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A STATISTICAL PARADOX 

BY D. V. LINDLEY 

Statistical Laboratory, University of Cambridge 

An example is produced to show that, if H is a simple hypothesis and x the result of an 

experiment, the following two phenomena can occur simultaneously: 

(i) a significance test for H reveals that x is significant at, say, the 5 % level; 

(ii) the posterior probability of H, given x, is, for quite small prior probabilities of H, 

as high as 95 %. 
Clearly the common-sense interpretations of (i) and (ii) are in direct conflict. The phenom- 

elnoln is fairly general with significance tests and casts doubts on the meaning of a signi- 

ficalnce level in some circumstanices. 
NVe begin by giving the mathematical derivation of the example and later comment on 

it and the assumptions involved. Let (x1, x2, ..., x.) be a random sample from a normal 

distribution of mean 0 and known variance o2. Let the prior probability that 0 = 00, the 

value on the null hypothesis, be c. Suppose that the remainder of the prior probability is 

distributed uniformly over some interval I containing 00. We shall deal with situations 

where x, the arithmetic mean of the observations, and a minimal sufficient statistic, is 

well within the interval I. The posterior probability that 0 = 00, in the light of the sample, 

can be evaluated; it is c = c exp [- n(x- 0)2/(2r2 )]2K, (1) 

where K = c exp [-n(x- 00)2/(20-2)] + (1- c) j'exp [- n(x -0)2/(20-2)] dO, 

by Bayes's theorem. In virtue of the assumption about x and I the integral can be evaluated 

as o-C(2nln). 

Now suppose that the value of x is such that, on performing the usual significance test 

for the mealn 00 of a normal distribution with known varianice, the result is significant at 

the a percentage point. That is, x = 00+A.a o-lin, where AX is a inumber dependent on a 

only and can be found from tables of the normal distribution function. Inserting this value 

for x in (1) we have the following value for the posterior probability that 0 = 00 

= ce-A2I{c -iAA+ (1 -c) o- V(27Tnn)}. (2) 

(Note that x-00 tends to zero as n increases so that x will lie well within the interval I for 

sufficiently large n.) From (2) we see that as n-*oo, c-* 1. It follows that whatever the 

value of c, a value n can be found, dependent on c and a such that 

(i) x is significantly different from 00 at the a % level; 

(ii) the posterior probability that 0 = 00 is (100 -a) %. 

This is the paradox. The usual interpretation of the first result is that there is good reason 

to believe 0 $ 00; and of the second, that there is good reason to believe 0 = 00. The two inter- 

pretations are in direct conflict, and the conflict may apparently be made even stronger by 

remarking that the (100- a) % confidence and fiducial intervals for 0 just exclude 0 = 00. 

With ac = 5 we are 95 % confident that 0 * 00, but have 95 % belief that 0 = 00. 
In commenting on this analysis, let us first consider the assumptions involved. Many 

significance tests involve situations in which the test criterion is asymptotically normally 

This content downloaded from 128.197.26.12 on Sat, 2 Nov 2013 17:09:48 PM
All use subject to JSTOR Terms and Conditions



188 A statistical paradox 

distributed with known variance, as is x in the example, and therefore the sample con- 

sidered is in no way unusual. The only assumption that will be questioned is the assignment 

of a prior distribution of any type, and, in particular, of the form chosen. A paradox will 

only have been generated if we can show there exist situations where (a) a prior distribution 

of this form is reasonable, and (b) a significance test of the 'tail-area' type is commonly used. 

Let us first consider the assignment of any prior probability. The argument for the use of 

prior probabilities has been put forward very cogently by Jeffreys (1948). His arguments 

have, to my mind, been reinforced by those of Ramsey (1931) and, more especially, Savage 

(1954). Savage's main contribution is as follows: he lays down certain axioms that a man 

should follow if he is to act in a 'rational' way, and defines a rational man to be a man who 

acts according to these axioms. The latter are quite mild in their form and would surely 

be agreed to by most statisticians. Savage then shows that a rational man must act as if 

he had a prior probability distribution and (if relevant) a utility function. It does not follow 

from this that any statistical inference need make overt mention of a prior distribution, 

but it does follow that no inference procedure should grossly contradict the existence of 

a prior distribution. (A mild contradiction may be allowable in the interests of simplicity.) 

Another way of looking at this result is to say that a probability distribution is a satisfactory 

measure of one's convictions about several hypotheses. For example, if to-day we say that 

our prior belief in one hypothesis is i it will mean the same as saying to-morrow that our 

prior belief in a different hypothesis is 1; just as a yard of material to-day measures the same 

as a yard of material to-morrow. If we are to use a significance level in -a similar way, as 

Fisher (1956, p. 43) has suggested we can, and most statisticians do, we must establish a 

similar comparison property. 5 % to-day must mean the same as 5 % to-morrow. Our 

example, we claim, shows that it need not. 

So much for the general question of introducing a prior distribution. We now consider 

the particular form used in deriving the paradox. We first note that the phenomenon would 

persist with almost any prior probability distribution that had a concentration on the null 

value and no concentrations elsewhere. For example, if there is an amount c at 0 = 0- and 

the rest is distributed throughout I according to a density p(6), where f p(0)do = 1 -c, 

then if p(O) is bounded it is easy to show, for example, by a steepest descent argument 

applied to the integral corresponding to that in (1), that c still tends to 1. It is sufficient 

that p(O) does not tend to infinity too rapidly as 0 tends to 00. It is, however, essential that 

the concentration on the null value exists, and it is this that has to be considered. Again 

Jeffreys (1948) has discussed the point. Briefly, one argument is that the singling out of 

the hypothesis 0 = 00 to be tested is itself evidence that the value 00 is in some way special 

and is likely therefore to be true. We should like to give two examples where this seems 

unquestionably correct. The first is in genetics where 0 is the linkage parameter between 

two genetic factors. If there is no linkage 0 = 0S = 4, and we are concerned with developing 

a test to determine if there is any evidence for linkage. Now in this situation there is a 

considerable amount of prior knowledge. For it is known that there is linkage if, and only 

if, the two genes lie on the same chromosome. Consequently if there are n chromosomes of 

approximately equal length, and if it seems reasonable to suppose that the gene is equally 

likely to be anywhere along the chromosomes' lengths, then it seems reasonable to suppose 

a prior probability of the order of (n -1)/n that the value of a is 4 . The particular numerical 

value of the prior probability is not so important here (though we note it is rather large) 
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as is the fact that 6 = 0 is in a singular position and will arise for most positions of the genes. 

A second example arises in the telepathy experiments carried out by Soal & Bateman (1954), 

where, if no telepathic powers are present, the experiment has a success ratio of 0 = 15 

otherwise 0 $ 5. A significance test for telepathy therefore should assign to 00 a con- 

centration of probability equal to one's prior belief that the subject has not got telepathic 

powers. This example is perhaps not as convincing as the genetical one because of the 

prejudices that exist in connexion with extra-sensory perception. My point in both these 

examples is that the value 00 is fundamentally different from any value of 0 * 00, however 

near to 00 it might be. Unquestionably there exist situations (perhaps they are the more 

common) in which this is not so; where we are interested in testing the approximate 

validity of the null hypothesis, such as that the treatment has no (or very little) effect. 

This point has been discussed by Hodges & Lehmann (1954). 

We now consider the paradox in these situations where the prior probability exists (by 

Savage's argument) and has a concentration on the null value. We first note that the expres- 

sion of it in terms of fiducial or confidence limits used above is unjustified. The limits purport 

to be statements made about the value of 0 in the light of the experimental result when 

initially nothing is known about or independent of knowledge of 0. The type of prior dis- 

tribution used here (suggested by the practical circumstances of the problem) certainly 

does not correspond to ignorance about 0. Thus we should not be surprised at the disagree- 

ment. The paradox merely serves as a warning that the confidence or fiducial type of 

statement should only be used in those circumstances where one is truly ignorant 

about the parameter. We have argued that this is not so in the telepathy or genetical 

examples. 

The conflict between statements of a significance level and statements based on Bayes's 

theorem remains. Now in our example we have taken situations in which the significance 

level is fixed because, as explained above, we wish to see whether its interpretation as a 

measure of lack of conviction about the null hypothesis does mean the same in different 

circumstances. The Bayesian probability is all right, by the arguments above; and since 

we now see that it varies strikingly with n for fixed significance level, in an extreme case 

producing a result in direct conflict with the significance level, the degree of conviction is 

not even approximately the same in two situations with equal significance levels. 5 % in 

to-day's small sample does not mean the same as 5 % in to-morrow's large one. 

An alternative interpretation of the paradox was s.uggested to me by Prof. Barnard. The 

posterior probability e, given by (2), may be written 

c = Clfnl{C'fn + ( c)}, 

where f=n e2 

the likelihood of 00 on the evidence of the sample. Clearlyfn oo as n - oo, A, fixed. Hence 

for fixed significance level the likelihood of the null hypothesis increases indefinitely with 

the sample size. This appears to me to demonstrate, without reference to prior probabilities, 

the unsoundness of the suggestion that significance tests depend on the disjunction: either 

a rare chance has occurred or the null hypothesis is false (Fisher, 1956, p. 39). For the chance 

considered in a significance test is the chance of the observed event and other more extreme 

ones. The chance of the observed event is measured by the likelihood function. These two 

chances behave quite differently. In fact, the paradox arises because the significance level 
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argument is based on the area under a curve and the Bayesian argument is based on the 
ordinate of the curve. However, the above interpretation through the likelihood involves 
no mention of alternative hypotheses which seem basic to any approach to the problem. 

The other approach to significance testing, due to Neyman & Pearson, does envisage the 
use of alternative hypotheses and hence appears to give a reason for using the tail area 
because this region is the best one in which to reject the null hypothesis at a specified level 
of significance. Therefore the occurrence of an observation in the region is an unusual event 
on the null hypothesis and less unusual on some alternative hypotheses. But the theory 
does not justify the practice of keeping the significance level fixed, nor does it take account 
of the fact that when the observation has been made we know, not that the point has fallen 
in the region of significance, but that it has fallen exactly on the edge, and the likelihoods 
under the null and altemative hypotheses seem the relevant quantities to compare. 

The paradox is not, in essentials, new, although few statisticians are aware of it. The 
difference between the two approaches has been noted before by Jeffreys (see, in particular, 
1948, Appendix), who is the originator of significance tests based on Bayes's theorem and 
a concentration of prior probability on the null value. But Jeffreys is concemed to emphasize 
the similarity between his tests and those due to Fisher and the discrepancies are not 
emphasized. The same phenomenon was noticed by Lindley (1953) in decision theory studies, 
and some computations by Prof. Pearson in the discussion to that paper emphasized 
how the significance level would have to change with the sample size, if the losses and prior 
probabilities were kept fixed. (The discussion based only on the latter quantities is mathe- 
matically equivalent to one in decision theory language with zero-one losses.) The present 
note considers the situation where the significance level is fixed and the variationinposterior 
probability is evaluated, rather than the other way round. 

The concept of a significance level has been used very successfully in practical problems 
of inference. One might now ask how this has come about. The answer has already been 
given by Jeffreys in the appendix already cited. Essentially it is because c, as given by (2), 
tends to unity very slowly and, for moderate values of n, c may be less than c at a prescribed 
significance level and the two concepts be in reasonable agreement. Let 

A = ce-lA/I(l-c)1(2nr), 

then = A/(A + c-/Jn), (3) 

and co 0 as o-I1n-*oo. Hence in a small experiment, significance at 5 % may give very 
strong reasons to doubt the null hypothesis. A numerical example is informative. Suppose 
we take c = i and use a two-sided test at 5 % significance so that A. = l-96; then A = 0-0584 
and the table gives the value of c for different values of t = n/c-2. If o = 1, t = n, and we 
see that for small samples (n < 10) the probability of 00 has decreased appreciably from its 
initial value of 4, giving cause to doubt the validity of the null hypothesis. For medium 
samples (10 < n < 100) the probability has only decreased a little, so that although we are 
not as confident as we were initially about the null hypothesis, our doubts are not great. By 
the time n has reached a value about 300 c is equal to c; the experiment, despite its 5 % 
significance, has not altered our belief in the null hypothesis at all. To reach the strong 
contrast put forward in the paradox it would be necessary to take n about 10,000. Of 
course if o- is smaller then smaller samples will suffice. For example, if we apply these 
numerical values to the Soal & Bateman problem (i.e. use the normal approximationi to 
the binomial) we have o2 = 1.4 = 0-16, and a sample of size about 48 has -c equal to the 
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original value of i. An experiment of this type with a run of forty-eight trials which is 
significant at 5 % would not alter our views on telepathy if initially we had an open mind 
on the problem. The normal approximation is not adequate for samples as low as 10, but it 
is clear that only such small ones would increase our prior belief at all noticeably. An experi- 
ment of 1600 trials would raise our belief that telepathy did not exist to 95 %; quite a 
moderate size in comparison with the 37,100 trials carried out with Mrs Stewart. The reader 
may be interested to know that with c = i the posterior probability of the null hypothesis 
O - X in the light of the experiments with Mrs Stewart (9410 succeswes) is of the order of 
10-140. The evidence for Mrs Stewart's telepathic powers is rather strong. 

t c t c 

1 0*055 600 0 589 
2 0*076 800 0*623 
3 0*092 1,000 0*649 
4 0*105 2,000 0*723 
5 0.116 4,000 0*787 

10 0*156 6,000 0*819 
20 0*207 8,000 0*839 
40 0*270 10,000 0*854 
60 0*312 20,000 0*892 
80 0*343 40,000 0*921 

100 0*369 60,000 0*935 
200 0*453 80,000 0 943 
300 0503 100,000 0*949 
400 0 539 co 1.000 

An apparent advantage of the significance level statement is that it does provide some 
sort of assessment of the truth of the null hypothesis using only the evidence provided by 
the experiment. It is, in effect, a convenient (though possibly misleading) summary of 

what the experimental result has to say about the null hypothesis. A similar assessment is 
available in a Bayesian analysis through the likelihood function. In the situation con- 

sidered here the function is proportional to 

J ( n ) exp {-jn(._ -)2), 

regarded as a function of 6. This, unlike the single number expressing the significance level, 
is a function and is therefore more difficult to understand. A reduction to a numerical value 

is possible provided the assessment of prior probabilities conditional on 0 6 00 is made. For 

example, if 8 is uniform in the interval I in these circumstances, then 

exp [-n( -06)2/2o2]/ exp [-n(x - 0)2/20.2] dO = exp n- (27 )2 

is the quantity by which the prior odds, c/(l -c), in favour of 00 must be multiplied in order 
to obtain the posterior odds, c/(l - c). This single value, or its logarithm, might be an accept- 
able substitute for the significance level. It is numerically equal to Jeffreys's K, since he 

supposes c = i. 

The paradox serves to explain one puzzling feature of tests based on Bayes's theorem. 

Suppose the experimenter has continued sampling randomly until he has reached a result 
which is, using a fixed-sample size significance test, significant at some prescribed signi- 
ficance level a. That is, he has taken a sample (x,, x2, ..., x) such that x = 6O + A, c//n. 
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It is easy to show, by the law of the iterated logarithm, that this will happen with probability 

one whatever the value of 6. Then the experimenter has, of course, cheated if he quotes his 

result as being significant at ax %, though, if the distribution theory were known, a valid 

significance test could be made. But it would not be that appropriate to a sample of fixed 

size n. On the other hand, it is easy to see that the likelihood of the observations (xl, x2, .. ., xn) 

does not depend on the particular sequential stopping rule used and is, therefore, equal to 

the likelihood the experimenter would have obtained if the same sample had been reached 

by taking a sample of fixed size n. It follows that any significance test based on Bayes's 

theorem does not depend on the sequential stopping rule used, at least amongst a wide class 

of such rules. In the extreme case the experimenter can go on sampling until he has reached 

the significance level ac, and yet the fact that he did so is irrelevant to a Bayesian. In 

telepathy this is known as 'optional stopping': stopping when the results look striking; 

striking, that is, on a significance level criterion. The explanation is now clear. If 0 * 60 the 

optional stopper will reach his desired point for small n and - < c. On the other hand, if 

0 = 00 the value of n will be larger and -c > c. (These are average results, of course, naturally 

sometimes mistakes will be made.) The value of c is just what one would expect in the two 

cases and we see that the Bayesian will not on the average be in error in ignoring the stopping 

rule. It should now be possible to give a reliable assessment of those results in telepathy 

which have had objections raised against them on the grounds of optional stopping. 

I am much indebted to Profs. Pearson and Barnard for helpful comments on the first 

draft of this paper. 
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