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Summary

Confidence intervals for the difference of two binomial proportions are well known,
however, confidence intervals for the weighted sum of two binomial proportions are less
studied. We develop and compare seven methods for constructing confidence intervals for
the weighted sum of two independent binomial proportions. The interval estimates are
constructed by inverting the Wald test, the score test and the Likelihood ratio test. The
weights can be negative, so our results generalize those for the difference between two
independent proportions. We provide a numerical study that shows that these confidence
intervals based on large-sample approximations perform very well, even when a relatively
small amount of data is available. The intervals based on the inversion of the score test
showed the best performance. Finally, we show that as for the difference of two binomial
proportions, adding four pseudo-outcomes to the Wald interval for the weighted sum of
two binomial proportions improves its coverage significantly, and we provide a
justification for this correction.

Key words: border security; leakage survey; likelihood ratio test; quarantine inspection; score
test; small sample; sum of proportions; Wald test.

1. Introduction

Construction of confidence intervals for the difference of proportions has been widely
studied, due to its numerous applications in biostatistics and elsewhere, see e.g. Anbar
(1983), Newcombe (1998a); Zhou, Tsao & Qin (2004). However, the construction of
interval estimates for the sum of proportions, and more generally the weighted sum or
proportions, has received much less attention.

Motivation for this study came from a recent undertaking to develop performance
indicators in the operation of quarantine inspection, (Robinson; Decrouez & Cannon, ‘A
regulator’s performance indicator’, pers. comm., 2012). Briefly, consider the following
setup. A collection of N items is sequentially presented for inspection, where N is large.
Then n1 of these items are randomly selected with equal and known probability and
inspected for contamination. Suppose that x1 items are identified with quarantine contami-
nation, and we assume that x1 � Biðn1; p1Þ. The inspections are known to be imperfect,
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but the probability of contamination being missed is unknown. Those x1 items are
cleaned; that is the contamination is removed.

Then, an independent, random, equal and known probability sub-sample of
n2ðn2 � n1Þ items is taken from the n1 � x1 items that were inspected and passed. These
n2 items are inspected thoroughly in a process that is assumed to detect all contamination.
Suppose that x2 items are identified as contaminated, and we assume that x2 � Biðn2; p2Þ.
The re-sampling process is referred to as a leakage survey, but it is comparable to a gold-
standard test procedure.

The x1 out of n1 items represent the rate at which contamination is approaching the
border, whereas the x2 out of n2 items represent the rate at which inspections fail to
capture contamination. In an operational setting these random variables can be assumed to
be independent, and they may differ sharply.

An estimate of the proportion of items that has passed through the entire inspection
process that are still contaminated is developed through the following process. There are
now two streams of leaked items to consider: those among the n1 inspected items that are
not intercepted and those among the N � n1 items that are not inspected. The count of
contaminated units that leaks through the inspection is estimated by

bl ¼ n1x2
n2

;

so the estimated total number of contaminated units in the whole pathway is

bc ¼ x1 þ
n1x2
n2

� �
N
n1

and the estimated number that remains after the inspection is

bL ¼ x1 þ
n1x2
n2

� �
N
n1

� x1 � x2

and, finally, the pathway-level leakage rate, expressed as the proportion of arriving items,
is

bh ¼ x1
n1

N � n1
N

þ x2
n2

N � n2
N

which can be rewritten as bh ¼ abp1 þ bbp2, where bp1 ¼ x1=n1 is the estimate of the bino-
mial parameter for the random variable x1 defined as above, bp2 ¼ x2=n2 is the estimate
of the binomial parameter for the independent random variable x2 defined as above, and
the two constants are a ¼ 1 � n1=N and b ¼ 1 � n2=N which depend only on known
elements of the design.

It is of interest to provide an interval estimate for the leakage in order to provide the
manager with information about the quality of the estimate.

In medical studies, the assessment of performance of a prediction model using a
weighted average of sensitivity and specificity has received increased interest recently.
The present study provides methodology for constructing confidence intervals for these
novel measures. In Vach, Gerke & Høiland-Carlsen (2012), the success of a diagnosis
study is defined using the so-called ‘liberal criterion’, expressed as the weighted average
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of sensitivity and specificity. Decision-analytic methods take into account the harm from
unnecessary treatment or overtreatment using the net benefit, expressed as the weighted
sum of true and false positive counts, see Vickers & Elkin (2006); Vickers et al. (2008).
See also Newcombe (2001); Steyerberg et al. (2010) for assessment of these new mea-
sures of performance.

A general method for constructing confidence intervals is by the inversion of a test sta-
tistic. Suppose we wish to find a 100(1 � a)% confidence interval for some parameter h.
Denote by bh the maximum likelihood estimate of h, given independent and identically dis-
tributed observations X1; . . .;Xn. Then, under general assumptions, n1=2ðbh � hÞ is asympto-
tically normally distributed with zero mean and variance I�1ðhÞ, where I(h) is the Fisher
information for X1. This setup suggests using the Wald test to test the null hypothesis
H0 : h ¼ h0 against the two-sided alternative h 6¼ h0. The statistic Wnðh0Þ ¼
nðbh � h0Þ2Iðh0Þ can then be used to construct a 100(1 � a)% confidence interval, given
by the set of h0 values such that PðW2

n ðh0Þ � z2a=2Þ ¼ 1 � a, where za is the (1 � a)-th
quantile of the normal distribution. Alternatively, if we denote by lðhjx1; . . .; xnÞ the log-
likelihood of the data, and SðhÞ ¼ @lðhjx1; . . .; xnÞ=@h the score function, the asymptotic
chi-square distribution of the statistic Ynðh0Þ ¼ S2ðh0Þ=Iðh0Þ can be used to provide a con-
fidence interval for h. Finally, one can invert a likelihood-ratio test, with statistic given by
ZnðhÞ ¼ �2ðlðh0jx1; . . .; xnÞ � lðbhjx1; . . .; xnÞÞ, which can be shown to have an asymptotic
chi-square distribution.

These three methods, the Wald test, the score test and the likelihood-ratio test, can
be used to provide confidence intervals for the weighted sum of two independent binomial
proportions.

The rest of the paper is laid out as follows. In Section 2, we explain how to obtain
such intervals. We outline and report a numerical study of the performance of these meth-
ods in Section 3, Section 4 provides a discussion, and Section 5 gives an application.

2. Interval estimators

Let X1 and X2 be two independent binomial random variables, with respective sample
sizes n1 and n2, and probability of success p1 and p2. In this section, we construct confi-
dence intervals for the weighted sum ap1 þ bp2, where a 6¼ 0, b 6¼ 0, by inverting three
two-sided tests: the Wald test, the score test and the likelihood ratio test. To keep this
study as general as possible, we do not assume that a and b are strictly positive. There-
fore, confidence intervals constructed here match existing methods for the difference of
two proportions in the particular case b = 1 and a = �1. Suppose without loss of general-
ity that |a | � |b |. Then ap1 þ bp2 ¼ bða=bp1 þ p2Þ, where |a/b | � 1. Therefore, we
can restrict the construction of confidence intervals for the weighted sum of two binomial
proportions ap1 þ bp2 to the case where �1 � a � 1, a 6¼ 0, and b = 1. Let
h ¼ ap1 þ p2 and w ¼ ap1 � p2. The range of possible values of h, the parameter of
interest, is [0, 1 + a] if a > 0 and [a,1] if a < 0.

2.1. Wald interval

The first interval is obtained from the Wald statistical test, which evaluates the stan-
dard error of the maximum likelihood estimate bh ¼ abp1 þ bp2, where bp1 ¼ X1=n1 and
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bp2 ¼ X2=n2. Denote by z ¼ za=2 the (1 � a/2)-th quantile of the normal distribution.
Based on a large-sample approximation, a confidence interval for bh is given by

bh � z a2
bp1ð1� bp1Þ

n1
þ bp2ð1� bp2Þ

n2

� �1=2

: ð1Þ

We refer to this interval as the Wald interval. Wald intervals for a single proportion or
for the difference of two proportions are known to perform poorly, and are usually well
below the nominal coverage (Newcombe 1998a,b), although they are still widely used
in practice because of their simplicity. Adding artificial outcomes is a simple and efficient
way to get better coverage, as explained in Agresti & Coull (1998) and Agresti &
Caffo (2000). In Section 2.3, we propose a justification for applying such a correction
for sums and differences of proportions. The Wald interval also suffers from overshoot,
that is, bounds of the calculated interval can be outside the range of possible values
for h.

2.2. Haldane and Jeffreys–Perks interval

The next two intervals are based on confidence intervals constructed for the differ-
ence of two binomial proportions that were introduced by Beal (1987). It is convenient to
express the variance of bh in terms of h ¼ ap1 þ p2 and w ¼ ap1 � p2,

#ðh;w; u; v; aÞ ¼ u ðaþ 1� hÞhþ ða� 1� wÞwð Þ þ v hða� 1Þ þ wðaþ 1Þ � 2hwð Þ;

where

u ¼ 1
4

1
n1

þ 1
n2

� �
; v ¼ 1

4
1
n1

� 1
n2

� �
:

A confidence interval for h comprises the set of values of h such that

ðh� bhÞ2 � z2#ðeh; ew; u; v; aÞ; ð2Þ

where eh and ew are expressions for h and w (see examples below), so that the bounds of
the confidence interval correspond to equality in (2). For example, the Wald interval is
obtained with eh ¼ bh and ew ¼ bw, where bw ¼ abp1 � bp2 denotes the maximum likeli-
hood estimate of w. Here we obtain another interval with eh ¼ h and ew ¼ bw. This new
interval, given below, is the equivalent of the Wilson interval for the single binomial pro-
portion, see Wilson (1927), which is known to be an improved confidence interval com-
pared to the basic Wald interval. With eh ¼ h and ew ¼ bw, (2) reduces to a quadratic
equation given by a2h

2 þ a1hþ a0 ¼ 0, with

a2 ¼ 1þ z2u

a1 ¼ �2 bh þ z2ðuðaþ 1Þ þ vða� 1Þ � 2bwvÞ=2� �
a0 ¼ bh2 � z2bwðuða� 1� bwÞ þ vðaþ 1ÞÞ;
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whose roots delimit a new confidence interval. The roots are

bh þ z2
2 ðuðaþ 1Þ þ vða� 1Þ � 2bwvÞ

1þ z2u
� z

ð#ðbh; bw; u; v; aÞ þ z2DÞ1=2

1þ z2u
; ð3Þ

where

D ¼ u2
1
4
ðaþ 1Þ2 þ bwða� 1� bwÞ� �

þ v2
1
4
ða� 1Þ2 � bwða� 1� bwÞ� �

þ uv
ðaþ 1Þða� 1Þ

2

:

A closely related interval is obtained with eh ¼ h and

ew ¼ bwðcÞ ¼ a
n1bp1 þ cþ 1
n1 þ 2cþ 2

� n2bp2 þ cþ 1
n2 þ 2cþ 2

;

where c � �1, which is the posterior mean of w using a prior proportional to
ðp1ð1 � p1Þp2ð1 � p2ÞÞc on ðp1; p2Þ. Interval (3) corresponds to c = �1 and is referred
to as the Haldane interval, because the prior on ðp1; p2Þ corresponds to the product of Hal-
dane priors (Haldane 1945), which gives most weight to extreme values 0 and 1. Different
values of c lead to various confidence intervals. Following Beal (1987), we consider the
interval obtained with eh ¼ h and ew ¼ bwð�1=2Þ, which is referred to as the Jeffreys–
Perks interval. These two intervals can suffer from overshoot.

2.3. Modified Wald interval

It is well known that the Wald confidence interval for a single binomial proportion p with
nominal coverage 0.95 can have a coverage closer to the nominal value after adding to the data
four-pseudo observations, comprising two successes and two failures, see Agresti and Coull
(1998). The justification provided by Agresti and Coull for adding four observations comes
from the Wilson interval, which has a coverage close to the nominal level, and a midpoint that
is not bp, the maximum likelihood estimate of p, but instead ðX þ z2=2Þ=ðn þ z2Þ, where X is
the binomial variate and n the sample size. For 95% confidence intervals, the midpoint is
approximately (X + 2)/(n + 4). Agresti & Coull proposed to adjust the Wald interval by
replacing the number of observations n by n + 4, and the number of successes X by X + 2.
Surprisingly, doing so improves the coverage dramatically. In Agresti & Caffo (2000), the
authors investigated the improvement made by using a similar trick for the construction of
confidence intervals for the differences of two proportions, but without giving a justification
for it, other than from a Bayesian point of view. Here we provide a general development that
justifies the strategy for both the sum and the difference of independent proportions.

The Haldane interval for the weighted sum is obtained from the solutions of a qua-
dratic equation. Suppose for simplicity that n1 ¼ n2 ¼ n and a = 1. The midpoint of the
Haldane interval

bh 1
1þ z2u

� �
þ z2u
1þ z2u
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falls between bh and 1. The midpoint, re-expressed in terms of X1 and X2 becomes

X1 þ X2 þ z2=2
nþ z2=2

� X1 þ X2 þ 2
nþ 2

¼ X1 þ 1
nþ 2

þ X2 þ 1
nþ 2

;

The square of the standard deviation to be added/subtracted to the midpoint is equal to

1
nþ z2=2

ðbp1ð1� bp1Þ þ bp2ð1� bp2ÞÞ n
nþ z2=2

þ 1
2
ð1� bw2Þ z2

z2 þ 2n

� �
;

which is a weighted average of two terms, the first term being the variance of the sum of
two proportions where the sample size n is replaced by n þ z2=2. This observation pro-
vides a motivation to adjust the Wald interval (1), with bp1 ¼ ðX1 þ 1Þ=ðn1 þ 2Þ,bp2 ¼ ðX2 þ 1Þ=ðn2 þ 2Þ and n1 and n2 replaced by n1 þ 2 and n2 þ 2.

This calculation is similar if considering the Haldane interval for the difference of
two proportions. It provides a nice justification for using such a correction, which is simi-
lar to the justification given by Agresti & Coull for the single proportion. Note that the
adjusted Wald interval still suffers from possible overshoot.

2.4. Score interval

The log-likelihood function may be expressed in terms of h and p1,

lðh; p1Þ ¼ x1 ln p1 þ ðn1 � x1Þ lnð1� p1Þ þ x2 lnðh� ap1Þ þ ðn2 � x2Þ lnð1� hþ ap1Þ:

The score functions for h and p1 are, respectively,

Shðh; p1Þ ¼
@lðh; p1Þ

@h
¼ x2 � n2p2

p2q2
;

Spðh; p1Þ ¼
@lðh; p1Þ
@p1

¼ x1 � n1p1
p1q1

� a
x2 � n2p2

p2q2
;

where we denote for simplicity q1 ¼ 1� p1 and q2 ¼ 1� p2. The variance and covari-
ance of the score functions are given by

Jh;hðh; p1Þ ¼ �E
@2lðh; p1Þ

@h2

� �
¼ n2

p2q2
;

Jp;pðh; p1Þ ¼ �E
@2lðh; p1Þ

@p21

� �
¼ n1

p1q1
þ a2

n2
p2q2

;

Jh;pðh; p1Þ ¼ �E
@2lðh; p1Þ
@h@p1

� �
¼ �a

n2
p2q2

:

We wish to construct a confidence interval for h regardless of p1. To do so, we treat
p1 as a nuisance parameter, and we denote by ep1ðhÞ ¼ argmaxp1 lðh; p1Þ the maximum
likelihood of p1 given h. Assuming h is known, p1 lies in the open interval
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Iþh;a ¼ max 0;
h� 1
a

� �
;min 1;

h
a

� �� �
:

if a ∈ (0,1], and in

I�h;a ¼ max 0;
h
a

� �
;min 1;

h� 1
a

� �� �
:

if a ∈ [�1,0). The estimate ep1ðhÞ satisfies Spðh; p1Þ ¼ 0, which is a cubic equation in p1:
Qðp1Þ ¼ 0, with

QðxÞ ¼ b3x
3 þ b2x

2 þ b1xþ b0; x 2 I�h;a; ð4Þ
and

b3 ¼ a2ðn1 þ n2Þ;

b2 ¼ aðn1ð1� 2hÞ � aðn2 þ x1Þ þ x2 � hn2Þ;

b1 ¼ x1að2h� 1Þ þ n1hðh� 1Þ þ aðn2h� x2Þ;

b0 ¼ hx1ð1� hÞ:

This equation is found to have three real roots. We take ep1ðhÞ ¼ y1 (given in Appendix A)
and ep2ðhÞ ¼ h� aep1ðhÞ.

The statistic Shðh; ep1ðhÞÞ has an asymptotic normal distribution with variance (see,
e.g. section 4.5 in Davison 2003)

Var Shðh; ep1ðhÞÞð Þ ¼ Jh;hðh; ep1ðhÞÞ � J2h;pðh; ep1ðhÞÞ
Jp;pðh; ep1ðhÞÞ

¼ a2
ep1ðhÞð1� ep1ðhÞÞ

n1
þ ep2ðhÞð1� ep2ðhÞÞ

n2

� ��1

	 vaðh; ep1ðhÞÞ:
We can therefore use the profile score function to derive a confidence interval, whose
bounds are the solutions to

S2hðh; ep1ðhÞÞ
va;bðh; ep1ðhÞÞ ¼

ðx2 � n2ep2ðhÞÞ2
ðep2ðhÞeq2ðhÞÞ2vaðh; ep1ðhÞÞ ¼ z2; ð5Þ

which can be solved numerically. We refer this interval to as the score interval.
Note that, following the method given by Mee (1984) for the construction of a confi-

dence interval for the difference of two proportions, we can construct an interval for the
sum h ¼ ap1 þ p2, whose bounds are solutions to
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ðbh � hÞ2

a2 ep1ðhÞð1�ep1ðhÞÞ
n1 þ ep2ðhÞð1�ep2ðhÞÞ

n2

¼ a
x1
n1

þ x2
n2

� h

� �2

vaðh; ep1ðhÞÞ ¼ z2; ð6Þ

where va is defined above in (5) and ep1ðhÞ is the profile estimate of p1 given h. We show
that this interval is identical to the score interval in Appendix B.

Also, following the idea of Miettinen & Nurminen (1985), we can obtain another
interval by replacing z2 with z2ðn1 þ n2Þ=ðn1 þ n2 � 1Þ. We refer to the latter interval as
the score interval with adjusted variance.

2.5. Likelihood-ratio interval

Finally, we invert a likelihood ratio test. The statistic is given by

kðhÞ ¼ �2 log
ep1ðhÞbp1

� �x1 1� ep1ðhÞ
1� bp1

� �n1�x1 ep2ðhÞbp2
� �x2 1� ep2ðhÞ

1� bp2
� �n2�x2

;

where ep1ðhÞ and ep2ðhÞ are the maximum likelihood estimators of p1 and p2 under the
constraint ap1 þ p2 ¼ h (that is, ep1ðhÞ is the root of Q, defined in (4)). It can be shown
that k(h) has an asymptotic chi-squared distribution (see, e.g. section 4.5 in Davison
2003). Since the likelihood ratio compares the likelihood estimated at the maximum-likeli-
hood estimate with the likelihood under the null hypothesis, we reject the null hypothesis
when this ratio is too large, which provides a confidence interval for h that is given by
fhjkðhÞ � z2g.

2.6. Other methods

There are other methods for the difference of two proportions that we could adapt to
the present setting. Newcombe (1998a) proposed a simple method for the difference that
can be easily implemented for the sum. The lower and upper bounds are, respectively,

L ¼ bh � z a2
l1ð1� l1Þ

n1
þ l2ð1� l2Þ

n2

� �1=2

and

U ¼ bh þ z a2
u1ð1� u1Þ

n1
þ u2ð1� u2Þ

n2

� �1=2

;

where li and ui are the roots of ðbpi � piÞ2 ¼ z2ðpið1� piÞ=niÞ, i = 1, 2. We found that
the coverage is close to and above the nominal level, but that this interval tended to be
too conservative for small and large values of p1 and p2. In order to keep this paper brief,
the results are not reported here.

There also exist exact intervals for the difference of two binomial proportions in the
sense that the tails of the joint binomial distribution (likelihood) are used to compute the
bounds of the confidence interval, instead of using a normal approximation. However,
these methods tend to be conservative. Existing methods have been proposed by Santner
& Yamagami (1993), Chan & Zhang (1999), Agresti & Min (2001) and Coe & Tamhane
(1993), to cite but a few.
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Finally bootstrap confidence intervals can be considered. These include, but are not
limited to, one-sided and two-sided percentile bootstrap confidence intervals, symmetric
and short bootstrap confidence intervals, see, for example, Hall (1992). We do not report
in the next section a detailed numerical study for these intervals. However, we performed
simulations in the case of the two-sided equal-tailed bootstrap confidence interval see Hall
(1992, p. 87) for a precise definition of this interval), whose performance is similar to the
Wald interval. Note that the performance of the bootstrap can be explained by considering
an Edgeworth expansion of the statistic of interest. Specifically, when the underlying dis-
tribution is smooth, the bootstrap can be seen as a device for skewness correction, by
removing the first error term to the normal approximation present in the asymptotic expan-
sion. However, for lattice distributions, for example in the case of a binomial or a Poisson
distribution, an additional discontinuous term of the same order as the skewness term is
added to the Edgeworth expansion, which takes into account the continuity correction
needed when approximating a lattice distribution with a continuous one. Therefore, care is
needed when constructing confidence intervals for the sum of two binomial proportions
since bootstrap methods suffer from the presence of this additional term, see for example
Hall (1992, p. 91). However, procedures have been derived to overcome these difficulties,
such as smoothed bootstrap methods, see, for example Hall (1987), Hall & Zhou (2003)
and Zheng & Loh (1995).

3. Evaluation of the methods

New measures of performance based on a weighted average of the sensitivity and
specificity in diagnostic studies require the construction of confidence intervals for sums
of binomial proportions. In medical studies the number of patients available can be small,
see, for example, the diagnostic tests reported in Di Nisio et al. (2010). In view of this,
we provide a numerical study of the performance of the different methods presented in
the previous section for small values of the sample sizes n1 and n2. Specifically, we derive
the exact coverage and expected length for all ðn1 þ 1Þðn2 þ 1Þ combinations of the var-
ious pairs ðn1; n2Þ considered, for a = 0.05.

Exact coverage for a pair ðp1; p2Þ is given by

Cðp1; p2Þ ¼
X
ðx1;x2Þ

Y2
j¼1

nj
xj

� �
pxjj ð1� pjÞnj�xj1fLðxÞ� ap1 þ p2 �UðxÞgðx1; x2Þ;

where x ¼ ðx1; x2Þ, 1A is the indicator function of A, and L(x) and U(x) denote, respec-
tively, the lower and upper bound of the confidence interval calculated if we observe x.
We show in Appendix C. that for all the methods presented in Section 2, we have

Cðp1; p2Þ ¼ Cð1� p1; 1� p2Þ: ð7Þ

The exact average length is

Lðp1; p2Þ ¼
X
ðx1;x2Þ

Y2
j¼1

nj
xj

� �
pxjj ð1� pjÞnj�xjðUðxÞ � LðxÞÞ:
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We also compute the probability that the lower bound is below min(0, a),

Uðp1; p2Þ ¼
X
ðx1;x2Þ

Y2
j¼1

nj
xj

� �
pxjj ð1� pjÞnj�xj1fLðxÞ\minð0;aÞgðx1; x2Þ;

and that the upper bound is above max(1, 1 + a),

Oðp1; p2Þ ¼
X
ðx1;x2Þ

Y2
j¼1

nj
xj

� �
pxjj ð1� pjÞnj�xj1fUðxÞ[maxð1;1þ aÞgðx1; x2Þ ¼ Uð1� p1; 1� p2Þ;

which are identical by symmetry (see Appendix C). We also compute the mean distance
of the coverage to the nominal value 0.95

Dðp1; p2Þ ¼ jCðp1; p2Þ � 0:95j:

and keep track of the number of times that the coverage is below 0.93

T ðp1; p2Þ ¼ 1fCðp1;p2Þ\0:93gðp1; p2Þ:

Tables 1 and 2 present the average of the quantities outlined in the previous section,
denoted, respectively, by C, L, D, T and U for values of ðp1; p2Þ chosen uniformly from
the unit square, ðp1; p2Þ 2 K, where

K ¼ fðp1; p2Þj pi ¼ 0:01k; k ¼ 1; . . .; 99; i ¼ 1; 2g;

for ðn1; n2Þ ¼ ð20; 10Þ, (20, 20), (30, 20), and (50,20), (a, b) = (1, 1) (Table 1) and (0.8,
0.6) (Table 2). We give also the smallest coverage S returned by a method over all
ðp1; p2Þ 2 K,

S ¼ inf
ðp1;p2Þ2K

Cðp1; p2Þ:

The value O is not presented since, by symmetry, O ¼ U. In Figure 1, we present plots
of the actual coverage for various values of p1 and p2. We repeated this numerical study
for other values of a, and found that the seven methods perform similarly to the numerical
values provided here.

4. Discussion

From Tables 1 and 2 it can be seen that the Wald interval is, on average, below the
nominal level and performs poorly for small sample sizes. Moreover, Figure 1 shows that
this coverage is very erratic, and that the poor performance of this interval applies not
only to extreme values of p1 and p2, but for many of the possible combinations. Oscilla-
tions could be explained, for example, by considering an Edgeworth expansion of the cov-
erage probability. Adding one success and one failure to each observation greatly
improves the mean coverage, which stays above 0.95 for small values of p1 and p2, with-
out the interval being too conservative, except when p1 is very small (large) and p2 very
large (small). Also, the proportion of intervals with coverage below 0.93 is dramatically
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Figure 1. Coverage probability for the seven methods with ðn1; n2Þ ¼ ð20; 20Þ and a = 1. The left,
middle and right column correspond, respectively, to p1 ¼ 0:1; 0:3 and 0.5 and p2 varying from 0
to 1. Top row are Wald interval (bold) and adjusted Wald (thin). Second row are Haldane (bold)
and Jeffreys–Perks (thin) methods. Third row are score (bold) and score with adjusted variance
method (thin). Bottom row corresponds to the likelihood ratio method.
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reduced and close to zero even for very small sample sizes. However, the Wald intervals
suffer from overshoot when xi are both small or large and should not be used in these
cases. The Wald interval performs similarly to the case of the single proportion, see New-
combe (1998a); Brown, Cai & DasGupta (2002), or the difference of two proportions, see
Newcombe (1998b).

The Haldane and Jeffreys–Perks intervals also returned coverages close to the nomi-
nal value, the latter achieving better coverage in most cases and keeping T small. We can
see in Figure 1 that the Jeffreys–Perks method provides better coverage than the Haldane
interval when p1 is very small (large) and p2 very large (small). The overshoot is much
reduced compared to the Wald intervals. The Jeffreys–Perks intervals are also, on average,
shorter than the Wald intervals.

Intervals obtained with the score method are close to the nominal level, having the
smallest T values among all six methods. It can be seen from Figure 1 that these two
intervals tend to be conservative for large (small) values of p1 and small (large) values of
p2. A nice feature of these two methods is that they do not return confidence intervals
whose bounds are outside the possible range of values for h, unlike the previous methods.
Except for extreme cases where x1 ¼ n1 and x2 ¼ n2 or x1 ¼ x2 ¼ 0, the limits do not
correspond to the point estimate bh, which is a desirable property. Moreover, only a very
small proportion of intervals have exact coverage below the value 0.93, a proportion
which is further reduced when we adjust the variance.

We show in Appendix B that the bounds of the score interval satisfying (5) can be
obtained by solving (6). During our calculations, it seems that (6) led to fewer numerical
issues and we recommend the practitioner to implement the latter equation in order to get
the bounds of the score interval.

Finally, the likelihood ratio-based interval does not produce bounds outside the possi-
ble values of h, but suffers from poor coverage and a non-negligible proportion of inter-
vals with exact coverage below the value 0.93. It is known that confidence intervals based
on the likelihood ratio test for the difference of two proportions also have coverage below
the nominal level, see Miettinen & Nurminen (1985); Newcombe (1998a). This method
for the sum of two proportions should also be avoided.

In large sample situations, for example when n1 � 100;000, and n2 � 1000, such as
in the application given in the next section, the normal approximation is very accurate and
the seven methods perform well. Specifically, all intervals, including the Wald interval,
have close to the nominal coverage probability, with a mean distance D of order no larger
than 10�3, and do not present any case where the coverage probability drops below 0.93.
Moreover, there is no difference between the score and adjusted score methods as the
factor in front of z is very close to 1.

As a conclusion, we recommend using the score interval with adjusted variance in
small sample situations, unless simplicity of calculation is important, in which case we
advocate the Jeffreys–Perks interval.

5. An application

We now use the score interval with adjusted variance to determine a confidence inter-
val for the proportion of contaminated mail items passing inspection at the border. The
data in Table 3 were kindly provided by DAFF Biosecurity. The data are the outcomes of
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the quarantine inspection of certain types of mail articles for 12 months across all mail
facilities in Australia. Inspection is performed by one of two instruments: x-ray and detec-
tor dogs. The leakage survey for these four pathways is performed by random selection
followed by physically opening and checking the contents.

Our results provide useful insight into the relative biosecurity contamination rate of
the four pathways. The approaching contamination rates are comparable for registered arti-
cles and other articles, slightly but not substantially higher for Express Mail Service
(EMS), and slightly higher again for parcels. The interval estimates provide comfort that
the low estimates of biosecurity contamination rate are statistically defensible.

Appendix A: Maximum likelihood estimate for the score method

Lemma 1. Let �1 � a � 1, a 6¼ 0, ni � 1, and xi 2 f0; . . .; nig, for i = 1, 2. Let
h ∈ (0,1 + a) if a > 0 and h ∈ (a,1) if a < 0. Then Q has three real roots, whose
expressions are

yi ¼ 2p cosðciÞ � b2=ð3b3Þ; i ¼ 1; 2; 3;

with

c1 ¼ pþ cos�1ðq=p3Þ
� �

=3;

c2 ¼ �pþ cos�1ðq=p3Þ
� �

=3;

c3 ¼
1
3
cos�1ðq=p3Þ;

p ¼ � b22=ð3b3Þ
2 � b1=ð3b3Þ

� �1=2
;

q ¼ b32=ð3b3Þ
3 � b1b2=ð6b23Þ þ b0=ð2b3Þ;

where the sign of p is chosen so that p and q have the same sign. Moreover,

(i) If x1 6¼ 0, x1 6¼ n1, x2 6¼ 0, and x2 6¼ n2, there is a unique root in I�h;a.
(ii) In any other case, there is at least one root in I

�
h;a, where I

�
h;a denotes the closure of

I�h;a, where I�h;a* represents either Iþh;a or I�h;a, defined above formula (4). If there is
more than one root in I

�
h;a, then at most one lies in I�h;a, and the other one(s) are at

(one of) the end points of I�h;a.

TABLE 3
Results of quarantine inspection of certain classes of mail items for 12 months at all mail facilities

within Australia.

Pathway N n1 x1 n2 x2 bhð%Þ bhLð%Þ bhUð%Þ
EMS 3,628,993 3,059,169 5108 10,357 5 0.0744 0.0488 0.1374
Other articles 47,300,154 28,088,067 7071 31,537 9 0.0387 0.0274 0.0671
Parcels 3,196,962 2,862,399 7919 12,288 10 0.1100 0.0742 0.1810
Registered 845,007 748,559 139 4162 2 0.0499 0.0000 0.1749

Notes: N is the number of mail items in the pathway, and n1 of them are inspected by x-ray or detector
dogs, with x1 items intercepted as having high biosecurity risk material. A manual leakage survey is
performed in which n2 items are inspected from all non-intercepted items, with x2 items intercepted as
having high biosecurity risk material. The estimate bh is the pathway-level leakage rate, defined in the
introduction.
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Proof. Suppose a > 0. Let h ∈ (0,1 + a). We have

Qð0Þ ¼ hx1ð1� hÞ;

Qð1Þ ¼ ða� hÞðaþ 1� hÞðn1 � x1Þ;

Q ðh� 1Það Þ ¼ 1
a
ðh� 1Þðaþ 1� hÞðn2 � x2Þ;

Q h=að Þ ¼ hðh� aÞx2=a;

Suppose first that x1 6¼ 0, x1 6¼ n1, x2 6¼ 0, x2 6¼ n2.

(i) If 0 < h < a, then Ih;a ¼ ð0; h=aÞ, Q(0) > 0, Q(1) > 0, Q(h/a) < 0 and
Q((h�1)a) < 0 so that one root lies in (�∞, 0), one in Ih;a and one in (h/a, 1).

(ii) If h = a, then Ih;a ¼ ð0; 1Þ, and Q(x) can be expressed as Q(x) = a(x � 1)P(x),
where

PðxÞ ¼ aðn1 þ n2Þx2 þ ððn1 þ x2Þ � aðx1 þ n1 þ n2ÞÞxþ ða� 1Þx1;

with P(0) < 0 and Pð1Þ ¼ n1 � x1 þ x2 [ 0. Therefore P had one negative root
and one root in (0,1). It follows that Q has one root in (�∞,0), one in Ih;a and its
third root is 1.

(iii) If a < h < 1, then Ih;a ¼ ð0; 1Þ, Q(0) > 0, Q(1) < 0, Q(h/a) > 0 and
Q((h � 1)a) < 0 so that one root lies in (�∞, 0), one in Ih;a and one in (1, h/a).

(iv) If h = 1, then Ih;a ¼ ð0; 1Þ and Q(x) = axR(x), with

RðxÞ ¼ aðn1 þ n2Þx2 þ ððx2 � n2Þ � n1 � aðn2 þ x1ÞÞxþ n2 � x2 þ x1;

with R(0) > 0 and Rð1Þ ¼ ða � 1Þðn1 � x1Þ\ 0. Thus R has one root in (0,1)
and one root in (1,∞). Since Q(h/a) > 0, it follows that Q has one root in (1,h/a),
one in Ih;a and the third root is 0.

(v) If 1 < h < 1 + a, then Ih;a ¼ ððh � 1Þ=a; 1Þ, Q(0) < 0, Q(1) < 0, Q(h/a) > 0
and Q((h � 1)a) > 0 so that one root lies in (0,(h � 1)/a), one in Ih;a and one in
(1,h/a).

In summary, Q has a unique root in Ih;a for all h ∈ (0,1 + a) provided x1 6¼ 0,
x1 6¼ n1, x2 6¼ 0, and x2 6¼ n2.

When x1 and/or x2 take extreme values, Q can be expressed as a product of a first
order polynomial (since 0, 1, (h � 1)/a and/or h/a are obvious roots of Q in this case)
with a quadratic polynomial whose sign at 1, (h � 1)/a and h/a permit us to locate the
position of the remaining roots. The details are not presented here and are left to the
reader. The cases a ∈ (�1, 0) and a = ±1 can be treated similarly. Trigonometric
expressions for the three real roots of Q can be found e.g. in Bronshtein et al. (2007). A
numerical study shows that the value of ep1ðhÞ corresponds to root y1.
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Appendix B: Comparison of two methods

Following the method given by Mee (1984) for the construction of a confidence
interval for the difference of two proportions, we can construct an interval for the sum
h ¼ ap1 þ p2, whose bounds are solutions to

ðbh � hÞ2

a2 ep1ðhÞð1�ep1ðhÞÞ
n1 þ ep2ðhÞð1�ep2ðhÞÞ

n2

¼ a
x1
n1

þ x2
n2

� h

� �2

vaðh; ep1ðhÞÞ ¼ z2;

where va was defined in Section 2.4 and ep1ðhÞ is the profile estimate of p1 given h. We
show that this interval is identical to the score interval. Since ep1ðhÞ is a solution to
S1ðh; p1Þ ¼ 0, we get

a
x1
n1

� h ¼ �ep2ðhÞ þ a2
ep1ðhÞeq1ðhÞðx2 � n2ep2ðhÞÞ

n1ep2ðhÞeq2ðhÞ ;

which we substitute back in to (6) to get, after simple algebra,

ðx2 � n2ep2ðhÞÞ2
ðep2ðhÞeq2ðhÞÞ2vaðh; ep1ðhÞÞ ;

which is exactly (5).

Appendix C: Proof of Equation (7)

We provide here a justification for why Cðp1; p2Þ ¼ Cð1 � p1; 1 � p2Þ and
Oðp1; p2Þ ¼ Uð1 � p1; 1 � p2Þ hold. Let x ¼ ðx1; x2Þ and n � x ¼ ðn1 � x1; n2 � x2Þ.
Clearly

Cð1� p1;1� p2Þ

¼
X
ðx1;x2Þ

Y2
j¼1

nj
xj
ð1� pjÞxjpnj�xj

j 1fLðxÞ� að1�p1Þþ1�p2 �UðxÞgðxÞ

¼
X
ðx1;x2Þ

Y2
j¼1

nj
xj
pxjj ð1� pjÞnj�xj1f1þa�Uðn�xÞ� ap1þp2 � 1þa�Lðn�xÞgðn� xÞ;

where we made the change of variable xj ¼ nj � xj, j = 1, 2 and used nj
nj � xj

� �
¼

�
nj
xj

�
.

The equality Cðp1; p2Þ ¼ Cð1 � p1; 1 � p2Þ follows if we can show that

1f1þa�Uðn�xÞ� ap1þp2 � 1þa�Lðn�xÞgðn� xÞ ¼ 1fLðxÞ� ap1þp2 �UðxÞgðxÞ:

In other words, we want to show that L(x) = 1 + a � U(n � x) and U(x) = 1 + a � L
(n � x), from which Oðp1; p2Þ ¼ Uð1 � p1; 1 � p2Þ would follow as well. The Wald/
adjusted Wald/Haldane/Jeffreys–Perks intervals have an explicit expression, and it is just
a straightforward calculation to check that the previous equalities hold. For intervals based
on the score function, changing xj to nj � xj changes the score function for p1 as follows
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Spðh; p1Þ ¼ � x1 � n1q1
p1q1

� a
x2 � n2q2

p2q2

� �
;

so that ep1ðhÞ and ep2ðhÞ, the maximum likelihood estimates of p1 and p2 under the con-
straint ap1 þ p2 ¼ h when we observe x1 and x2, become 1 � ep1ðhÞ and 1 � ep2ðhÞ
when observing n1 � x1 and n2 � x2.

Suppose we observe x1 and x2. The lower bound of the confidence interval L(x) is
such that aep1ðLðxÞÞ þ ep2ðLðxÞÞ ¼ LðxÞ. From the remark above, if we now observe
n1 � x1 and n2 � x2, then one have að1 � ep1ðLðxÞÞÞ þ 1 � ep2ðLðxÞÞ ¼ 1þ a � LðxÞ,
which corresponds to the upper bound of the confidence interval and L(x) = 1 + a �
U(n � x) follows.
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