“3yi Wi = 903. B=
ied

 

a=6,201.

TFRR==SpeRoi) = oe==6.867childrenpperwoman.

Date source:- Eeyok Contral Agency for Public MobilisationandStatistics. World Fertility Survey [WES]. TheEgyptian Fertility Survey, 1980. Cairo, Central Agency for Public Mobilisation and Statistics, 1983.
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mother, C, depends not only upon the mean parity of women, P,, but also upon how children

are distributed across women. Whenhalf of a cohort of womenbear5 children and half bear

1 child, the mean parity of womenis obviously 3 but the mean numberof siblings (including

ego) per child is

(555) + (510) _ 1B _ 43,
(.5)5 + (.5)1 3
 

The reason for the disparity is that the children from 5-parity womenare over-represented (by

a factor of 5) amongoffspring relative to children of 1-parity women. The disparity between

the two meansis often great. For example, among Depression-era American mothers — women

aged 45-9 in 1950 — the mean parity was 2.29, but the children born to these women were

born to mothers with a mean parity of 4.91 (Preston, 1976b). In general, the relation between

the two meansis

N
O

—_ — oO
C = P + =,

P

where co? is the variance in parity among women(ibid.). Only if all women had the same

numberof children would the two means be equal. Clearly, one should not commit the (fairly

common) mistake ofestimating fertility in the past directly from reports from offspring about

their mother’s parity.

5.4 Birth Interval Analysis

The analysis of birth intervals explicitly recognizes the distinct renewable natureof the fertility

process. Elegant mathematical representations of lifetime fertility have been developed, in

particular by Sheps and Menken (1973) in the United States and by Henry (1957 and 1961b)

in France. Instead of computing total fertility by summing age-specific rates, birth interval

analysis considers the progression from one birth to the next in the course of a woman’s

reproductivelife. It rests on the principle that, because the female reproductive spanis limited

in extent, a woman’stotal fertility can be profitably viewed in terms of the interval between

her first exposure to the risk of giving birth and herfirst birth, and then in termsof the average

interval between subsequentbirths.If all birth intervals had the same length in the population,

the averagetotalfertility rate in the population would be equalto the length of the reproductive

span from beginningoffirst interval to end of last divided by the length of the interval.

The birth intervalitself can be decomposedinto a nonsusceptible period,including pregnancy

and an additional anovulatory period after birth whose length depends mostly on the length of

breast-feeding; a waiting period, W, during which a fecund womanis exposedto the risk of

conception andthe length of which dependson her readiness to conceive and use of contracep-

tion: and someadditional time to accountfor the risk that a conception would notyield a live

birth.

The length ofa birth interval can be studied by the life table techniques discussedin chapters 3

and 4. Giving birth is equivalentto “death,” and the time dimensionis no longerage but duration

in the birth interval, thatis, the length of time sincelast giving birth (or the length of time since

marriage in the case of a first birth). Duration is often referred to as “waiting time” when the

table applies to women trying to conceive. As in nuptiality analysis, the risk of giving birth

is always accompanied bythe risk of death, so multiple decrement life tables and associated
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single decrementlife tables are appropriate devices. However, mortality is typically low during
the reproductive ages, and the assumption of no mortality at these ages is generally acceptable
in orderto facilitate the calculations.
An important biological determinant of birth interval length is fecundability, defined by

Gini (1924) as the monthly probability of conception in the absence of contraception and of
temporary nonsusceptibility. Mean fecundability can be estimated by following a cohort of
newly married, nonpregnant, noncontracepting women.For example, Pearl (1933) suggested
dividing the number of pregnancies observed among such womenby the number of woman-
months of exposure, a proxy for the numberofdiscrete ovulatory “trials.”

Problems with using this approach to estimate fecundability arise when a population is
heterogeneous, consisting of subgroups with differing levels of fecundability. To illustrate,
assume that the female population is made of two subgroups of the samesize but different
fecundability, 0.1 and 0.3 respectively. The average fecundability is thus 0.2. A duration life
table of birth following marriage, in the absence of contraception, is shown in table 5.4.°
Usually, a study of fecundability is truncated after some duration (typically 6 months or 12
months)andthe estimated fecundability is computedfor that duration. But whenthe population
is heterogeneous, estimated fecundability will decline with the duration over which its value
is calculated. In our example,its value after one month of observation will be:

p(1) = (400/2,000) = .200, a correct estimate for the cohort

But after three monthsitis:

P(3) = [(400 + 300 + 228)/(2,000 + 1,600 + 1,300)] = .189

After the first six months its value is:

p(6) = [(400 + --- + 109)/(2,000 + - -. + 758)] = .178

The estimate declines with duration because the low fecundability group becomes a larger
and larger proportion of the nonpregnant. Only in the first month does its value provide an
unbiased estimate of fecundability in the population as a whole. The estimate would be con-
sistent at different durations within each group only when fecundability is the same for every
woman. Unfortunately, fecundability usually varies among women. Henry (1961b and 1964)

Table 5.4: Waiting time to conception byfecundability
 

 

Duration since Group I Group IT Total
marriage rs a
(months) ly ndx l,. ndx l,. ndx

0 1,000 100 1,000 300 2,000 400
1 900 90 700 210 1,600 300
2 810 81 490 147 1,300 228
3 729 73 343 103 1,072 176
4 656 66 240 72 896 138
5 590 59 168 50 758 109
6 531 53 118 35 649 88
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suggested that fecundability across individuals in the population can be represented by a

Pearson distribution:

po}q?-}

f(p= Io pt-!g-] dp
 

where g = 1 — p anda andb are parameters to be determined.’

Once fecundability is estimated, the average waiting period, W, can be estimated. W is

the “life expectancy at birth” in the birth-interval life table. If fecundability is assumed to be

constant in the reproductive age interval and across women,then the average waiting period in

the intervalis the reciprocal of fecundability (1/p). The probability of waiting n monthsis the

probability of conceiving during that month, p, timesthe probability of not having conceived

during the previous n — 1 months, (1 — p)"—!. So

P[W =n] = p(l—p)"

The mean waiting time (the expected value of W)is then:

EW] = So n-P(W=nl=Son-p-(— py

n=1 n=1

Since it can be shownthat

CO

n=} (1 — x)?

the average waiting periodis thus:

it_t
[1-(d-p)P p

Notethatthis is the samereciprocalrelationshipthat prevails in a stationary population between

life expectancy at birth and the crude deathrate.

We have just demonstrated that, if all women have the same fecundability, p, then the

expected interval between first exposure and first conception is 1/p. On the other hand,if

womenare heterogeneousand _f (p) is the proportion of women whose fecundability is p, then

the mean waiting time is the harmonic mean of f(p):

E[W]= p-

1

1
ew = | —f)dp

0)

The expected length of time between onebirth and the next will be higher than the length

of time between marriage and first birth because it will include 9 months of pregnancy plus

the nonsusceptible period after a birth, sp. Assuming fecundability p to be constant across

womenbetweenthe ages a and B and zero outside that interval, the expected interval between

conceptions will be (1/p) + 9 + sp. On average, assuming no fetal loss, a birth will thus

occur [(1/p) + 9] months after marriage and then every [(1/p) + 9 + sp] months thereafter.
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By dividing the timeleft after the first birth by the average birth interval and addingthefirst
birth, the TMEFRappearsas:

1
B-a-(~ +9)

TMFR = 1 + — P
—+9+ 5,
p

B-a+t sp
1
—+9++ 5)
P

If we assume that every woman “marries”(i.e., begin her exposureto the risk of conception)
at age a» (measured in months; a, > a) and that there is no divorce nor out-of-wedlock
childbearing, then the TFRissimilarly:

B — Qm + Sp

Ip
TFR = (5.12)

|
with Jp = —+9+4+ sy,

Pp

Let us finally distinguish between conceptionsleading to

a

live birth and other conceptions.
Assumethat the length of the nonsusceptible period (pregnancyplus anovulatory aftermath)
associated with such conceptions is s,,. The interval between live births is then increased by
(1/p) + Sw for each spontaneousfetalloss.If the probability that a conception does not end in
a live birth is w, then the interval betweenlive births increases by (1/p)+ 5, fora proportion
w of the births, and by another (1/p) +5, fora proportion w7 of the births (two successive
pregnancies ended by spontaneousfetal wastage), and so on. The mean interval betweenlive
births is then:

I | ]b= D9 +s +0(“ 450) t-- bo" (tse) +e
Pp Pp Pp

] Ww 1
= — +9+ sp +—

|

— + Sy
Pp I—w \p

Sw

 

]
= ——— + 94+ 5p + (5.13)
pl —o) l1—w

Fetal wastage adds the same average length of timeto the interval between marriage andfirst
birth, so formula (5.12) for the TERis stil] applicable with J, now as in (5.13).

Let us now illustrate someapplicationsofthis model, in the processlinking it to the Bongaarts
model. Assumethat fecundability is 0.2 for every woman between ages 15 and 45, and that
the nonsusceptible period followinga live birth is 7.5 months. In the absence of fetal wastage,
womenwill have their first live birth after 14 months (5 months of average waiting time and
9 months of pregnancy) and thena live birth every 21.5 monthsthereafter. If the probability
of fetal wastage is 0.2 and the corresponding nonsusceptible period s,, is 5 months, each
meaninterval (between marriage andfirst birth and between higher orderbirths) is increased
by (.2/.8)(5 + 5) = 2.5 months. The interval between marriage and first birth becomes
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16.5 months andtheinterval between births 24 months. If we assume that womenall marry at

age 15, then the TFRis (from (5.12)):

TFR = TMFR = (30 + (7.5/12)]/2 = 15.3

This is the value of the maximum totalfertility rate used in Bongaarts’ decompositional model.

If all women married at age 25, then the TFR would be 10.3.

Contraception efficiency,e, is defined as the proportionate reduction in the monthly prob-

ability of conception that results from the use of contraception. If the probability is p in the

absence of contraception, then it is p(1 — e) in the presence of contraception. Formula (5.12)

for the TER is unchangedby the addition of contraception to the model, but the birth interval

is now:

| Sw
+9+4s, + —— (5.14)Ih =

pi —e)(1 —o) 1—o
 

Let’s supposethat contraceptive efficiency is 0.9. Then the monthly probability of conception

drops to 0.02. The meanbirth interval is now 62.5+9+7.5+1.25 = 80.25 months, or 6.6875

years. If all women marry at age 25, then

TFR = [20 + (7.5/12)]/6.6875 = 3.08

It is important to note that contraception reduced the monthly probability of conception by a

factor of 10 but “only” reduced TFR from 10.3 to 3.08. The reason is that the waiting time

to pregnancy is the only componentofthe birth interval to be affected by contraception. The

length of pregnancy, of postpartum nonsusceptibility, and of the sterile period associated with

fetal wastage are unchanged. A change in any component of the birth interval will result in a

less than proportional changeof the entire birth interval. |

Another useful application of the modelis to studythe effect of abortion on the TFR. An

abortion (spontaneous or induced) adds (1/p[1 — e]) + Sw to a birth interval and will thus

reduce the TFRin absolute amountby:

1
—_— + Sw

pl —e) (5.15)
 

4945+S —_—$—$—$—$———

pil —e)(1 —w) oT Too
 

This expression is less than unity; one abortion prevents fewer than onelive birth because

a womanis restored more quickly to the susceptible state when a conception is terminated

by an abortion than whenit ends in birth. Using our earlier parameters, in the absence of

contraception, an additional abortion increases a birth interval from 24 months to 34 (since

[1/p] + s» = 5+5 = 10) and prevents 10/24 = 0.435 births. With 90 percent effective

contraception, an additional abortion increases a birth interval from 80.25 months to 135.25

months ({1/p(i — e)] + sw = 504+5 = 55) and prevents 55/80.25 = 0.685 births. When

contraception is very effective (e.g., 99 percent), a birth interval with one abortionis virtually

equal to twice a birth interval without abortion, so one abortion effectively “prevents” one

birth. The reason is that, with highly effective contraception, the waiting time to pregnancy

dominatesthe interbirth interval andis the same following an abortion as following a live birth.

Induced abortion can be formally included in the model for TFR by replacing the probability

of spontaneousabortion, w, by a probability including both types of abortion.
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This simple model permits us to gain some understanding ofthe potential impact of changes
in the determinantsoffertility. Obviously, the model omits some potentially significant phe-
nomenasuch as marital disruption. It assumes that reproductive parametersare constant through
reproductivelife. It also applies mean values to each womanandthus does not accountfor pop-
ulation heterogeneity. Microsimulation techniques allow both more complex modeling of the
reproductive process andthe introduction of heterogeneity (Menken, 1977). The processlead-
ing to a live birth can be represented by a Markovian renewal process with each womanbeing
exposedto risks of transition between different statuses in which fecundability varies (mar-
riage, divorce, widowhood, remarriage, postpartum nonsusceptibility), and with probabilities
ofpossible outcomes(spontaneousabortion,live birth,still birth) being applied to conceptions.
The effect of population heterogeneity can be illustrated by a numerical application of

our simple model. Let’s assume that fecundability is 0.2 for all women but half of them use
contraception with 90 percent effectiveness so that their effective fecundability is 0.02. We
also assumethat half of the women breastfeed for a year so sp 18 13.5, whereasthe other half
does not breastfeed at all and sp is 1.5. Finally, we assume that half of the women marry at
age 20 and theother half at age 30. Other values are as above and the samefor every woman
within a group.

If breastfeeding, marriage, and contraception are independent, we have defined 8 groups of
women of equal size. The TFR for each group is shownin table 5.5. The bottom line shows
the average TFR that would be computed from the arithmetic mean values of each group’s
fecundability and nonsusceptible period. From the mean parameter values, we would compute
a population TFR of 8.50, whereas the actual TERin this populationis the average of the TFRs
in each ofthe eight equal-sized subpopulations, or 7.01 (= [16.75 + 10.08 + -.. + 2.24]/8).
The complexity of the birth interval models, the restrictiveness of their assumptions, and

their sensitivity to distributional influences undermine their use in measuring total fertility.
In manysettings, there is also insufficient data on the models’ parameters. But as illustrated
in the few examples above, they have proved quite useful analytical tools to understand the
determinants offertility and howthey interact.

In working with data on birth intervals from cross-sectional surveys, it is important to
distinguish between“closed”and “open”birth intervals. A closed intervalis an interval between
two observedevents, e.g., between time of birth and time of death in a Classical mortality life

Table 5.5: TFR in a heterogeneous population
 

 

Contraception Breastfeeding

__

Birth interval (1) Age at marriage __TFR (2)

No 18 20 16.75
No Sh = 1.5 30 10.08
p=.2 Yes 30 20 10.45

Sp = 13.5 30 6.45

No 74.25 20 4.06
Yes Sp = 1.5 30 2.44
pUi-—e) =.02 Yes 86.25 20 3.63

Sp = 13.5 30 2.24

MeanProb. Sp = 7.5 29.11 25 8.50
PU —-e»,) =.11

 

(1) Birth interval is computed from equation (5.14) with s,, = 5 and w = 0.2.
(2) TFR is computed from equation (5.12) with birth interval as in (5.14) and B = 45.
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table or between twobirths in a woman’sfertility history. At the time of a retrospective survey,

there will also be open intervals, i.e. intervals for which the closing events has not yet been

experienced becausethe interval was “censored”at the time ofthe survey. One’s age (time

since birth) is such an openinterval in mortality analysis; time since last birth is an open

interval in fertility analysis.

It may be intuitively clear that, when all closed intervals have the same length, an average

(randomly selected) open interval in a survey would be half the length of the closed intervals.

For example, if all women have a birth every 24 months and womenare randomly distributed

with respect to their time since last birth, then the mean length of time since last birth would

be 12 months. But if some closed intervals are shorter than others, then the situation 1s more

complex.If half of the women in the population havea birth every 12 monthsand half of the

women have a birth every 36 months, and womenare randomly distributed with respectto

their time since last birth, then the mean length of time since last birth among women would

still be 12 months. It will be 6 months for the first group of women, and 18 months for the

second group, and since the two groupsare equallylarge, the population mean “open”interval

is still 12 months. On the other hand, women with shorter closed intervals will have birth

more frequently than others, so in any given period there will be more births after 12 months

than after 36 months. If we used a birth-weighted measure of the length of the closed interval

(measuring intervals based upon births during a particular period rather than upon a random

sample of women), then the mean length ofthe closed interval would be less than 24 months.

In this example, the short-interval group of women will have three times as many births in

any period as long-interval women. Thusthe birth-weighted meanlength of the closedinterval

(whether measured backwardsto the preceding birth or forward to the subsequentbirth) is:

.75(12) + .25(36) = 18 months

The value is clearly less than double the value of the mean length of the open interval, 12

months. Pressat (1972) showsthat the mean length of an open interval, Lo, 1S:

o2

Le+
Lo == (5.16)

where L- and

o

are the birth-weighted mean and standard deviation of closedintervals.® In

the example, we are using:

12 = [18 + (108/18)]/2

This relation is pertinent not only to the analysis of birth interval from retrospective surveys.

It can also be applied to a conventionalstationary population represented by a mortality life

table. In this case, the mean age at death in the distribution of deaths (the closed interval) is

simply life expectancy at birth in the stationary population. The mean age of the population

(the length of the open interval betweenbirth and death) can thus be expressedas:

2
cot TF

A =——
2

Note that when the rate of decrement is the same at all durations, the number of decrements

(deaths) is always proportionalto the numberof personsatrisk (alive), so that the mean age of
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personsalive (the open interval) would be equal to the meanageat death (the closed interval).
On the other hand,if everyone diedat the same age,i.e., at the age equalto life expectancyat
birth, then o* = 0 and the mean age of the stationary population would be exactly half of the
value of life expectancyatbirth.

5.5 Reproduction Measures,

Fertility and mortality processes combine to determine the natural growth of population. In
chapter 1, we described population growth rates and developed one way to lookat the joint
contributionof fertility and mortality: the difference between the crude birth rate and the crude
death rate is the period rate of natural increase. Another way to look at the growth of the
population is to compare the size of successive generations. The TFR measures the number
of children a woman would give birth to if she survived through her reproductive life span.If
we limit births to female births, we get an indication of the number of daughters born to the
average woman, whichis closer to a measure of whether childbearing womenare “reproducing
themselves” in number.Let us define the age-specific rate of having a female birthas:

Femalebirths in the period 0 to T to women aged x tox +n
 

iF; [0,7] = —— ,Person-yearslived in the period 0 to T by women aged x tox +n

Whenthey cannot be confused with the life table notation for age-specific mortality rates,
these rates are often denoted ,m, for maternity rates, their continuous equivalent being the
maternity function of age, m(a).
The Gross Reproduction Rate (GRR) is equivalent to the TFR, but it uses maternity rates

instead offertility rates:

B—n

GRR[0,T] =n-)° Ff(0, T] (5.17)
X=QX

The GRRrepresents the number of female births an average woman would haveif she lived
throughthe end of her reproductive span.It is a gross measureofreproduction, becauseit does
not account for mortality.
A realistic measure of reproduction must take mortality into account. This is accomplished

by introducing the , L, columnofa life table. Since the value nL» represents the number of
person-years lived between age x and age x +n in a cohort of lo births, the numberof years
lived in each age interval by an average female subjected to the period mortality conditions
through her reproductive life span is nLBR / lo. The Net Reproduction Rate is then defined as:

B—n Lf

NRR[0,T]= )— FF(0, 7] - 2 (5.18)
rasa lo

The NRR canbeinterpreted as the average number of daughters that female members of a
birth cohort would bear during their reproductive life span if they were subject to the observed
age-specific maternity rates (, F/) and mortality rates (embodied in ,L+) throughouttheir
lifetimes. If the NRRis greater than 1.00, then a cohort of girl babieswill leave behind a larger
cohort of daughters than they themselves represented. Box 5.5 showsthe calculation of period
gross and net reproduction rates for the US in 1991.

Note that if all women survived until age B, nlB/lg would be n and the GRR and the NRR
would be equal. In general, the NRR must be smaller. Coale (1972) has derived a convenient



114 FERTILITY AND REPRODUCTION

 
 

Box 5.5 Calculation of Period Gross and Net Reproduction Rates

nW, = Mid-year number of women aged x tox +n

,B! = Numberoffemale births during the year to women aged x to x +n

yLe = Numberof person-years lived between ages x and x + n by a hypothetical cohort

of /o births in the period life table for females

 
F

pF anPs ay ifiniy = W = Age-specific maternity rate

n x

B—n Bon1PB F FGRR=n-)_,F; NRR = ~~ ) Fy nly
X= 0 X=

Example: US, 1991; /o = 100, 000

 

 

Age x 5 Wx n BL ple nle nFe ‘ nly

10 8,620,000 5,816 494,603 0.0007 333.7]

15 8,371,000 253,979 493,804 0.0303 14,982.18

20 9,419,000 532,712 492,552 0.0566 27,857.35

25 10,325,000 596,823 491,138 0.0578 28,389.58

30 11,125,000 431,694 489,356 0.0388 18,988.95

35 10,344,000 162,005 486,941 0.0157 7,626.34

40 9,496,000 25,531 483,577 0.0027 1,300.15

45 7,188,000 829 478,475 0.0001 55.18

Sum 0.2026 99,533.45

   GRR = 5 - 0.2026 = 1.013 daughter per woman

NRR = 99,533.45/100,000 = 0.995 daughter per woman

Data source: National Center for Health Statistics, 1996.

 
 

approximate relationship between GRR and NRR. This relationship is easiest to derive in

continuous notation. The NRRis the sum of the product of the maternity function, m(a), and

the probability of surviving to age a, p(a):

B

NRR = [ map da (5.19)

a

So:

 

B
B

NRR = Jeg MO)Pla) de [may da
fPm@) da

The second term is simply the GRR.Thefirst term is a weighted average of the survivorship

function, p(a), between ages a and B, the weights being provided by the maternity function.
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By the mean value theorem,there exists an age y in the interval [a, B] such that the weighted
average is simply p(y), so NRR = p(y) - GRR.If the p(a) function is linear between ages a
and £, then p(a) can be written as ag + a1a, and:

f® m(a) -p(a)da _ [2 ma) -(ag + a1, -a)da

f® m(a)da [? m(a)da

{® m(a)-ada

{P m(a) da

  

= 00 + Q] - = p(Am)

where p(Ay)is the probability of surviving to the meanageofthe maternity function.
Thus:

NRR = p(Ay)-GRR (5.20)

This relation between NRR and GRRis exact when survivorship is linear in the reproductive
interval and is a good approximation in most conditions. In discrete notation, Ay can be
computed as:

B-n pF "
[® m(a)-ada Doraa nly (x +5)

Ja m(a) da Dynan Fe
It is often satisfactory to assumethat the ratio of male to female births (commonly called

Sex ratio at birth, SRB) does not vary with age. Since the age-specific maternity rates are the
product of the age-specific fertility rates and of the ratio of femaleto total births, if the latter
ratio is the sameatall ages, we can derive another approximation:

Am (5.21) 

(1 + SRB)

p(Am)

A NRRof | implies that a female population permanently subjected to the m(a) and p(a)
age schedules would exactly replace itself. Fertility rates that correspond to an NRRof 1.00
are often referred to as replacementlevelfertility, although there are an infinite number of
m/(a) schedules that can combine with p(a) to produce an NRR = 1. The replacementlevel of
fertility corresponds toa GRR ~ 1 /P(Am) and a TFR ~ (1 + SRB)/p(Ay). In populations
with low levels of mortality, as in most developed countries, the replacement level of TFR
is about 2.1. In populations with higher mortality, in particular high childhood mortality, the
probability of reaching the age Ajy can be much lowerandthe replacementlevel of TFR can
be as high as 3.5 or 4.0.

These measures of reproduction indicate whether the female population is “reproducing”
itself, rather than whether the entire population of both sexesis. If calculated for the male
population, reproduction measures would often differ slightly from female-based reproductive
measures, a classic problem of demographyreferredto as the two-sex problem (Karmel, 1947;
Henry, 1969). Differences are typically slight and analysis of female reproduction will usually
provide a satisfactory description of how fertility and mortality regimes combine to determine
population dynamics.

When NRR > 1, each generation is larger than the previous generation, so the population
will grow from natural increaseacrossthe generations. But the NRR doesnot indicate how fast

TFR = (1+SRB)-GRR = NRR (5.22)
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the population will grow on an annual basis. Achieving an NRR > | only meansthat newborn

females will produce, on average, more than one daughter during their lifetime. How fast the

population grows from year to year also depends on when the births occurin that lifetime.

The shape and location of the maternity schedule is not summarized in the NRR. The link

between the growth rate and measures of reproduction is described in chapter 7, in the context

of populations subjectedto constant mortality and fertility processes. The link betweenfertility,

reproduction, and growth can also be analyzed empirically through populationprojectionsthat

are described in the next chapter.

NOTES

I. They are also reversed from the French terminology:fécondité meansfertility whereasfertilité means

fecundity.

Accordingto the definition of the World Health Organization,a birth showing any sign oflife is to

be classified as a live birth as opposedto a stillbirth. The duration of gestation (28 weeks) is used

to classify stillbirths and abortions. The distinction betweenlive births andstillbirths is not always

well recorded and even less well remembered in retrospective surveys. Conceptions are even more

difficult to record because they are often unrecognized, e.g., when they are terminated very early and

spontaneously.

The marital fertility schedule of the Hutterites, for the marriage cohorts of 1921 to 1930,is the

following (Henry, 1961a: 84):

20-4 25-9 304 35-9 404 45-9

550 .502 .447 1.406 .222 «061
  

Knodel (1988) suggests using a value of 0.300 for Hutterite marital fertility rates at ages 15-19.

Illegitimate births are defined as births to unmarried mothers.

Moreprecise definitions of W(T), M(T), and O(T) respectively would be the number of person-

years lived in year T by womenaged 15 to 49, by married women aged 15 to 49, and by mothers

aged 15 to 49.

In the following table,the risk of mortality is assumedto be zero. We also assume that all pregnancies

occur exactly at the end of the month. The number of pregnancies in the interval x to x +n 1s

denoted ,,d,.

See Leridon (1977) on how to estimate the values of the distribution parameters.

Sheps and Menken (1973: 154) show a more general relationship:

mth)

Ew )= (r+ 1)m

where x is the time since last event, E(x") is the expected value in the population, and m”) is the

nth momentof the distribution of events, f (x), i.e.:

OO

m”? = [xreodx

0

When r = 1, the expected time since last event in the population is equivalent to the average length

of the open interval(time sincelast event in the population), whereasthe first momentis equivalent

to the averagelength of closed intervals in the distribution of births, so:

m) m= 4 oc?

E = ——_— =
(x) 2m 2m
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Population projection is probably the demographictechnique that is most frequently requested
by demography’s “clients.” Governments seek projections of future demographic parameters
in order to anticipate demandsofall kinds: for roads, schools, medical personnel, and national
parks. Private businesses seek population projections in order to estimate the potential size of
their future “market.” Population projection has been elevated to one of the most important
tools for determining US tax and expenditure policies: the US Social Security Trust Fund is
required to be in actuarial balance over a projected 75-year period, and population projections
are the most central factor in determining whetheritis.

In addition to satisfying the needsofclients, demographersalso use population projections
more abstractly to analyze the implications of a certain set of demographic parameters for
population size, composition, and growth. Projectionsillustrate the implications of certain
demographic characteristics (the model’s user-selected inputs) on population parameters over
time (the model’s outputs). Although most population projections concentrate on the conse-
quences ofa set of fertility, mortality, and migration assumptions, projections can also be
designed to demonstrate the consequences of marriage patterns, contraceptive use regimes,
and many other demographic processes.

6.1 Projections and Forecasts

Population projections are calculations which show the future developmentof a population when
certain assumptions are made aboutthe future course of fertility, mortality, and migration. They
are in general purely formal calculations, developing the implications of the assumptionsthat are
made. A population forecast is a projection in which the assumptions are considered to yield a
realistic picture of the probable future developmentof a population. (United Nations, 1958: 45)
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Bythis definition, the quality of projections is determinedbytheirinternalvalidity, i.e. whether

they accurately and consistently model relations among demographic variables. The gauge of

a forecast, on the other hand,is its external validity, i.e. how well predictions correspond to

subsequent events. Demographerstakeit as an article of faith that projections having a higher

degree of internal validity are also likely to have a higher degree of external validity.

Unlike forecasts, population projections can be madefor the past as well as for the future.

Projection parameters neednotbear any resemblanceto those of anyreal population. Population

projections can be used to address purely hypothetical situations and to answer questions of

the “what if?” type. For example, we may want to calculate characteristics of the present

US population if mortality had remained at its 1900 level, even though in reality mortality

has declined substantially (White and Preston, 1996). We may want to calculate what the

population size of a high fertility country would becomeif fertility remained constant,say,

for the next 50 years. In a famous example, Coale (1974) computedthat if world population

growth wasto remain constant at its level at that time (2 percent annually):

In less than 200 years there would be one person for every square foot on the surface of the earth,

in less than 1,200 years the human population would outweighthe earth, in less than 6,000 years

the mass of humanity would form a sphere expanding at the speed of light. (Coale, 1974: 51)

Clearly, this calculation implies no belief that population growth would actually remain con-

stant but, on the contrary, is intended to show that such a rapid growthis not sustainable.

But mostusers of population projections want to know whatthe actual demographic param-

eters at somefuturedate are likely to be. Most projections derivetheirutility from their relative

success as forecasts. Because the future is inevitably uncertain, population projections using

several alternative scenarios are frequently prepared. The demographer, however, is most often

pressed to prepare a central or mostlikely scenario corresponding to his or her best assessment

of whatthe future will be like. This scenario will typically be used as a forecast (Keyfitz, 1972).

Recent promising developments in projection methodology provide useful information about

the confidence bandsthat can be placed arounda central forecast.

6.2 Population Projection Methodology

Since the accuracy of population forecasts can only be evaluated ex post, projection method-

ologies mustbe selected using other criteria. The most obvious criterion for choosing a method

is that it should have internalvalidity, i.e., obey the demographic accountingrelations that have

been developed in this volume. We should also select a model that incorporates as manyrele-

vant facts and relationships as possible. Knowing how well a method has worked to produce

accurate forecasts in the pastis also useful, although some successes may be a result of pure

luck and somefailures a consequence of unforeseeable events.

The choice ofa projection methodologyalso impliesa set of necessary projection inputs and

achievable projection outputs. One should select a projection methodologythat will provide the

desired level of detail in the output. One mustalso select a model whose data requirements can

be met. This criterion might conflict with the goal of incorporating relevant relationships. More

sophisticated projection methodologies will typically be more demanding of data. The gain

from using a morerealistic model of population dynamics might sometimes be outweighed by

the loss introduced byerror in the additional data required.

Let us start with the simplest projection need: assume that we knowtotal population size at

time 0 and wantto estimate total population size at time T. In chapter 1, we have seen that the



POPULATION PROJECTION 119

two quantities are related by:

N(T) = N(Oelo OA = N@e"O.TIT

where r[0, T] is the mean annualized growth rate between times 0 and T.
This equation can serve as a projection methodology: if we are able to correctly estimate

N(Q) and make an accurate assumption about the mean growth rate over the period 0 to T,
then we can accurately project N(7). In the absence of information about population growth,
the simplest forecast would be to assume that population size will remain constant in the
future. Since in most populations, the absolute annual growthrate is a few percentorless, this
assumption will often provide a fair approximation for very short periods, say a yearorless.
The assumption amounts to saying that, in the short term, the main “component” of future
population size is the size of the population already alive at a previous date.

If we have anestimateofthe growthrate, r, the next simplest projection methodis to assume
that population growth rate will remain constant overtime, so that population size at any other
time T is given by:

N(T) = N(O)e"? (6.1)

Early population forecasters, e.g., Bonynge (1852), used such exponential extrapolation.
Bonyngepredicted the United States population in year 2000 at 703 million inhabitants.

Other models using only population size have been developed, especially in early forecasting
attempts, such as polynomial models (Pritchett, 1891) or logistic functions (Verhulst, 1838
and Pearl and Reed, 1920). Werefer interested readers to Dorn (1950) for a description and
assessmentof early population forecasts.

In chapter 1, we saw that we could expressthe crude growth rate in termsofthe crudebirth
rate, crude death rate, crude in-migration rate, and crude out-migration rate (equation 1.2). This
elaboration suggests the possibility of doing projections that explicitly account for fertility,
mortality, and migration. In turn, in chapter 2, we have shownthe considerable extent to which
crude rates are affected by age compositional effects. A constant exponential growth model
(equation 6.1) is thus a sensible model when fertility, mortality, and migration conditions
can be assumednot to vary much overthe projection period and when the age distribution
can be assumed to remain constant. But the age distribution itself is producedby fertility,
mortality, and migration conditions: it is endogenousto the process of population change. So
an improved prediction model ought to take into account age distributional effects by modeling
the age distribution over time as a productof fertility, mortality, and migration conditions. This
insight is the basis of more modern approachesto population projection. An additional reason
for explicitly treating the age distribution in population projection is that it is one of the most
valuable outputs of the process.

6.3 The Cohort Component Method

The method most commonly used that does accountfor age distribution is called the “cohort
component” method. The approach can be traced back to Cannan (1895) but the method was
independently developed by Whelpton (1928 and 1936) (Smith and Keyfitz, 1977: 193-4). It
is now nearly the only method used for population projections, representing a rare consen-
sus for the social sciences. The approach consists of segmenting the population into different



120 POPULATION PROJECTION

subgroupsdifferentially exposedto the “risks” of fertility, mortality, and migration and sepa-

rately computing the changesovertimein each group.In any population, exposure varies by age

and sex so at a minimum the methodsegregates the population by age and sex. Otherdifferen-

tiation may recognize race, nationality, location (region, urban/rural), educational attainment,

or religion.

As opposed to continuous-time models based on mathematical functions discussed in

section 6.2, the cohort-component modelis a discrete-time model of population dynamics.

Population characteristics are only calculated at certain momentsof time separated by lengthy

time intervals. The projection period is usually divided into timeintervals of the same length

as the age intervals that are employed. Projection is then carried out one projection intervalat

a time. For each projection interval, the methodbasically consists of three steps:

1) Project forward the population in each subgroup at the beginning of the time interval in

order to estimate the numberstill alive at the beginning of the next interval;

2) Compute the numberofbirths for each subgroup overthe time interval, add them across

groups, and compute the numberof those births who survive to the beginning of the next

interval;

3) Add immigrants and subtract emigrants in each subgroup during the interval; compute the

numberof births to these migrants during the interval; and project forward the number

of migrants and the numberoftheir births that will survive to the beginning of the next

interval.

If the population is only segregated by age andsex,the first step is technically straightfor-

ward: use a single decrementlife table for each sex to survive forward the population alive

at the baseline. Survival probabilities are required for each subgroup and the survivors are

assigned to the same sex and next age group(since time and ageintervals are congruent).If the

populationis also divided across individual characteristics that change over time, such as mari-

tal status, a moredetailedlife table must be used to represent the survivors’ transitions between

subgroups. As discussed in chapter 12, such life tables are called increment—decrementlife

tables because they representboth entries in a subgroup and multiple waysto exit the subgroup.

The corresponding projections are called multistate projections (Rogers, 1995b).

The second step is more complicated since every birth is produced by two individuals.

Ideally, births would be attributed to sexual unions and the creation and dissolution of such

unions would betreated explicitly in the projection framework.In practice, the normalstrategy

is to pretendthatbirths are produced by womenonly. The numberofbirths can then be estimated

by applying fertility rates to women only: this is called a ‘“female-dominant” model. When

projections recognize more subgroupsthan those defined by age and sex, a second difficulty

is to allocate births to a subgroup. Following the logic of the female-dominant projection,

a simple approach is often to assumethat the birth will belong to the same segment of the

population as the mother.

The third step adds somepractical difficulty to the projection as one needs to project not

only the total number of migrants in each projection interval but also the timing of migration

within the interval, since exposureto birth and death depends on when migrants enter or leave

the population.

Let us first present the cohort component methodfor a closed female population. The pop-

ulation is only broken downbyage;it is (initially) assumedto be closed to migration; and the

numberof males is assumedto beirrelevant to rates of childbearing. The logic of projection

is best illustrated by reference to this simplified population. Additional complexities can be
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incorporated to make the model morerealistic; those will complicate the specification of the

model without altering the logic of the projection.

6.3.7 Projection of a closed female population

To project forward a closed female population by the cohort component method, we need an

estimate of the number of females in each age groupat baseline. Age groups need to be of

the same length, except for the last, open-ended, age group. The projection period should be

broken downinto projection intervals of the same length as the age groups. The method is

identical for each projection interval, although different parameters may be usedin different

periods. The projected female population from one projection interval becomes the baseline

population for projection over the next interval. For each projection interval, we need both a

life table representing age-specific mortality conditions assumedto prevail during the interval

and a set of age-specific fertility rates assumed to prevail in the interval. Age intervals used in

the life table and fertility rates must be the sameasthose usedin the population estimates. The

construction of age group information may require merging some age groups, for example age

groups 0-1 and 1-5 in thelife table.

We will develop the basic projection method for 5-year age groups and 5-year projection

intervals. We will denote the numberof females aged x to x + 5 at the beginning and the end

of the projection interval as 5Nfe (t) and 5NBe (t + 5) respectively.

Step 1, the projection forward of womenstill alive five years later, proceeds by applying

survivorship ratios to each age group. For any age group except for the youngest and oldest,

the basic formulais:

5Ly
sNy (t +5) =5NP_.(t)-

5Ly—5
(6.2) 

The survivorship ratio used, 5Ly/5L,—5, is the proportion of the person aged x — 5 to x

that will be alive 5 years later in a stationary population subject to the appropriate life table.

Assuming that we have got mortality conditions right in the form of the (x) function, then

this survivorship ratio would be exactly correct if the age distribution of the population within

the interval x — 5 to x were the sameas the age distribution within that age interval in the

stationary population subject to the samelife table. The distributional disturbances created by

nonstationarity within 5-year age groupsare not likely to be very distortive.!

For the open-ended age group, we need to combine survivors from two previous age
groups:

 
L T

ooNf (t +5) = (swfse. 2 + soNF (tr). HB
5Ly~5 T.

The first product is the numberof surviving women whowerein the 5-year age group immedi-
ately before the open-ended age groupat time t. The second productis the numberof survivors
among womenalreadyin the open-ended age groupat the beginning of the projection interval.
The survivorship ratio is again borrowed from a stationary population as the ratio of the num-
ber of person-years lived above age x + 5 to the number of person-years lived above age xX.
Note that this procedure requires the open-ended age group in the life table to begin at an age
that is 5 years older than that used in the population. If this additional detail is not available,
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then we must use:

 
T

soNi (t+5) = (svi5 + Ne() “Zz ~
7

This formula assumesthat the population age structure is stationary beginning at age x — 5.

Lastly, we need to estimate the number of surviving females in the first age group, 0-4.

For this purpose, we need to project the numberof births during the projection period using

age-specific fertility rates. During the projection interval ¢ to t + 5, the normal procedureis to

derive the numberof births to women aged x to x +n as:

L
NF t F , 208

sNf (th) +5Ni(t+5) SNx (4 5Ny5) 5Ly_5
sfy +5: 7 = 5F,-5-

 

 (6.3) 

2

The numberof births to womenin the age groupis obtained by multiplying the period age-

specific fertility rate, 5, by the numberof person-years lived by women in the age group

during the projection interval. The left-hand side of equation (6.3) approximates person-years

lived at ages x to x +n in the projection interval as the length of the time interval multiplied

by the average number of womenalive at the beginning andat the end of the period.” The

latter number can be derived as a function of the population at the beginning ofthe interval

and survival throughthe interval, as shown on the right-hand side of equation (6.3).

The total numberofbirths during the period is then obtained by summingbirths across age

groups of the mother:

 
B—5

5 L
Bit,t+5]= ) 5 sFe (SNF) SNEgt: — ) (6.4)

x=Q 5£x—-—5

where a and B are the lower and upper boundsof the childbearing ages. The numberof female

births is then normally obtained by applying the ratio of male to female births (SRB):

Biit,t+5|= -Bit,t +5] (6.5)
1

1+ SRB

This formula is correct when the sex ratio at birth does not vary with the age of the mother,

an assumption that is seldom problematic. Alternatively, one can use age-specific maternity

rates, 5 Ff , instead offertility rates, 5 F, if age-specific fertility rates are available by sex of

the child.

Finally, the number of females aged 0 to 4 at the end of the projection interval is obtained

by surviving female births through time ¢ + 5. If births are assumed to be distributed evenly

during the period t to t + 5, then the relations of a stationary population can be invoked. In a

stationary population, the ratio of the number of persons aged 0-4 to the numberofbirths in

the preceding 5-year period is 5Lo/(5 - /o). Thus,

Bi[t,t +5]-s5Lo
5No(t +5) = 501g (6.6) 
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The numberof females aged 0 to 4 can thus be derived by replacing births by female births in

equation (6.6). Replacing female births by its expression in (6.4) and (6.5) yields:

  

L
5NG (t +5) = BY tr,t+5]-2—~5-1

B—5
5Lo | F F me)= . JS sFy- (sNFO)+5NE,(t)-2p TESRE Xu? ’ (: r()+5Ny5) 5

Note that 5s have canceled out of the numerator and denominatorin this expression.

6.3.2 Projection of a two-sex closed population

The male population could be projected in a similar manner using a male life table for sur-

vivorship ratios and male fertility rates. A problem with this approach is that independently

projected male and female births would not necessarily produce a plausible sex ratio at birth.

The easiest way to address this concern1s to derive the total numberofbirths (male and female)

from female fertility rates and to derive the numberofmale births by applying a sexratioat birth

to the total numberof female births. This procedure is that of a female-dominantprojection.

The steps for deriving the male population in a female-dominant projection are,first, to

survive the male population forward as in equation (6.2):

M
5Ly
M

5LYs

 5Ne (t +5) =5NY.(t)-

and, for the open-ended age group:

 M M 5LY M TMsoN (t +5) = s Nits (t)- S- + [oo()- 2
skis IY

The numberof male births is obtained from the total numberof births in (6.4):

Bt 14+5)- 288 or t+5]~ 1+SRB

The numberof malesin thefirst age groupis then obtained by surviving the male births using

the appropriate survivorship ratio for the malelife table:

ML
sNg{ (+5) = BMUnt +5]

- lo

Ofcourse,it is possible to calculate a male-dominantprojection in which the total number of

births (male and female) would be derived from malefertility rates and the male agedistribution.

The two approaches may,as noted, yield different projections, which is another aspect of the
two-sex problem mentioned in chapter 5. Box 6.1 presents an example of female-dominant
projection.
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Box 6.1 (part 1) Cohort Component Female-dominant Projection in a Population
Closed to Migration

1. Females

5Nf (t) = number of women aged x to x + 5 at time t

5Lf = numberof person-years lived by women from age x to x + 5 (from thelife table)

5 f, = age-specific fertility rate in interval x to x + 5

 

 

5LP TE

sNe(t+5) =5Nys(t): 3 ooNast +5) = (sMfo(e) + NGO) - 88
5Ly_5 T39

sNF (th ts5NPtt5
sBylt,t + 5]=5+5Fy- > ats —

= births to women aged x to x + 5 between time f and time t + 5

B-5
Bi[t,t +5] =)" sBylt, t + 5] = total births between t and t + 5

X=Q

1
Brit,t+5 t,t +5]-————

! p= Bl J: 1+ 1.05

= numberof females births between t and t + 5 (with SRB = 1.05)

5Lé

5Ng (t+5) =Br[t,t+5])-—2%
5-lo

2. Males

5N™ — numberof men aged x to x + 5 at time t

5LM = numberof person-years lived by men from age x to x + 5 (from thelife table)

 
LM TM

sNe(t+5) =5Need)oa oo Nas (t +5) = (sng +oN)a
Le—5 136

M 1.05
Bv' [t,t +5])=Blt,t+5]- 1.05 = numberof males births between f and t + 5

sli.

5Nj’ ((+5) =B[r,14+5]-—
5 - lp

   
6.3.3 Projection of an open population

It is fairly easy to adapt this projection methodology to take into account emigration. Since

emigration is a decrement from the populationofinterest, we could compute emigrationrates by

age and sex, then derive a two-decrementlife table combiningthe risks of death and emigration.

We would then use the corresponding survivorship ratios from the multiple decrementlife table

for the projection. This methodis entirely appropriate for populations in which the dominant

migration flow is emigration. We will not developit further here, assumingthat the reader can

construct a multiple decrement life table through methods describedin chapter4.
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BoBox.6:11 (part2

Age F
5N,

Example: Sweden,baseline 1993 (females) 12 100,000.

 

 

  

 

5sLt 5 Fy. SNE 5 By sNo 5 By
x (1993.0) (1998.0)  [1993.0, 1998.0] (2003.0)  [1998.0, 2003.0]

0 293,395 497,487 293,574 280,121

5 248,369 497,138 293,189 293,368

10 240,012 496,901 248,251 293,049

15 261,346 496,531 0.0120 239,833 15,035 248,066 14,637

20 285,209 495,902 0.0908 261,015 123,993 239,529 113,624

25 314,388 495,168 0.1499 284,787 224,541 260,629 204,394

30 281,290 494,213 0.1125 313,782 167,364 284,238 168,193

35 286,923 492,760 0.0441 280,463 62,554 312,859 65,414

40 304,108 490,447 0.0074 285,576 10,909 279,147 10,447

45 324,946 486,613 0.0003 301,731 470 283,344 439

50 247,613 480,665 320,974 298,043

55 211,351 471,786 243,039 315,045

60 215,140 457,852 205,109 235,861

65 221,764 436,153 204,944 195,388

70 223,506 402,775 204,793 189,260

75 183,654 350,358 194,419 178,141

80 141,990 271,512 142,324 150,666

85+ 112,424 291,707 131,768 141,960

4,449,570 604,866 4,478,712 577,148Sum 4,397,428

 

iB [1993.0, 1998.l=- 604,866 S ‘B [1998.0,2003.ol=577,148
BF[1993.0,19980]= 295,057 BF [1998.0, 2003.0]=- 281 536

B™ [1993.0,1998.0] = 309,810 _ B™ [1998.0, 2003.0] =:295,612
 
 

Dealing with immigration is more difficult. People already in the population are notatrisk

of immigrating into it and relating immigration flows to the population by age and sex does

not provide the same advantagesas it does for mortality orfertility. Immigrationis typically

affected by immigration policies that are more often set in terms of maximum numbers and

flows than in termsofrates.

For these reasons, migration assumptionsare more often formulated in the form of absolute

numbers than of rates. The formal difficulty of integrating migration in projection is that

migration continuously affects the population at risk both of dying and of giving birth. If

migration were taking place by discrete leaps exactly at the end of each projection interval,

we would only needto add or subtract migrants at the right ages. But morerealistically, some
migrants will not survive until the end of the interval and some may bear children who will
survive until the end ofthe interval.

One convenient approach to modeling the continuous migration process is to divide the
number of migrants during the interval into two discrete quantities, and to assumethathalf of
the migrants moved exactly at the beginning of the projection interval and the other half moved
exactly at the endofthe interval. Let’s denote as 5 /ee [t, +5] the net flow of immigrants during
the projection period in the age interval x to x + 5 (the numbercan be negativeif the migration
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Box 6.1 (part 3)

Example: Sweden, baseline 1993 (males)
 

 

 

  

Age 5NM 5LM 5NM 5NM

x (1993.0) (1998.0) (2003.0)

0 310,189 496,754 307,798 293,693

5 261,963 496,297 309,904 307,515

10 252,046 495,989 261,800 309,711

15 274,711 495,113 251,601 261,338

20 296,679 493,460 273,794 250,761

25 333,726 491,475 295,486 272,692

30 296,774 489,325 332,266 294,193

35 299,391 486,487 295,053 330,339

AQ 314,295 482,392 296,871 292,569

45 338,709 476,532 310,477 293,265

50 256,066 467,568 332,338 304,637

55 208,841 452,941 248,055 321,941

60 199,996 428,556 197,598 234,701

65 197,282 390,707 182,333 180,146

70 184,234 336,027 169,672 156,815

75 133,856 261,507 143,377 132,044

80 86,732 172,333 88,211 94,485

85+ 49,095 128,631 58,052 62,512

Sum 4,294,585 4,354,685 4,393,358

Total 8,692,013 8,804,255 8,872,071

population

SIZE

Note: This example assumesthat mortality and fertility stay constantat their 1993 levels during

the projection period.

Data source: United Nations, 1993 Demographic Yearbook. 45th. New York, United Nations, Departmentfor

Economic and Social Information and Policy Analysis, Statistical Division, 1995.

 

 

balance in the age group is negative). There are thus two additional terms in the number of

survivors at the end of any projection interval for the age group x to x +n:

e half of the increments between the age x and x + 5 are addeddirectly at the end of the

interval;

e half of the increments between the age x — 5 and x are addedat the beginning of the

interval and survived to age x tox +5.

Surviving the population forward (step 1), equation (6.2) becomes:

 
IY [t,t+5 1F5 x5 2 5Ly | sl, [t,t +5] (6.7)F _ F ,sNe (t+ 5) = (swEs0+ Ss 5
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A similar adjustment should be madeto the numberofsurvivors in the open-ended age group

and to male survivors.

The numberofbirths in the period must also be adjusted. Increments at the end ofthe interval

do not contribute to the numberofbirths in the population duringthe interval. Incrementsat the

beginning ofthe interval are usually assumed to bear children at the samerate as the population

they are joining so births are obtained by equation (6.4) where 5Nfe (t) should be replaced by

5Nre (t) + [51Be [t,t +5]/2]. In other words, the following quantity represents the additional

numberof births due to migration:

B=) 5

ABInt + 51= Yo 2 se (shPOt+tsl,=) --
X=Q

 sas | (6.8)
Lys

Note that the quantity will be negative if net out-migration is occurring. The negative value

reflects the number of births that would have occurred but which were lost to the population

through the emigration of potential mothers. Finally, these births are divided by sex based ona

sex ratio at birth and survived forward usingthe life table to obtain the migration “correction”

to the 0-4 age group.Since half of the migration at 0-4 is also to be added at the end of the

interval, the equation for the first age group becomes:

sLo 51g [t,t +5]
6.9

5 «Io 2 (6.9)
 sNé (t +5) = BP [t,t +5]-

These approximations for migration effects allow us to adapt formulas for a closed population

without having to turn to a more complex methodology. The approximationsare highly accurate

if migration is relatively evenly distributed in the interval and does not vary dramatically from

one 5-year age interval to the next. For expositional clarity, we discussed migration last. To

implementthe projection, the simplest procedureis to add half of the projected migration flow

to each subgroup before beginning step one, and to add the second half at the very end. An

example is providedin box 6.2.

The adjustments were presented for net increments, i.e. those combining in- and out-

migration. This approach makespresentation easier becauseit avoids repeating similar adjust-

ments for immigrants and emigrants. However, it is analytically disconcerting. Emigration

and immigration need not have the same causes and constraints. As mentioned, emigration

is better handled, when possible, through a multiple decrementlife table, whereas immigra-

tion can be handled in the manner just described. Even when both in- and out-migration are

handled as flows, we may want to apply different mortality and fertility rates to immigrants

and emigrants. Emigration can be selective on variables related to mortality andfertility, and

immigrants’ behavior and risks in their new location need not mirror those for longstanding
residents.

6.3.4 Further disaggregation

The essence of the cohort-component method is the recognition of different age groups.
Because mortality often varies substantially between males and females, and because fer-
tility rates are mostoften available only for females,it is desirable to divide the population by
age and sex. Further disaggregation maybedesired if information is sought on subpopulations
or if the rates vary among subpopulations so that disaggregation allows a more accurate projec-
tion of the total population.* The cohort--component method allowsfurther disaggregation by



 
 

Box 6.2 Cohort-component Female-dominant Projection with Migration

sli (t,t +5) = Numberof net female migrants between ¢ and t + 5
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Example: Sweden, females, baseline 1993 (see Box 6.1)
 

 

Age NE shy sFy lf sNf 5 By
x (1993.0) [1993.0, 1998.0] (1998.0) —[1993.0, 1998.0]

0 293,395 497,487 6,840 302,392

5 248,369 497,138 4,150 298,682

10 240,012 496,901 3,365 252,007

15 261,346 496,531 0.0120 5,270 244,150 15,244

20 285,209 495,902 0.0908 9,240 268,267 126,688

25 314,388 495,168 0.1499 8,230 293,515 229,354

30 281,290 494,213 0.1125 5,470 320,624 170,057

35 286,923 492,760 0.0441 3,155 284,767 63,203

40 304,108 490,447 0.0074 1,770 288,031 10,971

45 324,946 486,613 0.0003 1,115 303,166 472

50 247,613 480,665 1,075 322,062

55 211,351 471,786 845 243,989

60 215,140 457,852 645 205,841

65 221,764 436,153 530 205,516

70 223,506 402,775 465 205,270

75 183,654 350,358 300 194,771

80 141,990 271,512 250 142,565

85+ 112,424 291,707 175 131,966

Sum 4,397,428 4,507,581 615,988
   B [1993.0, 1998.0] = 615,988

BF [1993.0, 1998.0] = 300,482
Total number of females in 1998 with migration = 4,507,581

Total numberof females in 1998 without migration (Box 6.1) = 4,449,570

Source: United Nations, Demographic Yearbook (various years).
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characteristics established at birth (e.g., race). Cohort-componentprojections can be prepared

for males and females of each subpopulation as described above, with the addition ofa rule to

allocate births. The simplest rule when doing a female-dominantprojection is to assumethat

births belong to the same subpopulation as the mother andto use a sex ratio at birth to divide

them between males and females. Real situations are often too complex for this approachto be

very satisfactory, e.g., when the classification of a child’s race is more likely to be associated

with the father’s race than with the mother’s.

The cohort-component method cannot be simply adjusted to project population by charac-

teristics that are changing during the life course. Transitions among subpopulations are best

handled by a multistate methodology that explicitly recognizes patterns of transition by age

and sex (see chapter 12). But when the characteristic of interest varies in the course of life

with somesort of regularity, it may be possible to approximate the multistate projections by

simply projecting the population by age and sex and then applying to it an age pattern of the

characteristic. Assuming an age pattern 1s simpler than making assumptions aboutthe transfer

rates into and out of each age group. Input data can be supplied by single cross-section,

whereasthe estimation of transition rates typically requires longitudinal data.

6.4 Projections in Matrix Notation

The mechanics of cohort componentprojections can be compactly written in matrix notation

as has been gradually established by Bernardelli (1941), Lewis (1942) and, especially, Leslie

(1945) (Smith and Keyfitz, 1977: 193-4, 215-38). This rewriting often facilitates computer

applications and also allowsthe use of matrix algebra to establish importantrelations in pop-

ulation dynamics. In this section, we provide a simplified illustration of the use of matrix

notation. No additional concepts are developed in this section and readers unfamiliar with

matrix algebra can skip to the nextsection.

To illustrate how to summarize the cohort componentprojection methodology using matrix

notation, we will divide the population into five age groups only (0-14, 15-29, 30-44, 45-59,

60+) and refer to those as groups| to 5 (6 in T¢ will refer to age 75+). For a closed female-only

population (denoted W), surviving the population at time ft fifteen years forward implies, for

i= 2,3,4:

Lj

Li-}
 Wi (t + 15) = Wi_1(t) -

and fori = 5:

Ws(t + 15) = (wan | **) + (ws , 7)
L4 Ts

If we assumethatfertility is limited to ages 15 to 45, then equation (6.4) becomes:

Bit,t +15) = = - f>- (wow + W(t): 2)
]

tbo. (w W 135 v( 3(t) + 0-2)
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so the first age group 15 years forwardis:

LyW(t + 15) = Bit, t + 15]- |
i )= Bl ] TT SRB 5 -Ig
 

Ly L
—k. (F: L, ~Wi(t) + Fs + f3- Z| -Wo(t) + F3 - wan

2

with k = (1/(1 + SRB))(L1/(2 -19)).

So in matrix notation:

  

L L
(pop, 2 kt rs | k-F; 0 0 |

Ly Lo

W(t + 15) f2 0 0 0 O W(t)
W(t + 15) Ly 1 W(t)
W3(t +15)

|

= 0 ~ 0 0 O]-] W302)
W4(t + 15) 7 La Wa (t)
Ws(t + 15) 0 0 7, oO 9 Ws(t)

3
Ls T,

0 0 09 2 7)
Iq T5

(6.10)

By denoting as W(t) the column vector of population by age groupat time ¢ and L[t, t + 15]

the projection matrix between time ¢ and ¢t + 15 (the Leslie matrix), the projection is thus of

the following format:

W(t + 15) = Lit, t + 15] - W(t)

If we assume that the same projection matrix can be applied to a projection period of n

Successive 15-yearintervals, then:

W(t +15-n) =L®- Wit)

A remarkable finding is that, under assumptions that are nearly alwayssatisfied by human

populations, when the matrix L is raised to a high enough powern,the population age structure

of W(t+15-n) becomes constant and the population growth rate during each projectioninterval

becomesconstant. This result is related to the stable population theorem presented in the next

chapter. Matrix algebra offers an elegant way to derive the constant age distribution and the

constant growth rate. When a population has reached the stable state, it must satisfy for any

subsequent projection interval:

W(t +15) =L- W(t) =2- Wo)

so the 15 years’ growth, A, is the largest real eigenvalue and the stable population distribution,

W°(r), the corresponding eigenvector of the matrix equation:

(L—2-D- W(t) =0

whereI is the identity matrix and 0 is a column-vectorof zeros.
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Table 6.1: Population by major areas in 2000, 2020, and 2050 (thousands)
 

 

Area 2000 2020 2050

World 6,055,049 7,501,521 8,909,095

Africa 784,445 1,187,424 1,766,082

Asia 3,682,550 4,545,249 5,268,451

Europe 728,887 711,909 627,691

Latin America and the Caribbean 519,143 665,093 808,910

Northern America 309,631 353,904 391,781

Oceania 30,393 37,943 46,180
 

Source: United Nations, 1999. Medium variant.

6.5 Population Forecasts

Simulating constant mortality and fertility conditions is a good example of the use of popu-

lation projections but does not represent a likely scenario for most populations. The essence

of population forecasting by the cohort-component methodis defining a set of age-specific

mortality and fertility rates and a set of immigrants and emigrants by age and sex for each

projection interval. If the projection is further disaggregated, these data are required for each

subpopulation. In this section, we describe how such assumptions are typically prepared by

the United Nations, the principal agency preparing demographic projections for most coun-

tries in the world (United Nations, 1999). Table 6.1 presents results from the UN medium

variant global projection up to year 2050. In the next section, we describe a specific popula-

tion projection for the United States as prepared by the United States Bureau of the Census

(Day, 1996).

These two agencies use the cohort-componentprojection method and produce several demo-

graphic scenarios. Before its revision in 1999, the United Nations recognized 17 age groups

(from age 0-4 to 80 and above) for each sex, so the formulation of a complete demographic

scenario theoretically required, for each projection interval, 36 specific survivorship ratios

(18 for each sex, including that from birth to the first age group), 6 age-specific fertility rates

(from age 15-19 to age 40-4), 1 sex ratio at birth and 34 specific numbers of emigrants and

immigrants (one each for each age/sex group). Each projection interval of 5 years thus requires

defining 111 demographic parameters. This task is simplified by the use of model age patterns

(see chapter 9), which also ensure some consistency in the specific rates used for different

age groups. The analyst needs then to stipulate the level and type of model age pattern that

each demographic phenomenonis assumedto follow in each projection interval. Leaving the

considerations about appropriate patterns for chapter 9, we concentrate in this chapter on the

assumptionsaboutfuturelevels offertility, mortality, and migration. The assumptions made by

mostofficial agencies are fairly mechanical and attemptto take advantageofpast regularities,

mainly the secular decline in mortality and the fertility transition.

Coale (1981) has characterizedtherise in life expectancy over time in many populations by

postulating a linear relationship between the annual rate of increase in €p and its level. Using

this relation for future periods, future gains in life expectancy are assumedto be faster when

recent gains werefast, but slower whenlife expectancyis already at a high level. The United

Nations (United Nations, 1995: 144—5) uses a similar approach. Future life expectancy gains

from oneprojection interval to the next dependonthelevelof life expectancy and follow three

improvementpatterns (slow, medium, and fast) among whichoneis selected based on recent
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Table 6.2: United Nations estimates and projections ofmortality

 

 

 

levels

Countries Life expectancyat birth (females)

1995-2000 2015-20 2040-50

Nigeria 51.5 57.7 70.2

India 62.9 70.3 76.6

Brazil 71.0 75.6 79.7

China 72.0 76.9 81.0

Germany 80.2 82.2 84.5

USA 80.1 82.1] 84.4

Japan 82.9 84.5 86.7
 

Source: United Nations, 1999. Medium variant.

performance.* Table 6.2 presents United Nationsestimates of and assumptions about female

life expectancy for selected countries.

The linear relationship in Coale’s model implies that populations will reach a maximum

life expectancy. United Nations guidelines also anticipate that life expectancy improvements

will slow down as limits to human life span are approached. The existence of such a limit,

however, is questionable (Le Bras, 1976; Vaupel, 1997; Wachter and Finch, 1997). Recent

gains in countries already at low levels of mortality have exhibited little sign of slowing down.

Lee and Carter (1992) fit the following function to the past United States mortality rates:

In[M(x, t)] =a, + K(t)- by

where M(x, t) is the death rate at age x, time t, a, and b, represent the fixed age effects and

age pattern of mortality change, respectively, and K (t) the level of mortality at time t. Their

important analysis reveals that the value of K (t) was declining linearly at a remarkably steady

pace throughoutthe twentieth century.

Similarly, fertility assumptionstypically stipulate a fertility age-schedule anda fertility level

indicator, usually the total fertility rate. Changesin fertility are thought to be less predictable

than changes in mortality because fertility trends have been far less uniform than mortality

trends. At high fertility levels, fertility has been falling in most of Latin America and Asia

whereas it has remained about constant in much of sub-Saharan Africa and parts of western

Asia. Fertility trends at low levels of fertility are equally disparate. The most systematic trend

is that of countries in the midstof the “fertility transition”, where a linear extrapolation of the

trend has been a reasonable assumption until fertility approaches the replacementlevel. For

countries in which fertility has remained almost constantat a high level, the United Nations

fertility assumptions are based on an expectation of the date when fertility decline would

begin, a target date when the replacement level should be reached, and a linear decline in

between. For the more developed countries, United Nationsfertility assumptions are based on

national projections prepared by nationalstatistical offices and typically assume that fertility

will either remain constant or tend toward the replacement level. Table 6.3 presents some

estimates of and assumptions abouttotal fertility rates for selected countries. The National

Research Council (2000) has thoughtfully reviewed the procedures and performance of United

Nations world population projections since 1950.
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Table 6.3: United Nations estimates and projectionsoffertility

 

 

 

levels

Countries Totalfertility rate

1995-2000 2015-20 2040-50

Nigeria 5.15 3.52 2.10

India 3.13 2.10 2.10

Brazil 2.27 2.10 2.10

USA 1.99 1.90 1.90

China 1.80 1.90 1.90

Japan 1.43 1.68 1.75

Germany 1.30 1.51 1.64
 

Source: United Nations, 1999. Medium variant.

In spite ofthe difficulties ofprojecting mortality and fertility, many demographers would con-

sider migration to be the most difficult demographic componentto predict. Migration is often

viewedas an exogenousfactor of population changeas it depends on international immigration

policies and on unpredictable upheavals or crises. This position seemsto result less from empir-

ical evidence than from a lack of understanding of the determinants of migration which has

not yet benefitted from as muchattention as mortality andfertility in the demographic commu-

nity. If migration trends are often irregular because they are, in part, responding to temporary

situations, e.g., refugee movements, migration also depends on morepredictable demographic

factors. For instance, the large immigration flows to many West European countries in the

1970s corresponded to the small birth cohorts of the war years entering the labor force and

to the resulting labor shortage. Immigration policies are thus not fully exogenousfactors and

their changesoften reflect changing demographic conditions. Similarly, emigration flows are
partly spurred by domestic labor force growth in excess of domestic employment growth.
Althoughsuch instancesoflinks between demographic conditions and migration can be iden-
tified, migration assumptions are seldom based on an analysis of their determinants and their
implications. More often, persistent, structural migration flows are conservatively assumed to
continue at the same level whereas morerecent or idiosyncratic ones are assumed to diminish
(United Nations, 1995: 150-1).

6.6 The USBOCProjection of the United States Population

The United States Bureau of the Census projections for the United States make three dif-
ferent assumptions regarding future mortality levels, three different assumptions regarding
fertility, and four different assumptions about migration. Amongthe possible combinations
of these assumptions, 10 combinations are retained for population projections. Assumptions
are described as low, middle, and high, depending on their impact on future populationsize;
the fourth migration assumption is no migration. The middle series for each of the three vari-
ables produces the middle population projection. The assumptionsofhighfertility, high life
expectancy (low mortality), and high migration (since migration is dominated by immigration)
produce the highest projected population; likewise, the low assumptions produce the lowest
projection. Combined with the middle assumptionof the other two components, high and low
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Table 6.4: US Bureau of the Census projection assumptions
 

 

 

Parameter 1995 2050 level (assumption)

timat(estimate) Low Middle High

TFR 2.055 1.910 2.245 2.580

€0 75.9 74.8 82.0 89.4

Migration 820 300 820 1370
 

(Migration figures are net immigrants per year in thousands.)

Source: Day, 1996.

fertility, high and low mortality, high, low, and no migration scenarios are also displayed.

Table 6.4 summarizes the assumptionsof recent projections (Day, 1996).

These assumptionsarein line with the ones described for developed countries in the previous

section. The medium fertility assumptionis that fertility levels by race will moreor less stay

at their current levels, while mortality assumptions are based on different paces of mortality

decline (note that in the low variant, the projected decline is more overweighted by a projected

spread of the HIV/AIDS epidemic). The middle migration assumption is a constant absolute

migration flow but quite different migration assumptions are also simulated. This range is

due in part to the potential volatility of immigration, discussed in the previous section, and

also to the importance of immigration in future population growth. In the middle projections

series, immigrants between 1995 and 2050 amountto 25 percent of 2050 total population and

contribute about 60 percent of the population growth overthe period.

The difference in the 2050 population size between the high and low projections is

102 million for fertility, 48 million for mortality, and 87 million for migration. Population

projectionsillustrate how seemingly small variations offertility have important consequences

for future population size. Variations in mortality have a more modest impact on the total

population size but affect substantially population composition. In this projection, the mortal-

ity componenthas the largest impact on the ratio of 65-++-/25-64 in 2050, a ratio of obvious

economic importance.

6.7 Alternative Forecasting Methods

As mentioned, the cohort-component methodologyis practically unchallenged as the method-

ology for population projections and/or forecasts. As a projection device,it has a high degree

of internal validity because the basic demographic accounting relations are preserved. The

assumptions introduced for computational convenience — stationarity within age intervals,

person-years computed by using the average of beginning and ending population, fixed sex

ratio at birth — have negligible effects on results. An exceptionto this claim is that the assump-

tion of stationarity in the open-endedageintervalat the highest ages biases projected numbers

downward where growth rates are positive at these ages, so that choosing too low an age to

begin the open-ended interval can introduce important error.

As a forecasting tool, examination ofpast performancesprovidesless support than the almost

exclusive resort to the cohort component projection methodology would suggest (Rogers,

1995a). In the United States at least, it seems that the age-standardized series of age-specific

fertility rates (TFR or GRR) havehistorically exhibited more variability than the crude birth
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rates. As shown in chapter 5, the crude birth rate and the age-specific rates are related by:

B—5
CBR[t,t+5]= » sFylt,t +5). <Ci tt, t+5]

X=Q

where <Cf [t, t+ 5] is the ratio of person-yearslived in the interval by females aged x tox +5

to the person-years lived by the total population. Variation in the crude birth rates might be

more regular or smoother than those in the series of age-specific fertility rates if variations

of the latter are compensated by variations in the proportion of women in reproductive age

groups(i.e., if a negative correlation exists between the <Cp and 5 Ftime series). Such a

phenomenonhasin fact been observed in the United States over the period 1900-90. There are

several possible explanations. First, Easterlin (1980) argues that membersoflarge birth cohorts

achieve lowerrelative economic status which, in turn, tends to reducetheir fertility. A second

possible explanation relates to the marriage market. Whenthe population of reproductive ages

is growing rapidly, there is often a surplus of females in the marriage market because females

typically enter the marriage market at a younger age than males. This surplus may translate

into a lower propensity to marry and lowerfertility rates. Finally, it is possible that the negative

correlation between the number of womenandtheirfertility 1s purely a result of chance.

Most models of population dynamics are based on individuals, but larger units such as

households can also be used (van Imhoff and Keilman, 1991). A related possibility is to use

a two-sex model in which people of opposite sex form unions and children are ascribed to

unions. The formation of unions could be modeled as (Schoen, 1988):

M; W;
Ujj = aj - ———

M, + W;

where a;; is the force of attraction between men from subpopulation 7 and women from

subpopulation 7. The dissolution of unions could then be modeled using rates of widowhood

and divorce, so population projections would include simultaneousprojectionsofthe unmarried

population and of the numberof unions.In this morerealistic model, fertility rates are applied

to unions, not to individuals, and depend on the ages of each memberof the union.

6.8 Accuracy and Uncertainty

The accuracy of population forecasts can only be assessed after the fact. The most immediate

indicator of the accuracy of a forecast of the total population size is the difference between

the forecasted size and the actual one, or the difference as a proportion of the projected size.

This relative difference still misses the temporal dimension of a forecast; a 10 percent error

indicates different forecast qualities when it refers to a long-term projection as opposed to a

short-term one.

A better gaugeofthe quality of the forecast of population is the following measureofrelative

error:

_ N(T)-N‘(T)
~ N(T)— N(O)
 

where N?(T)is the predicted population size at time 7, while N(O) and N(T)are the actual

population size at time 0 and T. Time 0 can be chosenasthe latest population estimate that
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was available when the forecast was prepared. The measure doesnotdirectly control for the
length of the forecast but rather for the actual population change. Similar measures comparing
the error of the forecast to the error of other basic forecast methodology can be designed. For
example, N(0) can be replaced by the forecast obtained by projecting constant population
growth (Keyfitz, 1985: 230-3).

Another way to evaluate forecast quality is by comparing the actual growth rate to the

projected growth rate (Stoto, 1983):

e =r’ [0,T]—7[0, T]

( NP(T)
In

N(T)

- T

Note that when T is measuredin years,this ratio is an annualized measureofthe forecast error.

These measures of forecasting error and the analysis of past performances allow one to

consider confidence intervals for forecasts (Keyfitz, 1981; Stoto, 1983). The most promising

method for developing confidenceintervals is to treat demographicrates as stochastic processes

and estimate their time-trend and variance aroundit using time series analysis. The estimation

also allows one to extend the time-trend to the future instead of relying either on “expert”

judgmentfor the future or on measures of error derived from past forecasts (Lee, 1998). We

mentioned a convincing example above by Lee and Carter (1992) with respect to mortality. Lee

(1993), and Lee and Tuljapurkar (1994) extended this approach, addinga similar estimation of

the trend infertility rates. Among the products are confidenceintervals for features of the age

distribution, which are especially valuable for estimating the fiscal viability of Social Security

and Medicare (Tuljapurkar, 1992; Lee and Tuljapurkar, 1998). For a more complete discussion

of uncertainty in forecasts, the reader is referred to National Research Council (2000: chapter

7) and Alho (1998).

 

6.9 Other Uses of Population Projections

Although forecasting is the most commonuse of population projections, the set of interre-

lations among demographic variables embodied in the cohort-component method can also

serve important analytical purposes. One practical use is to show how the existing population

age structure conditions future population growth, a phenomenonreferred to as demographic

“momentum.”In its narrowest formulation, the term refers to the fact that a closed population

may continue to grow even whenfertility is at the “replacement” level (see section 7.7). More

generally, population growth depends not only on current fertility and current mortality but

also on the age structure which,in turn,is a legacy ofpast fertility and mortality (see chapter8).

Bourgeois-Pichat and Taleb (1970) illustrated this phenomenon by showing, using data from

Mexico, that the goal of a zero-growth rate for the year 2000 wasunrealistic becauseits age

structure was too conduciveto positive growth. Only dramatic changesof fertility, ones that

might actually have detrimental long-term consequences, would have producedsuch a decrease

in the growth rate. Bongaarts (1994) used World Bank long-term projections to divide future

world population growth into three components: demographic momentum (growth that would

occur evenif fertility were to stabilize universally and immediately at the replacementlevel);

the additional growth dueto desiredfertility above replacementlevel; and the additional growth

due to additional “undesired”fertility. (The distinction between desired and undesiredfertility
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is of course not clear-cut.) Because it clarified the future sources of growth at a time when
population policies were being reconsidered on

a

globalscale, Bongaarts’ article is one of the
mostinfluential ever written in demography.

Finally, population projections can serve theoretical purposes. We mentionedearlier that
population projection can be used to show that a closed population exposed to fixed conditions
of fertility and mortality converges toward a stable state. Such a result, and the properties of
populations having reachedthe stable state, can be derived analytically and are describedin the
next chapter. The approaches are complementary: although the analytical approach allows one
to grasp stable populationsinall their generality, population projections allow one to simulate
and illustrate more readily how and howfast a particular population actually approachesthis
State.

NOTES

1. Ifmortality increases with age duringtheinterval andthe population distribution within the intervalis
youngerthanthatof the stationary population produced by the same jz(x) function,then thelife table
survivorship ratio is too low by (typically) a very small amount. The maximum bias introduced by
distributional disturbances can be assessed by comparing 5L,/5L,—5 and 1, /l,_5, which would be
the survivorship ratio with the youngestpossible age distribution within the age group(i.e., everyone
between age x and x + 5is of exact age x).

2. As discussed in chapter |, this approximation would be exact if the number of womenin this age
interval were changing linearly during the period.If the growth rate in the interval is constant(the
population is changing exponentially rather than linearly), then we would estimate person-yearsas:

[sNy (t +5) —5NF@)]-5/In[sNF (t + 5)/5NF (t)]

The reason for not using the exponential estimation for period person-years here is not substantive
but formal. Having expressed 5NBe (t + 5) as a function of 5NMs (t), the numberofbirths in (6.4)
appears as a linear combination of population by age-group at the beginning of the interval. This
allows the use of more compact notation and matrix algebra (see section 6.4, below).

3. Note for example that an aggregate population is projected to grow less rapidly than the sum of
its components projected separately when one componentis growing faster than the rest of the
population. Intuitively, the fastest growing segmentof the population gradually represents a larger
share of the total population, thus pulling the aggregate growth upward. This tendency is obscured
by a projection of the aggregate population that implicitly “freezes” population compositionatits
initial level (for a formal proof, see Keyfitz, 1985: 14-17).

4. Note that some adjustments to this general pattern of mortality decline were necessary in some
countries to account for the projectedtoll of AIDS (see United Nations, 1995: 145-6).

5. Stoto’s measure includes an additional term, the ratio of the estimated to the actual population at
time O (ex ante error).
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7.1. A Simplified Example of a Stable Population

7.2 Lotka's Demonstration of Conditions Producing a Stable Population

7.3 The Equations Characterizing a Stable Population

7.4 The “Stable Equivalent” Population

7.5. The Relation between the Intrinsic Growth Rate and the Net

Reproduction Rate

7.6 The Effects of Changesin Fertility and Mortality on Age Structure,

Growth Rates, Birth Rates, and Death Rates

7.7. The Momentum of Population Growth

7.8 Uses of the Stable Population Model in Demographic Estimation  
 

In chapters 3 and 4 we encountered a model that is sometimes used to study population pro-

cesses, the stationary population model. A stationary population will result from the indefinite

continuation of a constant numberofbirths (constant per day, month, and year), a constantlife

table, and zero migrationat all ages. Such a population will have a constantage structure and

certain simplified relationships among demographic parameters. For example, the birth rate of

a stationary population is the reciprocaloflife expectancyat birth. Ina stationary population,

short-cut methods of demographic accounting can often be employed.

In this chapter, we encounter the second major demographic model, the stable population

model.It is closely related to the stationary population model;in fact, a stationary population is

a special case of a stable population. The stable modelis used by demographers to demonstrate

the long-term implications of maintaining short-term demographic patterns andto identify the

effects of change in one parameteronthe value of others.It is the device that demographersuse

most frequently to study how the different componentsof population structure and processes

are connected to one another. It has also been used to estimate the value of demographic

parameters in populations that can be assumedto be stable.

7.1. A Simplified Example of a Stable Population

Suppose that the life table of a population is constant over time and that there is zero net

migration at every age. These same two assumptionsare used in the creation of a stationary

population. However,let us modify the third and final assumption ofthe stationary population

model, the constancy of births. Let us assumeinstead that births are growing “exponentially,”
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i.e., at a constant (annualized) growthrate:

B(t) = B(O)-e”

For purposesofillustration, we will assumethatthe life table in this (nonhuman) population

is such that everyone dies before age 5. The hypothetical life table valuesare:

 

 

Exact age (a) la la/ lo

0 100,000 1.000

] 60,000 0.600

2 40,000 0.400

3 20,000 0.200

4 5,000 0.050

5 0 0.000
 

Finally, assumethat there were 1,000 births in this population on January 1, 1800. Therefore,
there will be 600 individuals (1,000 x 0.600) at exact age 1 on January 1, 1801, 400 individuals
at exact age 2 on January 1, 1802, and so on. The progress of the cohort born on Jan. 1, 1800 is
shown ontheleft-most diagonal of table 7.1. Since the numberofbirths is growing at annual
rate r, we knowthat there will be 1000 - e” births on January 1, 1801. Followingthis birth cohort
throughlife, there will be 1000 - e” - (0.600) one-year-olds on Jan. 1, 1802, 1000 - e” - (0.400)
two-year-olds on Jan. 1, 1803, and so on downthe second diagonal in table 7.1. The next
cohort, born Jan. 1, 1802, will number 1000- e2” at birth and will proceed throughlife along
the third diagonal. Andso on.

Compare the numbers of persons by age on Jan. 1, 1805 and Jan.1, 1806. At every age,
there are more people in 1806 by the factor e”. The two age distributions are proportional to
one another. The proportionate age distribution — often referred to as the “age composition”
of the population — is constant over time.It is clear that, as long as births continue to grow at
a constantrate and the life table is constant, the age composition of the population will also
be constant in years beyond 1806.Filling in the rest of the calendar year with births that are
growing at annual rater (e.g., births on Jan. 2, 1800 will number

1000 - e”/85))

does notalter this result but simply produces a smoother age distribution of the population
surface. The most useful wayto think aboutthis type of population is that the numberofbirths
is changing continuously at an annualizedrate ofr.

Table 7.1: Population by age on January 1, years 1800 to 1806
 

Age 1/1/1800 1/1/1801 1/1/1802 1/1/1803 1/1/1804 1/1/1805 1/1/1806
 

0 1000 1000-e” 1000-e7” 1000-e” 1000-e4 1000-6 1000.
1 600 600 - e” 600 - e2” 600 - e?” 600 - 4” 600 - e”
2 400 400 - e” 400 - e2" 400 - e?” 400 - e4”
3 200 200 - e” 200 - e2" 200 - e?”
4 50 50 - e” 50 - e2?
5 0 0
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Since births are growing at annualrate r and the total population is growing at this same

rate after 1805, then the crude birth rate must be constant after this date. And since the crude

birth rate and the growth rate are constant, the crude death rate (the difference between the

crude birth rate and the growth rate) must also be constant. The constancy of the crude death

rate also follows from the fact that both age-specific death rates (embodiedin the life table)

and the age composition of the population are constant.

The population depicted in table 7.1 is, starting in 1805, a stable population. Despite the

fact that the population is growing, it has a constant birth rate, death rate, growth rate, and

age composition. The population in each age interval is growing at the samerate, the rate at

which the annual numberof births is growing. This set of attributes will be maintained until

the population is “destabilized” by a change in the growth rate of births or in the prevailing

life table.

The age composition of the stable population is determined by twofactors: the prevailing

life table and the growth rate in the annual numberofbirths. To see this more clearly, we

express the ratio of population numbersin various age intervals on Jan. 1, 1805 to the number

of births on Jan. 1, 1805 as:

Ni

FS =e"PD)
N(2
~=e"p2)

The numberof one-year-olds is smaller than the numberof births not only because somebirths

die before reaching age one (expressed as a p(1) term that is less than 1.000), but also because

the one-year-olds derived from the 1804 birth cohort that was smaller at birth than the 1805

birth cohort by the factor e~’ (assuming that r is positive). The number of two-year-olds in

1805 is even smaller than the numberof births in 1805 because morebirths die before reaching

age two and the cohort born in 1803 is smaller than the cohort born in 1805 by the factor ener

Continuing with this example, the ratio of the number of two-year-olds to the numberof

one-year-olds in 1805 is:

N(2)
— =e

N()

—r
1P1

since p(2) = p(1),p1. Again, the younger cohort is larger than the older cohort not only

because some have died between the youngerandthe older ages but also because the younger

cohort was larger at birth. This growth factor, and not higher mortality, is the principal reason

why age distributions in developing countries are much younger than age distributions in

developed countries.

Beyond 1804, we can express the numberof a-year-oldsat time¢ in terms of the number of

births at timef:

N(a,t) = B(t)-e-""- p(a)

Dividing both sides by N(t), the total population size at time f, gives an expression for the

proportion of the populationthat is aged a at time fr, denoted c(q, f):

c(a,t) = b(t)-e" - pla)
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where b(t)is the birth rate at time t. But we have already seenthat the birth rate will be constant
beyond 1804, so b(t) = b and:

c(a,t)=b-e"*. p(a) =Cc(a)

The age composition will be constant and can be expressed in termsofthe birth rate, growthrate,
andlife table survival function. If a populationis stable, there are clearly useful connections
among demographic processes that can be compactly expressed. That wasalso true of the
stationary population model, but that model was less general becauseit restricted the growth
rate in the numberofbirths to be zero. A stationary population is a special case of a stable
population that arises when r = 0.

7.2 Lotka's Demonstration of Conditions Producing a Stable Population

Wehaveseen in a nonrigorousfashionthat a stable population will emerge if three conditions
prevail for a long enoughperiod:

1) the growth rate in the annual numberofbirthsis constant,
2) age-specific death rates(i.e., the life table) are constant,
3) age-specific rates of net migration are zero.

For a population to be “stable”in all parts of the age distribution, these conditions must prevail
for a period as long as the maximum age to which anyonesurvives.

In one of the most important developments in demography, Alfred Lotka (1939) showed
that a stable population would be producedbyanotherset of conditions. He demonstratedthat
maintaining a constant set of age-specific fertility rates would,in combination with conditions 2
and 3, eventually produce a constant growth rate in the annual numberofbirths. In effect, he
showedthat condition 1 above could be replaced by:

1*) age-specific fertility rates are constant.

He also showed howthe age-specific fertility rates and mortality rates combineto producethe
growthrate in the annual numberof births, hence the growth rate of the entire population.

This demonstration has powerful implications. For one thing, it means that populations
with unchanging vital rates — which must be a reasonable macroscopic approximation over
long sweeps of humanhistory — would be stable. In turn, the accounting relationships of
a stable population can be invoked to investigate their demographic properties. For another
thing, it means that every population’s set of age-specific fertility and mortality rates implied
an underlying stable population that would emerge if those rates remained unchanged. This
underlying “model” population, usually termed the “stable equivalent” population, provides a
detailed indication of what current demographic parameters imply for demographic prospects.Finally, the relations established by Lotka provide a meansfor investigating how changesin
one demographic parameteraffect all others.

Lotka’s achievementis important enoughthat an outline of his proofis appropriate. Assume
that:

1) Age-specific fertility rates are constant over time,
2) Age-specific mortality rates are constant over time,
3) Net migration rates are zeroatall ages.
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Note that Lotka dealt with a one-sex population and did not explicitly incorporate the other

sex into reproduction. He examined the birth sequence in such a population beginning at time

0, when these conditions werefirst imposed:

t

Bit) = | N(a, t)m(a)da + G(t) (7.1)

0

where

B(t) =the numberofbirths attimef,

N(a, t) =the numberofpersons aged a attime f,

m(a) =rate of bearing female children for womenaged a,

G(t) =births at time ¢ to womenaliveat time 0.

These functions all have the form ofa statistical density function. Thatis, the number of births

in the tiny interval of time from f to tf + dt (as dt — 0) is B(t)dt. As always, dt and hence

the density functionsare defined in termsof years.

The N(a, t) function for women born after time 0 can be expressed in terms of the number

of births into their cohort andthe probability of surviving to age a, p(a):

N(a,t) = B(t—a)-p(a) t>0

Makingthis substitution in (7.1) gives:

t

B(t) = | B(t — a) p(a)m(a)da + G(t) (7.2)

0

Eventually, the value of G(t) will be zero. After 50 years, noneofthe peoplealive at time 0

will be giving birth. Hence, the birth sequence can eventually be expressedas:

t

Bit) = | B(t —a)p(a)m(a)da_ t > 50 (7.3)

0

Equation (7.3) is called a homogeneous integral equation.It is an integral equation because it

involves a function, B(t), and the integral of that function. It is homogeneous becauseit does

not include a constant term. Integral equations can be solved by a process of trial and error.

The equation is solved when an expression for B(t) can be found that, when substituted into

equation (7.3), succeedsin equating the left-hand side and the right-hand side. Lotka showed

that an exponential birth series solved the equation,as illustrated in figure 7.1:

B(t) = B-e™ (7.4)

Substituting the trial solution (7.4) into (7.3) gives:

t

Be! = | B-e®'—-) n(a)m(a)da_ t > 50

0
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Figure 7.1 Births trajectories in two populations subject to constantvital rates
Data source: Keyfitz and Flieger, 1990.

Canceling the B - e®’ term from both sides gives:

t

1= [e®*rtam(ayaa t > 50 (7.5)

0

So (7.4) is a solution to the homogeneousintegral equation if a value of p can be found that
makesthe right-handside of equation (7.5) equalto 1. If we consider (7.5) as an equation with
a single unknownp,it appearsthat a value of p can always be found that makes the right-hand
side equal to 1. Since p(a) and m (a) are always positive-valued functions,the right-hand side
of 7.5 is a continuous,strictly decreasing function of p, y(p). If p = —o,the value of the
right-handside will always be --oo.If p = +00,the valueofthe right-handside will always beequal to zero. When takesall the values between —oo and +00, the right-hand side will take
all the value between -++oo and 0 (assuming continuity of m(a) and p(a)). In particular, there
will be a unique value of p, denoted r, such that y(r) is exactly equal to 1, as illustrated on figure7.2. That value of r is the growth rate in the annual numberof births needed in (7.4) and thus
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Figure 7.2 y(p) function in Germany and Egypt

Source: United Nations, 1994, 1995.

becomesthe growthrate ofthe stable populationitself. It is usually called the “intrinsic growth

rate” — the population growth rate thatis intrinsic to the m (a) and p(a) schedulesthat produced

it. Its value is determined by equation (7.5). If @ is the minimum ageat childbearing and 8 is

the maximum age (hence m(a) = 0 at all other ages), equation (7.5) can be rewritten as:

B

l= [ “'r@mada (7.6)

a

Therest of Lotka’s proof consists of showing thatthetrial solution (7.4) is eventually (1.e., as

t gets larger) the only pertinent solution to the equation;all other solutions become numerically

‘rrelevant. For a moredetailed discussion of Lotka’s proof, with useful elaborations, see Keyfitz

(1968b: ch. 5). The proof can also be done using matrix algebra and discrete time and age

intervals (McFarland, 1969; Keyfitz, 1968b: ch. 3; Parlett, 1970).

7.3. The Equations Characterizing a Stable Population

As we have just seen, a stable population has an exponential birth series: B(t) = B - e’’ The

value of r in a particular application is the value that, given the m(a) and p(a) schedules,

satisfies (7.6). The numberof persons aged a at time f will equal the numberof births t — a

years earlier times the probability of surviving from birth to age a: N(a,t) = B(t—a)- p(a).

Substituting this former formula into the latter gives:

N(a,t)=B -e'9) . n(aq) = B- ee"

-

pa)

= B(t)-e™- pla) (7.7)
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Wenowintegrate both sidesof (7.7) from age 0 to w, the highest age attained in the population,

and rearrange:

[ve t)da = Bo) feplayda,

0 0

Or

Bit) BY) I
7 oN = b 7.8

Io N(a, t)da N(t) b(t) to e—'4 n(a)da ( )  

Equation (7.8) expresses the crude birth rate of a stable population, b, in terms of the growth

rate and survival schedule of the population. It is constant over time.

Returning to equation (7.7), we divide both sides by N(t), the total populationsize at time f,

and derive an expression for the proportionate age distribution of the population, c(a, f):

 
N(a,t) Bt) 4
Nit) Nit)”

= be~"“ p(a) = c(a) (7.9)

c(a,t) = p(a)

The proportionate age distribution of the population is also constant. One interpretation of
(7.9) that mayclarify the role of its componentsis the following. When it was born, the cohort
aged a represented the proportion b (the birth rate) of the population. Subsequent to birth,
mortality reducedits size by the factor p(a). Meanwhile, the entire population was growing by
the factor e’®, so that the cohort aged a was reducedbythe factor e~"@ relative to the rest of the
population. These three factors combine to determinethe relative size of the cohort at age d.

To reconnect these expressions with the fertility rates and complete the circle, we multiply
both sides of (7.9) by m(a) and integrate over the ages of childbearing, a to B. After these
operations,the right-handside is simply the crudebirth rate of the population, feP c(a)m(a) da,
which cancels out with b onthe left-handside, giving:

B

| €*ramaaa = | (7.10)

Qa

Equation (7.10) just repeats (7.6), but derivesit from age distributional considerations. The term
inside the integral sign in (7.10) is the proportionate age distribution of womenat childbirth
in the stable population; that is why it must sum to unity acrossthe ages of childbearing.
The age distribution, birth rate, death rate, and growthrate of a stable population are entirely

determined by the m(a) and p(a) schedules. Whatever the features of the population on
which those m(a) and p(a) schedules are imposed, the population will eventually attain the
characteristics “intrinsic” to those schedules. If we applied the same set of schedules to Italy
and Nigeria, the demographic features of those two populations would eventually become
identical to one another (apart from their size), as illustrated on figure 7.3. The populations
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Figure 7.3 Relative age distributions of Italy and Nigeria, both projected with the 1995vital
rates of Italy
Data source: United Nations, 1995, 1996.

“forget their past,” a property known as ergodicity; they take on features entirely determined

by the regimeofvital rates to which they have been exposed. Alvaro Lopez (1961) proved that

this property of ergodicity applied even if the m(a) and p(a) schedules were changing.! Italy

and Nigeria would eventually look alike even if they were subject to continuously changing

vital rates, as long as the sequence of rates were the samefor each.

Howlongwill it take for a population to “stabilize” after a constant set of m(a) and p(a)

schedules is imposed? There is no precise answerto this question. The answer dependsin

part on how muchprecision the analyst requires. It also depends on the difference between

the age distributions of the population on which they are imposed and that of the ultimate

stable population that will emerge. The bigger the difference, in general, the longer the time

to stability. If the differences are very large and the application demands a high degree of

accuracy, stability could take longer than a century to achieve. For most practical purposes, a

period of 70 years often serves as a convenientrule of thumb. Fortunately, the ready availability

of procedures for population projection meansthat the question need not be answeredin the

abstract.
Lotka developed the stable population model by assuming that age-specific net migration

rates are zero at all ages, or that the population is “closed” to migration. In fact, this 1s an

unnecessarily restrictive assumption. A stable population would also result if the schedule of

age-specific net migration rates were constant over time. Tosee this, it is only necessary to

recognize that the p(a) schedule represents the proportionate change in cohort size between

birth and age a. That schedule could be expandedto includethe effects of migration as wellas

of mortality on the cohort’s size. If both net migration rates and mortality rates were constant,

then the expanded p(a) schedule would also be constant and the population wouldstabilize.
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The interpretation of the parameters would, of course, also need to be expandedto include
migration.

7.4 The “Stable Equivalent” Population

Since every population has a set of fertility and mortality rates (m(a) and p(a)), every popu-
lation has an underlying stable population that would emerge if those rates were to continue
indefinitely. This underlying model stable populationis often referredto as the “stable equiva-
lent” population. For example, the United States in 1996 has a “stable equivalent” population.
To determineits characteristics, one would use equations (7.8)—(7.10) in the previous section
and solve for the relevant parameters, beginning with thesolution for r in equation (7.10). Of
course, one would use the m(a) and p(a) schedules of the US in 1996. The growthrate, birth
rate, death rate, and age distribution of this model population are termed “intrinsic”; they are
intrinsic to the m(a) and p(a) schedules and are not influenced by the actual age distribution
of the US in 1996, which is highly irregular.
The model population that would result from applying these equations to the m(a) and

p(a) schedules of the US in 1996 should beidentical to the population that would eventually
emerge from projecting the US population of 1996 forward by the constantset of fertility and
mortality rates of 1996, using the projection procedures developed in the previous chapter.
Note that, for this result to apply, the baseline population to whichthe constantrates are applied
in forward projection need not be the US of 1996 or any other year; the ergodic property of
population trajectories ensures the equivalence between the model stable population and the
ultimate projected population regardless of the baseline population to which the constantrates
of fertility and mortality are applied.

If age-specific vital rates have been constantin an actual population for a long period, then
that population will be stable. In this case, the “stable equivalent” population will be identical to
the actual populationinits crudebirth rate, death rate, growthrate, and agestructure.If fertility
or mortality rates have been changing, then the actual population will almost certainly differ in
someorall of these features from the stable equivalent population. The test of whetheran actual
population is stable is developed below.In short, it is stable (and equations 7.8—7.10 apply to
it) if age-specific growth rates are constant with age. This determination will normally require
having two censuses and making a comparisonof their age distributions. Constancy of age-
specific growth rates meansthat the age composition (i.e., the proportionate age distribution)
of the population is unchanging.

Identifying the features of the stable equivalent population requires that we adapt equations
(7.8)-(7.10) to the discrete age intervals in which demographic data are normally presented.
In one-year-wide age intervals, the expressions equivalent to (7.8)-(7.10)are:

]
 b= r (7.8a)
Seg er(at0.5) Loa

: lo

L
1Cq = bees (7.9a)

b= Soe@t05) ee iy (7.10a)
loa=a, 1
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In 5-year age intervals, the equivalent expressionsare:

l
 b= 7 (7.8b)
20g senat2.5) ja

’ lo

L
5Cq = bet(4t2) (7.9b)

B—S L

l= eT5Mq (7.10b)

a=a,5

10-year-wide ageintervals are too wide to providereliable information.

Identifying the features of the stable equivalent population begins with the identification of

r, the intrinsic growth rate. This is a processoftrial and error using (in the conventional case

of 5-year-wide ageintervals) equation (7.10b). Coale (1957) has provided a useful strategy for

quickly identifying the value of r. Treating the value ofthe integral in (7.10) asa function y(p):

B

y(p) = | <Pplam(ayde
a

he showsthat the derivative of y(p) with respectto p Is:

 

M0) _ _Ayy(p),
dp

Or

dy(p)do=— 7.11
Py(p)AB 70

where Ag = [,® e~"@ n(a)am(a) da, the mean age of childbearing in the stable population.

Equation (7.11) shows the connection between an error in the estimated value of r and the

value of y that is produced. Suppose we chooseanarbitrary value of ro and evaluate y(7o)

using that value.If the trial value of y(79) is 1.10, then the proportionate error in y is +0.10,

since its true value should be 1.000. Equation (7.11) says that we have chosentoo low a value

of r, since an error in r producesan error in y(r) (Le., a deviation from 1.000) in the opposite

direction. Our nexttrial value of r, rj, should be raised by 0.10/Ag. A value of Ag of 27

is reasonable to use for this purpose and will eventually get us to the right answer, we can’t

know thetrue value of Az until we have solved for r. This process continuesfor a second and

possibly a third rounduntil the new value of r, produces a value of y(r,) that is tolerably close

to 1.000. In the next section, we will justify the procedure for choosing the initial value of

ro = In(NRR)/27; again, any value will do if weare willing to endure a large enough number

of steps in the iteration. Box 7.1 shows an exampleofthe estimation of the intrinsic growthrate

using Coale’s iterative procedure. Box 7.2 presents a detailed example of the construction of a

stable-equivalent population for the US in 1991. Both the actual and intrinsic age distributions

are shown onfigure 7.4.

Table 7.2 showsthe value of the intrinsic growth rate, the crude rate of natural increase,

and the net reproduction rate for a number of populations. For populations in Europe and

North America, there is obviously a large discrepancy between the intrinsic growth rate and
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“Box 7.1“Identification ofthe IntrinsicGrowth Rate

3=_Narnber of person-years livedbetween1 ages a and a|5(from female pened lifetable

withl== |}

Siig== RateofDeanne female children between ages a andaa+4

. 45 | \inner —In(Dehissla sia)

(r )-—1
eoTn!1=%awea :

Example: Egypt,1997

Agea 5La 5Mq 5La +5 Ma ro = r= r2 = r3 =
0.01569 0.01415 0.01425 0.01424

etn (442.5)<7 5 Mq

15 4.66740 0.00567 0.02648 0.02012 0.02067 0.02063 0.02064
20 4.63097 0.06627 0.30687 0.21561 0.22322 0.22268 0.22273
25 4.58518 0.11204 0.51371 0.33371 0.34816 0.34714 0.34723
30 4.53206 0.07889 0.35751 0.21472 0.22575 0.22497 0.22504
35 4.46912 0.05075 0.22681 0.12595 0.13344 0.13291 0.13296
40 4.39135 0.01590 0.06982 0.03585 0.03828 0.03810 0.03812
45 4.28969 0.00610 0.02616 0.01242 0.01336 0.01329 0.01330
Sum 1.53 0.95838 1.00289 0.99973 1.00002

_ NRR= 1.53 daughters per woman

ro =In(1.53)/27 = .01569 y(ro) = .95838

ql yi) = 1 00289

~-y(r2) =99973

yr)=100002

ry 01569+(.95838 — 1)/27 = 01415 _
rz = 1415+(1.00289— 1)/27 = 01425

01425+(.99973 — 1)/27 = 01424

 

a r3

| “Afterthree iterations, we obtain .01424 forthe intrinsicgrowthrateof Eeypiin 1997.

Datassource: United Nations, 1995.   

 

 

the crude rate of natural increase; the rate of natural increase would fall if the fertility and
mortality conditions were maintained. The disparity between the tworates indicates that large
changesin fertility and/or mortality have occurred in the histories of these populations. For
other countries, the disparity between the tworates is smaller, indicating that past changesin
fertility and mortality had not seriously “destabilized” these population structures.
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Box 7.2 Construction of a Stable-equivalent Population

Cactual _ 5Wa
Sa ~~ e785

ae, 5re

 

= actual age structure of the population

 b  

7 80 —r(a42.5) sha
>a=0,5 € ; lo

5Caable — petat25)a = stable-equivalent age structure of the population
0

For age interval 85+: 7Tg5 is used instead of 585; the age to which the e~’ function is applied is

(85 + eg), not 87.5.

Example: US, females, 1991; /, = 100,000
 

ent (a+2.5) sha
l
 

Age a 5Cactual sla 5Mq = scsfable

0 0.0726 495,804 4.9603 0.0624

5 0.0689 495,002 4.9567 0.0623

10 0.0667 494,603 0.0007 4.9572 0.0623

15 0.0648 493,804 0.0303 4.9536 0.0623

20 0.0729 492,552 0.0566 4.9455 0.0622

25 0.0799 491,138 0.0578 4.9358 0.0621

30 0.0861 489,356 0.0388 4.9223 0.0619

35 0.0801 486,941 0.0157 4.9024 0.0617

40 0.0735 483,577 0.0027 4.8729 0.0613

45 0.0556 478,475 0.0001 4.8258 0.0607

50 0.0464 470,374 4.7484 0.0597

55 0.0421 457,712 4.6247 0.0582

60 0.0436 438,502 4.4346 0.0558

65 0.0429 410,756 4.1578 0.0523

70 0.0365 371,990 3.7688 0.0474

75 0.0294 319,192 3.2368 0.0407

80 0.0203 249,203 2.5293 0.0318

85+ 0.0176 273,044 2.7759 0.0349

Sum 1.0000 79.5087 1.0000
   r = —.00018 (See Box 7.1 for identification procedure)

b = 1/79.5087 = .01258

Note: in this example, eg, = 6.79.

Data source: National Center for Health Statistics, 1996.

 

 

7.5 The Relation betweenthe Intrinsic Growth Rate and the Net

Reproduction Rate

Calculation of the intrinsic growth rate and the net reproduction rate require exactly the same

ingredients, m(a) and p(a) schedules for a particular population. And both measures are
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Figure 7.4 Comparison of actual and stable-equivalent age distribution, US, females, 1991
Data source: National Center for Health Statistics, 1996.

Table 7.2: Population parameters compared with stable-equivalent population parameters
 

 
 

 

Country, year NRR Intrinsic rates (females) Crude rates (females)

r b d CRNI CBR CDR

United States, 1970-4 1.00 0000 0133 0133 0073 0154 008 1
United States, 1978 0.86 —.0057 .0103 0159 0067 0145 .0078
Belgium, 1978 0.80 —.0083 .0094 0177 0010 0119 .O109
Fed. Rep. Germany, 1978 0.65 —.0145 .0066 0211 —.0015 0126 0141
Sweden, 1975-9 0.81 —.0080 0091 0171 0017 0114 .0097
United States, 1975 0.88 —.0048 0104 0152 .0069 0150 008 1
Panama, 1960—4 2.45 .0333 0411 0077 .0333 .0406 0073
Venezuela, 1964 2.79 .0369 044] .0072 0362 043] 0069
Malaysia, 1966-9 2.29 0290 .0361 .0073 0285 0351 .0066
Sri Lanka, 1965 2.09 0256 0341 0085 0261 0339 0078
Taiwan, 1985 0.89 —.0042 O111 0153 0141 .0180 0039
 

Data source: Population Index, vol. 47, no. 2. (Summer 1981): pp. 402-15; Keyfitz and Flieger, 1990.

indicators of long-term growth prospects, one referring to an annual growth rate that will
eventually apply if rates remain constantand the otherto the growth factor between generations.
It would be surprisingif the two were not closely connected analytically. And theyare.

Recall from chapter 5 that the formula for the net reproduction rate (5.19) is:

B

wer = | praym(ayda

a

The integral of p(a)m(a) also “appears” inside formula (7.10), the formula that determines
the value of the intrinsic growth rate. However, in this case p(a)m(a) is being multiplied by
e-'“ before it is summedacross ages. The value of e~"@ will exceed 1.000 atall ages if r is
negative,fall short of 1.000 if r is positive, and equal 1.000 if r = 0. Since the entire function
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in equation (7.10) must integrate to 1.000, it is necessarily truethat:

If NRR > 1.000, then r > 0,

If NRR < 1.000, then r < 0,

If NRR = 1.000, then r = O.

This relation between NRR and r only stands to reason: if the p(a) and m(a) schedules are

such that a population will grow each generation (NRR exceeds 1.000), then it is logical that

it would also be growing each year (r exceeds 0). Table 7.2 demonstrates these relations for

actual populations.

The relation betweenthe intrinsic growth rate and the net reproduction rate was formulated

by Alfred Lotka in the following way:

NRR =e”! (7.12)

where T is termed the mean length of generation. T has no existence apart from this equation;

the equation defines 7. In particular, T is the length of time (in years)that it will take for a

population growing at rate r to increase by the factor NRR. For example, if NRR is 2.000 and

r is .025, T will be In(2)/.025 = 27.73. It will take the stable population 27.73 years to grow

by the factor of intergenerational increase given by the NRR.

Although equation (7.12) definesT, it is intuitively clear that its value will depend in some

way onthe ages at which womenbearchildren.In fact, the value of T is to a close approximation

equalto the average of the meanage at childbearing in the stable population (A g defined above)

and the meanage of childbearing in a cohort subject to the m(a) and p(a) schedules (uw defined

below) (Coale, 1972: 19):

pe e~'@ n(a)am(a)da
 

B

= [ &"p@amtayda

 

Ap=

° pe e—'4 n(a)m(a)da J

_ pe p(a)am(a)da

~f® p(a)m(ada
T ~ Apt+p
7 2

Its value almost always lies between 26 and 33, with a mode around 27-8. For a tabulation of

empirical T values, see Keyfitz and Flieger (1990).

Visualizing T to be something concrete related to the mean age of childbearing enables us

to use equation (7.12) to illuminate the factors that determine long-term population growth

rates. Rearranging the equation and taking natural logs of both sides gives:

In(NRR)
r= ——r (7.13)

Let us now introduce Coale’s useful approximation from chapter5:

NRR = GRR

-

p(Ay) (7.14)



THE STABLE POPULATION MODEL 153
 

where GRRis the gross reproduction rate, i.e., the mean number of daughters that would be
born to a cohort of womensubject to the m(a) schedule

CO

GRR = [ mada

0

and p(Ay)is the probability of surviving from birth to the mean age of childbearing,

_ fe m(a)ada
Am = ,
m [? m(ada

If the proportion of births that are female is constant at § across ages of mothers, whichis
another very good approximation, then equation (7.14) becomes

NRR = TFR-S - p(Ay) (7.15)

where TFRis thetotal fertility rate.

Finally, substituting the expression for NRR in equation (7.15) into the formula for r
(equation 7.13) gives:

In7TFR+1nS+1n p(Ay)
rz

T
 (7.16)

Equation (7.16) contains a number of valuable lessons. For one thing, it indicates that
mortality andfertility levels have essentially separable influenceson theintrinsic growthrate.
Thatis to say, the mortality term and the fertility term in the numeratorof (7.16) are additive in
their effects on r rather than related to one another in some more complex fashion. To predict
the effect of a change in fertility on the intrinsic growth rate of a population, one doesn’t need
to knowthelevel of mortality.*

Second, the equation showsthatthe intrinsic growth rate is an additive function of the log
of the total fertility rate, rather than ofthe rate itself. This feature of the equation has received
little if any commentdespite the fact that it has powerful implications for long-term population
growth.

Suppose that we comparethe intrinsic growth rates before and after a decline in the total
fertility rate, and keep values of S, p(Ay), and T constant. Then the changein the intrinsic
growth rate resulting from a reduction in the TFR will simply be

In (7)
Ap = _ATFRO)

T

 

(7.17)

where TFR(1) and TFR(2)referto the total fertility rates at times 1 and 2, before andafter the
changeinfertility.

Thus, the effect on the intrinsic growth rate dependsonly on the proportionate decline in
the TFR and not onthe absolute decline. A decline in the TFR from 3 to 2 will have exactly
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the same impactas a decline from to 4. A decline from 7 to 3.5 will have the sameeffectas

a decline from 3.5 to 1.75. In termsofits impact on long-term growthrates, fertility reduction

clearly has increasing returns.

This result simply reflects the fact that the long-term growth rate of a population depends

on how large one generationis relative to the previous generation.If the factor of growth from

one generation to the next is multiplied by 1.5 — whetherit results from an increase in the

TER from 2 to 3 or from 4 to 6 — then theeffect is to raise the growth rate by approximately

In(1.5)/27.5 = 0.015, where 27.5 is used as the value of T.

Table 7.3 showsthe effect of a decline of the TFR by onechild on the intrinsic growth rate of

different regions of the world during 1995-2000. Clearly, the effect is smallest in Africa, where

fertility rates are the highest, and greatest in Europe, where they are lowest. A decline of one

child per woman in Europe would reduce the TFRof this region by more than 50 percent and

lead to extremely rapid population decline at a rate of 0.056 per year. The rate of population

decline would be much faster than the rate of population growth in any region during any

substantial period of the twentieth century.

On the other hand, for those programs aimed at reducing rates of population growth in

developing countries, equation (7.16) represents good news. Even though the process of fertility

reduction may slow downas lowerlevelsoffertility are achieved, the impact of any particular

decline on the long-term growth rate will increase. Bongaarts (e.g., 1982) and others have

usefully demonstrated how the biosocial components of the TFR typically change with its

average level across populations. In order to understand the growth implications of changes

in biosocial components, one must also recognize that changes in TFR induce quite different

impacts on rates of population growth acrossthese levels.

Finally, equation (7.16) showsthat the value of T may have an important effect on the intrinsic

growthrate. Coale and Tye (1961) discussed the case of growing populations, showingthatif r

is positive, then increasingthe ages ofreproductionwill reduce r even if the TFR stays constant;

the factor of growth across generations will be stretched out across more years because the mean

length of generation is increased. Increasing T from 28to 32 would multiply the intrinsic growth

rate by the factor of 0.875. Analogously, and perhaps more surprisingly, when the intrinsic

growth rate is negative, as in contemporary Europe, increasing T by delaying childbearing

Table 7.3: Effect of a decline of the TFR by one child onthe intrinsic growth

rate of various regions
 

 

 

Region Level 1995-2000

TFR NRR r Ar

Africa 5.31 2.03 .026 —.008

Eastern Asia 1.78 80 —.008 —.030

South-central Asia 3.42 1.43 013 —.013

Southeastern Asia 2.86 1.27 009 —.016

Western Asia 3.82 1.70 O19 —.011

Europe 1.45 .69 —.013 —.043

Latin America and Carribean 2.65 1.22 007 —.017

Northern America 1.93 93 —.003 —.027
 

Data source: United Nations, 1997.

Assumption: T = 27.5.
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would actually raise the intrinsic growth rate,i.e., make it less negative. The factor of decline
from one generation to the next would be stretched over a longer period of years between
generations. Theintrinsic (stable-equivalent) age distribution would have more women towards
the end oftheir childbearing years than towardsthe beginning. Thus, delaying childbearing in
the lifetimes of women,e.g., by sliding the age-specific fertility schedule upwardsalong the age
axis, would actually increasethebirth rate byraising fertility among the more numerousolder
women.”

The impact of generational length on population growth has been recognized in pop-
ulation policies that attempt to delay childbearing to older ages, as in China’s policy of
“later, longer, fewer.’ For an explicit consideration of how much change in population
growth would be produced by shifts in Chinese ages of childbearing, see Bongaarts and
Greenhalgh (1985).

In the previous section, we discussed howto solve for the intrinsic growth rate given age-
specific rates of fertility and mortality, but did not justify how to choose aninitial trial value
for ro to begin the iteration process. Equation (7.13) provides a simple strategy: first cal-
culate the net reproduction rate, using the procedure in chapter 5, and then divide by some
numberlike 27 or 29 as an estimate of T. Again, we cannot know T exactly until we have
solved for r, but the narrow range of values that T assumes provides a useful tactic for
identifyingr.

7.6 The Effects of Changesin Fertility and Mortality on Age Structure, Growth
Rates, Birth Rates, and Death Rates

The single most importantlessonofthe stable population modelis that,if fertility and mortality
rates have been constant over a long enoughperiod (say, 70 years), then the age structure of
the population will also be constant. This result means that the levels of fertility and mortality
are irrelevant to whether a population is aging or growing younger; only changesin fertility
or mortality can produce changes in population age structure.
The stable model is a convenient vehicle for studying the long-term impact of changesin

fertility and mortality on the age structure and other demographic features of a population.
The standard approach is what economistscall “comparativestatics.” This approach compares
two stable populationsthat differ from one another in some specifiable feature of fertility or
mortality conditions. The exercise is equivalent to asking what would eventually happen to a
previously stable population if a changein fertility or mortality were imposed. Thestructure
of the post-change population is examined after the population has cometo rest at the new
stable equilibrium. That structure is then compared to the structure of the stable population
before the change. The dynamicsoftransition to the new equilibrium are ignored; the stable
population theorem assures us that a new equilibrium will be achieved.
A related question is sometimes asked but cannot be answered: what is the effect of a

changein the rate of population growth on a population’s age structure? This question can-
not be answered becausethe rate of population growth is itself an outcomeoffertility and
mortality rates. Changes infertility and mortality rates have radically different impacts on a
population’s age structure, as we shall see, so we would have to know the sourceof the change
in growth rates before we could begin to address the question posed.It is far more precise to
view the population growth rate and age structure as joint products of fertility and mortality
conditions.
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For handy reference, let us reprint here the three basic equations that characterize a stable

population:

 

l
b=— 7.8

Jo e"4 n(a)da (7.8)

c(a) = be" p(a) (7.9)

B

l= [r@marda (7.10)

Qa

7.6.1 Effect of changesin fertility

Let us consider more explicitly than in section 5 what will happen to a stable population in

whichthe life table remains constant but fertility increases at all ages. The increase in m(a)

values would cause an imbalance in equation (7.10) unless there were a compensating change

in r (since p(a) is assumedto be fixed). To keep the left-hand side of this equation equal to

1.000, r must increase so that the value of e~"@ decreasesat all ages. Therefore, in the long

run, an increase in fertility levels will raise the rate of population growth. Thisresult is hardly

surprising and simply confirmsintuition.

Whateffect will the increasein fertility and r have on the birth rate? In (7.8), the denominator

of the expression for the birth rate will decrease, so that the birth rate will increase. Again,

hardly surprising.

The effect on the age structure ofa fertility-induced increase in r can be found bydiffer-

entiating the logarithm of the expression for the proportionate age distribution in (7.9) with

respect to r (Lotka, 1939; Keyfitz, 1985: 186):

din{c(a)] _ d{(—ra) + In[p(a)] — In[fo e7"p(a)da}}
dr 7 dr

fo ae"plajda

fo e-"4 pla)da

  

 —=-a-+

This last expression is the mean age ofthe stable population,

_ fo c(ajada
Ap = 2——
e fo c(a)da

So:

d \n{c(a)] 7
Ap — 7.187 p—a (7.18)

(7.18) is sheer poetry.It says in one compact andelegant expressionthat whenfertility increases,

the new stable population will have a larger proportion at ages below the mean age of the

population (where the derivative is positive) and a smaller proportion at all ages above the

mean age (whereit is negative). The old and new proportionate age distributions will cross at

the mean age (rememberthat derivatives involve infinitesimal changes, so that the mean age
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Table 7.4: Effect ofa 20 percentfertility increase ontheintrinsic
demographic rates of the United States in 199]
 

Before fertility increase Afterfertility increase
 

NRR 0.99560 1.19472
Intrinsic growth rate —0.00018 0.00675
Intrinsic birth rate 0.01258 0.01650
Intrinsic death rate 0.01276 0.00975
 

Data source: National Center for Health Statistics, 1996.
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Figure 7.5 Effect of a 20 percentfertility increase on the stable-equivalent age distribution of
the United States in 1991
Data source: National Center for Health Statistics, 1996.

will change infinitesimally). The proportion will change more the further an age is from the
mean age. For non-infinitesimal changes, the crossing will occur at (approximately) the mean
of the two mean agesofthe stable populations. Table 7.4 showsthe effect of a 20 percent
fertility increase on theintrinsic demographicrates of the United States in 1991, and the effect
on the stable-equivalent age distribution is shown on figure 7.5.
The effect of a changeinfertility on the death rate can be derivedin a similar way. Express

the death rate as:

d= | c@maraa = | be"praywtayaa = b- fep(ayulayaa

0 0 0

Taking the logarithm andits derivative with respect to r, gives:

d W ,-radin(d) _ din(b) 7, Jo ©“ P(a)mla)da

dr dr [Pep(a)ulada

  

 

The first term can be obtained by computing the derivative of

@

—In / e'@n(a)da

0
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Alternatively, we can use equation (7.18) when age equals0,so:

 

d \n(b) _
A

dr P

The secondterm 1s:

— fo aeplayplajda |fo be"? p(a)p(a)ada

fo e-'¢p@pu@da fo be"4 p(a)u(a)da

So¢@p@ada

{y cla)pla)da

 
 

 

where Ap is the mean ageat death in the stable population. The derivative of the logarithm of

the death rate 1s then:

d \n(d)

dr

 

=Ap—Ap (7.19)

This expression showsthatthe death rate will fall when fertility rises if the mean age at death

exceeds the mean age of the population, i-e., if deaths are skewed towards the higher ages.

This will be the case in most populations butnotall. Young populations with high mortality

may have a mean age at death below the mean age of the population, so that an increase in

fertility actually raises the death rate by giving more weight to the high mortality rates at very

young ages. No populationsin the contemporary world, but manyin the past, have the required

configuration. Today, increases in fertility will invariably reduce the crude death rate in the

long run (Preston, 1972).

7.6.2 Effects of changes in mortality

The consequences of a change in mortality cannot be expressed so compactly because they

depend upon the ages at which mortality changes. A decline in the age-specific death rate at

age x will raise the p(a) values at all ages above x. Equation (7.10) shows that an increase

in the p(a) function at someorall ages below 6 will, other things equal, change the value of

the integral. An increase in the growth rate must occurto restore the equality. So as intuition

suggests, a decline in mortality will speed long-term population growth.

There is, however, one exception. If the only declines in mortality occur above age B,

the highest age of childbearing, then there will be no effect on the intrinsic growth rate.

The reasonis that a change in mortality beyond the ages of childbearing will have no effect

on the annual flow of births, whose rate of growth ultimately determines the growth rate

of the stable population. The new population will be larger than the old population after

postreproductive mortality is reduced, but it will eventually be growing at the same rate in the

steadystate.

A simple expression for the impact of mortality change onthe intrinsic growth rate can be

derived from equation (7.13) by assuming that all childbearing occurs at one age, A°®. Then
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Am and T will both equal A° and the equation simplifies to:

In[p(A°)] + In[GRR]
r= AO

— fowla)da + In[GRR]— a3

In[GRR]
A?

 

 

= —f(0, A°) +
(7.20)

where (0, A®) is the (unweighted) mean deathrate in the age interval 0 to A°. When mortality
falls, the increase in the growth rate will equalthe decline in the mean age-specific death rate
between birth and the age of childbearing. What may be surprising is that all ages below A?
receive equal weightin this expression: mortality changes at age 12 have the same impact as
changesin infancy. The reason is that they have the sameeffect on the probability of surviving
to the age of reproduction and hence on the annualflow ofbirths.
The effect of mortality decline on the stable age distribution is more complex to analyze. As

a general rule, the effects are not large. In one instance, termed a “neutral” mortality change,
there will be no effect whatsoever. A neutral mortality changeis produced by an equalabsolute
decline in death ratesatall ages:

uw(a) = u(a)—k fora>0O

The prime identifies the age-specific death rate after the change in mortality. In this case,
mortality has declined by an annualized amount k at all ages. When (a) changesin this
fashion, the effect on the p(a) function will be:

p'(a) = ew Lo le)Kx

= plajeX4

The effect on r of a neutral decline in mortality of amount k will be an increasein the growthrate of amount k. This result is seen by equating the prechange and postchange versions of
(7.10) to one another, which follows from the fact that they must both equal 1.000:

B B

l= [ &"ram(aaa = fevi@etmarda

a Qa

These last two integrals can only equal one anotherif r’ = r + k. Finally, let’s examine theeffect on the agedistribution, given by(7.9):

(a) _ e"'4 n!(q) _ e~7+)an(qyeka

Io e-"'* p!(x)dx Io e—TTXn(x)ekxdx

 

 

__ epia)
Io e~'* p(x)dx
 = C(a)
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So a neutral mortality change hasno effect on the age distribution. Accordingly, it will have

no effect on the birth rate, since age-specific fertility rates are unchanged. The death rate will

fall by amount k to keep the balancing equation in balance.

That a mortality reduction may have no effect on the age distribution comes as a shock

to many people. A mortality reduction will increase life expectancy and result in greater

survivorship to older ages. Why doesn’t this make the population older? This kind of common-

sense reasoning, focusing on a cohort life cycle, fails to account for the fact that cohorts bear

children. Reduced mortality will increase the flow of births. In the case of a neutral mortality

reduction in amountk, each 1-year survival probability will increase by the factor e*. Therefore,

the numberof people one year after the mortality decline will grow by the samefactor at each

age. With constant fertility, the number of births will also grow by this factor and the age

distribution will be undisturbed.

A neutral mortality decline becomes the standard against which actual mortality declines

must be compared. Declinesthat are uniform by age except for larger declines in infancy will

make a population younger;declines that are uniform by age except for unusually large decline

at older ages (say, above 50) will make a population older. A (nonneutral) decline concentrated

in infancy will have the same effect on age structure as an increase in fertility because an age

distribution can’t tell the difference between children whodie in early infancy and births that

never occurred. Analogousto the fertility increase analyzed in the previoussection, a mortality

decline in infancy alone will pivot the stable age distribution about its mean age.

Knowing the effect of an actual decline in mortality on the stable age distribution thus

becomesa question of identifying the agesat which declines are exceptionally large. As shown

above, what matters is the absolute decline in age-specific death rates and not the relative or

proportionate decline. Empirically, the typical pattern of mortality decline shows unusually

large declines below age 5 and above age 45. As shownin figure 7.6, the left leg dominates

the right leg; the largest declines occurin infancy.

As aresult, mortality declines have, throughout human history, tended to make populations

younger. Once a population reaches a life expectancy of approximately 65 years, subsequent

mortality declines tend to produce an older population. Because they typically induce a mild

decline in the proportion of the population of childbearing ages, mortality declines have exerted

a slight depressing effect on the crude birth rate. Table 7.5 showstheeffect of mortality decline

i1(a) = West female modellife table e°o = 30 years

0.204 e(a)= West female modellife table e°% = 65 years

 

 

Age a

Figure 7.6 Typical pattern of mortality decline

Source: Coale (1972: 35)
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Table 7.5: Effect of mortality decline on intrinsic growth and age structure
 

 

 

Changein life Corresponding absolute change in:
expectancy at birth

Intrinsic Mean age of Proportion aged Proportion aged

growth rate the population (to 14 years 65 and over

from 40 to 50 years +0.0068 —0.83 +1.98% —0.01%

from 50 to 60 years +0.0054 —0.71 +1.62% —0.12%

from 60 to 70 years +0.0040 —0.34 +1.03% +0.14%

from 70 to 80 years +0.0021 +0.60 —0.10% +1.20%
 

Data source: Coale and Demeny (1983) West model female life table, combined with a GRR of2.

on the intrinsic growth rate and the intrisic age-structure of a theoretical population with a

GRR of 2 and a modelage pattern of mortality (see section 9.1). For more details, see Coale

(1972) or Preston (1974).

The stable model provides information about the long-term effects of changes in fertility

and mortality on the age distribution. Understanding the short-term effects does not require

this elegant machinery. When a permanentfertility increaseis initiated at time ¢, the number

of persons below age 1 will be higherat time t + 1, the numberof persons below age 2 will be

higher at tf + 2, and so on. Eventually, the additional births begin to have births themselves and

the stable model becomesincreasingly instructive. Likewise, a permanent reduction in death

rates at age x at time ¢ will increase the number of persons aged x to x + | at time ¢ + 1,

the numbers aged x to x + 2 at time f + 2, and so on. The stable model provides a meansof

investigating the ultimate impact of such a change (Keyfitz, 1972).

7.7. The Momentum of Population Growth

Onevaluable application of the stable population model by Keyfitz (1971) relates to population

size rather than to age composition orvital rates. Keyfitz asked what would happento the size

of a previously growing stable population if its fertility rates were immediately reduced to

the replacement level (NRR = 1.000) and maintained thereafter at the new level until the new

stable equilibrium is attained. In this case, the new equilibrium is a stationary population of

fixed size. The mannerin which replacement-level fertility is achieved is by havingall age-

specific fertility rates reduced proportionally by the factor 1/NRR, where NRRrefers to the

pre-decline net reproduction rate. The answeris that these populations would continueto grow,

often by sizable amounts. This demonstration proved influential in policy circles becauseit

demonstrated how difficult it would be to halt population growth evenafter fertility had fallen

to replacementlevels.

The original Keyfitz formulation had several limitations. First, it required that the initial

population on which replacement-level fertility was imposed be “stable,” i.e., that it have had

constant fertility and mortality conditions for the preceding 70-100 years. Few contemporary

populations come close to meeting this criterion. Second, he required that replacement-level

fertility be achieved by applying a scalar multiple to the fertility rates in the initial population.

However, the shape of the age-profile of fertility typically changesas levels offertility change.

Third, the expression developed for population momentum was cumbersomeanddid not make

intuitively clear the factors on which momentumis based.
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Keyfitz himself provided the basis for a more general expression (Keyfitz, 1985: 155-7).
Using Lotka’s integral equation forthe birth trajectory in a population subject to constant vital
rates, Keyfitz showed that, when replacementfertility rates, m*(a), are imposed on a closed
population whoseagedistribution is N(a) and survival function p(a), the annual numberof
births in the eventualstationary population will be:®

B B |

fro PY)Cy) dy da
J P(a)

By = 2 
A*

where A* is the mean ageat birth in the stationary population. By expressing the function

ye p(y)m*(y)dy/A* as w(a) and rearranging, we can simplify this expression to:

B
> N(a)
Bs = / -w(a)da

p(a)
 

0

The eventual size of the stationary populationis:

B
> N@)

Ns = Bs} = | TS wiarda ef

Now dividing Ns bythe initial population size gives the expression for population momentum

in any closed population (Preston and Guillot, 1997):

p O

ma=[O. O . w(a)da  

 

N N  p(a)

Or

g
M= | @) wada (7.21)

Cs(a)

Equation (7.21) involves three distributions, each of which sumsacross age intervals to

1.000. One, c(a), is the proportionate age distribution of the population at the time when

replacement-level fertility is imposed; the second, cs(a), is the proportionate age distribution

of the stationary population that will eventually emerge after replacement-level fertility has

been in place for many years. This latter age distribution is completely a function of the

population’s life table or survival function, p(a). Because this survival function inevitably

declines from age to age, so does the stationary population age distribution; there are more

people at age Q than at any other age.

The third distribution in equation (7.21), w(a), is less familiar. The numerator1s the expected

lifetime births that will occur above age a in the replacement-level fertility regime,

B

| p(y)m* (y)dy.
a
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Figure 7.7. w(a) functions in Africa and Europe
Data source: United Nations, 1994, 1997; Coale and Demeny, 1983.

The denominatoris the (unweighted) sum of those expectedbirths overall ages, which is equal

to A*, the mean ageatbirth in the stationary population.’ The shapeofthe w (a) function will be

very similar from population to population. It has a maximum value of 1 /A* at all ages from 0

to 15, presuming that 15 is the earliest age of childbearing.It then descendssteadily to a value of

0 at age 50, assumedto be the maximum ageof childbearing. Figure 7.7 showsthe estimated

w(a) functions in Africa and Europe, using United Nations estimates of regional mortality

and a “late” replacement-level fertility pattern in Europe and a “medium”replacement-level

fertility pattern in Africa (United Nations, 1995: 150). Clearly, the patterns of w(a) are similar

in shape despite the regional differences in the age patterns of mortality andfertility that they

embody.

So equation (7.21) shows that the momentum of a populationis a relatively simple function

of disparities between its actual age distribution and the eventual stationary age distribution.

If the proportions are higher in the actual population than in the stationary population at ages

where w(qa)is high,1.e., below age 15, 20, or 25, then the momentum factor will exceed 1.00

(see also Kim et al., 1991). If the proportions are lowerin the actual population than in the

stationary population at these ages, then momentum will be less than unity and population size

will fall after replacement-level fertility is imposed. If the initial age distribution is already

stationary (c(a) = cs(q@) at all ages), then of course M = 1.00.

Equation (7.21) helps show why the momentumfactorhas typically exceeded 1.00 in devel-

oping countries. Because population growthhas been positive, the proportion of young people

is higher than in the eventual stationary population. As we showedearlier in this chapter, a

growing stable population will have a higher proportion at all ages below the mean age of

the population than a stationary population with the same mortality level, and the proportion-

ate disparity will grow as the distance from the mean ageincreases (Keyfitz, 1968b). On the

other hand, a stable population with a negative growth rate will have smaller proportions at

young agesthan in the eventual stationary population. Figure 7.8 presents the c(a) /cs(a) ratio

for initially stable populations with life expectancies of 70 years and growth rates of +.02
and —.Q2.

Table 7.6 shows the value of population momentum for the major regions of the world in

1997, and for several countries with low fertility. If fertility were to decline to the replacement
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Figure 7.8 c(a)/cs(a) ratio for initially stable populations with life expectancy at birth
of 70 years
Data source: Coale and Demeny, 1983.

Table 7.6: Value ofpopulation momentumfor the major

regions of the world andselected countries
 

Region or country Population momentum
 

Africa

Eastern Asia

South-central Asia

Southeastern Asia

Western Asia

Europe

Latin America and Carribean

Northern America

Austria

Russia

Italy

Germany

World total

1.56

1.22

1.47

1.48

1.56

98

1.48

1.10

.96

94

91

88

1.35
 

Source: Preston and Guillot, 1997.

level in 1997, the populations of Africa and Western Asia would grow bythe largest factor,

1.56. This growth simply reflects the youthfulness of the current population age structures in

these regions. The population of Europe would decline by 2 percent. The momentum factor of

0.98 for Europeis an average across countries some of whom havefactors greater than one and

others of whom are below 1.00. Russia, Austria, Italy, and Germany have momentum factors

below 1.00, with Germany occupyingthe lower limb ofthe distribution at 0.88. Clearly, there

can be a momentum to population decline as well as to population growth. Thedetails of the

procedure needed to estimate population momentum with actual discrete data are shown in

box 7.3.
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Box7.3 (part 1)Estimation of Population Momentum
Lo Data |

a NE—=number of women aged a toa + 5 in the actual population

shag =person-years livedbetween ages a and a7 5 jinthe actual female life table with a radix of unity ©

UN,f = total number of females inthe population

| NuM=- total number of males in the population

==female life expectancy at birth

- -|a= male life expectancy at birth

. 2Estimationofreplacement-level fertility ratesiin the studied population

“5g =actualage-specific maternity rates :

: NRR==sma5Li = actual Net Reproduction Rate

: @=i5_

 

   SS=Teplacement.level age-s cificmaternit rates
=NR oe =e ae =

- 3:3.“Estimationoftheultimate number offemalestbirthsiin the stationary population

oS

ae(a+25): gma ;L; = mean ageéatbirthin the stationary Population
els : . ee

a oy 45
o9 “5M, +aeLf sms)
 

— 5g =

48 or
BPS N, ew

a=0.5 al

 

od Estimation of ultimate population and momentum

Ni = BE . e8* = numberof femalesin the wlinalepopulation

: : nv = BY - SRB. e,” = numberof malesin the ultimate population (SRB == sex ratio at birth)

oe. _ NE +N?-Populati yment aye PSs} opulation monet um NF ANM

 

Population momentumis one of the most widely misunderstood phenomena in demography.

Typically, a momentumfactorlarger than 1.00 is said to reflect the youthful age structure of the

population on which replacement-level fertility is imposed. As we haveseen,this is a correct

intuition. Ironically, it owes nothing to Keyfitz’s (1971) original formula for momentum, which

had no term directly characterizing the age structure.

But then most commentators go on to say that the momentum of population growth reflects

the large numbers of persons who muststill pass through the childbearing interval, implying

an enormity of reproductive potential. This implication is perhaps too vagueto be called incor-

rect, but it is certainly misleading. After replacement-level fertility is imposed, the youthful

cohorts already born will simply replace themselves; they will not give rise to an unprece-

dented numberofbirths. In fact, if mortality has been constant, the annual numberofbirths
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Box 7.3 (part 2)

Example: Western Asia, 1995-2000
 

 

 

F
Age sNE 5LE 5Mq 5Mgq -5LF 5m, 5mz- 5LP (a + 2.5)-5mi -5LF 5 Wa ae 5 Wa

54a
a (thousands)

0 12,023 4.834 .03759 468

5 11,027 4.803 .03759 432

10 9,856 4.789 03759 387

15 8.614 4.773 0.043 0.205 0.025 0.121 2.11 03533 319

20 7,694 4.748 0.112 0.532 0.066 0.312 7.03 02719 220

25 6,893 4.716 0.112 0.528 0.066 0.310 8.53 01549 113

30 6,135 4.678 0.058 0.271 0.034 0.159 5.18 .00667 44

35 5,318 4.631 0.029 0.134 0.017 0.079 2.96 00219 13

40 4,376 4.570 0.007 0.032 0.004 0.019 0.80 .00035 2

45 3,510 4.483 0.000 0.000 0.000 0.000 0.00 00000 0

Sum 1.703 1.000 26.60 1,996
 

  
Nr = 87,176; er = 70.30 years

Nu = 91,845; e8™ = 65.90 years

Actual NRR = 1.703; A* = 26.60 years

BE = 1,996

N§ = 1,996 - 70.30 = 140,332

1,996 - 1.05 - 65.90 = 138,126

140,332 + 138,126
M = | = 1.56

87,176 + 91,845

M
Ns

 

Data source: United Nations, 1994, 1995.

 

 

after replacement-level fertility is imposed will simply be a weighted average of the annual

numberof births before replacement-level fertility is imposed (Preston, 1988). Immediately

after replacement-levelfertility is first imposed, the weighting function determining the annual

numberof births will be precisely the w(a) function identified above, where w(a) is the weight

to be applied to the numberof births occurring a years earlier (Preston, 1988). If mortality has

been improving, then the annual numberof births immediately after replacementfertility is

achievedis initially below this weighted average ofbirths.

The suggestionthat births will grow after replacement-levelfertility is imposed1s correct not

for a before/after comparison but only for an after/after comparison. Once replacement-level

fertility is in place, the numberof births will increase for a generation or so in a previously-

growing population as the population of reproductive age grows. But there will be no more

birthsin the post-replacement population than in the population before replacement-levelfertil-

ity is achieved. The changein the numberof post-replacementbirths from yearto yearreflects

shifts in the weighting function applied to the time series of births.

  



THE STABLE POPULATION MODEL 167
 

 
 

 

  
 
 

 
 

 

 
 
 

 

 

 
 

Age
200 ;-— group

jo 80-4
_ 70-4

150 -— 60-4

- : 50-4

Percent a-——— 40-4

a 30-4
—__

[—— 20-4

OO 10-14

—~____— 0-4
| | | | | | | | | |  0

1983 1993 2003 2013 2023 2033 2043 2053 2063 2073 2083

Year

Figure 7.9 Momentum and evolution of age-groups, Mexico, 1983
Source: Keyfitz and Flieger, 1990; Kim et al., 1991.

In rapidly growing populations, population momentum results from the fact the cohorts at

older ages at the time when replacement-level fertility is imposed were much smaller at birth

than the cohorts who will subsequently age into the older years. As they are replaced at older

ages by later-born cohorts, the population at these ages will grow. So population momentum ina

previously growing population is coincident with population aging,as illustrated on figure 7.9.

Preston (1986) showsthat all of the growth in population after replacement-level fertility is

achieved typically occurs above some age near the middle of the childbearing interval. Kim

et al. (1991) and Kim and Schoen (1993) provide more precise expressions for identifying

this age. Some explicit connections between momentum and aging are developed by Kim and

Schoen (1997).

If fertility were below the replacementlevel at the time when replacement-levelfertility is

imposed, the situation would be reversed; populations may grow youngerafter replacement-

level fertility is achieved. This would surely happenif the initial population were stable with a

negative growth rate, as shownin figure 7.8. However, there are no empirical examples of such

a population (although Japanese fertility has been below the replacement level for 40 years).

In all empirical cases, below-replacementfertility has been achieved by declines from above-

replacementfertility in the lifetime of cohorts still alive. In this case, age distributional changes

resulting from the imposition of replacement-level fertility will be more complex. Figure 7.10

comparesthe age distribution ofEurope’s population in 1997to that of the stationary population

implied by Europe’slife table of 1997.

7.8 Uses of the Stable Population Model in Demographic Estimation

If a population is demographically stable — its age composition is constant — then all of the

equations of a stable population will apply. This statement may be confusing in light of the

demonstration in the previoussection that a neutral change in mortality will have no impact on
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Figure 7.10 c(a)/cs(a) function in Europe in 1997
Data source: United Nations, 1994, 1997.

the age distribution, while at the sametimeit clearly violates one of the conditions creating a

stable population. This is an instance (the only such instance) in which a stable populationis

subject to a demographic perturbation and instantaneously achieves a new stable equilibrium at

the new vital rates. Equations basedonthe oldrates will apply before the change, and equations

based on the new rates will apply immediately after the change. More generally, historical

patterns of mortality change have had muchless impacton agestructure than havepatterns of

fertility change, and stable equations have sometimes been applied without introducing major

distortions even in instances wheresizable mortality change has occurred.

Until 1950 or so, most populations in Asia, Africa, and Latin America were, to a close

approximation, demographically stable. While they had typically experienced some mortality

decline, the declines were not such as to invalidate the applicability of the stable equations.

Demographers often used stable population methods to investigate the properties of such

populations. The permutations were many. The mostinfluential and valuable procedures were

developed by Coale and Demeny (United Nations, 1967). These invariably started with a

census age distribution. One other piece of information was required, usually an intercensal

growth rate. Coale and Demeny also developeda set of “model”life tables for use in such

applications (see section 9.1). These tables showedthe typical pattern of age-specific death

rates and otherlife table functions for populationsat a particular level of mortality, as indexed

by life expectancy at birth. One application of the stable equations combined with modellife

tables was made by Arriaga (1968), who rewrote equation (7.9) as:

In{e(a)/p(a)] = In[b] —r-a

He then usedtrial and errorto find the p(a) function in a set of model life tables that produced a

slope of In[c(a) / p(a)] that was closest to the observed intercensal growth rate, r. The procedure

also supplies an estimate of the stable birth rate as the intercept (in log form) of this equation;

another estimate can be obtained from equation (7.8). Arriaga producedlife tables for historic

populations in Latin America using this method. Coale and Demeny recommendeda procedure

based upon the cumulative age distribution rather than upon c(a) itself, since the cumulative

distribution is less sensitive to errors in age reporting.
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The stable population model can also be used for demographic estimation at older ages

when information for these ages is aggregated into one single, open-ended age interval. In

chapter 3, we estimated the life expectancy at the age starting the open-ended age interval

by taking the reciprocal of the death rate in that interval. Specifically, for an open-ended age

interval starting at age a, we estimated e? by simply taking 1/o9.Mq. This formula would be

correct if the population in that interval were stationary, in which case 9.Mg = oomg. In most

populations, however, this assumptionis not valid. Mortality at older ages has been declining,

and as a result, the older population has been growingratherthan stationary. This growing older

population will produce a death rate, 99 Mg, that typically underestimates .mg, the death rate

that would be observed if the population were stationary and had the actual w(x) function. The

estimated e” using 1/o.Mq would thus overestimate the true e?. For example, in Sweden in

1995, 6 Mgs5 was equal to 0.1528, which producesa life expectancy of 6.54 at age 85. This

overestimates the true e,, , estimated by more accurate methods, by 0.44 years.

The use of the stable population model permits one to improve the accuracyof the estimated

value of ef whendetailed data at older ages is not available. With the assumptionsthat the

force of mortality above age a follows a Gompertz curve (see section 9.1 for a definition of

the Gompertz curve) and that the population above that age a followsa stable distribution,

Horiuchi and Coale (1982) derived an equation for e@ that requires information on the growth

rate of the last age group (o9/q) in addition to 99 Mg, the death rate in that age group:

 oa.exp{—.0951 -oo ra (ooMa) 4}, fora > 65 (7.22)
00 Ma

Whenused for Sweden with ooMg5 = .152807 and gorges = .0347 in 1995, equation (7.22)

gives a life expectancyat age 85 of6.25 years, whichis only 0.15 years abovethetrue value. This

equation can be used for open-endedageintervals starting at any age above andincluding 65.

Horiuchi and Coale’s equation can also be adapted for estimating *e7 ' the life expectancy

at age a in the absenceof cause i. In chapter 4, we usedthe traditional method which assumes

that *,mz' = ,,.m7,' (and = ,,M,'if noofficial “master”life table is available). Horiuchi and
Coale’s formula allowsusto refine the estimate of *e7' with the same assumptions used for

equation (7.22). We must recognizethat the operation of “other” causes of death on the actual

age distribution (thatis, the causes other than the one whose implications we are attempting

to model) is analogousto the operation of the growth process. Both population growth and the

presence of extraneous causesserve to makethe actualdistribution youngerthan the stationary

distribution that would result from the operation of a particular decrementalone. This suggests

that we treat the death rate from cause i exactly analogously to the growth rate in attempting

to model the implications of the operation of cause (—i) alone. The analogy would be exactif

the death rate from cause i were constant at ages a and above, a constancythat is also assumed

for the growth rate. Thus,

 
—I

cota

. 1 . ,
tet = - -exp{—.0951 = (cola + 9M) -(4,Mz') !4}, fora>65 (7.23)

Whenapplied to data from Swedenin 1995, equation (7.23) gives an estimate of *er! = 6.74
years with R~’ = .90. This estimateis only 0.18 year higher than an estimate of *eod using a
Gompertz modelin the cause-deleted life table. This is an improvementrelative to the simple
formula, 1/(o9Mg5 - R~'), which in this example gives an estimate of * ene = 7.27 years, 1.e.,
Q.71 years higher than the Gompertz reference.
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These methodsand othersrelated to them typically require an age distribution and a growth

rate in order to apply the stable equations. The growth rate is almost always supplied by

a comparison of population size in two census enumerations. But if two enumerations are

available, another set of techniques can be employedthat does not require the assumption of

population stability. These are developedin the next chapter.

NOTES

l.

S

This property is sometimesreferred to as “weak ergodicity” in opposition to the strong ergodicity of

stable population.

Population projection has the added advantage of giving the total population size at future dates, as

well as the value of other population parameters during the transition to stability.

For Ag to appear as a meanage,it should be written as

- yP e'“ n(a)m(a)ada

[Berap(aym(a)da
 AB

but the denominatoris | from the stable population property 7.6.

This claim ignores the generally minor effect that a change in mortality or fertility would induce in

the value of T. See Coale (1972: 18-21) or Keyfitz (1968b: 124-6).

Sliding the age-schedule of fertility upwards on the age axis in a below-replacement population

would not increase the growth rate (makeit less negative) if mortality were sufficiently high that

many fewer womenweresurviving to a particular phaseofthe fertility schedule. Thatis not likely to

be the case for low-fertility human populations (where mortality during the reproductive yearsis also

typically very low), but it may not be uncommonintherest of the animal kingdom. See Hoogendyk

and Estabrook (1984).

If applied to a female population, the numerator of this expression corresponds to the total number

of female births that will be born to womenalive at the time when replacementfertility is imposed.

For each woman aged a at that time, the expected number ofbirths dependson her probability of

reaching agey (i.e., p(y)/p(a), and on the maternity rate at age y, m*(y).

The relation between { p(y)m*(y)dy and A* is the same as that between ey and p(a). p(a)

expresses the expected number of deaths per newborn that will occur after age a and e), derived

by integrating the p(a) function, is the expected age at death. [ p(y)m*(y)dy expresses the

expected number of births per newborn that will occur after age a and A*, derived by integrat-

ing the [P p(y)m*(y)dy function, is the expected age at giving birth. In both cases,the relation is

established by integrating an expression for the mean age byparts.
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In the last chapter, we saw that the stationary population, introducedin chapter 3, was a special

case of a stable population. In this chapter, we show that the stable population represents, in

turn, a special case of a set of relations that prevail in any population. These relations connect

all major demographic functions for a particular period to one another. The connection is

made by meansofa single, widely observable function, the set of age-specific growth rates. In

effect, the use of this function to provide a “growth correction”enablesall of the relationships

of a stationary population to be reestablished. These more general expressions cast light on

population dynamicsand provide useful devices for demographic estimation.

8.1. An Illustration

Formally establishing these relationships requires the calculus of several variables. But an

understanding of where they come from and how they can be used doesnot. Let usfirst define

the growth rate at ages x to x +n overthe period [0, 7] in the conventional fashionas:

Ea
In ————

nNx (0)
n'x[O, T] = T

Note that the sources of change in the size of the population aged x to x + n include death,
migration, the attainment of the xth birthday (representing an incrementto the size of the

_ group, equivalent to the “birth rate” in the age segmentstarting with x), and the attainmentof
the (x + n)th birthday, a source of decrement.

Suppose that weare interested in the period from January 1, 1995 to January 1, 1996. The
numberof persons aged 10 last birthday on January 1, 1996 can be expressed in terms of the
numberin the same age interval on January 1, 1995 and the growthrate of this age segment
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over the year: !

1N19(1996) = 1 Nj9(1995) e!7!9,

or

1N19(1995) = 1 Nj0(1996) e717

An alternative expression for the number aged 10 on January 1, 1996 relates it to the size of

the same cohort in 1995 and cohort survival experience over the year:

L
1N19(1996) = 1; No(1995) +12

jLo

This latter expression assumesthat the population is closed to migration, an assumption that

wewill later relax. Substituting this latter expression into the formergives:

L
1Ni9(1995) = 1 No(1995) e110

7"

149

Note that this expression relates the numberof persons at two successive ages in 1995 to one

another in terms of a growth rate and a survival probability over the succeeding year. Using

this same approach, we can relate the number of | 1-year-olds to the number of 10-year-olds

in 1995 by:

L
1N11(1995) = 1N19(1995) eT"! 1411

iL10

Combiningthe last two expressions gives:

L L
1N11(1995) = 1No(1995) e7 1719 eT eoet

iL1L10
Or

11 L

1N11(1995) — 1 No (1995) eC. >x=10.1 ix 1 7”

149

Now wehave an expression that relates the number of 11-year-olds to the number of 9-year-

olds in terms of survival probabilities between 9 and 11 and two age-specific growth rates.

More generally:

x L
1 Nx (1995) = 1N, (1995) ee Meare ita LOX tory > y

l’y

8.2 Relations in Continuous Age and Time

What happens as we let the age intervals and time interval in this last expression get

smaller and smaller? Using the calculus of several variables, Bennett and Horiuchi (1981)

showedthat:

psN(x, t) = N(y, the ds ae * (8.1)
y

where N(x, ft) is the number of persons aged x to x + dx at time ¢t tot + dt, r(a, t) 1s the

growth rate of the population in the age interval a to a + da duringtheinterval t to t + dt, and
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1, /ly is the probability of surviving from age y to age x in the periodlife table prevailing in

the time period ¢ to t + dt.

Equation (8.1) 1s the fundamental building block for the set of relations developedin this

chapter. Preston and Coale (1982) showedthat it could be expanded to accommodate migration

by adding an additional term:

_ fk _j l
N(x, t) = N(y, the dy V@D-Hanl da “x (8.2)

ly

wherei(a, ft) is the net immigration rate (immigrants minus out-migrants divided by person-

years lived) at ages a to a + dain the timeinterval t to t + dt. For expositional simplicity, we

will deal primarily with populations closed to migration throughoutthis chapter; the relations

can be “opened” to migration simply by adding the migration term whereverr(a) appears.

Suppose that the youngerage, y, in expression (8.1) is age 0 and designate N (0, t) as B(t)

to reflect the fact that the personsat exact age 0 are new births. Then:

N(x, t) = B(t) ew fo "944 p(y, t) (8.3)

where p(x, t) is the probability of survival from birth to age x in the period life table that

prevails at time ¢. Equation (8.3) showsthat we can now express the numberof people at any

age at time ¢ to f + dt in terms of the numberofbirths in that period, the period life table,

and the period set of age-specific growth rates. Figure 8.1 presents the different components

of equation (8.3) for Japan between 1995 and 2000.It illustrates the fact that the relative

difference between N(x) and e— Jo r(a)da correspondsto the p(x) function. In the case of a

very smooth p(x), as in this example for Japan between 1995 and 2000, the two functions

N(x) and e~ Jo (da have a similar shape but increasingly diverge at older ages.
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Figure 8.1 Relationship between N(x), r(x), and p(x), Japan, 1995-2000
Data source: Japan Aging Research Center (JARC), 1996. Statistical Abstracts of Aging in Japan,
Tokyo, JARC.
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Preston and Coale (1982) showed howthe new expressions could be usedto generalize the set

of relationships previously established for stable populations.* To simplify the development,

let us drop the ¢ identifier, recognizing that all functions pertain to the period ¢ to t + dr. First,

divide both sides of equation (8.3) by N, the size of the total population at time t (or, more

precisely, person-years lived in the interval t to t + df):

NO) _ BO fi rayda
N N
 p(x),

Or

c(x) = bew bo44 yy) (8.4)

Equation (8.4) bears a striking resemblanceto the equivalent expression for the age distribution

of a stable population, equation (7.9) of chapter 7:

c(x) = be~"* p(x)

In particular, when all age-specific growth rates are constant (r(a) = r at all a), e~ Ig ra) da
equals e'* because fo rda =rx.Inthis case, equation (8.4) simplifies to equation (7.9). This

equivalence (and othersto be established) demonstrates that the appropriate test of whether a

populationis stable, i.e. whether the relations of a stable population are applicable, is whether

the set of age-specific growth rates are constant. If they are constant, regardless of the history

of mortality andfertility, then the population is stable andall stable relations pertain. Figure 8.2

presents the N(x), r(x), and p(x) functions in the stable-equivalent population computed from

the vital rates for Japan in 1995-2000.In this figure, the relationship between N (x), r(x), and

p(x) specified in equation (8.3) applies as well. The difference 1s that the age-specific growth

rates are here constant over age: r(x) = r(= —.Q11 in this example). As a result, the function

en fo r(a) da

is equal to e’*, a simple exponential function.

To develop a general expression for the birth rate, we integrate both sides of equation (8.4)

from ages 0 to oo. The proportionate age distribution summedacross all ages must equal

unity, So:

CO

l= | be~ Io r(a) da n(x) dx,

0

Or

b= (8.5)
Jove fo44n(x) ax
 

If all age-specific growth rates are constant at r, then equation (8.5) simplifies to the formula

for the birth rate of a stable population, equation (7.8) in the previous chapter:

1
b=

fo” ev" p(x) dx
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Figure 8.2 Relationship between N(x), r(x), and p(x) in a stable-equivalent population, Japan,
1995-2000

Data source: Japan Aging Research Center JARC), 1996. Statistical Abstracts of Aging in Japan,
Tokyo, JARC.

Let us finally expressthe birth rate in termsofthe age distribution and the age-specific maternity

rates prevailing in the time interval t to t + dt, m(x):

B

b= [ comes dx

Substituting the expression for c(x) in equation (8.4) into this last expression gives:°

B

b= [be (a) da n(~)m(x) dx,

a

or

B

l= fe’ (a) da n(x)m(x)dx (8.6)

Once again, if age-specific growth rates are constant at r, equation (8.6) simplifies to the
equivalent formula for a stable population, equation (7.10):

B

= fepeodx

a
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Thus, the three basic expressions characteristic of a stable population have analogs in any

closed population. By adding a migration term, they can be extended to open populations as

well. Note that, whereas the stable population relations were developed for only one sex, the

more general expressions are equally applicable to one-sex or combined-sex populations.

Onefeature of these expressions may appearparticularly puzzling.It is intuitively obvious,

and confirmed in earlier chapters, that the age distribution of a population is a productof its

history of mortality, fertility, and migration. How,then, can the age distribution be expressed

in terms of contemporaneousvaluesofthe birth rate, life table, and age-specific growth rate

function? The answer mustbethat all of the pertinent history is contained in the age-specific

growthrate function. It captures in oneset ofrates, readily estimable whenever two censusesare

available, all of the historical information required to relate contemporaryfertility, mortality,

and age distributions to one another. If mortality were higher in the past, for example, then

the subsequent decline in mortality would haveraised the size of at least one cohort relative to

what it would have been and hence left a permanent mark on the growth rate. The connection

between past history and present growthrates is developed more explicitly below.

8.3 Extensions of the Basic Relations

Relations involving growth rates that vary with age, sometimes called variable-r relations,

are not confined to analogsof the classic stable population relations. The period net reproduc-

tion rate can be expressed in terms of age-specific growth rates in the following way. For the

one-sex population of females, designate as v(x) the proportionate distribution of mothers’

ages at childbirth, B(x)/B. Since B(x) = N(x)m(x), using equation (8.3) to substitute for

N(x) gives:

Be~ Jo44n(x) (x)

B

— e- fo r(a)da

 v(x)

p(x)m(x)

Rearranging, we have:

v(x)elo ra)da — p(x)m(x)

Integrating both sides of this last expression over the ages of childbearing, a to B, gives the

expression for the net reproduction rate, NRR, on the right-handside:

B

| v(x)elo r(a)da qy — NRR (8.7)

64

This rather odd expression shows that the net reproduction rate can be recaptured with-

out any reference to underlying fertility or mortality rates. It is only necessary to observe

age-specific growth rates and the proportionate age distribution of mothers at childbirth,

two functions that are widely available from censuses and surveys in developing countries.

Application of the formula to very good Swedish data for individual years from 1973 to

1977 produced anerror of less than | percent in each year compared to the NRR computed

from age-specific fertility and mortality rates (Preston and Coale, 1982). The equation shows

that, if the age-specific growth rates are all equal to zero below age B, then the NRR must

equal 1. These relations would obviously prevail in a stationary population. Likewise, any
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fertility regime above the replacementlevel must be reflected in positive age-specific growth

rates at someorall ages below B. Table 8.1 presents an application of the variable-r method for

estimating the NRR to data from Japan between 1995 and 2000, and comparesthe variable-

r methodto the traditional method. Using equation (8.7) gives NRR = .7416 for Japan in

1995-2000. If one uses the intercensal survivorship ratios to compute 5L, for the period

1995-2000, the traditional method for computing the NRR produces the exact same value.

Differences between the two methodsarise whenthe 5, series usedin the traditional method

differs from the 5, computed from the survivorshipratios.

Useful expressions involving the number of decrements, rather than the rate of decrement,

can be established by multiplying both sides of equation (8.3) by w(x), the death rate at age x:

N(x)wlx) = BeW0) 44nx) n(x)
The left-hand side of this expression is D(x), the actual numberof deaths at age x during the

interval tf to t + dt. (More precisely, D(x) is a density function; the number of deaths in

the age interval x to x + dx is D(x)dx.) The expression, p(x)w(x), on the right-hand side

is the probability that a newborn will die at age x according to the period life table. It must

sum to unity acrossall ages. Hence, rearranging the last equation and integrating from 0 to oo,

we have: ,

OO

B= / D(x)elo r(a)da gy (8.8)

0

This expression provides a direct link between the number ofbirths and the number of

deaths in any population.It indicates that the numberofbirths can be inferred directly from

the numberof deaths, providedthatthe latter function is growth-adjusted by the r(a) function.

In a stationary population, r(a) = 0 at all ages, hence

OO

B = [ eax )

0

The numberof births will equal the number of deaths summedacrossall ages. If the growth

rate is positive at all ages, then the numberof births must exceed the numberof deaths.

The equivalent expression for the population at any age y in terms of the numberof deaths
above age y is:

CO

N(y) = / D(x)e! rajda jy (8.9)

y

Equation (8.9) is generalized to multiple sources of increment and decrement in Preston and
Coale (1982). Bennett and Horiuchi (1981) use this expression to investigate the completeness
of death registration in several populations. The numberof deaths above age y, combined with
age-specific growth rates, implies a certain census count at age y; an implied countthatis
too low suggests that deaths above age y are under-registered (or, whatis less likely, that the
population countis inflated).

Evenif deaths are undercounted,the underlying life table can be accurately recaptured using
variable-r relations. Since p(x)w(x) = d(x), the numberof deaths at age x in the periodlife



 

MethodI (variable-r):

S, = cumulation of 57, to midpoint of interval

50x = 5By/B

NRR = 5050, - exp(Sy)

Method 2 (traditional):

NRR = So 5m, -5Ly

Table 8.1: Comparison of two methodsfor computing NRR; Japan, females, 1995-2000

 

 

 

    

Age x 5Ny(1995)  5N,(2000) Intercensal Variable-r method Traditional method

births 5 B,.

5lx exp(Sy) 5U, =5By/B  5vx - exp(Sy) 5Ly 5M sm, 5 Lx

0) 2,988 3,280 0.0186 1.0477 4.9787

5 3,160 2,976 —0.0120 1.0653 4.9588

10 3,647 3,157 —0.0289 0.9619 4.9540

15 4,156 3,641 39 —0.0265 0.8376 0.0118 0.0099 4.9459 0.0020 0.0099

20 4,874 4,140 482 —0.0326 0.7226 0.1463 0.1057 4.9269 0.0215 0.1057

25 4,335 4,862 1,453 0.0229 0.7053 0.4411 0.3111 4.9147 0.0633 0.3111

30 3,998 4,329 1,033 0.0159 0.7772 0.3136 0.2437 4.9079 0.0497 0.2437

35 3,860 3,988 258 0.0065 0.8220 0.0783 0.0644 4.8956 0.0132 0.0644

40 4,470 3,846 28 —0.0301 0.7750 0.0086 0.0066 4.8779 0.0014 0.0066

45 5,284 4,443 1 —0.0347 0.6592 0.0003 0.0002 4.8484 0.0000 0.0002

Sum B = 3,294 1.0000 NRR = 0.7416 NRR = 0.7416
 
 
Data source: Japan Aging Research Center, 1996. Statistical Abstracts ofAging in Japan, Tokyo: JARC.
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table with a radix of unity, it must be the casethat:

D(x) = Be~4o7™@44 acy), or

d(y) _— PO)(PP r@ da y>x (8.10)
d(x) D(x)

Applying a growth correction to the observed numberof deaths by age in the actual population

permits the analyst to infer the age distribution of deaths in the underlying life table. From

there, he or she can complete the remaining columnsofthe life table in the manner described in

chapter 3. If recorded deathsareall deficient in the same proportion, then the D(y)/ D(x)ratios

will be undisturbed and the life table can be reconstructed via a growth correction. Preston

et al. (1996) use this procedure to estimate African American mortality rates at advanced ages.

A final application of these relations is to a situation where multiple sources of decrement

are recognized. Supposethat we multiply both sides of equation (8.3) by yw(x), the periodrate

of decrement from cause /, rather than by the rate of decrement from all causes combined. The

left-hand side is D! (x), the observed number of decrements from cause i in the period. The

expression, p(x)! (x), on the right-hand side is the probability that a newborn will succumb

to cause i at age x. Integrated overall ages, it gives the probability that a newborn will ever

succumb to cause /, one of the basic outputs from a multiple decrementlife table. Using the

previous notation for this probability, li, /lo, we have:

[i I5° Di (x)elo ™(@da dx

lo B
 (8.11)

Equation (8.11) showsthat the probability of eventually succumbing to cause i can be inferred

from a growth-corrected numberof decrements from i divided by the numberofbirths. (If the

numberof births is not available, it can be inferred from all decrements combined by using

equation (8.8).) If a population is stationary (r(a) = 0 at all a), then equation (8.11) shows

that the probability of succumbingto a cause can be simply inferred from theratio ofthetotal
number of decrements from that causeto the total numberof births, which is also equal to the
total number of decrements from all causes. In a growing population in whichall age-specific
growthrates are positive, the equation showsthat the ratio of decrements to births will always
underestimate the underlying probability. For example, the ratio of divorces to marriages in a
particular period will always understate the probability in the period life table that a marriage
will end in divorce when r(a) > Oatall a (i.e., when the growthrate in the numberofmarriages
at duration a is alwayspositive).

Oneapplication of (8.11) occurs in epidemiology (Preston, 1987b). The “case-fatality ratio”
(or proportion) is the probability that someone whohascontracted a disease will die from it.
The two recognized sources of decrement are thus death from the disease and death from all
others causes combined. Oneenters the defined state at the point of being diagnosed with the
disease, and x in equation (8.11) becomes duration since diagnosis. Thus, B is the number
of new diagnosesin a period and D'(x) is the number of deaths from the cause in question
among persons diagnosed x years ago.In a stationary population, the case-fatality ratio can be
estimated simply asthe ratio of annual deaths from the cause to annual diagnoses. Ina growing
population,this ratio will always understate the case-fatality ratio.

Table 8.2 showsan application of the growth-correction methodto estimate the case-fatality
ratio in an artificial population. In this example, where the population of casesis growing
(;rx greater than O at each duration), the observed deaths/diagnoses ratio (47.54 percent)
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Table 8.2: Estimation of the case-fatality ratio in a hypothetical nonstable population

1Nx (t) = Numberofcasesat time f at duration x to x + 1

| D\.[t, t + 1] = Numberof deaths from cause i between ¢ and t + 1
ry = duration-specific growth rate in the numbers of cases

Sy | = cumulation of duration-specific growth rates to midpoint of interval

| D’. - exp(S,) = growth-corrected deaths from cause i, or deaths from causei in the

periodlife table

Duration x iNy(t) yNy(t +1) 1: Dift.t+1)] are exp(S,) 1D! -exp(S,)

0 1,619 1,804 185 0.108 1.056 195

l 1,048 1,265 271 0.188 1.224 332

2 599 668 245 0.109 1.420 348

3 265 287 163 0.080 1.561 254

4 57 68 63 0.176 1.774 112

Sum 927 1,241

New diagnoses 1,950 1,950

[t,t +1]

Deaths/diagnoses 47.54% 63.65%

ratio     
underestimates the true case-fatality ratio (63.65 percent), estimated using the growth cor-

rection. If the population was decreasing, the growth-correction factor exp(S;) would be

less than oneat different ages, and the case-fatality ratio would be lower than the observed

deaths/diagnosesratio.

8.4 Deconstructing the Age-specific Growth Rate

Howthe age-specific growth rate function works its magic may be better understood by iden-

tifying its constituents. Let us go back to the example with which we began this chapter,

the growth of the population aged 10 last birthday between January 1, 1995 and January 1,

1996. Assumethat the population is closed to migration. The number of persons aged 10 on

January 1, 1995, is equal to the numberof births in 1984, B(1984), times the probability that a

birth in this cohort will survive to the beginning of 1995, at which point it is, on average, approx-

imately aged 10.5 in exact years. Designate this survival probability for the cohort as p(10.5,

1984c), where 1984c identifies the birth cohort of 1984. Likewise, the number of 10-year-olds

at the beginning of 1996 is B(1985)-p(10.5, 1985c). The growth rate of the population aged

10 last birthday1s:

 r19[1995, 1996] = Inee Bcs8s p(10.5, esse)
1 , =

1N19(1995) B(1984) p(10.5, 1984c)

in Pod Inae aE|

B(1984) p(10.5, 1984c)

10.5

— | Aw(a) da (8.12)
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where rg is the growth rate in the annual number of births between 1984 and 1985 and

Aw(a) is the change in death rates at age a between the 1984 cohort and the 1985 cohort

[w(a, 1985c) — wa, 1984c)]. Thus, the growth rate in a particular age interval reflects the

growthrate in the numberofbirths into the two cohorts whoinhabit that interval and cumulative

differences betweentheir age-specific death rates. If the population is experiencing migration,

then an additional term is required, [i(a, 1985c) — i(a, 1984c)], where i(a, 1985c) is the net

immigration rate at age a for the 1985 birth cohort. This equation is derived more formally in

Horiuchi and Preston (1988). The general expression including migration for the growth rate

at age a at timef is:

a a

r(a,t) =rp(t —a) — | Ap(y,t)dy + | Ai(y, t) dy (8.13)

0 0

where rg(t — a) is the growth rate in the numberof births at time t — a; Aw(y,f) is the

difference in death rate at age y between the cohort aged a at time ¢ and the cohort aged a+da

at time ¢; and Ai(y, fr) is the difference in net rate of immigration at age y between the cohort

aged a at time ¢t and the cohort aged a + da at time f.

We saw in chapter 7 that a stable population has a constant age distribution so that age-

specific growth rates are constant by age. Suppose that, in an otherwise stable population,

there had been 70 years earlier a sharp increase in the numberof births. Previous conditions

were then reestablished and maintained to the present. Then today there would be a “bump”in

the actual age distribution at age 70, as shown onfigure 8.3, whichillustrates this hypothetical

example. There would also be a disturbance in the age-specific growth rate function; this

function would also have a bumpat age 70, preceded by a trough just before age 70 wherethe

unusually large cohort is evacuating the age interval. In terms of equation (8.12), the trough

wascreated by a decrease in the growth rate of births, rg, when the lowerfertility conditions

were reestablished.

So there is a one-to-one correspondence between peculiarities in the age distribution and

peculiarities in the age-specific growth rate function. That is how equation (8.4) is able to
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Figure 8.3. ;N, and jr, functions in a destabilized hypothetical population
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establish a simple relation between the current age distribution and the current values of the

birth rate, life table, and age-specific growth rate function.

The age-specific growth rate function immediately registers changesin fertility and mortality

rates. Equation (8.6) showsthe relation that must be maintained between growth rates and

fertility and mortality rates. A changein the death rate at age x will be immediately registered

in the growth rate at age x. A changeinfertility rates at any age will be immediately registered

in the growthrate at age zero. As a result, the net reproduction rate can be inferred from careful

observation of age-specific growth rates, as in equation (8.7).

8.5 Age Structural Dynamics

The stable population modelestablishes that longstanding conditionsof fertility, mortality, and

migration will produce a constant age structure. Thus, changesin the age distribution cannot be

attributable to /evels of fertility, mortality, or migration. Changesin the age distribution must be

produced by changesin demographic conditions. The stable model washelpful in establishing

the long-term effect of changesin fertility and mortality on the age distribution. We usedit to

compare stable age distributions before and after a change in demographic conditions, without

any attention to the intervening pathway from one equilibrium to the other. The age-specific

growth rate function is a useful bridge between the two. More generally, it can illuminate

influences on the age distribution in nonstable populations.

Any changes in the proportionate age distribution of a population must occur via growth

rates that are differentiated by age. Suppose that we begin with a previously stable population

and imposea persistent decline in fertility rates. It1s obvious that the growth rate of the number

of births, rg, will fall. If all age-specific fertility rates decline by 1 percent per year, then for

the first 15 years the growth rate in the numberof births will be rg = r — .O1 rather than

r, the growth rate of the previous stable population. After 15 years, the age-specific growth

rate function will be flat at r above age 15 (since no cohorts above age 15 have been affected)

and flat at r — .01 below age 15. Beyondthat time, the growth rate in the numberof births

will fall below r — .O1 as the growth rate in the numberof persons of childbearing age falls

below r and fertility rates continue to drop. Thus, the age profile of growth rates approaches

one that is continuously rising in age. The population will grow older throughoutthis process

because growthrates at higher ages exceed thoseat lowerages. Aslong as the fertility reduction

continues, the population will continue aging.

Whathappensif we imposea persistent mortality decline on a previously stable population,

holding fertility constant? As in chapter 7, the answer dependsupontheagepattern of mortality

decline. If we use the typical pattern of mortality decline described by Coale (1972) and

displayed in chapter 7, then the reductions in age-specific death rates will be greatest at ages

below 5 and above 50. These age groups will thus begin growing unusually rapidly as soon

as the mortality reduction begins. Equation (8.12) showsthat the age-specific growthrate is

a function of the cumulative change in age-specific mortality rates from one cohort to the

next. Thus, the mortality changes accumulate in the age-specific growth rate function and the

age profile of growth rates rises over time, maintaining a roughly U-shaped pattern in age.

The left-hand side of the U is muchlessdistinct than the right-hand side because each cohort

receives an early boostin size relative to its predecessor by virtue of mortality declines below

age 5. If Aw(y) is roughly constant from cohort to cohort, then the age profile of growthrates at

youngerageswill be flat, a pattern that spreads quickly throughthe age span until those “saved”

by the mortality reduction begin to reproduce. At older ages, on the other hand, the mortality
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Figure 8.4 Age-specific growth rates by years since mortality decline began: moderate decline
Source: Horiuchi and Preston, 1988: 433.

improvements simply continue to cumulatein the lifetime of cohorts, creating a sharp upward

slope in the age profile of growth rates. Figure 8.4 illustrates the pattern of age-specific growth

rates when persistent mortality declines are imposed uponaninitially stable population.

The effects of migration on the age structure of a population can also be more clearly

comprehended through the age-specific growth rate function. It might be thought that the

“unnatural” process of migration invariably changes the age structure of a population. But

equation (8.13) showsthat the growth rate at a particular age is a function of changes in the

rate of migration,notof the level of migration itself. If there have been no changesin migration

rates in the lifetime of relevant cohorts, then migration literally contributes nothing, zero, to

the age-specific growthrate. In other words, if each cohort’s size changes by the samefactor as

a result of migration between birth and age a, then the only source of changein their relative

size at age is their relative size at birth (assuming that mortality rates are also constant). If,

on the other hand, net immigration rates rise at someset of ages, then the age-specific growth

rate will increase at those ages — and at higher ages in subsequentyears.

The combinedeffects of births, mortality, and migration on age structural dynamics can be
viewed through the prism of the mean age of a population. The mean ageof a populationat
time ¢ is defined as:

fo” Na, thada

fy” N(a, t)da
 Ap(t) = (8.14)

Differentiating this expression with respectto time and combining and simplifying terms gives:

dA,(t) f
—=[oa t)r(a, t)[a — Ap]da (8.15)

0

where c(a, t) is the proportion of the population at time t whoare exact agea.
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The right-hand side of equation (8.15) is perhaps recognizable as the covariance between

age and age-specific growth rates (Preston, Himes, and Eggers, 1989). When there is a pos-

itive covariance (or correlation) between age and age-specific growth rates, the mean age

of a population will be rising; when the covariance or correlation is negative, the mean

age will be falling. Thus, this equation provides a relatively simple answerto the question,

“Whenwill a population grow older?”: when age-specific growth rates are positively correlated

with age.

By substituting for r(a, t) the three terms involving births, mortality, and migration in

equation (8.13), one can decompose the covariance in (8.15) into three covariance terms.

Preston, Himes, and Eggers (1989) use this approach to show that the major factor contributing

to the rising mean age in the United States and Sweden in the 1980s wastheir history of mortality

decline, captured in the covariance term between age and cumulative changes in mortality. In

Sweden,the history of migration — the reduction in out-migration rates earlier in the century,

reflected in high growth rates at older ages in the 1980s — was nearly as important.

Finally, age-specific growth rates provide insight into the phenomenonofpopulation momen-

tum addressed in the previous chapter. The term “momentum”refers to the tendency for a

previously growing population to continue growing after replacement-levelfertility is imposed.

Replacement-level fertility means that the net reproduction rate is 1.000. Equation (8.7)

provides a link between the net reproduction rate and age-specific growthrates. In particular,

it shows that, when NRR = 1.000, the (weighted) mean value of the

x

exp | r(a)da

0

function must also be 1.000 in the childbearing interval. (The weights are supplied by the ages

of mothers at childbearing.) The value of this function is 1.000 when the cumulative sum of

growthrates is 0.000.

Therefore, after replacement-levelfertility is imposed, the sum of age-specific growth rates

must average approximately zero throughout the childbearing interval. By the mean value

theorem, there must be some age within the childbearing interval below which age-specific

growth rates sum to zero. Preston (1986) uses simulations to show that, in previously stable

populations, the population below age 7, the mean length of generation, is nearly fixed in

size after an NRR of 1.000 is imposed. The reason is that each cohort beyond this time

simply replaces itself in size. Thus, essentially all of the population growth beyondthe time

when replacement-level fertility is achieved occurs in the age bloc beginning with age 7.

The momentum of population growth is confined to more advanced ages. (See also Kim and

Schoen, 1997.)

8.6 Uses of Variable-r Methods in Demographic Estimation

The set of equations developed above has proven useful in demographicestimation. Typically,

they work by showing how to apply a growth adjustment that enables the relations in a

hypothetical stationary population to be established.

Demographicratespertain to discrete time intervals rather than to a pointin time. Therefore,

it is necessary to adapt the equations presented aboveto discrete time intervals. There are several

ways to proceed. The simplest is the following. Since the basic building-block equation (8.1)
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applies at any time fr, it must apply at timesf; andfy:

_ [{* d

N(x, t1) = N(y, tye "P44pycry)
— [{* ty) d

N(x.) = Ny, pets44(ty)

Multiplying these equations by one another and taking the square root of each side gives:

x [r(a,ty)+r(a,ty)] da

N*(x)=N*(ye 2 ry"
  

where N*(x) = VN(x,t)-N(xX,t)) and y-ypy = Jx—y Py(th) * x—y Py(t2). Thus,
equation (8.1) also applies to the geometric mean of quantities pertaining at two points in

time. Supposethat these points are the beginning and the end of an observational interval, say,

two census dates. The growthrate term that satisfies the equation is the average of the growth

rates at the beginning and the endofthe interval. A convenient assumptionis that the growth

rate term changedlinearly during the timeinterval, in which case the meanof the growthrates

at the beginning andthe end of the interval would equal the mean growthrate overthe entire

interval:

 

(se 2)
r(a,tj) +r(a,t2) _ N(a, t) ~ F(a)

2 7 to — ty

In this case:

N*(x) = N*(y)e_ ly ra)da Pp. (8.16)
yRy

Using the geometric mean of population counts at the beginning and endofthe period and the

mean growth rate during the period solves the problem. The equality in (8.16) may not hold,

however,if the growth rate function is highly irregular during the interval. Note that the survival

experience in this equation is the geometric mean of survival conditions at the beginning and

end of the period. Usually, these will be very similar to the mean survival conditions over the

entire interval. The correspondencewill be exact if the j.(a, t) function is constant or changes

linearly at all ages during the period.

Using this approximation, equation (8.3) will be:

N*(x) = B*e~ Jo r(a) da n* (x) (8.17)

where B* can be estimated by summingthebirths over the interval and dividing by the length

of the interval.

A second problem is converting the equations for exact ages into equations for the age

intervals in which data are normally found (an exception is the number of births, for which

counts are often provided). When data come in 5-year age intervals, a convenient solution to

this problem is to assume that the values in (8.17) at the midpoint of an age interval can be

approximated by the sum ofvalues in the 5-year interval divided by 5. Hence:

sNz = Be.L* (8.18)

where: Sy =5- *7? o5ra $2.5 5rx
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In view ofthe need to introduce these approximations,it is reassuring to observethatthey will

exactly reproduce cohort survival experience when the observational schema enables cohort

survival to be directly observed. When data comein 5-year age intervals and observations are

separated by 5 years, then the procedure entailed in applying (8.18) will equate 5 L*45/5Ly

and 5N,45(¢f + 5)/5Nx(t) (Preston, 1987a: 61).

Equation (8.18) can be used to investigate any single decrement survival process. Its virtue

is that survival conditions can be “indirectly” inferred from the numbersof personsalive in

the defined state at two different points in time. If the age intervals and timeinterval are iden-

tical in length, then the equation offers no advantages, as noted in the previous paragraph.

Whenageintervals and timeintervals differ, then the equation provides a convenient way of

proceeding. It has been used to study the intercensal survival of a population (Preston and

Bennett, 1983; United Nations, 1983: 218-22), the survivorship of marriages from all forms

of decrement (Preston, 1987a), and the survival of persons diagnosed with cancer (Preston,

1987b). It can also be used to study survival from a single decrement in a multiple decre-

ment situation. Using Hajnal’s assumption of no differential mortality between the single

and the ever-married population, Preston and Strong (1986) used equation (8.18) to inves-

tigate survival in the single state based upon intercensal experience. This approach avoids

the need to assume constant nuptiality conditions in the past and provides more timely mea-

sures of nuptiality conditions than the one-census approach of Hajnal (1953) developed in

section 4.6.

Box 8.1 presents an examplethat applies the approach to the survival of American marriages

during the period 1975-80. The numberof intact marriages by duration was observedin 1975

and 1980. The radix ofthe life table that is constructed is the number of new marriages between

these years. Often, the radix will not be available, in which case the life table must begin at

a higher age. When data are available in 5-year-wide age (or duration) intervals, then the /,.

column cannot begin until age 5. /,, the number of persons achieving age (or duration) x in

the life table that pertains during the period, can be estimated by assumingthatthe /,, function

is linear in the 10-year-wide age interval centered on x. Hence:

(sLy +5Lx_5)
10

ly = 

An alternative approach was developed by Ansley Coale to estimating survival conditions

from two observationsof a population arrayed by age or duration in a state. This approach uses

iterative interpolation to infer survival rates. An example is provided in chapter 11. When data

are available in detailed age breakdownsand are quite accurate, the alternative approach will

typically provide more accurate estimates than the approachjust described. When data are in

broader age groupsor are seriously inaccurate, there is less to choose between the approaches

and the method described above maybe preferred for its simplicity.

There is no alternative to several other applications of variable-r procedures. These are

instances in which the number of decrements is explicitly recorded. In dealing with a

single-decrement process, equation (8.10) shows how a simple growth correction can be applied

to convert the numberof deaths recorded in a population into the numberof deathsin the period

life table. This approach would be useful if deaths were incompletely recorded or were based

upon a sample of the population. It may also be useful if population data are subjectto large dis-

tortions from persistent age misreporting. Even though the population age distribution may be

too inaccurate to permit construction of a conventionallife table, the set of age-specific growth
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Box 8.2 Application of the Death-based Variable-r Method for Estimating Mortality

 

 

 

 

 

 

 

nNx(t)) =population aged x to x +n at time fy

nNx(t2) = population aged x to x +n at time fo

nD* = average annual deaths between 74, and f

In (2(t2) )

_ nx (ty) .
rafxlty, bJ= “el. = age-specific growth rate between ft; and fo

alx—n + nlx

ndx nDx (Pee
= -@

nax—n nDx—n

nd
ndy = ,dx_n . For the first age group, assumethat ,dg = » Do

n@x—n

Example: Vietnam, 1979-89

iH Dx ndx

Age x Ny (1979.75) Ny (1989.25) —_, D? nly ndx ly Ty ee
nf Dy~n n dy Hn

0 3,946,224 4,668,915 48,580 0.0177 — — 48,580 556,269 34,014,619 61.15

5 3,928,795 4,403,654 8,029 0.0120 0.1653 0.1780 8,648 507,689 31,438,282 61.92

10 3,632,555 3,884,561 3,928 0.0071 0.4892 0.5131 4,437 499,041 28,921,458 57.95

15 2,954,333 3,402,000 3,783 0.0149 0.9631 1.0173 4,514 494,603 26,437,347 53.45

20 2,281,171 2,935,087 3,856 0.0265 1.0193 1.1304 5,103 490,089 23,975,617 48.92

25 1,742,277 2,764,189 3,469 0.0486 0.8996 1.0855 5,539 484,986 21,537,929 44.41

30 1,177,320 2,280,903 3,053 0.0696 0.8801 1.1826 6,551 479,447 19,126,847 39.89

35 966,580 1,564,740 3,093 0.0507. 1.0131 1.3686 8,966 472,896 16,745,991 35.41

40 919,291 1,041,388 3,345 0.0131 1.0815 1.2686 11,374 463,930 14,403,926 31.05

45 994,602 883,098 4.836 —0.0125 1.4457 1.4479 16,469 452,556 12,112,711 26.77

50 825,356 864,699 6,215 0.0049 1.2852 1.2609 20,766 436,087 9,891,104 22.68

55 680,996 904,734 9,138 0.0299 1.4703 1.6040 33,308 415,321 7,762,585 18.69

60 540,920 714,534 12,070 0.0293 1.3209 1.5316 51,014 382,012 5,769,252 15.10

65 419,164 527,053 13,645 0.0241 1.1305 1.2920 65,909 330,998 3,986,726 12.04

70 284,003 326,747 14,310 0.0148 1.0487 1.1558 76,175 265,089 2,496,509 9.42

75 183,222 213,768 14,357 0.0162 1.0033 1.0841 82,582 188,914 1,361,503 7.21

80 64,153 95,528 7,560 0.0419 0.5266 0.6090 50,288 106,332 623,389 5.86

85 39,620 47,662 7,227 0.0195 0.9560 1.1144 56,044 56,044 217,450 3.88

   Note: the , Ly column (not shownhere)is calculated with a ,a, of 2.5 at all ages, except for 9n5 = .78 and gongs = 3.88.

Data Source: Vietnam GeneralStatistical Office, 1983. 1979 Vietnam Census Report, Vietnam Census Steering Committee,

1994. Vietnam Population Census — 1989; Merl, 1998.

 
 

rates maystill be usable when patterns of misreporting are similar at the two observations.

Box 8.2 presents Giovanna Merli’s (1998) application of this method to intercensal survival

experience in Vietnam, 1979-89.

The procedurescanalso be used to estimate certain features of a period multiple decrement

life table. Equation (8.11) shows how the probability of succumbingto a particular cause of

decrementcan be inferred by growth-correcting the observed numberof decrements from that

cause in a population. No information is needed on the number of decrements from other
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Box 8.3 Computation of the Probability that a Marriage will End in Divorce

| : ahs=- duration-specific growth rate |in number of intact’ marriages (any aden) betweenan andf

n pi : / =total numberof divorces byduration of marriage between ty and fy

] Ss sumioae rates from duration0 to midpoint ofinterval

: — S oaoS= probability that amarriage just contracted will end in divorce between
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N (0) iis the total number ofTears betweenAand n

 

 

 
 

  

i

au > nds =probability that a marriages will‘eventually end in dae
ob oe - 2

Example: UnitedStates, 1975-80;N(0) = 11,218,240

| di
Duration nlx nD\, Sy a

lox

0 0.00603 251,888 0.00302 0.0225
1 0.01270 458,995 0.01238 0.0414
2 0.00558 506,574 0.02152 0.0461
3 —0.01319 506,574 0.01772 0.0460
4 0.01300 464,592 0.01762 0.0422
5 —0.02505 405,819 0.01159 0.0366
6 —0.01454 352,642 —0.00820 0.0312
7 0.01799 323,460 —0.00648 0.0286
8 0.02607 265,881 0.01555 0.0241
9 0.01948 229,497 0.03833 0.0213
10 0.01649 766,858 0.08930 0.0747
15 —0.00164 442,202 0.12642 0.0447
20 —0.01092 299,466 0.09502 0.0294
25 —0.03556 179,120 —0.02118 0.0156

30 0.02494 156,730 0.13932 0.0161

Sum 0.5205

Source: Preston, 1987a.
 

 

  
causes;they are inferred from patterns of changein populationsize, as revealed in age-specific
growth rates. This feature is a special advantage in estimating the probability that a marriage
will end in divorce. The obvious dimension to use in a multiple decrementlife table of marital
survival is duration of marriage, but no nation tabulates data on death rates by duration of
marriage. Fortunately, such data are not necessary when using variable-r methods. Box 8.3
presents an application of the method to marital survival in the United States.

Other applications of variable-r methods involve the use of modelagepatterns of mortality.
These are introduced in the next chapter, following which we describe other methods of
indirectly estimating demographic measures.
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NOTES

l. For expositional simplicity, we will drop the time reference in the age-specific growthrate, i.e., 1109

is implicitly ;rjo [1995, 1996].

For an alternative and complementary demonstration, see Arthur and Vaupel (1984).

To be consistent with earlier definitions, we must at this point shift to one-sex notation. For a

population of both sexes combined,the “maternity” function in equation (8.6) could be defined in

a variety of waysthat retain the identity. Perhaps the most straightforward is to assign each birth to

an age of father and an age of mother, producing series of births by age of father, B” (x), and a

series of births by age of mother, B* (x). Then we canassign half of each birth to the age offather

and half to the age of mother, producing fertility rate at age x of

5B! (x) + 5B(x)
N(x) + NF (x)
 m(x) =

where N™ (x) and N* (x) are the numbers of males and females, respectively, at age x. Another

option is to assign male births to the age of father and female births to the age of mother.
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Throughout this volume, we have emphasizedthat the intensity of demographic events varies
sharply with age. To describe the mortality rates faced by a population, for example, the analyst
will often need to break downthe population into age groups within which the death rate is
more homogeneous. In an abridged life table, for example, the mortality force is typically
described by 19 age-specific mortality rates, for the ages under 1, | to 4, five-year intervals up
to age 85, and the open ageinterval, 85+.

Although disaggregation provides a more precise representation of the phenomenon under
study, a large set of numbers is cumbersome. Demographershave thus searched for morepar-
simoniousrepresentationsof the age variation of demographic events. They study documented
age patternsto identify regularities that would allow them to derive a relatively precise descrip-
tion of demographicrates at different ages with a small numberofparameters. These parsimo-
nious representations, or modelage patterns, serve many purposes in demographic analysis.

1) The models represent a standard or normal pattern because they incorporate the experience
of many populations with good data. Thus, a comparison of actual data with a model
helps one to identify idiosyncracies in the actual data, including those caused by data
error. Significant deviations from existing models are suspicious unless caused by known
idiosyncratic conditions. Irregular data can be smoothed and incomplete data completed
by referringto the closest, bestfitting, model.

2) Age models can simplify the task of preparing demographic projections. As seen in
chapter 6, cohort-component projections require age-specific mortality, fertility, and
migration rates for each sex and age group, and for each time interval of the projection
span. Instead of preparing separate assumptions for each rate, using modelage patterns
the analyst can make assumptions about the trend in a much smaller number of model
parameters and derive thefull set of age-specific rates from these parameters.

3) Models allow one to “indirectly” estimate demographic parameters. By assuming that
a model pattern pertains, one can often solve for the value of one or two parameters
rather than estimating a muchlargerset of parameters. Some of these indirect estimation
techniquesare presented in chapter 11.
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4) Although the models are intended to be descriptive only, the discovery of empirical reg-

ularities across many populations makesit tempting to search for determinants of age

variations, and to attribute variation to specific biological or behavioral factors that vary

across populations. Some parameters have a direct behavioral interpretation. Identifying

the parameter values for which the model best fits the age pattern in a population may

provide someinsight into behavior in the population.

Modelage patterns comein three variants. The first approach summarizes age variation by

formulating the risk as a mathematical function of whichageis the argument. The second one

presents full tables of age-specific rates that are indexed by some summary measure of intensity,

for example, life expectancyat birth. The third approach combinesboth the mathematical and

tabular approaches. Oneor two completesets of tabulated age-specific rates form a “standard.”

A mathematical function is then usedto relate the standardrates to estimatedor predicted rates

in the population being studied.

In this chapter, we describe model age patterns of mortality, fertility, nuptiality, and migra-

tion. Age patterns of mortality have the longesttradition and modelage patterns of other vital

events have been largely inspired by these efforts in mortality analysis. Model age patterns of

mortality are discussedfirst and most extensively.

9.1 Model Age Patterns of Mortality

9.1.1 Mathematical representations

The relation between mortality and age is the oldest topic in demography. Theefforts to study

it marked the emergence of demographyasa specific field. The pioneering work of Graunt

(1662), Halley (1693), and Deparcieux (1746) established the life table as an essential descrip-

tive and analytical tool. The search for a mathematical modelof age variation in mortality risks

(“mortality law’) also has a long history. The shape of the mortality curve (figure 3.2) sug-

gests that representing mortality risksat all ages would involve many parameters. Past middle

adult ages, however, the mortality curve displays a more regular, nearly exponential, increase.

Gompertz (1825) first noticed that a “law of geometric progression pervades,” after a certain

age, in many populations and suggested representing the mortality risk (with the notation of

the present volume) as:

u(x) =a: eP* (9.1)

Thus, In[w(x)] = In(a) + Bx; the log of the death rateis a linear function of age. This function

was actually meantto represent only “underlying” mortality, i.e. mortality purged of accidental

or infectious causes. In order to include these two sets of mortality causes which are assumed

to act independently of age, Makeham (1860) suggested adding a constant to Gompertz’s

specification:

p(x) =a-eP* + y

These formulasarestill frequently used to smooth data, especially at older ages (Horiuchi and

Coale, 1982). Box 9.1 presents an application of equation (9.1) to extrapolate survivors in a

life table beyondthe final age whose /(x) value could be calculated directly.

It has been observed, however, that at oldest ages (over age 80 or 90), death rates often

increase at a diminishing rate, and the Gompertz or the Makeham function fit to younger ages

tends to over predict mortality (Vaupelet al., 1979; Horiuchi and Coale, 1990). Perks (1932)
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proposed a logistic model that can then be used to represent the sub-exponential growth at
oldest ages. The simplest form of a logistic curveis:

_ BYpr)=
1+ By

If this formula is used for the death rate, then the complementof the death rateis:

1 — p(x) = ————W(x) + By

and wlon
x

= By"
1—pQ@)
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In this case, In[u(x)/(1 — p(x))] (e., the logit of 4(x)) is a linear function of age.

At the youngest ages, on the contrary, the mortality rate decreases rapidly with age.

Bourgeois-Pichat (1946 and 1951) suggested decomposing infant mortality into an under-

lying, or endogenous, component and an exogenous component depending on the individual’s

environment(e.g., accidents or infections). He fitted the cumulative proportion dead in a cohort

by age n (in days) between the end of the first month andthe endofthe first year by the formula:

g(n) =a +b{Inn + DP

with the constant a representing the endogenousprocess. Deviations from this model have been

documented, however, and appearrelated to breast-feeding practices (Knodel and Kintner,

1977). Lantoine and Pressat (1984) suggested an alternative specification of the formula.

A comprehensive mathematical formula for mortality at all ages is necessarily complex. For

example, Heligman and Pollard (1980) found that eight parameters are needed to model the

probability of dying between age x and x + |:

19x _y(x+B) DewEin)InP)? 4+ GH*
—_———-

| Px

The first term (parameters A, B, and C) captures mortality in early life. The coefficient C 1s

negative so that this first term decreases very rapidly with age and becomes very small after

childhood.Thelast term in the sum is similar to the logistic formula for older ages. The second

term of the sum accountsfor the “accident hump”thatis often observed in young adult ages

(typically more marked for males than females).

The main difficulty in identifying a law of mortality valid for different populations originates

in variations in the age pattern of mortality from different causes of death (Sutter and Tabah,

1952). The age pattern of aggregate mortality reflects the respective importance of specific

causes (Preston, 1976a), which varies across populations(e.g., prevalence of car accidents or

malaria). A universal law of mortality can only apply to intrinsic or endogenous mortality

(Carnes et al., 1996). However, there is probably no cause of death or disease that is not

influenced by environmental or behavioral factors.

Fitting mathematical functions to age patterns of mortality requires accurate data on mortality

at certain ages. Often, there are no dataatall and levels of mortality must be inferred from

other information, for example, changesin the size of cohorts from one census to the next.

Tabular representations ofmodel age patterns were developedto dealwith situations of missing,

inadequate, or inaccurate data.

9.1.2 Tabular representations

These tabular representationstake the form of “model life tables.” They presentall of the normal

life table functions for populationsat a particular “level”of mortality, often indexed bylife

expectancy at birth. Theirutility 1s predicated on the existence of high correlations among sets

of death rates drawn from different populations. Such correlations have been widely observed

among populations with good data. That is, when death rates are high at ages 1-4, they also

tend to be high at ages 40-4 and 80-4.

Thefirst published set of modellife tables was prepared by Valaorasfor the United Nations

(1955). The empiricalbasis was a collection of 158 observedlife tables for each sex. Theset of

life tables used in construction of the models wasnot subjected to a rigorous data quality check.
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Furthermore, a method of construction was employed that produced biases in the estimated
relations. For these reasons, this set of model life tables is no longer used.
The set of model life tables used most frequently today was constructed by Coale and

Demenyin 1966 (secondedition, 1983). They improved upon the United Nations system by
using a larger, better-screened empirical basis and by constructing different sets of models
that recognized regional variationsin the relationship betweenthe level and the age pattern of
mortality. The method of construction, however, may appearfairly crude by today’s statistical
standards.

First, 326 male and 326 female empirical mortality schedules were collected, each of which
wasbased on a combinationofregistered deaths and a population recorded by agein a census.
At each age, the values of ,g, were ranked from lowest to highest, producing for each rank
a preliminary model life table. Each actual table was then compared with a composite table
having a similar level of mortality, and the difference in rates between the two tables was
plotted as a function of age. Visual examination of these deviations was usedto screen tables
with poor data. For the remaining 192 tables, four patterns were identified. Interestingly,
countries in each of these four categories were geographically clustered. Four sets of model
life tables were then constructed, one for each region ofEurope from whichthe data principally
derived.

Thefirst set of tables, based on the pattern found in nine tables from Sweden (before 1920),
Norway,andIceland,is called North. It exhibits low infant mortality and low mortality above
age 50 (figure 9.1). The secondset of tables, labeled South becauseit is based on 22 tables
mostly from Spain, Portugal, and Southern Italy, is characterized by high mortality under age
5 and above age 65, but low mortality between age 40 and 60. Thethird set, East, is based
on 31 tables from Austria, Germany, Northern Italy, Hungary, and Poland. Mortality rates are
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Figure 9.1 Typical deviations with age in the North, South and East regional models
Source: Coale and Demeny, 1983: 11.
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Table 9.1: Infant mortality rates forfemales bylife

expectancyat birth and region (per thousand)
 

Model eo
 

30.00 40.00 50.00 60.00 70.00
 

West 256.11 178.22 118.79 71.16 31.16

North 224.30 156.92 106.02 66.28 32.64

East 306.50 216.83 147.40 89.70 40.96

South 228.81 172.52 130.97 94.91 59.11
 

Source: Coale and Demeny, 1983.

high in infancy and increasingly high above age 50. The fourth pattern (West) is made of the

remaining 130 tables from Western Europe, overseas European populations, and mid-twentieth

century Japan and Taiwan.It is considered free of substantial deviations.

Coale and Demeny modellife tables make up a “double entry” system: each table is con-

structed based on a region (North, South, East, and West) and a value of eso: Within each

regional model, life tables are ranked by mortality “levels,” ranging from | to 24, with higher

mortality “levels” corresponding to higher values of ef). The extent of regional variation in age

pattern can be inferred from table 9.1, which compares infant mortality rate (,qo) for female

populationsat the samelevel oflife expectancy at birth (30, 40, 50, 60, and 70) across regions.

Thelife table that is selected from a single age-specific mortality rate is thus very sensitive

to the choice of a regional model. To choose the appropriate one, we need some independent

information on the age pattern of mortality. Lacking such information, inferences are often

drawn from the mortality experienced by neighboring countries with better data. This borrow-

ing is made on the assumption that neighboring countries would have similar epidemiological

environments, which would be reflected in their cause of death distributions and hence their

age patterns of mortality. Preston (1976a) showsthat Southern European countries contributing

to the South model had high mortality rates from diarrhea. This pattern may best represent

the mortality pattern of today’s Central America, South Asia, the Middle East, and parts of

sub-Saharan Africa where diarrheal death rates are high. None of the empirical tables used

by Coale and Demenyincorporated an incidence of mortality from malaria as high as that in

contemporary Tropical Africa. But because the age pattern of mortality from malaria resembles

to some extent that of mortality from tuberculosis, the preferred Coale and Demeny regional

modelin tropical Africa is often the North, reflecting a high incidence of mortality from tuber-

culosis in late nineteenth- andearly twentieth-century Northern Europe. The West modelis the

most general and hencethe preferred model whenthe analyst feels that available information

is insufficient to justify selecting a more specific model.

The Coale and Demeny modellife tables represent a substantial improvement over the

United Nations system. They have been widely usedandstill representa standard against which

actual tables or subsequent models are compared. Their popularity increased with the second

revision, which extended the modelto higher ages. Each edition presents stable population age

distributions correspondingto a particular modellife table and an assumed rate of increase or

gross reproductionrate.

A note ofcautionontheiruseis in order. Modellife tables are extremely convenient because

they provide not only predicted values of nqx but a full life table. Within a regional model,it

is possible to “select” a life table based on any life table value. For example, we may select a
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life table from an estimated infant mortality rate. By construction, however, these modellife
tables are supposed to provide the “best” estimates of nqdx from an estimate of eSo- Thereis
no guarantee that they will provide the best estimateof, say, 5g49 from an estimate of infant
mortality; providing such an estimate would have required a different method of construction.
In mostcases, this constitutes a minor concern.
A bigger problem mayarise at highest and lowest mortality levels, outside the range of

empirical data on which the modeltables were constructed. The highestlevelof life expectancy
at birth in the original tables was 75.2 years for the West region, and only 69.8 years for the
South region. Evaluation studies showed that the extrapolation to very high mortality levels
performed poorly, as exemplified by the paradoxical difference between life expectancy at
age 10 in a modellife table — recalculated from the predicted ,qg, — andthe initial value of
e19 that was used to predict those values. The difference could reach several years in some
instances (Bhat, 1987), cautioning against using Coale and Demenytables for extreme values
of life expectancy at birth. Coale and Guo (1989) issued a revision ofthe tables at low levels
of mortality, using more recentdata. Preston, McDaniel, and Grushka (1993) have produced a
set of life tables for high mortality populations.
Lederman and Breas (1959) took the most general approach to the problem of reducing

empirical redundanciesin the life table. They applied factor analysis to nearly the same data
as that used by the United Nations (1955). Factor analysis identifies the minimum number of
dimensions(factors) that efficiently represent a more complex data set, here the set of age-
specific probabilities ,g, with originally one dimension per age group. They found that three
factors explained more than 90 percent of the variance. The first factor appearedas

a

fairly
homogeneous combination of probabilities at different ages and could be interpreted as the
general level of mortality. The second factor represented primarily the relation between child
and adult mortality. The third factor was related to mortality at “extreme” ages. Results of
the analysis provided convincing evidencethat the variation in mortality patterns could not
be expressed by simple systems with very few parameters. The interpretation of the factors
also contributed to understanding the dimensionsof mortality (Bourgeois-Pichat, 1963). The
analysis has been influential but the model tables produced from it (Le Bras, 1968; Lederman,
1969) remainlittle used,in part because the data on which they are based are old and flawed.
The tabulated system consist of seven sets of single-entry tables (i.e., tables using a single
indicator of mortality) and two sets of double-entry tables.
A limitation, commontoall the systems discussedsofar, is that their empirical basis con-

sists almost exclusively of the experience of developed countries. Most applications of model
life tables, however, are addressed to developing countries with incomplete data. The United
Nations (1982) thus published a set of model life tables for developing countries, applying
a combination of previous approaches (graphical examination, selection into clusters, andprincipal componentsanalysis) to data collected by the Organization for Economic Coopera-
tion and Development (OECD, 1979). OECD data consisted of 143life tables for males and
females collected from 54 countries in Africa, 50 in Latin America, and 39 in Asia. Many ofthese tables, however, were of poor quality. The United Nations applied rigorous consistencychecks,retaining only 72 of the original 286 tables (and only Tunisia in Africa). As in Coaleand Demeny’s system,a regional clustering of mortality patterns emerged from the analysis.For each region, tables were prepared in incrementsoflife expectancy at birth. Associatedstable populations by age werealso tabulated.
The United Nations system consists of five “regions” (figure 9.2). One is Latin America,which includes data not only from Latin America but also from the Philippines, Sri Lanka,
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Figure 9.2 Deviations from Coale and Demeny Westregion for the Latin American, far Eastern,

South Asian and Chilean patterns (females)

Source: United Nations, 1982: 12.

and Thailand.It is characterized by high mortality (relative to the West model of Coale and

Demeny) during infancy, childhood, and young adult years, but lower mortality at older ages.

A secondcluster only consisted of data from Chile (1950, 1960, and 1970), characterized by

extremely high infant mortality (possibly dueto respiratory disease). A third pattern is South

Asia (based on data for South and West Asian countries and Tunisia), with high mortality
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at extremes of age, below 15 and above 60. The fourth pattern is Far East (which included
East Asian countries, but also Malaysia, Guyana, and Trinidad and Tobago). This pattern is
characterized by high mortality at older ages, possibly duein part to a high incidence of death
from tuberculosis or hepatitis B. The last pattern is a General pattern, based on all tables
meeting data quality standards.

9.1.3 Relational models

The third category of model age pattern of mortality, relational models, combines features
of both the tabular approach of model life tables and the mathematical approach. Relational
models consist of a tabulated “standard” mortality function and a mathematical rule for relating
that standard to mortality in any population. The complexity of age patterns of mortality is
captured through the mortality standard, and the model parameters capture deviations from the
standard. These models thus require fewer parameters than mathematical mortality functions.

Thefirst such model was developed by Brass (1971) and is based upon a logit transformation?
of q(x), the probability of dying before age x:

]
logitgt)] = 5 n|2]

An arithmetic advantage of the transformationis that as q(x) varies from 0 to 1, the logit of
q(x) takes all the values between —oo and +oo. Thus, any predicted valueofthe logit of q(x)
between —oo and +00 will map into a value of q(x) itself between 0 and 1. If we can predict
the logit of g(x), denoted Y(x), we can then transform ¥ (x) back and estimate the predicted
probability of dying before age x by:

exp (27(x)

1 + exp (2(x)

 q(x) =

Alternatively, the probability of surviving from birth to age x is:

1
P(x) =1-qax) = : (9.2)

I + exp (27 (x))

 

Brass proposed a simple relational model to predict Y(x) from the logit of g(x) in the
standard population, Y° (x):

Y(x) =a+B- ¥5(x) (9.3)

Brass proposed two standards, labeled a general standard and an African standard. But the
system in equation (9.3) can be used with any standard (e.g., a Coale and Demenyor a United
Nations model life table) that might be thought more appropriate to a particular context.
The arithmetic advantages of the logit transformation and the parsimonious specification are
attractive, but the modelis only usefulif it can accurately represent empirical variationsin age
pattern of mortality. One of the possible tests is to check how well it can reproduce a Coale
and Demenyset of model life tables from another modellife table in the same family. Several
studies have shownthat the model performs well in this situation.
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Thus, there are two separate features ofrelational models that determine their success. One

is the appropriateness of the standard chosen for the population in question. The other is the

appropriatenessof the rule that specifies how mortality in the standard is related to mortality

in other populations belonging to the same “family.”

Although Brass’s relational model is easy to use, the selection of the values for the two

parameters can be problematic because they do not have an interpretation that is as specific

as region and life expectancy at birth in the Coale and Demeny system, for example. We

may notice, however, that when a increases, Y(x) increasesat all ages and p(x) decreasesat

all ages (equations 9.2 and 9.3). The parameter a is thus an indicator of the mortality “level,”

affecting mortality at all ages in the same direction: a highervalue ofw implies higher mortality

(i.e., a lower probability of surviving to any age x as well as a lower probability of surviving

between any two ages x and y). To interpret the parameter B, let’s first note that both g(x) and

Y(x) increase with age and that Y‘(x) is negative at younger ages: the logarithm 1s negative

when the fraction is smaller than one. Y5(x) equals zero at the age by whichhalf of a birth

cohort is dead in the standard population and becomespositiveat later ages. When

£

increases,

Y(x) increases at the ages where Y S(x) is positive, but decreases (becomes more negative) at

younger ages where Y5(x) is negative. Changesin B thus have a different impact at different

ages: a higher 8 increases the slope of the p(x) function(i.e., accelerates the decline with

age). Therefore, B is often termed the “slope” of the mortality function, while a represents its

“level.” Figure 9.3 illustrates the effects of varying a and B in the Brass Logit Model.

If estimates of the probability of surviving to different ages are available, one can compute

Y(x) in the population and compare it to the corresponding y5(x) at these ages. Since the

proposedtransformation betweenY(x) and Y5(x)is linear, the two parameters a and B can be

estimated using standardlinear estimation techniques such as ordinary least squares regression.

Once a and B have been estimated, Y (x) and p(x) can be computed at any age from equations

(9.2) and (9.3). The model can in this fashion be used to “smooth” empirical data or to complete

a partial life table. When no data onactual mortality are available, it is customary to choose a

value of B (equivalentto selecting a “region”or “family” in a modellife table system) and solve

for the level of « using indirect evidence on, for example, the intercensal survival experience

of cohorts. A numerical example of the Brass Relational Model is shown in box 9.2.

Ewbank, Gomezde Leon, and Stoto (1983) extended theoriginal logit transformation sug-

gested by Brass. They added two parameters to better represent the shape of mortality in

childhood andin adulthoodrespectively. The transformation of the probability of surviving to

age x becomes:

K

prix) \_,
5 1 — p*(x)

T” (x) = when p(x) > 5
2K

1 — p®(x)
1-|— 7( p°(x)

= mt when p(x) <.5 

When k or \ approach zero,the transformation approaches the classic logit transformation.

But using higher values of k or A, respectively, allows oneto raise the survival probabilities at

youngest ages or to lower them at oldest ages.

Relational models have proven extremely useful in a number of comparative studies of

mortality. As we saw in section 6.5, Lee and Carter (1992) have constructed a standard designed
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Figure 9.3 Effects of varying the parameters a and B in the Brass Logit Model

to represent the pattern of mortality change in the US during the twentieth century. Himes,
Preston, and Condran (1994) present a standard mortality function foruseat older ages in low
mortality countries and a two-parameter relational model.

In this section, we have presented three ways in which demographers modelthe age pattern
of mortality. The three approaches have been successfully applied to different aspects of the
study of mortality and have improved our understanding of human mortality. The traditionsof
Studying age patterns of mortality have also influenced other domains of demographicinquiry,
as demographers havealsotried to find regularities in age variation in marriage, fertility, or
migration.

9.2 Age Patterns of Nuptiality

As anonrepeatable event,first marriage andits age variations can be approached in wayssimilar
to mortality. Although the force of nuptiality for first marriage cannot be observed directly
since two decrements, nuptiality and mortality, are jointly operating on the never-married
population, we have seen in sections 3.11 and 4.6 several ways to measure the independentforce of nuptiality from empirical data.

In the previous section, we haveseen three different approachestaken to modelage patternsof mortality. The relational approach, combining empirical and algebraic components, has
been the most successful in the analysis of the age patterns of nuptiality.
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Box 9.2 Estimation of Parameters of Brass Relational Model of Mortality

q°(x) = probability of dying before age x in the Brass general standard

So eg ed q° (x)
Y°(x) = logitq’ (x) = 5 In [ee|

q(x) = probability of dying before age x in the studied population

Y(x) = logitg(x) = 3 In[|

Y(ix)=a+68: y¥5(x) + e(x); a and B estimated with OLS; e(x) = error term

Example: US, males, 1991

 

 

Age x q(x)? Y°(x) q(x) Y (x)

0 0.0000 — 0.0000 —

1 0.1501 —0.8669 0.0100 —?.2986

5 0.2309 —0.6016 0.0120 —2.2050

10 0.2498 —0.5498 0.0132 —?.1560

15 0.2638 —0.5132 0.0148 —2.0981

20 0.2870 —0.4550 0.0211 —1.9179

25 0.3174 —0.3829 0.0292 —1.7518

30 0.3475 —0.3150 0.0380 —1.6153

35 0.3777 —0.2497 0.0488 — 1.4853

40 0.4102 —0.1816 0.0621 —1.3572

45 0.4465 —0.1074 0.0783 — 1.2330

50 0.4894 —0.0212 0.1009 — 1.0935

55 0.5415 0.0832 0.1334 —0.9355

60 0.6035 0.2100 0.1836 —().7460

65 0.6790 0.3746 0.2566 —0.5319

70 0.7620 0.5818 0.3548 —0.2991

75 0.8500 0.8673 0.4790 —0.0421

80 0.9240 1.2490 0.6228 0.2508

85 0.9710 1.7555 0.7735 0.6142

   OLSregression of Y(x) on Y>(x):

a = —1,2222. Thelevel of mortality of US males in 1991 is lower than in the standard

8 = 1.2527. The mortality schedule of US males in 1991 ismore concentrated at older ages than in the

standard

Data source: National Center for Health Statistics, 1996.

 
 

Coale (1971), and Coale and McNeil (1972) examined distributions by age of the propor-

tion of women ever married in many populations and observed considerable variation in the

eventual proportion marrying. For example, marriage appeared almost universal in some Asian

populations, whereas in some West European populations 20 percent had not married by age 50.

The meanageatfirst marriage also varied from under 15 years in some Asian and African

countries to over 25 in some European countries. The more remarkable feature was that the
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increase of the proportion married for women whoever married were very similar relative to

their own mean andstandard deviation of age at marriage. Morespecifically, the proportion of

ever-married women by age exhibits a commonprogression, when divided by the proportion

ever-married by age 50 and whenageis standardized so that the distributions have the same

mean and standard deviation.

As we saw in section 4.6, the proportion ever married at a given age reflects the sum of

the cohort’s first marriage rates underthat age. The similarity of the adjusted proportion ever

married suggested that the underlying force of first marriage was following comparable age-

specific progression in many populations. Coale and McNeil suggested a relational model to

derive the density function of the distribution of women who ever marry by age at marriage,

g(a), from a nuptiality standard (constructed from first marriage density in Sweden, 1865-9).

The proportion ever-married at age a, G(a), is derived from the proportion in the standard

population by:

K
G(a)=C-G5 (—*) (9.4)

The parameter ag represents the age at which nuptiality “begins” in the population (empirically,
itis the age by which approximately | percent have married). Whenthe only difference between
two age patterns of nuptiality is that age, one pattern can be derived from the other one simply
by a horizontal transfer (“sliding”) of the proportion ever married by age on the age axis. The
second parameter,k, is an indicatorof the spreadofthe distribution, i.e. how fast women marry
after the initial age ag . The value of k represents how manyyears of the population’s nuptiality
schedule are equivalent to one year of the nuptiality standard. The third factor, C, is a scale
factor representing the proportion whoeventually marry.

Coale and McNeil’s standard density offirst marriage has the following form:

gs(x) = 0.19465 exp{—0.174(« — 6.06) — exp[—0.288(x — 6.06)]} (9.5)

They provide tabulated values of G(a) according to different assumed values of C, ao, and k.
Figure 9.4 showsproportions of womenever married at different ages in the Coale and McNeil
nuptiality model, with particular values of C, ap , and x.

Rodriguez and Trussell (1980) noted that with the above formulation the mean age at
marriage is a function of ag and «, and the variance of the age at marriage is only a
function ofk:

OO

= [ eGtayda = ag + 11.36K

0

OO

o* = [oc — p)’G(a)da = 43.342

0

The model can thus be reformulated in terms of the mean and the standard deviation of age
at marriage in the population. An advantage of this formulation is that it is easier to fit an
empirical distribution to a model knowing the mean andvariance of the distribution than to
solve for ag and x directly.
The double exponential function appearing in equation (9.5)is actually an approximation to

the convolution of a normal curve and three exponentials, with exponents in an approximately
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Figure 9.4 Proportion of women ever married in the Coale and McNeil nuptiality model

arithmetic sequence. One can think of the normal curve as representing the age distribution

of the population becoming marriageable, while the three exponential terms may represent

the distribution of waiting times in different stages of the marriage process, each of which

has a constant risk. For example, the first term might represent the time between becoming

marriageable and meeting the eventual spouse, the second one the time between meeting and

engagement, andthe third one the time between engagement and marriage. Empirical attempts

to obtain behavioral information based on this model have not been successful because the

parameters often take on implausible values in termsof the suggested interpretation. Neverthe-

less, the model has been useful in “smoothing” data and projecting proportions ever married

based on incomplete cohort histories.

9.3 Age Patternsof Fertility

Since marriage is an importantpart ofthe fertility process in most populations,it 1s not sur-

prising that nuptiality schedules have also been instrumental in the developmentoffertility

schedules. An initial approach, based on the behavioral interpretation of the nuptiality sched-

ules, was to derive an age distribution offirst birth from an age pattern of nuptiality with the

simple addition of a fourth exponential term (representing the waiting time between marriage

and conception) and a constant(representing the gestation time). The attempt wasnot entirely

satisfactory because the age patterns with four exponentials terms could notbe distinguished

from those with three exponentials terms (Trussell, Menken, and Coale, 1982). For practi-

cal purposes, Coale and McNeil nuptiality models can also be used as modelage patterns of

first birth.

A moresuccessful attempt wasto derive a relational modeloffertility schedule by combining

the relational modelsofnuptiality ofCoale and McNeil and a relational model of maritalfertility

based on two standards. Coale and Trussell (1974) modeledfertility as a convolution offirst

marriage schedule and an age pattern of marital fertility. If there were nofertility outside of

marriage and no marital dissolution, then age-specific fertility rates would simply be:

f(a) = G(a) -r(a)
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where r(a) is the age-specific marital fertility rate and G(a) the proportion married at age
da, as in the previous section. Strictly speaking, these two conditions are not metin actual
populationsbut this decomposition provided the framework for the development of Coale and
Trussell fertility models. With the existing nuptiality models, the remaining gap was to model
the age pattern of marital fertility.

To do this, Coale and Trussell first took advantage of the empirical work on natural fertility
by Henry (1961a). Naturalfertility is said by Henry to pertain to populations wherebirth control
is not deliberately used. He defined birth control as a couple’s behavior that is bound to the
numberof children already born andthat is modified when this number reaches the maximum
which the couple does not want to exceed.In Henry’s definition, birth control excludes factors
that may reducefertility but are independent of the numberof children already born, such as
sexual taboos during lactation. Coale and Trussell then observed the departure from an average
naturalfertility schedule in 43 populationsthat clearly controlled their fertility. They derived
an empirical functionof the characteristic deviation by age from natural fertility when couples
control their fertility, proposing the following function for r(a), the rate of marital fertility at
exact age a:

r(a) = M -n(a) el(a) (9.6)

where n(qa)is the rate of childbearing at age a in the average natural fertility schedule from
Henry, u(a) represents the age pattern of departure from the natural fertility schedule, and
m is an indicator of the extent of departure from natural fertility. The additional term, M,
determines the level of marital fertility but doesn’t influence the age pattern. It functions in
a manneranalogous to C in Coale and McNeil’s models of nuptiality. The function v(a) has
negative values sincefertility control has a deflating impact on fertility, a deflation that grows
with age. As age increases, couples presumably draw closerto their desired numberof children
and the proportional reduction of their natural fertility caused by control is also expected to
increase. The values of n(a) and v(a) are shownin table 9.2. Additional research has refined
estimation ofthe natural fertility schedule and the schedule of departures from it, but has little
affected applications of the model (Xie, 1990; Xie and Pimentel, 1992).
An empirical schedule canbefitted by estimating the values ofm and M. Several approaches

can be used to estimate the two parameters. The simplest one is to apply standard linear
estimation techniques, such as ordinary least squares, to the following relationship:

n{ —— }]=In(M) +™m- v(a)
n(a)

which is derived by taking the logarithm of both sides of equation (9.6). A more sophisti-
cated approach using the maximumlikelihood estimation of a Poisson distribution has been

Table 9.2: Schedules ofn(a) and v(a) functions
 

Age group a
 

20-4 25-9 304 35-9 40-4 45-9

n(a) .460 431 395 322 .167 024
v(a) 0 —.279 ~.667 —1.042 -—1.414 —1.67]

 

 

Source: Coale and Trussell, 1978: 205.
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Box 9.3 Estimation of M and m

n(a) = Naturalfertility rates

u(a) = Agepattern of departure from the natural fertility schedule

r(a) = Observed marital fertility rates r(a) = M -n(a)- el”(a)

In (7) =InM+m-v(a)
n(a)

Estimation of M and m by using OLSregression

Example: Mali, 1995-6

 

 

Agea n(a) v(a) r(a) In(r(a)/n(a))

20-4 0.460 0.000 0.350 —Q.273

25-9 0.431 —0.279 0.313 —0.320

30-4 0.395 —0.667 0.254 —0.442

35-9 0.322 —1.042 0.212 —0.418

40-4 0.167 —1.414 0.095 —0.564
 

  
Plot of In (r(a)/n(a)) against v(a)

02 Regression coefficients
 Intercept

-0.3 4 In M = —0.275

~ or M = .760

S -0.4 -
= Slope

~ m = 0.189

=

 

  —0.7 l

—~1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0

v(a)

 

Interpretation: The level of marital fertility at age 20 to 24 in Mali in 1995-6 is about 76 percentthat of

naturalfertility, and there is little deviation from naturalfertility schedule

Data source: Coulibaly, S. et al. 1996. Enquéte Démographique et de Santé, Mali 1995-6. Calverton,

Md., USA: Cellule de Planification et de Statistique du Ministére de la Santé, Direction Nationale de la

Statistique et de 1’ Informatique et Macro International Inc.
 
 

developed by Brostrom (1985). Box 9.3 showsa detailed example of the estimation of M and

m from actual data. As recommended by Coale and Trussell (1978), only age groups from

20-4 to 40-4 are taken into accountin the regression.

A major application of these models has been to use the estimated value of m to detect

whether some control offertility is being practiced within marriage (e.g., Knodel, 1988).

By Henry’s definition of natural fertility, m only captures parity-specific birth control and
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would not detect the use of contraceptionto increasebirth spacing.? Simulations have shown
additional limitations of interpreting m as an indicator of birth control (Ewbank, 1993; Okun,

1994). First, m can be affected by other factors such as the age at onset of permanentsterility.

Second, one cannotgive a specific behavioral meaning to different values of m (e.g., derive
the proportion of married couples practicing voluntary control). The value of m can only
be comparedto zero and interpreted according to whether deviations are “large” or “small.”
Finally, m is not very sensitive to changes in birth control behavior at low levels. Nevertheless,
it provides useful information whendata are very limited.

Approaches requiring more complex data have been developed using eventhistory analy-
sis (Trussell and Guinnane, 1993) or, more specifically, cohort parity analysis (Davidet al.,
1988). These aim at detecting statistically significant differences in birth interval length thatis
presumablyattributable to voluntary, parity-specific birth control.

Other modelrepresentationsoffertility age patterns have been developed, although they are
not as widely used as Coale and Trussell’s models. Another relational model follows Brass’s
approach to modeling mortality (Booth, 1984). A transformation offertility at age x, Y(x) is
linearly related to the same transformationofa fertility standard at age x:

Y(x)=at+8B-Y*(x)

But instead of Y (x) being expressed in termsoflogits, the preferred transformation of fertility
is a double logarithm:

Y(x) = In(— In{f(x))

where f(x) is the proportional cumulative fertility at age x (i.e., the proportion ofall births in
the lifetime of a cohort of womenthat have occurred by age x). The standard fertility schedule
was taken from a Coale and Trussell schedule corresponding to a highfertility population.
Again, the main advantage of this approach is parsimony. On the other hand, « and 8 do not
have a behavioralinterpretation. The recommendedfertility standardis such that Y° is equalto
zero at around age 24. At that age, Y (x) is therefore equalto a,so the higheris a,the higher the
proportional cumulative fertility reached by that age. Thus, a is an indicator of the earliness
of the fertility schedule. The parameter 8 is an indicator of the variance of the schedule; a
schedule of 8 = | has the samevarianceasthefertility standard. As in the case of mortality,
this relational modelis particularly useful to smooth or complete an empirical schedule,e.g.
to predict the fertility of a cohort whichhas notyet lived throughits reproductive span.

In this chapter, we have concentrated on modelagepatterns of demographic events. In the
study ofmarital fertility, however, the duration ofmarriage is clearly another relevant dimension
in which empirical regularities could be expected. Page (1977) proposed to decompose the
fertility rate at age a, duration of marriage d and timet as the productof a time-periodeffect,
an age effect, and a duration effect:

r(a,d,t) = L(t)R(a)D(d)

Empirical data suggested that R(a) could be approximated by the natural fertility schedule
r(a) while D(d) has the form of an exponential function* exp(—od). The empirical fit of
the model to a long series of Swedish data is spectacular, and remains good whenlimited to
populations with a low incidence of divorce and remarriageorto the once-only and currently
married population (Rodriguez and Cleland, 1988). The two parameters of the model are an
indicatorof the periodleveloffertility, L(t), and an indicator of how rapidly fertility declines
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within marriage, o. They are thus similar to Coale and Trussell model parameters, M and m.

The two models can actually be reconciled. Dropping the reference to time:

r(a) = M n(a)exp[mv(a)|

r(a,d) = Ln(a) exp[—od]

At each age, age-specific marital fertility rates are a weighted average of age- and duration-

specific rates at that age:

fo W*(a, d)r(a, d)dd
r(a) = a

fo W4(a, d)dd
 

where W(a, d) is the number of woman of age a, married for d years. Substituting Page’s

expression for r(a, d) gives:

[5 WE (a, d)e~°4dd
r(a) = Ln(a) fe WEca. d)dd (9.7)

The integral in the numerator is equal to (by the mean value theorem):

expt—od"(a)) [ Wha. ddd,

0

where d*(a)/a duration is between 0 and a. Page’s model thusyields the following expression

for r(a):

r(a) = Ln(a) exp[—od*(a)] (9.8)

The parallel with Coale and Trussell formulation is obvious and allows an additional insight

about the function v(a), the deviation from natural fertility (Trussell, Menken, and Coale,

1982). From equation (9.8), —v(a) appears to be proportional to an “average” duration since

first marriage for womenageda.If all marriage was taking place at an age ag, the duration

since first marriage for women aged a would be the same for all women and —v(a) would

increase linearly with age. Table 9.2 illustrates that —v(a) increases regularly with age but not

quite in a linear fashion, possibly because in all populations there is variation in the age at

marriage.

9.4 Model AgePatterns of Migration

Migration often occurs in conjunction with sometransition in the life course, such as entry into

college, a change of job, or retirement. Since these underlying transitions are more frequent

at certain ages than at others, pronounced age selectivity can be expected with respect to

migration too. Adult migration rates often peak in the young adult ages. A secondlesser peak

around retirement age has also become apparent in the more developed countries. Migration

rates during childhoodreflect parents’ migration. Using the mathematical approach equivalent

to establishing a “law of mortality,’ Rogers and Castro (1981) have developed a model of

migration by age using a mathematical function with !1 parameters(figure 9.5). Seven of them
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Figure 9.5 The model migration schedule
Source: Rogers and Castro, 1981: 6.

govern the shape of migration by age and the other four represent the intensity of migration.
The formula for the migration rate at age x is:

m(x) = ay exp(ayx) + a2 exp{—az(x — 2) — exp[—A2(x — w2)]}

+ a3 exp{—a3(x — 3) — exp[—A3(x — w3)]} +c

Thefirst term represents the decline in migration rates with age during childhood; ay repre-
senting the level at birth and of the peak and a, the declining slope after birth. Similarly, the
second term represents the peak in young adult ages, with a2 representingthelevel of the peak,
\2 and a2 representing the slope before and after the peak, and «12 the peak age. The post-
retirementprocess is represented analogously. In countries where post-retirement migration is
unimportant, the schedule can be reduced to four shape parameters andthreelevel parameters.

Although we concentrated in this chapter on age patterns, demographic events can be mod-
eled along other dimensions. As discussed, age is important because the underlying determi-
nants of demographic events vary with age. A more pragmatic reason for the development
of age patternsis that age is, in most cultures,a salient individual characteristics, and is thus
routinely collected in censuses and surveys. While modelagepatterns developed rapidly in the
1960s and 1970s, the construction of such modelshasclearly slowed in recent years. One rea-
son is that these models havesatisfied the most immediate needs of demographers reasonably
well. These modelsarestill frequently used in population projections (chapter6) and in indirect
estimation techniques (chapter 11). Another reason is that new survey data have becomeavail-
able in many populations that provide more direct evidence about age patterns. This evidence
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is generally much more informative aboutfertility and marriage than it is about mortality, and

mortality models remain extremely valuable in demography. Dead mentell notales.

NOTES

1.

i
)

If the force of mortality follows the two-parameter Gompertz law embodied in equation (9.1) above

a certain age y, then the survivorship function, /(x), above that age follows the three-parameter

function specified in Box 9.1. The third parameteris a constant adjusting for the numberof survivors

up to age y.

Weusethe original notation by Brass. In moststatistical books now,the factor 1/2 does not appear

in the definition of the logit.

Someofthe effects of birth spacing will be reflected in the value of M. These effects, however, cannot

be separated from some other behaviors, such as breast feeding practices, not related to voluntary

birth control.

A complication has to be introducedat duration 0 (see Page, 1977 for details).
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One of the demographer’s basic tasks is to produce reliable demographic estimates. Doing so

requires having data of high quality or being able to detect and correct errors. Error assessment

is useful even if correction is not feasible becauseit indicates the degree of confidence that can

be placed in demographic estimates.

It is useful to know something about the administrative structures that are producing a set

of data, e.g., whether registration is mandatory and whether physicians and bureaucrats have

incentives to collect data accurately. Similarly, it is useful to know whatincentives people

have to report themselves accurately in a census or survey or to register vital events. In most

industrialized countries, the registration of births and deaths is mandatory and the completeness

of birth and death statistics is believed to be very high, thoughit is rarely tested. The most

reliable data are typically derived from countries with population registers, where individuals

are followed through time. Data are less accurate in the United States, where there is no

register, and where birth and death registration areas were not completed until 1933. Data

quality is especially poor for the older black population both because Southern states were

amongthe last to implement mandatory birth registration and because the black population

has household structures that are, on average, unusually fluid, thus increasing the difficulties

of census enumeration.

It is customary to distinguish two kinds of data errors: coverage errors and contenterrors.

Coverageerrors refer to the completeness of inclusion of people or events in the data system.

Contenterrors refer to the accuracy of characteristics recorded in the data system. Misplace-

ment of an event in time would be considered a coverageerror if it moved the event across

the boundaries defining the units for which estimates are sought. For example, a birth that

occurred in 1998 but was registered in 1999 would represent a coverage error in both 1998
and 1999,

There are also two types of approaches to identifying errors: a matching approach, often

favored bystatisticians, and a demographic approach that relies on accounting identities.

The distinction between types of errors and the means of identifying them gives rise to a
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two-by-two table:

 

Type of error Type ofapproach
 

Matching (statistical) Demographic
 

Coverage l 3

Content 2 4     
In this chapter, we will deal successively with cells 1-4;cells 3 and 4 are treated simultaneously

in section 10.3. Sincethis is a textbook in demography, we emphasize demographic approaches.

10.1 Statistical Methods for Identifying Coverage Errors

Methodsin cell | attempt to estimate the completenessof a data source based on case-by- case

matching of recordsin one data source against those in another. The purposeis to ascertain what

fraction of records that should have been includedin the data system were actually included.

There was great enthusiasm for this approach in the 1960s and 1970s as a methodfor estimating

birth rates and death rates in developing countries. The procedureis often referred to as the

“dual record system” approach (Krotki, 1978; Marks, 1978). For example, births recorded in

a registration system during a certain period can be comparedto retrospective reports from a

survey of women whoare asked abouttheir births during the sameperiod.

The logic of the approach was set downin a classic article by Chandrasekar and Deming

(1949). Let us illustrate the approach in the following manner. Suppose that there are data on

births in two systems,say, birth registration and a survey of women. After matching the births

from the two systems on a case-by-case basis, the following table is produced:

 

Numberofbirths In survey

Yes No

Registered Yes 100 (A) 50 (C)

No 20(B)} (D)

 

 

      

So 150 births were registered and 120 births were reported in the survey; 100 events were

commonto both data systems. One could stop here andsay that there were 170 births altogether

(150 in the registration system and 20 additional births that were in the survey but that were not

included in the registration system). This is in fact what India’s Sample Registration System

does. But it is almost certain that there are some births in the empty cell (D): births that

were missed by both systems. To estimate this number, one can assumethat the probability of

omission from registration is independentof the probability of omission from the survey:

A C C 50
—=— thn D=—.B = —.-20=10
B D A 100

This assumption would lead to the conclusion that there wasa total of 180 births during the

period considered. This is another way of saying that, based on the matchto the survey, registra-

tion completeness was 100/120 = 0.8333. So the total numberof births is 150/0.8333 = 180.
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This procedure assumes no correlation between the probability of omission in one source

and the probability of omission in the other. This assumption is often unrealistic because in

most cases there will be some subgroup that is more likely than average to be omitted from

both sources. Suppose that we break the population in this example downinto two groups with

different probabilities of omission for each group:

Group |:
 

Numberof births In survey
 

 

      

 

 

 

Yes No

Registered Yes 30 30

No 15 (/5)

Group 2:

Numberofbirths In survey

Yes No

Registered Yes 70 20

No 5 (1.4)       

Note that the total number of events in cells (A), (B), and (C) is the same asin the earlier

example. But suppose we apply the assumption of independence separately to groups 1 and

2. Then the total number of births missed by both data sources would be estimated to be

(15+1.4) =16.4, which is greater than the 10 estimated before the breakdown. This example

illustrates a problem known as “correlation bias,” referring to the correlation of omission

probabilities across data sources. It is a big enough problem in the US census that matching

studies using the assumption of independence typically do not provide satisfactory results,

even when applied in subgroups; the correlation bias produces estimated omission rates that

are too low accordingto the results (morereliable in this case) of demographic analysis.

In theory, when faced bythis kind of problem, one should obviously disaggregate the popu-

lation into subgroups wherein the probabilities of omission might not be correlated. However,

there will always be the possibility that some unobservedtraits will produce a correlation,

e.g., not wanting to have one’s presence recorded in any data system. Ericksen and Kadane

(1985), Bailar (1985), and National Research Council (1999) provide useful discussionsofthe

application of dual record procedures for adjusting the US census.

In addition to correlation biasis the difficulty of identifying what is a correct match. Methods

for determining whetheranypair of records from the two data sources constitute a true match

are presented in Newcombe(1988). In the 1980 US census, the match of individuals from a

Current Population Survey to a census individual was “unresolved”for 9 percent ofthe cases.

This 1s a large proportion in view ofthe fact that the census undercountitself was only about 2

percent, andit results in much uncertainty. Failing to identify a true match invariably inflates

the estimated probability of being missed by both sources and reducesthe estimated coverage

completeness of both data sources; identifying a false match as true has the opposite effect.
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Another major problem encountered by matchingstudies of birth rates and deathrates is termed

“out-of-scope”bias. It refers to biases produced whenreports in the two systems do notrefer

exactly to the sametime period or geographic entity.

Recognition of these problems has reduced the enthusiasm for using matching studies to

evaluate completenessofcoverageofbirths and deaths. Theyarestill a useful tool for evaluating

census coverage, especially in subgroups for which demographic analysis cannotbe performed.

10.2 Statistical Methods for Evaluating Content Errors

Matching studies for assessing content errors are aimed at assessing eitherthe reliability of

the data sources by testing the consistency of information derived from them or the accuracy

of one of the two data sources. This second objective can be carried out only if one is fairly

certain that one of the two data systemsis correct.

Much of demographers’interest is in the quality of data on age, because ageis so central

to demographic accounts. One simple way to assess the reliability of age data is through

reinterview studies, which typically consist of matching a census record with records from a

survey conducted shortly after the census. A comparison of such studies in different areas of

the world showsthat there are some commonpatterns of errors (Ewbank,1981).

One commonerror pattern is rounding upward ofage. In a study of age accuracy among

young children in Ghana in 1963, Caldwell (1966) estimated that age at last birthday was

correctly stated for 65 percent of the population, understated for 9 percent of the population,

and overstated for 26 percent. Caldwell showed also that age-misreporting varies greatly by

age. Overstatement does not begin until age 1, resulting in a large deficit of 1-year-olds.

In an effort to identify correct ages at death, Preston, Elo, Rozenwaike, and Hill (1996)

matched a sample of death certificates for elderly African Americans dying in 1985 or 1980

to records for the same individuals in US censuses of 1900, 1910, and 1920, when they were

children or young adults. They also matched the death certificates to records from the Death

MasterFile of the Social Security Administration, whose age wasbelieved to be morereliable

than the one on death certificates. The characteristics that were used for matching the different

records were individual’s name, father’s name, mother’s name,andstate of birth.

Table 10.1: Accuracy of stated age in years, 1963 Ghanaregistration

system. Percent of total persons in age group
 

  

 

Age Stated age younger Stated age Stated age older

than real age the same than real age

(in years) as real age (in years)

3 2 1 l 2 3

0 — — — 99 1 — —

1 — — l 76 23 — —

2 — — l 66 27 5 1

3 — a 9 63 25 3 —

4 — l 7 61 25 4A 2

5 — 3 1] 62 25 — —

All ages 1 1 7 65 22 3 1
 

Source: Caldwell, 1966.
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Results from this study show that ages at death on death certificates are, on average, under-

stated. Nevertheless, too many deaths were registered at ages 95+. This paradox results from

the fact that the number of deaths reported in any age interval is a function not only of the

direction of the net age misstatement, but also of the underlying age distribution. As the true

age distribution of deaths declines rapidly with age, the base for upward age transfers into an

age interval becomes muchlarger than the base for downward transfers out of that interval.

Thus, the direction of bias in age reporting at an individual level does notinevitably result in

the same direction of bias for the population aggregate.

Of course, matching studies focus not only on age butalso onall of the characteristics that

are normally gathered in the census. Typically, the reliability of different variables 1s studied

through reinterview and postenumeration surveys. One of the most important problemsofdata

quality in the US today relates to race. Many Hispanics do not accept the racial categories

offered in the census (Black, White, Asian, etc.), because they don’t recognize or accept the

distinction between race and ethnicity that is made on the US Censusforms.In 1980, 6.3 million

people “‘wrote in” a responseto the race question(i.e. they refused to locate themselvesin the

racial categories designed by the US Census Bureau). In 1990, 9.3 million people, mostly

Hispanics, wrote in a response, reflecting the emergence of Hispanics as a distinct ethnic

group in the US. These written responses were later statistically allocated to a race. But the

original published tables did not include this allocation. The problem of race categorization

may bias the computation of race-specific mortality and fertility rates, since the racial/ethnic

identification system used in numerators (birth or death statistics) may differ from the system

used for the denominators (population at risk). Elo and Preston (1997) show that recorded

US Hispanic death rates are too low by about 16 percent because of numerator/denominator

incompatibilities in ethnic classification.

10.3 Demographic Methodsof Assessing Data Quality

10.3.1. Tests of consistency

All demographic methodsforthe analysis of data quality are based on demographic accounting

identities. These identities are “overdetermined,” in the sense that one piece of informationis

redundant. For example, from the traditional demographic balancing equation (see chapter1),

the changein total population size between two censusesis:

AN=B—-—D+I1-0O, (10.1)

whereall symbols referto the true count of events. The value of any one elementcan be inferred

from known valuesofall of the others. If the equation doesn’t balance when data are used to

estimate the true values, the resulting “error of closure” showsthat at least one of the systems

is producing erroneousor incompatible data.

A related test of consistencyis to apply the same equation for cohorts aliveat the first census

(and for whom isthuszero):

AN- = —D- + I. —_ O- (10.2)

where De , [; and O- are the true numberof deaths, immigrations, and out-migrations in cohort

c between two censuses.
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Figure 10.1 Ratio of actual to expected population aged x+ at the time of the second census:
England and Wales, females
Source: Condranetal., 1991: 52.

A particular version of equation (10.2) has been used extensively to evaluate the consistency

of death registration with census counts taken at time ¢ and ¢ + y (Condranetal., 1991):

Nc(t + y)
Re =

Ne(t) — De + [¢ ~ Oc

 (10.3)

where

N-(t) is the enumerated size of the cohort at time ¢,

D- is the numberof intercensal deaths to the cohort,

I, 1s the numberof intercensal immigrants in the cohort,

O- is the numberof intercensal out-migrants from the cohort.

R; in equation (10.3) is the ratio of the observed to expected population at the second census.

Deviation of R, from one could be caused by coverage errors and/or age misreporting in any or

all of the data sources. Generally, in developed countries, age misstatementis a far more serious

problem than undercoverage in censusesor death statistics, especially at older ages, and data

on J. and O¢ are usually unreliable. Condranet al. (1991) present simulations showing how

different patterns of error affect age patterns of R,. Figure 10.1 showsthe pattern of R, for

England and Wales. The “cohorts” used in this figure are open-ended, e.g., aged 60+ atthefirst

census. Interpreted in light of the simulations, the pattern in figure 10.1 suggests increasing

overstatement of age in death statistics as age advances.

These methodsare tests of consistency. In order to convert a test of consistency into a test

of accuracy, two different options are possible. The first option consists of “privileging” one

or more of the data sources, presumably the one(s) that are believed to be morereliable, and

using them to evaluate the other(s). The second option, sometimes used in conjunction with

the first, involves imposing a model andsolvingfor its parameters. We will discuss these two

optionsin turn.
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10.3.2 Data evaluation by “privileging” one or more estimators

The US Census Bureau provides estimates of census completeness by relying principally upon

what it terms “demographic analysis.” The strategy used is based on the assumption that the

correct numbers of births, deaths, and migrations, all derived from noncensus sources, are

known. Thesebirths, deaths, and migrations are used to estimate the “true” size of each birth

cohort at the time of the census, and the comparison of these estimates to the census counts

gives an estimate of the coverage error in the census. The true numberof people in a cohort is

estimated by:

Ne = Be — De + Ie — Oc, (10.4)

where variables in the right-hand side designate estimates of the true numbers and refer to

cumulative counts since the cohort was born. This method appearsto provide useful estimates

for the African American population, but illegal and undocumented immigration produces

greater uncertainty for the rest of the population. For an excellent review of demographic

analysis as conducted by the US Census Bureau, see Himes and Clogg (1992).

First developed by Vincent (1951), the “extinct generation” method is based on a similar

idea, except that cohort deaths are cumulated from the highest rather than from the lowest ages.

It reconstructs the size of a cohort at age x by counting all deaths that occurred in that cohort

subsequent to age x until the cohort has expired. In formal terms, the numberof persons aged

x at time ¢ is found by

CO

N(x, t) = [ Dwtarta da, (10.5)

0

where D*(x + a,t + a) is the recorded numberof deaths at age x + a at time t + a. (If

the cohort is open to migration, then a term, /*(x + a,t + a), must be subtracted from the

D*(x +a,t +a) term, where /*(x +a, t +a) is the recorded amountof net migration at age

x +a and attimet+a.)

The extinct generation method“privileges” only one data source, that of death registration.

It has been applied to the African American population for the years 1930-90 (Elo and Preston,

1994). Figure 10.2, pertaining to the female population of 1930, reveals very clearly the degree

of preference for reporting different digits in this census. One of the most important applica-

tions of the extinct generation methodis to estimate mortality at older ages (Kannisto, 1994;

Kannisto, 1996; Manton and Stallard, 1997).

A limitation of the extinct generation methodis that it cannot be applied to recent generations

that are not extinct. By using variable-r equations, however,it is possible to use the logic of

extinct generation estimatesto relate the size of population to deaths in the period rather than

the cohort, using the following equation:

OO

N(y,t) = | D* (x, rely r(a,tdayy (10.6)

y

Formula (10.6) is very similar to (10.5); the r*(a, t) term “corrects” the period death series to

estimate whatit will be in the cohort aged y at time rt. Note that, if all growth rates are zero

and hence the population is stationary, equation (10.6) collapses to equation (10.5) once we
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Figure 10.2 1930 census counts and extinct generation estimates, African American females
Source: Elo and Preston, 1994: 441.

recognize that deaths at a particular age will be constant over time in a stationary population.

As we saw in chapter 8, equation (10.6) is more often used to evaluate the completeness of

death registration than to estimate population counts (Bennett and Horiuchi, 1981). In this case,

the population countis being treated as the privileged element, rather than the death count. Of

course, it is the relative completeness of the two systems that matters for mortality estimation.

70.3.3 Data evaluation and correction by imposing a model

710.3.3.1 Brass's method for estimating completeness of death registration Thefirst
effort to use population models to make an explicit estimate of data completeness was Brass

(1975). The method is addressed to estimating the completeness of death registration. It is

based on the simple equality which holds in any closed population (from chapter 1):

r=b—d

where r, b, and d are the true rates of growth, birth, and death over some defined period. This

identity is also valid for the portion of the population aboveage x:

r(x+) = b(x+) — d(x),

or

b(x+) = r(x+) + d(x+) (10.7)

where r(x+) and d(x+) are the growth rate and death rate of the population segment aged x

and above, and where b(x+)is the “birth rate” above age x, 1.e., the ratio of people achieving

age x during a yearto the total population above x. This “birth rate” is often estimated from

actual data by using the following equation:

1
Nt) Jo SNx-5) + sNx())

NOt.) Da=x,5 Sal)
  b* (x,t) = (10.8)
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Brass imposes the assumption that the population is stable, in which case r(x+) =r , Le.,

the age-specific growth rate is constant across ages. A second andfinal assumption is that

completeness of death registration, R (the ratio of reported to true deaths), is constant with

age. The “true” death rate above age x is therefore equalto:

d*(x+)
d(x+) = R 

where d*(x+) is the reported death rate above age x. When substitutions reflecting these

assumptions are made in equation (10.7), it becomes:

b*(x+)=r+ -[d*(x+)] (10.9)

If the assumptionsare exactly correct, then this equation must hold for all ages, and a plot

of b*(x+) against the reported death rate d*(x+-) must follow straight line. Brass suggests

estimating the completeness of death registration by doing a simplelinear regression of b*(x+)

_ on d*(x+). The intercept of the line is the growth rate, r , and the slope is 1/R, the reciprocal

of the registration completeness R.

In reality, of course, the points described by equation (10.9) rarely follow a straightline.

Misreporting of the ages of deaths or of the population, in particular, can greatly affect the

points at older ages. These points have a heavy weight in the estimation of the parameters

because most of the points below late middle-age are tightly clustered, reflecting the large

proportion of deaths that occur at older ages. Brass recommendsignoring the points at older

ages that depart too muchfrom linearity.

Results of the methodare also sensitive to departures from stability, especially when destabi-

lizing changes have been abrupt (Martin, 1980). In case of rapid mortality decline, the function

r(x-+) typically rises with age instead of remaining constant. As a result, the estimated slope

from equation (10.9) is biased upwards. This leads to underestimation of the registration com-

pleteness, R. The estimated value of R might therefore be interpreted as a lower boundfor the

true rate of completeness when mortality is declining and other assumptionsare met. Box 10.1

showsthe application of the Brass technique to data from El Salvador.

10.3.3.2 Methods for estimating the completeness of death registration from
intercensal survival Preston and Hill (1980) proposed an alternative method for estimat-

ing the completeness of death registration that does not require the assumption of stability. It

relies on the basic demographicrelationship in equation (10.2). This expression, adapted here

for a closed population,relates the size of a cohort at a second censusto the size of same cohort

at a first census andto the intercensal deaths occurring to membersof the cohort:

N-(2) = Ne) — De (10.10)

where N,(1) and N,(2) are the true numbersin the cohort at census 1 and 2, and D,is the true

numberof intercensal deaths occurring to members of the cohort.

The authors assumethat the relative completeness of death registration and of the two

censuses may vary across data sources but is constant across age within each source. Then

the reported numbers in the cohort at census | and 2, respectively N.(1)* and N,(2)*, can be



 

 

Box 10.1 Brass Method for Estimating Completeness of Death Registration

5Nx = reported mid-year female population aged x to x + 5

5D, = registered deaths between ages x and x + 5 during the considered year

  

max 5Ny—sts Nx max

N(x+)= D0 5Na; Nx) =? gr Dat)= J) 5Da
a=x,5 a=x,5

D

d*(x) = Wed: b(x) = Wot)

Example: El Salvador, females, 1961
 

 

x 5Nx 5Dx N(x+) N(x) D(x+) d*(x+) b*(x+)

0 214,089 6,909

5 190,234 610 1,060,164 40,432 6,743 0.0064 0.0381

10 149,538 214 869,930 33,977 6,133 0.0070 0.0391

15 125,040 266 720,392 27,458 5,919 0.0082 0.0381

20 113,490 291 595,352 23,853 5,653 0.0095 0.0401

25 91,663 271 481,862 20,515 5,362 0.0111 0.0426

30 77,711 315 390,199 16,937 5,091 0.0130 0.0434

35 72,936 349 312,488 15,065 4,776 0.0153 0.0482

40 56,942 338 239,552 12,988 4.427 0.0185 0.0542

45 46,205 357 182,610 10,315 4,089 0.0224 0.0565

50 38,616 385 136,405 8,482 3,732 0.0274 0.0622

55 26,154 387 97,789 6,477 3,347 0.0342 0.0662

60 29,273 647 71,635 5,543 2,960 0.0413 0.0774

65 14,964 449 42,362 4,424 2,313 0.0546 0.1044

70 11,205 504 27,398 2,617 1,864 0.0680 0.0955

75+ 16,193 1,360
 

  
Plot of b*(x+) against d*(x+):
 

b*(X+)
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Source: United Nations, 1983: 135.
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Regression coefficients:
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r = 0.0311

Slope

1/R = 1.1002 or R = .909
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related to the true values through the following relationships:

Ne (1)* _ Ne) ° E(1),

and

Ne(2)" = Ne(2) + E(2)

where E(1) and E(2) are the completeness of enumeration at censuses | and 2, respectively.

The reported intercensal deaths, D* , can be expressed througha similar equation:

D* = D.- R,

where R is the completeness of intercensal death registration.

Substituting the reported values into equation (10.10) and rearranging gives the following

expression:

Ne() — NEQ) De

EQ) ~~ E() R’
  

or,

Nf()EC) El) _ Dt
— (10.11)

Né(2) E(2) R Né&(2)
  

Asin the Brass method, the values of F(1)/E(2) and E(1)/R can be estimated by using a

simple linear regression applied to data on different cohorts. The two observed variables are

Ne(1)/NE(2) and Dt/N*(2). The intercept, E(1)/E(2),is the relative completeness of the

two censusesand the slope, E(1)/R, is the completeness of death registration relative to that

of the first census. The cohorts used in this procedure can be defined in conventional terms or

can be open-ended,i.e., born in some specific year orearlier.

_ It should be noted that this method provides estimates of registration completeness that are

not absolute but are relative to that of the first census. This relativity is not a problem for the

estimation of mortality becauseit is sufficient to know only the relative errors in order to adjust

mortality rates. A serious problem of the methodis its sensitivity to overstatement of age,

which tendsto distort the estimated relative completeness of death registration. The method

has worked better in East Asian populations than in Latin America, where problemsof age

ascertainment are generally more severe.

Hill (1987) developed a modification of this method that is designed to be less sensitive to

age misreporting. Rather than focusing on changesin the size of cohorts from censusto census,

it focuses on changesin the size of age groups.It is based on equation (10.7) with allowance

for differences in census coverage and for incompleteness of death registration.

70.3.3.3 Estimation of mortality at older ages by imposing a modellife table system
As we saw earlier, misstatementofageis one ofthe main problemsin the estimation ofmortality

rates at older ages. These ages have becomeincreasingly important in the study of mortality

because such a high fraction of the population around the world achieves them. Fortunately,

age misreporting does not affect the crude death rate of a population. If age misreporting is

present only at older ages, say above age 65, then the crude death rate for the population aged

65 and above will not be affected. By imposinga particular modellife table system on mortality
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at older ages and solving for the “level” of mortality within the model life table system, the

age-specific death rates in the model can be substituted for the flawed rates that have been

recorded (Elo and Preston, 1994).

The basic assumption of this method is that the reported crude death rate above a certain

age is a valid estimate of the true rate. The second assumption is that when age misreporting

occurs in the censuses, it introduces the same proportionate pattern of error at both censuses,

so that the intercensal age-specific growth rates remain accurate.

Thefirst step in applying the method consists of identifying the highest age, Y, below which

data are consistent, for example by using one of the consistency checks describedearlierin this

chapter. Reported age-specific death rates below that age can be retained in the construction

of a complete eventuallife table. The second step requires the use of a modellife table system

at older ages. Given a particular system, one must identify a table within that system thatis

consistent with the reported crude death rate above Y. The expression for the death rate above

age Y 1s the following:

_ SP N@ada
DRy+ = i= Niayda (10.12) 

Because N(a) is believed to be distorted at ages above Y, it is desirable to substitute into

(10.12) the basic age distributional equation using variable-r relations (equation 8.1):

pla)N — N(Y — fy r(x)dx
(a) (Ye nY)

Thus:

ik e Sy?Q4xnq)u(a)da _ SS e~ Sy t@)4x d(a)da

ls oeSY r(@)dx nada 7 fs ew ty r(x)dx n(a)da
 DRy+ = (10.13)

where r(x) 1s the reported growth-rate at age x, d(a) are model life table deaths at age a, and

p(a) is the numberofsurvivors to age a in the modellife table. Equation (10.13) (actually, the

discrete approximationto (10.13), which appears even more complex)is then usedto select the

modellife table that is consistent with the reported age-specific growth rates and the reported

crude death rate above age Y. As life expectancy increases within the modellife table system,

the value of the right-hand side will decrease until a value equaling the observed crude death

rate on the left-hand side is achieved.

10.3.3.4 Use of three or more censuses Analternative to the Census Bureau’s “demo-
graphic estimates” consists in using an age/period/cohort model of census counts to estimate

the true size of a cohort (Preston et al., 1998). Unlike the Census Bureau’s “demographic

estimates,” which ignore census counts altogether in estimating the true size of the population,

this procedure uses census counts themselves, in combination with registered deaths, in order

to identify systematic censuserrors and to produce estimates of cohort size at each censusdate.

The objective is to estimate the true size of a cohort at its initial appearance in a census, and

to reconstruct the cohort size at subsequent censuses by subtracting intercensal deaths from

that initial count and adding intercensal net migrations.
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By making the assumptionthat there is an age-specific error constant overtime, and a period-

specific error which is constant over age, the reported census counts canbe related to the true

counts with the following equation:

Cit = gtXit + Ejz (10.14)

where

Cj; 1s the observed number of people enumerated in cohort i in the census taken

at timef,

Xj is the true size of the population in cohorti at timef,

Qgq 1s the completeness of census coverageat age a,

T; 1s the completeness of census coverage at time t, and

€; 1S a residual that is mean zero conditional on age, time period and cohort.

If we relate Xj; to y;, the true size of the cohort whenit first appeared, and to Dj;, the

cumulative deaths and net emigrations in cohort i between its first appearance and timef,it

appears that we can obtain consistent estimates of a,1, and y by minimizing the error term in

equation (10.14) with respect to parameters ag,t;, and ¥;:

Min))(Cit — eat (yi — Dit)!” (10.15)
i] t

Thus, equation (10.15) can be used to derive the value of initial cohort sizes. As in the

Census Bureau “demographic estimates,” this procedure is based on the assumption that death

registration is accurate. However, the assumption of accurate birth registration is replaced by

the statistical model specified in equation (10.14), which makes the estimated true size of the

cohortatfirst appearancea function ofhow large it was at each census whereit appeared. When

applied to the African American population, this procedure has provided a strong confirmation

of the basic validity of Census Bureau estimates of census undercounts for African Americans.

Another approach to using multiple observations on the same cohort and intercensal deaths

was developed by Luther and Retherford (1988). It aims at developing a set of correction

factors for age-specific population counts at two or more censuses, for intercensal births and

for age-specific intercensal deaths, so that the resulting corrected counts of births, deaths, and

survivors satisfy the traditional demographic balancing equation for cohorts. To implement

the method,onefirst needs to supply a preliminary set of correction factors by using available

demographic information regarding coverage of the different data sources or by privileging

one data source overtheother. This preliminaryset of factors will not necessarily be consistent,

1.€., it may not necessarily satisfy the demographic balancing equations. From this plausible

yet inconsistent set of correction factors, the procedure estimates a consistent set of correction

factors that is statistically “closest”to the set of preliminary factors.

This methodoffers flexibility in the sense that, unlike the age/period/cohort model described

above, no particular assumption needs to be madein order to implement the procedure. The

final estimates, however, will be highly dependent on the original set of correction factors,

whoseestimationis left to the choice of the analyst.
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The previous chapter described methodsthat aim at detecting data errors, principally by exam-

ining the consistency among demographic data sources. Forclose to half of people in the world

today, however, these consistency checks cannot be applied becauseregistration systems are

poor or nonexistent. Demographersfill this gap with indirect estimation methodsthat are based

upon censuses or surveys alone. These are principally used to provide estimates of mortality,

which help to assess the social and health progress of a population, to identify the effective-

ness of government programs,to locate high-risk groups, and even to understand the impact of

health-related behaviors. Because mortality estimates are central to demographic accounting,

they also help to inform estimatesof fertility and population growth.

Some methodsthat are traditionally considered “indirect” have been dealt with in earlier

chapters. This chapter focuses on additional methods of two sorts: those based uponreports

of kin survival; and those based on two censuses. For a full comprehension of these methods,

it is important to understand the logic behind them. Therefore, we will focus not only on the

mechanics of the methods, but also on the demographic identities on which they are based.

11.1 Estimation of Child Mortality from Information on Child Survivorship:
The Brass Method

11.1.1. Description of the method

One methodthat revolutionized mortality estimates in less-developed countries andthatis stilla

very commonly-usedprocedureis the Brass methodfor estimating child mortality from reports

of mothers aboutthe survivorship of their children (Brass, 1975). It is based on interviews with

women, who are asked a minimum of two retrospective questions: the numberof live-born

children they have given birth to, and the numberofthose children that have survived. These

questions were asked in US Censuses of 1900 and 1910, in the Brazilian census of 1940, and

in several postwar African surveys. The data were put to little use, however, before Brass’s

developmentof a technique for analyzing the results. The questions are now on the UN’s list

of recommendeditems on national censuses.
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Brass’s idea wasto translate the proportion dead into a conventionallife-table-type measure.

A simple example will illustrate how the translation occurs. Suppose that in a population, the

life table is:
 

 

Age x lx q(x) =xqo = 1—I[x/lo

0 1000 OOO

] 880 120

2 850 150

3 840 .160

4 835 .165

5 830 .170

10 800 .200
 

Suppose furtherthat all childbearing occurs at exact age 19.5. Then if we asked womeninthis

population about the survivorship of their children, the proportion of children dead to women

at a particular age, y, would beclose to the life table value of the proportion dead among

children aged (y — 19.5). For example, the proportion of children dead among 20-year-old

women(i.e., women who were aged 20.5 years, on average) would be close to g(1). In a very

orderly world, we might observe the following proportions dead by age of woman:

 

 

Age of Average Duration since Proportion dead Life table

women exact childbearing = among children value

at last age age of ever born

birthday children

20 20.5 1 .120 q(1)

21 21.5 2 150 q(2)

22 22.5 3 160 q(3)

23 23.5 4 165 q(4)

24 24.5 5 .170 q(5)

29 29.5 10 .200 q(10)
 

Let’s now be morerealistic, and suppose that childbearing is more spread outin age. Imagine

that we interview women whoseexact age is 25.0, and ask them how manychildren ever born

and children surviving they have. Supposethat their 200 births had beendistributed by age in

the manner showninthe table below,1.e., 20 births occurred at age 20.0 (five years earlier), 30

at age 21.0 (fouryears earlier), and so on.If their children were exposedto the life table cited

earlier, then we should observe the numberreported dead in the right-hand column:

 

 

Age of Years Number q(a) Numberof

women since ofbirths dead children

at birth birth B(a) B(a)*q(a) = D(a)

x a=25—-x

20.0 5 20 .170 3.40

21.0 4 30 165 4.95

22.0 3 40 .160 6.40

23.0 2 50 150 7.50

24.0 | 60 120 7.20

Sum 200 29.45
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So these women aged 25.0 would report 29.45 dead children amongtheir 200 children ever
born, and the proportion dead would be d75 = 29.45/200 = 0.147. Referringto the different
values of g(a), we see that this value of 0.147 would equate to the probability of dying before
about age 1.9. So the proportion of children dead amongchildren ever born to these women 1S
very close to q(2), 1.e., itis weighted towards younger ages because births have beenrelatively
recent and because cumulative mortality rises at a slower pace as age advances.If the births
had been evenly distributed, we would have obtained the following results:

 

 

Age of Years Number q(a) Number of

women since ofbirths dead children

at birth birth B(a) B(a)*q(a) = D(a)

x a=25—-x

20.0 5 40 .170 6.8

21.0 4 40 165 6.6

22.0 3 40 .160 6.4

23.0 2 40 150 6.0

24.0 1 40 .120 4.8

Sum 200 30.6
 

In this case, the ratio of children dead to children ever born would be do5 = 30.6/200 =

0.153, or about g(2.3). It corresponds to the probability of dying before an age somewhat

higher than in the previous example because children had been exposedto the risk of dying

for a longer period. So the ratio, d;, is a function of both the mortality level (g(a) function)

and of the distribution of births in the life histories of women, B(a). This latter distribution is

clearly a product of the age-pattern offertility.

More formally, the proportion dead among children ever born to womenaged is:

Di _ fo“ Dila)da
d; = = (11.1)

B; 0  Bi(a)da

where

B; =total number of children born to womenagedi at the time of survey,

D; =total number dead among children born to women agedi at time of survey,

Dj; (a) = numberof deaths among children born a years before the survey

to women agedi at time of survey,

B; (a) = numberofbirths a years before the survey to women agedi at time of survey, and

a = earliest age of childbearing.

Equation (11.1) can be rewritten as follows:

- D;(a)da ,
; * Bq). wee ia ima

d; = Bi(a)_ __ Jo AO =f cila) glade (11.2)

0

  

yB;(a)da B;
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wherec; (a) is the proportion ofbirths to womenagedi that occurred a yearsearlier (Bj (a)/B;).

One can see in equation (11.2) that d; is a weighted average of g(a), the weights being the

time distribution of births born in the past to women agedi at the time of the survey. Since

q(a) is a rising function (the cumulative probability of dying increases with age), and since

older women’s births will have occurred longer ago, d; will be higher at older ages of women.

For example, d29 is based on very recent births and on children at very young ages, whereas

d4s is based on more distant experience. Surely, d29 will be lower than d45 in the absence of

rising mortality or some other unusual circumstance.

Using the mean value theorem in equation (11.2), we obtain the following expression:

dj = | cj(a) - q(a)da

0

= q(a*)- | cj(a)da

0

= q(a*) (11.3)

According to equation (11.3), there must be some age a* between 0 and i — a at which

d; = q(a*). This relationship forms the basic logic of Brass approach, which consists

of establishing a set of correspondences between i, the age of reporting mothers, and

a*, the age of children whose mortality is most precisely identified by reports of women

aged i.
If we assumethat g(a) is linear, then g(a) = K + j - a, and the correspondences between

i and a* are obvious:

dj = | cj (a) - q(a)da

0

= [ ca -(K +j-alda

0

=K- f clada+j- | ea)-ade

0 0

= K+ J-Ap = Q(Ap) (11.4)

where A pg is the mean length oftime since birth of children. That is, the proportion dead among

children ever born to women aged i will precisely identify g(a) at a value of a equal to the

mean length of time since their children’s birth, Ap. This length A, obviously rises with age

of women, because older women will have had more distant births.
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Brass established a set of correspondences between ages of mothers and ages of their chil-
dren, and these correspondences have been widely used by all subsequentanalysts:
 

Age ofwomen i _ Age of children for whom cumulative
mortality is best identified
 

15-19 |

20-4 2

25-9 3

30-4 5

35-9 10

40-4 15

45-9 20
 

These correspondences, however, are not exact. They depend,as shownearlier, on the nature of
reproductive histories in a particular group of women whoare reporting their births. So Brass
developed adjustmentfactors, k; , that attempt to adjustfor the particular reproductive histories
of a group of women. These adjustmentfactors are based on comparisons of cumulative parities
across women in different age groups. The ideal data for establishing the adjustmentfactors
would be cj(a), which could be obtained from the reproductive history of each group of
reporting women. However, this information is often not available. In its absence, we must
infer it from a comparison across cohorts.

The parity measures used in the adjustment procedure are the following:

P| = P15_19 = mean numberofchildren ever bornto all womenin age group 15-19
Py = P29-4 = mean numberof children ever born to all womenin age group 20-4
P3 = P2359 = mean numberof children ever born to all womenin age group 25-9

The basic adjustment factor in Brass’s approach depends on P; /P2, which is an index of
the earlinessof fertility, hence of the amount of children’s exposure to the risk of mortality.
The higher is P; / P2, the longer ago were children born, and the higher fraction will be dead,
given a certain life table g(a) function. For example, supposethat there are two populations
with same value of dy9_4 = .170. But supposethat their childbearing histories differed:

Population P/P>

A 3

B 1

Which population has higher mortality? The answeris population B, becauseit has the same
proportion deadin spite of children’s shorter exposure to the risk of mortality.

Brass adjustment factors were developed by simulation. He took a simulated fertility and

child mortality regime,slid the fertility schedule along the age axis, and identified the number

of children ever born and children surviving by age of woman produced by each combination of

fertility and mortality schedules. He then identified how mucherror there wasin the estimation

of q(x) based on the age correspondences shownearlier, and then derived adjustment factors

based on P; / P2. Sullivan (1972) developeda set of adjustment factors based on a wider range

of fertility and mortality conditions. Trussell (1975) has also developed a set of adjustment
factors that are now more commonly used. Wereproducein table 11.1 his set of coefficients
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that pertains to the “West” Coale and Demeny model. The full set of coefficients pertaining

to different mortality models can be found in table 47 of the UN Manual X (United Nations,

1983: 77).

It is clear that proportions of children surviving to the date of the survey are not a product

of mortality conditions at the date of the survey, but the result of mortality conditions in the

past. If mortality is constant, of course, the past is not different from the present. If mortality

has been changing, however, it is important to identify the time period to which Brass-type

estimates most closely pertain. Following on the work of Griffith Feeney, Coale and Trussell

(1977) simulated linear mortality declines and used the simulations to develop formulas for

the estimation of the reference period, t(x) (numberof years prior to the survey), to which the

values of g(x) most predictably refer. These equations have the same format as those for the

estimation of the adjustment factors k;. We show in table 11.2 the coefficients for the Coale

Table 11.1: Coefficients for estimation of child mortality adjustmentfactors, Trussell variant,

mortality model West
 

 

 

      
 

Age group ofmothers Index Age of child Coefficients

i x aj b; Cj

15-19 1 1 1.1415 —2.7070 .7663

20-4 2 2 1.2563 5381 —.2637

25-9 3 3 1.1851 .0633 —.4177

30-4 4 5 1.1720 2341 — 4272

35-9 5 10 1.1865 3080 — 4452

40-4 6 15 1.1746 3314 —.4537

45-9 7 20 1.1639 3190 —4435

Estimation equations:

kj = aj +b; - Pi /P2 +c; + P2/P3
q(x) = kj - dj

Source: United Nations, 1983: 77.   
Table 11.2: Coefficientsfor estimation of the reference period, t(x), to which the values of q(x)

most reliably refer
 

 

 

      
 

Age group ofmothers Index Age of child Coefficients

i x Qj b; Cj

15-19 1 1 1.0970 5.5628 —1.9956

20-4 2 2 1.3062 5.5677 .2962

25-9 3 3 1.5305 2.5528 4.8962

30-4 4 5 1.999] —2.4261 10.4282

35-9 5 10 2.7632 —8.4065 16.1787

40—4 6 15 4.3468 —13.2436 20.1990

45-9 7 20 7.5242 —14.2013 20.0162

Estimation equation for ¢(x), numberof years prior to the survey:

t(x) =aj + bj Py/P2 +; + P2/P3
Source: United Nations, 1983: 78.   
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and Demeny “West” model. Coefficients for other regional models can be foundin table 48 of
Manual X (United Nations, 1983: 78).

11.7.2 Sources of errors and misinterpretation in Brass-type estimates

Because Brass’s approach has becomesoinfluential, it is useful to consider someofthe errors

to which it is subject. One source of error arises simply from misreport of the number of

children ever born and children dead. These numbers are often understated, and it is generally

presumedthat dead children are morelikely to be understated than children surviving, because

a dead childis not present to remind the motherof the birth. Women mayalso have an aversion

to mentioning a dead child or referring in any way to his or her absence. Women mayalso

be confused about whether they should counta stillbirth (they should not) or a child that died

shortly after birth (they should). These two categories are often not readily distinguished and

women’s reports about them show unusually high unreliability.

Possible sourcesofbias that give rise to overstatement of mortality includethe report ofstill

births as live births and the omission of living children who moved awayfrom their mother’s

household. The latter problem is probably more severe for older women, and therefore, it is

sometimes recommended to omit older women from the analysis. To improve data quality,it

is recommendedto ask more specific questions about how many males and femalesare living

at home or awayand,directly, about how manyhavedied. Information on the sex of child also

allows estimates of sex-specific mortality.

A secondalleged problem with the Brass approachpertains to changes in mortality levels.

These changes are a source of error if the estimate of q(x) is taken to pertain to mortality

conditions at the time of the survey. But we have seen that this assignment is not necessary

and that meansexist to properly “date” the estimates. Thus, such an erroris notintrinsic to the

method butis the fault of the analyst. |

Changesin fertility levels, however, may and usually do bias results. In order to properly

interpret the proportion of children dead, we would ideally be able to observe the reproductive

histories of each cohort of reporting women. However,these data are often unavailable, and we

usually infer that information by comparing the cumulative average numberof births across

cohorts. Whenfertility declines at younger ages, the period P| /P> ratio will underestimate

P,/P2 in the cohort aged 20-4 simply becausefertility was higher in the cohort at age 15-19

than it was for those whoare currently 15—19. The downwardly biased P/P2 ratio will produce

too high a level of estimated mortality; children’s exposure will appear more recent than it

actually was.

Results from the Brass method are usually too high for the estimate of g(1) based on women

aged 15-19. This bias results from the fact that younger women have a high proportion of

first births, which generally have above-average risks of mortality, and from selection by

socioeconomic status, since early childbearers tend to come from lower socioeconomicstrata

with higher mortality risks. For example, Ewbank (1982) found that g(1) was too high by 20

percent in Bangladesh becauseofbirth order differences. The small numberofbirths to women

aged 15-19 can also lead to erratic estimates of the proportion of children dead, resulting in

poor g(1) estimates. The first-birth bias also extends into the age interval 20-4, althoughitis

attenuated. Ewbank (1982) offers somestrategies for estimating and correcting the bias.

A final source of bias can comefrom selective mortality among mothers. Only women who

survive are able to report their children’s experience in a census or a survey. If child survival

experience among dead mothersis different from that among surviving mothers(i.e.if there is
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no independence between mortality of children whose mother died and mortality of children

whose motheris surviving), then the survivors will provide a biased estimate of child mortality

in the population.

The direction of the bias depends onthe relative risk of child mortality among children of

dead mothersrelative to that of children of surviving mothers. If dead mothers had higher

mortality among their children, then d; would be biased downward.This is the likely direction

of bias because the death of a motheris likely to raise risks for children. Also, in the context of

the AIDS epidemic,with the virus being transmitted from mothersto children,there is certainly

no independence between mortality risks of mothers and those of children, and mortality risks

at different ages are positively correlated across social groups in nearly all populations; both

impoverished women and impoverished children have excessiverisks of death.

Fortunately, the bias from selective mortality is typically small (except in populations with

high HIV prevalence) because female mortality is low in the childbearing interval. Even when

€p is as low as 50years,the probability of surviving from 20 to 45 is approximately 0.83 (from

model life tables). Furthermore, women whohave died will have contributed an unusually

small number of births to their cohort at any age because of their shortened lives. But the

bias introduced in populations where HIV is prevalent can be severe because of the high

intergenerational correlation in death risks that HIV introduces. Ward and Zaba (1998) simulate

the likely biases and suggest some proceduresfor correcting them.

Box 11.1 shows a detailed application of the Brass method to data from Zimbabwe.

11.7.3 Variants of the Brass approach

Brass’s approach has been very influential in demography (Feeney, 1991). Several other meth-

ods for estimation of childhood mortality are based on the same general idea, with different

degrees of complexity (Hill, 1991). The first alternative consists of doing the calculations using

proportions of children dead classified by mother’s duration of marriage(i.e., time sincefirst

marriage) instead of age. The advantageof this approach, introduced by Jerry Sullivan,is that

in some populations, marital duration may be better reported than age becauseit refers to a

more recent event. Another advantageis that fertility changesor social differentials at younger

ages are often caused by variation in marital behavior, marriage duration-specific fertility rates

being somewhat morestable. As a result, the cross-sectional P, /P2 ratio might be less dis-

torted when computed from data classified by marriage duration. The procedure is similar to

the Brass procedure using data classified by age described above, exceptfor the use of different

sets of estimation coefficients. The sets of appropriate coefficients are reported in tables 56 and

57 of Manual X (United Nations, 1983: 82-3). For populations where marriage is less salient

because of a high volume of nonmarital childbearing, Hill and Figueroa (1999) has developed

a method based on timesincefirst birth.

A very simple variant consists of collecting information about births in the last twelve

monthsonly. The proportion surviving gives an estimate of ; Lq//p in the life table. However,

it is argued that this method generally gives mortality estimates that are too low, perhaps

because of the reluctance to report recent deaths, or because ofdifficulties with identification

of the reference period.

A similar approach consists of asking women in the reproductive ages about the survival

of their most recent birth. A selection bias makes this approach risky. Considerall the births

that occurred two yearsearlier. Those children who died werelikely to have been replaced by

anotherbirth,if for no other reason than the foreshortened period of lactation and non-ovulation



 

 

Box 11.1 Estimation of Child Mortality from Information on Children Ever Born and
Children Surviving (Brass Method)

Data required:

W; = total number of womenin age groupi (irrespective of marital status)
B; = numberof children ever born reported by womenin age group i

5; = numberof children surviving reported by womenin age group i

Computational procedure: D; = B; — S; = namberof children dead to womeninage group i
d; = D;/B; = proportion of children dead for mothers in age groupi
P; = B;/W; = average parity per womanin age group i

Example: Zimbabwe, 1994, both sexes
 

 

Mother’s age group Index i Wi Bi Si D; dj P;

15-19 l 1,472 250 236 14 0.0560 0.17
20-4 2 1,269 1,396 1,282 114 0.0817 1.10
25-9 3 915 2,159 1,995 164 0.0760 2.36
30-4 4 871 3,388 3,101 287 0.0847 3.89
35-9 5 661 3,391 3,074 317 0.0935 5.13
 

Calculation ofprobability ofdying and surviving:

aj, bj, c; = coefficients for estimation of child mortality multipliers (West model coefficients
shownhere)

kj =a; +b) - Pi / Po +c; - Po/P3

q(x) =k; - dj = probability of dying from age 0 to x, for children of women in age group i
I(x) = 1 — g(x) = probability of surviving from age 0 to x
 

 

Mother’s aj b; Cj k; dj Corresponding q(x)= I(x) Mortality
age child age x kj + dj level
group i (West

model)

1 1.1415 —2.7070 0.7663 1.0808 0.0560 1 0.0605 0.9395 18.6
2 1.2563 —0.5381 —0.2637 1.0503 0.0817 2 0.0858 0.9142 17.6
3 1.1851 0.0633 —0.4177 1.0001 0.0760 3 0.0760 0.9240 18.6
4 1.1720 0.2341 —0.4272 1.0090 0.0847 5 0.0855 0.9145 18.4
5 1.1865 0.3080 —0.4452 1.0265 0.0935 10 0.0960 0.9040 18.3

P;/P2 = 0.1544
P7/P3 = 0.4662
 

Estimation of reference period:

a;, b;, cj = coefficients for estimation of reference period (West model coefficients shown here)
t(x) =a; +b; - Pi /P2 +c; - P2/P3 = numberof years before the survey date to which g(x) refers
Reference date = date of survey — f(x). In this example, the date of survey is 1994.7
 

   Age Index Age dj bj Cj t(x) Reference
group l x date

15-19 1 1 1.0970 5.5628 —1.9956 1.0 1993.7
20-4 2 2 1.3062 5.5677 0.2962 2.3 1992.4

25-9 3 3 1.5305 2.5528 4.8962 4.2 1990.5
304 4 5 1.9991 —2.4261 10.4282 6.5 1988.2
35-9 5 10 2.7632 —8.4065 16.1787 9.0 1985.7

Data source: Central Statistical Office [Zimbabwe] and Macro InternationalInc., 1995. Zimbabwe Demographic and

Health Survey, 1994, Calverton, Md.: Central Statistical Office and Macro InternationalInc.
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among their mothers. Therefore, their death would not be reported, and mortality estimates

produced by the approach would be biased downwards.

A more promising and widely-used variant of the Brass approach consists in collecting

information about the survival of the “preceding birth,” i.e., the birth that preceded a birth

just occurring (Brass and Macrae, 1984). The idea here is to interview womenatthe time of

birth about the outcomeoftheir previous birth, usually in a hospital or clinic. The proportion

dead is usually converted into an estimate of g(2), since the proportion dead approximates

this value when birth intervals average about 30 months, a commonvalue. Thefact that only

womengiving birth in institutions are interviewedraises, of course, an immediate problem of

selection bias. These womenhave children who will usually have had better health conditions,

and the resulting q(2) might underestimate the true mortality conditions in the population.

The bias may notbe large, however, if a large proportion of the population is giving birth in

institutions. By nature of the data collection strategy, no information is gathered on birthsthat
comelast ina woman’s childbearing history. The main advantageofthe methodisits timeliness
and simplicity, which has allowed someinstitutions to collect the data on a continuousbasis.
Instead of having to mountperiodic surveys, this method permits an easy and fairly up-to-date
monitoring of child mortality.

With additional data on ages of surviving children such as one would find in a household
censusfile, it is possible to use another variant of the Brass method, developed by Preston
and Palloni (1977). These additional data permit a more accurate assessment of reproductive
histories of women, and make unnecessary the use of synthetic cohort comparisons with the
P| /P2 ratio. In effect, women’s reproductive histories are inferred from the age distribution
of surviving children. This inference is especially useful when estimates of child mortality by
social class (e.g., husband’s occupation) are sought, since P;/P2 ratios in a period can give
highly misleading indicators of the actual P; /P> ratio in a cohort. Results of the method are
not biased byfertility trends, unlike Brass’s original approach.

A problem with the method, however, is that it is sensitive to age-selective omission and
misreporting of ages of children. It should therefore be applied only if the quality of data on
age is judged acceptable.

11.2 Estimation of Adult Mortality Using Information on Orphanhood

11.2.1 Description of the method

Brass methods dominate child mortality indirect estimation, with extensionsto all retrospective
inquiries, because in many instances, mothers give reasonably accurate reports about their
children. There is no equivalently powerful methodfor adults, or more generally for individuals
aged above 5 or 10 years. A battery of methods exists, which are adapted to data availability
and data quality problems. These methods all work very well if data are good and assumptions
are met, but most of them are very sensitive to errors in data and violation of assumptions.
The main reason is that adult mortality is a rather infrequent event, even in high mortality
population. For example, in Guatemala in 1985,the death rate above age 5 is .0060, compared
to a death rate below age 5 of .0212 (Keyfitz and Flieger, 1990: 310). Small violations of
assumptions and small departures from accuracy in data can produce relatively large impacts
on the implied mortality levels of adults.

In spite of these limitations, the logic of the Brass approach to childhood mortality has
been extendedto the estimation of adult mortality based on Survey questions on the survival of
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parents. The developmentsare primarily attributable to Brass himself and his students, Kenneth

Hill and Ian Timaeus. However, the pioneering effort to use orphanhood information to make

inferences about adult mortality was made by Louis Henry (1960). The logic of the approach

is the same asfor children, and the operationalization is very similar: a simple question about

the survivorship of the respondent’s mother and father is asked in a survey or in a census.

The survivorship status of one’s parents up to the time of the survey, together with the age

of the respondent, provides well-defined indicators of mortality outcomes and the duration of

exposure required to interpret them. .

Supposethat childbearing always occurred at age 30. Then the proportion of persons aged

20 with a surviving motheris an estimate of209 P30; the female probability of surviving from age

30 to 50. The likelihood that a particular mother’s mortality will be reported uponin the survey

is directly proportional to her numberof surviving children whoare eligible for inclusion in the

survey. Thus to use the proportion of mothers whosurvived as an estimatorof the population’s

survivorship requires the assumption that adult mortality is not associated with the numberof

surviving children, including whether or not a womanhadanychildrenatall.

Of course, childbearing does not occur to womenat a single age, but is spaced overa period

of some 35 years. The general expression for the number of non-orphansaged y at time ¢ ina

closed populationis:

NO(y, t) = Bit — y)- PO): PMY) (11.5)

where

B(t — y) =the numberofbirths y years ago/(i.e., at time t — y),

p(y) = the probability that a child born y years ago survivedto age y,

pam(y) =the probability that a mother of a child born y years ago survives y years

since giving birth.

By its multiplicative format, this expression assumes independenceof the survival proba-

bilities of mother and child.

Similarly, the expression for the numberofpersons agedy at time ¢ in a closed population 1s:

N(y,t) = Bit — y)pty) (11.6)

Then:

11( 1) — NOG.D _ BUH y)* PQ) PM)

NOD Bit — y)- pQ)
 = pM(y) (11.7)

where I1(y, t) is the proportion of non-orphansagedy at time t. The proportion non-orphaned

gives a direct estimate of mothers’ survival probability. Let us see how that probability is

connected to the underlying population life table, assuming that survival probabilities are the

same for mothersas for all women and ignoring multiple births, which do notaffect the account.

Define W;_,(t), the numberof living womenat time t who gave birth at time ¢ — y:

50

W,-y(t) = / B(x,t — y)+ ypxdx (11.8)

15
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where

B(x, t — y) =the numberof births to women aged x at time rt — y,
y Px = the probability of surviving from x to x + y in the female cohort life table

for the cohort aged x at time rf — y.

The total number of women whogavebirth at time t — y, W;_y(t — y), is simply equalto the
total numberofbirths at time t — y. Thus:

50 50

en=[EYpcan = fiery) yprde (9)
pM (y) = W,-y(t—y) J Bir—y)

15 15

where v(x, t — y) is the proportionate age distribution of mothers at birth at time f — y.
Combining equations (11.7) and (11.9) gives:

50

M(y.t) = f v6.19) -ypedy (11.10)

15

Thus, the proportion of people aged y at time ¢ with a living motheris a weighted average
of adult female survival probabilities, with weights being the age distribution of mothers
at childbirth y years earlier. As in the Brass method, the proportion of the population with
surviving kin confounds actual mortality conditions with the shape ofthe fertility function.
The left-hand side of equation (11.10) is provided by a survey of the population, andit is used
to estimate a feature of the adult female mortality function.
Once again,to interpret the proportion with surviving mothers as a pure measure ofmortality,

we must adjust for effects of fertility. Suppose again that the y Px functionis linear in x which
is typically not a bad assumption over a wide range of adult ages: yp, = K — j -x. Then

50

M(y.0) = f vert —y) TK ~ jxdas

15

50

=K-j- | vot—y)-xds

15

= K—j-M*

or

II(y, t) = ype (11.11)

where M™*is the mean age of mothersat childbearing at time t — y.
Equation (11.11) is not a bad approximation, butit is possible to improve upon it while

making the implementation of the method more user-friendly. Analogously to Brass child
mortality procedures, a set of correspondencesis established between the ages of reporting
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children and ages of mothers:

 

 

Age of offspring Mortality function estimatedfrom

orphanhoodreports for this age

15-19 las / los

20-4 I5q/ los

30-4 l6g/ las
(note that the same beginning ageis kept)
 

Onceagain,the estimates need to betailored to fertility circumstances of a particular pop-

ulation by means of adjustmentfactors. Instead of being based on P;/P2, these are based on

M*, the mean age of mothersat childbirth. As before, M* is usually estimated on the basis of

currentfertility, M*(r), rather than on fertility at the time of birth of each surviving cohort of

children interviewed, M*(t — y), as equation (11.11) requires. (Where this latter information

is available, of course, it should be used.) Usually, this mean age at birth is calculated from

a question on “births last year,” by age of mother. It is not equal to the mean age of the fer-

tility schedule, because M*, unlike the mean age ofthefertility schedule, is affected by the

age distribution of women. Note that if M™ is estimated from “births last year” tabulated by

current age, women were on average half a year younger when they gave birth, so that one

must subtract 0.5 years from the mean age obtainedin orderto obtain the correct value of M*.

Hill and Trussell (1977) have designed the following adjustment equation which converts

proportions non-orphanedinto conventional probabilities of surviving:

where

y P25 = the female probability of surviving from age 25 to 25 + y,

M* = the mean age of mothers at childbirth,

5Il)_5 = the proportion of people aged (y — 5) to y whose motheris alive, and

ay .by, and cy = adjustmentfactors.

Onceagain,the set of adjustment factors are produced by simulations using model schedules

of mortality and fertility. The coefficients are included in box 11.2, which showsa detailed

example of the estimation procedure using the orphanhood method with data from Swaziland

+n 1986. Note that the coefficients on M*are positive: the older are mothersat childbirth, given

a certain proportion orphaned,the higher is the implied life table survivorship.

This method can also be used to estimate male mortality from information on paternal

orphanhood,but results are often more disappointing. The relationship between fathers and

children is, on average, less durable than that between mothers and children. Consequently,

people may have poorer information aboutthe survival of their physiological fathers.

11.2.2 Problems andbiases associated with the orphanhood method

Oneproblem associated with the methodis that the estimated mortality does notrefer to specific

time periods;it providesdirect information about cohort mortality, not period mortality. Thisis
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not a problem if mortality has been constant, but in most cases, the estimates represent average
measures Over a somewhatlengthy (and varying) period of exposure. A methodto “date” the
estimates has been developed by Brass and Bamgboye (1981), butit is not as straightforward
as for the Brass child mortality technique.
A potential bias already noted arises from the fact that only surviving children can report

about the survivorship of their mothers. This selection effect probably biases survival estimates
upwards because mortality risks across generationsin the same familyare likely to be positively
correlated. The bias may be offset in part by the tendency for poor women, whose mortality
risks are usually above average, to have higher fertility.

Perhaps the most serious drawback of the method is a problem that has been termed the
“adoption effect.” This term refers to the tendency to give reports not about the biological
mother but about the social mother who may have adopted the respondentafter the death of
the actual mother. This bias is very problematic below age 15, when children are not reporting
for themselves. The interviewer will often assume that the motheris living, which leads to
implausibly low mortality below age 15. Forthis reason, the method is designed primarily to
be used with reports from offspring aged 15 and older. This “adoption” problem affects other
ages also, but it becomesrelatively less important as mortality itself makes bigger inroads
among aging cohorts.

Anothersourceofpotential bias is misreporting of respondent’s age, the indicator ofparental
exposureto the risk of death. In applying the method separately by sex of respondents,it has
often been found (e.g., in Latin America and South Asia) that mother’s mortality appears
higher from daughters’ reports than from sons’. While this difference could result from a real
survival advantage of having sons, it could also be simply due to different patterns of age
reporting between the sexes. It appears that women’s ages are often understated relative to
men’s, perhaps because of women’s efforts to appear youthful or the prestige associated with
achieving older ages for men.

71.2.3 Variants of the orphanhood method

Whenthereis information on orphanhoodat two surveys of the same population,it is possible
to avert the time indeterminacy of estimates and produce survival probabilities that pertain
specifically to the intersurvey period (Preston and Chen, 1984). This method is based on a
simple extension of the variable-r equations developed in chapter 8. The following equation
expresses the number of non-orphans aged x at time ¢ in termsofrisk functions and growth
rates at timef:

NO(x, t) = NO(O, t) - ow Jo (rvo(a,t)+pno(a,t)+m (a,t)] da (11.13)

where

NO(x, t) =the numberof non-orphans aged x at timef (i.e., the numberof persons
whose natural motherisstill living),

rno(a,t) =the growth rate of the number of non-orphansat age x at timef,
KNo(a, t) =the force of mortality of non-orphansaged a at timef,
Km (a,t) =the force of mortality of mothers of non-orphans aged a at timef.
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Box 11.2 Estimation of Adult Mortality from Information on Orphanhood,Hill and
Trussell Variant 7

Data required:

sNy = Numberof respondents aged y to y + 5

5sNOy = Numberofrespondents aged y to y + 5 with mother alive (non-orphans)

5 By = Numberof children born in past year to women aged y to y + 5 at time of interview

Intermediate indexes:

M* = yas,5+2)'5 By= Ses

Doy=i5,5 5 By

NO, . . :
sly = ~Ny =: proportion of respondents aged y to y + 5 with motheralive.

=: mean age of mothers at childbirth.

 

Estimation equation:

y P25 = ay + by - M* +cy - sl,_5 = female probability of surviving from age 25 to 25 + y

ay, by, cy : Coefficients for estimation of female survivorship probabilities

Example: Swaziland, 1986

 

 

5NOy
 

 

 
     

Age 5 Ny sBy (y+2)-5By silly Coefficients y P25 West

mortality

, ay by cy level

15 75,358 71,510 3,234 54,978 0.9489

20 58,097 52,579 6,576 144,672 0.9050 —0.1798 0.00476 1.0505 0.9444 20.0

25 46,852 39,887 5,240 141,480 0.8513 —0.2267 0.00737 1.0291 0.9018 18.8

30 35,515 27,721 3,403 108,896 0.7805 —0.3108 0.01072 1.0287 0.8518 18.3

35 30,927 21,412 2,146 79,402 0.6923 —0.4259 0.01473 1.0473 0.7856 17.8

40 24,437 14,102 874 36,708 0.5771 —0.5566 0.01903 1.0818 0.7015 17.7

45 22,663 10,837 411 19,317 0.4782 —0.6676 0.02256 1.1228 0.5839 17.4

50 16,096 5,799 0.3603 —0.6981 0.02344 1.1454 0.4767 18.7

Sum 21,884 585,453

* — 585, 453/21, 884 = 26.75 years

Example of calculation of y p25:

20 P25 = 420 + bag: M* + 29 «5115
= —0.1798 + 0.00476 - 26.75 + 1.0505 - 0.9489

= 0.9444

Data source: Swaziland. Central Statistical Office. Report on the 1956 Swaziland Population Census, Vol. 1:

Statistical Tables. Mbabane, Swaziland, Central Statistical Office, 1988.

The corresponding equation for the entire populationis:

N(x, t) = N(0,t)-e7 0 P@O+H@O1 da (11.14)

Assuming that pyo(a,t) = wa, t), and dividing equation (11.13) by equation (11.14)

gives:

NOW, 1)— T(x,t) = olo [rvo(a,t)—r(a,t)+pm(a,t)| da

N(x,t)

(11.15)
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Rearranging equation (11.15) gives:

IT (x) - oJo rno(a)—r(a)] da _ o7 Jo leu (a)] da

x (11.16)
M(x) - edo ™@)da _ 1* (x)

where

II(x) = the observed proportion non-orphanedat age x (geometric mean ofthe
proportions observed at age x at two surveys),

the growth rate of the proportion non-orphanedat age a,rz (a)

II*(x) = the proportion of non-orphanedat age x in a stationary population
based on the force of mortality of mothers during the intersurvey period.

Note that if mortality and ages of childbearing have been constant, r, (a) will be zero atall
ages and II(x) will be an unbiased estimate of [* (x). In other cases, once the growth correction
is performed, the converted proportion can be used as an input into the Brass orphanhood
procedure. The resulting mortality estimates pertain to the intercensal or intersurvey period,
and therefore, there is no need for “dating” the estimates.

Table 11.3 presents an application of the methodto data from Panama, and comparesit to the
traditional orphanhood method. The proportion non-orphanedrose at almost every age between
1977 and 1980,indicatingthat mortality was declining. Applyingthe Brass orphanhood method
to the growth-corrected proportions non-orphaned results in lower mortality estimates (1.e.,
higher“levels”of mortality in the West modellife table system). This result is consistent with
the fact that the traditional orphanhood method provides mortality estimates that pertain to the
past. An improvementin mortality is also suggested by the improved “levels”ofmortality in the
West modellife table system at younger ages in columns(6) and (7), when the cross-sectional,
uncorrectedestimates are used, and where younger ages represent more recent experience.In
contrast, the “levels” associated with the growth-corrected orphanhoodproportions (col. 8)
show nosuchtrend and are gratifyingly consistent. Other applications ofthis procedure are
presented in Robles (1996).

Other ways of averting the time indeterminacy of Brass’s original procedure involve col-
lecting supplementary informationrelative to the timing of death of parents who have died.
Chackiel and Orellana (1985) suggest asking specific questions aboutthe date of death ofthe
parents, which allows oneto directly estimate the time location of the mortality estimates.
However, respondents are often unable to accurately provide answersto this question, a prob-
lem that has limitedthe use ofthe method in regionslike sub-Saharan Africa. A more promising
method is based on a question about whether orphanhoodoccurred before orafter matriage,
asked to people aged 25 or more (Timaeus, 1991a). Such a questionis less precise than Chack-
lel and Orellana’s question about parents’ date of death, but it seems to be more accurately
reported by respondents. This method has shown promising results when applied to data from
some African and Latin-American countries (Timaeus, 1991b, 1996).

Thereis an alternative way of using orphanhoodlogic to estimate adult mortality without
asking a direct question about orphanhood.This procedure uses instead standard information
provided by the Brass child mortality question on numbersof children surviving. The basis of
the methodis the recognition that, in a closed population, the numberof surviving children
reported by mothersis equal to the numberof non-orphansin the population (Preston, 1980).



Table 11.3: Estimates ofadult mortality via orphanhood methods applied to Panama, 1977-80

 

 

 

 

Age Proportion non-orphaned

—

Growth rate ofproportion

—

Cumulation of Adjusted “Level” ofmortality

non-orphaned, growth rates to proportion based upon proportions

1977-80 midpoint of 1977-80 orphaned in:

TA-TT 5-11-80 interval 1977 1980 1977-80

(1) (2) (3) (4) (5)*

0-4 .9960 9949 — .00039 — 00097 9945 — ~~ —

5-9 .9844 .9903 00210 00331 .9906 20.6 21.5 22.4

10-14 .9753 9794 00147 01224 .9894 20.7 22.0 23.0

15-19

=

.9556 .9608 00191 .02069 9782 20.3 20.9 22.7

20-4 9195 9316 00459 .03694 .9604 19.7. 20.5 22.6

25-9 8908 8967 .00232 05422 9435 19.9 20.3 22.9

30-4 8157 8450 01240 09101 9093 18.9 20.1 23.0

35-9 7618 .1746 00585 .13664 8806 19.2 19.9 23.5

40-4 .6166 .6781 .03340 23477 8177 18.0 19.8 23.9

 

* This columnis derived by multiplying the geometric mean of columns (1) and (2) by exp{col(4)}

Source: Preston and Chen, 1984.
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Starting from this identity, an expression relating the proportion of the total population with
living motherto the female life table is derived:

O fr ;Ni
—$ = [ew [ow -yPadadx
N

O a

or, in discrete terms:

NO & => 5.1
aYo scx 5 Ug ° ae (11.17)
N x=0 a=15 SMa

where

NO/N =the proportion of the total population that is not orphaned,i.e., the number
of surviving children reported by mothers divided by the total size of the
population,

5Cx = the proportionate age distribution of the total population,
5Uq = the proportionate age distribution of womenat birth, and
5Lq and J, = functions in a modellife table system.

Because movementto better mortality conditions monotonically raises the right-hand side
of equation (11.17), there is only one level of mortality in a life table system that will make
the right-hand side equal the left-hand side. The method consists in finding, from a modellife
table system, the mortality level that satisfies the equality in equation (11.17).

Unlike the direct orphanhood method, this method yields only one estimate of adult female
mortality, and it best identifies €55 OF e§,). The reference period in most developing countries
will be about 10 years earlier. Although the methodis subjectto the adoption bias andto errors
of omission, its main advantage is the wide availability of the data required.It is principally
designed to be used asa last resort when no other data are available.

11.3 The Sisterhood Method for Estimating Maternal Mortality

Techniques similar to the orphanhood methodrely on reports of the survivorship of spouses
or siblings. These are typically subject to greater inaccuracies in reporting. The link between
brothers and sisters may not be as strong as the mother-child link, so some people might not
know with certainty whethertheir siblings are surviving or not. They might also be unaware
of siblings who died in childhood. Similarly, divorced adults might loose touch with their
€x-spouses and not know abouttheir survivorship.

Onekin survival method has gainedgreater currency, in part because of growinginterestin
maternal mortality. The sisterhood method (Graham, Brass and Snow, 1989) is a cause-specific
developmentof the technique for estimating general mortality, based on the survivorship of
sisters. From proportions of sisters who died in childbirth, the method provides estimates of
the lifetime risk of maternal mortality in the presenceof other causes of death.

Let us define N(i), the numberofsisters ever at risk of maternal death reported by respon-
dents in age group 7, and D’ (7), the number of maternal deaths among those sisters. Assume
for purposes of model developmentthat fertility and mortality have been constant. For prac-
tical reasons, N (7) will be collected by inquiring how manysisters have ever married (or are
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aged over 15), and D’"(i) will be the numberofsisters, among these, who have died during

pregnancy, childbirth, or the postpartum period of six weeksafter childbirth.

The methodrelates 1” (7) = D” (i) /N (i), the proportion of adult sisters dead from maternal

causes, reported by respondents aged i, to g” (w), the lifetime risk of maternal death.If there

are no births after age 50, the lifetime risk of maternal death can be expressed as g™ (50). In

order to establish the relationship between I1’”" (i) and g’” (50), two demographic models are

used:

e standard fertility and mortality schedules that allow one to model distribution ofz, the

difference between ages of siblings and respondents (Hill and Trussell, 1977). It can be

demonstrated that z has a symmetrical distribution, 6(z), about a mean of zero if the

reproductivelife of the mothers of respondents is completed.

© amaternal mortality model that allowsoneto relate q’" (i), the probability of dying from

maternal causes before age i, to g’” (50), the probability of maternal death by the end of

the reproductive period. The relationship between g” (i) and q™ (50) can be expressed as:

q™ (i) = c(i) - gq" (50) (11.18)

where c(i) represents the proportion of maternal deaths occurring before age i, according

to the standard schedule of maternal mortality.

The proportion of sisters dead from maternal causes I” (7), reported by respondents aged i

is equalto:

+00

nN" (i) = | O(z)q" i + z)dz (11.19)

—OO

By combining equations (11.18) and (11.19), I1’"(i) can berelated to the lifetime risk of

maternal mortality g” (50).

+00

I” (i) = g™ (50) - | A(z): ci tz) dz (11.20)

—OoO

Wesee from equation (11.20) that II” (‘) differs from q™ (50) by a factor which only depends

on the two demographic models. If the age i of respondentsis high enough,say 60 and over,

all sisters have graduated from the risk of maternal mortality. The function c(i + z) is in this

case equal or near 1 for any possible value ofz, and II" (7) at those ages is a good estimator of

q™(50). However, if the age of the respondentsis under 60, somesisters wouldstill be at risk

of maternal death. The function c(i + z) will be less than one for some valuesof z, and TT” (7)

will in this case underestimate g’” (50). Thus, the proportions need to be adjusted in order to

give ultimate estimatesof the lifetime risk of mortality. Fertility and mortality models are used

to calculate the adjustment factors A(z):

+00

A(t) = | A(z) ci + z) dz (11.21)

—OO

The set of adjustment factors A(i), applicable to any population, is shown in box 11.3. As

expected, A(i) equals 1.00 above age 60, and goes down for younger age groups.
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Dividing each proportion of dead sisters by those adjustmentfactors, we are able to derive
separate estimatesofthelifetime risk of maternal mortality, g’” (50), for each age-groupi:

D™ (i)WHADAD (11.22)q”" (50) =

Variations in q’" (50) by age of respondents can in theory be interpreted in terms of time
trends in maternal mortality. The reference period, T;, to which each estimate refers, was
computed from fixed fertility and mortality models. This set of T; is an average approximation
designed to be used for various populations without specific adjustment. By summing deaths
across age groups, one can obtain an overall single estimate of the lifetime risk of maternal
mortality for all age groups:

dD" (i)
i N@- AW)

For the estimation of the reference period to whichthis overall single estimate refers, Graham,
Brass and Snow (1989) propose to use the following estimation equation, using reports from
women underage 50 only:

(11.23) Q”" (50) =

7 LNW AO: TH
Yi NW AD

In practice, T tends to be approximately 12 years; that is, the overall estimate oflifetime
risk approximates mortality conditions 12 years or so before the survey.
The sisterhood methodis easy to implement. However, it is not free of problems (Garenne

and Friedberg, 1997). The estimatesare sensitive to the assumption of independence between
the numberof siblings and their survival probabilities, and the models of mortality and fertility
used to calculate the adjustment factors may not suit the studied population. Reporting errors
may be large, especially if a maternal death occurred many years before the survey. The
definition of a maternal deathis based onthe timing of deathrelative to pregnancy, rather than
on specific pregnancy-related conditions, so that some nonmaternal deaths will be classified as
maternal. Often, the sample size of the survey will be too small to allow any interpretation of
differences in g’”(50) among age groups. Thus,it is preferable to rely on Q”” (50), the overall
estimate ofthe lifetime risk of maternal mortality. A detailed example of the application of the
sisterhood method is shown in box 11.3.
An alternative survey procedure for estimating maternal mortality, based upon more inten-

sive inquiries about the conditions surroundingsisters’ deaths,is presented by Rutenberg and
Sullivan (1991). Using a logic similar to the sisterhood method, Hill (1981) suggested taking
advantage of information on the residenceofsiblings to estimate the volume of out-migration.

(11.24) 

11.4 Estimating Mortality and Fertility from Maternity Histories

11.4.7 Estimation of child mortality from complete maternity histories

One of the most common waysof estimating mortality in countries with no ordeficientvital
registration is the use of complete maternity histories. This method consists of taking a survey
of womenof reproductive ages and asking them aboutthe birth and death ofall children born
to them. Mortality rates can then be directly computed from the analysis of the survival of
different birth cohorts.
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Box 11.3 The Sisterhood Methodfor Estimating Maternal Mortality

N(i) = numberof ever-married sisters reported by women in age group |

D’ (i) = numberof ever-married sisters who died from maternal mortality

A(i) = adjustmentfactor, estimated from fertility and mortality models

qg™ (50) = it = lifetime probability of dying from maternal causes, for sisters of
respondents in age group i

QO™ (50) = is lifetime probability of dying from maternal causes, single estimateforall

women included in the survey

T; = reference period, in years, to which each g™ (50) refers, computed from fixed models of 6(z)

and g(x)

T=Se(for i < 50) = reference period to which the single estimate Q” (50) refers

Example: Gambia, 1987
 

 

Age group i Numberof N(i) D" (i) A(1) N(i)- AQ) q™(50) T;

respondents

15-19 320 493* 4 0.107 53 0.076 5.7

204 263 405* 6 0.206 83 0.072 6.8

25-9 275 427 11 0.343 146 0.075 8.1

30-4 265 414 11 0.503 208 0.053 9.7

35-9 214 334 12 0.664 222 0.054 11.7

40-4 157 238 1] 0.802 191 0.058 14.3

45-9 158 233 10 0.900 210 0.048 17.5

50-4 140 202 2 0.958 194 0.010 21.2

55-9 133 215 9 0.986 212 0.042 25.6

60+ 238 373 15 1.000 373 0.040 35.2

All 91 1,892 0.048 11.7

 

  oO” (50) = 91/1, 892 = .048

T = 11.7 years

The lifetime risk of dying from pregnancy-related causes in Gambiais about | in 21, and it refers to

a period about 12 years prior to the survey

* For those age groups, the total numberof sisters who will ultimately enter the reproductive period

is underestimated. It can be adjusted by multiplying the number of respondents in these age groups

by the average numberofsisters reaching the reproductive period reported in the age groups 25+,

i.e., 1.54

Source: Graham, W.et al., 1988. Indirect Estimation ofMaternal Mortality: The Sisterhood Method.

CPS Research Paper 88-1, London School of Hygiene and Tropical Medicine.

 

 

This strategy has been extensively used by the World Fertility Survey (WFS) and Demo-

graphic and Health Survey (DHS) programs,even thoughthe data collection involved is much

more time consuming than that required forthe traditional Brass question: 20-30 minutes on

a questionnaire, versus 2—5 minutes for the Brass question (Sullivan, 1990). The advantage

of this strategy is that it provides detailed information on child mortality (Wunsch, 1983).It
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permits the computation of age-specific mortality rates of children and the explicit estimation
of trends in child mortality.

In addition, the data collected through maternity histories permit the analysis of various
factors associated with child mortality, including age of mother, birth order of the child, and
birth interval. For example, the analysis of maternity histories collected by WFS has shown
the key role of birth intervals in child mortality (Hobcraft et al., 1985). Maternity histories
often include socioeconomiccharacteristics of the father, mother, and household, permitting
multivariate analyses through hazard models, logit regression methods, or other approaches.
The estimation of child mortality from maternity histories, although evaluated directly from

the counts of births and deaths, is included in this chapter on indirect methods becauseit is
subject to various biases that are not present in conventional direct mortality estimation based
upon the traditional combination of census andvital registration data.

First, the analysis of maternity histories is subject to selection biases. Obviously, only sur-
viving womenare interviewed, and therefore, no information is collected on the mortality
conditions of those who have been orphaned. Child mortality estimatesin periods moredistant
from the survey are based on the experience of younger and younger women because older
women(e.g., ages 50+) are usually excluded from such surveys. This selectivity by age of
womenis illustrated in figure 11.1. If a survey of women aged 15-50is carried out, say, on
January 1, 1990, the maternity histories of these women will provide information on birth
cohorts born between 1955 and 1989. The Lexis diagram showsthatearlier birth cohorts are
born to younger women,in contrastto the more representative reporting for morerecentbirths.
Since first-order births typically have a higher risk of death, the resulting child mortality esti-
mates for earlier periods might be overestimated, and the estimated mortality decline might
appear larger than it actually is. To limit this problem, it is recommended to analyze child
mortality rates for time periods up to only 15 years before the survey (Hill, 1991).
The most important problem related to the analysis of maternity histories refers to what

is termed “recall” errors. When maternity histories are collected, women are asked to recall
events that occurredupto several decadesearlier. Consequently, they may simply not remember
somebirths at all, or be unable to locate them precisely in time. The reported ages or dates
maytherefore be rounded to exact numbers, introducing biasesinto the dataset. Age rounding
is particularly problematic for the computation of the infant mortality rate, for which deaths
must be precisely allocated to periods before or after the child’s first birthday. Of course, no
allocation whatsoeveris possible if only the Brass questions are asked.
A similar approach has been usedfor the estimation of adult mortality, using retrospective

questions about the deaths of household members asked during a single-round survey. Such
procedures have yielded less success than the analysis of maternity histories because, even
in high-mortality countries, adult mortality rates are low enough to produce large sampling
variability in small-scale survey data. In addition, under-reporting of adult deaths in such
surveys 1s very common and often makes it impossible to estimate adult mortality with a
reasonable degree of precision (Hill, 1991),

11.4.2 Estimation of fertility from complete maternity histories

Complete maternity histories can also be used to estimate fertility levels and trends. The
computation of age-specific fertility rates for different time periods is straightforward when
such data are available. The numerator and denominator of fertility rates must pertain to the
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Figure 11.1 Lexis diagram for cohorts of women aged 15-50 in 1990 andfor cohorts of their
offspring between the ages of 0 and 5

same exposure segmentdefinedin terms of ages ofwomen andcalendarperiods. The numerator

consists of a count of births and the denominator a count of person-years.

This use of maternity histories can produce good estimates of age-specific fertility rates, but

it gives little information onthetrend in thetotal fertility rate. As illustrated in figure 11.1, if

the sample includes women from age 15 to 50, the TFR can be computed only for the most

recent period. To obtain a longer set of TFRs, the survey must include age groups beyond age

50. As a substitute, models of age patternsoffertility are sometimes employed.

As in the context of child mortality estimation, the main biases associated with the use of

maternity histories for fertility estimation are related to errors in the retrospective declaration

of births. The two main possible sourcesof distortion are omissionofbirths and misplacement

of births in time. Although the extent of under-reporting is acceptable in some cases (Garenne,

1994), errors of misplacementofbirths in time is a very commonproblem in maternity histories

in less developed countries. Several methods have been proposed to correct for these errors

(Brass, 1975; Potter, 1977), none of them highly satisfactory whentheerrors are substantial. In

section 11.5.3, we will present a method for estimating period fertility rates from the compar-

ison of the women’s age-specific parities at two surveys, which offers the advantage of being

insensitive to misplacementof birthsin time.

41.5. Indirect Estimation Methods Using Age Distributions at Two Censuses

Many indirect methods are based on the observation of the population at two censuses. In

chapter 10, we encountered the use of two-census methods to assess the quality of death
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registration. All of the variable-r methods developed in chapter8 are also based on intercensal

comparisons. In this section, we will study some other methods based on the samelogic.

The basic idea behind all two-census methodsis in fact very simple and relies upon the

balancing equation of population growth adapted for cohorts. In a closed population, the

difference between the size of a cohort at the first census and its size at the second census

correspondsto the numberofdeathsin the cohort. Thus, intercensal methodsprincipally consist

of tracking birth cohorts at two census dates, using age as a marker of cohort membership.If

the two censuses are separated by ten years, a birth cohort present at the first census should

be 10 years older at the second census. Of course, age misreporting can create spurious flows

into and out of cohorts.

The most simple intercensal methodconsists in calculating for each cohort the proportion

surviving the intercensal period (“survivorship ratios”) and recognizing that the ratio maps

directly onto a cohort life table function for the intercensal period. For example, in case of a

5-year intercensal period:

5Nx45(t +5) _ sly45

5Nx(t) 5 Lx (11.25)

where

5 Nx (t) =the numberof people aged x to x + 5 at time f; and

5L, =the numberof person-years lived between age x and x + 5 in thelife table

pertaining to the intercensal period.

By chaining together the ratios at different ages, it is possible to reconstruct the life table

beyond age 5. For a complete life table, we would also need the intercensal births, B{t, t + 5],

and compute the followingratio:

sNot +5) slo— 11.26
Bi[t,t+5] 5 - lo (

In many cases, though, data on intercensal births are not available or are seriously flawed,

and the method will produce only a life table starting at age 5.

Despite its apparent simplicity, the estimation of adult mortality through this approachis

not straightforward. In many cases, censuses are separated by a numberof years that makes

it difficult to compute survival ratios or to chain them together. Unless migration adjustments

are made, the apparent numberof deaths is spuriously inflated by out-migration and deflated

by immigration. Since adult mortality is low (muchless than 1 percent per year in most of

the world), small differences in the completeness of coverage in the two censuses can makeit

appear that mortality was exceptionally high or low. Age misreporting can produce some very

erratic sequences of survivorship ratios, including someratios greater than one, whichis not

humanly possible. Age misreporting is a major obstacle to the successful implementation of the

basic intercensal method, and the techniques described in this section are basically addressed

to minimizing its effects on mortality estimates.

11.5.1. Estimation of intercensal mortality by using cumulation and projection

One wayto deal with the problems introduced by age misreporting is to introduce a system

of modellife tables, which imposesa structure on the set of age-specific survival rates. The
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idea behind this methodis to find the structure that is most consistent across cohorts with
the observed data, and to assumethat this mortality structure is what actually prevailed in the
population. The procedure was developed by Coale and Demeny (United Nations, 1983: 208).
They proposed dealing with the cumulated age distribution, rather than with individual age
groups, becauseit is less vulnerable to age misreporting.

For example, assume that we observe the population in 5-year age groups at censuses in
1980 and 1990. We would have the following array ofdata:

5No(1980) —_sNo(1990)

5N5(1980) 5 Ns(1990)

5Nji9(1980) 5 N19 (1990)

5N15(1990)

The idea is simply to find the level of mortality that successfully survives the population
aged 0+ in 1980 to 10+ in 1990. After choosing an initial modellife table (usually indexed by
life expectancyat birth), the population aged 10+ in 1990is estimated by “projecting” forward
the population aged 0+ in 1980. For example, if we use €9 = 50.0 years for the initial model
lite table, the appropriate estimation equationis:

Nip4.1990) = 5Njg (1990) + 5N79(1990) + 5 N5°(1990) + ---

50 50 50L L L= 5No(1980)°—25 + 5N5(1980)2—F + 5Njo(1980) 5-28 4... (41.27)
5 545 sHi9

where

N , (1990) = the estimated population above age 10 in 1990, obtained from projection with
a life expectancyat birth of 50 years, and

5b20 = the person-years lived between ages x and x + 5, taken from a modellife table
with a life expectancyat birth of 50 years.

As we choosehighervalues, v, for the life expectancy at birth in the modellife table system,
the value for Nj,, (1990) will increase. By varying the level of mortality in the modellife
table system, one can find the level, v*, at which Ni04 (1990) will equal the observed Nio+
(1990). This procedure is affected by age misreporting that transfers people across the age-10
boundary at the second census. Thus,it is desirable to repeat the process beginning with other
initial agesat first census (5, 10...). Coale and Demeny recommendtaking the medianof the
first nine estimates to obtain a single ep estimate.

This method is appealing because it requires only a limited number of assumptions: that
the population is closed to migration (or adjusted for net international migration), that the two
censuses are equally complete, and that mortality belongs to a certain family of model life
tables. As a practical matter, violations of the third assumption are far less consequential for
estimating overall mortality indexes, such as life expectancy at age 10, than are violations of
the first two assumptions.
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The method is also affected by age misstatement, which is common in many countries.

In general, age overstatement will produce too favorable a level of mortality, with the biases

increasing with ageatinitial estimate; more people will appearto survive the intercensal period

than actually do because some “migrate”into a cohort from younger ages. Cumulation limits

to some extent problemsassociated with age overstatementat older ages.

The method just described is sometimes called “forward projection”, although the same

logic could have been followed with “backward”projection. Palloni and Kominski (1984)

have shownthat, contrary to a commonintuition, the two methods don’t necessarily lead to the

same estimates because age distributional information is weighted differently when starting

with the second census than whenstarting with the first. Box 11.4 showsa detailed example of

the forward survival method applied to data from Indonesia. Heuveline (1998) uses a variant

of this approach to estimate the deathtoll of the Khmer Rouge regime in Cambodia, where

25 percent of the population is believed to have died in less than 4 years. The same logic

can be used to estimate intercensal net migration assuming that we have a perfect estimate of

intercensal mortality (Shryock and Siegel, 1973: 595-6).

11.5.2 Integrated system for demographic estimation from twoage distributions

The “forward projection” methodjust described wasbased on the choice of an existing tabulated

modellife table to estimate the mortality level of a population. We present now a two-census

method which uses instead a mathematical representation of relationships among mortality

rates within a modellife table system. Important additional products of the method are an

estimate of the crude birth rate and of the true age distribution. This method uses the Brass

logit transformation discussed in chapter 9. As we saw in that chapter, the assumptionis that

within a modellife table system, one can representany life table as a simple transformation of

another:

nf —o+8-Inae (11.28)
p(a) Ps (a)
 

where g;(a) and ps (a) are the g(a) and p(a) functionsin a “standard”life table. a and B are

the parametersthat relate the standard life table to any otherlife table in the mortality family.

The higher is a, the higher is mortality relative to the standard; the higheris B, the higheris

adult mortality relative to that in childhood. Equation (11.28) can be simplified by substituting

| — p(a) for g(a) and by exponentiating:

| — p(a) =|HOT

 

p(a) Ds (a)
or

1 a ds (a) B= Se 1
pla). | r (11.29)

Wealso know from chapter 8 that, in a closed population:

c(a) = be~ Jo "4pq)



 
 

 

Box 11.4 Estimation of Intercensal Mortality by Using Projection and Cumulation: Example with a 10-year
Intercensal Period and 5-year Age Intervals

5N,(t) = population aged x to x + 5 at time t

5N,(¢ + 10) = population aged x to x + 5 at time t + 10

Ny4(t + 10) = 07°... sNa(t + 10) = population aged x and above at time t + 10

5L = person-yearslived peewesn ages x and x + 5 in the modellife table with mortality level v

: SNx(t + 10) = Nx

NY(t + 10) = Or SNE (E ;8 = projected population aged x and aboveat time ¢ + 10, with mortality level v

= projected population aged x to x + 5 at time ¢ + 10, with mortality level v      

 

Strategy:

For each age group,find v; and v2 so that Ny(t+ 10) < Nyi(t +10) < Ny3 (t + 10) and use linear interpolation to estimate the

level of mortality v*, implied by the observed numberof people aged x and aboveat time t + 10:

Nx+(t + 10) — Ni(t + 10)
VS wk bb > : in >

142 "YO F410) N'LG + 10)

Example: Indonesia, males, intercensal period 1980-90; United Nations modellife tables, South Asian pattern
 

Age 5 Nx 5 Nx Nyt Projection with ey = 51 with ey =53  withe, =55 with €é5 = 57 €

 

 

x (1980.83) (1990.83) (1990.83) interpolated
L>!

5X SI 51 53 55
L>! 5 Ni. Ny+ Nyy Nx Not

5*~“x—10
(1990.83) (1990.83) (1990.83) (1990.83) (1990.83)
   0 10,815,974 10,760,859

5 10,832,383 11,928,095   
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11,044,127

9,520,440

7,583,305
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Or

1 be~ Io r(x)dx

 

pia) ca) (11.30)
Combining equation (11.29) and (1 1.30), and setting e* = K and 8 = 1, we have:

 

~fo r(x)dx 1 K
e€ qs (a)
= — 11.31“ | 11.31)

c(a)  b Ds (a)

The assumption that B = 1 implies that the slope of the p(a) function in the studied
population is the sameas that in the standardlife table. This may be a reasonable assumption
for estimation purposes, becausedata are often too flawedto allow estimates of both a and B,
and because the major issueis to estimate the “level” of mortality relative to a standard.

Equation (11.31) is in fact a simple linear function, where the reciprocal of the intercept
correspondsto the birth rate of the population, and wheretheratio of the slope to the intercept
is an estimate of the level of mortality relative to the chosen standard. The information needed
for the left-hand side of the equation can be taken from two censuses, and the variable on the
right handside, gs (a)/ps(a) is obtained from the assumedstandardlifetable. Fitting a simple
linear regression to these observations will produce the two desired estimates. Note that the
function c(a) can be estimated througha linear interpolation, using (§Cg_5 + 5Cq)/10. Also,
if an independentandreliable estimate of child mortality is available (for example, by using
the Brass child survival method), then it is possible to limit the analysis to above age 5 and to
use the following equation:

  
p*(S)en JoPax - l Ka

b p?(a)
= , witha >5 (11.32)

c(a) b b

where p*(5) is the independentestimate of the survival to age 5, and where q> and p? are the
probability of dying before or of surviving to age a in the standardlife table, conditional on
survival to age 5.

This method has been applied to data from India and South Korea (Preston, 1983). Like
other intercensal methods, the estimate of the mortality level is sensitive to intercensal migra-
tion, to differential census coverage and to age misstatement. Thereis also a certain level of

arbitrariness in selecting points used tofit the line.

Heligman (1985) uses the method to estimate the “true” age distribution of the population.
The estimated level of mortality allows one to reconstruct the entire intercensal life table
though equation (11.28). This estimated life table, along with the estimated birth rate and the
recorded age-specific growth rates, can then be used as inputin the basic variable-r equation
to reconstruct the age distribution:

a+2.5 . L

sCe =be lo Meds = (11.33)
0

The comparisonof the estimated age structure to the observed one (moreprecisely, to the mean

of the two observed distributions) can be usedto detect errors in age distributions, especially
those produced by age misreporting.
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11.5.3 The iterative intracohort interpolation procedure for estimating intercensal age

schedules

The iterative intracohort interpolation procedure is based on the same idea: the comparison

of the population age or duration structure at two censuses gives information about attrition

or accession during the intercensal period. It is, however, a more general method that can be

applied to various data configurations and to various demographicprocesses, including mortal-

ity, fertility, marriage and mobility. The objective of the methodis to estimate the (unobserved)

set of intercensal rates that produced the observedintercensal changesin the status of the popu-

lation classified by age or duration between the twodates. It does so using maximumlikelihood

reasoning.

Iterative intracohort interpolation wasfirst developed by Coale (1984)as a refinementof the

basic variable-r procedure. By estimating with greater precision the numberof person-years

lived at a certain age during the intercensal period, the original interpolation method permitted

the relaxation of the assumption that the age-specific growth rates are constant over time

during the intercensal period. It often produced morereliable results than the basic variable-

r procedures, especially when applied to population structures that are highly irregular. It

was then generalized to other demographic processes (Coale et al., 1985) and applied to

relationships that do not use variable-r equations (Coale, 1985). Finally, Stupp (1988)clarified

and simplified the procedure. Theiterative nature of the procedureis in fact its greatest strength

relative to other methods.

Before generalizing the procedure to various types of demographic accounts, we willfirst

briefly describe the application of the procedure to the estimation of age-specific fertility rates

from parity at different ages, adapted from Stupp’s simplification of the method (Stupp, 1988).

The data needed here are simply the mean parity of womenatdifferent ages in the population

at two different censuses or surveys.

Wefirst need to recognize that when following a cohort through time, the cohort’s parity at

the second census is equal to the cohort’s parity at the first census incremented by the sum of

the intercensal age-specific fertility rates for that cohort. An initial estimation of intercensal

age- and cohort-specific rates is performed by using linearinterpolation,1.e., by assuming that

for each cohort, parity increases linearly during the intercensal period. This is done by simply

assigning the total intercensal increment in each cohort to the various ages proportionately

to the time spent in each age. The age- and cohort-specific fertility rates thus estimated will

howeverdiffer for each cohort. Since the method aimsat producing oneset of intercensal rates

that apply to all cohorts, these differences are resolved by producing a weighted averageat

each ageofthe fertility rates of the different cohorts, with the weights proportional to a cohort’s

exposure time in an age interval. Through this procedure, we obtain a first set of “average”

age-specific fertility rates.

The next step is to apply this first set of “average” age-specific fertility rates to each cohort

during the intercensal period. The estimated parity at the second census date for a particular

cohort will mostlikely differ from the observed one. Therefore, a secondset of age- and cohort-

specific rates needs to be estimated. This is done by observing the proportionate discrepancy

between the observed and predicted (1.e., based on the estimated fertility rates) intercensal

changein parity for each cohort. This discrepancy is then assumedto prevail in each ageinter-

val occupied by the cohort during the period. By adjusting the cohort’s fertility rates in this

fashion, a secondset of “average” age-periodfertility rates is obtained. The procedureis then

reiterated until the set of rates is stable from one iteration to the other. When this happens,
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Table 11.4: Classification of events to which the intracohortinterpolation procedure applies
 

Type of event Example Status variable Outcome

required

(at two dates “)
 

(1) Recurrent e lifetime births average cumulative age- or duration-specific rate of
e lifetime moves numberof occurrence

e lifetime marriages occurrences of

the event, by

age or duration

(2) Nonrecurrent first marriage proportion of persons age- or duration-specific rate of
e first birth having experienced occurrence

e death the event,

by age or duration
 

“ The length of the intercensal period must be a multiple of the length of the age interval.

the resulting fertility rates will indeed agree with the set of mean parities at the two census
dates.

This indirect procedure can be applied to many events, including particular events for which

no direct method exists because the occurrence of an event is not registered. For example,it

has been used successfully to estimate the rates of leaving parental homes in some East Asian

and European countries (Zeng et al., 1994), overcomingthe fact that departures from parental

homeare notregistered in any of these countries. Table 11.4 showsthe different types of event

for which the iterative intracohort interpolation method can estimate age schedules when data

exist on the cumulative numberof events of a particular kind from two censusesor surveys.

For recurrent events, the method produces synthetic estimates of age-specific rates. From

these, the cumulative numberoflifetime events at various ages can be derived becausethe initial

conditionsare specified; the cumulative numberoflifetime eventsat birth is, by definition, zero.

Likewise, the proportion experiencing nonrecurrent events suchasfirst marriageor first birth

can also be derived. In these cases, estimation of age-specific rates requires the assumption that

there is no correlation between the probability of experiencing the event and the probability of

being present at the censuses(i.e., that there is no differential mortality or migration).

In the case of mortality estimates, a different approach is required sincethe living population

is never surveyed about whetherit is dead. In this case, the intracohort interpolation method

must be applied to absolute numbersof survivors by age. Assumingthat the rate of occurrence

of the event is constant within each age interval, the number of survivors at two dates in a

closed population can be related to age-specific occurrence rates as in the following example

(adapted from equation 3.10):

 Mx 1My42
| +1Mai+ 2 (11.34)

1Ny4a(t + 2) = 1Nx(t) - e

where

| Nx (t) = numberof survivors aged x to x + I at time t,

1M, = intercensal rate of occurrence of the event between age x and x + 1.
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Rearranging equation (11.34) gives:

M M
— In Nyyo(t + 2)} = InNx()} + S* + Me+ (11.35)

Equation (11.35) relates the numbers of survivors to intercensal occurrence rates in an

additive way, which allows one to apply the intracohort interpolation method. As shown in

equation (11.35), the “status variable”is in this case — In(, Nx), analogous to meanparity in

the example developedearlier.
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12.1. Introduction

In chapter 3 we studied the life table as a tool to describe mortality. A life table can be used

to describe any event whereby individuals under observation transit from onestate to another.

In the case of mortality the event is death and the two states under consideration are “alive”

(state 1) and “dead”(state 2).

The mortality process studied in chapter 3 can be thoughtas representing a model resting

on the following assumptions:

a. Simple state space: There are only two possible states that individuals can occupy;

b. Event is proper: All individuals eventually transit from state 1 to state 2;

c. Destination state is “absorbing”: Nobody who movesfrom state 1 to state 2 ever goes

backto state 1.

Most demographic phenomena consist of events that cannot be represented and compre-

hended by such a basic model. To represent the marriage process, for example, we need to

modify assumption (a) by increasing the numberofpossible states to include single, married,

widowed,and divorced. Thesestates are clearly not absorbing because people who enter them

may subsequently leave them.

Chapter 4 discussed modificationsto the simplelife table procedure to handle one important

generalization, namely, the introduction of multiple and competing destination states. This is

an extension that removes assumption (a). However, the multiple decrement model continues

to be restrictive since it relies on the other two assumptions, namely,that all destination states

are absorbing (no reverse flowsare possible), and that the events are proper, that is, everyone

will experience the event understudyor, equivalently, everybody will exit from state 1. Of these

assumptions, that preventing reverse flows is most problematic for demographic computation.

Section 12.2 describes increment—decrementlife table models that enable us to understand

events with non-absorbing states and reverse flows. Section 12.3 introduces an example,
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discusses computational choices for the calculations to estimate an increment—decrement

table, and suggests interpretations for the results. In the remaining sections of the chapter we

formalize and generalize relations between quantities in any increment—decrementtable.

12.2 Increment—Decrement Life Tables

In this section we review examples of three phenomena that can befruitfully analyzed with

generalized increment—decrementtables.

12.2.1 Marriage and divorce

The process of union formation anddissolution is the prime example ofinterrelated events that

can be understood with a simple increment—decrement model. To keep the illustration simple

we will neglect the existence of consensual unions and assumethatall unions are formally

sanctioned. We will also overlook equally important complexities raised by the fact that union

formation and dissolution involve not just one but two individuals. In what follows we focus

on women exposed to marriage.

In most populations a majority of, but not necessarily all, women will eventually marry.

Somebut not all among those who marrywill experience a divorce (permanent separation) or

widowhood due to the death of their partner. Finally, some marriages will be terminated as a

consequenceof the death of the womanherself. The multistate representation of these events

is graphically displayed in figure 12.1 (Schoen, 1988). Women who marryfor the first time

cannotreturn to the single state, and thus there is only a one directional arrow linkingthestate

“single” with the state “married”. By contrast, those who divorce or separate and those who

experience widowhood may remarry,andthis possibility is reflected by two-directional arrows.

As always, death is an absorbing state and there are no reverse flows from thestate, “dead.”

In this representation, the passage of time is measured by the age of the woman and one

does not necessarily need to accountfor the time spent in each state as an important dimension

of the problem. That is, the model assumes that remarriage and divorce depend on time only

through the age of the womanandnot through the duration that they have spent in anystate.

If this assumptionis violated, special procedures to handle both age and duration dependence

are needed.

Ofinterest to those studying marriage change and family formation are questions such as

the following: what is the expected time before the first marriage? What is the probability
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Figure 12.1 Multistate representation of marriage and marriage disruption
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Figure 12.2 Multistate representation of HIV/AIDS

that a first marriage will eventually end up in a divorce? What is the average numberof

marriages that a womanwill experience during herlifetime? Whatis the expected numberof

years before a first marriage breaks up by divorce? Answers to these questions may enable

investigators to understandbetter the effects of social and economicforces on family formation

and organization.

72.2.2 HIV/AIDS

Becauseofits very nature, the HIV epidemic admits a simple multistate representation (Palloni,

1996). Individuals in a population exposed to HIV can occupy oneofthree states: susceptible

(noninfected), HIV-positive and asymptomatic (contracted virus but with no symptoms of

AIDS), and AIDS(full-blown symptoms of AIDS). As always, death is an absorbingstate. A

graphic representation appearsin figure 12.2. The force of infection, \,is the instantaneousrate

of infection or HIV incidence; the force of incubation, 5, is the instantaneousrate of incubation

or AIDSincidence; and the quantities w! (i = 1, 2, 3) are, respectively, the forces of mortality

for individuals who are susceptible, infected, and with AIDS. As in any application oflife

table procedures, ourinterest is to use observed events, namely, becominginfected, developing

AIDS,and dying,to estimate the underlying rates, A, 5, and wl.

This example shares an important feature with simple life table representations: there are no

reverse flows, as individuals who becomeinfected will remain infected for life. As before, death

is an absorbing state. However, not everybody in the populationis likely to becomeinfected.

Indeed, an important quantity to be estimatedis the ultimate proportion of individuals whoare

likely to become infected.

In the case of HIV/AIDSthe issue of time dependence is more complicated than in the case

of marriage. Indeed, while the force of infection is mainly dependent on the ageofindividuals,

the force of incubation is driven by the duration in the state (duration of infection) as much as

it is by age. By the sametoken,the risk of mortality once AIDS is contracted, w°, is almost

entirely associated with duration of infection and only weakly dependent on age.

Asin the case of marriage, an understanding of the HIV/AIDS epidemic requires us to answer

questions that increment—decrementtables can address very precisely: what proportion of a

cohort will eventually contract the virus? What is the average age at which individuals in

a cohort will contract the virus? What fraction of the cohort will contract the virus before

reaching age x? What fraction of the cohort will develop AIDS before age y?

12.2.3 Health, chronic illnesses, and disability

An important and lively current debate in the study of health and mortality revolves around

the idea that as improvements in survivorship and life expectancy continue,the health of those
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individuals benefited by these improvements maydeteriorate (Fries, 1980; Singer and Manton,

1994). Is it generally true, for example, that the time spentill or disabled is longer now than

it was when life expectancy was around 60 years? Could it be that when they reach their

retirement age baby boomerswill experience higherlife expectancy but also higher prevalence

of ill-health and disability than their parents did at similar ages? If this is so, what kind of

pressure will there be on resources to keep a minimum standard of well-being?

A simple way to understandthe events and relations involved and indeed to begin to answer

these questionsis, once again, through an increment—decrementrepresentation (Rogerset al.,

1990). This is shownin figure 12.3. We assumethatall individuals start out in the state “healthy”

and that they cantransit first to the state “chronically ill” and from thereto the state “disabled.”

As mostdisability is caused by chronic illnesses, we will neglect the possibility of a flow

from “healthy” to “disabled.” As in the case of marital status, reverse flows are possible as

individuals can recover from either disability or chronic illnesses.

Strategic factors that will shape the answersto the questions formulated beforeare the set of

transition rates, \! and dX. These are, respectively, the rate of incidence ofchronic illness and the

rate of recovery. To the extent that \! remainsinvariant over time but \” decreases, we should

expect that a growingfraction of the population will be occupyingthe state “chronically ill” or

“disabled.” Note alsothat if )? or “ are reduced (deathratesfall amongtheill and disabled) and

all the other rates remain unchanged, we should expect a similar result, namely, an increase in

the prevalence of chronicillness and disability. Understanding the factors that determine these

rates is then a key to providing evidence for or against the idea that morbidity is increasing or

expanding.

There are a numberof other examplesand illustrations that we could have used. Paramount

among these are applications to multiregional life tables, where the analyst is interested in

modeling migration flows betweenand within geographic regions as well as mortality (Rogers,

1995b).

12.3 Estimation of Increment—DecrementLife Tables

12.3.1 Children's experiences of marriage, consensual unions, and disruptions

A controversial topic in the current demographic and sociological literature is related to the

changing dynamic of union formation and dissolution. Over the past twenty years or so the

rate of entrance into consensual unions has increased sharply. This is thought by some to be

responsible for increasing rates of childbearing out of wedlock. In addition, some researchers
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believe that consensual unions are more likely to end up in eventual separation andthat, even
if they lead to a marriage,the latter is subject to an increased chance of divorce. Thesetrans-
formations certainly influence the family structure and material well-being of couples, but
are thoughtto produce particularly salient consequences for the early experiencesof children.
Because children’searly life experiences have potentially large effects on their later life behav-
iors and activities, it becomes importantto describe children’s patterns of exposureto different
types of family contexts dictated by their parents’ union history.
We can shed somelighton this issue by summarizing the experiencesof children at various

ages as a function of one (or both) of their parents’ union status (see Bumpass and Lu, 2000).
For simplicity, we choose to work with their mother’s union status. Thus, the study population
consists of children whose mother’s union history will determine the family context which
children encounter at a given pointin their life. Since the most strategic issues associated
with a child’s living arrangements have to do with early life impact, we are justified to focus
our attention on children’s experiences between exact ages zero and 15. Similarly, since the
main hypotheses suggest that the most important contrasts are associated with children who
experience life with a single mother, with a mother in a consensual union, or with a mother

in a marriage, we will neglect altogetherall states created by mortality. As a consequence we
start with a simplified representation of the marriage process displayed in figure 12.4. In this
figure the states are numbered sequentially and the transition rates to and from any of them are

indexed so that the first superscript always correspondsto the state of origin and the second

to the state of destination. The correspondingrates for these transitions, \'/ (x), are associated

with children, not with adult women and/or men, and refer to the rate at which children whose

mothersare in state i at age x moveto state j in the small age interval (x, x +5x). Thus, N2(x)

is the rate at which children wholive with mothers whoare not in a union experience a change

between ages x and x + 5x and beginto live with mothers whoare cohabiting but not married.

Similarly, 23 (x) is the rate at which children who live with a mother in a consensual union

move between ages x and x + 6x to a family context characterized by a mother whois married.

Relative to the marital status example given before, the state-space representation in

figure 12.4 is both simpler and more complicated. The illustration is more complicated because

we nowexplicitly consider the existence of consensualunionsas different from marriages. This

complication is justified by the increasing importance of consensual unions andthe increased

prevalence of children wholive with cohabiting parents whoare not legally married.

The state-space representation, however, is also simpler since we neglect altogether the

effects of mortality. In fact, not only have we omitted an absorbing state for death (of the

child), but we also overlookthe distinction, for example, between a child whose motheris not

in a union due to death of a spouse or partner (widowhood) and a child whose motheris not
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Figure 12.4 Multistate representation of children's experience with family contexts
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in a union due to a divorce or separation. This decision is probably inconsequential since we

are only interested in the evolution of the phenomena in a range of maternal ages (15 to 55)

where adult mortality is very low. Thus, the rates 2! and 2! will reflect primarily the risk of

separation (from consensual unions) and divorce (from marriage). By the same token, we do

not distinguish among womenin the non-unionstate according to the nature of their previous

union. Instead, we lump together divorced mothers with those who were in a cohabiting union.

This is tantamount to assuming that any heterogeneity in the transition rates out of this state

(non-union) can be legitimately ignoredor, equivalently, that the processes of union or marriage

formation for those whose previous union was a cohabitation is essentially the sameasitis

for those whose previous union was a marriage.If this were not a realistic assumption — and,

in all likelihood,it is not so — we should distinguish the existence of two disruptionstates.

12.3.2 Estimation of rates

The National Survey of Family Growth (NSFG)is a nationally representative survey of house-

holds in the United States implemented periodically by the National Center for Health Statis-

tics. The goal of the surveyis to retrieve information onfertility and related health issues. The

NSFG-5 fielded in 1995 includes 10,847 female respondents who are 15—44 years of age in

1995 (Potter et al., 1997). Since the NSFG-5elicits union andfertility histories for the women

in the sample, we are able to reconstruct their children’s experience of cohabitation, marriage,

or union disruption (Bumpassand Lu, 2000). With the retrospective information on events that

occurred during the period 1990-4, we calculate observed single-year age-specific rates for

every relevant age and flow displayed in figure 12.4. These rates, which we will denote ; M4 ;

correspond to the ratios ; DyJ /1N,.' of observedtransitions from i to j in the age interval x to

x+1(,Dp'x ) to the estimated midperiod population in state 7 in the age group (; Ny,')These

rates are displayed iin table 12.1.! Just as the mortality rates ; M,’s defined in chapter 3 were

the basis for the life tables in the two-state case, so the 1MuJ "s rates will be the basis for life

tables associated with eachstate in figure 12.4. Thus, in this application we will have onelife

table for children whose mothers are not in a union (state | or “non-union’’), one for children

whose mothersare in a consensual or cohabiting union (state 2, “cohabitation”), and one for

children whose mothers are married (state 3, “married’’). As in chapter 3, the central quantities

in these tables are the corresponding probabilities of experiencing the events.

Recall now the procedure used when there are only twostates to consider, origin and desti-

nation, and only one flow from origin to destination. In this case we only focused on quantities

describing the exits or the flow away from the origin state. To do so we calculated values

of ;M,’s and added an assumption about the behavior of the underlying risk to estimate the

values of 1 qx, 1d,, and ; L,. For example, with the assumptionthat /(x) is linear over one-year

intervals, we could uniquely estimate ;g, from ; M, for every age group, and then derive the

quantities dy and ; L,.” Although wedid not describe the procedure quite in these terms, we

could say that for each age (other than age 0)in thelife table we have three equations in three

unknowns. The three equations in the linear case are:

Ix + 1) =1(x) — 14x

{dy = iM, -1Lx (12.1)

ply .5-[l(x) +(x + 1]
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Table 12.1: Observed values of |Mu for the states andflows represented

in figure 12.4
 

 

   

 

Age State at beginning ofage interval

1 (non-union) 2 (cohabitation) 3 (marriage)

Destination Destination Destination

2 3 ] 3 I 2

0 0777 0421 .0968 .1460 0121 .0086

1 0858 0405 0984 1411 0211 0082

2 .1068 0350 .0759 .1468 0196 .0069

3 .1054 0354 0829 .1639 0210 0045

4 0832 0475 .0656 1282 0216 0084

5 .0939 0497 0555 1433 0214 .0076

6 .0617 .0469 0506 1229 0251 0022

7 .0808 0580 0471 .1326 0201 .0078

8 0507 0305 .0655 1387 .0196 .0027

9 0621 0375 0815 .1430 0215 0031

10 0854 0411 0508 .1370 0201 .0049

11 .0435 0343 0855 .1149 .0186 .0032

12 .0656 0521 0880 .0896 .0260 .0043

13 0427 0313 0812 .1307 .0204 .0071

14 .0837 0314 0851 .0712 .0260 .0066
 

Source: NSFG-5. See also Bumpass and Lu, 2000.

Since for each age x, /(x) is known — a result of the recursion that starts from an arbitrary

radix or value for /(O) — the three unknownsare /(x + 1), jd, and ; L,. One caneasily verify

that the solution for jd, is

dy =I(x)-IM
l * 1 + 3 ° | M.

or, equivalently,

1—.5- 1M,
l 1) = /(x) - —————_— 12.2(e+ I) 10) (12.2)

This implies that

_ 1Mx

14x ] + i) . 1M,

the kernel of the empirical solution to the two-state life table in chapter 3.

We can proceed in an analogous way in the multistate case provided that we account for

the fact that at each age there could be more than one flow. To do this mostefficiently, it is

convenient to introduce more notation. We define the following quantities:

i! (x) 1s the numberof individualsin state 7 at exact age x;

id,’ is the numberof individuals moving from state i to state j between ages x and x + 1;

| L'. is the numberof person-yearslived in state i between ages x and x + I.
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Thereader should verify that the following equalities hold forall ages:

iw +1) =) + Yo idl’ — So dy Equation of type 1
i jJ

id = {My - iL, Equation of type II (12.3)

LiL 5° (x) +(e + DI Equation of typeIII

Since in the representation of figure 12.4 we have three different states, for each age group

we will need three equations of type I, and also three equations of type IL. Similarly, since

there is a total of six flows ortransitions, we will need six equations of type II. This amounts

to a total of twelve equations. The unknowns will be three values of J'(x + 1), three valuesia

Li, and six values of ;d,J or, equivalently, six values of the conditional probabilities ,g,/

To generate estimates of the quantities we seek, igi! , we needto solve a system of twelve

equations in twelve unknownsfor each age. Thisis certainly nota trivial task but it is not intrin-

sically difficult. Indeed, and as we show below,calculation of the solution involves consecutive

operations of inversion of a matrix, one for each age group (except for age zero). Although the

matrix inversion operation is not always smooth,there are a numberof software packagesthat

can handle the assignmentveryefficiently (see section 12.7).

Using the rates displayed in table 12.1 we solve the system of equations, one for each age

group, and then proceed to calculate the quantities / '(x), di , and Li for all three relevant

states. All calculations are based on a radix of /! (O) = 1, 000 forall 7, that is, we arbitrarily

assume that we start with a synthetic cohort of 3,000 children aged 0, one thousand in each

state. For accurate estimates, of course, it would be necessary to knowthe actual distribution

of children at birth amongthestates.

Table 12.2 displays the values of igi! , and table 12.3 displays the values of /'(x) and

id,/. In table 12.2 the values in the first of the three columns associated with each state

correspond to the conditional probabilities of remaining in that state at the end of each one-

year interval. Thus,in the first age group andforstate 1, the value in the first column is .8902

(= 1 — .0657 — .0441). Althoughthe values of Li are implicit in table 12.3, we omit them to

avoid excessive cluttering. Finally, the estimated expected durations at age zero spent in each

of the three states are displayed in table 12.4.4

12.3.3 Interpretation of estimates

For each origin state i and for each age x, the conditional probabilities of moving from state

to state, ;q,’, displayed in table 12.2 add up to 1.0, as they should. Thus, for example, the

three possible transitions for a child aged zero wholived with a mothernot in a union are:(a)

to continue to experience the same living arrangement with probability .8902, or (b) to live

with a cohabiting mother with probability .0657 or, finally, (c) to live with a married mother

with probability .0441. Combining the conditional probabilities in table 12.2 with radices

l'(0) = 1, 000 for eachi leadsto the figures displayed in table 12.3. According to this table,

at exactly age 5 there are 837 children in state 1, 604 in state 2, and 1,559 in state 3. Note that

these numbers add up to 3,000 since there is no child mortality in our representation, and all

3,000 children in the original cohort must be in one of the three states at every age.

The columns jd,J also have straightforward interpretations. Thus, reading down the column

id}? we find that among the 837 children who lived with a mother not in a union at exact
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Table 12.2: Estimated values of ig forthe states andflows represented in figure 12.4
 

 

  

 

Age State at beginning ofage interval

1 (non-union) 2 (cohabitation) 3 (married)

Destination Destination Destination

I 2 3 2 3 ] 2 3

0 8902 0657 .0441 0823 .7868 .1308 .0117 .0080 9802

1 8850 0724 0427 .0841 .7898 .1261 .0199 .0080 .9721

2 8711 0900 .0381 .0651 .8032  .1317 0183 .0070 .9747

3 8723 .0879 0398 .0705.— .7839—Ss(««1456=)— 0196 .0049 9756

4 8800 0715 0485 .0574 8259 1167 .0202 .0083 .9714

5 8686 0800 .0514 0485 .8217 .1298 0199 .0077  .9724

6 8988 0540 .0472 .0455 .8418 1127 .0236 .0027 .9738

7 8723 0696 0581 .0416 .8371 1.1213 .0187 .0078 .9735

8 9237 .0443.— .0320—s «.0583—s«€8162~—S1254—S 0187) 0029 9784

9 9076 =.0533)—_ 0391) .0712—s— 8003) 1285)—Ss .0204.—S .0033—s 69763

10 8832 0736 .0432 0449 .8304 1247 0188 .0052 .9760

il 9270 =.0381_ 0349s 0758 8195S 1047S 0178 .0032.~— 9789

12 8918 0571 0511 .0775  .8394 0832 .0244 0046 9710

13 9304 =.0374)—S 0322) .0720—s—«w8102~——s—.1178)~=3=— 0197s 0067 9736

14 8945 0736 .0318 .0756 .8582 .0663 .0245 .0070 .9685
 

Source: NSFG-5. See also Bumpass and Lu, 2000.

Table 12.3: Estimated values of I' (x) and di! for the states andflows represented in

 

 

   

 

figure 12.4

Age State i

1 = | (non-union) tL = 2 (cohabitation) 1 = 3 (married)

Mix) id dB P(x) id?! dB Bix) dB! a?

0 1,000 66 44 1,000 82 13] 1,000 12 8

1 984 71 42 861 72 109 1,155 23 9

2 966 87 37 760 49 100 1,274 23 9

3 915 80 36 706 50 103 1,378 27 7

4 875 63 42 641 37 75 1,484 30 12

5 837 67 43 604 29 78 1,559 31 12

6 787 43 37 576 26 65 1,637 39 4

7 772 54 45 531 22 64 1,696 32 13

8 728 32 23 512 30 64 1,761 33 5

9 736 39 29 454 32 58 1,810 37 6

10 737 54 32 409 18 5] 1,854 35 10

1] 704 27 25 403 31 42 1,893 34 6

12 717 4] 37 363 28 30 1,920 47 9

13 714 27 23 355 26 42 1,931 38 13

14 728 54 23 327 25 22 1,945 48 14

15 724 — — 348 — — 1,928 — —
 
Source: NSFG-5. See also Bumpass and Lu, 2000. Calculated from table 12.2. Note that

the sum ofJ! (x) for each row should be equal to 3,000. Discrepanciesare dueto rounding.
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Table 12.4: Expected duration (or waiting time) by state and state oforigin
 

State of origin (at age 0) Expected numberofyears to be lived in state j =
 

1 (non-union) 2 (cohabitation) 3 (married)
 

All 4.0 2./ 8.3

] 8.0 2.5 4.6

2 2.8 5.3 6.9

3 1.3 6 13.1
 

Source: First row calculated from table 12.3. Row entries do not always add to 15.0 due

to rounding.

age five, 67 experience a change and begin living with a mother who1s in a cohabiting union.

Similarly, 43 of the original 837 children who werein state | at exact age 5 begin living with a

married mother betweentheir fifth and sixth birthdays. A similar interpretation applies to the

other columns.

The functions /' (x) are not always monotonically decreasing, reflecting the fact that at every

age and for each state there are both decrements and increments. Thus, it should be clear that

it is not possible to use / '(x)/1'(0) as a measure of the probability, for a newborn in state j,

of remaining in state i at age x. Similarly, the ratios /'(x + k)/I'(x) no longer measure the

conditional probabilities of remaining in state 7. One can, however, use the ratios

I(x)/ dO)

to representthe probability that a newborn will be in state i at age x. For example, the probability

that a newborn will live with a married motherat age 10 is .618 (=1854/3000).

There are two typesof life expectancy, or expected waiting times, that can be derived from

increment — decrementlife tables. Thefirst is an unconditional expected duration representing

the average duration of time lived in a particular state, regardless of origin. According to table

12.4, the expected numberof years spentin states 1, 2, and 3 by the members ofourfictitious

cohort are respectively 4.0 years, 2.7 years, and 8.3 years. This means that a memberof the

original cohort (regardless of his/her starting state) is expected to live 4.0 years of his life

between ages zero and 15 (exactly) with a mother who is not in a union, 2.7 years with a

mother in a cohabiting union, and the remaining years with a mother in a marriage. These

figures add up to 15.0; we have accountedfully for all of the first 15 years of life.

The second kind of waiting time or duration in a state is called “conditional,” and it is

important to understand the difference between unconditional and conditional waiting times

or duration (Schoen, 1988). The unconditional duration or life expectancy in state j at age x,

e/(x) —the numberofyears oflife to be livedin state j after age x — can be directly calculated

from the values of 1 Ly (y > x) implicit in table 12.3. By construction these valuesare additive.

In particular,

>- e/ (0) = e(0)
J

In our casethis is fifteen years since there is no child mortality.

By contrast, the conditional expectations or conditional duration, W'/ (x) — the expected

numberof years to be lived in state 7 by those whoarein state i at exact age x — must be
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estimated using the trajectory followed by membersof the cohort who occupystate i at exact
age x and then calculating the time spent in state j. These calculations are tedious but not
intrinsically difficult.

Supposethatthere are /' (x) children whoarein state i at exact age x. We then estimate a new
set of life tables for a cohort with /! (x) members whostart in state i and for whom thestarting
age is not zero but age x. From these newly estimated life tables we will obtain unconditional
expectationsor values e/(y) for all j and for y > x. These valuesare associated with the /; (x)
children in the new initial cohort, not with the original cohort of children. To avoid confusion
we will label these unconditional expectations €/(y) for y > x. It followsthat the quantities
we seek, W4/(x), are indeed the values €/ (x). It also follows that the total number of years

lived after exact age x by those whoarein state i at age x must equal

Yow(x)
J

The values displayedin the first row of table 12.4 correspondto e/ (0) whereasthose in the

remaining rowsare the quantities W/ (0).> An interesting feature revealed by these quantities

is that children born to a married mother will spend most of their first fifteen years oflife in

such a state, whereas those born to mothers not in a union or in a cohabiting union will spend

muchoftheirfirst fifteen years of life in those samestates.

12.4 Formalization and Generalization of Relations

We now examine moreclosely the nature of the functions //(x + 1) and ,d,’ and explore key

interrelations between them.

12.4.1 The nature of id

Whatis ,d23 in ourillustration? It is the number of children who reached exact age x with a

mother in a cohabiting union and whose mother was married whenthey (the children) reached

age x + 1. This quantity is a result of a multiplicity of flows, some involving only onetransition,

others involving more than onetransition, some involving moves awayfrom state 3 and others

movesinto state 3. For example,it includes children whose mothers werein a union at age x

and then married at age x +6 (O< 6 <1) and stayed married until age x + 1. But it also includes

children whose mothers experience a potentially more complicated sequence of moves such

as: cohabiting when the child is age x, marrying whenthe child is x + 6 (O< 6 <1), divorcing

whenthe child is x + 5’ (6 < 6’), entering another cohabiting union at age x + 6” (6 < 8”)
and, finally, marrying again and staying married until the child reaches age x + 1. Thus, \d2

is affected not just by flows into state 3 but also by those out of it. The quantity, therefore,

excludes individuals whostart in state 2, move to 3, and then exit this state without reentering

it before attaining age x + 1. It also excludesindividuals with multiple transitions, such as the

one described before but with an extra transition out of state 3 without reentry before age x + 1.

It is clear then that if rates of exits out of state 3 were lower, the quantity ;d23 could be higher.

In most applications either the time intervals are very short or the rates are so low that the

likelihood that an individual will experience multiple events in a single time interval is remote.

But even in the most conservative case, that is, when only one moveperindividual per time

interval is permitted, ;d,’ is no longer to be considered a measure of pure decrements, except

when j is an absorbingstate.
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12.4.2 The nature of I'(x + 1)

Wealready noted that the function / '(x +1) in table 12.3 is not strictly decreasing with age. For

example, the value attained by /3(x) at age 7 (=1696) represents anincreaserelative to the value

of 1° (6) (=1637). This occurs because /3(x) reflects the ebb and flow of marriage as well as of

the other phenomena. Inthe case of state 3, between ages six and seven there is a decrement

of about 39 caused by divorces, and another decrement of 4 caused by transitions toward

cohabitation. But there are also increments of 37 and 65 accounted for by transitions from

state 1 andstate 2 respectively. Clearly, the function /'(x + 1) is influenced by the magnitude

of the transition rates (into and out of the state) and also by the magnitude attained by the

functions // (x) forall j different from 7.

12.4.3 General linkages

These linkages between the various states are rendered more fully if we construct a matrix

containing the sources of increments and decrements for each state i. This matrix, which we

call (x + 1), contains as elements the values ‘IJ (x + 1), the numberof individuals who were

in state i at exact age x and end up in state j by age x + 1. Fori # 7 the function N(x +1)

is equivalent to jd,’ ; indeed, these values represent the number of individuals who move

from state i to state j in the age interval. By contrast, the values of the function '/‘(x + 1)

represent the survivors of the original “cohort” of individuals whostarted out in state 7 at age

x. Therefore it must be a strictly decreasing function of age that depends onthe initial value

iy! (x) on the one hand, and on the decrements consisting of all those individuals who moved

out of state 7, namely

>» 1d’,
J#l

on the other.

We can nowestablish the link between the elements of /(x + 1) and those of /(x) via the

quantities id! . In a very general situation when we have non-absorbing states = 1,...,k:

Kx+1) =l(x) — D(x) (12.4)

or, in longhand:

tae +1) Mat) es) TAF) Ila) OO .-. 0
Het Path oat) |_ 0 71 (x) --- 0

kj] (x + 1) KO 41) _ kik 1) 0 0 7 kik41)

(Xid,! —;d}*  ...  ~,a}* )

a2! Yidg -+.  =yd2h

  kh gk gk
\ 1x 14x Did |
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The matrix D(x) is a matrix of increment and decrements. Quantities in the diagonalentries,

the cells (i, 7), are decrements associated with state i (the sum ofall the id; or exits out ofi).
By contrast, quantities in off-diagonal columns,the cells (1, 7), are incrementsforstate i.
The matrix equation (12.4) preservesall the information contained in equation of type I in

expression (12.3). The diagonal elements of matrix /(x + 1) will always be smaller than the
corresponding elementsat age x since the values in the diagonalofmatrix D areall decrements.
They are like the /(x)’s in a simple death process.© The numberof individuals whoare in state
i at exactly age x + 1, which we symbolize as /'(x + 1), must be the sum of the elements in the
corresponding columnofthe matrix /(x +1). Thus, for example, /!(x + 1) is simply the sum of
the elementsofthe first columnof I(x +1), namely }/4'(x +1) 4+?7/(e +1 +---+4(41).
However, the similarities with the simple life table stop there. In particular, it is not the case
that the sum of decrementsfor state i overall ages x will add up tol'(O), as is in fact the casein

the single decrementtable. Since each of the quantities jd,J expresses a frequency of events,
the ratio to the numberofyearslived ortotal exposure in the interval (x, x + 1) will represent
a rate. In the notation of the life table we oughtto have that

tjij — 14x
XxX — .

Lx
 

where ;d,’ is the numberoftransitions from state i to state j in the age interval, , Li is the
total numberof person-years ved by those who werein state i during the age interval in a

stationary population, and jm,’ are transition rates for the stationary population.

The observational counterpart to 1m‘J are the quantities ; M,’, or the ratios ; D;fl /1N,.t of

observed transitions from i to j in the age interval to the estimated midperiod population in
the age group.

Just as we can arrangethe values of ;dJ in a matrix, so we can create a matrix for the values

of the observed transition rates, ; Muy

7
> 1M,! Me —,M} a —,MIlk

21 23 ag 2k
M(x) =|) IMs Yims TIMIMs (12.5)

u
—Mii -|MP _Mis SO My"

whichis obtained when wedivide the quantities in the matrix D(x) by the corresponding values

of exposure. This matrix equation is equivalent to equation of type II in expression (12.3).

Let us assumethat the functions representing the number of survivors in each state are

linear between any twoages,thatis, that the values of Li can be generated as the average of

I'(x) and li(x +1). Similarly, we assumethat the values iL = 5. (W(x + 1)) are a good

representation of the numberof person-yearslived in the age interval (x, x + 1) by those who

moved from state i to state j. If so, we can arrange the values of ;L‘/ in a matrix and use

matrix notation again to write the following:

L(x) =.5-(la) +lat+)] (12.6)

a matrix equivalent of equation of type III in expression (12.3).
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Substituting (12.6) into (12.5) we shall obtain the solution for /(x + 1) as:

Kx +1) =ix)-(1- .5- MO)+ .5- M(x)! (12.7)

where J is the identity matrix and the superscript “—1” stands for the inverse of the matrix.

This is a formal solution to the simultaneous equations weintroduced in expression (12.4).

Note that expression (12.7) is the matrix equivalent of the two-state solution where

] =! 1—.5- My,

OED SIO) TSM,
To calculate /'(x + 1) associated with each state we need to solve for the corresponding

values using expression (12.7) for each age group. As in the two-state case, these values are

sufficient to calculate all other quantities of interest. The process cannot get started, however,

unless we specify a radix, /'(0), which in our example wassetto be /J(0) = 1,000 forall j.

We showedthat calculations needed to construct increment—decrementlife tables are, in

principle at least, fairly simple: one needs to invert a matrix for each and every one of the age

groupsor time intervals considered relevant, and then calculate the quantities of interest from

the resulting estimates. These quantities are then assembled in the form oflife tables, one for

each state. With a few states (less than four) and a handful of age groups, matrix inversion

presents few difficulties, and can be done expeditiously with a hand calculator. When the

numberof states and age groupsis larger, however, matrix inversion becomestedious and can

be better handled by a computer. In the last section of this chapter we provide some suggestions

regarding software to accomplishthese tasks.

12.4.4 Introduction of mortality or other absorbing states

Although in examples such as the one considered above,it is in principle justified to neglect

the existence of an absorbing state, this may not always be the case. For example, to model

the dynamics of HIV/AIDSor of health conditions at older ages, we will need to explicitly

introduce mortality.

The introduction of an absorbing state presents no added difficulties but does require a

suitable redesign of matrices and vectors, one that facilitates interpretations and simplifies

numerical manipulations. If we were to introduce mortality in the example of children’s family

life experiences we would needto include an additional state and all associated transitions.

The matrices would normally be arranged in such a wayasto have death asthelast state to be

considered(the last row in matrices /(x), [(x + 1), M(x)). By convention wesetthe last row

of matrices /(x + 1), D(x), and M(x)to zero to reflect inactivity in the absorbingstate. Aside

from these changesin the design of our matrices, no other modifications are required.

12.4.5 Closing the multistate table

Asin the case of a simple life table, the calculation of quantities correspondingto the last age

group or duration presents some difficulties. In chapter 3 we saw that to close the table we

needed to assumethat the population wasstationary above somehigh age, w. This enabled us

to set the following equation:

I(a)
Lo = .cobw = (12.8)

to solve for the unknownvalue of the numberof person-yearslived.
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In the multistate case we proceedin an analogousfashion. Theonly difference is that we must
now accountfor several states of interest, i = 1,2,...,k. Thus in the example of marriage
and union formation and dissolution we need to apply equation (12.8) three times because
there are three values 4oL!, for which we need to solve. As the reader must have guessed, the
operation involved is simply a matrix multiplication:

L(w) = (w) - [M()] 7! (12.9)

where L(w) and /(w) are diagonal matrices. M(w) is a (k x k) matrix constructed by taking
into accountonly k non-absorbingstates.

12.5 The Simplest Case: A Two-state System

In this section webriefly review the explicit solution for the two-state case. We do this because
the expressions for the relevant quantities are revealing of the dynamicsof the process and of
the consequencesof someof the underlying assumptions.

Suppose we have a two-state system with no absorbingstate. The solution for the conditional

probabilities of staying in states | and 2 in the age interval x tox + 1 (, pi} and pe”) and

of moving from state | to state 2 and from state 2 to state | in the age interval x to x + 1,

(gi? =1— 1p}! and 1q2! = 1 — 1 p2!),are:

  

  

21 |

ipl = 1+ .5-1My! —.5-1My qx = 1M,"© 1 4.5- M21 4.5. MP 6 +S Met +5 My?
1+.5-;Ml2—.5.,M?! 1M?!

IP? = 5 * gy = .— 14..5-)M21+.5.,M}2 1+.5-,;M2!+.5-,;M!2

The reader should verify that this solution results from expression (12.7) with the following

2x 2 matrix M(x):

M(x) = (
12 12iM, —|M, )
21—|M | M2!

A comparison of the conditional “survival” probabilities for this case with those obtained

in the simple life table is revealing. The expression for the conditional probability of moving

from state 1 to state 2 in the simplelife table is given by the ratio ; M,/(1+.5-,M,), whichis

approximately equal to the product of ; M, - (1 —.5-|M,). This product expressesdirectly the

implications of the assumption oflinearity: it is tantamount to requiring that all events occur

at the midpoint of the interval, at which point there should be a fraction of approximately

(1 — .5 - | M,,) of the original survivors whowill be exposedto an attrition given by ; My.

In the case of a two-state system with two flows the conditional probability of moving from

state 1 to state 2 can be interpreted analogously. Wefirst survive individualsin state 1 at age x

up to the middleofthe interval (x, x + 1). We do this by using the quantity (1 — .5-;M!*). We
then apply the rate ; M2 and the factor (1 — .5-,Maly, the latter accounting for the fact that

some individuals who movefrom 1 to 2 will experience a move backto the original state. Thus

the probability that an individualin state 1 at exact age x 1s in state 2 at exact age x + 1, ig)’,

1S:

pMl*.( —.5-,M2!)- (1 —.5- M1?)
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which, when the rates are small, is approximately equalto:

,M}?

1+ .5- | M2! + 5. iM}
 

An analogous derivation results in the second equation for gai.

12.6 Alternative Solutions: The Case of Constant Rates

The solution expressed by equation equation (12.7) rests on the assumptionthat the functions

'1J(x) are linear in unit intervals. This implies that the underlying risk w/J (a) in the unit

interval, (x < a < x +1), is increasing. In somecases it may be more accurate and convenient

to assumethat the rates are approximately constant in an interval. This implies that /(x)’s are

nonlinear (exponential) functions of age. An analogous consequence followsin the multistate

case:all the quantities '// (x + 1) become an exponential function ofthe rates 1Mx. The only

caveat here is that we are dealing with an array of functions and that the expressions involve

matrices, not scalars. Indeed, the solution for the matrix /(x + 1) 1s now

I(x +1) = I(x) - exp{—M(x)} (12.10)

where [(x + 1), [(x) and M(x) are the same matrices defined before. Expression (12.10) is

somewhat meaningless without a definition for the matrix-valued exponential function. Just as

in the one-dimensional case, the function exp(q), where g 1s any real number, can be expressed

as an infinite series of the form (1 + g + g7/2! + g>/3! +--+), so it is possible to define

exp(Q), where Q is ann x n matrix, as

exp(Q) =1+ 0+[QOVC/2!) +[@PU/3) +---

In mostcasesthe rates will be sufficiently small that only thefirst or first two elements in the

series will be necessary to approximate well the quantity on the left of the expression.If so, the

solution for the multistate life table system is even simpler than in the case when /(x + 1) was

assumedto be linear. This is because no matrix inversion and at most one matrix multiplication

is required.

Howis one to choose between alternative procedures to estimate the required conditional

probabilities of an increment—decrement table? A good answer would be that under very

general conditions, the linear methodis to be preferred on the groundsof simplicity and ease

of calculations. However,it is known that the assumption oflinearity leads to a fair amount of

inaccuracy when the underlying risks are decreasing rapidly (Schoen, 1988), and that it may

even lead to outright impossibly negative values when someorall of the transition rates are

very large (Hoem and Funck-Jensen, 1982; Nour and Suchindran, 1984). Thus, the exponential

method, or alternatively the so-called “mean duration of transfer method” (Schoen, 1988), are

to be preferred on the grounds of consistency.

12.7 Programsfor the Calculation of Increment—DecrementLife Tables

There a number of computer programsavailable for calculation of increment—decrementlife

tables. In the late seventies, Willekens wrote a quite general program implementing the linear

solution, but unfortunately it was not made widely available. The first program to be quite
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broadly accessible was designed and written by Robert Schoen. The corresponding Fortran
code is fully included in his book (Schoen, 1988). The main limitation of this program is that
it restricts estimation andcalculations to a four-state multistate system.

Morerecently, Andrei Rogers, a pioneer in the application of increment—decrementtables
procedures, made available a DOS-compatible program that performsfairly general calcula-
tions using the assumption oflinearity (Rogers, 1995b). Since the program runs on any PC
with minimum memory requirements, it is an attractive option. Its only limitation is that the
numberof output functions associated with the estimated life tablesis fairly restricted.

Pete Tiemeyer and Glen Ulmer, two former Ph.D. students at the Center for Demography and
Ecology, University of Wisconsin, wrote a C++ program that can run on any PC with minimal
memory and hard disk space requirements. The program implements the linear solution and
can handle any numberofstates and time intervals (Tiemeyer and Ulmer, 1991). Finally,it
outputs a very large number of functions and outcomes. The program with accompanying
instructionsfor installation and implementationis freely available from the authors.

Inevitably each empirical application will demandattention to special conditions, data inputs
and outputs. Mostof the available softwareis not generalor flexible enough to handle a very
broadclassof applications or to implementalternative solutions (exponential insteadoflinear).
Thus, in most casesit will be up to the researchers to create their own tool for estimation and
calculation of increment—decrementtables. Our suggestion is to use general software packages
such as STATA, S-PLUS, or MATLABthat are conducive to mixing preprogrammedroutines
(such as matrix inversion) with user-defined subroutines (for example those required to estimate

conditional life expectancies).

NOTES

1. In this notation ;M,’ correspondsto the transition rate betweenstate i andstate j in the age group

x, x +1. The rates A’/(x) are the continuous version ofthe 1 My’s.

2. The reader should rememberthat the assumptionthat /(x) is linear in one-yearintervals is equivalent

to assuming that ja, = .5, and that (x) is a monotonically increasing function ofx.

3. It is important to rememberthat the system of equations in (12.3) rests on the assumption that we

know thevalues of M,’. Normally this requires that the observedrates be identical to the onesin the

stationary population.

4. The quantities displayed in tables 12.2, 12.3, and 12.4 were obtained using the matrix solution

discussed later in this chapter. These estimates are slightly different from those that one would

obtain solving the system of 12 equations for each age group. Because of these differences, the

empirical relations between estimated quantities (such as ;d,’ and 1M) do not exactly correspond

to what is implied by the expressions in equation (12.3).

5. Notice that for each j in the table, e/(0) is NOT equal to the weighted average of the values W’/ (0)

fori = 1, 2,3.

6. Because D(x) is a matrix of decrements AND increments, there is no compelling justification to

write expression (12.4) with a negative sign. We could have just as well have written /(x) + D(x)

and changedthe sign ofthe cells of the matrix D(x).
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