
(1) and

nS;+1 = (n -1)s; + (n: 1) (Xn+1- Xn)2. (2)

(See below for details.) Now, Xn and X n+1 are indepen­
dent, N(tJ-, (j2/n ) (by the induction hypothesis) and
N (u., (j2), respectively. Hence Xn+ I is a linear combina­
tion of two independent normal random variables, and
(a) follows by simply computing EXn+1 and V(Xn+I ) .

Similarly, it follows that X n+1 - Xn has a N(O, «n +
1)/n)~) distribution, and so (n/(n + 1»(Xn+ I-Xn)2 is
distributed as the square of a N(O, (j2) random variable.
Since X n + 1 is independent of s;, and Xn is also indepen­
dent of s; by the induction hypothesis, (b) follows after
dividing (2) through by (j2. Finally, the induction hy­
pothesis (and inspection of (1)) shows that Xn+ 1 is inde­
pendent of s;, and (c) follows by noting

cov(nXn+ Xn+l> X n+ 1 - Xn) = (j2 - n . ~/n = 0.

The relationships (1) and (2) are themselves nice ex­
ercises in summation notation. (1) is direct, as is the
useful consequence X n+ 1 - Xn= (Xn+ 1 - Xn)/(n + 1).
Formula (2) follows by expanding
n+1 n+1

L (Xi -Xn+ I)2= L [(Xi -Xn) + (Xn-Xn+I)]Z
i=1 i=1

n+1

= L (Xi - X n)2+ 2(Xn- X n+ I)
i=1

n+1

X L (Xi - Xn) + (n + l)(Xn-X n+ I)2.
i~1

Then, noting that
n+1

" ( - )2 _ ) 2 ( - 2LJ Xi - Xn - (n - 1 s; + X n+ 1 - Xn) ,
i=1

n+l n

L (Xi - Xn) = L (Xi - Xn) + (Xn+ 1 - Xn) = X n+ 1 - Xn,
i=1 i=1

(2) follows readily.
One feature of this proof is that it only involves bi­

variate distributions; hence the independence of
XI + X 2 and XI - X 2 and of nXn+ X n+ 1 and X n+ 1 - X n
can be illustrated geometrically at a blackboard. In ad­
dition, formulas (1) and (2) are of independent interest
as useful algorithmic devices for calculating X and s 2 on
a computer; see Chan, Golub, and LeVeque (1983) for
a discussion and evaluation of these and other
algorithms.

Kruskal's original version of this proof did not as­
sume the knowledge that a lack of correlation among
bivariate normal random variables implies indepen­
dence; instead he derived the relevant distributions
analytically by transformation.

[Received April 1983. Revised October 1983.]
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The Double Exponential Distribution: Using Calculus to Find a
Maximum Likelihood Estimator

ROBERT M. NORTON*

1. INTRODUCTION

When learning how to derive a maximum likelihood
estimator (MLE) for an unknown parameter of a
known density function, students are tempted to stop
after equating the first derivative to zero and solving,
particularly if the derivative is of complicated form. Yet
students know from calculus that a function may have a
maximum, minimum, or neither at a critical number.

'Robert M. Norton is Associate Professor, Department of Mathe­
matics, College of Charleston, Charleston, SC 29424. The author
wishes to thank a referee for some insightful suggestions.

The purpose of this note is to give a simple maximiza­
tion argument on one particular exercise encountered
by anyteacher using the mathematical statistics text by
Hogg and Craig. It is an exercise students always find
difficult.

2. THE PROBLEM AND SOLUTION

The particular problem is this: Find the MLE for 6
when Xl> X 2 , ••• ,Xn represents a random sample from
the density

f(x; 6)=iexp(-lx -61), -oo<x<oo, -00<6<00.
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The likelihood function L (e) has as its natural
logarithm

n

",(e) = -n In2 - Llx; - el
i=1

n

= -n In2 - L {(Xi - e)Zpl2.
i=1

The function '" is continuous everywhere and differ­
entiable except at e = XI. Xz, ... ,Xn• Now when it exists,

n

",'(e) = L {(Xi - e)Ztl/Z(X; - e)
;=1

n

= L (X; - e)/Ix; - e],
i=1

a sum of ones and minus ones.
Let YI < Yz < ... < Yn denote the order statistics of the

sample. For e<yI. ""(6) = n since (z, - e)/Ix; - el = 1
for all i. If YI < 6 <.» then ",'(e) = n - 2, while if
Yz < e< Y3 then ""(6) = n - 4, and so forth. The graph
of '" is a continuous polygonal curve. It is now easy to
see that for n odd, '" is strictly increasing on (-00, Y(n+I)/Z]

and strictly decreasing on [Y(n+I)I2' 00), so that at e=
Y(n+l)/Z the functions e and L are maximized. If n is even,
the highest points on the graph of L lie on the horizontal
segment

{(e, L (e)):Ynl2::::; e::::; Y(nIZ)+I}'

Hence the sample mediani is a MLE for e. My students
have found this argument helpful on this problem.

Students who realize that the derivative is a sum of
ones and minus ones sometimes try to equate the deriv­
ative to zero, reasoning that there must be as many ones
as minus ones, and conclude that the median is an an­
swer. Yet this makes sense only for n even, and then it
is known only that i is a critical number for e. Still more
work is required to show that L is maximized at e= i .

[Received May 1983. Revised August 1983. ]
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