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Abstract. Scatterplots are ubiquitous data graphs and can be used to depict how well data fit to a quantitative theory. We investigated which
information is used for such estimates. In Experiment 1 (N = 25), we tested the influence of slope and noise on perceived fit between a linear
model and data points. Additionally, eye tracking was used to analyze the deployment of attention. Visual fit estimation might mimic one or the
other statistical estimate: If participants were influenced by noise only, this would suggest that their subjective judgment was similar to root
mean square error. If slopewas relevant, subjective estimation wouldmimic variance explained. While the influence of noise on estimated fit was
stronger, we also found an influence of slope. As most of the fixations fell into the center of the scatterplot, in Experiment 2 (N = 51), we tested
whether location of noise affects judgment. Indeed, high noise influenced the judgment of fit more strongly if it was located in the middle of the
scatterplot. Visual fit estimates seem to be driven by the center of the scatterplot and to mimic variance explained.
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In many professional activities, such as quantitative re-
search and engineering, people need to determine how
well data points fit to a theoretical prediction. For instance,
in science studies (e.g., Brewer, 2012), it has been pointed
out that researchers hardly observe their object of interest
directly and rarely check their theoretical predictions
against direct observations. Instead, they make observa-
tions by using data graphs identifying relevant charac-
teristics of the object of interest and for testing predictions.
Bogen and Woodward (1992) suggested that it is data
rather than perceptual beliefs that play a central evidential
role to current science. Thus, while the early study of
perception and psychophysics was driven by the chal-
lenges early astronomers faced (e.g., Brewer, 2012),
turning away from direct observation and engaging with
processed data instead might suggest that perceptual
limitations no longer limit science. However, Brewer
(2012) and others (cf. Wickham et al., 2015) argued that
we now need to focus on better understanding how evi-
dence is perceived against the background of theories in

data graphs. Using graphs — as opposed to tables with
numbers — allows us to harvest the computational power
of the visual system to apprehend relations with little effort
(e.g., Schnotz & Bannert, 2003). In some cases, however,
the estimates the visual system provides are systematically
biased (cf. Godau et al., 2016).

Given the substantial use of data graphs in conducting
and communicating research (cf. Smith et al., 2000,
2002), we need to better understand how people use
data graphs to weigh scientific evidence and theories.
The studies of Smith et al. suggest that there is prefer-
ence for visual presentation of data in harder sciences.
Particularly in the natural sciences, readers of articles
might, by a large share, use data graphs to judge the fit
between theory and data. Such a visual judgment of fit
(in addition to indices) is warranted. For instance, in the
literature on skill acquisition, different variants of
chunking-based learning could be pinned down to the
prediction of a power law versus a negatively accelerated
exponential learning curve (e.g., Evans et al., 2018;
Heathcote et al., 2000). Exclusively considering fit in-
dices could cause the observer to overlook important
information that would otherwise be apparent in the
graph: One theory might systematically overestimate or
underestimate the asymptote (cf. Palmeri, 1999).
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Visual model descriptions are recommended in the
statistical literature to enable subjective fit estimations as
adjuncts to numerical summaries (e.g., Wickham et al.,
2015). Many studies (e.g., Evans et al., 2018) use scat-
terplots to visually present a quantitative theory and its
associated data. Scatterplots have been described as the
most useful invention in the history of data graphs and
have found their way into the public sphere through public
media (Bergstrom &West, 2018; Friendly & Denis, 2005).
While there is a long tradition of research on fit indices

quantifying how well data fit a theoretical prediction (e.g.,
Pitt et al., 2002; Roberts & Pashler, 2000; Wagenmakers,
2003), we know little on how fit is estimated by viewers
when prediction and data are displayed visually in scat-
terplots. In case of a simple linear model, first insights
might be derived from the vast literature on how indi-
viduals estimate correlations from scatterplots.
Some studies suggested that people use the shortest

(perpendicular) distance between data point and the re-
gression line (90° angle) rather than the vertical distance
(parallel to the y-axis) for estimations of correlations (e.g.,
Meyer et al., 1997; Yang et al., 2019). This visual approach
is in contrast tomost statistical procedures that usually rely
on the vertical distances. A range of studies (cf. Doherty &
Anderson, 2009) identified properties of a scatterplot
which are unrelated to the statistical correlation but in-
fluence the perceived strength of the relationship. Ac-
cordingly, factors influencing the judgments include
properties of the axis (scaling and theory-relevance of the
labels), the point cloud (density, shape, size and number of
the points, and the presence of outliers), and the regression
line (mere presence and slope). Some of these aspects can
be manipulated by the many design choices in scatterplots
(cf. Sarikaya & Gleicher, 2018).
Lane et al. (1985) investigated how different combina-

tions of correlation-related components (error variance,
slope, and variance of x) affect judgments of correlation.
The authors found higher estimates of correlation for
scatterplots with lower error variance, higher variance in x,
and steeper slopes. A comparison of the different influences
revealed that the error variance had the strongest influence.
The influence of slope was also investigated in an ex-

periment by Meyer and Shinar (1992). Participants esti-
mated the strength of association in scatterplots with
different slopes of the regression lines (slopes 30°, 45°, and
60°). Higher estimates of correlation resulted for plots with
a shallower slope. Similarly, two experiments by Meyer et al.
(1997) estimated the strength of the correlation in scat-
terplots with slopes ranging from 22° to 55°, revealed higher
ratings for shallower slopes. Across the studies, Meyer et al.
explained this effect as a side effect of their approach in
manipulating the slope. In order to change the slope of the
regression line, they changed the scales of the axes, which

led to a lower density of the point cloud for steeper slopes.
Consequently, in scatterplots with a steeper slope, the
vertical distances of the data points to the line increased.
Another feature that can affect the perception of cor-

relation is themere presence of the regression line. Several
studies (Meyer et al. 1997; Meyer & Shinar, 1992) dem-
onstrated that its presence can lead to higher estimations
of association. The regression line might serve as a per-
ceptual center that increases perceived correlation.
Many studies (e.g., Bobko & Karren, 1979; Cleveland

et al., 1982; Lauer & Post, 1989; Rensink, 2017; Rensink &
Baldridge, 2010; Strahan & Hansen, 1978) showed that
viewers tend to underestimate the strength of the corre-
lation. As this bias differs depending on correlation
strength, researchers targeted the psychophysical func-
tion. Some studies (e.g., Bobko & Karren, 1979; Rensink &
Baldridge, 2010) found a positively accelerated shape
between the presented correlation and the perceived
correlation. Perception is more sensitive to changes in
higher correlations than to changes in lower correlations.
The usual task in these studies requires the viewer to
determine the correlation coefficient for scatterplots with
different degrees of correlation strengths. The tendency to
underestimate has been replicated with different meth-
odological approaches. For example, in some studies (e.g.,
Bobko & Karren, 1979), participants were asked to give
direct numerical estimates. In more recent studies with
similar findings (e.g., Rensink & Baldridge, 2010), par-
ticipants had to adjust the correlation with a slider so that it
was exactly halfway between two reference scatterplots.
Taking into account the consistent finding of (a) the un-
derestimation of the correlation and (b) that showing the
regression line increases the estimate has led to the fre-
quent recommendation to add the line as a default setting
in scatterplots (e.g., Doherty & Anderson, 2009).
The literature on visual estimation of correlation pro-

vides valuable information about the perception of data in
regard to an important numerical measure of goodness of
fit (r). Yet, this evidence is only indirect as work on the
estimation of correlation in scatterplots deals with the
relationship between the x- and y-coordinates of the data
points rather thanwith the relationship of data points and a
visually presented model line. Given that a regression line
seems to influence correlation estimates even when the
task is to estimate the correlation among the data points
(e.g., Doherty &Anderson, 2009), rather than reporting on
the relation between points and line, studies directly ad-
dressing visual estimation of fit between model line and
data points seem warranted. In many practical situations
of perceiving scatterplots with model lines, viewers are not
instructed to view the graphs in relation to a particular fit
coefficient, thus allowing for a rather intuitive grasp of fit.
This is also relevant for laypeople who may not be familiar
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with statistical coefficients. For example, instead of esti-
mating the variance explained by the model relative to
overall variance, onemight only be interested in howmuch
the data points deviate from the model line (noise). This
would be in line with the root mean square error (RMSE;
e.g., Schunn & Wallach, 2005). In fact, in many cases, for
example, within the field of predictivemodeling (Wickham
et al., 2015), one central question is, how accurate the
predictions of a model are? The relevance of such a task
has even been pointed out in the literature on correlation
estimation. For example, Lane et al. (1985) stated that in
many natural situations, the most important feature with
regard to any covariation may be the accuracy of the
predicted y-value.

Thus, while previous work on the perception of scat-
terplots was primarily about the visual estimation of the
statistical coefficient r, often without showing any model,
our focus was on the subjective impression of fit between
model and data. The aim of the present study was to in-
vestigate if and how strongly slope and noise affect sub-
jective fit estimations between a linear model line and
data. In order to hold the vertical distances (noise) con-
stant across different slopes, we first constructed the
slopes and then created new data points for each slope.
Noise was constant across scatterplots of different slopes,
but the total variance in y increased with steeper slopes.
The noise (and thus RMSE) was manipulated by adding
different values of vertical distances (see Method).
Overall, the approach allowed to analyze the influence of
slope and noise for models that make predictions for the
same range of x-values.

We expected higher estimates of fit for scatterplots with
lower noise and steeper slopes. The latter expectation is
based on the idea that the perception could be dominated
by the shortest distances to the line (as with correlation
estimation; cf. Meyer et al., 1997) which are shorter for
scatterplots with a steeper slope. The constructed graphs
had a regression line of least squares. To clarify that the
task was to determine the goodness of fit instead of
evaluating how well the line reflects the line of least
squares, we pointed out that a perfect fit would be to have
all data points on the line. This allowed us to test whether
participants’ judgments would mimic RMSE or would (in
addition) resemble variance explained.

An additional aim of the study was to investigate the
distribution of attention on subjective fit estimations and
its possible consequences for the ratings. We decided to
use eye tracking as an objective measure of visual at-
tention localization as a prerequisite for understanding
the underlying mechanisms of information processing.
Using this approach made it also possible to examine
whether there is any kind of perceptual center of gravity.
The idea of a perceptual center in scatterplots has been

considered in correlation estimation research (e.g.,
Meyer & Shinar, 1992).

Experiment 1

Method

Participants
Twenty-five German-speaking psychology students (18
women, 7 men, age M = 32.9 years, SD = 10.8) participated
in the experiment. The number was based on a power
analysis with a medium effect size of .30 for f, an α of .05,
and a power of .90 for within-subjects ANOVAmain effects
(3 measurements) with G*power (Faul et al., 2009). Par-
ticipants received course credit for compensation.

Materials and Procedure
Participants were tested individually in the laboratory of
the FernUniversität in Hagen. The procedure was ap-
proved by the ethics review board of the faculty of psy-
chology at the FernUniversität. After obtaining informed
consent, participants were seated in front of the eye
tracker. They were instructed to determine how well the
data points fitted to the shown line by using the mouse to
click on an analogue scale (0–100), which was shown
below each scatterplot. Its endpoints had the labels “very
bad” on the left and “very good” on the right. The axes of
the scatterplots were unlabeled. After the perfect fit ex-
planation, each person saw 36 scatterplots in a randomized
order on a computer screen. The scatterplots were con-
structed based on a 3 (slope) × 3 (noise) × 4 (random
pattern) within-subjects design.

There were three different slopes (22.5°, 45°, and 67.5°)
and three levels of noise (SD = 1, 2, and 3; see below). For
each combination of slope and noise (shown in Figure 1),
we generated four parallel versions of scatterplots. We first
created the line and then the data points in each scat-
terplot. We determined the slope with the slope coeffi-
cients of the model lines: A slope of 0.5 was equivalent to
an angle of 22.5°, a slope of 1 was equivalent to an angle of
45°, and a slope of two was equivalent to an angle of 67.5°.
For each of seven points along the x-axis, three values for
the y-axis were calculated independently. The three y-
values were drawn randomly and then standardized
(subtracting themean and dividing by the SD). This led to a
mean of zero and a SD of one. In order to change the SD to
the desired noise level, we simply multiplied the three
values with a number (1, 2, or 3). Hence, the resulting SD of
the three y-values was 1, 2, or 3 for scatterplots with small,
medium, and large amounts of noise, respectively. In order
to place the mean of the three y-values exactly on the line,
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we then added a constant value to the three values (de-
pending on the x-value). Assigning three y-values for each
of the seven x-positions led to 21 data points for each
scatterplot. Due to this construction approach, all resulting
scatterplots had exactly the mentioned slopes and SDs.
The script for the construction of stimuli, the stimuli, data
and scripts of the present study are available online
(Reimann, 2019).
The scatterplots were shown in the program Ex-

perimentBuilder by SensoMotoric Instruments (SMI). A
screen-based eye tracker (SMI RED 250 Hz) was used.
After being informed about the purpose of the study,
participants began the experiment. They were seated at
60 cm distance from the 24-inch monitor. A nine-point
calibration was conducted. In each trial, a diagram and a
scale for fit estimation were presented and fixations were
recorded while the participant viewed the scatterplot.
When the participant had indicated subjective fit by a
mouse click on the scale, the experimenter switched on the
next stimulus by pressing the space key.

The dependent variables were (1) rating of the subjective
fit between the line and the data points and (2) the per-
centage of fixations in the middle versus at the borders of
the scatterplot.

Results

Ratings
Figure 2 shows the mean values for the ratings of each
scatterplot configuration ranging from 27.35 (slope 22.5°,
noise 3 SD) to 88.11 (slope 67.5°, noise 1 SD). As we pre-
sented four different stimuli for each combination of noise
level and slope, we could estimate reliability. It was above
.71 for all combinations (see Appendix Table A1 for de-
tails). As to be expected, Figure 2 suggests that higher
noise led to lower fit ratings. Importantly, the fit was rated
higher for scatterplots with a steeper slope.
A 3 × 3 ANOVA with the within-subject factors slope

(22.5°, 45°, and 67.5°) and noise (SD = 1, SD = 2, and SD = 3)

Figure 1. Example scatterplots for each
combination of slope and noise. Each model
makes predictions for the same range of
x-values.
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showed a significant main effect for slope, F (1.32, 31.57) =
112.27, p < .001, η2p = .82, a significant main effect for noise,
F(1.19, 28.54) = 154.62, p < .001, η2p = .87 (both Green-
house–Geisser corrected), and an interaction effect, F(4,
96) = 5.01, p = .001, η2p = .17. For the main effects, all
pairwise comparisons (Bonferroni-corrected) were signif-
icant, p < .001. The interaction effect showed a lower
influence of noise for the steepest slope. The difference
between the mean values of noise 1 SD and noise 3 SD was
30.6 for the for a slope of 67.5°, 42.13 for a slope of 45°, and
38.61 for a slope of 22.5°.

Noise and slope did not only have effects in the av-
erage of the sample. An analysis on the individual level
showed that each participant rated the steepest slope
higher than the shallowest slope and the lowest noise
higher than the highest noise. The mean difference in
estimations between the highest noise and the lowest
noise (M = 37.11, SD = 14.25) was significantly higher than
the difference between the steepest slope and the
shallowest slope (M = 27.37, SD = 11.84), t(24) = �4.04,
p = <.001, d = 0.73. Thus, the impact of the noise ma-
nipulation on the fit rating was larger than the impact of
the experimental variation of slope.

The difference in the size of the effect would be espe-
cially informative if it could be related to a commonmetric
of the extent to which the independent variable was ma-
nipulated. In order to directly compare the influence of
noise and slope on the fit estimation, we quantified the
relative influence with the aid of a common scale (explained
variance by the linear model). For a slope of 22.5°, the mean
explained variance was 33.85% (mean across three noise
levels). For a slope of 67.5°, the mean explained variance
was 84.81%. Taking the difference (84.81% – 33.85% =
50.96%) suggests that the slope manipulation spanned a
range of 50.96% of explained variance. The mean differ-
ence in fit rating between the steepest slope and the
shallowest slope was 27.37. The quotient (27.37 by 50.96%)

suggests that 0.54 rating points were gained per percent of
explained variance in the scatterplot. In order to compare
this measure of impact to the influence found for the
variation of noise, we calculated the mean explained var-
iance for SD 1 (mean across three slopes = 80.57%) and for
SD 3 (M = 42.34%). The difference in explained variance
between the high and low noise scatterplots was 38.23%.
Dividing the corresponding difference in the fit rating of
(M = 37.11) this value resulted in an impact of 0.97 rating
points per percent of explained variance in the scatterplots.
Thus, when comparing the strength of the two independent
variables on a common scale, again, the impact of noise was
larger than the impact of slope.

Fixations
Figure 3 shows the fixations across all 25 participants for
each scatterplot type. Visual inspection suggested that the
fixations tended to fall on the center of the scatterplot and
that this pattern seemed to be stronger for scatterplots with
a shallower slope.

In order to be able to compare the degree of clustering of
the fixations for different levels of slope and noise, we split
each scatterplot into three equal areas (Figure 4) along the
x-axis from the beginning to the end of the regression line
and calculated the percentage of fixations for each area,
excluding the remaining space on the left and right mar-
gins. As participants differed in the number of fixations,
before determining the average over all subjects, we first
calculated percentages for each participant individually so
that each single subject had the same weight in the group-
average results. Table 1 shows the outcome. The 3 × 3
ANOVA for Area 2 percentage as a dependent variable with
the within-subject factors slope (22.5°, 45°, and 67.5°) and
noise (SD = 1, SD = 2, and SD = 3) showed a significant main
effect for slope, F(2, 48) = 33.07, p < .001, η2p = .58. There
was neither a main effect for noise, F(2, 48) = 0.68, p = .51,
η2p = .03, nor a significant interaction effect, F(2.58, 61.8) =
2.13, p = .11, η2p = .08. While the average percentage of
fixations falling in the center was high for scatterplots with
a shallow slope of 22.5° (M = 88%) and with a slope of 45°
(M = 86%), clustering in the middle was reduced to M =
75% for scatterplots with a steep slope of 67.5°.

Discussion

As expected, the subjective fit estimations were lower for
scatterplots with higher noise. The result that steeper
slopes led to higher fit estimations suggests that partici-
pants not only took the vertical distances into account (as
in the numerical fit measure RMSE). It is therefore possible
that the perception of fit was dominated by the perpen-
dicular distances from the data points to the line. This

Figure 2. Mean values in rating for each configuration of a scatterplot.
Error bars indicate the 95%within subjects CI according toMasson and
Loftus (2003) based on the pooled error term.
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distance has also been contemplated as a proxy that
viewers use to estimate correlation (e.g., Meyer at al., 1997;
Yang et al., 2019). The effect sizes of noise (η2p = .87) and
slope (η2p = .82) were similarly high. However, allocating
the manipulation of both variables on a common scale of
explained variance suggested that the relative influence of
noise was approximately twice as strong as the influence of
the slope. The influence of noise and higher estimates for
graphs with steeper slopes are in line with the correlation
estimates reported in Lane et al. (1985). Only at first sight
the slope effect seems inconsistent with the findings by
Meyer and Shinar (1992) and Meyer et al. (1997), where
steeper slopes led to lower estimations of correlation.

While our manipulation of slope did not change the ver-
tical distances between data points and prediction line,
Meyer et al.’s approach of changing the axes led to a lower
density of the point cloud and reduced vertical distances
for shallower slopes. In contrast to the latter, our approach
allowed us to analyze the influence of slope while keeping
noise constant. Similar efforts have been made by Lane
et al. (1985), but the authors did not show a model and
focused explicitly on correlation.
The results of the fixations revealed that the majority of

fixations fell into the center (Area 2) and that there was a
tendency to also focus on the outer areas in the cases of
steeper scatterplots. Stronger consideration of the outer areas

Figure 3. Fixations for each scatterplot type across all 25 participants. Numbers along the axes refer to the screen coordinates (1,920 × 1,080). The
perceived scatterplots were in the center of the screen and did neither have numbers nor information about the level of noise and slope. For the
alignment between stimuli and screen, see file screen_stimuli_alignment in Reimann (2019). Furthermore, we provide a heatmap for each of the 36
stimuli online.
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for steeper slopes might have occurred due to its longer
regression lines (a consequence of the endeavor to compare
models with predictions for the same range of x-values).

The tendency to fixate on the center of an image (center
bias) is a well-known effect in the scene viewing literature
(e.g., Tatler, 2007) and is explained as an optimal viewing
position for effective exploring. Tatler showed that the bias
is very robust and does not disappear when the salient
image features are placed outside the center.

Experiment 1 only included scatterplots with a fairly
homogenous point pattern along the line. In some appli-
cations, models can have area-specific deviations of fit
(e.g., Wickham et al., 2015). In order to investigate a
possible consequence of clustering, we decided to conduct
a second experiment with different patterns.

Experiment 2

In Experiment 1, we observed that participants mostly
fixated on the center of the scatterplots (Area 2). As the

level of noise was equal in and outside the center allo-
cating attention to the center, a further experiment was
needed in order to test whether this allocation of at-
tention was consequential for the fit ratings. If the data
points in the center have more influence on the rating
than the points in the periphery, then higher noise would
have a larger impact on ratings if they are located in the
center rather than outside the center of the scatterplot.
We turned the analysis approach from Experiment 1 into
an experimental manipulation, dividing each scatterplot
into three areas as defined in Experiment 1 and im-
plementing different noise levels for different areas
within one scatterplot. We expected that the estimations
would be influenced more by the point pattern of the
center as opposed to the periphery.

Visual inspection of plots with such deviations is rele-
vant when checking for the assumption of homoscedas-
ticity in regressions, which means that the variance of
errors is the same across all levels of the independent
variable (Osborne & Waters, 2002).

Method

Participants
Fifty-one German-speaking psychology students (32 women,
19men, ageM = 34.6 years, SD = 9.8) participated for course
credit in the experiment.

Materials and Procedure
The experiment was conducted as an online experiment
with integrated visual stimuli, programmed with the tool
Unipark. Each person saw 36 scatterplots in a randomized
order. The variation between the scatterplots followed a 3
(area with highest noise) × 2 (overall noise) within-subjects
design with six scatterplots per design cell. The diagram
axes were scaled from 0 to 10 on 2-point intervals, and the
slope remained the same across all scatterplots. Ticks were
added to the axes to account for a more realistic scenario.
For the slope, we chose the value with the highest per-
centage of fixations in the center in Experiment 1 (22.5°) to
maximize the chances for obtaining a strong effect. We
used a 10 × 10 coordinate system and a linear equation of
2.5 + 0.5x. The instructions and construction approach for
the scatterplots followed the logic of Experiment 1 (except
for the fact that there were nine instead of seven points on
the x-axis). We manipulated the location of area with
highest noise, which was four times as high as the noise for
the remaining two areas. For example, when two areas of
the scatterplot had a noise of 0.25, the area with the
highest noise had a noise of 1 (see examples in the upper
line in Figure 5). The location of the area with the highest
noise could be left, middle, or right. For this, we used high

Figure 4. Splitting the scatterplots into three areas.

Table 1. Distribution of fixations for each area in percentage

Slope Area 1
M (SD)

Area 2
M (SD)

Area 3
M (SD)

22.5° 6.37 (6.62) 87.93 (8.92) 5.69 (7.68)

45° 6.78 (5.02) 85.82 (8.90) 7.40 (7.27)

67.5° 10.35 (8.16) 74.82 (12.89) 14.81 (12.91)

Means and SDs.
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noise for the first three, middle three, or last three values
on the x-axis, respectively.
Additionally, we manipulated the overall noise

without changing the ratio (one to four) between areas
of lower and high noise within one scatterplot. The
values for the SD for the lower overall noise were 1
(Area 1), 0.25 (Area 2), and 0.25 (Area 3) and for the
high overall noise 2 (Area 1), 0.5 (Area 2), and 0.5 (Area
3) as examples of scatterplots where the area with
highest deviations was on the left side. For each
combination of overall noise (high vs. low) and area
with highest noise (Area 1, Area 2, and Area 3), we used
six different randomly generated scatterplots, resulting
in 36 stimuli (see Figure 5 for examples). Stimuli are
available online (Reimann, 2019).

Results

Figure 6 shows the mean values for the ratings of each
scatterplot configuration. All scales had a reliability

above .92 (see Appendix Table A2 for details). A 2 × 3
ANOVA with the within-subject factors overall noise
(high and low) and area with the highest noise (Area 1,
Area 2, and Area 3) showed a significant main effect for
overall noise, F(1, 50) = 155.18, p < .001, η2p = .76, a
significant main effect for area with the highest noise,
F(2, 100) = 21.79, p < .001, η2p = .30, and a significant
interaction effect, F(2, 100) = 3.88, p = .024, η2p = .07.
When the area with the highest noise was in the center
of the scatterplot (rather than at the left or right), the
subjective fit estimate declined. For the main effects,
all pairwise comparisons (Bonferroni-corrected) were
significant, p < .001. The interaction effect was rather
weak but indicated that the differences between areas
of highest noise were stronger for high overall noise.
The difference between highest noise in Area 1 and
highest noise in Area 2 was 5.8 for high overall noise and
3.79 for low overall noise. The difference between
highest noise in Area 2 and highest noise in Area 3
was 7.86 for high overall noise and 4.88 for low
overall noise.

Figure 5. Example scatterplots for Experiment 2. In the left column are scatterplots with the highest noise in Area 1, in the middle column are
scatterplots with the highest noise in Area 2, and in the third column are scatterplots with the highest noise in Area 3. Scatterplots in the upper line
have a low overall noise (leading to an R2 of .86), and scatterplots in the lower line have a higher overall noise (leading to an R2 of .62).
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Discussion

Experiment 2 supported our prediction derived from Ex-
periment 1. We found a consistent pattern across two
different levels of overall noise. The fit estimations were
lower when the highest noise was located in the center of
the scatterplot. The effect size of area of highest noise (η2p =
.30) indicates a large effect (cf. Cohen, 1988). In light of
the findings in previous work (Tatler, 2007), that the
center bias does not disappear when salient image features
are placed outside of the center, it is likely that a center
bias led to a stronger influence of the point pattern in the
center. Despite the center bias documented by Tatler
(2007), it seems conceivable that attention was drawn
to the periphery by larger noise at least in some trials in our
Experiment 2. This would have worked against the effect
we nevertheless obtained and reduced our estimate of the
extent to which noise in the center is weighed more
strongly than in the periphery. Future work involving
stronger outlier manipulations and eye tracking might
follow up on the question under which conditions outliers
in the periphery draw attention and by this increase the
impact of noise in the periphery on fit estimates. A second
theme to consider for future work concerns the distinction
between screen and stimuli. Our scatterplots were placed
in the middle of the screen. Bindemann (2010) found
evidence for both a screen center bias and a scene/stimuli
center bias. Future studies could therefore also vary the
position of the graph on the screen.

The results of the experiment have implications for a
variety of practical applications. In cases of visual outlier
checking, data points in the tails could be less likely or
more slowly detected than in the center. Similarly, the
quality of checking the assumption of homoscedasticity in
regression could strongly vary across different portions of
the scatterplot. Furthermore, viewing scatterplots with
tails of different variability can be relevant for many cases

in the field of visual model assessment and predictive
modeling. For example, Wickham et al. (2015) pointed out
that model visualization can help to analyze whether the fit
in a model is uniformly good or differently good for dif-
ferent regions. In some cases (e.g., Evans et al., 2018), the
x-axis is related to a temporal dimension. Especially in the
case of longer time spans (for example, months or years), it
is plausible that the predictions of a model become less
accurate over time. For accurate perceptions and con-
clusions, visualization of suchmodel data patterns requires
attention to all regions.

General Discussion

Weexploredwhat information people use for estimating fit
between model line and data points in scatterplots. Ex-
periment 1 revealed that the perceived fit was rated higher
for scatterplots with lower noise and steeper slopes. Thus,
participants’ visual judgments do not mimic RMSE (which
would indicate good fit for a flat line with low noise).
Rather, they resemble measures that take variance ex-
plained into account. As we learned from Experiment 1
that most of the fixations fell into the center of the
scatterplot (center bias), Experiment 2 tested whether
noise at central versus peripheral positions in the graph
differentially affected the judgment. With this, Experi-
ment 2 addressed a feature that is not related to most
statistical fit indices. The results suggested that for the
perceived fit, the impact of data points in the center of the
scatterplot was higher than the impact of data points in
the outer areas.

Taking together, these findings about geometrical
properties and gravity of attention and its possible con-
sequences contribute to Brewer (2012) and others’ claim to
better understand how people use graphs with data and
theory to weigh scientific evidence. Additionally, the
presented research provides evidence for the existence of
and the consequences of the center bias from scene
viewing literature (cf. Tatler, 2007), within the perception
of scatterplots.

A suggestion for future research is to focus on a more
heterogeneous sample, since psychology students might
be more familiar with scatterplots and statistical concepts
than others. Expertise has been discussed as a con-
founding factor in visual estimations in scatterplots (cf.
Meyer & Shinar, 1992; Strahan & Hansen, 1978).

Across the experiments, we used subjective fit esti-
mation as the dependent variable. The majority of
research on subjective impressions in scatterplots
has focused explicitly on correlation estimation (e.g.,
Doherty & Anderson, 2009), and it is possible that some

Figure 6.Mean values in rating for each configuration of a scatterplot.
Error bars indicate the 95%within subjects CI according toMasson and
Loftus (2003) based on the pooled error term.
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participants automatically estimated correlation. How-
ever, we think it is worthwhile to pursue future research
on fit estimations in scatterplots in general. The linear
regression line can be used to express a quantitative
theory and compare it to data (cf. Kubovy & van den Berg,
2008). The number of possible constellations in ar-
rangement of data points and model (e.g., position and
shape) is large. For instance, the linear model does not
always have to be the regression line of least squares, and
in some applications, one might be interested in the
goodness of fit of an already specified model that is tested
on new data. Furthermore, some quantitative theories
have a curvature shape such as in contexts of learning
(e.g., Evans et al., 2018) or forgetting (e.g., Wixted &
Ebbesen, 1997). Evaluation of fit might specifically de-
pend on whether a theory systematically overestimates or
underestimates the asymptote (cf. Palmeri, 1999). Future
research could focus on how individuals estimate fit in
those contexts. We understand the presented research as
a first step toward that direction.
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Appendix

Further Information on Results

Table A1. Means (M), Standard Deviations (SDs), and reliability for the ratings for Experiment 1

Slope Noise SD = 1
M (SD; α)

Noise SD = 2
M (SD; α)

Noise SD = 3
M (SD; α)

22.5° 65.96 (14.74; .86) 40.19 (19.39; .91) 27.35 (21.15; .95)

45° 75.15 (9.48; .72) 49.50 (19.63; .91) 33.02 (19.90; .90)

67.5° 88.11 (5.89; .79) 70.00 (11.71; .82) 57.51 (15.70; .87)

Note. N = 25. α = Cronbach’s alpha. This table refers to the values in Figure 2. It shows themean value in estimation of fit betweenmodel and data for each of the
nine experimental conditions. Since we created four parallel versions for each condition, we could provide information about the reliability.

Table A2. Means (M), Standard Deviations (SDs), and reliability for the ratings for Experiment 2

Overall noise Highest noise
Area 1

M (SD; α)

Highest noise
Area 2

M (SD; α)

Highest noise
Area 3

M (SD; α)

Low 71.58 (15.37; .93) 67.80 (15.12; .95) 72.68 (14.54; .92)

High 59.15 (19.28; .96) 53.89 (18.25; .95) 61.75 (16.46; .95)

Note. N = 51. α =Cronbach’s alpha. This table refers to the values in Figure 6. It shows themean value in estimation of fit betweenmodel and data for eachof the six
experimental conditions. Since we created six parallel versions for each condition, we could provide information about the reliability.
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