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Dedication 

To the ideal of rational inference 



PREFACE 

The "8th MaxEnt Workshop", to give it its short name, was 
held in St. John's College, Cambridge, England, on August 1 - 5, 
1988, and this Volume of 55 papers records the Proceedings. 

History repeats itself in many ways. All ancient 
civilisations evolved some core of basic practical mathematics, 
but it was the Greeks who insisted upon superior intellectual 
standards. It was the Greeks who invented the world of axioms 
and theorems. They invented and formalised the central idea of 
logical proof, so that assent to axioms perforce requires assent 
to their consequences, however long the chain of reasoning 
involved. Conversely, any attack on the consequences becomes an 
attack upon the axioms, which are usually much simpler to 
discuss. This power and beauty swept cruder mathematics aside 
for ever. 

An echo of this occurs in our own century. We live in a 
complicated world, and our procedures for learning from 
observations are codified as the subject of statistics. Often 
enough, we are concerned with difficult problems, and a variety 
of more or less ad hoc practical techniques has evolved to deal 
with them. Yet there is an inner logic to the practice of 
inference, which leads inevitably to the use of quantified 
probabilities, manipulated by Bayes' theorem and assigned by the 
principle of maximum entropy (MaxEnt). Those who live by this 
logic are called Bayesians. Because of their inner certainty of 
methodology, they are sometimes perceived as religious 
fundamentalists - but that does not in itself mean that they are 
wrong. 

The Bayesian/MaxEnt church is alive and well, and has its 
own calendar of saints (and devils). Foreshadowed by the MIT 
meeting of 1978, the first formal assembly was held ~n Laramie, 
Wyoming in June 1981. It was my particular pleasure to attend 
that first "Workshop on Maximum Entropy and Bayesian Methods in 
Applied Statistics", organised by Ray Smith and Tom Grandy, who 
have since become lasting friends of mine. MaxEnt was then 
beginning to grow beyond the confines of statistical thermo­
dynamics, where it had enjoyed a certain degree of protection 
afforded by the abstract nature of the subject, by the 
conveniently large value of Avogadro's number, and by the 
demonstrable success of its predictions. Bayes' theorem, 
likewise, was beginning to break free of the suffocating weight 
of "orthodox" statistics, substantially aided by the brilliant 
logic and polemic of Edwin Jaynes. Each summer since 1981 has 
seen a further meeting in the series. Each has been notable for 
some new inspiration and application, for the particular strength 
of rational thought is that it works. More and more quickly, 
inference problems in all sorts of disciplines are being brought 
within the purview of Bayesian/MaxEnt analysis. 

The 1988 meeting, held in St. John's College, Cambridge, 
had a particularly appropriate venue. Sir Harold Jeffreys, who 
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cared deeply about rational inference throughout a long working 
life, is the Senior Fellow. Prof. Edwin T. Jaynes, whose 
influence on the subject has been so profound, is also connected 
with St. John's, having been Overseas Fellow in 1983/4. On a 
lesser plane, my own introduction to MaxEnt was a lunch-time 
conversation in College with my mentor, friend and colleague, 
Steve Gull. 

Being the first of the workshops to be held in Europe, 
this meeting attracted over 100 delegates, from industry and from 
defence establishments as well as from academia. A central topic 
such as inference can be expected to touch a number of other 
subjects, but even the organisers were surprised by the variety 
of topics which were offered and presented, from philosophy to 
floods, from biology to astronomy, and with references ranging 
from New Left Publications to Acta Crystallographica. 

Profound thanks are due to our financial sponsors, who 
provided the funds needed to invite distinguished overseas 
speakers whilst keeping the fees low enough for the academic 
pocket. The United States Navy Office of Naval Research 
maintained its valued connection with the workshop series through 
its grant N00014-88-J-1126, and industrial support was provided 
by E.I. DuPont Company Central Research and Development, ICI 
Chemicals and Polymers Group, Glaxo Group Research Limited, 
British Petroleum pic, and Maximum Entropy Data Consultants 
Limited. Thanks are also due to St. John's College, which 
provided such appropriate and attractive facilities, and whose 
staff were unfailingly generous with their time and effort. Not 
least, I wish to thank in particular my wife and son, Jennifer 
and Martin Skilling, for their secretarial and organisational 
help, which contributed so much to the smooth running of the 
meeting. Thank you, all. 

The authors of the papers published here also deserve my 
editorial thanks for producing their papers so well and so 
promptly. In the interests of quick publication, the workshop is 
continuing the recent practice of using camera-ready copy. 
Because interest continues to grow, the workshops are currently 
being formally organised on a continuing basis, with a permanent 
organising committee, and their Proceedings are henceforward to 
be published by Kluwer Academic Publishers under the generic 
title 

"Maximum Entropy and Bayesian Methods (location) (year)". 
It is hoped that each successive volume will continue to capture 
something of the excitement and vitality of current research. 

Lastly, I wish as Editor to dedicate this Volume, not to 
any particular individual, but to that transcending ideal to 
which we try to aspire - the ideal of rational inference. 

St. John's College 
Cambridge 
January 1989 

John Skilling 
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CLEARING UP MYSTERIES . THE ORIGINAL GOAL 

E. T. Jaynes 
Wayman Crow Professor of Physics 
Washington University, St. Louis MO 63130, USA 

Abstract. We show how the character of a scientific theory depends on one's attitude toward 
probability. Many circumstances seem mysterious or paradoxical to one who thinks that probabilities 
are physically real things. But when we adopt the "Bayesian Inference" viewpoint of Harold Jeffreys, 
paradoxes often become simple platitudes and we have a more powerful tool for useful calculations. 
This is illustrated by three examples from widely different fields: diffusion in kinetic theory, the 
Einstein-Podolsky-Rosen (EPR) paradox in quantum theory, and the second law of thermodynamics in 
biology. 

INTRODUCTORY REMARKS 

Our group has the honour to be among the first to use this splendid new Fisher building 
with its 300 seat auditorium. But perhaps, at a meeting concerned with Bayesian inference, we 
should clarify which Fisher inspired that name. 

St. John's College was founded in the year 1511, its foundress being the Lady Margaret 
Beaufort. John Fisher was then Chancellor of the University of Cambridge, and after her 
death he found himself obliged to make heroic efforts to ensure that her wishes were carried 
out. But for those efforts, made some 480 years ago, St. John's College would not exist 
today. Historians have suggested that, but for the efforts of John Fisher in holding things 
together through a turbulent period, the entire University of Cambridge might not exist today. 

Although the terms "Bayesian" and "Maximum Entropy" appear prominently in the 
announcements of our meetings, our efforts are somewhat more general. Stated broadly, we 
are concerned with this: "What are the theoretically valid, and pragmatically useful, ways of 
applying probability theory in science?" 

The new advances of concern to us flow from the recognition that, in almost all respects 
that matter, the correct answers were given here in St. John's College some fifty years ago, by 
Sir Harold Jeffreys. He stated the general philosophy of what scientific inference is, fully and 
correctly, for the first time; and then proceeded to carry both the mathematical theory and its 
practical implementation farther than anyone can believe today, who has not studied his works. 

The ideas were subtle, and it required a long time for their merit to be appreciated; but 
we can take satisfaction in knowing that Sir Harold lived to see a younger generation of 
scientists eagerly reading, and profiting by, his work. In September 1983 I had a long, 
delightful conversation over tea with Sir Harold and Lady Jeffreys, and know how pleased 
they both were. 

Important progress is now being made in many areas of science by adopting the 
viewpoint and extending the methods of Harold Jeffreys. Even those of us who were long 
sinc.t: convinced of their theoretical merit are often astonished to discover the amount of 
numerical improvement over "orthodox" statistical methods, that they can yield when 
programmed into computers. It is hardly ever small except in trivial problems, and nontrivial 
cases have come up where they yield orders of magnitude better sensitivity and resolution in 
extracting information from data. 

J. Skilling (ed.), Maximum Entropy and Bayesian Methods, 1-27. 
© 1989 by Kluwer Academic Publishers. 



2 E. T.JAYNES 

This means that in some areas, such as magnetic resonance, it is now possible to conduct 
quantitative study of phenomena which were not accessible to observation at all by the 
previously used Fourier transform methods of data analysis; old data which have been 
preserved may have a new lease on life. The technical details of this are to appear in the 
forthcoming book of O. L. Bretthorst (1988). 

Even when the numerical improvement is small, the greater computational efficiency of 
the Jeffreys methods, which can reduce the dimensionality of a search algorithm by eliminating 
uninteresting parameters at the start, can mean the difference between what is feasible and 
what is not, with a given computer. As the complexity of our problems inereases, so does the 
relative advantage of the Jeffreys methods; therefore we think that in the future they will 
become a practical necessity for all workers in the quantitative sciences. 

How fitting it is that this meeting is being held back where these advances started. Our 
thanks to the Master and Council of St. John's College, who made it possible. 

THE MOTIVATION 

Probability theory is a versatile tool, which can serve many different purposes. The 
earliest signs of my own interest in the field involved not data analysis, but recognition that the 
Jeffreys viewpoint can clear up outstanding mysteries in theoretical physics, by raising our 
standards of logic. As James Clelk Maxwell wrote over 100 years ago and Harold Jeffreys 
quoted 50 years ago, probability theory is itself the true logic of science. 

The recent emphasis on the data analysis aspect stems from the availability of computers 
and the failure of "orthodox" statistics to kccp up with the needs of science. This created 
many opportunities for us, about which other speakers will have a great deal to say here. 
Also, as will be noted here by David Drabold, John Skilling, and others, the MAXENT 
algorithm has proved to be a powerful tool for theoretical calculations. But while pursuing 
these important applications we should not lose sight of the original goal, which is in a sense 
even more fundamental to science. 

Therefore in this opening talk we want to point out a field ripe for exploration by giving 
three examples, from widely different areas, of how scientific mysteries are cleared up, and 
paradoxes become platitudes, when we adopt the Jeffreys viewpoint. Once the logic of it is 
seen, it becomes evident that there are many other mysteries, in all sciences, calling out for the 
same treatment 

The first example is a simple exercise in kinetic theory that has puzzled generations of 
physics students: how docs one calculate a diffusion coefficient and not get zero? The second 
concerns the currently interesting "Einstein-Podolsky-Rosen paradox" and "Bell inequality" 
mysteries in quantum theory: do physical influences travel faster than light? The third 
reexamines the old mystery about whether thermodynamics applies to biology: does the high 
efficiency of our muscles violate the second law? 

DIFFUSION 

Think, for concreteness, of a solution of sugar in water, so dilute that each sugar 
molecule interacts constantly with the surrounding water, but almost never encounters another 
sugar molecule. At time t = 0 the sugar concentration varies with position according to a 
function n(x,O). At a later time we expect that these variations will smooth out, and eventually 
n(x,t) will tend to a uniform distribution. 
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Since sugar molecules -- or as we shall call them, "particles" -- are not created or 
destroyed, it seems natural to think that there must have been a diffusion current, or flux J(x,t) 
carrying them from the high density regions to the low, so that the change in density with time 
is accounted for by the conservation law: 

an + dive]) = 0 . 
at 

Phenomenologically, Fick's law relates this to the density gradient: 

J = - D grad(n) 

(1) 

(2) 

In the case of sugars, this is easy to measure by optical rotation. In Maxwell's great 
Encyclopaedia Brittanica article on diffusion he quotes the experimental result of Voit for 
sucrose: D = 3.65 E-05 square cm/sec. 

Our present problem is: how do we calculate J(x,t) from first principles: t .. laxwell gave 
the simple kinetic theory of diffusion in gases, based on the idea of the mean free path. But in 
a liquid there is no mean free path. Maxwell, who died in 1879, never knew the general 
theoretical formula for the diffusion coefficient which we now seek, and which applies equally 
to gases, liquids, and solids. 

Only with the work of Einstein in the first decade of this Century were the beginnings 
made in seeing how to deal with the problem, culminating finally in the correct formula for the 
diffusion coefficient. But Einstein had to work at it harder than we shall, because he did not 
have Harold Jeffreys around to show him how to use probability theory. 

It would seem that, given where a particle is now, we should find its velocity v, and 
summing this over all particles in a small region would give the local flux J(x,t). However, 
the instantaneous velocity of a particle is fluctuating wildly, with a mean-square value given by 
the Rayleigh-Jeans equipartition law; and that is not the velocity we seek. Superposed on this 
rapidly fluctuating and reversing thermal velocity, of the order of 100 meters/sec, is a very 
much slower average drift velocity representing diffusion, which is our present interest. 

Given where a particle is now, x(t), its average velocity over a time interval 2't centered 
at the present is 

V= x(t + 1:) - x(t - 1:) 

2't 
(3) 

so if we make our best estimate of where the panicle will be a time 't in the future that is long 
on the time scale of thermal fluctuations, and where it was an equal time in the past, we have 
an estimate of its average slow velocity about the present time. The probability that it will 
move from x(t) to y = x(t + 1:) in the future is given by some distribution P(y I x,'t). Its motion 
is the result of a large number of small increments (encounters with individual water 
molecules). Therefore the Central Limit Theorem, interprcted with the judgment that scientists 
develop (but cannot always explain to mathematicians, because it draws on extra information 
that a mathematician would never use in proving the theorem) tells us that this will have a 
Gaussian form, and from symmetry the mean displacement is zero: 

P(y I x,I) = A exp[- (y-x)2/2cr2('t)] (4) 

where I stands for the general prior information stated or implied in our formulation of the 
problem. All the analysis one could make of the dynamics of sugar-water interactions WOUld, 
in the end, serve only to determine the spreading function cr2('t) = (ox)2, the expected square of 
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the displacement 

But now our trouble begins; the particle is as likely to be battered to the right as to the 
left; so from symmetry, the expectation of y is <y> = x. Now all the equations of motion, 
however complicated. are at least time-reversal invariant Therefore for the past position 
z = x(t-t) we should have the same probability distribution (4) which is independent of the 
sign of t. and again <z> = x(t). Therefore the estimated velocity is zero. 

Surely. this must be right, for our particle. interacting only with the surrounding water. 
has no way of knowing that other sugar molecules are present, much less that there is any 
density gradient. From the standpoint of dynamics alone (Le., forces and equations of motion) 
there is nothing that can give it any tendency to drift to regions of lower rather than higher 
density. Yet diffusion does happen! 

In the face of this dilemma, Einstein was forced to invent strange, roundabout 
arguments -- half theoretical, half phenomenological -- in order to get a fonnula for diffusion. 
For example, first estimate how the density n(x,t) would be changed a long time in the future 
by combining the distributions (4) generated by many different particles, then substitute it into 
the phenomenological diffusion equation that we get by combining (1) and (2); and from that 
reason backwards to the present time to see what the diffusion flux must have been 

This kind of indirect reasoning has been followed faithfully ever since in treatments of 
irreversible processes, because it seems to be the only thing that works. Attempts to calculate 
a flux directly at the present time give zero from symmetry, so one resorts to "forward 
integration" followed by backward reasoning. Yet this puzzles every thoughtful student, who 
thinks that we ought to be able to solve the problem by direct reasoning: calculate the flux 
J(x,t) here and now, straight out of the physics of the situation. 

Furthennore, instead of our having to assume a phenomenological fonn, a correct 
analysis ought to give it automatically; Le. it should tell us from first principles why it is the 
density gradient, and not some other function of the density, that matters, and also under what 
conditions this will be true. Evidently, we have a real mystery here. 

Why did our first attempt at direct reasoning fail? Because the problem is not one of 
physical prediction from the dynamics; it is a problem of inference. The question is not "How 
do the equations of motion require the particles to move about on the average?" The equations 
of motion do not require them to move about at all. The question is: "What is the best estimate 
we can make about how the particles are in fact moving in the present instance, based on all 
the infonnation we have?" The equations of motion are symmetric in past and future; but our 
infonnation about the particles is not. 

Given the present position of a particle, what can we say about its future position? The 
zero movement answer above was correct; for predicting where it will be in the future, the 
knowledge of where it is now makes all prior infonnation about where it might have been in 
the past irrelevant. But estimating where it was in the past is not a time-reversed mirror image 
of this, for we have prior knowledge of the varying density of particles in the past. 
Knowledge of where it is now does not make that prior knowledge irrelevant; and sound logic 
must take both into account. 

Let us restate this in different language. Equation (4) expresses an average over the class 
of all possible motions compatible with the dynamics, in which movements to the right and the 
left have, from symmetry, equal weight. But of course, our particular particle is in fact 
executing only one of those motions. Our prior infonnation selects out of the class of all 
possibilities in (4) a smaller class in which our particle is likely to be, in which movements to 
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the right and left do not have equal weight. It is not the dynamics, but the prior information, 
that breaks the symmetry and leads us to predict a non-zero flux. 

While P(x I z,t) is a direct probability, the same function as (4), the probability we now 
need is P(z I x,t), an inverse probability which requires the use of Bayes' theorem: 

P(z I x,t,I) = AP(z I I)P(x I z,I) . 

The prior probability P(z I I) is clearly proportional to n(z), and so from (3) 

log P(z I x,I) = log n(z) - (z-x)2I2cr2('t) + (const.) . 

Differentiating, the most probable value of the past position z is not x, but 

2 = x + a2 gradOog n) = x + (oxi gradOog n) 

whereupon, substituting into (3) we estimate the drift velocity to be 

v = - (Ox)212't gradOog n) 

and our predicted average diffusion flux over the time interval 2't is 

J(x,t) = n v = - (ox)2/2't grad(n) . 

Bayes' theorem has given us just Einstein's formula for the diffusion coefficient: 

D = (ox)2 
2't 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

and a good deal more. We did not assume that grad(n) was the appropriate phenomenological 
form; Bayes' theorem told us that automatically. At the same time, it told us the condition for 
validity of that form; unless (ox)2 is proportional to 't, there will be no unique diffusion 
coefficient, but only a sequence of apparent diffusion coefficients D('t) for the average drift 
over different time intervals 2't. Then the flux J(x,t) will depend on other properties of n(x,t) 
than its gradient, and in place of (2) a more complete Bayesian analysis will give a different 
phenomenological relation, involving an average of grad(n) over a short time in the past. Thus 
(9) is only the beginning of the physical predictions that we can extract by Bayesian analysis. 

While (8) is the best estimate of the average velocity that we could make from the 
assumed information, it does not determine the velocity of anyone particle very well. But 
what matters is the prediction of the observable net flux of N particles. In principle we should 
have calculated the joint posterior distribution for the velocities of N particles, and estimated 
their sum. But since that distribution factors, the calculation reduces to N repetitions of the 
above one, and the relative accuracy of the prediction improves like the square root of N, the 
usual rule in probability theory. 

In practice, with perhaps O.OOlM sugar solutions, the relevant values of N are of the 
order of 1 E+ 16, and the prediction is highly reliable, in the following sense: for the great 
majority of the N-particle motions consistent with the information used, the flux is very close 
to the predicted value. 



6 E. T.JAYNES 

DISCUSSION 

The above example may indicate the price that kinetic theory has paid for its failure to 
comprehend and use the Bayesian methods that Harold Jeffreys gave us 50 years ago, and how 
many other puzzles need to be reexamined from that viewpoint. The only reason why the 
fluxes persisted in being zero was failure to put the obviously necessary prior information into 
the probabilities. But as long as one thinks that probabilities are physically real things, it 
seems wrong to modify a probability merely because our state of knowledge has changed. 

The idea that probabilities can be used to represent our own information is still foreign to 
"orthodox" teaching, although the above example shows what one gains by so doing. Prior 
information is often highly cogent, and sound reasoning requires that it be taken into account. 
In other fields this is considered a platitude; what would you think of a physician who looked 
only at your present symptoms, and refused to take note of your medical history? 

In the next talk, Ray Smith will survey the arguments of George Polya and Richard Cox 
indicating the sense in which Bayesian inference is uniquely determined by simple qualitative 
desiderata of rationality and logical consistency. Here I want only to indicate something about 
the rationale of their application in real problems. 

Conventional training in the physical sciences concentrates attention 100% on physical 
prediction; the word "inference" was never uttered once in all the science courses I ever took. 
Therefore, the above example was chosen because its rationale is clear and the actual 
calculation is utterly trivial; yet its power to yield not only results that previously required 
more work but also more details about them, is apparent at once. 

To appreciate the distinction between physical prediction and inference it is essential to 
recognize that propositions at two different levels are involved. In physical prediction we are 
trying to describe the real world; in inference we are describing only our state of knowledge 
about the world. A philosopher would say that physical prediction operates at the ontological 
level, inference at the epistemological level. Failure to see the distinction between reality and 
our knowledge of reality puts us on the Royal Road to Confusion; this usually takes the form 
of the Mind Projection Fallacy, discussed below. 

The confusion proceeds to the following terminal phase: a Bayesian calculation like the 
above one operates on the epistemological level and gives us only the best predictions that can 
be made from the information that was used in the calculation. But it is always possible that 
in the real world there are extra controlling factors of which we were unaware; so our 
predictions may be wrong. Then one who confuses inference with physical prediction would 
reject the calculation and the method; but in so doing he would miss the point entirely. 

For one who understands the difference between the epistemological and ontological 
levels, a wrong prediction is not disconcerting; quite the opposite. For how else could we 
have learned about those unknown factors? It is- only when our epistemological predictions 
fail that we learn new things about the real world; those are just the cases where probability 
theory is performing its most valuable function. Therefore, to reject a Bayesian calculation 
because it has given us an incorrect prediction is like disconnecting a fire alarm because that 
annoying bell keeps ringing. Probability theory is trying to tell us something important, and it 
behooves us to listen. 
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THE MIND PROJECTION FALLACY 

It is very difficult to get this point across to those who think that in doing probability 
calculations their equations are describing the real world. But that is claiming something that 
one could never know to be true; we call it the Mind Projection Fallacy. The analogy is to a 
movie projector, whereby things that exist only as marks on a tiny strip of film appear to be 
real objects moving across a large screen. Similarly, we are all under an ego-driven temptation 
to project our private thoughts out onto the real world, by supposing that the creations of one's 
own imagination are real properties of Nature, or that one's own ignorance signifies some kind 
of indecision on the part of Nature. 

The current literature of quantum theory is saturated with the Mind Projection Fallacy. 
Many of us were first told, as undergraduates, about Bose and Fermi statistics by an argument 
like this: "You and I cannot distinguish between the particles; therefore the particles behave 
differently than if we could." Or the mysteries of the uncertainty principle were explained to 
us thus: "The momentum of the particle is unknown; therefore it has a high kinetic energy." A 
standard of logic that would be considered a psychiatric disorder in other fields, is the accepted 
norm in quantum theory. But this is really a form of arrogance, as if one were claiming to 
control Nature by psychokinesis. 

In our more humble view of things, the probability distributions that we use for inference 
do not describe any property of the world, only a certain state of information about the world. 
This is not just a philosophical position; it gives us important technical advantages because of 
the more flexible way we can then use probability theory. In addition to giving us the means 
to use prior information, it makes an analytical apparatus available for such things as 
eliminating nuisance parameters, at which orthodox methods are helpless. This is a major 
reason for the greater computational efficiency of the Jeffreys methods in data analysis. 

In our system, a probability is a theoretical construct, on the epistemological level, which 
we assign in order to represent a state of knowledge, or that we calculate from other 
probabilities according to the rules of probability theory. A frequency is a property of the real 
world, on the ontological level, that we measure or estimate. So for us, probability theory is 
not an Oracle telling how the world must be: it is a tool for learning (1) Is our state of 
knowledge adequate to describe the world? or (2) For which aspects of the world is our 
information adequate to make predictions? 

This point comes across much more strongly in our next example, where belief that 
probabilities are physically real produces a major quandary for quantum theory, in the EPR 
paradox. It is so bad that some have concluded, with the usual consistency of quantum theory, 
that (1) there is no real world, after all, and (2) physical influences travel faster than light. 

BACKGROUND OF EPR 

Quantum Mechanics (QM) is a system of mathematics that was not developed to express 
any particular physical ideas, in the sense that the mathematics of relativity theory expresses 
the ideas of Einstein, or that of genetics expresses the ideas of Mendel. Rather, it grew 
empirically, over about four decades, through a long series of trial-and-error steps. But QM 
has two difficulties; firstly, like all empirical equations, the process by which it was found 
gives no clue as to its meaning. QM has the additional difficulty that its predictions are 
incomplete, since in general it gives only probabilities instead of definite predictions, and it 
does not indicate what extra information would be required to make definite predictions. 
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Einstein and Schroedinger saw this incompleteness as a defect calling for correction in 
some future more complete theory. Niels Bohr tried instead to turn it into a merit by fitting it 
into his philosophy of complementarity, according to which one can have two different sets of 
concepts, mutually incompatible, one set meaningful in one situation, the complementary set in 
another. As several of his early acquaintances have testified (Rozental, 1964), the idea of 
complementarity had taken control of his mind years before he started to study quantum 
physics. 

Bohr's "Copenhagen 11leory" held that, even when the QM state vector gives only 
probabilities, it is a complete description of reality in the sense that nothing more can ever be 
known; not because of technological limitations, but as a matter of fundamental principle. It 
seemed to Einstein that this completeness claim was a gratuitous addition, in no way called for 
by the facts; and he tried to refute it by inventing thought experiments which would enable one 
to get more infonnation than Bohr wished us to have. Somehow, the belief has been 
promulgated that Bohr successfully answered all of Einstein's objections. 

But when we examine Bohr's arguments, we find a common logical structure; always 
they start by postulating that the available measurement apparatus is subject to his 
"uncertainty" limitations; and then by using only classical physics (essentially, only Liouville's 
theorem) they come to the conclusion that such an apparatus could not be used for Einstein'S 
purpose. Bohr's foregone conclusion is always assured by his initial postulate, which simply 
appears out of nowhere. In our view, then, the issue remains open and we must raise our 
standards of logic before there can be any hope of resolving it. 

Leslie Ballentine (1970) analyzed the Bohr and Einstein positions and showed that much 
of the chanting to the effect that "Bohr won, Einstein lost" is sustained by quoting Einstein's 
views and attributing them to Bohr. Virtually all physicists who do real quantum-mechanical 
calculations interpret their results in the sense of Einstein, according to which a pure state 
represents an ensemble of similarly prepared systems and is thus an incomplete description of 
an individual system. Bohr's completeness claim has never played any functional role in 
applications, and in that sense it is indeed gratuitous. 

CONFRONTATION OR RECONCILIATION? 

Put most briefly, Einstein held that the QM fonnalism is incomplete and that it is the job 
of theoretical physics to supply the missing parts; Bohr claimed that there are no missing parts. 
To most, their positions seemed diametrically opposed; however, if we can understand bener 
what Bohr was trying to say, it is possible to reconcile their positions and believe them both. 
Each had an important truth to tell us. 

But Bohr and Einstein could never understand each other because they were thinking on 
different levels. When Einstein says QM is incomplete, he means it in the ontological sense; 
when Bohr says QM is complete, he means it in the epistemological sense. Recognizing this, 
their statements are no longer contradictory. Indeed, Bohr's vague, puzzling sentences-
always groping for the right word, never finding it -- emerge from the fog and we see their 

underlying sense, if we keep in mind that Bohr's thinking is never on the ontological level 
traditional in physics. Always he is discussing not Nature, but our infonnation about Nature. 
But physics did not have the vocabulary for expressing ideas on that level, hence the groping. 

Paul Dirac, who was also living here in St. John's College at the time when he and 
Harold Jeffreys were doing their most important wode side by side, seems never to have 
realized what Jeffreys had to offer him: probability theory as the vehicle for expressing 
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epistemological notions quantitatively. It appears to us that, had either Bohr or Dirac 
understood the work of Jeffreys, the recent history of theoretical physics might have been very 
different. They would have had the language and technical apparatus with which Bohr's ideas 
could be stated and worked out precisely without mysticism, and which Einstein would have 
understood and accepted at once. 

Needless to say, we consider all of Einstein'S reasoning and conclusions correct on his 
level; but on the other hand we think that Bohr was equally correct on his level, in saying that 
the act of measurement perturbs the system being measured, and this places a limitation on the 
information we can acquire and therefore on the predictions we are able to make. The issue is 
merely whether this limitation is as great, and has the same quantitative form, as Bohr 
supposed. This is still an open question, but we may be able to settle it soon in the quantum 
optics laboratory, thanks to the spectacular recent advances in experimental techniques such as 
those by H. Walther and coworkers (Rempe et al, 1987) as discussed by Knight (1987) and in 
the Scientific American (June 1987, p. 25). 

Bohr had no really cogent reason for his postulate that the limitations on the ability of 
the QM formalism to predict are also -- in complete, quantitative detail -- limitations on what 
the experimenter can measure; this seems to us an outstanding example of the Mind Projection 
Fallacy. We need a more orderly division of labour; it is simply not the proper business of 
theoretical physics to make pronouncements about what can and what cannot be measured in 
the laboratory, any more than it would be for an experimenter to issue proclamations about 
what can and cannot be calculated in the theory. 

We believe that to achieve a rational picture of the world it is necessary to set up another 
clear division of labour within theoretical physics; it is the job of the laws of physics to 
describe physical causation at the level of ontology, and the job of probability theory to 
describe human inferences at the level of epistemology. The Copenhagen theory scrambles 
these very different functions into a nasty omelette in which the distinction between reality and 
our knowledge of reality is lost. 

Although we agree with Bohr that in different circumstances different quantities are 
predictable, in our view this does not cause the concepts themselves to fade in and out; valid 
concepts are not mutually incompatible. Therefore, to express precisely the effect of 
disturbance by measurement, on our information and our ability to predict, is not a 
philosophical problem calling for complementarity; it is a technical problem calling for 
probability theory as expounded by Jeffreys, and information theory. Indeed, we know that 
toward the end of his life, Bohr showed an interest in information theory. 

EPR 

But to return to the historical account; somehow, many physicists became persuaded that 
the success of the QM mathematical formalism proved the correctness of Bohr's private 
philosophy, even though few understood what that philosophy was. All the attempts of 
Einstein, Schroedinger, and others to point out the patent illogic of this were rejected and 
sneered at; it is a worthy project for future psychologists to explain why. 

The Einstein-Podolsky-Rosen (EPR) article of 1935 is Einstein'S major effort to explain 
his objection to the completeness claim by an example that he thought was so forceful that 
nobody could miss the point. Two systems, Sl and Sz, that were in interaction in the past are 
now separated, but they remain jointly in a pure state. Then EPR showed that according to 
QM an experimenter can measure a quantity ql in Sl' whereupon he can predict with certainty 
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the value of qz in S2' But he can equally well decide to measure a quantity PI that does not 
commute with ql; whereupon he can predict with certainty the value of P2 in S2' 

The systems can be so far apart that no light signal could have traveled between them in 
the time interval between the SI and S2 measurements. Therefore, by means that could exert 
no causal influence on S2 according to relativity theory, one can predict with certainty either of 
two noncommuting quantities, qz and P2' EPR concluded that both qz and P2 must have had 
existence as definite physical quantities before the measurements; but since no QM state vector 
is capable of representing this, the state vector cannot be the whole story. 

Since today some think. that merely to verify the correlations experimentally is to refute 
the EPR argument, let us stress that EPR did not question the existence of the correlations, 
which are to be expected in a classical theory. Indeed, were the correlations absent, their 
argument against the QM formalism would have failed. Their complaint was that, with 
physical causation unavailable, only instantaneous psychokinesis (the experimenter's free-will 
decision which experiment to do) is left to control distant events, the forcing of S2 into an 
eigenstate of either q2 or Pz. Einstein called this "a spooky kind of action at a distance". 

To understand this, we must keep in mind that Einstein's thinking is always on the 
ontological level; the purpose of the EPR argument was to show that the QM state vector 
cannot be a representation of the "real physical situation" of a system. Bohr had never 
claimed that it was, although his strange way of expressing himself often led others to think. 
that he was claiming this. 

From his reply to EPR, we find that Bohr's position was like this: "You may decide, of 
your own free will, which experiment to do. If you do experiment EI you will get result R I . 

If you do Ez you will get R2. Since it is fundamentally impossible to do both on the same 
system, and the present theory correctly predicts the results of either, how can you say that the 
theory is incomplete? What more can one ask of a theory?" 

While it is easy to understand and agree with this on the epistemological level, the 
answer that I and many others would give is that we expect a physical theory to do more than 
merely predict experimental results in the manner of an empirical equation; we want to come 
down to Einstein's ontological level and understand what is happening when an atom emits 
light, when a spin enters a Stem-Gerlach magnet, etc. The Copenhagen theory, having no 
answer to any question of the form: "What is really happening when - - - ?", forbids us to ask 
such questions and tries to persuade us that it is philosophically naive to want to know what is 
happening. But I do want to know, and I do not think this is naive; and so for me QM is not 
a physical theory at all, only an empty mathematical shell in which a future theory may, 
perhaps, be built. 

THE BELL INEQUALITIES 

John Bell (1964) studied a simple realization of the EPR scenario in which two spin 1/2 
particles denoted A and B were jointly in a pure singlet state (like the ground state of the 
Helium atom) in the past. This is ionized by a spin-independent interaction and they move far 
apart, but they remain jointly in a pure singlet state, in which their spins are perfectly 
anti correlated. 

Each of two experimenters, stationed at A and B, has a Stem-Gerlach apparatus, which 
he can rotate to any angle. Following Bell's notation, we denote by P(Ala) the probability that 
spin A will be found up in the direction of the unit vector "an; and likewise P(Blb) refers to 
spin B being up in the direction b. For a singlet state, these are each equal to 1/2 from 
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symmetry. The spooky business appears in the joint probability, which QM gives as 

P(AB lab)::: ~ sin2(el2) (11) 

where cos e ::: a·b. This does not factor in the form P(AB lab) ::: P(A I a)P(B I b) as one might 
expect for independent measurements. We can measure A in any direction we please; 
whereupon we can predict with certainty the value of B in the same direction. 

From this, EPR would naturally conclude that the results of all possible measurements on 
B were predetermined by the real physical situation at B; i.e., if we find B up in any direction 
b, then we would have found the same result whether or not the A measurement was made. 
Bohr would consider this a meaningless statement, since there is no way to verify it or refute 
it. Also, he would stress that we can measure B in only one direction, whereupon the 
perturbation of the measurement destroys whatever might have been seen in any other 
direction. Note that, as always, Bohr is epistemological; the notion of a "real physical 
situation" is just not in his vocabulary or his thinking. 

EPR will then require some hidden variables in addition to the QM state vector to define 
that "real physical situation" which is to predetermine the results of all measurements on B. 
Bell, seeking to accommodate them, defines a class of hidden variable theories -- call them 
Bell theories -- in which a set of variables denoted collectively by A. also influences the 
outcomes A and B. It appears to him that the intentions of EPR are expressed in the most 
general way by writing 

P(AB lab) ::: f P(A I aA.) P(B I bA.) p(A.) dA. (12) 

and he derives some inequalities that must be satisfied by any probability expressible in this 
form. But the QM probabilities easily violate these inequalities, and therefore they cannot 
result from any Bell theory. 

Of course, the fundamentally correct relation according to probability theory would be, 

P(AB lab) ::: f P(AB I abA.) P(A.I ab) dA. . (13) 

But if we grant that knowledge of the experimenters' free choices (a,b) would give us no 
information about A.: P(A.I ab) ::: p(A.) (and in this verbiage we too are being carefully 
epistemological), then Bell's interpretation of the EPR intentions lies in the factorization 

P(AB I abA.) ::: P(A I aA.) P(B I bA.) 

whereas the fundamentally correct factorization would read: 

P(AB I abA.) ::: P(A I BabA.) P(B I abA.) ::: P(A I abA.) P(B I AabA.) 

(14) 

(15) 

in which both a,b always appear as conditioning statements. However, Bell thinks that the 
EPR demand for locality, in which events at A should not influence events at B when the 
inteIVal is spacelike, require the form (14). In his words, "It would be very remarkable if b 
proved to be a causal factor for A, or a for B; i.e., if P(A I aA.) depended on b or P(B I bA.) 
depended on a. But according to quantum mechanics, such a dilemma can happen. Moreover, 
this peculiar long-range influence in question seems to go faster than light". 

Note, however, that merely knowing the direction of the A measurement does not change 
any predictions at B, although it converts the initial pure singlet state into a mixture. It is easy 
to verify that according to QM, P(B lab) ::: P(B I b) ::: 112 for all a,b. As we would expect 
from (15), it is necessary to know also the result of the A measurement before the correlation 
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affects our predictions; according to QM, P(B I Aab) = (1 - cos 9)/2. Thus' while the QM 
formalism disagrees with the factorization (14), it agrees with what we have called the 
"fundamentally correct" probability relations (perhaps now it is clearer why we said that some 
of Bohr's ideas could have been expressed precisely in Bayesian terms). 

Regardless, it seemed to everybody twenty years ago that the stage was set for an 
experimental test of the issue; perform experiments where the predictions of quantum theory 
violate the Bell inequalities, and see whether the data violate them also. If so, then all 
possible local causal theories are demolished in a single stroke, and the Universe runs on 
psychokinesis. At least, that was the reasoning. 

The experiments designed to test this, of which the one of Alain Aspect (1985, 1986) is 
perhaps the most cogent to date, have with only one exception ended with the verdict 
"quantum theory confirmed", and accordingly there has been quite a parade of physicists 
jumping on the bandwagon, declaring publicly that they now believe in psychokinesis. Of 
course, they do not use thai word; but at the 1984 Santa Fe Worlcshop more than one was 
heard to say: "The experimental evidence now forces us to believe that atoms are not real." 
and nobody rose to question this, although it made me wonder what they thought Alain's 
apparatus was made of. 

Alain Aspect himself has remained admirably level-headed through all this, quite 
properly challenging us to produce a classical explanation of his experiment; but at the same 
time refusing to be stampeded into taking an obviously insane position as did some others. 

The dilemma is not that the QM formalism is giving wrong predictions, but that the 
current attempts at interpreting that formalism from Einstein's ontological viewpoint are giving 
us just that spooky picture of the world that Einstein anticipated and objected to. Of course, 
those with a penchant for mysticism are delighted. 

How do we get out of this? Just as Bell revealed hidden assumptions in von Neumann's 
argument, so we need to reveal the hidden assumptions in Bell's argument. There are at least 
two of them, both of which require the Jeffreys viewpoint about probability to recognize: 

(1) Bell took it for granted that a conditional probability P(X I Y) expresses a physical causal 
influence, exerted by Y on X. But we show presently that one cannot even reason 
correctly in so simple a problem as drawing two balls from Bernoulli's Urn, if he 
interprets probabilities in this way. Fundamentally, consistency requires that conditional 
probabilities express logical inferences, just as Harold Jeffreys saw. Indeed, this is also 
the crucial wint that Bohr made in his reply to EPR, in words that Bell quoted. But Bell 
added: "Indeed I have very little idea what this means." 

(2) The class of Bell theories does not include all local causal theories; it appears to us that 
it excludes just the class of theories that Einstein would have liked most. Again, we 
need to learn from Jeffreys the distinction between the epistemological probabilities of 
the QM formalism and the ontological frequencies that we measure in our experiments. 
A local causal theory need not reproduce the mathematical form of the QM probabilities 
in the manner of (12); rather, since by definition it operates at the ontological level, it 
should predict the frequencies observed in well-defined real experiments (not just 
thought-experiments). 

The spooky stuff is a consequence of Hidden Assumption (1), and it disappears if we 
conclude, with Jeffreys and Bohr, that what is traveling faster than light is not a physical 
influence, but only a logical inference. To render Bohr's quoted statement into plain English: 
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The measurement at A at time t does not change the real physical situation at B; 
but it changes our state of knowledge about that situation, and therefore it changes 
the predictions we are able to make about B at some time t. Since this is a matter 
of logic rather than physical causation, it does not matter whether tf is before, equal 
to, or after t. 

13 

Again we see how Bohr's epistemological viewpoint corresponds to Bayesian inference, and 
could have been expressed precisely in Bayesian terms. However, Bohr could not bring 
himself to say it as we did, because for him the phrase "real physical situation" was taboo. 

But it may seem paradoxical that two different pure states (eigenstates of noncommuting 
quantities qz and p0 can both represent the same real physical situation; if so, then perhaps the 
conclusion is that one has learned an important fact about the relation of the QM state vector 
to reality. This supports the Einstein view of the meaning of a pure state as an ensemble; for 
in statistical mechanics it is a platitude that the true microstate may appear in two different 
ensembles, representing two different states of knowledge about the microstate. 

BERNOULLI'S URN REVISITED 

Define the propositions: 

I == "Our urn contains N balls, identical in every respect except that M of them are red, 
the remaining (N - M) white. We have no information about the location of 
particular balls in the urn. They are drawn out blindfolded without replacement." 

Ri == "Red on the i'th draw, i = 1,2, ... " 

Successive draws from the urn are a microcosm of the EPR experiment. For the first draw, 
given only the prior information I, we have 

P(RII I) = MIN (16) 

Now if we know that red was found on the first draw, then that changes the contents of the 
urn for the second: 

(17) 

and this conditional probability expresses the causal influence of the first draw on the second, 
in just the way that Bell assumed. 

But suppose we are told only that red was drawn on the second draw; what is now our 
probability for red on the first draw? Whatever happens on the second draw cannot exert any 
physical influence on the condition of the urn at the first draw; so presumably one who 
believes that conditional probability must express physical causation would say that 
P(RII R2,I) :::; P(RII I). But this is patently wrong; probability theory requires that 

(18) 

This is particularly obvious in the case M = 1; for if we know that the one red ball was taken 
in the second draw, then it is certain that it could not have been taken in the first. 

In (18) the probability on the right expresses a physical causation, that on the left only an 
inference. Nevertheless, the probabilities are necessarily equal because, although a later draw 
cannot physically affect conditions at an earlier one, information about the result of the second 
draw has precisely the same effect on our state of knowledge about what could have been 
taken in the first draw, as if their order were reversed. 
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Eq. (18) is only a special case of a much more general result. The probability of drawing 
any sequence of red and white balls (the hypergeometric distribution) depends only on the 
number of red and white balls, not on the order in which they appear; i.e. it is an exchangeable 
distribution. From this it follows by a simple calculation that for all i and j, 

(19) 

That is, just as in QM, merely knowing that other draws have been made does not change our 
prediction for any specified draw, although it changes the hypothesis space in which the 
prediction is made; before there is a change in the actual prediction it is necessary to know 
also the results of other draws. But the joint probability is by the product rule, 

P{Ri,Rj I I) = P{Ri I Rj,I) P{Rj I I) = P{Rj I Ri,I) P{Ri I I) 

and so we have for all i and j, 

(20) 

(21) 

and again a conditional probability which expresses only an inference is necessarily equal to 
one that expresses a physical causation. This would be true not only for the hypergeometric 
distribution, but for any exchangeable distribution. We see from this how far Karl Popper 
would have got with his "propensity" theory of probability, had he tried to apply it to a few 
simple problems. 

It might be thought that this phenomenon is a peculiarity of probability theory. On the 
contrary, it remains true even in pure deductive logic; for if A implies B, then not-B implies 
not-A. But if we tried to interpret "A implies B" as meaning "A is the physical cause of B", 
we could hardly accept that "not-B is the physical cause of not-A". Because of this lack of 
contraposition, we cannot in general interpret logical implication as physical causation, any 
more than we can conditional probability. Elementary facts like this are well understood in 
economics (Simon & Rescher, 1966; Zellner, 1984); it is high time that they were recognized 
in theoretical physics. 

OTHER IllDDEN - VARIABLE THEORIES 

Now consider Hidden Assumption (2). Bell theories make no allowance for time 
variation of the hidden variable A; but if it is to take over the job fonnerly perfonned by the 
QM state vector 'If, then A must obey some equations of motion which are to replace the 
Schroedinger equation. 

This is important, because one way for a causal theory to get probability into things is 
time alternation; for example, in conditions where present QM yields a time independent 
probability p for spin up, A would be oscillating in such a way that for a fraction p of the time 
the result is "up", etc. Indeed, Einstein would have considered this the natural way to obtain 
the QM probabilities from a causal theory, for in his early papers he defined the "probability 
of a state" as the fraction of the time in which a system is in that state. But this is a relation 
between QM and the causal theory of a different nature than is supposed by the fonn (12). 

Time alternation theories have another attractive feature, that they predict new effects that 
might in principle be observed experimentally, leading to a crucial test. For example, when 
two spins are perfectly anticorrelated, that would presumably signify that their A'S are 
oscillating in perfect synchronism so that, for a given result of the A measurement, the exact 
time interval between the A and B measurements would detennine the actual result at B. not 
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merely its probability. Then we would be penetrating the Copenhagen fog and observing more 
than Bohr thought possible. The experiments of H. Walther and coworkers on single atom 
masers are already showing some resemblance to the technology that would be required to 
perform such an experiment. 

We have shown only that some of the conclusions that have been drawn from the Bell­
Aspect work were premature because (1) the spooky stuff was due only to the assumption that 
a conditional probability must signify a physical influence, and (2) the Bell arguments do not 
consider all possible local causal theories; the Bell inequalities are only limitations on what can 
be predicted by Bell theories. The Aspect experiment may show that such theories are 
untenable, but without further analysis it leaves open the status of other local causal theories 
more to Einstein's liking. 

That further analysis is, in fact, already underway. An important part of it has been 
provided by Steve Gull's "You can't program two independently running computers to emulate 
the EPR experiment" theorem, which we learned about at this meeting. It seems, at first 
glance, to be just what we have needed because it could lead to more cogent tests of these 
issues than did the Bell argument. The suggestion is that some of the QM predictions can be 
duplicated by local causal theories only by invoking teleological elements as in the Wheeler­
Feynman electrodynamics. If so, then a crucial experiment would be to verify the QM 
predictions in such cases. It is not obvious whether the Aspect experiment serves this purpose. 

The implication seems to be that, if the QM predictions continue to be confirmed, we 
exorcise Bell's superluminal spook only to face Gull's teleological spook. However, we shall 
not rush to premature judgments. Recalling that it required some 30 years to locate von 
Neumann's hidden assumptions, and then over 20 years to locate Bell's, it seems reasonable to 
ask for one year to search for Gull's, before drawing conclusions and possibly suggesting new 
experiments. 

In this discussion we have not found any conflict between Bohr's position and Bayesian 
probability theory, which are both at the epistemological level. Nevertheless, differences 
appear on more detailed examination to be reported elsewhere. Of course, the QM formalism 
also contains fundamentally important and correct ontological elements; for example, there has 
to be something physically real in the eigenvalues and matrix elements of the operators from 
which we obtain detailed predictions of spectral lines. It seems that, to unscramble the 
epistemological probability statements from the ontological elements we need to find a 
different formalism, isomorphic in some sense but based on different variables; it was only 
through some weird mathematical accident that it was possible to find a variable \jI which 
scrambles them up in the present way. 

There is clearly a major, fundamentally important mystery still to be cleared up here; but 
unless you maintain your faith that there is a rational explanation, you will never find that 
explanation. For 60 years, acceptance of the Copenhagen interpretation has prevented any 
further progress in basic understanding of physical law. Harold Jeffreys (1957) put it just 
right: "Science at any moment does not claim to have explanations of everything; and 
acceptance of an inadequate explanation discourages search for a good one." 

Now let us turn to an area that seems about as different as one could imagine, yet the 
underlying logic of it hangs on the same point What happens in the real world depends on 
physical law and is on the level of ontology. What we can predict depends on our state of 
knowledge and is necessarily on the level of epistemology. He who confuses reality with his 
knowledge of reality generates needless artificial mysteries. 
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THE SECOND LAW IN BIOLOGY 

As we learn in elementary thetmodynamics, Kelvin's fotmula for the efficiency of a 
Carnot heat engine operating between upper and lower temperatures T1• Tz: 

~ ~ 1 -TzfTl , (22) 

with equality if and only if the engine is reversible, expresses a limitation imposed by the 
second law of thetmodynamics. But the world's most universally available source of work -­
the animal muscle -- presents us with a seemingly flagrant violation of that fotmula. 

Our muscles deliver useful work. when there is no cold reseIVoir at hand (on a hot day 
the ambient temperature is at or above body temperature) and a naive application of (22) 
would lead us to predict zero, or even negative efficiency. The obseIVed efficiency of a 
muscle, defined as 

~ = __ --->(..;.;.w..;;..ork._d-"-on_e;.<..) __ _ 
(work. done + heat generated) 

is difficult to measure, and it is difficult to find reliable experimental values with accounts of 
how the experiments were done. We shall use only the latest value we have located, (Alberts, 
et al. 1983). The heat generated that can be attributed to muscle activity appears to be as low 
as about 3n of the work done; which implies that obseIVed muscle efficiencies can be as high 
as 70% in favourable conditions, although a Carnot engine would require an upper temperature 
T 1 of about 1000 K to achieve this. Many authors have wondered how this can be. 

The obvious first answer is, of course, that a muscle is not a heat engine. It draws its 
energy, not from any heat reseIVoir, but from the activated molecules produced by a chemical 
reaction. Only when we first allow that primary energy to degrade itself into heat at 
temperature T 1 -- and then extract only that heat for our engine -- does the Kelvin efficiency 
fotmula (22) apply in its conventional meaning. It appears that our muscles have learned how 
to capture the primary energy before it has a chance to degrade; but how do we relate this to 
the second law? 

Basic material on muscle structure and energetics of biochemical reactions is given by 
Squire (1981) and Lebninger (1982), and profusely illustrated by Alberts, et al (1983). The 
source of energy for muscle contraction (and indeed for almost everything a cell does that 
requires energy) is believed to be hydrolysis of adenosine triphosphate (ATP), for which the 
reported heat of reaction is ~H = - 9.9 kcal/mol, or 0.43 ev per molecule. This energy is 
delivered to some kind of "engine" in a muscle fiber, from whence emerges useful work. by 
contraction. The heat generated by a muscle is carried off by the blood stream, at body 
temperature, 273 + 37 = 310 K. Thus the data we have to account for are: 

Ambient temperature: 
Source energy: 
Efficiency: 

310 K 
0.43 ev/molecule 
70%. 

We do not attempt to analyze all existing biological knowledge in this field about the 
details of that engine, although in our conclusions we shall be able to offer some tentative 
comments on it. Our present concern is with the general physical principles that must govern 
conversion of chemical energy into mechanical work in any system, equilibrium or 
nonequilibrium, biological or otherwise, whatever the details of the engine. In the known facts 
of muscle perfotmance we have some uniquely cogent evidence relevant to this problem. 
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The status of the second law in biology has long been a mystery. Not only was there a 
seeming numerical contradiction between muscle efficiency and the second law, but also the 
general self-organizing power of biological systems seemed to conflict with the "tendency to 
disorder" philosophy that had become attached to the second law (much as Bohr's philosophy 
of complementarity had become attached to quantum mechanics). This led, predictably, to a 
reaction in the direction of vitalism. 

In our view, whatever happens in a living cell is just as much a real physical 
phenomenon as what happens in a steam engine; far from violating physical laws, biological 
systems exhibit the operation of those laws in their full generality and diversity, that physicists 
had not considered in the historical development of thermodynamics. Therefore, if biological 
systems seem to violate conventional statements of the second law, our conclusion is only that 
the second law needs to be restated more carefully. Our present aim is therefore to find a 
statement of the second law that reduces to the traditional statements of Clausius and Gibbs in 
the domain where they were valid, but is general enough to include biological phenomena. 

The "tendency to disorder" arguments are too vague to be of any use to us, although it is 
clear that they must be mistaken and it would be interesting to understand why. Muscle 
efficiency will provide our test case, because here we have some quantitative data to account 
for. But a muscle operates in a nonequilibrium situation, for which no definite second law is to 
be found in the current thermodynamic literature. The conventional second law presupposes 
thermalization because temperature and entropy are defined only for states of thermal 
equilibrium. How do we circumvent this? 

Some have thought that it would be a highly difficult theoretical problem, calling for a 
generalised ergodic theory to include analysis of "mixing" and "chaos". Another school of 
thought holds that we need a modification of the microscopic equations of motion to 
circumvent Liouville's theorem (conservation of phase volume in classical Hamiltonian 
systems, or unitarity in quantum theory), which is thought to be in conflict with the second 
law. 

We suggest, on the contrary, that only very simple physical reasoning is required, and all 
the clues pointing to it can be found already in the writings of James Clerk Maxwell and 1. 
Willard Gibbs over 100 years ago. Both had perceived the epistemological nature of the 
second law and we think that, had either lived a few years longer, our generalised second law 
would long since have been familiar to aU scientists. We give the argument in three steps: (a) 
reinterpret the Kelvin formula, (b) make a more general statement of the second law, (c) test it 
numerically against muscles. 

The observed efficiency of muscles may be more cogent for this purpose than one might 
at first think. Since animals have evolved the senses of sight, sound, and smell to the limiting 
sensitivity permitted by physical law, it is only to be expected that they would also have 
evolved muscle efficiency (which must be of equal survival value) correspondingly. If so, then 
the maximum observed efficiency of muscles should be not merely a lower bound on the 
maximum theoretical efficiency we seek, but close to it numerically. 
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GENERALISED EFFICIENCY FORMULA 

Consider the problem first in the simplicity of classical physics, where the Rayleigh-Jeans 
equipartition law holds. If in the Kelvin formula (22) we replace temperature by what it then 
amounts to -- energy per degree of freedom E/N = (1/2) kT, it takes the form 

(23) 

which does not look like much progress, but by this trivial rewriting we have removed the 
limitation of thermal equilibrium on our energy source and sink. For "temperature" is defined 
only for a system in thermal eqUilibrium, while "energy per degree of freedom" is meaningful 
not only in thermal eqUilibrium, but for any small part of a system -- such as those activated 
molecules -- which might be far from thermal equilibrium with the surroundings. 

One might then question whether such a nonequilibrium interpretation of (22) is valid. 
We may, however, reason as follows. Although conventional thermodynamics defines 
temperature and entropy only in equilibrium situations where all translational and vibrational 
degrees of freedom (microscopic coordinates) have the same average energy, it cannot matter 
to an engine whether all parts of its energy source are in eqUilibrium with each other. 

Only those degrees of freedom with which the engine interacts can be involved in its 
efficiency; the engine has no way of knowing whether the others are or are not excited to the 
same average energy. Therefore, since (23) is unquestionably valid when both reservoirs are 
Jin thermal equilibrium, it should be correct more generally, if we take E2/N2 and E\/N\ to be 
the average energy in those degrees of freedom with which the engine actually interacts. But 
while a muscle has a small source reservoir, it has a large sink.. Therefore for E2/N2 we may 
take 0/2) kT 2 at body temperature. 

As a check on this reasoning, if the primary energy is concentrated in a single degree of 
freedom and we can extract it before it spreads at all, then our engine is in effect a "pure 
mechanism" like a lever. The generalised efficiency (23) then reduces to 1 - kT2/2E\ or, 
interpreting El as the work delivered to it, 

(Work out) = (Work in) - (112) kT 2 . (24) 

The last term is just the mean thermal energy of the lever itself, which cannot be extracted 
reproducibly by an apparatus that is itself at temperature T 2 or higher. At least, if anyone 
should succeed in doing this, then he would need only to wait a short time until the lever has 
absorbed another (l/2)kT2 from its surroundings, extract that, and repeat -- and we would have 
the perpetual motion machine that the second law holds to be impossible. Thus (24) still 
expresses a second law limitation, and the simple generalisation (23) of Kelvin's formula 
appears to have a rather wide range of application. 

But although these are interesting hints, we are after something more general, which can 
replace the second law for all purposes, not merely engines. To achieve this we must 
understand clearly the basic physical reason why there is a second law limitation on processes. 
We suggest that the fundamental keyword characterizing the second law is not "disorder", but 
"reproducibility" . 
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THE REASON FOR IT 

The second law arises from a deep interplay between the epistemological macrostate (Le. 
the variables like pressure, volume, magnetization that an experimenter measures and which 
therefore represent our knowledge about the system) and the ontological microstate (the 
coordinates and momenta of individual atoms, which determine what the system will in fact 
do). For example, in either a heat engine or a muscle the goal is to recapture energy that is 
spread in an unknown and uncontrolled way over many microscopic degrees of freedom of the 
source reservoir, and concentrate it back into a single degree of freedom, the motion of a 
piston or tendon. The more it has spread, the more difficult it will be to do this. 

The basic reason for the "second law" limitation on efficiency is that the engine must 
work reproducibly; an engine that delivered work only occasionally, by chance (whenever the 
initial microstate of reservoirs and engine happened to be just right) would be unacceptable in 
engineering and biology alike. 

The initial microstate is unknown because it is not being controlled by any of the 
imposed macroscopic conditions. The initial microstate might be anywhere in some large 
phase volume Wi compatible with the initial macrostate Mi; and the engine must still work. It 
is then Liouville's theorem that places the limitation on what can be done; physical law does 
not permit us to concentrate the final microstates into a smaller phase volume than Wi and 
therefore we cannot go reproducibly to any final macrostate Mf whose phase volume Wf is 
smaller than Wi' The inequality Wf ~ Wi is a necessary condition for any macroscopic process 
Mi --+ Mf to be reproducible, whatever the initial microstate in Wi' 

Of course, something may happen by chance that is not reproducible. As a close 
analogy, we can pump the water from a tank of volume VI into a larger tank of volume 
V 2 > V I, but not into a smaller one of volume V 3 < V I. Therefore any particular tagged water 
molecule in one tank can be moved reproducibly into a larger tank but not into a smaller one; 
the probability of success would be something like V 3 IV I' Here the tanks correspond to the 
macrostates M, their volumes V correspond to phase volumes W, the tagged molecule 
represents the unknown true microstate, and the fact that the water flow is incompressible 
corresponds to Liouville's theorem. 

Now we know that in classical thermodynamics, as was first noted by Boltzmann, the 
thermodynamic entropy of an eqUilibrium macrostate M is given to within an additive constant 
by SCM) = k log W(M), where k is Boltzmann's constant. This relation was then stressed by 
Planck and Einstein, who made important use of it in their research. But the above arguments 
make it clear that there was no need to restrict this to eqUilibrium macrostates M. Any 
macrostate -- eqUilibrium or nonequilibrium -- has an entropy SCM) = k log W(M), where 
W(M) is the phase volume compatible with the controlled or observed macrovariables Xi 
(pressure, volume, magnetization, heat flux, electric current, etc.) that define M. Then a 
generalised second law 

S(final) ~ S(initial) (25) 

follows immediately from Liouville's theorem, as a necessary condition for a change of state 
Mi --+ Mf to be reproducible. 

Stated more carefully, we mean "reproducible by an experimenter who can control only 
the macrovariables {Xd that define the macrostates M". A little thought makes it clear that 
this proviso was needed already in the classical eqUilibrium theory, in order to have an air­
tight statement of the second law which could not be violated by a clever experimenter. For if 
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Mr. A defines his thennodynamic states by the n macrovariables {Xl' ...• Xo} that he is 
controlling and/or observing, his entropy So is a function of those n variables. If now Mr. B, 
unknown to Mr. A, manipulates a new macrovariable Xn+l outside the set that Mr. A is 
controlling or observing, he can bring about, reproducibly, a change of state for which So 
decreases. although Sn+l does not. Thus he will appear to Mr. A as a magician who can 
produce spontaneous violations of the second law, at will. 

But now we must face an ambiguity in the definition and meaning of W; it appears to 
have different aspects. The phase volume W(X!, ... ,XJ consistent with a given set of 
extensive macrovariables {Xlo ... ,Xo} is a definite, calculable quantity which represents on 
the one hand the degree of control of an experimenter over the microstate, when he can 
manipulate only those macrovariables; thus W appears ontological. On the other hand, W 
represents equally well our degree of ignorance about the microstate when we know only those 
macrovariables and nothing else; and thus it appears epistemological. But as illustrated by the 
scenario of Mr. A and Mr. B above, it is a matter of free choice on our part which set of 
macrovariables we shall use to define our macrostates; thus it appears also anthropomorphic! 
Finally, we have been vague about just how many microscopic degrees of freedom are to be 
included in W. Then what is the meaning of the second law (25)? Is it an ontological law of 
physics, an epistemological human prediction, or an anthropomorphic art fonn? 

The answer is that Eq. (25) cannot be an ontological statement (i.e. a deductively proved 
consequence of the laws of physics) because the mere calculation of W makes no use of the 
equations of motion, which alone detennine which macrostate will in fact evolve from a given 
microstate in Wi' It may be that, because of properties of the equations of motion that we did 
not use, our experimenter's method of realizing the macrostate Mi would not, in many 
repetitions, produce all microstates in the volume Wi' only a negligibly small subset of them 
occupying a phase volume W' < < Wi' Then the process Mi ~ Mf might still be possible 
reproducibly even though Sf < Si' if Sf> S'. Conversely, because of special circumstances 
such as unusual constants of the motion, the process Mi ~ Mf might prove to be impossible 
even though Sf > Si' 

On the other hand, (25) is always epistemological because it is always true that W(M) 
measures our degree of ignorance about the microstate when we know only the macrostate M. 
Thus the original second law and our generalisation (25) of it have the same logical status as 
Bayesian inference; they represent the best predictions we can make from the infonnation we 
have. In fact, by a more sophisticated approach a refined fonn of (25) can be derived as an 
example of Bayesian inference. Therefore the second law works functionally like any other 
Bayesian inference; the predictions are usually right, indicating that the infonnation and 
assumptions used in the calculation were adequate for the purpose. Only when the predictions 
are wrong do we learn new things about the ontological laws of physics. 

It is greatly to our advantage to recognize this. By getting our logic straight we not only 
avoid the Mind Projection Fallacy of claiming more than has been proved, we gain an 
important technical flexibility in using the second law. Instead of committing the error of 
supposing that a given physical system has one and only one "true" ontological entropy, we 
recognize that we could have many different states of knowledge about it, leading to many 
different entropies (as in the scenario of Mr. A and Mr. B above), which can serve many 
different purposes. 

Just as the class of phenomena that an experimenter can evoke from a given system in 
the laboratory depends on the kind of apparatus he has (i.e. on which of its macrovariables he 
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can manipulate), so the class of phenomena that we can predict with thennodynamics for a 
given system depends on the kind of knowledge we have about it. This is not a paradox, but 
a platitude. 

One reason why the second law has had little useful application in biology is failure to 
recognize that it is not an ontological law of physics; it is only a rule for conducting human 
inference. If you fail to specify what biological infonnation you propose to take into account, 
then thennodynamics may not be able to give you any useful answer because you have not 
asked any well posed question. 

Even when it does not lead to different final results, taking prior infonnation into account 
can affect computational efficiency in applying the second law, because it can help us to make 
a more parsimonious choice of the microvariables that we shall include in W. For it to be 
generally valid, the entropy in (25) must be, in principle, the total entropy of all systems that 
take part in the process. But this does not, in practice, detennine exactly how much of the 
outside world is to be included. In a sense everything in the universe is in constant interaction 
with everything else, and one must decide when to stop including things. Including more than 
we need is not harmful in the sense of leading to errors, since this only adds the same quantity 
to both sides of (25). But it can cost us wasted effort in calculating unnecessary details that 
cancel out of our final results. 

At this point the aforementioned flexibility of our methods becomes important. We have 
already made use of it in the discussion following Eq. (23); now we want to apply that 
reasoning to phase volumes and to general processes. In a fast process, that happens in a time 
so short that thennal eqUilibrium of the whole system is never reached, only the phase volume 
belonging to those degrees of freedom actually involved in the interactions could be relevant; 
the second law may be applied in tenns of Liouville's theorem in a relatively small subspace 
of the full one that we use in eqUilibrium theory. In the application to muscle efficiency, this 
means that we need calculate only phase volumes corresponding to degrees of freedom that are 
directly involved in muscle operation; ones that are affected only later, after the muscle 
contraction is over, may be relevant for the ultimate fate of the heat generated, but they cannot 
affect its efficiency. 

This corresponds to a familiar procedure in treatment of spin systems. Spin-spin 
relaxation is often orders of magnitude faster than spin-lattice relaxation, so one can consider 
the microvariables of the spin system as fanning a nearly isolated dynamical system in their 
own right, with a "private" second law of their own. Slichter (1980) shows that this 
approach enables one to predict masses of details correctly. 

In the above we have supposed the classical equipartition law; but our arguments should 
need modifying only if the engine (Le., the piston or tendon) interacts directly with degrees of 
freedom for which equipartition fails. In the case of muscles, it appears that the direct 
interactions are with coordinates of low-frequency vibration modes of large protein molecules. 
How energy gets transferred from an excited electronic state of A TP to such a vibration mode 
would remain in the province of quantum theory; but this can be virtually 100% efficient. 
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QUANTITATIVE DERIVATION 

Now we are ready for a specific calculation of muscle efficiency using the above 
principles. The phase volumes W that we calculate are, of course, functions of the 
macrovariables that define the macrostates. In the case of a muscle, what is happening is just 
that energy QI is being abstracted from the source reservoir and energy Q2 is delivered to the 
sink, the difference appearing as work. Energy is the only macrovariable being manipulated, 
so our phase volumes will be functions of source and sink energies. We need not consider a 
phase volume for the engine, because that is the same at the beginning and end (the engine is 
restored ready to run again). As in conventional statistical mechanics, we introduce the 
density functions p(E), often called structure functions, of source and sink by considering their 
energies known to some tolerances oE. Thus the phase volumes for source and sink are 

WI = PI(EI) OBI 

W2 = P2{Ez) oEz 

Then the initial and final phase volumes are 

Wi = PI(EI) P2(E2) OEI oE2 

Wf = PI(EI - QI) P2(E2 + Qz) oEI oEz 

(26a) 

(26b) 

(27a) 

(27b) 

With QI and Q2 definite quantities, the tolerances oEI and OEz are the same at the beginning 
and end, so they cancel out and their values do not matter. The necessary condition of 
reproducibility Wi ~ Wf when we manipulate only energies now becomes: 

(28) 

Let us try to predict the maximum work obtainable, using only this relation (which makes no 
use of such notions as temperature, equation of state, heat capacity, or reversible operation). 
Given the energy QI extracted from the source, the maximum work we can get reproducibly is 
QI - Q2' where from (28), Q2 is the root of 

log PI(EI) + log P2(Ez) = log PI(EI - QI) + log P2(Ez + Qz) . (29) 

Now vary QI; the RHS of (29) remains constant, and QI - Q2 is a maximum when 

- Qil log PI(EI - QI) = Qil log P2(E2 + Q2) (30) 
il I il 2 

Therefore the maximum efficiency is 

QI-Q2 
11 = --"--~ 

EI 

where QI' Q2 are the simultaneous roots of (29) and (30). 

(31) 

Now we need to decide on the functions PI(EI) and P2(Ez). Recall some familiar 
examples of such functions; for an ideal gas of n particles in volume V, 

2!!. - I 
VD(2mnE) 2 

p(E) = r(3n/2) (32) 

For n classical harmonic oscillators with frequencies {COl' . . . ,COD}' 

(E) - (21t)n En. 
P - (IIiCOi)r(n) 

(33) 
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In both cases, peE) is proportional to EN/2, where N is the number of degrees of freedom of 
the system. This is approximately true for most systems even in quantum statistics, where N 
may be regarded as a slowly varying function of E, signifying the effective number of degrees 
of freedom excited at energy E. So let us take 

NI 
log PI(E\) = Tlog EI + const. (34a) 

N2 
log P2(E2) = Tlog E2 + eonst. (34b) 

which seems quite realistic for the case of muscles. Eliminating Q2 from (29), (30), QI is 
determined from 

(NI + N2) log [EI - QI ] = N210g [NIE2] 
EI N2EI 

(35) 

and then Q2 is found from (30). But from (23) we recognize the quantity 

NIE2 
r:--

N2El 
(36) 

as the analog of (T2ff l ) in equilibrium theory. Then after some algebra, we find that (31) is 

1 N2 [Nl + N2] N,:2N2 11= +-r- r. 
NI Nl 

(37) 

In the case NI = N2, this is (1 - -{f)2 , contrasted with Kelvin's differential efficiency (1 - r). 
Appropriate for muscles is the limiting form as N2 ~ 00, Ez/N2 ~ V2 kT 2 = const. (the blood 
stream is very large compared to a muscle fiber). Some care is needed in taking the limit, and 
(37) then reduces to 

11 = 1 - r + r log r (38) 

Now everything boils down to the question: what is r for a muscle? As before, let us take for 
the large sink reservoir, E2 = V2 N2 kT2 where T2 = 310 K. The maximum theoretical 
efficiency surely corresponds to the maximum concentration of primary energy that seems 
possible in a muscle; the energy of ATP hydrolysis of one molecule is concentrated into a 
single vibration mode and is captured before it spreads to others. Therefore for the source, let 
EI = 0.43 n ev, the heat of reaction of n ATP molecules, and Nl = 2n, corresponding to one 
vibration mode per molecule. This gives 

r = 310 x 1.36 x 10-16 = 0.062, (39) 
0.43 x 1.6 x 10-12 

from which (38) gives 

11 = 76.5% (40) 

Doubtless, the near agreement with the value reported by Alberts et al (1983) is fortuitous; the 
existing measurements are too uncertain to draw any real conclusions. But one might have 
hoped that the maximum theoretical efficiency would come out just above the maximum 
observed efficiency; and at least that much has been realized. It appears that the information 
we used was adequate for the purpose, and there is no longer any mystery. 
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A CHECK 

We derived the efficiency fonnula (38) without assuming any slow reversible operation 
as conventional thennodynamics does. On the other hand, neither did we assume that it is not 
slow, so if our derivation is correct, the fonnula ought to remain valid in the limit when the 
process is so slow that the conventional theory does apply. To check this, let us apply 
conventional theory to a small source whose temperature T 1 drops slowly as the engine runs, 
so we have a sequence of infinitesimal reversible Camot cycles. Suppose that the sink is so 
large that T 2 remains constant. Then drawing heat Ql from the source, the maximum work we 
can get according to classical thennodynamics is 

QI [ T 1 
W(Ql) = [1 - Tl(~) dQ . (41) 

Now suppose, corresponding to the Rayleigh-Jeans assumptions in our first derivation, that the 
source has a constant heat capacity C, so that T1(Q) = Tl - QlC, where Tl is the initial source 
temperature; then El = CT1. The engine will run only as long as T1(Q) > T2, so the maximum 
obtainable work is given when the upper limit of integration is Ql = C(fl - Tv. Making these 
substitutions, the integral is easily evaluated, with the result 

Wmax=C [TI-T2+T210g~~l. (42) 

Dividing by El = CT1, we recover the result (38) that we derived previously using only phase 
volume considerations. This confinns that our generalised second law reduces, as it should, to 
the conventional one when the latter is applicable. 

But this conventional "slow, reversible" second law is not applicable to a muscle, 
because if a muscle operated slowly enough to make its assumptions valid, other degrees of 
freedom that we have left out of our calculation would take over and thennalize the primary 
energy. making the muscle nearly useless. It is just to avoid thermalization that biological 
processes must take place rapidly, and thus we require a "fast" second law to analyze them. 

Our generalisation of the second law not only preserves the dynamics and therefore the 
Liouville theorem, it preserves the Clausius relation Sf ~ Si and the Boltzmann entropy formula 
S = k 10gW; and it even preserves the intuitive meaning of it that was recognized by 
Boltzmann, Einstein, and Planck. Therefore we have not changed the basic rationale 
underlying the second law and the Kelvin efficiency rule in any way; we have only opened our 
eyes to their full meaning. 

Far from being in conflict with the second law, Liouville's theorem is the reason for it. 
Had Liouville's theorem been discovered before the work of Camot, it appears to us that the 
second law, in the full generality we have given it, might have been anticipated theoretically 
without any reference to heat engines; or indeed to the notions of temperature and thermal 
eqUilibrium. Note that we have made no use of the notions of order and disorder. Indeed, as 
Maxwell tIoted in the aforementioned article on diffusion, those notions are only expressions 
of human aesthetic judgments; Nature has no way of knowing what you or I consider 
"orderly". The second law limitation on macroscopic processes is easily understood, in 
physically meaningful tenns, as the price we pay for reproducibility. 
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CONCLUSION 

As those promised tentative comments on biological infonnation, we see the above as 
evidence that the energy of ATP hydrolysis is confined to a single vibration mode in a muscle; 
if it spread to two modes, then we would have r = 2 x 0.062 = 0.124, and (38) would predict 
a theoretical maximum efficiency of only 62%. Had the energy spread to ten vibration modes 
before being recaptured, the predicted efficiency would be only 8%. It appears that animals 
have indeed evolved muscle efficiency to the maximum that could be realized in a biochemical 
environment powered by the A TP hydrolysis reaction, although a reaction with a greater !iH 
would pennit still higher efficiency. 

Finally, what was the effective upper temperature T 1 for the muscle? 
of freedom per ATP molecule, this is given by kTI = 0.43ev, or 

T - 0.43x1.6x10-12 = 5060 K 
1 - 1.36xlO-16 

With two degrees 

(117) 

This is startling because it is about the temperature at the surface of the sun! It appears, then, 
that a muscle is able to work efficiently not because it violates any laws of thennodynamics, 
but because it is powered by tiny "hot spots" of molecular size, as hot as the sun. 

This shows how far a biological system is from thennal equilibrium in the respects that 
matter. If one says that the temperature in a living cell is "uniform", he can mean only that it 
is unifonn as registered by a thermometer whose bulb is thousands of times coarser than the 
units that are perfonning the essential biological functions. 

If we examine the current literature of bioenergetics with this in mind, we are struck by 
the fact that virtually all treatments begin by stating that biological systems are at unifonn 
temperature and the chemical reactions proceed isothennally; then virtually all the discussion is 
in tenns of reaction free energies !iF or !iG. 

Now the free energy change of a reaction is only a fictitious kind of energy, that could in 
principle be observed in very special circumstances. It is the work made available when the 
temperature and concentrations are unifonn and the reaction proceeds so slowly that it remains 
at equilibrium with respect to the original temperature and concentration; i.e. when heat can 
flow in or out of the cell rapidly enough, and the reactants and products can diffuse in and out 
rapidly enough, to maintain the initial uniformity. Conditions in a biological process such as 
nucleotide synthesis are about as far from this as can be imagined, in several respects: 

(1) A cell may have very few (i.e., less than 20) molecules of a given type, and they are not 
free to diffuse about because of intracellular membranes; thus the uniform concentrations 
presupposed in the definition of reaction free energies seem not only not realized, but not 
even meaningful. Lehninger (1982) warns us that this might invalidate conventional 
thermodynamic treatments. 

(2) A reaction is over -- the job is done -- in a time too short to reach eqUilibrium anyway. 
For many reactions the situation may be more nearly adiabatic than isothennal; thus the 
"real" physical energies !iV,!iH that have a meaning independently of thennal 
equilibrium, are the ones most relevant for biological processes. 

(3) Hundreds of other reactions are going on simultaneously, and while they may not 
interfere directly with a reaction of interest, they must modify the environment in which 
that reaction takes place. On the scale of sizes and times that matter, a living cell is 
never in a state remotely like thennal equilibrium or unifonn concentrations. 
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Recognizing this, we can understand another reason why biological thennodynamics has been 
puzzling in the past Conventional free energy thennodynamics is doubtless adequate to 
describe slow, gross phenomena such as osmotic effects, but it may be irrelevant for biological 
functions like muscle contraction and protein synthesis, which necessarily, to avoid 
thennalization from the surroundings, take place rapidly and on the molecular scale. 

As our treatment of muscle efficiency shows, the small scale does not in itself preclude 
the application of thennodynamics, but attempts to do this could not have succeeded until the 
above points were recognized and we had a quite different statement of the second law. Of 
course, muscle perfonnance is only a special case of the general problem, but seeing how to 
apply the second law to muscle behaviour should give a useful clue for other cases. 

In these first crude estimates to illustrate the principle, our reasoning was so general -­
concerning only phase volumes -- that we did not need to invoke any particular details of the 
mechanism of muscle action. However, the myosin bridge mechanism for striated muscle 
contraction proposed by Sir A. F. Huxley (1957) and described by Squire (1981) and Alberts, 
et al. (1983) appears not only consistent with our speculations; it fits in very nicely with them. 
The bending of that bridge is a degree of freedom that corresponds to a low-frequency 
vibration mode for which the classical equipartition law would hold, and the relative stiffness 
and massiveness of the myosin head makes it seem well adapted to resisting rapid 
thennalization while transferring its energy into the macroscopic sliding of the actin fiber. We 
could hardly have asked for a better candidate for our one vibrational mode to receive the A TP 
hydrolysis energy. 

Presumably, our argument could be refined by taking further infonnation of this kind into 
account, although the observed facts of muscle perfonnance suggest that the final conclusion 
cannot be very different; i.e. most of that infonnation will be irrelevant for predicting the net 
efficiency, although it is highly relevant for predicting finer details such as force-velocity 
curves, fatigue, etc. 

Having seen this biological mechanism, it is easy to believe that synthesized or extracted 
macromolecules could do similar things in vitro. Indeed, the first step in this direction has 
been taken already. In the fascinating "myosin motor" of Shimizu (1979) we have a 
molecular engine operating in vitro; not very efficiently, but nevertheless confinning the idea. 
In time the design of useful anti-Camot molecular engines (artificial muscles) might become 
about as systematic and well understood as the design of dyes, drugs, and antibiotics is now. 
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ABSTRACT 

The presentation by Jaynes of Bayesian probability theory, among other 
things, served to unify and strengthen the earlier work of Cox and Polya. While 
the above approach to probability theory is well-known to many proponents of 
maximum-entropy and Bayesian methods, it deserves to be more widely promul­
gated and studied. This paper is a tutorial introduction to the Cox-Polya-Jaynes 
consistency and rationality requirements as the basis of Bayesian probability the­
ory. 

1. INTRODUCTION 

Bayesian probability theory continues to be applied to many problems of a 
serious nature [Smith and Grandy, 1985; Justice, 1986; Smith and Erickson, 1987; 
Erickson and Smith, 1988; Bretthorst, 1987, 1988a, 1988b]. In addition to applying 
scientific knowledge, there exists a strong propensity in science to dig more deeply, 
to seek the foundations of that knowledge; so, inquiry into the foundations and 
rationale of the theory has proceeded apace. 

For all practical purposes, the non collaborative but synergistic efforts of Cox 
[1946]' Polya [1954]' and Jaynes [1957] furnish a highly compelling rationale for 
Bayesian probability theory. Rarely do we wish to say in science that anything is 
"final;" there is almost always room for refinement, extension and growth. But 
the work of Cox, Polya, and Jaynes was clearly a satisfactory basis from which 
to proceed. Most practitioners of maximum-entropy and Bayesian methods have 
studied ~ indeed savored ~ the original works, but too many have not had occa­
sion to delve into them. We therefore present here a quick tutorial tour through 
these classics, although it must be said that condensation and interpretation by 
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their very nature can subtly alter the perspective of an original work. We thus ad­
vise the interested reader to consult the original sources for the fullest impression 
of the authors' intent, tone and accomplishment. 

Until very recently, the 1957 report by Jaynes was difficult to obtain. Now 
that Jaynes' approach to probability theory has become available [Erickson and 
Smith, 1988, I, eh. 1], it is not reasonable to here reiterate his presentation. 
Rather, our emphasis will be on background, concepts, definitions and similar 
elements experience has shown to prove troublesome to many. In the beginning, 
we tend to avoid even the word probability so we can focus on the question of how 
far toward an inductive logic rationality and consistency can carry us. 

2. PATTERNS OF DEDUCTIVE REASONING 

We shall eventually be concerned with potential measures of the plausibility 
of one proposition given the truth of another. Our discussion will lead to Polya's 
inductive syllogism, which has its roots in the syllogisms of deductive logic. But we 
are getting ahead of the story; we must first supply some definitions and essential 
background. 

Deductive reasoning is the inferring of specific conclusions from known prin­
ciples or premises; the conclusions are unique. Deductive logic formalizes the pro­
cesses of deductive reasoning by means of symbols and rules. Apparently, Aristotle 
was the first to observe that deductive reasoning follows definite patterns, called 
syllogisms. The syllogisms we shall focus on consist of a major premise, a minor 
premise and a conclusion. A premise is a proposition accepted as true (or false) 
from the beginning of a development. As used here, "proposition" has a specific 
meamng. 

A proposition is an unambiguous statement which is, or will become, either 
true or false in the problem under consideration - in other problems, the state­
ment may not be a proposition. It is important to note that in an environment in 
which our reasoning cannot be deductive, the actual validity of a proposition may 
not be accessible at the time an inference must be made. 

We shall denote propositions by upper case letters like A, B, C, AI, A 2 • It 
is risky to illustrate propositions without stating the problems in which they are 
embedded, for, as noted above, one can often think of situations in which an 
example ceases to be a proposition. The following examples should be viewed 
with this caveat in mind: 

A = "On the next toss, a die will show 5 dots," 
00 

B="~~>3" 6, ' n. 
n=l 

C = "It will rain tomorrow." 

To a person who had never heard of eX, some numerical experimentation may be 
needed to determine that B is false. For C to be a proposition, we must have 
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adopted a procedure for deciding whether rain has occurred (Is a light mist for a 
few seconds regarded as rain?). 

Certain natural operations for propositions come to mind; these operations 
and the peculiar property of propositions to be either true or false can be used to 
establish an algebra of propositions, the subject of the next section of this paper. 
But at this time, we want to return to our unfinished discussion of syllogisms. 

A deductive syllogism has the structure: 

Major premise 

Minor premise 

Conclusion 

(1) 

where the horizontal line plays the role of "therefore." One important syllogism 
with this structure, called the modus ponens (ponere = affirm), is the following: 

A implies B 

A true 

B true 

(2) 

Obviously, if A implies B and A turns out to be true, then B must be true. Af'. a 
concrete example of modus ponens, we take 

A = "1 < s < 4" - - , 
B = "1 ~ s ~ II." (3) 

Here, s is a parameter in the problem under investigation. 
The other deductive syllogism we consider is the modus tollens (tollere 

deny): 

A implies B 

B false (4) 

A false 

That this mode of deduction is valid may not be instantly obvious. Consider: If 
A is true, then B is true; but B is false, so A cannot be true. The propositions in 
Eq. (3) can be used in the modus tollens, as an example. 

We are not finished with syllogisms; but to prepare for a more symbolic and 
quantitative approach, we give next a brief sketch of Boolean algebra. 

3. BOOLEAN ALGEBRA 

In his investigation of logic, George Boole [1854] developed an algebra of 
propositions whose importance has increased steadily since the late 1930's. This 
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Boolean algebra is an algebra of objects which can have only one of two possible 
values or states, such as numbers like 0 and 1, positions like up and down, and 
truth values like true and false. The applications of Boolean algebra to switching 
circuits and digital computers account for much of its current importance; our 
discussion will center on propositions. Our presentation of Boolean algebra is 
self-contained, though it is brisk and omits many standard topics. 

If a proposition A is true, we say it has truth value 1 and write A = 1; 
similarly, if A is false its truth value is Q and A = Q. The negation of the 
proposition A means not A and is denoted by A; A has the truth value opposite 
that of A and as a proposition is 

A = "A is false." (5) 

For example, if A ="The mayor's house is white," then A ="The mayor's house 
is not white" or A ="It is false that the mayor's house is white." If B ="The 
mayor's house is yellow," even though B = 1 requires A = Q and hence A = 1, 
care must be exercised in relating B and A - for example, both A and B could 
be false. 

Negation is called a unary operation, because a single proposition enters the 
operation. There are many binary operations which combine pairs of propositions. 
Two such operations are of special interest: the logical product and logical sum. 

The logical product (or conjunction) AB is defined as follows: 

AB = "Both A and B are true." (6) 

The logical 8urn (or inclusive disjunction) of any two propositions A and B is 
denoted by A + B and defined by 

A + B ="Either A is true, or B is true, or 

both A and B are true." (7) 

Note that AB and A + B are themselves propositions, and are examples of com­
pound propositions. Suppose An = "A tossed die shows n dots" and H = "A 
tossed coin shows a head." Then, AnH = "The die shows n dots and the coin 
shows a head," while An + H = "The die shows n dots, or the coin shows a head, 
or the die shows n dots and the coin shows a head." Note that paraphrasing or 
rewording of propositions is permitted provided the meaning is not compromised. 
The definitions in Eqs. (6) and (7) show clearly that the logical product and logical 
sum are commutative - cf. Eq. (8) below. 

One can employ the operations negation, logical product, and logical sum 
to construct logical or Boolean functions of propositions. We shall encounter a 
few Boolean functions below, but we must forgo any discussion of the theory of 
Boolean functions. 
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The set of propositions A, B, C, ... , l, Q along with the negation, product and 
sum operations form a Boolean algebra if the following properties (the so-called 
Huntington axioms) are satisfied [Whitesitt, 1961): 

A+B=B+A 

A+Q=A 

A+A=l 

A(B + C) = AB + AC 

(a) AB = BA 

(a) A'l = A 

(a) AA=Q 

(a) A+BC=(A+B)(A+C) 

(b) 

(b) 

(b) 

(b) 

(8) 

(9) 

(10) 

(11) 

Note that there is a duality between the operations in the two columns above: If 
the sum is replaced by the product, the product by the sum, Q by land l by 
Q in one column, the other column is produced. This principle of duality allows 
us to translate any Boolean equation into another valid equation. Also, literal 
notation is understood to apply: symbols for propositions in theorems and other 
expressions are to be regarded as variables, not fixed propositions - except where 
the contrary is indicated. The objects l and Q are considered to be constants in 
Boolean algebra (they are constant propositions and constant functions). 

The Huntington axioms are deliberately parsimonious and yield several im­
portant results only as theorems. The theorems are sometimes expected, but 
others may be surprising and very engaging. We list below several of the more 
useful theorems [for proofs, see Whitesitt, 1961): 

A+(B+C)=(A+B)+C A(BC) = (AB)C (12) 

A+AB = A A(A+B)=A (13) 

A+!=l AQ=Q (14) 

Q=l l=,Q (15) 

A+B=A B AB = A+B (16) 

A+A=A AA=A (17) 

By considering specific verbal propositions, one can verify that propositions in­
deed satisfy Eqs. (8)-(17). In particular, the commutativity and associativity of 
the logical product and sum, Eqs. (8) and (12), appear to be completely trivial 
properties of propositions; yet, these properties play vital roles in Cox's consistency 
requirements discussed in our Sec. 5. 

We now employ the preceding material to develop a more formal notation 
for deductive syllogisms than used earlier. There are many occasions in which 
one proposition is conditional on another in a manner that can be expressed by a 
Boolean equation. We use one such conditional relation to reflect "A implies B" 
in the syllogisms we consider. The equation 

AB=A, (18) 

called the inclusion relation and read "A implies B," embodies some information 
(some facts) we have regarding A and B. Clearly, for A = l this equation reduces 
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to B = ,t (thus, A implies B); for B = Q it leads to A = Q. These we recognize as 
the modus ponens and modus tollens in Eqs. (2) and (4). Using our newly acquired 
formalism, we can cast the modus ponens and modus tollens in the forms 

AB=A 

A=,t 

B=,t 

AB=A 

B=O rv 

A=Q 

(19) 

(It should be noted that some authors prefer to define the major premise "A 
implies B" in terms of a binary operation called the material implication.) 

4. PATTERNS OF INDUCTIVE REASONING 

So far, we have considered syllogisms with the major premise AB = A and 
the minor premises A = l, and B = Q. To complete the study, we need to examine 
the cases with the minor premises A = Q and B = l,. For A = Q and B = l" our 
information about A and B that is contained in AB = A produces no constraints 
on B and A, respectively. We can formalize this state of affairs by syllogisms, 
revealing the ostensible impasse: 

AB=A 

A=Q 

B =? 

(a) 
AB=A 

B=! (b) (20) 

This is exactly the situation studied in depth by Polya [1954], so let us see how he 
resolved the impasse. 

Note first of all, any solution of Eq. (20) must be inductive in nature (also, 
we must define what we mean by solution). Hence, we call the syllogisms in Eq. 
(20) inductive syllogisms, and to shorten our discussion, we concentrate on the 
second syllogism, (b). Polya engaged in a detailed study to demonstrate that in 
everyday problems with the structure of Eq. (20) there are identifiable patterns in 
our reasoning process. Next, we summarize some conclusions Polya reached in his 
analysis. 

In arriving at the condition AB = A, we are often using only a portion of 
the information we have about the problem and about A and B. In the least, 
we know that B is a consequence of A (it is not suggested that the relationship 
between A and B must be causal). So, if one consequence of A, namely B, should 
turn out to be true, what can we infer about the truth value of A? We have 
inadequate information about A to make any definitive statement of its truth. 
However, compared to the situation in which the truth value of B is unknown, 
we have inductive evidence that A is true. We shall summarize this by saying: 
Compared to the case with the truth value of B unknown, learning that B is 
true enhances the plausibility that A is true. (Assuming that A is true, given 
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that B is true is committing the logical fallacy of assuming the consequent.) The 
word plausibility arose in earlier discussion. We use plausibility as shorthand for 
degree of plausibility and to mean something like: credibility, confidence, belief, 
or appearance of truth. (We are skirting words like probability, likelihood, etc. 
that have technical meaning.) 

Now we are able to complete Eq. (20b): 

AB=A 

B=! 

A more plausible 

(21) 

This result epitomizes the patterns of plausible reasoning revealed by Polya's study 
[Polya, 1954]. In no way have we been able to convey the depth and spirit Polya 
brought to bear on his inquiries. By and large, Eq. (21) expresses what we mean by 
rationality, though there remains some fine-tuning (e.g., in respect to continuity). 
Also, Eq. (21) will be taken as our solution of Eq. (20b), as clarified by further 
discussion. The essence of Eq. (21) is the commitment only to the direction, and 
not extent, of change of the degree of plausibility. A simple illustration will be 
given in a moment. 

In analogy with deductive logic, inductive logic will use symbols and rules to 
formalize the processes of inductive reasoning. The symbol E will always represent 
all of our prior information (we use E as if it were a proposition, even though it 
may be cumbersome to express some information as a proposition). In the present 
context, E includes everything we know about the problem, in particular whether 
the condition AB = A is based on a causal connection between A and B. The 
symbol u(AIC) will be employed to represent the plausibility of A given C (because 
A and C are variables, we prefer not to say explicitly "the plausibility of A true, 
given that C is true"). Thus u(AIE) is the plausibility of A given only our prior 
information E, and u(AIBE) is the plausibility of A given E and the datum B. 
It appears that we are allowing plausibility to evolve into some numerical object; 
we need to relate what our plans are. 

Before the subject of inductive reasoning can become mathematical in nature, 
we must identify some quantifiable attributes of plausibilities. If plausibilities are 
to serve any useful purpose, they must at least have the capacity for describing 
rationality. This requirement will be met if the plausibilities are capable of (1) 
varying in a continuous fashion and (2) exhibiting inequality (as well as equality). 
The simplest means for incorporating these attributes is to associate real numbers 
with plausibilities. At this time, we are concerned only with identifying a minimal 
set of attributes; other properties of plausibilities (e.g. the rules they obey) will 
emerge as a result of the mathematical treatment of the subject. 
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Using the plausibility as just defined, we can write for Eq. (21) 

AB=A 

B=l 

u(AIBE) ~ u(AIE) 

(22) 

In summary, rationality, as so far explicated, requires only that the plausibility 
not decrease in the face of inductive evidence. Nothing is said about the strengths 
or magnitudes of plausibilities. The association of larger numbers with greater 
plausibilities is clearly an inessential convention: it is consistent with our choosing 
the word "plausibility" (instead of, say, implausibility). 

The concept of rationality carries with it a continuity requirement whose 
meaning will become clearer in the next few sections. For the moment suffice it 
to say that small changes in plausibilities insinuate only small changes in their 
numerical representatives. 

Most of the conceptual work is behind us. Jaynes [1957] has shown how to 
translate Polya's rationality and Cox's consistency requirements into desiderata 
and then to construct a mathematical theory. Before undertaking this task, we 
give the example promised earlier. 

Suppose the propositions in Eq. (3) refer to the radius, s, of some asteroid 
and suppose crude measurements give us the range of s: 1 ~ s ~ 37km. We have 
summarized the prior information, E. The range in proposition A is predicted by 
some far-out astrophysical theory, and we want very much to test the theory by 
testing the hypothesis A. While thinking about A we learn B is true. Compared 
to the situation in which we knew only that s is in the range 1 to 37km, the 
information B = 1 enhances (or at least does not diminish) the plausibility that 
A is true. This is the central idea Eq. (22) is supposed to convey. 

5. THE DESIDERATA 

Curiously, Cox [1946, 1961] and Polya [1954] seem never to have encountered 
each other's work, missing perhaps the stimulation to bring their own works to 
a more satisfactory and complete form. Jaynes [1957] consolidated the Cox and 
Poly a contributions, supplying additional elements to arrive at the approach to 
probability theory we are presenting here. The term "consistency" as associated 
with Cox refers to the requirement that plausibilities be consistent with Boolean 
algebra. Jaynes developed desiderata which embody rationality and consistency, 
the latter having a broader significance than that employed by Cox. The desiderata 
are then applied to create mathematical conditions which the plausibilities must 
satisfy. This is the program attended to in this section. 

First, a brief comment on the word "desideratum." The primary function of 
the Desiderata is to describe the essential features which the plausibilities must 
embody. They do not stipulate that the plausibilities are to satisfy specific rules 
or axioms. 
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Desideratum 1. The numerical measures of plausibilities are real numbers. 
Desideratum 2. Plausibilities must exhibit qualitative agreement with ra­

tionality. As new information supporting the truth of a proposition is supplied, 
the number which represents the plausibility will increase continuously and mono­
tonically. It is understood that as the plausibility of a proposition increases, the 
plausibility of its negation will decrease continuously and monotonically. Also, to 
maintain rationality, the deductive limit must obtain where appropriate. The con­
tinuity requirement will be applied to mathematical functions introduced below. 
Finally, we hope it is unnecessary to remark that all pertinent information is to 
be used in the course of any analysis of plausibilities. 

Desideratum 3. All rules relating plausibilities must be consistent. If a result 
can be derived in more than one way, ·alliegitimate operations on the propositions 
must lead to the same result. One is free to establish the truth value of a compound 
proposition by examining the individual propositions in any possible sequence 
allowed by Boolean algebra (this evaluation need not follow the physical or causal 
relationships of the propositions.) The final results must be independent of the 
sequence actually employed. 

We investigate next the implications of the desiderata on the plausibility 
u(ABIE), specifically to determine how u(ABIE) depends upon the plausibilities 
of A and B. The truth value of AB will be determined by examining first A, then 
B, as described by the following tree diagram: 

E 

AB 

AB 

AB 

AB 

The proposition AB can be reached only in the upper branch of the diagram. 
Thus, the plausibility u(ABIE) depends only on the plausibilities u(AIE) and 
u(BIAE) - under the circumstances depicted in the tree diagram. We express 
this dependence as 

u(ABIE) = F[u(AIE), u(BIAE)], (23) 

where F represents an unknown function. However, F is not arbitrary: It must 
maintain the desiderata, and it is the consequences of this that we explore next. 

One important result follows easily from the commutativity of the logical 
product, AB = BA. The consistency requirement imposed on Eq. (23) requires 
the invariance of that expression under interchange of A and B: 

u(ABIE) = u(BAIE) = F[u(BIE), u(AIBE)]. (24) 
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This does not tell us a great deal about F, however. The associativity of the 
logical product will be more prolific. 

Writing 
ABC = (AB)C = A(BC) (25) 

and treating (AB) as one proposition C as the other, then A and (BC) similarly, 
we obtain from Eq. (23) 

u(ABCIE) = F[u(ABIE), u(CIABE)] 

= F[u(AIE), u(BCIAE)]. 

Applying Eq. (23) to u(ABIE) and u(BCIE) in these expressions leads to 

(26) 

F{F[u(AIE), u(BIAE)], u(CIABE)} = F{ u(AIE), F[u(BIAE), u(CIABE)]}. 
(27) 

Finally, the notation 

x = u(AIE), y = u(BIAE), z = u(CIABE) (28) 

allows us to write Eq. (27) in the form 

F[F(x,y),z] = F[x,F(y,z)], (29) 

which is a functional equation known, appropriately, as the associativity equation. 
As we shall see eventually, this equation determines uniquely the class of functions 
F which may be associated with plausibilities. 

By assuming that F is twice differentiable in both variables, Cox derived from 
Eq. (29) a differential equation which he then solved. Some fuzzy set advocates 
have pounced upon this assumption as invalidating Cox's theory, in evident ig­
norance of the work of Aczel [1966, 1987], who derives the same general solution 
without assuming differentiability. The earlier book by Aczel provides an extensive 
bibliography on the associativity equation, starting with Abel [1826] who solved 
this equation under the condition that it is symmetric in the independent variables 
x, y, z. The result, as expressed by Aczel, is that all solutions of the associativity 
equation may be constructed from any continuous, strictly increasing monotonic 
function G(x) as follows: 

F(x,y) = G-1[G(x)G(y)]. (30) 

It is easy to verify that this form does indeed satisfy Eq. (29). 
Upon reinstating the original variables, Eq. (28), we have from Eqs. (23) and 

(30) 
G[u(ABIE)] = G[u(AIE)] G[u(BIAE)]. (31) 

We incur no loss of generality by using the simpler notation (for u itself is arbi­
trary): 

v(AIE) = G[u(AIE)]. (32) 
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Then, Eq. (31) along with Eq. (24) give us the product rule for plausibilities: 

v(ABIE) = v(AIE) v(BIAE) 

= v(BIE) v(AIBE). 

(33a) 

(33b) 

Our desiderata, specifically with the commutativity and associativity of the logical 
product, have produced a very impressive result: Irrespective of the scale used, 
plausibilities must abide by the rules in Eqs. (33a) and (33b). On the question of 
scales of plausibilities, see Jaynes [1957]. The generality afforded by G is explored 
by Tribus [1969], pp. 19 and 26-29. 

Cox [1946, 1961] adopted Eq. (23) as an axiom, and we adopted it, perhaps 
too quickly, by taking advantage of the freedom allowed by the desiderata to look 
at a specific case. Does Eq. (23) describe only the specific case we examined or 
is it completely general [Eq. (24) is treated as equivalent to Eq. (23)]7 The book 
by Tribus [1969]' pp. 14-18, discusses all functional relations that the problem 
allows. The conclusion is that Eq. (23), and no other functional relation, describes 
the general case. 

Though the scale of plausibility is quite arbitrary (and will remain so, much as 
the relationship of temperature scales with thermodynamic relations), Eq. (33) al­
ready fixes numerical values of plausibilities (more correctly, v( AlE) = G[u( AlE)], 
where u(AIE) is the plausibility) in the deductive limits we discuss next. 

We consider first the extreme case in which our prior information E dictates 
that A is true (A = .:lJ, while B remains arbitrary (provided it does not contradict 
E ) ~ d. the modus ponens in Eq. (19). Using AB = ,t·B = Band v(AIBE) = 
v(,t IBE) = v(,t IE) [A is already true by E, so v(,t IBE) is conditional only on 
E] in Eq. (33a), we see that 

v(BIE) = v(BIE)v(,t IE). (34) 

Because B is arbitrary, there are cases in which v(BIE) f 0; in such cases, the 
solution of Eq. (34) is 

vet IE) = 1. (35) 

Thus, the certain proposition has a plausibility equal to unity --- we continue 
to refer to v(AIE) as the plausibility of A to avoid more terminology; cf. Eqs. 
(44)~(49) and the discussion following Eq. (49). 

The other limiting case we consider obtains in a problem in which E informs 
us that B is false (B = Q) and A is compatible with E and B but is otherwise 
arbitrary. This limit corresponds to modus tottens in Eq. (19). Using AB = A· Q = 
Q and v(BIAE) = v(Q IAE) = v(Q IE) in Eq. (23) gives 

v(Q IE) = v(AIE) v(Q IE). (36) 

For v( AlE) arbitrary, this equation has two solutions: v(Q IE) = 0 and v{Q IE) = 
00. Because A is arbitrary, it too can have truth value Q; this precludes v(Q IE) = 
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-00 as a solution. So we have a choice: 0 :S v :S 1 or 1 :S v :S 00. Strictly as a 
convention we choose 

v(Q IE) = 0, (37) 

because of its accord with the word plausibility and because the other choice 
involves an infinite quantity which cannot be realistically implemented in hard­
ware or software. The two solutions can be interchanged by replacing v with V-I 

[Jaynes, 1957]. 
Up to this point, we have used only the logical product in investigating the 

consequences of the desiderata on the plausibilities. Naturally, one would turn 
next to the negation and the logical sum to explore their relationship with the 
plausibilities. In fact, we need consider only the negation, because the logical 
product and negation, forming an exhaustive set of operations (meaning all others 
can be represented by this set), already subsume the logical sum [cf. Eq. (16)]: 

A + B = A B. (38) 

There are other exhaustive sets of logical operations, but it is not appropriate to 
consider them here [Whitesitt, 1961]. 

Our information about the plausibility of A is identical to that for A; note 
too that A and A are exhaustive and mutually exclusive (A + A = ,t" A A = Q). 
Thus, by the requirement of rationality, v(AIE) and v(A IE) must be related by 
some function T( x) as follows: 

v(A IE) = T[v(AIE)]. (39) 

The rationality requires further that T( x) be a monotonic decreasing function of 

:r (x represents a general argument). Moreover, because A = A, we see that 

T- 1(x) = T(x), (40) 

so T( x) is self-reciprocal. However, this condition is not stringent enough to 
completely characterize T( x), for it must also be compatible with the product 
rule, Eq. (33). By considering v(ABIE) for the particular propositions satisfying 
the conditional relation A B = Q, one can show that T( x) satisfies the functional 
equation [see Cox, 1946 and Jaynes, 1957J: 

xT[T(y)/xJ = yT[T(x)/yJ. ( 41) 

Cox [1946] solved this equation by deriving from it a second-order differential 
equation, the solution of which is given by 

[T(xW + xn = 1, ( 42) 

where Eq. (40) has been taken into account and where n is arbitrary except nolO. 
Again, Aczel [1963J derives the same general solution without assuming differen­
tiability. Finally, for our convention v(Q IE) = 0, Eq. (37), only n > 0 is allowed. 
If we let x = v(AIE) in Eq. (42) and take Eq. (39) into account, we obtain 

[v(AIE)Jn + [v(A IE)t = 1, (43) 

which provides the desired relation between v(AIE) and v(A IE). 
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6. THE RULES OF BAYESIAN PROBABILITY THEORY 

We can eliminate the appearance of the constant n in Eq. (43) by introducing 
a new function p(AIE), where 

p(AIE) = [v(AIEW· (44) 

But, referring to Eq. (32), we see also that 

p(AIE) = {G[u(aIE))}n. ( 4.5) 

Hence, the arbitrariness in G renders superfluous the dependence of p(AIE) on n; 
that is, the dependence on n in Eq. (45) can be absorbed by G. Raising Eqs. (33), 
(35) and (37) to the power n and using Eq. (43), we obtain 

p(ABIE) = p(AIE) p(BIAE) 

= p(BIE) p(AIBE) 

p(AIE) + p(A IE) = 1 

p(! IE) = 1 , p(Q IE) = O. 

(46a) 

(46b) 

( 47) 

( 48) 

We have noted already in Eq. (38) that the logical sum can be defined in terms of 
the logical product and negation operations. Using Eqs. (38), (46) and (47), one 
can show in a few lines 

p(A + BIE) = p(AIE) + p(BIE) - p(ABIE). ( 49) 

The rewards of our quest are before us: Eqs. (46)-(49) represent the quanti­
tative rules we sought. These rules are unique: Any rules which represent degrees 
of plausibility by real numbers and conflict with them will necessarily violate ra­
tionality or consistency. Of course, it makes no difference whether one calls that 
real number a likelihood, a significance level, a degree of membership in a set, or 
anything else. 

In Eqs. (46), (47) and (49) we have three rules for plausibilities, along with 
the limiting values in Eq. (48), which coincide with those of probability theory. 
However, our derivation of these rules was based on rationality and consistency 
requirements, with no reference to sets, counting, frequencies or mass phenom­
ena. Bearing this in mind, we shall refer henceforth to p(AIE) as the probability 
of A, given the prior information E. In any line of reasoning in accord with the 
desiderata - and we know of no valid inductive reasoning at variance with the 
desiderata - one is entitled to the broadest possible interpretations and applica­
tions of the theory allowed by these foundations. This is not a trivial point, for 
the actual numerical values one uses for the probabilities are often reflective of the 
broad interpretation in which probabilities encode any information we are clever 
enough to use - a few additional comments on numbers are provided in the next 
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section. The meaning of the title of this paper should be clear, once we note that 
the theory we have just developed is called Bayesian probability theory. Of course, 
a full understanding of Bayesian probability theory will require an in-depth study 
of its further development and applications - for a start, consult the relevant 
books and papers in the references at the end of this paper, especially those of 
Jaynes. 

We would be remiss were we to omit one final formal result. The commuta­
tivity of logical products as embodied by Eqs. (46a) and (46b) leads immediately 
to 

(AIBE) = p(AIE) p(BIAE) 
p p(BIE)' 

(50) 

This important expression is known as Bayes' Theorem (or Bayes' Rule). In light 
of the preceding discussion, it is not a stunning result. Nonetheless, it is aston­
ishingly useful in applications. It affords the means for using datum B (which 
may be a compound proposition) to update the prior probability p(AIE) to the 
posterior probability p(AIBE) for A, incorporating both the datum B and our 
prior information, E. 

7. CONCLUDING REMARKS 

This paper is a brief tutorial on the foundations of Bayesian probability theory. 
The space allocated to this tutorial does not allow us to explore several key issues 
we suspect will occur to many readers. So, we want to close with a few remarks 
which may point the reader in a direction for resolving the issues. 

First, the probability p(AIE) we have arrived at is an arbitrary (positive, 
strictly increasing monotonic) function of the plausibility u(AIE), itself a quantity 
that is anthropomorphic and intuitive. Moreover, the necessity and role of the 
prior information E in relation to p(AIE) [P(AIE) is conditional on E, and peA) 
has no meaning] deserve more discussion. Both of these points are discussed at 
length in Jaynes [1957], Secs. 2 and 3 (see especially pp. 8-11). 

The next question that arises is: Where do the numerical values of Bayesian 
probabilities come from? The most fruitful methods are the principle of insuffi­
cient reason, the principle of maximum entropy and the symmetry principles based 
on transformation groups. These methods are developed from first principles in 
Jaynes [1957], Sees. 2 through 6 - see also Jaynes [1968] and [1983]. The sub­
ject of actual Bayesian probabilities brings to mind the Jeffreys prior and other 
pioneering work of Sir Harold Jeffreys [1939]. One can carry out estimations of 
parameters by direct application of Bayes' theorem, Eq. (50) - important and 
impressive results using this approach are achieved by Bretthorst [1987, 1988a, 
1988b]. 
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Abstract 
This paper presents a fully Bayesian derivation of maximum entropy 

image reconstruction. The argument repeatedly goes from the particular 
to the general, in that if there are general theories then they must 
apply to special cases. Two. such special cases, formalised as the "Cox 
axioms" , lead to the well-known fact that Bayesian probability theory 
is the only consistent language of inference. Further cases, 
formalised as the axioms of maximum entropy, show that the prior 
probability distribution for any positive, additive distribution must 
be monotonic in the entropy. Finally, a quantified special case shows 
that this monotonic function must be the exponential, leaving only a 
single dimensional scaling factor to be determined a posteriori. Many 
types of distribution, including probability distributions themselves, 
are positive and additive, so the entropy exponential is very general. 

The following paper (Gull 1989) applies these ideas to image 
reconstruction, showing how a sophisticated treatment can incorporate 
prior expectation of spatial correlations. 

1. Introduction 

There is a simple mode of reasoning - compelling or infuriating according to 
one's point of view - which allows us to construct general theories. It is 
this. If there is a general theory at all, it must apply to particular cases. 
In particular, if we already know the answer for a simple case, this constrains 
the general theory by falsifying all those which give wrong answers. If enough 
such cases can be found to constrain the general theory completely, then there 
will be no freedom left, and the theory will have been fully defined. 

In experimental science, general theories usually have some "loose ends", 
such as relativistic corrections to Newtonian dynamics, or cosmological terms in 
general relativity, which are allowed by the experimental errors on the 
constraining observations. However, in an argument about logic, there can be no 
such loose ends. 

We use this mode of reasoning three times here, leading successively to 
Bayesian probability theory, to maximum entropy (MaxEnt) , and finally to a 
quantified prior for images. Firstly, if there is a general language for 
inference, it must be that of ordinary probability theory, with our inferences 
being quantified as probabilities: the proof is due to Cox (1946). However, 
probability theory describes how we must modulate our inferences in the light of 
evidence, but it does not tell us how to assign the prior probabilities which we 
need in order to start the scheme. Secondly, if there is a general way of 
assigning positive additive distributions (such as probability distributions), 
then it must be MaxEnt: one source for the original form of this argument is 
Shore and Johnson (1980), though we generalise away from unit normalisation. 
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However. this argument does not address the reliability of a MaxEnt 
distribution. in the sense of quantifying how much worse (i.e. less probable) a 
different distribution might be. Thirdly. if there is a general quantification 
of distributions. their probabilities must be exponential in their entropy 
(scaled by some factor which can not be fixed a priori). This work builds upon 
that of Frieden (1972). Gull and Daniell (1979) and Jaynes (1986). supersedes 
all the author's previous writings on the subject. and completes what we call 
"Classic" MaxEnt. 

Of course. at any stage it remains possible that there is no general theory. 
in which case the argument would break down. Different problems would need 
different theories. Although'it is a sociological fact that different problems 
are indeed currently analysed in a multitude of different ways. the author knows 
of no example in which a correct application of classical Bayesian methods would 
give a demonstrably incorrect result. In the absence of such contrary evidence. 
we shall avoid the Babel of Tongues by assuming that there are general theories. 

Far from being restricted and thereby impoverished. the Classic MaxEnt 
formulae in fact allow wide freedom. and the rigour of the underlying 
mathematics can be turned to advantage. The following paper (Gull 1989) 
introduces a sophisticated new use of Classic MaxEnt in the realm of image 
reconstruction. and we surmise that more such developments will arise in the 
future. 

2. Bayesian probability theory: The Cox axioms. 

One of the principal aims of science is to enable us to infer the plausible 
outcomes of different situations. and thereby help us to predict the future. and 
to understand the past. Logical reasoning. aided by mathematics. is the 
principal intellectual tool we bring to bear upon this central problem of 
inference. 

Whatever the content of our discussions. be it Raman spectroscopy or Roman 
history. we wish to be able to express our preferences for the various 
possibilities i.j.k •... before us. A minimal requirement is that we be able 
to rank our preferences consistently (i.e. transitively) 

(Prefer i to j) AND (Prefer j to k) * (Prefer i to k) . [1] 

Any transitive ranking can be mapped onto real numbers. by assigning numerical 
codes P(i). P(j) •... such that 

P(i) > P(j) ** (Prefer i to j) [2] 

Now. if there is a common general language. it must apply in simple cases. 
Cox (1946) formulated two such simple cases as axioms. which we restate briefly. 
It is difficult to argue against either. 

Axian A: 
If we first specify our preference for i being true, and then specify our 
preference for j being true (given i), then we have implicitly defined our 
preference for i and j together. 
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Axiom B: 
If we specify our preference for i being true, then we have implicitly specified 
our preference for its negation -i. 

As a consequence of these remakably mild requirements, Cox showed that there is 
a mapping of the original codes P into other codes pr that obey the usual rules 
of probability theory 

pr(i,jlh) = pr(ilh) pr(jli,h) 

pr(ilh) + pr(-ilh) = 1 • 

[3] 

[4] 

Many authors have repeated this proof in greater or lesser detail, as in the 
preceding paper (Smith and Erickson 1989). 

Therefore, if there is a conmon language, then it can only be this one, and 
in accordance with historical precedent set by Bernoulli and Laplace (Jaynes 
1978) we call the codes pr thus defined "probabilities". Logically, of course, 
there may be no common language. There may be a lurking "Axiom C", just as 
convincing as Axioms A and B, which contradicts them. Although IlI\lch effort has 
been expended on such arguments (Klir 1987), no such contradictory axiom has 
been demonstrated to our satisfaction, and accordingly we submit to the Bayesian 
rules. 

Bayes' Theorem itself, which is a simple corollary of these rules, then tells 
us how to modulate probabilities in accordance with extra evidence. It does not 
tell us how to assign probabilities in the first place. It turns out that such 
prior assignments should be accomplished by MaxEnt. 

3. The axioms of maximum entropy. 

The probability distribution pr(x) of a variable x is an example of a positive, 
additive distribution. It is positive by construction. It is additive in the 
sense that the overall probability in a domain D equals the sum of the 
~robabilities in any decomposition into sub-domains, and we write it as 
JDpr(x)dx. It also happens to be normalised, fall xpr(x)dx = 1. 

Another example of a poSitive, additive distribution is the intensity or 
power f(x,y) of incoherent light as a function of position (x,y) in an optical 
image. This is positive, and additive because the integral ffDf(X,y)dxdy 
represents the physically meaningful power in D. (By contrast, the amplitude of 
incoherent light, though positive, is not additive.) For brevity, we shall call 
a positive, additive distribution a "PAD". 

It turns out to be simpler to investigate the general problem of assigning a 
PAD than the specific problem of assigning a probability distribution, which 
carries the technical infelicity of normalisation. Accordingly, we investigate 
the assignment of a PAD f(x), given some definitive but incomplete constraints 
on it: such constraints have been called "testable information" by Jaynes 
(1978). Now if there is a general rule for assigning a single PAD, then it must 
give sensible results in simple cases. The four "entropy axioms" so-called 
because they lead to entropic fOrlll\llae - relate to such cases. Shore and 
Johnson (1980) and Tikochinsky, Tishby and Levine (1984) give related 
derivations pertaining to the special case of probability distributions. Proofs 
of the consequences of the axioms as fOrlll\llated below appear in Skilling (1988), 
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though our phraseology improves upon that paper. 

Axiom I: "Subset Independence" 
Separate treatment of individual separate distributions should give the same 
assignment as joint treatment of their union. 
More formally, if constraint C1 applies to f(x) in domain x E D1 and Cz applies 
to a separate domain x E DZ' then the assignment procedure should give 

[5] 

where f[Dlc] means the PAD assigned in domain D on the basis of constraints C. 
Consequence: The PAD f should be assigned by maximising over f some integral 

of the form 

S(f,m) = f dx m(x) 8(f(x),x) [6] 

Here e is a function, as yet unknown, and m is the Lebesgue measure associated 
with x which must be given before an integral can be defined. The effect of 
this basic axiom is to eliminate all cross-terms between different domains. 

Axiom II: "Coordinate invariance" 
The PAD should transform as a density under coordinate transformations. 

Consequence: The PAD f should be assigned by maximising over f some integral 
of invariants 

S(f,m) =fdxm(x) q\(f(x)/m(x», (7) 

where q\ is a function, as yet unknown. The crucial axiom is the next. 

Axiom III: "System independence" 
If a proportion q of a population has a certain property, then the proportion of 
any sub-population having that property should properly be assigned as q. 

For example, if 1/3 of kangaroos have blue eyes (Gull and Skilling 1984), 
then the proportion of left-handed kangaroos having blue eyes should also be 
assigned the value 1/3. 

Consequence: The only integral of invariants whose maximum always selects 
this assignment, regardless of any other subdivisions which may be present, is 

S(f,m) = - fdx f(x) log(f(x)/cm(x» , [8] 

where c is a constant. 

Axiom IV: "Scaling" 
In the absence of additional information, the PAD should be assigned equal to 
the given measure (instead of being merely proportional). This is a practical 
convenience rather than a deep requirement. 

Consequence: The PAD f should be assigned by maximising over f 

S(f,m) = Jdx ( f(x) - m(x) - f(x) log(f(x)/m(x» ) • [9] 
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The additive constant Jmdx in this expression ensures that the global maximum of 
S, at f(x)9m(x), is zero, which is both convenient and required for other 
purposes (Skilling 1988). 

Because of its entropic form, we call S as defined in [9] the entropy of the 
positive, additive distribution f. It reduces to the usual cross-entropy 
formula - Jdx f log(f/m) if f and m happen to be normalised, but is actually 
more general. (Holding that the general concept should carry the generic name, 
we deliberately avoid [9] a qualified or personalised name.) 

We see that MaxEnt is the only method which gives sensible results in simple 
cases, so if there is a general assignment method, it must be MaxEnt. 
(Logically, there may be a lurking, contradictory "Axiom V", but we have not 
found one, and accordingly we sutmit to this "principle of maximum entropy".) 
Two major applications follow from this analysis. Firstly, MaxEnt is seen to be 
the proper method for assigning probability distributions pr(x), given testable 
information. Secondly, in practical data analysis, if it is agreed that prior 
knowledge of a PAD satisfies axioms I-IV, and if testable information is given 
on it, then any single PAD to be assigned on this basis must be that given by 
MaxEnt. 

However, the arguments above do not address the reliability of the MaxEnt 
assignment: would a slightly different PAD be very much inferior? Furthermore, 
experimental data are usually noisy, so that they do not constitute testable 
information about a PAD f. Instead, they define the likelihood or conditional 
probability pr(datalf) as a function of f. In order to use this in a proper 
Bayesian analysis, we need the quantified prior probability pr(f) - or strictly 
pr(flm) because we have needed to set a measure m. 

4. Quantification. 

The reliability of an estimate is usually described in terms of ranges and 
domains, leading us to investigate probability integrals over domains V of 
possible PADs f(x), digitised for convenience into r cells as (f1,f2, ... ,fr ). 

pr(fEVlm) = f drf M(f) pr(flm) , 
V 

[10] 

where M(f) is the measure on the space of PADs. By definition, the single PAD 
we most prefer is the most probable, and we identify this with the PAD assigned 
by MaxEnt. Hence pr(flm) must be of the form 

pr(flm) = monotonicfunction(S(f,m» , [11] 

but we do not yet know which function. Now S has the units (dimensions) of the 
total f, so this monotonic function must incorporate a dimensional constant, ~ 

say, not an absolute constant, so that 

pr(fEVlm) = J drf M(f) ~(~(f,m» / ZS(~,m) , 
V 

where ~ is a monotonic function of dimensionless argument and 

ZS(~,m) = f drf M(f) ~(~(f,m» 
00 

is the partition function which ensures that pr(flm) is properly normalised. 

[12] 

[13] 
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In order to find ~. we repeat our earlier mode of reasoning. finding a simple 
case for which the result is known, and arguing that any general theory must. 
apply to this specific example. Let the traditional team of monkeys throw balls 
(each of quantum size q) at r cells (i=1,2, ... ,r), at random with Poisson 
expectations ~i' This arrangement satisfies the entropic axioms (I-IV). and the 
probability of occupation numbers ni is known (from symmetry and straightforward 
counting of possible outcomes) to be 

ni -~i 
pr(nl~) = ~ ~i e I nil . 

~ 

[14] 

Define fi=niq and mi=~iq to remain finite as the quantum size q is allowed to 
approach zero. Then the image-space of f becomes constructed from microcells of 
volume qr. each associated with one lattice-point of integers (nl.n2 •..• ,nr). 
Hence we have. as q tends to 0, 

pr(fEVlm) I pr(nl~) 
lattice points in V 

= f 
V 

Because we are taking n large, we may use Stirling's formula 

to obtain (accurately to within O(l/n» 

drf I(fi-mi-fi log(fi/mi» 
pr(fEVlm) = J exp ---------

V IT (2'1Tqfi)1/2 q 

Here we recognise the entropy on r cells, 

so that 

pr(fEVlm) = f 
V IT fil/2 

exp(S(f,m)/q) 

(2'll"q)r/2 

Comparing this with the previous formula [12], we must identify 

q = l/a , ~(aS(f,m» = exp(aS(f,m» 

and 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

save possibly for multiplicative constants in~, ZS' Mwhich can be defined to 
be unity. Note how the often-ignored "square-root" factors in Stirling's 
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formula have enabled us to derive the measure M, which allows us to make the 
passage between pointwise probability comparisons and full probability integrals 
over domains. 

A natural interpretation of the measure is as the invariant volume (det g)1/2 
of a metric g defined on the space. Thus the natural metric for the space of 
PADs is 

g .. _ { 11fi 
~J -

o 

if i=j 
[22] 

otherwise , 

which happens to equal (minus) the entropy curvature \I'V6 :: ilS/BfBf. This 
quantity, also known as the Fisher information matrix, has also been given this 
geometrical interpretation by Levine (1986) and by Rodriguez (1989) in these 
Proceedings. 

Although this analysis has used large numbers of small quanta q, so that a is 
large, this limit also ensures that each ni will almost certainly be close to 
its expectation ~i' Indeed, the expected values of as remain 0(1), so that the 
identification 

<I>(u) = exp(u) [23] 

holds for finite arguments u. Finally, if there is a general form of <1>, it must 
be valid for the small quantum case, so <I> must be exponential. 

To sUlllllarise, if there is a general prior for positive, additive 
distributions f, it must be 

pr(flm) = exp(aS(f,m» IZs(a) [24] 

and furthermore 

=f 
drf exp(aS(f ,m» 

pr(fEVlm) 
IT f·1/2 V ~ ZS(a) 

[25] 

where 

ZS(a) = f 
drf 

IT f·1/2 
exp(aS(f ,m» • 

00 ~ 

[26] 

This quantified prior contains just one un-determined parameter a which can not 
be fixed a priori because it is dimensional. (Logically, there may be a 
lurking. contradictory thought experiment, but we have not found one, and 
accordingly we commend this mode of quantification.) 

5. Conclusions 

The Classic MaxEnt prior ([24] and [9]) for positive, additive distributions is 
the only one which gives the correct results in simple cases, so if there is a 
general prior at all, it can only be this one. It is fully quantified except 
for the single dimensional number a which can not be assigned a priori. As a 
bonus, the formal derivation has given us the metric [22] which we need in order 
to define integrals over ranges of distributions. 
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Abstract 

The Bayesian derivation of "Classic" MaxEnt image processing (Skilling 
1989a) shows that exp(aS(f,m», where S(f,m) is the entropy of image f 
relative to model m, is the only consistent prior probability 
distribution for positive, additive images. In this paper the 
derivation of "Classic" MaxEnt is completed, showing that it leads to a 
natural choice for the regularising parameter a, that supersedes the 
traditional practice of setting x2=N. The new condition is that the 
dimensionless measure of structure -2aS should be equal to the number 
of good singular values contained in the data. The performance of this 
new condition is discussed with reference to image deconvolution, but 
leads to a reconstruction that is visually disappointing. A deeper 
hypothesis space is proposed that overcomes these difficulties, by 
allowing for spatial correlations across the image. 

1. Introduction 

The Maximum Entropy method (MaxEnt) has now become the standard method for data 
analysis in many fields. It has been used most spectacularly in radio­
astronomical interferometry, where it deals routinely with images of up to a 
million pixels, with high dynamic range. A review of the method, together with 
many examples taken from fields such as optical deblurring and NMR spectroscopy 
is given by Gull & Skilling (1984). Despite the success of the method in 
practical applications, the underlying rationale of MaxEnt has caused widespread 
controversy. This paper, together with the one preceding it (Skilling 1989a), 
presents a Bayesian justification for the use of MaxEnt. 

The desire for a fully Bayesian interpretation of MaxEnt is not new: the 
advantage of such a probabilistic formulation being that it would then allow us 
to quantify the reliability of MaxEnt images. The "team of monkeys" argument as 
applied to image reconstruction (e.g. Gull & Daniell 1979, following Frieden 
1972, see also Jaynes 1986b) was an attempt to derive a prior probability 
distribution on the space of images. But these earlier attempts had a 
fundamental drawback: why should we consider that all images are made randomly 
by monkeys? Clearly they are not. However, the arguments presented here by 
Skilling are of a completely different character. By asking merely that any 
supposed general procedure should also work in every specific, simple case, he 
shows that if there is a consistent prior on the space of images it must be of 
the form exp(aS(f,m», where S(f,m) is the entropy of image f relative to model 
m. This prior is, of course, consistent with that derived by the "monkey" 
argument, because it is conceivable (though unlikely) that ~ images could 
actually be made that way. 

The purpose of the present paper is to complete the derivation of "Classic" 
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MaxEnt by addressing the choice of the regularising parameter ~ that appears in 
the prior. With noisy data, traditional practice has been to select a value of ~ 
that makes the XZ misfit statistic equal to the number of observations, but this 
is ad hoc and does not allow for the reduction in effective number of degrees of 
freedom caused by fitting accurate data. Section 2 gives a Bayesian 
determination of ~, finding that the amount of structure in the image, 
quantified as -ZaS, must equal the number of "good" (accurate) singular vectors 
contained in the data. The value of XZ is not relevant to the choice of~, but 
instead allows an estimate of the overall noise level if it is unknown. 

The application of this method is discussed (Section 3) by reference to a 
specific deconvolution example. Disconcertingly, the "Classic" reconstruction 
is visually disappointing, with an unfortunate level of "ringing". This can 
only be due to a poor choice of initial model m. Indeed, the initial, flat 
model is very far from the final reconstruction. In order to allow the "good" 
singular data vectors to be fitted, ~ must be small, so that there is little 
entropic smoothing, and the consequence is under-smoothing of the "bad" noisy 
data. 

The next step must be a better model, incorporating some expectation of 
correlated spatial statistics in a deeper hypothesis space (Section 4). We 
introduce a set of "hidden variables" m(x) which are then blurred to make the 
model m(x) used in "Classic". The prior for these hidden variables must also be 
of entropic form exp(~S(m,flat». The new multiplier ~ and the width of the 
hidden blur are also determined by Bayesian methods. 

The results from this deeper hypothesis space are excellent, and provide a 
coherent rationale for some of the manipulations of the model m that have been 
found useful in current practice. 

2. The choice of a in Classic MaxEnt 

In the preceding paper (Skilling 1989a) it was shown that the only consistent 
prior for positive, additive images is of the form: 

pr(flm,~) exp as(f,m) I ZS(~,m) [2.1] 

where S in the entropy of image f relative to model m and Zs is the normalising 
partition fuction. Explicit forms for Sand Z were derived for the case of an 
image discretised to r pixels: 

S(f ,m) 

ZS(~,m) 

= ] (fj - mj - fj log(fjlmj» 

= f drf TI f-1/2 exp as • 

[2.2] 

[2.3] 

The only remaining parameter in this ·Classic· hypothesi$ space is the 
constant ~. We do not believe that we can determine ~ a priori by general 
arguments. Not only is ~ dimensional, so that it depends on the scaling of the 
problem, but its best-fitting value varies quite strongly with the type and 
quality of the data available. It can only b~ determined a posteriori. 

We therefore turn to the other side of the problem, the likelihood. ·which 
we write as: 

pr(Dlf) exp(-L(f» I 2L' [2.4] 
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where ZL = f dND exp(-L) , 
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[2.5] 

N being the number of data. The log-likelihood L(f) defined by this expression 
contains all the details of the experimental setup and accuracies of 
measurement. For the common case of independent, Gaussian errors, this reduces 
to L = xZ/2, but other types of error such as Poisson noise are also important. 
Quite frequently, the overall level of noise is not well-known, so we will 
eventually generalise to 

[2.6] 

but for now we assume that the errors are known in advance, so that (J = 1. 
We now write down the joint p.d.f. of data and image: 

pr(f,DI ~,m) = ZL-l ZS-l exp(~ - L) • [2.7] 

Bayes' Theorem tells us that this is also proportional to the posterior 
probability distribution for f: pr(fID,~,m). The maxbnwn of this distribution 
as a function of f is then our "best" reconstruction, and occurs at the maximwn 
of 

Q = ~ - L. [2.8] 

This brings us back once again to the choice of ~, which can now be viewed as a 
regu1arising parameter. When seen this way, ~ controls the competition between S 
and L: if ~ is large, the data cannot move the reconstruction far from the model 
- the entropy term dominates. If ~ is low there is little smoothing and the 
reconstruction will show wild oscillations as the noise in the data is 
interpreted as true signal. We have to control ~ carefully, but there is usually 
a large range of sensible values. 

OUr practice hitherto (Gull & Daniell 1978, Gull & Skilling 1984) has been 
to set ~ so that the misfit statistic XZ is equal to the number of data points 
N. Although this has a respectable pedigree in the statistical literature (the 
discrepancy method (Tikhonov & Arsenin 1977», it is ad hoc, and can be 
criticised on several grounds. 

1) The only "derivation" of the xZ=N condition that has been produced is a 
frequentist argument. If the image was known in advance and the data were then 
repeatedly measured, xZ=N would result on average. However, the data are only 
measured once and the image is not known a priori, but is instead estimated from 
the one dataset we have. 

2) There is no allowance for the fact that good data cause structure in the 
reconstruction f. These "good" degrees of freedom are, in effect, parameters 
that are being fitted from the data and because of this they no longer 
contribute to the variance. In general terms, XZ=N leads to "under-fitting" of 
data (Titterington 1985). This is particularly apparent for imaging problems 
where there is little or no blurring. The xZ=N criterion leads to a uniform, 
one standard deviation bias towards the model. This bias is very unfortunate: it 
is the job of a regulariser such as entropy to cope with noise and missing 
information, not to bias the data that we do have. 

3) For many problems (such as radioastronomical imaging, where I started) 
the data are nearly all noise, so that xz~ N for any reasonable ~. The 
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statistic X2 is in any case expected to vary by ±YN from one data realisation 
to another, and this can easily swamp the difference between X2 at ~and the 
X2 appropriate to a sensible reconstruction. 

For these reasons we now believe that there is no acceptable criterion for 
selecting ~ that looks only at the value of a misfit statistic such as X 2 

However, within our Bayesian framework there is a natural way of choosing~. We 
simply treat it as another parameter in our hypothesis space, with its own prior 
distribution. The joint p.d.f. is now 

pr(f,D,~lm) = pr(~) pr(f,DI~,m) [2.9] 

To complete the assignment of the joint p.d.f. we select an uninformative prior, 
uniform in log(~): pr(log~) = constant over some "sensible" range [Ofidn'omax]. 
We shall return to the definition of "sensible" later. 

Using Bayes' Theorem, this joint distribution is also proportional to the 
posterior distribution pr(f,~ID,m) and we proceed to estimate the best value of 
~ by marginalisation over the reconstruction f: 

pr(~ID,m) = f drf IT f-l/2 pr(f,~ID,m) . 

()( ZQ ZS-l ZL-l , 

where ZQ = f drf IT f-l/2 exp(~ - L) . 

[2.10] 

[2.11] 

It is essential to perform this integral carefully, rather than estimating 
~ by maximising the integrand with respect to f and ~ simultaneously, because 
the distribution in f-~ space is significantly skew. In fact, the maximum of 
pr(f,~ID,m) is usually at ~~=large; f ~m, which is certainly not what we 
want. 

We now evaluate the integrals involved. The integrand for Zs has a maximum 
at f = m and, using Gaussian approximations, we find that for all ~ a reasonable 
approximation to log Zs is: 

log Zs = r/2 10g(~/2~). [2.12] 

In performing this integral, the terms from the volume element cancel with those 
from the curvature VVS. This is a happy consequence of the fact that the entropy 
curvature is also the natural metric tensor of the f space. 

A The ZQ integral is done similarly, expanding about the maximum of Q(f,m,~) 

at f. We can aid our understanding by introducing at this point the eigenvalues 
{~i} of the symmetric matrix 

A = diag(f1 /2) • ~ . diag(f1 /2) , [2.13] 

which is the curvature of L viewed in a the entropy metric. The eigenvalues ~ 

and eigenvectors in f space define the natural coordinates for our problem, and 
tl.a ~1/2 are the appropriate "singular values". A large value of ~ implies a 
"good" or measured direction, whereas a low or zero ~ corresponds to a poorly 
measured quantity. 

Evaluating the integrals in the Gaussian approximation, we find 
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log pr(aID,m) = constant + r/2 log(a) - 1/2 logdet(al + B) + Q(f,m,a) 

= constant + 1/2 ~ 10g(a/(a+Aj» + as(f,m) - L(f). 
J 

[2.14] 

For large datasets this has a sharp maximum at a particular value of a. 
Differentiating with respect to loga, and noting that the f derivatives cancel, 
we find the condition: 

-2 a S(f,m) = ~ Aj/(aHj) 
J 

[2.15] 

This fixes our estimate of a = ~ quite closely, provided we have many data, so 
that we can return to the determination of the reconstruction f. Strictly, 
having already integrated out f to determine pr(a) , the formalism does not allow 
us to return with a single value ~. However, we are allowed to find the 
distribution of any integral R = f da f(x) rex) by integrating the joint p.d.f. 
successively over f and then a. Because pr(a) is so sharply peaked, the effect 
on R is just as if a were set equal to ~. We may as well simplify the notation 
by setting a = ~ in the derivation of f itself: 

pr(fID,m) f da pr(f,aID,m) 

f da pr(aID,m) pr(fla,D,m) 

- pr(f 1~,D,m) 

ZQ-1 exp (~(f,m) - L(f» . [2.16] 

The fluctuations (uncertainty) of f about f can also be investigated, at least 
in principle, by using the known curvature: 

[2.17] 

We can understand our Bayesian fODnUla for the best value ~ as follows. 
1) The statistic AI(a+A) is a measure of the quality of the data along any 

given singular vector. If A » a the data are good and A/(a+A) adds one to the 
statistic. If, on the other hand, A« a, then the regularising entropy 
dominates the observations and the contribution is approximately zero. We can 
therefore say that ~AI(a+A) specifies the number of good, independent data 
measurements, or the number of degrees of freedom ndf(S) associated with the 
entropy. We associate the degrees of freedom with the entropy rather than the 
likelihood because these are the directions (dimensions) that contribute to the 
entropy. 

2) The quantity -laS is a dimensionless measure of the amount of structure 
in the image relative to the model, or the distance that the likelihood has been 
able to pull the reconstruction away from the starting model. 

The fODnUla thus has a very plausible interpretation: the dimensionless 
measure of the amount of structure demanded by the data is equal to the number 
of good, independent measurements. We also note that, as we indicated earlier, 
the value of the misfit statistic L is irrelevant to the choice of a. However, 
it too has a role to play. To see this we now generalise to the case of unknown 
overall noise level 
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[2.18] 

log pr(a,aID) = constant - N log(a) + 1/2 I a'/(a'+Aj) + as - L/az , [2.19] 

where a' - aaz• There is now an additional Bayesian choice for a and its 
estimate ;;, 

2 L(l)/az = N - I A/(a+A) = ndf(L) [2.20] 

The interpretation of this condition is also very plausible: the expected x2 

(=2L) is equal to the number of degrees of freedom controlled by the entropy, 
that is, the poorly measured "bad" directions of f space. This is less than the 
number of data, thereby answering our first objection to x%=N, and showing that 
the x% (or L) is really suited to estimation of the noise level, not a. Notice 
also how there is a clean division of degrees of freedom between S and L, so 
that 

N = ndf(S) + ndf(L) • [2.21] 

The choice of regularising parameters has been much debated in the 
statistical literature (Titterington 1985 gives a review). Our arguments in this 
section have reproduced (albeit for an entropic variation) one of these 
prescriptions, known elsewhere as Generalised Maximum Likelihood (Davies & 
Anderssen 1986). 

3. Performance of the Bayesian a 

To illustrate both the power and the shortcomings of the Bayesian choice for a, 
we turn now to a practical example, a picture of "Susie·. Figure 1 shows Susie, 
digitised on a 128x128 pixel grid, with grey-level values between 40 and 255. 
This picture was blurred with a 6-pixel radius Gaussian point-spread function 
(PSF) and noise of unit variance added. This is a traditional example for MaxEnt 
processing (e.g. Daniell & Gull 1980, Gull & Skilling 1984), and we show a x2=N 
reconstruction. Our previously-published "Susies" have used a disc PSF, 
appropriate to an out-of-focus camera, and for which the MaxEnt results at this 
signal-to-noise are more impressive visually. A Gaussian PSF gives less 
improvement in resolution because the eigenvalues of VVL falloff very fast. 

We now reach the first practical difficulty associated with our Bayesian 
answer. The log-determinant and the ndf(S) statistic require a knowledge of the 
eigenvalue spectrum of f1/2VVLfl/2. For the present case, this is a 16384x16384 
matrix, a size which is well in excess of the limits for conventional 
computational methods of calculating eigenvalues. However, Skilling (1989b) has 
recently developed a method based on the application of the matrix to random 
vectors, together with the use of MaxEnt, that allows an estimate of the 
eigenvalue spectrum to be obtained. In particular, the accuracy of estimation of 
scalars such as ndf(S) is excellent using this technique. It seems, therefore, 
that practical computation of the Bayesian solution is in general possible. 

For the moment, the problem of the eigenvalues is avoided in a different 
way: we change the definition of S. All of the Bayesian analysis of the last 
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Figure 1. 128x128 image of Susie, blurred with a 6-pixel Gaussian PSF. MaxEnt 
reconstruction using X2 = N. 

Figure 1. Susie images showing the behaviour of reconstruction quality as ~ is 
varied. 
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section applies equally to any regularising function, so we select a simple one 
that allows us to to diagonalise ~ and VQS simultaneously. This is the case 
for a spatially-invariant, circulant PSF and for the quadratic 

[3.1] 

which is a linearised version of the correct foen, and a reasonable 
approximation for a low-contrast image such as Susie. The computations can now 
be perfoened easily in eigenvector (Fourier Transfoen) coordinates. The change 
in the definition of S makes no difference to the formulae, except that the 
metric is now flat, the fl/2 terms disappear and f might possibly go negative. 
The change makes no difference whatever to our conclusions about the performance 
of the Bayesian solution. 

Figure 2 shows the reconstruction fram blurred Susie for a selection of a 
values. When a is high the reconstruction looks like the original blurred data, 
and when a is too low unsightly ripples appear due to the amplification of 
noise. Note, however that this behaviour covers a wide range of a (-104) and 
that there is a large region where the reconstruction is generally satisfactory. 

For our example the Bayesian solution suggests that there are -790 good 
degrees of freedom out of the total 16384. As might be expected, this is 
somewhat greater than the 16384/36w=145 independent PSFs contained in the image, 
the excess being a rough measure of the degree of deconvolution obtained. Its 
estimate of the noise level was correct to within the expected error and, 
indeed, we have always found that the noise level prediction performance of the 
Bayesian solution is excellent. Figure 3 shows a plot of the posterior 
probability of a, both as its logarithm~ and also linearly, to emphasise the 
discrimination in the detecnination of a, which is better than 1 db for this 
dataset. The posterior p.d.f. is normalisable as a approaches zero (towards the 
left of Figure 3a,b,c) if the noise level is known, but a global view shows 
that it levels off once a exceeds the highest eigenvalue (towards the right of 
Figure 3c), resulting in a teChnically improper distribution. We therefore 
return to the definition of a • sensible " cutoff for omax referred to earlier. 
The scale of Figure 3c is rather large: in order to make a 50 per cent 
contribution to the probability integral, the omax cutoff has to exceed 
exp(exp(1.4xl07». Such numbers are typical of the "singularities" encountered 
in this type of Bayesian analysis and we are content to take omax less than this 
bizarre value. 

The reconstruction f(~) is shown as Figure 4. It it visually disappointing, 
and is clearly in the range of the "over-fitted" solutions for which a is too 
low. It is very easy to understand why this is so. The initial IOOdel used for 
these reconstructions was everywhere unifoen, at approximately the mean of the 
data. This model is very far fram the final reconstruction, because there is 
plenty of real structure in the picture produced by the 790 good measurements in 
the data. a must be reduced sufficiently to accommodate this structure, or a 
large penalty in L results. An unfortunate consequence is that a now becomes too 
low to reject noise properly along the ·bad" directions. In general terms, the 
Bayesian solution will tend to allow fluctuations of the same order of magnitude 
as the deviation of the reconstruction from the initial model. 
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Figure~. "Classic MaxEnt" recons~ruction of Susie. 
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4. New MaxEnt 

We have seen that the Bayesian choice of a will often lead to a reconstruction 
that is over-fitted. Despite this, we feel that this "Classic" choice is the 
correct answer to the problem that we have so far formulated. In fact, it was 
the purity of its derivation, combined with problems of its performance that led 
us to propose the name "Classic" for it. We have derived a joint p.d.f 
pr(D,f,a,ujm) which is still conditional on the knowledge of an initial model m. 
This m was first introduced as a "measure" on the x-space of pixels, but it is a 
point in f-space and acts as a "model" there. The only freedom that we have left 
in our hypothesis space is to consider variations in this model, which we recall 
was a flat, uniform picture set to the average of the data mo. The fact that the 
model was flat expresses our lack of prior information about the structure of 
the picture, but where did the trightness level mo come from? 

The answer is again: Bayes' Theorem. We expand the hypothesis space to 
pr(D,f,a,u,mojflat) and select an uninformative prior for pr(mojflat). The 
posterior distribution for mo (Figure 5) is again sharply peaked and in the 
Gaussian approximation has a maximum at exactly the mean of the data. 
Reconstructions using values of mO different from this Bayesian optimum 
exacerbate the over-fitting problem, as one would expect. However, this exercise 
of varying the model is very instructive, because it emphasises the cause of the 
problem; the picture is very non-uniform. There are large areas of the picture 
where the lighting is generally light or dark, with interesting details 
superimposed. There are correlations from pixel to pixel present in the image 
that we have so far ignored. Indeed, our earlier MaxEnt Axiom I forbids us to 
put pixel-pixel correlations directly into our prior pr(fjm,a). We wish to 
circumvent this axiom, but we must be subtle. 

Suppose we imagine a silly case where the left half of our picture is 
Susie, but the right half is a distant galaxy. Axiom I is designed to protect us 
from letting the reconstruction of Susie influence our astrophysics, or vice­
versa. But there is nothing stopping us from having a different mo level for 
each half. In fact, in view of the grossly different luminance levels involved, 
it would be extremely desirable to have different levels of rna and ffiL' When seen 
this way, there is nothing to prevent us considering the right and left halves 
of the original Susie picture separately, because the average luminance levels 
are different. A new hypothesis space involving pr(rna'ffiLjflat,L/R) will again 
fix suitable levels for ffiR and ffiL a posteriori. If there is a strong right/left 
brightness variation across the picture, then this two-value model will be 
closer to the reconstruction and ~ will increase, reducing the ripples. But in 
that case why not use 4 subdivisions (top/bottom, left/right), or 8, or more? 

If we continue to subdivide, we can get a better model, closer to the 
reconstruction, so we expect that ~will increase. However, we are introducing 
extra parameters, so that we would expect there to be a penalty for this, and 
that it would be likely to have some effect on the choice of ~. A further 
consideration is that, if at all possible, we should like to avoid the sharp 
boundaries that such a crude division of the model would involve. 

We are now in a position to formulate a new, flexible hypothesis space that 
is suitable for pictures such as Susie. We suppose that the model m for use in 
"Classic" MaxEnt is itself generated from a blurred image of hidden variables m: 

m = m * b B m , [4.1] 
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where b is our "model-blur" PSF, which can also be written as a circulant matrix 
B. For the case of Susie we might like to think of ffi as the source of 
background lighting. If this model-blur is broad, then our model in "Classic" is 
smooth, and there are effectively very few parameters in it. If b is narrow, 
there are many parameters. The shape and width of the model-blur are to be 
determined by Bayesian methods as well. We do not expect the shape of this blur 
to matter greatly and we arbitrarily restrict it to be a Gaussian. The crucial 
parameter is the width and we expect that the most useful width will be about 
equal to the size of the correlation-length that is actually present in the 
picture. Our Bayesian analysis of the larger, richer hypothesis space will then 
tell us how useful is the freedom provided by the hidden variables. The final 
probability levels will quantify for us the level of improvement relative to 
"Classic", which is contained in our new space as limiting cases. 

To complete the analysis we must assign a prior for the "pre-model" ffi. We 
treat ffi as an image and again use the entropic prior: 

pr(ffil~,flat) = ZT-l exp(~T), [4.2] 

where T = S(ffi,flat) and we have introduced ~ as a new Lagrange multiplier for 
the ffi-space entropy T. We again restrict ourselves to the mathematically 
tractable (but still interesting) case of quadratic Sand T, circulant blurs and 
spatially uniform noise level, for which the VVL, VVS and VQT matrices are all 
simultaneously diagonal in Fourier transform space. The Bayesian calculation of 
a and ~ now yields: 

-2 a S(f,~) ndf(S) = ~ ~Ai/(~+~Ai+aAibl) , 
~ 

-2 ~ T(M,flat) = ndf(T) = ~ aAibl/(~+~Ai+aAibl) 
~ 

where bi are the eigenvalues of BtB and 

log pr(a,~,bID) constant + 1/2 ~ ~/(~+~Ai+aAibl) 
~ 

+ ~T + as - L. 

The noise level u can also be estimated as before: 

x2 = 2 L(f)/~2 = N - ndf(S) - ndf(T) . 

[4.3] 

[4.4] 

[4.5] 

[4.6] 

Notice how there is once again a neat division of the degrees of freedom between 
S, T and L. 

We have tested the performance of NewMaxEnt on the Susie picture. Classic 
MaxEnt is contained in New MaxEnt in several ways: 
1) as ~ --> 00, because ffi cannot move from the initial mo. 
2) As b --> 00, because the model becomes flat. 
3) (rather surprisingly) As b --> O. This last case illustrates a general 
peculiarity of 

log pr(a.~.bID) = constant + 1/2 log(det) + QS + ~T - L, [4.7] 

an object which would be known elsewhere in physics as a Gibbs' surface. Our new 
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Figure 1· (a) Posterior distribution of the model-blur width for New MaxEnt 
Susie images. (b) Image-space entropy S and model-space entropy T. Note that S 
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hypothesis space has sufficient structure to contain phase transitions and one 
such occurs for the Susie image as the the width of b is reduced below 4.27 
pixels. Below this value of the model-blur, the model is sufficiently detailed 
to cope with all the structure in the image demanded by the data, and S(f,m) no 
longer adds anything that is useful. The NewMaxEnt & increases to infinity at 
this point; S switches off and the reconstruction is the model m - ffi * b. This 
is illustrated in Figure 6, which shows the posterior distribution of ~ and ~ 

for b=3 and b=7 pixels. 
Figure 7 shows the posterior distribution of the width of b, which rises to 

a maximum at -8.5 pixels. This diagram also answers the question of how useful 
our new hypothesis space is. It is useful to the extent of being more probable 
than Classic MaxEnt by exp(520). The extrinsic variables Sand T are also 
plotted, showing a change of slope at the phase transition. There is no specific 
heat associated with this phase changel Inspection of the reconstruction and 
effective model m = iii * b for the optimum width of b (Figure 8) confirms that 
the New MaxEnt has indeed achieved its promise. 

Figure .§. New MaxEnt reconstruction of Susie. CClllpare with Figure 4. 

Of course, our New MaxEnt can be used to encourage smoothness in any image, 
whether or not it is actually blurred. Indeed, our failure to offer a solution 
the problem to analysing noisy, but unblurred pictures has been a continual 
source of frustration over the years. We test the noise-smoothing properties of 
the method with a picture of Susie which is in focus, but which has had 25 units 
of noise added. For this type of problem, the Classic MaxEnt reconstruction is 
almost identical to the data. The best value of the model blur is now -3 pixels, 
and there is an increase in probability of exp(lOOOO) over Classic for this 
case. The picture produced (Figure 9a) is also very good, and shows all the 
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Figure 2. (a) Comparison of Classic and NewMaxEnt reconstructions of a noisy 
Susie picture. (b) Detail of Figure 9 (a), showing the improvement due to noise 
suppression. 
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structure that can be reliably produced from this noisy dataset. A detail from 
this (Figure 9b) confirms that the pixel-to-pixel noise has been greatly 
reduced, without degrading the information content of the picture in any way. 

5. Discussion 

Our New MaxEnt approach is related to other methods of introducing spatial 
smoothing that have been found useful in practice. Within the context of maximum 
entropy image processing, there are now many examples of " reconstruction­
dependent" models m( f). A particularly successful application to tomographic 
mapping of stellar accretion discs is presented by Marsh and Horne (1989), 
following Horne (1985). To improve the quality of the images, they used a model 
that was a blurred form of their current reconstruction. We have also found 
such techniques useful: Charter & Gull (1988) give an example of studies of drug 
absorption rate into the bloodstream, in Which a blurred version of the 
reconstruction is again used as the model. 

Such tricks have previously lacked any rigorous justification, because the 
development of the MaxEnt story treats m as a point in f-space that is given a 
priori. It was thus difficult to see how we could legally let it depend on f. 
However, in New MaxEnt, the effective model m looks very much like a blurred 
version of f, although it is actually a blurred version of the hidden variables 
m. We can now justify the above tricks in terms of New MaxEnt. Thus in the drug 
absorption problem, f represents the rate of absorption into the bloodstream, m 
is the rate at Which the tablets break down in the stomach, and b represents the 
time delay as the drug passes through the liver. Charter (private communication) 
also gives another, intriguing example, in Which he simply pretends that the 
data are more blurred than is actually true, adding an additional "pre-blur" to 
the real PSF. Often the results are improved by this device, encouraging 
smoothness and eliminating noise. We can now see that this trick too is covered 
in New MaxEnt as the degenerate case a --> 00 that occurs in the case of Susie 
for small model-blurs. The NewMaxEnt hypothesis space provides a natural 
justification for these variants, and automatically includes any consequential 
effect upon the value of a due to the additional parameters in the model. 

It is also useful to examine our new procedure in the context of spatial 
statistics, where the currently favoured techniques are things such as Markov 
random fields (Kinderman and Snell 1980, Geman & Geman 1984) and smoothness­
enforcing regularisers (Titterington 1985). We can compare New Maxent with these 
techniques by marginalising out m to get an effective prior for 
pr(fla,~,b,flat). We have not so far done this, because it would obscure the 
real structure of our hypothesis space, Which is still faithful to the spirit of 
Axiom I. When we do it, we find 

[5.1] 

Where Bfi = fi - me and R is a circulant matrix that has eigenvalues l/a + bZ/~. 
By varying the shape of the model-blur b we can clearly mimic any given 

spectral behaviour of spatial smoothing. Markov random fields correspond to 
particular functional forms of b. NewMaxEnt contains these techniques as 
special cases. However, we prefer the rationale of our new hypothesis space, 
because we feel it is more closely related to our prior knowledge of the imaging 
problem. 
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6. Conclusions 

The Bayesian choice of the regularising parameter a completes the 
derivation of Classic MaxEnt and represents a major advance over our previous 
practice of setting x2=N. The resulting formula -2aS = ndf(S) is theoretically 
appealing, and expresses the fact that the amount of structure produced in the 
reconstruction is equal to the number of good, independent measurements present 
in the dataset. 

For some problems we have found the Classic value of a to be satisfactory, 
but there are general grounds for supposing that it leads to over-fitting, 
because a has to be reduced to allow for the structure produced by good data. 
This leads to lUlder-smoothing of bad data, as we have illustrated with our 
picture of Susie. 

The New MaxEnt hypothesis space which incorporates spatial correlations is 
sufficiently powerful to correct these problems and is considerably more 
probable than Classic, showing that the inclusion of spatial information is 
useful. 

New MaxEnt also provides a consistent rationale for a wide class of model 
manipulations that are found to be useful in practical applications. Athough we 
have, for reasons of computational expediency, illustrated the NewMaxEnt only 
in the quadratic (Wiener filter) approximation, the results are already 
excellent. We do not expect our conclusions to change when the correct entropic 
forms are used, indeed the results can only impove. 

Finally, we ask the question: "Is our hypothesis space good enough?" Of 
course, the answer depends on what we are trying to achieve. Certainly our new 
procedure is good enough to overcome the over-fitting problems of Classic MaxEnt 
and produce a good reconstruction of Susie. However, looking at the images 
produced for different values of the model-blur width, our eyes tell us that the 
reconstruction for b=5 pixels is visually slightly better than that for the 
Bayesian optimum b=8.5 pixels, although the probability of b=5 is lower by 
exp(50). This is a warning that we may eventually find another, deeper 
hypothesis space even more useful for the imaging problem . (as envisaged by 
Jaynes 1986a). We speculate that the improvement we get by going to b=5 tells us 
something about human vision. We pay attention to the fine details present in 
Susie's face and relatively ignore the backgrolUld. The computer, with its 
spatially-invariant model PSF sees the smooth surfaces in the backgrolUld and 
weights them equally, thereby arriving at a slightly larger correlation length 
than our eyes would like. 
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THE THREE PHASES OF STATISTICAL MECHANICS 

W.T. Grandy, Jr. 
Department of Physics and Astronomy 
University of Wyoming 
Laramie, Wyoming 82071 USA 

ABSTRACT. The foundations of statistical mechanics are reviewed, based on the prin­
ciple of maximum entropy, and this principle is shown to underlie the fundamental 
mechanisms of both equilibrium and nonequilibrium phenomena. Representative appli­
cations are provided-to quantum statistical systems in the first case, and to classical 
hydrodynamics in the second. Extensions of these ideas inspired by modern notions of 
chaos are mentioned, as well as ongoing work directed toward models of fully-developed 
turbulence. 

Because a great deal of the discussion at this workshop is related as much 
to Bayes' theorem as it is to maximum entropy, let us begin by restating that 
theorem. If P(AIC) denotes the probability of a proposition A given hypothesis 
C (itself a proposition), then Bayes' theorem tells us that receipt of additional 
information B leads to a reassessment of that probability in the form 

P(AIBC) = P(AIC) P(BIAC) 
P(BIC) . 

(1) 

The proposition C is often thought of as prior information, so that P(AIC) is a 
prior probability of A based only on that information-called simply the prior. 
Then the left-hand side of Eq.(l) is called a posterior probability, and the fraction 
on the right-hand side is the ratio of the direct probability of the data to their 
prior probability. This theorem, of course, merely reflects the symmetry present 
in the standard rules for manipulating probabilities. 

Now, when studying the behavior of some 1020 molecules in a given volume 
we are forced to the use of probability theory primarily because of an inability to 
formulate that many initial conditions, let alone follow the individual trajectories 
of the particles. The ensuing formalism-which we call statistical mechanics­
provides us with some surprises in this respect, however, the first of which is that 
we never get past the prior in Eq. (1). That is, we rarely obtain more data to be 
employed in updating our estimates, so that it is necessary to make predictions 
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about the system based only on our initial data. In addition, that initial data 
set usually consists of only a few pieces of macroscopic information, unlike the 
apparently-copious amount in a time series, say. Nevertheless, even with such 
burdensome constraints we are able to predict all other properties of such systems 
which we are desirous of measuring, and to develop all of thermodynamics. Surely 
this is something which John Wheeler would call 'Magic Without Magic' ! It is 
the exposition of this magic which is the concern of this lecture. 

The many-body system in thermal equilibrium provides the quintessential 
example of the above remarks, for this state is defined through the observation 
that measured macroscopic quantities such as temperature remain unchanged 
under repeated measurement. The initial data provide our only information 
beyond a general knowledge of the problem, and so prior probabilities are the 
only ones we are led to consider. But, given sparse macroscopic data concerning 
constants of the motion, how is one to construct these priors? As is very well 
known by now, and first recognized by Gibbs, the optimum procedure in the 
present case is provided by the principle of maximum entropy. Hence, let us first 
review the relevant results of this prescription as rediscovered and reformulated 
by Jaynes many years later. 

PRINCIPLE OF MAXIMUM ENTROPY 

Suppose data to be available in the form of values of some function f(x) at 
discrete values of the variable x (for convenience), such that these numbers can be 
interpreted as expectation values of f(x) over the n possible mutually-exclusive 
and exhaustive alternatives {xd. That is, we make the identification 

n 

(f(x)) == L P d(Xi) , (2a) 

such that 

(2b) 

At first glance, the information provided in Eq.(2a) does not appear adequate to 
determine the probabilities in general. But if this is all we have-an extraordi­
narily underdetermined problem-some means for assigning these probabilities 
must be found. As first demonstrated by Shannon (1948), the optimum measure 
of uncertainty as to the appropriate distribution in this situation is the entropy 
of the probability distribution, 

n 

S(P1, ... ,Pn ) == -KLPdnPi, K>O. (3) 
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And about nine years later Jaynes (1957) stated the principle of maximum en­
tropy (PME) as the optimal means for determining the set {Pi} subject to the 
constraints (2). 

The implied variational problem is most readily solved by means of La­
grange's method of undetermined multipliers, the result being 

p. = _1_e-A/(xi ) 

t Z(>.) , 

Z(>.) == L e->'f(x;) • (4) 

The partition function Z(>.) is defined by substitution into the constraint equation 
(2b), and the Lagrange multiplier by substitution into (2a); 

a 
F == (f(x)) = - a>. In Z(>.) . (5) 

The point is that>. is adjusted so as to reproduce the known datum F, which is 
all we can logically ask of any procedure of this kind. The expectation value of 
any other function g(x) is then given by 

(6) 

Some generalization is immediate and necessary. When data ate specified 
about m < n functions fr(x), we have constraints 

(7) 

A certain economy in notation is achieved by defining a 'scalar product' 

(8) 

Then the probability distribution maximizing the entropy subject to the con­
straints (7) is 

(9) 

with the Lagrange multipliers determined by the set of coupled differential equa-
tions a 

Fr=-a>'r InZ(>'l···>'m), r=1', ... ,m. (10) 
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The maximum entropy itself is found from substituting Eqs.(9) into (3): 

51 = Kin Z + K>' . F , (11) 

where the subscript I indicates that this is the information-theoretical entropy, 
providing a convenient distinction from other such quantities later. Note the 
explicit parameter dependence of 51: 

(12) 

which also constitutes a Legendre transformation between descriptions in terms 
of {Fr} and {>.r}. 

Often the functions fr will also depend on a common external parameter a, 
so that fr = fr(x; a). (They can also depend on an external parameter peculiar 
to each function). Then 

(13) 

If we define 

(dfr) == (a;;) da, (14) 

then a short calculation yields for the total differential 

d51 = K>.· dQ, (15) 

where 
(16) 

is an inexact differential. 
Prior to applying these results to something concrete, it is somewhat infor­

mative to mention one other way of looking at this problem of making predic­
tions from very sparse data. What we really have here is a rather severe inverse 
problem, in that we are expected to estimate the causes of certain phenomena 
based on knowledge of very few effects. Abstractly, consider the general opera­
tor equation F = K f, in which K is a known kernel specific to the particular 
problem under consideration. If f is known, then this mathematical expression 
constitutes the so-called direct problem and is solved by straightforward (though 
possibly quite difficult) calculation. The inverse problem consists of determining 
f if it is F that is known. Standard matrix, integral transform, and integral equa­
tions provide simple examples of such problems when all quantities are known 
fully and precisely. Often, however, F is only known incompletely and, rather 
than being deductive, the problem becomes one of inference based on incomplete 
information. One already senses a relation to the earlier discussion. 
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A common example of this scenario occurs when n trials of some process are 
carried out in which each trial has m possible outcomes, so that there are mn 
conceivable outcomes to the total experiment. If the ith result occurs ni times, 
it is useful to define frequencies 

l:Si:Sn. (17) 

Suppose that we are given data in terms of M numbers Fj, 

m 

Fj = L Kij Ii , 1:S j :S M < m, (18) 
1=1 

where the Kij are known, and asked to determine the true frequencies which 
might have produced these data. Although at first glance a seemingly outrageous 
request, we do have substantial prior information concerning such a problem. 
That is, we do know the number of ways a particular set of occupation numbers 
{ni} can be realized, for it is just the multinomial coefficient: 

, 
W= _n_. __ _ 

- (nit)!··· (nfm)! ' 
(19) 

also called a multiplicity factor. Common sense then tells us that by maximizing 
W subject to the given data we determine that set {ni} that can be realized 
in the greatest number of ways. It is an equivalent procedure to maximize any 
monotonic function of W, and if n is very large the result will be that set that 
can be realized in the overwhelmingly greatest number of ways. Use of Stirling's 
formula then leads to the problem of maximizing 

(20) 

subject to the constraints (18), and thus we have simply reformulated the pre­
scription of maximizing the entropy. Clearly, the solution is 

(21) 

Classical statistical mechanics provides an example par excellence of this scenario, 
although it is equally useful in areas such as image processing, say. 

1. Equilibrium Phenomena 

Perhaps the simplest application of the PME is to the many-body system in 
thermal equilibrium, which we determine to be the correct state of the system 
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by finding that repeated measurement yields the same value for the total system 
energy, say: (E). There is only one set of alternatives, then, the system energy 
levels Ei(V), and we consider just the one external parameter V, the system 
volume. Thus, under the constraints 

(22) 

we find from above that 

(23) 

and the Lagrange multiplier (3 is determined from 

8 
(E) = - 8{3 In Z{(3) . (24) 

The maximum entropy is then 

SI = Kin Z + K{3(E) , (25) 

where in this application we denote the constant K appearing in the definition 
of entropy by K, for reasons which will become clear presently. 

From the general expression (15) we see that 

(26a) 

with 
dQ = d(E) - (dE) . (26b) 

But from the original discussion of (dE) it is clear immediately that this quantity 
is an element of mechanical work, 

(8E-) dW == (dE) = ~Pi 8V' dV 
, 

= -P dV, (27) 

because this is just the definition of the physical pressure. Hence, Eq.(26b) is 
simply an expression of the first law of thermodynamics-dE = dQ + dW­
owing to the physical meanings of the quantities involved. That is, dQ must be 
the element of heat introduced in classical thermodynamics, which is an inexact 
differential. 
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One now sees that the Lagrange multiplier (3 is determined immediately as 
the integrating factor for dQ, which is the way the Kelvin temperature scale is de­
fined. Thus, (3-1 must be proportional to the absolute temperature T. The units 
are determined by choosing the constant K to be Boltzmann's constant, K, yield­
ing the Kelvin temperature scale: (3 = (KT)-1. With these observations we have 
now identified Sr with the physical entropy of a system in thermal equilibrium, 
in which dS = dQ IT. These are just the equations of Gibbs for the canonical 
ensemble, thereby allowing us to write S = Sr and omit the expectation-value 
symbols in the present context. In addition, Eq.(25) can now be written in a 
more familiar form, 

E - TS = -KTlnZ 

== F(T, V), (28) 

where F is called the Helmholtz free energy. The pressure is now written explicitly 
as 

-1 B 
P = (3 BV InZ. (29) 

and from Eq.(12) we obtain the well-known expression 

(30) 

This last relation provides a Legendre transformation illustrating that, although 
in practice we usually measure the temperature in defining the equilibrium state, 
it is an equivalent procedure to measure the energy, as we have found convenient 
here. 

There are now a number of other notions which logically should be discussed 
in some detail at this point, such as fluctuations, and stability conditions for 
the equilibrium state. But, owing to a lack of space here, we shall have to refer 
elsewhere for those details (e.g., Grandy, 1987). Two points, however, merit 
some comment now, the first having to do with the 'magic' of our prescription, 
mentioned earlier. It appears that we have put almost nothing into the PME 
and come out with all of classical thermodynamics. Some have felt that this is 
beyond belief, for we do not seem to have inserted the dynamics of the actual 
physical system into the development. This is only a mild subtlety, however, for in 
Eq.(22) we have presumed that it is possible to enumerate the spectrum of global 
energy levels of the system, and this is usually a rather nontrivial calculation. 
Thus, while the structure of the theory is a simple result of the rules of inference, 
its application to physical systems requires some decidedly serious knowledge of 
basic physical theory. 

The second point to be made concerns the interpretation of statistical me­
chanics as an inverse problem, as in Eqs.(17}-(21). Let us recall Boltzmann's 



80 W. T. GRANDY, Jr. 

expression for the physical entropy, 

S = IdogW, (31) 

where W is proportional to the number of microscopic states available to the 
system. That is, W is a multiplicity factor. From Eq.(28) we have S = (E-F)!T, 
so that now the probability for a macroscopic state of the system to be realized 
is 

(32) 

Because W is a rapidly increasing function of energy and both f3 and E are 
positive, one sees that the probability is sharply-peaked about the equilibrium 
energy. 

A significant generalization occurs when the Gibbs algorithm is extended to 
a manifestly quantum-mechanical description in terms of the statistical operator, 
or density matrix p. In thermal equilibrium one now considers linear Hermitian 
operators Fi which are constants of the motion in the quantum-mechanical sense, 
and which possibly are noncommuting. Expectation values are written 

(F) = Tr(pF) , Trp=l, (33) 

incorporating both aspects of probability to be found in quantum statistical me­
chanics: that arising in connection with incomplete information, and that intrinsic 
to quantum mechanics itself. The entropy is now defined as 

S = -ICTrplnp, IC > o. (34) 

Maximization of S subject to the constraints (33) then yields the statistical op­
erator 

A 1 -A1F1-"'-A F,m p= -e m 

Z 
(35a) 

with partition function 

(35b) 

The Lagrange multipliers are once again found from a set of coupled differential 
equations: 

" a 
(Fk) = - aAk ~n Z, k = 1, ... ,m. (36) 

One finds for the maximum entropy 

(37) 
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in the dot-product notation introduced earlier, and 

(38) 

Except for the dual interpretation of expectation values, these equations are 
identical to those obtained above. The canonical ensemble is regained if only the 
total energy (or temperature) is specified, which corresponds to an expectation 
value of the N-body, time-independent Hamiltonian fIN' The statistical operator 
is then 

(39) 

where F is the unit operator times F = -ItTlnZ. Because F commutes with fIN 
and is conserved, the trace of the last expression yields immediately the partition 
function 

(40) 

Further examples are plentiful, and we mention just two. If, in addition to 
the total energy, the system is rotating uniformly with angular velocity wand 
we measure a component of angular momentum ji, we can consider the system 
to be in thermal equilibrium in its rest frame (Gibbs, 1902; p.39). The resulting 
description is called the rotational ensemble, with statistical operator 

(41) 

Should both the total energy and total particle number N be provided-(fI) 
and (N}-then we obtain the equations of the grand canonical ensemble, which 
are expressed in terms of the grand partition function: 

00 

ZG = L e{Jp.N Tre-{JHN , (42) 
N=O 

where the chemical potential J,L provides the additional Lagrange multiplier cor­
responding to conservation of particle number. The average number of particles, 
Helmholtz free energy, and total energy per particle, respectively, are given by 

1 a 
N= --lnZG p aJ,L , 

F = G - p-1 In ZG , 

E 1 a (-1 ) - = J,L - - - V In ZG , 
N Nap 

and G = J,LN is called the Gibbs function. 

(43a) 

(43b) 

(43c) 
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As an aside, we note that there is a sense in which the spirit of Bayes' theorem 
emerges here, and which is a major strength of the PME. No probabilistic theory 
can guarantee its predictions, of course, and it may happen that the latter do 
not agree with observation. In that event the theory is telling us that there 
are constraints operating of which we were unaware, and hence alerts us to the 
possible existence of new physics. This call for re-assessment is clearly Bayesian 
in spirit. 

2. N onequiIibrium Systems 

For systems clearly not in thermal equilibrium, and for equilibrium systems 
in which the observed quantities are not constants of the motion, a much more 
general algorithm is needed than that developed in the preceding section. With 
reference to Eq.(l), one might think that we are ready finally to move past the 
prior and employ the full content of Bayes' theorem, for if the need for 'updating' 
were ever evident one would think it would be for time-dependent problems of 
this kind. We shall see, however, that this is not the case, and that we are still 
concerned primarily with prior probabilities. 

A detailed understanding of arbitrary irreversible problems necessarily passes 
through three distinct stages of calculation: 
(i) Construction of the initial 'ensemble', or statistical operator p( to), describing 

the initial state of the system of interestj 
(ii) Solution of he microscopic dynamical problem so as to obtain the time­

evolved operator p(t)j 
(iii) Prediction of the final macroscopic physical quantities of interest using pet). 

Stage (iii) does not present any difficulties of principle, for one merely 
calculates expectation values of the operators of interest via the prescription 
(F) = Tr(pF)-a procedure justified within the theory itself. Stage (ii) is tech­
nically the most difficult, but also the one which has received the most attention 
over the past three decades. In one way or another, and usually to some degree 
of approximation, one must solve the equation of motion 

'Ii, ap(t) - [H A(t)] 
S at - ,p , (44) 

or the equivalent for open systems, The fundamental aspect of the calculational 
stage is to solve this equation of motion subject to the initial conditions describing 
the physical situation, and this brings us back to stage (i). 

We presume the initial data defining the nonequilibrium state of a system can 
be put into the form of expectation values of a number of Heisenberg operators 
Fi(X, t), for which the variables x and t vary over some information-gathering 
space-time interval Ri(X,t). The general time development of the Heisenberg 
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operators is described by the unitary transformation 

(45) 

where for the moment we suppress the spatial variable. The time-development 
operators are solutions of the equation of motion 

·n dU(t, to) = H(t)U(t t ) 
l dt ' 0 , (46) 

subject to the initial condition U( to, to) = 1. Should H not be explicitly depen­
dent on the time, Eq.(46) has the solution 

Uo(t, to) = ei (t-to)/1i; (47) 

otherwise, it is very difficult to find an expression for U in closed form. 
Although the statistical operator p(to) remains stationary in the Heisenberg 

picture, this is conventionally taken to coincide with the Schrodinger picture at 
t = to. In the latter p evolves in time according to the prescription 

P(t) = U(t,to)p(to)ut(t,to) , (48) 

which is equivalent to the equation of motion 

in d:~t) = [H(t), p(t)]. (49) 

If now we are given several pieces of data Ch(x, t)) over space-time regions 
Rk(X,t), then we can once again construct the initial statistical operator en­
compassing only this information by maximizing the entropy subject to these 
constraints. The result is 

(50a) 

where now 

(50b) 

is called the partition functional. The Lagrange-multiplier functions Ak(X, t) are 
identified from the initial data by means of the coupled set of functional differ­
ential equations 
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and the predicted expectation of any other Heisenberg operator i at (x, t) is 

(J(x,t)) = Tr[pi(x,t)] = Tr[p(t)J(x)]. (52) 

It is important to emphasize that the p constructed here is nothing more 
than the initial statistical operator describing only what is known about the ini­
tial state of the system. Aside from a possible clearly specified driving mode, 
this is generally all one can hope to know regarding any experimentally repro­
ducible situation. Although a number of authors over the years have attempted 
to construct a p(t) intended to describe the nonequilibrium system for all time, 
that now appears to be an entirely unrealistic goal. Thus, we are still working 
on the prior in Bayes' theorem, at least in the absence of specified dynamical or 
thermal driving. One should also note here that the above expressions contain as 
a special case the well-known theory of dynamical response (e.g., Grandy, 1988). 

LINEAR APPROXIMATION 

The preceding expressions are rather difficult to employ in practice, for they 
are exact and completely nonlinear. Often, however, a linear approximation is 
adequate for describing the various phenomena. Suppose that initially the system 
is described by the equilibrium ensemble 

A_I -pff. 
Po - Zo(P) e , H t= H(t) 

(F}o = Tr(poF) . (53) 

Again we suppress the spatial variable temporarily and consider new data (F(t)} 
obtained over a time interval -T ~ t ~ 0, so that the new description is 

p = ~ exp [-p H + i: >.(t)F(t) dt] , 

ZIP, >.(t)] = Trexp [-p H + I_Or >.(t)F(t) dt] 

The explicit time dependence here is given by 

Define the K ubo transform as 

(54) 

(55) 

(56) 
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and the covariance function 

KCB == CBC)o - (B)o(C)o 
=KBC. (57) 

Then, through leading order in >., the expectation value of some other Heisenberg 
operator at some time t is 

(58) 

and 
, -~- ~ A ~ 

KCF(t, t) == (F(t')C(t»o - (F)o(C)o. (59) 

If Hi- H(t) we have a reciprocity relation exhibiting time translational invariance: 

KCF(t, t') = KCF(t - t') = KFC(t' - t). (60) 

Finally, a complete generalization yields for the linear approximation to ex­
pectation values in a region (x, t) 

(C(x, t) - (C(x)o = iR KCF(X,t;X',t')>'(x',t') d3x' dt', (61a) 

with covariance function 

KCF(X,t;x',t') = (F(x',t')C(x,t)o - (F(x')o(C(x)o 

62 

= c5>'c(x,t)c5>'F(X',t') InZ. (61b) 

As an example of this formalism we consider some of the equations of linear 
hydrodynamics. 

LINEAR HYDRODYNAMICS 

When a many-body system is perturbed from thermal equilibrium the re­
sulting situation is one of considerable chaos, compounded by the fact that in a 
fluid containing a very large number of particles there is a corresponding large 
number of degrees of freedom. If the system is then allowed to relax, most of these 
degrees of freedom return rather quickly to their equilibrium values in ways deter­
mined by the microscopic characteristics of the system. But this relaxation can 
be described on the macroscopic level by only a few long-lived modes which decay 
relatively slowly, and these modes are related to the locally-conserved densities 
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in the medium. That is, local excesses of these quantities can disappear neither 
locally nor quickly, but must relax by spreading out over the entire system. 

In a simple fluid the locally-conserved quantities are the number, energy, 
and momentum densities, resulting in five long-lived hydrodynamic modes. We 
denote these densities generically by the symbol e(x, t), along with associated 
current densities J(x, t), and recall that local conservation equations take the 
form 

8t e(x,t) + V .J(x,t) = 0, (62) 

which are microscopic operator equations. When appropriate driving mecha­
nisms are introduced (e.g, Grandy, 1988), one derives from this last expression a 
macroscopic conservation law: 

(63) 

where u is the rate at which the source drives the density. 
Of primary interest at the moment is the momentum density, for which 

the current is the stress tensor Tii (x, t), and the Lagrange-multiplier function 
associated with the momentum density is identified as ,I3mv(x,t), where v is 
referred to as the velocity field. Let us consider an incompressible fluid, V·v = O. 
Then some further calculation converts the macroscopic equation (63) into what 
are usually called the Navier-Stokes equations: 

which are nonlinear in the fluid velocity. (Although the formal approximation 
we have made is linear in the departure from equilibrium, the nonlinearity here 
arises from the convective contribution to the total time derivative.) Indeed, we 
see that the macroscopic equations are just equations of motion for the Lagrange­
multiplier functions. The notation is as follows: no is the equilibrium number 
density of the system of particles with mass m, P is the pressure, we have repre­
sented the possible driving force by Fi, and Pik is the shear tensor. Explicitly, 

(65) 

The transport coefficients in this expression are derived within the linearized 
theory in terms of space-integrated covariance functions. Specifically, the shear 
viscosity in the steady state is 

." ~ ,13m lim _ ['X> e-Et(Tii(-t)Tii) dt, 
V E-+O+ 10 0 

i=j:.i, (66a) 
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whereas the bulk viscosity is expressed in terms of the trace T == Ei T~: 

1 pm 100 t (-A -") !: ~ -- lim e- f T( -t)T dt. 
9 V f-O+ 0 0 

(66b) 

At this point one would think that the standard many-body theory has 
completed its task, resulting in macroscopic deterministic equations such as those 
of Eq.(64). Probability theory has fulfilled its role in describing these systems 
and can retire with honor. Recent investigations into the dynamics of classical 
systems give one reason to pause, however, and it is quite possible that there is 
one more phase to go through. 

3. Macroscopic Processes 

Ever since the work of Poincare it has been known that the number of in­
tegrable dynamical systems is severely limited, and that nonlinear equations of 
motion possess solutions exhibiting highly irregular behavior for given param­
eter values. Only relatively recently, however, have the enormous advances in 
computational ability made it possible to study this behavior in any detail. Ex­
amples of deterministic dynamical systems in which irregular or 'chaotic' motions 
can occur are now commonplace. Henon and Heiles (1964) presented an early 
and important physical model in connection with the distribution of stellar ve­
locities within the galaxy. One is compelled to ask what bearing, if any, these 
developments might have on the statistical-mechanical description of many-body 
systems. 

If the microscopic equations are nonlinear one must then allow for the pos­
sibility that the microscopic trajectories may exhibit irregular behavior. But a 
major role of the microscopic equations of motion is to provide us with an enu­
meration of the various alternatives over which the probability index ranges, and 
this has always been a technically difficult matter irrespective of whether or not 
those equations are linear. Introspection suggests that nothing really changes 
in this respect if the particle equations are highly nonlinear, for the procedures 
remain the same. That is, because it always considers the full equations of mo­
tion, the PME is rather transparent to the actual structure of those equations. If 
those equations are nonlinear it is possible that new phenomena could appear in 
our macroscopic predictions, but that will not affect the way in which we make 
those predictions. As long as the spectrum can be presented in principle, however 
difficult in practice, then it matters little how irregular the microscopic motion 
may be-that, after all, is just the point of statistical mechanics! 

Entirely different conclusions emerge, however, with respect to macroscopic 
motions of a system if the governing equations are nonlinear, for we usually 
wish to--and often can-follow the trajectories in this case. We continue to use 
the example of conventional hydrodynamics for an incompressible fluid, so that 
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the equations of motion are just the Navier-Stokes equations (64). As already 
pointed out, these are a linear approximation in the Lagrange-multiplier-function 
v(x,t}, and higher-order equations can be obtained in a straightforward way 
from the perturbation expansion of the nonequilibrium expectation values. The 
nonlinearity in Eq.(64} arises solely from the convection term in the derivative on 
the left-hand side. It is useful to rewrite these equations in terms of dimensionless 
variables by introducing a characteristic speed u of the fluid, and a characteristic 
length i. Then, in vector notation, and without the external-force term, Eq.(64) 
becomes 

(67) 

where R == uljv is the Reynolds number, and v is called the kinematic viscosity 
(the ratio of viscosity coefficient to the density). Clearly, the effect of nonlinearity 
is controlled completely by R, and when R = 0 these are known as the Stokes 
equations. 

In some systems the experimentalist observes a series of spectacular insta­
bilities as R increases from zero past some critical value, and eventually com­
plete turbulence in the fluid flow emerges for sufficiently large Reynolds numbers. 
(There is some controversy on this point, and we shall rcLurn to it below.) Many 
of these stages in the progression to fully-developed turbulence for various sys­
tems have been captured photographically, and can be observed in the beautiful 
collection of Van Dyke (1982). One believes that this progression is described 
theoretically by Eq.(67) as R varies, but these equations are very difficult either 
to solve or to analyze in general. Nevertheless, in some applications it is possible 
to approximate them without destroying the essential nonlinearity. 

The now-classic example of this latter procedure begins with the attempt 
by Saltzman (1962) to model the Rayleigh-Benard instability in two dimensions 
by Fourier expansion in Eq.(67} and truncation into a set of ordinary differential 
equations. Shortly thereafter these equations were adopted by Lorenz (1963) as a 
model for the unpredictable behavior of the weather, and were studied extensively 
by him-with remarkable results. These reduced equations for convection of the 
fluid are 

dx 
dt = O"(y - x), 

dy 
dt = rx - y - xz , 

dz 
dt = xy - bz, (68) 

where x(t) is proportional to the amplitude of convective motion, y(t) and z(t) 
are proportional to two temperature modes, 0" is called the Prandtl number (the 
ratio of kinematic viscosity to the thermal diffusivity), r is the Rayleigh number 
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in units of its critical value (the convective analog of the Reynolds number), and 
b is a constant related to the wavenumber of the fundamental mode. 

This last set of equations is completely deterministic, so that we can study 
(with the aid of the computer) the trajectories generated from various initial 
conditions by fixing u and b at the values adopted by Lorenz, say, and varying 
r. For r < 1 all trajectories are attracted to a stable solution at the origin of 
the variables in Eq.(68): x = y = z = O. If r exceeds unity by much the model 
is no longer physically realistic, but nevertheless still worth studying. There 
are two stable solutions for 1 < r < 13.9, to which all stable trajectories are 
attracted, and in the region 13.9 < r < 24.1 a complicated transition begins to 
take place. For r > 24.1 all trajectories are attracted toward a subspace in which 
they wander 'chaotically' forever. That is, the motion is highly irregular and 
essentially unpredictable. This subspace is called a strange attractor. 

To use the word 'chaos' here is to risk conveying an impression of motion 
which is not deterministic. In reality, the motion is no more chaotic than that 
of particles in an equilibrium gas-they all obey well-defined equations of mo­
tion. But 'chaos' now assumes a more technical meaning-namely, the result of 
an extraordinary sensitivity to initial conditions. In the chaotic regime it is vir­
tually impossible to specify initial conditions precisely enough to be sure of the 
ensuing trajectory, and it is in this sense we employ the above phrase 'essentially 
unpredictable' . 

The importance of these results in the present context lies with the possibility 
of being able to describe turbulence in some detail as a solution of the Navier­
Stokes equations, say. As noted above, it has been thought for many years that 
smooth laminar flow will become unstable and cascade into turbulence eventually 
when R exceeds some critical value. This is a macroscopic phenomenon, and so 
would seem to be outside the purview of statistical mechanics. That is, the role 
of the latter should cease with the derivation of the macroscopic equations of 
motion and provision for calculation of the relevant parameters. 

But completely-developed turbulence is more than just 'chaotic' motion, and 
the phenomena uncovered by study of the Lorenz equations only provide us with 
a beginning. There is, for example, some current controversy as to whether a fi­
nal state of fully-developed turbulence is always attainable, or whether so-called 
coherent structures persist indefinitely in some systems (e.g., Lesieur, 1987). Nev­
ertheless, the onset of chaos may well signal the approach to a turbulent state, 
which is intrinsically nonequilibrium and collective in nature. As the parameters 
of the macroscopic equations continue to change, and full turbulence develops, 
one realizes that the number of macroscopic degrees of freedom has increased 
enormously (owing to nonlinearity). There are now a great many possible trajec­
tories available to the system, but it is very difficult to know which is taken owing 
to the extreme sensitivity to initial conditions. Although the system state may 
well be described by only a few macroscopic variables-or 'supermacroscopic' 
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variables-just what that state may be is difficult to determine exactly. It is as 
if one did not really know the precise initial conditions. 

Everything begins to sound familiar at this point, as if statistical mechanics 
were emerging anew, but on a higher level. In the problems of hydrodynamics 
it appears that the elementary volumes associated with the velocity field v(x, t) 
play the role of the basic units, or 'particles', with laminar flow being analogous to 
the equilibrium state. [Years ago Hopf (1952) attempted to construct a statistical 
theory of turbulence based on much the same point of view, but he did not 
have available perspectives which were only to emerge from the more recent 
computer-assisted understanding of chaos.] Some systems can then pass through 
a number of 'second-order phase transitions', corresponding to the hydrodynamic 
instabilities, and for a given range of parameter values the various states are both 
stable and reproducible. A striking example of this kind of sequence is provided by 
Couette flow between rotating concentric cylinders (e.g., DiPrima and Swinney, 
1985). 

In order to verify such notions as these, however, there are a number of 
questions which must be addressed and resolve to a degree that has not yet been 
achieved-questions suggested in part by our experience with the microscopic 
theory. For example, one must identify the experimentally reproducible phenom­
ena on the macroscopic level and construct a definite catalog. What are the 
macroscopic quantities we can measure or observe both on and off the strange 
attract or? One known class of quantities consists of power spectra of the velocity 
field, but it is not clear that this class is sufficient to characterize the phenomena 
adequately. 

Precisely how the notion of 'insensitivity to initial conditions' arises in a spe­
cific real problem of this kind is not entirely clear. But the suggestion is strong 
that, as R increases and the nonlinearities become increasingly more important, 
the observed instabilities signal a breakdown in the severely rigid uniformity of 
laminar flow, or in 'coherent' structures. The onset of turbulence is characterized 
by 'insensitivities' which are analogous to the ignorance of microscopic initial 
conditions leading to the statistical description of many-body systems discussed 
earlier. A higher-level statistical description will require construction of a prob­
ability distribution over possible macroscopic trajectories, which in turn requires 
a very clear understanding of what kind of information can be obtained and how 
it can be utilized for that purpose. As these points are clarified it is quite pos­
sible there will emerge a 'canonical' form of probability distribution every bit as 
effective as that of Gibbs in describing ordinary thermodynamics. We are far 
from reaching that point, however, and the observations made here merely serve 
to outline a program in need of a great deal of development. 
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ABSTRACT. Bell's theorem is expounded as an analysis in Bayesian 
inference. Assuming the result of a spin measurement on a particle is 
governed by a causal variable internal (hidden. "local") to the 
particle. one learns about it by making a spin measurement: thence 
about the internal variable of a second particle correlated with the 
first: and from there predicts the probabilistic result of spin 
measurements on the second particle. Such predictions are violated by 
experiment: locality/causality fails. The statistical nature of the 
observations rules out acausal signalling. superluminal or otherwise. 
Quantum mechanics is irrelevant to this reasoning. although its correct 
predictions of experiment imply it is a nonlocal/acausal theory. 
Cramer's new transact ion~) interpretation of the quantum formalism. 
which incorporates this feature. is advocated as an invaluable way of 
envisaging quantum processes. The usual paradoxes melt before it. and 
one. the "delayed choice" experiment. is interpreted in detail. 

1. BAYESIAN INTERPRETATIO~ OF BELL'S THEOREM 

In this section it is shown that no theory. postulating that the 
resul ts of spin measurements on a particle are causally governed by 
variables internal to the particle. can reproduce the findings of 
measurements on particle pairs. Quantum theory is irrelevant to the 
argument: to test whether nature is nonlocal/acausal. it is the class 
of local/causal theories which must be compared with experiment. 
Nevertheless quantum theory correctly predicts the outcome of these 
experiments. and is discussed in the light of this later on. 

Let us begin by postulating the existence within a particle of internal 
(Le. local. "hidden") variables. There may be any number of these. 
denoted collectively by>... We might hope to learn about these by 
measuring the spin of a particle in a particular direction. and 
reasoning back to >.. using Bayes' theorem. From there. we hope to make 
(probabilistic) predictions about future spin measurements on that 
particle in any direction. 

93 

1. Skilling (ed.), Maximum Entropy and Bayesian Methods. 93-105. 
© 1989 by KIJ4Wer Academic Publishers. 



94 A. 1. M. GARRETI 

Unfortunately the disturbance caused by measuring the spin would in 
general alter the value of ). in an unknown way; so with a single 
particle we cannot predict the future. only improve our knowledge of 
the past. This problem is circumvented by using two particles which 
are correlated in some way. an ingenious and well-known idea due 
originally to Einstein. Podolsky and Rosen (1935); application to spin 
correlations is due to Bohm (1951). By measuring the spin of the first 
particle in a selected direction. we infer something about its internal 
variable; through the correlation. we then learn about the internal 
variable of the second particle; and from there. we make probabilistic 
predictions about spin measurements on the second particle. Locality 
has it that the internal variable of the second particle is unchanged 
by the measurement on the first. and causality that the first 
measurement is uninfluenced by the second. Below. this analysis is 
made quantitative. using the laws of probability as consistent laws of 
inference (Cox 1946). This is the famous analysis of Bell (1964). 
rephrased in Bayesian language. 

For two photons or two spin-~ particles. correlated by having zero net 
angular momentum. results lie outside the predictions of causal 
internal variable theories (Bell 1964). Because we are only able to 
predict on a statistical basis. many pairs of particles are examined at 
each direction setting of the apparati. Nevertheless. 
locality/causality fails in this situation. and we accordingly conclude 
that nature is nonlocal/acausal. 

For simplicity we work with those particles observed to have only two 
spin states. which we call :I:~. It has been claimed that nonlocali ty 
need not be implied should particles have three exclusive categories: 
+J2. -~. and undetectable. (The idea is due originally to Pearle. 
1970. ) Quite apart from the ad hoc nature of this assumption. which 
has no correspondent in quantum mechanics. the result still stands if 
the analysis is applied only to those particles in the first two 
categories. One is free to seek nonlocality/acausality wherever one 
wants. The notation S:l:ly denotes "spin measurement in direction y (a 
unit vector) is :l:J2"; this will accord with standard probability 
notation. S is not a variable but a measurement. I denotes the 
information that the total angular momentum of a pair is zero. or (in 
quantum parlance) that the pair is in a singlet state. and that both 
members of the pair are detected. Subscripts 1 and z denote the two 
particles of a pair. ordered according to the times of measurement in 
the laboratory frame. 

Let us now calculate the probabilities of spin measurements on each 
particle. p(sl:1:l y1 .I) and p(Sz:l:IYz.S/"Yl.I). First. p(Sl:1:IY1.I) is a 
marginal distribution over the internal variables of the particles: 

(1) 
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where a capital P denotes a probability density. Nothing other than 
the sum and product rules are involved here, and there is no 
implication that (1) is an ensemble average over the internal 
variables, for this is a procedure of inference. Because of the 
correlation I, P(AI,AzII) is not separable, though indifference demands 
it be symmetrical. (Bell's analysis combined Al and AZ into a single 
variable.) Next. we connect to the physics by making the local/causal 
assumption that the probability of measured spin values depends only on 
a particle's internal variable and the specified direction of 
measurement: 

(3) 

where F:I: are def ini te functions. complementary for the same value of 
argument. Our reasoning remains valid no matter how fine. or fractal. 
the structural dependence of F:I: on~. We shall in fact infer from the 
observed exact (antilcorrelation 5 z=-5 1 when the directions are 
identical (YZ=~I) that F:I: = 0 or 1 everywhere in (~.A)-space. 

Experiment shows that 

Define for convenience the "expectation" 

which has the property 

IA(y. A) I ~ 1. 

Adding merely confirms normalisation: 

Now examine the probabilities of measured spin values on 
particle of the pair, conditioned on the result of 
measurement. From the laws of probability. 

(4) 

(5) 

(6) 

(7) 

(8) 

the second 
the first 

1 JJdAldAz P(AI.AzII) p(Sl:1:.5 z:l:IYz'Yl· Az. Al· I ) 
(10) 

where. in passing from (9) to (10). we have again made the local/causal 
assumption that P(S1:1: IYz 'Yl' I) is independent of Yz; this follows by 
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marginalizing (3) over~. Locality/causality demands further that 

for only then are the marginals for SI * and Sz* dependent on just 
(Yl'~I) and (Yz.~z) respectively. 

We now demonstrate explicitly that expression (10) is identical to the 
result derived from the proposed strategy of updating our knowledge of 
~z using the result of SI' This is in fact a consequence of the 
consistency conditions that probability not depend on how the 
conditioning data are partitioned. or on whatever has been marginalized 
out. from which Cox derived the two laws of probability. We seek 

p(SZ*IYZ,SI*'Yl. I ) = Jd~z P(~z,SZ*IY2,Sl*'Yl.I) (12) 

= Jd~z p(SZ*IY2'~Z,SI*'Yl.I) P(~ZIYZ,Sl*'Yl.I) (13) 

using only the laws of probability; and on demanding locality/causality 

= Jd~z F*(yz'~z) P(XZIS 1*'Yl. I ). (14) 

Next. we work out P(XZIS1*'Yl.I) as a marginal of the joint probability 
of Xl and xz: 

(15) 

and retrodict the joint probability. incorporating the result of 51 
using Bayes' theorem: 

which on demanding locality/causality becomes 

Normalisation demands that 

JJdX1dX z P(X 1 'X z II) F*(Yl, Xl) 

p(Sl*IY1.I). 

(17) 

(18) 

(19) 

On substituting (19) into (17). the result into (15). and that into 
(14) we have 

which is just (10) with condition (11) already incorporated. This 
completes our equivalence proof. 
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The experimental result is 

(Clauser and Shimony. 1982 (a review): Aspect et al (1982». On 
substituting these into (20) and re-arranging. we have the four 
relations 

lI!(l-Yl'YZ) p(SI+IYI.I) HdAld>..z P(>"I,AzlI) F+(yz'>"z) F+(Yl.>"I)· (22) 

lI!(l-Yl'YZ) p(SI-IY1.I) Hd>"l d>..z P(>"I.>"zlI) L(yz.>"z) L(YI.>"I)' (23) 

lI!(l+YI'Yz) p(SI+IYI.I) Hd>"ld>..z P(>"I.>"zII) L(YZ.A Z) F+(YI'>"t\, (24) 

lI!(l+YI'Yz) p(SI-IYI.I) Hd>..I d>..z P(>"I·>"zII) F+(YZ.A Z) L(Yl. AI)· (25) 

Any of these implies determinism in the internal variable. For 
example. putting Yz = Yl = y. (22) reduces to 

and since P(>"I' Azi I) is a measure of justified belief and is not 
physical. this relation must hold regardless of its form. Since also 
the physical quantity F+ is non-negative. it follows that 

where >"z is functionally related to >"1 because of the correlation I. 
This in turn implies that one of F+(y. >"Z(>"I» and F+(y,A I ) is always 
zero. A similar argument applies to F+(y.>..z) and F+(y. >"1(A Z »; and to 
F_ rather than F+. The result F+. F_ = 0 or 1 at every direction and 
value of the internal variable, corresponding to determinism. now 
follows. 

If the probability of 
quantities - such as 
would be a marginal 
and would not be 
untenable. 

spin measurements (3) depends on further physical 
time. in a dynamical hidden variable theory - Fz 
distribution over an imperfectly known quantity, 
deterministic. Such theories are. therefore. 

Since (21a) implies (21b) and vice-versa. two of equations (22)-(25) 
are redundant. Moreover. the sum of all four reduces to the 
normalisation condition (8) on P(>"I.AzII). There is therefore only one 
independent relation. which we choose as (22) + (23) - (24) - (25): 

- YI'YZ = Hd>"ld>..z P(AI.>"zII) A(yz.>"z) A(YI.>"I)' (28) 

This is the expectation value of the product of the spins. Equations 
(8). (7) and (28) give the zeroth. first and second moments of 
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P(~l.~.II) with respect to A. In passing from (22)-(25) to (28) it was 
not necessary to use result (4). the measurement of SI' Next. based on 
an inequality satisfied by the RHS of (28) but violated by the LHS. one 
deduces the master result that no (non-negative. normalised) solution 
exists for P(~I'~zII); this is a slight generalisation of Bell's 
original calculation (see Clauser and Shimony. 1978). It cannot 
therefore be a probability. and ergo not the probability of anything: 
existence of its arguments. the internal variables ~1 and ~I: is simply 
incompatible with the facts. To demonstrate this. first label the RHS 
as EI~I'~I): 

(29) 

Then 

E(~.!) - EI~.!) - IId~ld~z P(~1'~III) [A(!'~I)A(Y'~I)-A(!'~I)A(~'~I)]' 
(30) 

Now add and subtract a new term: 

E(~.!)-E(~.!) = Hd~,d~2 P(~1' ~II I) {A(!. ~I )A(y. ~1) }[1+A(~. ~I )A(.§,. ~I)]+ 

-IId~,d~1 P(~I'~zII) (-A(!'~2)A(~'~I)}[I+A(Y'~I)A(.§,'~2)]· 
(SI) 

Since IAI~I. the square brackets are non-negative. and the magnitudes 
of the curly brackets are <1. Thus 

IE(y.!) - E(~.!)I < fld~1d~z P(~l'~III) [l+A(~'~I)A(.§,'~I)] 

... ffd ).1 d )'Z P().1' )..1 1) [1+A(!:!.lI.l )A(.§.. )'z) J. (32) 

or 

(33) 

Symmetry of PI).!').zII) has not in fact been employed. Next. a similar 
inequality is derived with E .. -E throughout. The more stringent of 
the two inequalities is always 

(34) 

Since equality is attained at A(~.~) = 1 '" ~.~. this inequality is 
sharp over A. Further inequalities can be generated using the method 
of Braunstein and Caves (1988). 

It is easy to find directions .§,. y. ~. !. such that (34) is violated 
for E(y.~) = - ~.~; for example if ~ is parallel to ~ and perpendicular 
to !. with ~ in the same plane at acute angles a to ~ and B/z-a to !. 
Condition (34) then demands that sina + cosa < 1. which is clearly 
false because sinza + cosze = 1. 
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A generalized proof goes through even if different functions F(y.~) are 
defined for each detector. to allow for differences between them. We 
simply attach subscripts 1 and z to the functions A(' '~1) and A(' '~z) 
in the foregoing. 

The entire analysis is a train of inference. constrained only by the 
assumption of locality/causality (3); physics of the particles is 
irrelevant. Therefore the idea can be applied (and illustrated) in 
other areas. Suppose one isolates the individual members of a series 
of couples. and asks each person a yes/no question off a prescribed 
list. The analysis indicates the range of questions needed. and how to 
tell from the collected replies. whether individuals were in 
clandestine communication with their partners during the interrogation. 
as distinct from every couple sticking to its own pre-arranged story. 
The choice of question corresponds to the direction y; memory to the 
internal variable. correlated through pre-arrangement in each couple; 
and communication corresponds to nonlocality. In this simplified 
problem we do not consider acausality. 

Translating from particle experiments into this parlance. partners 
always give opposite replies if the same question is put to each. This 
is possible in isolation provided the couple pre-agreed answers to 
every question on the list; but then the replies taken over many 
couples and over many questions could not (in fact) have the completely 
random character observed. Thi sins ight into the anal ys i s has been 
highlighted in a particularly clear model problem: Mermin (1985). 

Another actualisation is: that it 
independent computers C1 • Cz so as to 
a direction y. and to respond either 
pairs of users 

is impossible to program two 
prompt successive users to input 
"+" or"-". such that over many 

p(C ZZ IYZ.C 1 Z 'Yl) = { ~(1 - Yl'Y2) 
,,(1 + Yl'YZ) 

++. 
+-. -+. 

(35) 

(36) 

Here it is the program which corresponds to the internal variable. 

Further insight into Bell's theorem is gained by looking at special 
cases. Suppose. for example. that the internal variable is a direction 
~. oriented in opposite directions for the members of a singlet pair. 
and our state of knowledge corresponds to uniform probability over 
solid angle. This is the usual "first try". corresponding to 

P(~1.~zII) d~ld~z = __ 1 __ 6(Z)(~1+~Z) dZ~ldz~z. 
471 

(37) 

where 6(z) Is the delta function over the surface of the unit sphere. 
A(y.~) must be a function. denoted g. of y.~. and equation (26) becomes 
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(38) 

Expansion of g in Legendre polynomials Pn leads to the unique solution 
g(y.~) = ~3Pl(Y.~) = ~3y.~. There is no zeroth Legendre polynomial. so 
this result also satisfies the "first lIoment" equation (7). But g 
exceeds unity in part ot (y.>.)-space. contrary to (6). 

Nonlocality/acausality are not observed in everyday life because we do 
not customarily observe individual particles travelling through a 
vacuum. Nevertheless the conclusion is firm: they are present. The 
novel concept of a nonlocal universe has led some physicists into 
mysticism. to their detriment. for physics is about prediction and its 
improvement. Shortly we shall exhibit a more fruitful alternative. 

2. SIGNALLING? 

Can nonlocality be exploited for long distance communication. or 
acausali ty for picking up signals froll the future? By comparing the 
outputs of the two detectors after testing many particle pairs. we find 
that the character of the randomness in spin measurements on a particle 
is identical before and after its partner undergoes measurement. No 
.. atter how we choose the detector directions. nature arranges it so 
that any sufficiently long sample of output from either detector looks 
like any other. Therefore we cannot pick up any information from a set 
of particles about what is happening to their distant partners; 
signalling using this mechanism is impossible. Mathematically. from 
Bayes' theorem. 

P(Sl measuredISz*.I) = P(SI measuredlI) p(Sz*IS. measured.I). (39) 
p(Sz"II) 

and since. observationally. 

p(SZ*ISl was measured.I) = p(Sz*II). (40) 

the posterior probability that S. was measured equals the prior; no 
information has been gained. 

Bell's theorem proves that measurement of particles has the definite 
effect of altering the results that would otherwise have eventuated for 
their distant partners. increasing the correlation beyond what mere 
pre-arrangement could achieve. However. because this doesn't alter the 
degree of randomness at the second detector. we can only confira it by 
conparing the results from both detectors, over many particle pairs. 
Signalling. by contrast. is a stronger fora of nonlocality. different 
because of the random character of the observations. It is testable 
from the output of the second detector alone. and it is disconfirmed. 

SOlie tests have been done using photons. If the influence travels from 
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the first detector at the speed of light or slower, it cannot catch up 
with the second particle and "prime" it. Does it therefore travel 
superluminally? (The two photons do not in fact propagate in exactly 
opposite directions, but the problem remains.) Also, because of 
relativistic space-time transformations, certain observers moving fast 
enough see the measurements take place in reverse order. Which 
particle tells which? Since no Lorentz frame is preferred, the 
resolution should be symmetrical with respect to the particles. 
seemingly implying acausality. The answers must lie with the theory 
describing the particles: quantum mechanics. 

Finally. if hidden variables (necessarily nonlocal/acausal) are ever 
uncovered. tangible signals could be received before they had been 
sent. and at speeds faster than light. Doubtless this is why we have 
never seen hidden var iables; it also hints that we never shall. and 
that we are stuck with quantum randomness. Entirely identical systems 
do behave differently. 

3. QUANTUM MECHANICS 

Although we compared the predictions of local/causal theories with 
experiment. we know that quantum mechanics correctly predicts the 
results (see. for example. Clauser and Shimony. 1978). It is therefore 
a nonlocal/acausal theory. This feature was not built in explicitly: 
indeed it emerges unexpectedly. To ask where inside quantum mechanics 
it comes from is simply not fruitful; better to accept it and go on 
from there. We recall Einstein's bold re-orientation of the constancy 
of light-speed as a starting point rather than something to be 
explained; and what it led to. In quantum mechanics too. reorientation 
achieves a dramatic breakthrough; but first let us tidy up some loose 
ends. 

It is remarkable that. nature being nonlocal/acausal. we can .ake 
prediction at all. There is a further. distinct. local! ty problem: 
when working with two fermions (bosons). how can we get away without 
using a monstrous Slater (anti)deterainant for all the other identical 
particles in the universe? The explanation is that the relative phases 
of the others are unknown. and marginalizing ("averaging") over them 
recovers the usual results. 

Second. what is meant by stating that quantum theory accords with 
experiment? Quantum mechanics predicts. for example, that 

(41) 

where • represents the wavefunction. Experiment begins by noting that 
there are two alternatives S+ and S-. This is the "coin-tossing" 
problem, solved by Jaynes (1968): given information t that we know 
nothing in advance distinguishing S+ from S-, we assign for the 
probability of n+ measure.ents of S+ and n_=N-n+ measurements of S-
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p(n+IN.t) ~ I dq F(q) __ N_! __ qn+ (1-q)n-
n+!n_! 

(42) 

where the "prior" F(q) a: q-l(1_q)-1 and the constant of proportionality 
is determined by demanding that (42) be normalised over n+. O;:;;n+,N. 
Then p( :l:next I n+. n_. t) is easily calculated via Bayes' theorem. 
Experimental results converge to ". in agreement with the theoretical 
prediction (41). 

This procedure is fully Bayesian. and avoids the "frequentist" view 
that repeated results constitute an ensemble of the distribution (41). 
Instead. p(S:l:ltheory) and p(S:l:lexperiment) are compared. 

Finally. measurement is not a well-defined act in (quantum) reality; it 
merely reflects an interaction of some form. Needles on dials are 
themselves quantum objects. evaporating when examined closely into a 
blur of elementary particles. This Gordian knot is severed by assuming 
there is a well-defined answer. to be determined as best we can by 
looking at the pointer closely. but not too closely. Quantum mechanics 
predicts the result statistically. Since this procedure works. 
measurement remains a legitimate concept. 

4. THE TRANSACTIONAL INTERPRETATION OF QUANTUM MECHANICS 

The predictive formalism of quantum mechanics works as perfectly in the 
Bell experiments as everywhere else. But quantum theory still gives 
cause for unease. What is needed is a fresh interpretation which takes 
our new understanding into account. A nonlocal/acausal interpretation 
of the Schrodinge.r representation has recently been proposed by J. G. 
Cramer (1986). the seeds of whi ch go back as far as Tetrode (1922). 
What this looks like in the Heisenberg representation. closest to our 
classical way of thinking. remains to be seen; but a similar concept. 
two-point boundary conditions in time corresponding to the past and 
future. has been proposed for the Feynman path integral representation 
(Roberts 1978). Cramer's interpretation is by far the most helpful way 
of thinking about quantum phenomena yet found. and it hints at future 
revisions of the physics. Certainly it consigns the Copenhagen 
interpretation - "don't try to think. the formalism'S the thing" - to 
history. 

Cramer's idea is this: the wavefunction 'I' satisfies the Schrodinger 
equation 

ih a'l' H'I' 
at 

(43) 

(H is the Hamiltonian) and propagates forward in time (+t). Since H is 
Hermitian. the conjugate wavefunction satisfies 
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(44) 

and propagates backwards in time (-t). Interactions are viewed as 
transactions between transmitter and receiver; the transmitter sends an 
offer wave 'I' forward in time to the receiver. which itself sends a 
confirm wave backwards in time to the transmitter. Either process is 
stimulated linearly by the other, and consequently the amplitude 
(probability) for the overall interaction is proportional to the 
product '1'*'1', as required. The mysterious quadratic form is explained. 
An operator S measured at the receiver projects out of the offer wave 
one eigenfunction, giving the physical expectation value <'I'lsl'l'>. In 
Einstein's phrase, it is the offer wave which is "there when nobody 
looks". 

The immediate objection is that acausal signalling could take place via 
the advanced wave. That this is untrue is demonstrated by adapting the 
Wheeler-Feynman electrodynamic theory of retarded and advanced 
potentials. Wheeler and Feynman (1945, 1949) were concerned about the 
ad hoc manner in which advanced Lienard-Weichert potentials - which are 
perfectly good solutions of Maxwell's equations - are custo.arily 
eliminated "by causality". They reformulated the problem such that a 
charged particle e.its both retarded and advanced waves in a 
ti.e-symmetric combination; the advanced wave it emits is cancelled by 
the effects of receiving other advanced waves fro. the future. The 
advantage of this procedure is in replacing the ad hoc elimination of 
advanced waves by boundary conditions in the distant past and future. 
The disadvantage is that, in order to predict the evolution of a 
syste., an integral must be taken over the whole future light cone -
details of which are unknown. But if we are concerned exclusively with 
interpretation, as we are in (43) and (44), this disadvantage 
evaporates leaving only the benefit. 

For full details, the reader is referred to Cramer's own exposition. 
This includes such points as the parabolic nature of the Schrodinger 
equation (43) in contrast with the hyperbolic relativistic equation it 
approximates (the factor i in (43) keeps the dynamics reversible). and 
reality of the overall wavefunction at transmitter and receiver but not 
in between. It also applies the transactional idea to the entire gamut 
of quantum paradoxes: measurement, Schrodinger's cat, Wigner's friend 
(the infinite regress of nested observers) and others, resolving them 
all objectively and realistically. The Bell experiment is included -
since the particles continually exchange waves, there is no longer any 
problem about which affects which - but here we illustrate the idea 
with a simpler problem: the "delayed choice" paradox. 

Suppose we fire a single particle at a pair of Young's slits, and only 
decide after it has passed them whether to measure the interference 
pattern (due to both slits) or the position of the particle (indicating 
which one slit was traversed). How can our choice of what is placed 
beyond the slits - photographic emulsion for recording fringes, or 
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collimators to detect particles - influence whether the particle 
traverses one slit or both. when it has already passed the .. ? This 
puzzle has the authentic quantum flavour. 

To fill in the details: first. it is known that a single particle can 
interfere with itself: second. we can be as certain as we like when the 
particle traverses the slits. by measuring its "perpendicular" velocity 
to arbitrary accuracy. (The uncertainty principle provides no excuse. 
for the experi.ent can be repeated many times. with the problem growing 
ever more acute.) Third. if we choose to measure position. we are not 
stating in advance which slit was traversed. only that ~ was. 
Finally. the paradox is a consequence of the non-commutativity of the 
two operators transverse position and mo.entum which are 
alternatives for measurement. 

The transactional resolution is that the source of the particle emits 
offer waves forward in time. which pass unhindered through both slits. 
Depending on the experiment selected. confirm waves from the future 
come back through one slit or both. What is observed is the 
"handshake" between the offer and confirm waves. and this incorporates 
the chosen measurement while avoiding the paradox. Most other quantum 
riddles yield just as easily. 

One puzzling nonlocal effect. mentioned here for completeness. has a 
further interpretation. Aharonov and Bohm (1959) predicted 
quantum-theoretically that the magnetic field inside a region from 
which a charged particle is excluded nevertheless influences the 
particle's motion. Experiment confirms this (Chambers 1960). The 
explanation is due to Peshkin (1981): although the particle is 
excluded. its electric field still penetrates the region. and the 
crossed electromagnetic fields there have angular momentum. 
Quantisation of (total) angular momentum couples this to the motional 
angular momentum of the particle. No metaphysical discussion of 
whether the magnetic vector potential is "more real" than the magnetic 
field is necessary. 

Although these ideas are not testable other than at t = *~ 
- cosmologically - they do suggest where to look for the next 
generation of physical theories. Despite the accuracy of some quantum 
predictions to 1 part in 10 7 • nature is not in general linear: 
linearity is usually only a convenient mathematical approximation. and 
a linear theory of excitation could very well turn out to be a weak-9 

* approximation. Also, the offer and confirm waves 9 and 9 may prove to 
be physically measurable quantities. in defiance of causal signalling 
and gauge invariance. 

5. CONCLUSION 

Bell's theorem is an analysis in Bayesian inference. incorporating 
physics only through the assumption of locality/causality. Tested 
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against experiment, this assumption fails. The theory which correctly 
predicts the experimental outcome, quantum mechanics. is therefore 
nonlocal/acausal. A new "transactional" interpretation of quantum 
mechanics has been built on this observation. which resol ves 
traditional quantum paradoxes; the statistical nature of quantum 
processes is necessary to preclude acausal signalling. The 
transactional interpretation suggests where quantum mechanics should be 
probed for possible breakdowns. 
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Abstract 

The objective Bayesian view is considered in relation to philosophy and 
philosophy of science. Carnap's distinction between logical and 
factual probabilities is rejected, as is an anti-Bayesian argument due 
to Popper. Reasons for the confusion are advanced. Inductive 
philosophy of science is defended, and a tentative methodology 
proposed. Four prominent anti-inductivists are analysed: Popper, 
Lakatos, Kulm and Feyerabend. Popper is shown to have been misled by 
the problem of improper priors, in hypothesis space; his deductive 
doctrine of falsifiability is replaced by the inductive one of 
testability. Kulm's view that successive theories do not approach any 
kind of limit is criticised, and is traced to his rejection of 
induction. It is concluded that deductive methodologies of science are 
untenable, and that inductive methodology is sound. 

1. Introduction 

This paper divides into two parts: a survey of how our philosophical colleagues 
view probability, and a critique of the prominent deductivist philosophies of 
science. Scientists concerned with probability often do not realise that there 
has long existed a parallel effort in philosophy. The two are related through 
the connection - indeed identity - of probability theory with inductive logic, a 
connection denied by one major school of thought. In both parts we shall 
encounter a major figure of the 20th century: Karl Popper (1902- ). 

2. Philosophers' views of probability 

I shall present this section from the objective Bayesian point of view. I 
shall not attempt to defend it here since that has been masterfully done by 
others (Jaynes: collected papers [1]). The objective Bayesian view is that the 
probability of an occurrence, conditional on information in a given space, 
measures how likely one believes that occurrence to be, and that the laws of 
probability are laws of inference. This view is objective to the extent that 
definite information corresponds to a definite probability. Anybody having the 
same information but assigning a different probability is therefore guilty of 
reasoning inconsistently. It is anthropomorphic to the extent that different 
individuals often possess different information, and therefore (consistently) 
assign different probabilities to the same event. That the objective Bayesian 
view corresponds to the familiar smn and product rules ("Kolmogorov mans") was 
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demonstrated by R. T. Cox [2]. Alternative schemes may coincide with the 
objective Bayesian in particular circumstances, for example the frequentist view 
given an infinite number of trials. These alternatives are then quite 
acceptable; but only the objective Bayesian view works irrespective of context. 
(Have you ever actually seen an infinite number of trials?) 

Philosophers do not suffer as badly as some fram Frequentist's Disease. 
The reason is historical: philosophers have for centuries been concerned with 
that logic to be used ~ there is insufficient information for certainty, 
called inductive logic. They were discussing the problem of induction long 
before probability even became quantitative, and longer still before 
frequentists hijacked it. Consequently philosophy never completely fell for 
this aberration. Of course, the frequentist view did influence philosophers, 
and in fact Popper initially advocated it, in Logik der Forschung (translated as 
The Logic of Scientific Discovery [3]). He was concerned to oppose non­
objectivity, but failed to distinguish properly between the objective Bayesian 
view and the obviously crazy "subjective" one that anyone may assign any 
probability to anything. (True; but doing it consistently is another matter.) 

Today, thanks to Cox, we know that inductive logic is probability theory, 
and vice versa. It is a generalization of the deductive logic of certainty, 
Boolean algebra, from values 0 and 1 to the interval in between. This view is 
inexorably gaining acceptance among physicists. In philosophy there is a 
diversity of positions; one. hugely influential stance is due to Rudolf carnap 
(1891-1970). Carnap distinguishes two kinds of probability, which he calls 
logical and factual [4]. 

Figure 1: Bayesian Probability Assignments 

Let us examine Carnap's claim from an objective Bayesian perspective. The 
Bayesian procedure for making inference is set out in Figure 1. We begin at the 
level of the hypothesis space, {x}. The first stage is to determine the measure 
m(x) on it, using symnetry arguments such as invariance under exchange of two 
elements, or transformation group theory [5]. Next, testable information is 
incorporated. These are statements like "the mean has value 2.7" which can be 
checked, in contrast to data which are the outcome of measurements. (If the 
mean is to be estimated, a symbol stands for its value at this point. ) The 
probability (density) p(x) is determined by maximising the information entropy 

- Jdx p(x) log (p(x)/m(x» (1) 

subject to the constraints of normalisation and any testable information [1]. 
If there is none, p(x) oc m(x) without further ado and the entropy maximisation 
is customarily omitted. Finally, data are brought in to update the "prior" 
probability using Bayes' theorem. Further data can be incorporated at any time, 
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and the end result is independent of the order of incorporation. This is in 
fact one of the consistency conditions from which Cox derived the laws of 
probability in the Bayesian view [2]. The other is that probabilities shall not 
depend on What has been marginalized out. 

Carnap's logical probability corresponds to the probability before data are 
incorporated, for this is assigned using logical arguments: symmetry and maximum 
entropy. But the rationale is not given with anything like the same clarity, 
needed to tackle real problems. "Factual" probability corresponds to 
probability assignments after data (facts) are incorporated. Thus, although 
there is a distinction in the generation of these probabilities, they both have 
fully Bayesian interpretations as the only ones which can be consistently 
assigned from the information at hand, be it data or testable. 

Philosophers often cite examples like 

p(John is left-handed I John is a banker and 
15% of bankers are left-handed) 0.15 (2) 

as logical assignments of probability. Whatever, this is an unfortunate 
example, because the information is given in the "handedness-space" of all 
bankers, not the required space of John's handedness. While Bayesians certainly 
emerge with the answer 0.15, the problem contains extra complications. 

Philosophers Who have criticised Carnap's position include W. V. O. Quine 
(1908- ) and Popper. Indeed, entire books have been written on the Popper-
Carnap controversy [6]. 

Popper has in addition presented a technical anti-Bayesian argument [7]. 
Though erroneous, it is still doing damage today, and a refutation is in order. 
The reader is warned that philosophers often use a notation in which the 
conditioning information follows after a comma. Thus, What scientists call 
p(AIB) is written by Popper as p(A,B) - which unfortunately has the distinct 
meaning to scientists "the jOint probability of A and B". Here we use 
"scientific" notation. 

Popper's argument, paraphrased, runs like this: suppose proposition B 
supports proposition A, given information I. This is held to correspond to the 
inequality 

p(AIBI) > p(AII). (3) 

Since p(AII) = p(ABII) + p(ARII), marginalizing over B (from the sum and 
product rules), and since p(ABII) can be decomposed using the product rule, 
further inequalities can be derived. 

Popper now supposes that the statement "B supports A to the degree z" 
corresponds to the Bayesian assignment 

p(AIBI) = z. (4) 

It is then easy to conjure up a contradiction of the type "I am likely to drink 
tea. I an unlikely to drink coffee." (Both type (4).) "But, given a choice, I 
am more likely to drink coffee than tea." (Type (3).) Popper makes the point 
with dice. 

Popper concludes that the Bayesian view is inconsistent. But this is 
semantic confusion: the concept of support is different in (3) and (4). Suppose 
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(3) is taken as the definition of what it means for B to support A; this accords 
well with intuition. That done, the word means sanething else in (4), for no 
inequality is at hand. 

Let us illuminate this by showing that "supports" in (4) may not coincide 
with intuition. Suppose that A, B and I are such that 

0.99 = p(AIBI) < p(AII). (5) 

There is no problem in arranging this: let, for example 
A = "there will be a traffic jam in central London today·, 
B = "there are no road works in central London at present", and 
I = "it is a working day". Then B is antagonistic to A; but according to 
Popper's qualitative statement of (5), it supports it to a degree of 0.99, i.e. 
very strongly. The lesson is that assignment of probability is distinct from 
comparisons of probabilities. Only probabilities, not their differences (or 
differences of their logarithms) satisfy Cox's axioms. 

In summary, I believe the confusion prevailing over probability in 
philosophy is due to two factors. First, the philosopher's disposition is to 
ask "What is probability?", while the scientist seeks solutions to specific 
physical problems, asking instead "How can probability help me?" The general is 
always illustrated by the specific. 

Second, it could be that probability has had its day in philosophy. 
Philosophy bore the torch of Western learning and enquiry for centuries; but, as 
more became known, specialised areas of knowledge branched off fran it. Science 
itself is the outstanding example; until relatively recently physics was known 
as Natural Philosophy. But with the underpinning of Cox, recognition of the 
daninant role of the Principle of Maximum Entropy, and the beginnings (in 
quantum statistical mechanics) of an operator-valued theory of probability, the 
day of the amateur - in the best sense, for philosophers are often eminent in 
several branches of their discipline - may be at an end. 

3. Modern philosophy of science 

This section critically surveys much 20th century philosophy's view of 
scientific methodology. For the basis of this material I am indebted to my 
former colleague at the University of Sydney, David Stove, now retired fran its 
Department of Traditional and Modem Philosophy. David holds to the relevance 
of Carnap's distinction, but he is a defender of induction, and a for.midable 
critic of deductivist philosophy of science. 

Philosophy of science is best described as that which scientific endeavours 
have in common, but which non-scientific studies do not necessarily share. We 
should not suppose, though, that there is anything magic about science: it is 
simply a sustained application of coumon sense. And since ccmnon sense is 
consistent reasoning (in an appropriately chosen space), we find ourselves 
staring straight at Bayesian inductive probability. 

Bayes notwithstanding, modem philosophy of science has grown into a major 
pathology associated with the names Popper, Lakatos, Kuhn and Feyerabend. 
Describing it is my aim here, and as a preliminary atming I present a tentative 
flowchart of how science is done. 
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In its basic form, the model is given in Figure 2. There is no endpoint, 
and so no "final answer". Instead, one continually refines theory and practice. 
The vexed debate over realism is circumvented by defining scientific truth as 
the asymptote towards which this process (in practice) converges. Laws of 
Nature are unknown and never change (assuming, reasonably, that they exist), but 
our approximations to them improve as we learn more. 

Since the loops always contain at least one inductive step, the whole 
process is inductive. This is no more than it should be: one can be almost 
certain that the Sun will continue to rise in the east, based on past 
observations (and the celestial mechanics constructed to explain them), but 
certainty is absent. 

The model can be fleshed out to varying degrees, and that which 
found most illustrative in physical science is displayed in Figure 3. 
here that philosophy can help scientists, although they generally pursue 
strategy implicitly. 

I have 
It is 

such a 

A new intuitive leap can throw up a theory at any time. The resulting 
flowchart is welded to the old by applying the process to the union of the two 
theories. Unifying demonstrates directly that science is not dogmatically 
reductionistic: reductionism is simply a convenient way of implementing the 
strategy of Figure 3. The intuitive leap corresponds to a widening of the 
region of hypothesis space under consideration, a process for which there is as 
yet no theory, even in model problems. Meanwhile, the hotchpotch of guess, 
conjecture and imagination called intuition is precisely what distinguishes 
great scientists from the rest. 

The inductive view of science goes at least as far back as the 12th century 
scholar Roger Bacon, and thence forward to Elizabeth I's courtier Francis Bacon. 
(Of course, William of Ockham's famous razor principle "Essentia non sunt 
multiplicanda praeter necessitatem" - entities should not be multiplied beyond 
necessity is essentially Bayesian.) The distinguished British empirical 
philosopher David Hume (1711-1776) argued against induction, and Stove traces 
today's movement to this source [8]. 
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CONSEQUENCES 

More recently, Pierre Duhem (1861-1916) argued that theory and experiment 
never meet face-to-face, because in real science a prohibitive number of 
auxiliary assumptions are involved in reaching the interface [9]. Today this is 
called the Quine-Duhem thesis. On the inductive picture, extra assumptions are 
readily incorporated by setting up the prior distribution for their parameters, 
calculating the joint posterior distribution of these and the desired quantities 
from the data by using Bayes' theorem, and then marginalizing over the extra 
parameters to take them out. 
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Karl Popper opened the modem era with Logik der Forschung in 1934. It is 
far more about philosophy of science than probability theory. Curiously though, 
Popper is regarded more by his profession, at least outside England, as a 
celebrity than a philosopher's philosopher. Summarising him is not easy: as 
with most cults, many meanings can be read into it. This is due to such 
contradictions as his acceptance of probability but rejection of induction; 
David Stove, in the first part of Popper And After: Four Modem Irrationalists 
[8] exposes the devices by which Popper (among others) lays his smokescreen. 

Popper's primary tenets can nevertheless be discerned. One is that all 
observations are "theory-laden". In Popper's own words, "sense-data, 
untheoretical items of observation, simply do not exist" [10]. It is difficult 
for Bayesians to express the depth of their disagreement with this. Data are 
data, be they a distraction (noise) or tracks in bubble chambers photographed at 
enormous ingenuity and cost. Whatever, they are incorporated into theory using 
Bayes' theorem. Of course, theories suggest which data to seek, but that is not 
at all the same thing; once found, data can be used to update the probability of 
any hypothesis whatsoever. 

Popper also insists that science is deductive rather than inductive. 
Partly this is a terminological disparity, referring not to the overall process 
but to a single stage: deduction of the consequences of a hypothesis prior to 
testing. (Popper's scheme is often described as hypothetico-deductive.) But 
Popper does reject induction; we have seen already his rejection of the 
inductive view of probability in favour of other interpretations. Indeed, 
Popper has asserted that no theory ever becomes more probable when evidence in 
its favour is discovered, and that every scientific theory not only begins by 
being infinitely improbable, but always remains so [11]. 

The first of these statements directly denies Bayes' theorem. Underlying 
the second is the idea, seldom recognised, of the space in which probabilities 
are defined. This contains an infinity of competing theories, and before 
looking at their distinctive features we must assign each equal prior 
probability 1/00, or zero. It seems that Popper is correct. But Bayesians 
recognise this as the problem of non-normalisable or improper priors, in 
hypothesis space. The resolution is the same: though the prior is non­
normalisable, Bayes' theorem gives for the posterior ratio a well-defined limit 
of % which may perfectly well be normalisable [5]. Bayesians can open The 
Logic of Scientific Discovery, and the first volume of its massive Postscript 
(12), expounding Popper's post-frequentist "propensity" view of probability 
(much closer to Bayesian, though never made plain), almost at random and 
illuminate the problems exposed. 

The idea by which Popper is best known, and one of which most students are 
aware, is the doctrine of falsifiability. A hypothesis is only scientific if it 
is capable of being proved false by observation. This is an important idea, but 
it is baldly deductivist in restricting the concept to falsity but not truth; 
for in deductive logic a single counter-example can falsify a theory but no 
number of examples can prove it. In real science though, theories are not 
proved false (or true) with certainty. Instead, data are incorporated via 
Bayes' theorem into the posterior probability, which may approach zero or one. 
As it gets sufficiently close (a matter of taste), the theory is rejected or 
adopted. So the criterion is not falsifiability, but testability: that one can 
conceive of data which alter the probability of the hypothesis. Equivalently, 
the hypothesis must not be equally disposed to every datum. Stove traces 
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Popper's dictum of falsifiability to his early distaste, in Vienna, with 
dogmatic claims that ideas such as Marx's and Freud's were "irrefutable" 
(11,13]. The word game began here, though Marx at least understood the stakes 
long before. He wrote to Engels in 1857, concerning a historical event: "One 
can always get out of (making an ass of oneselfJ with a little dialectic. I 
have, of course, so worded my proposition as to be right either way" (14]. 

Popper does refer to testability although, deprived of inductive logic, he 
fails to nail down the idea. (Any statement pertaining to a theory, but which 
is not testable, is part of that theory's interpretation.) He also refers to 
degrees of falsifiability, and attempts to relate them to probability. This 
again is word-play: the ease with which a hypothesis is tested is a matter for 
technologists, not theoreticians. 

It was the successor to Popper's London Chair, Imre Lakatos (1922-1974), 
who pointed out afresh that in real science, theories are never disproved (or 
proved) with certainty. Lakatos clearly reached this conclusion through 
contrasting the natural sciences with mathematics, in whose history he had 
worked (15 J . But, following Popper in renouncing induction, Lakatos was left 
with no framework to hang his observation on. His own attempt to build one, a 
doctrine of research programmes [16J, confuses philosophy with history of 
science. 

Like many ideas given birth in eastern EUrope, deductivism has become 
popular in America. Let us therefore examine the work of Thomas Kuhn (1922-

), another avowed anti-inductivist and the author of the hugely influential 
work The Structure of Scientific Revolutions [17]. Like Lakatos, Kuhn is a 
first-rate historian of science, who has written on the Copernican revolution in 
astronomy, and the black-body controversy which gave birth to the earliest 
quantum hypothesis. The Structure of Scientific Revolutions presents a cyclic 
view of how science evolves, beginning with a mass of unordered observations and 
competing theories, going into a quiescent stage after the triumph of one theory 
over the rest, followed by gradual breakdown into chaos again under the 
accumulation of anomalies from more stringent testing. Kuhn has bequeathed us 
one of today's fashionable words, paradigm, to describe the model prevailing 
during the quiescent stage. 

The history of science abounds with examples of this process; trouble again 
arises when it is combined with anti-inductivism as a philosophy. Close to the 
end of The Structure of Scientific Revolutions, Kuhn clearly echoes Popper's 
assertion that every theory is infinitely improbable, when he says that "we 
may •...•.• have to relinquish the notion that changes of paradigm carry 
scientists ..•• closer and closer to the truth" [18J. In other words, Kuhn 
believes that theories come and go as arbitrarily as fashions in clothing. For 
anti-inductivists, the closer fit to observation of relativistic mechanics than 
Newton's counts for nothing. This singular ideology is deflated by applying it 
to progressively simpler problems: it can hardly be no more true that the Moon 
is made of rock than green cheese. 

There is no doubting, though, that Popper, Lakatos and Kuhn all appear 
respectful to science. Consider finally the ideas of Paul Feyerabend (1924-

) [19,20]. Feyerabend describes his approach as "epistemological 
anarchism", and his slogan is "Anything Goes". Again, this derives clearly from 
the idea that all theories are equally invalid, though it is also an accurate 
distillation of the subjective Bayesian stance. And Popper's oldest criticism 
holds of it: it is not falsifiable I 
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Feyerabend is on record as stating that normal science is a fairy tale , and 
that equal time should be given to "astrology, acupuncture and witchcraft" [21] 
(though I do not know What unctions he seeks when ill). He is fond of 
categorising science with "religion, prostitution and so on" [19]. Feyerabend 
believes that science is just one of many internally consistent views of the 
world, and that the consequent choice between them should be made on social 
grounds. But while many systems are internally consistent, only one plugs 
consistently into the world of observations, and to reason systematically about 
that world we must use it: science. Ethical and social considerations may 
dictate which areas to study, but that is a different matter. Feyerabend's 
ideas have been brought forth by "the sleep of reason", and while they could 
probably only flourish in a society disillusioned with science (through its 
perceived misuse), they represent the logical culmination of the rejection of 
induction. For that is What Popper, Lakatos, Kuhn and Feyerabend have in 
common; and despite much mutual repudiation, it far outweighs their differences. 
The ideas of these four comprise a major stream in contemporary philosophy of 
science. 

It is an odd fact that scientists often quote these philosophers favourably 
[22). Science magazine recently lauded Feyerabend's views as "a breath of fresh 
air" (21). The explanation is undoubtedly a benign ignorance. Being prepared 
to revise hypotheses in the light of fresh information (an attitude politicians 
might heed) makes scientists easy prey. What, by contrast, could alter 
Feyerabend's opinion? 

4. Conclusion 

The objective Bayesian view is as capable of resolving problems concerning 
inductive logic in philosophy as it is in science. Difficulties are not 
conceptual, but merely technical: the huge spaces used in real problems, and the 
determination of prior probabilities in a wide variety of contexts [1). In 
particular, the Bayesian view, applied to scientific methodology, produces a 
coherent, inductive philosophy of science. Non-inductive philosophies of 
science invariably lead to absurdities. 
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ABSTRACT. The maximum entropy formalism is used to obtain the distribution of amplitudes of a 
single quantum state. Such a distribution is required to account for the observed irregular but reproducible 
spectra at high levels of excitation. The computed distribution agrees well with experimentally determined 
histograms. The reasons for possible deviations are noted. Special attention is given to the conceptual 
foundations of the approach and analogies are drawn with classical statistical mechanics. A distinction 
between the objective and subjective elements in quantum mechanics is made. In particular it is proposed 
that the amplitudes are objective while their distribution reflects a state of knowledge. 

1. Introduction 

The technical problem which we address is the nature of the spectrum of highly excited 
states of systems with few degrees of freedom (e.g., molecules or nuclei). Such a 
spectrum is typically quite dense with many transitions whose intensities vary in a 
seemingly erratic manner as we scan the frequency. Often, the density of transitions is 
comparable to the density of states which implies the near absence of selection roles (which 
are typical of low excitation spectra). Traditional methods of spectroscopy, which seek to 
assign each and every transition are thus of limited use. 

The problem is not one of data analysis. I shall assume that the spectrum has been 
measured with low signal to noise. Hence I shall take the reported experimental results as 
the true, inherent, spectrum of the system. The 'statistics' are therefore not due to external 
noise. Rather, they are considered as a signature of the 'irregular' character [1] of highly 
excited states of the isolated system. Such deterministic yet chaotic dynamics is well 
understood for classical systems [2]. The point is that, strictly speaking, a quantal 
Hamiltonian with a purely discrete spectrum cannot give rise to chaotic dynamics. This can 
be argued in general [3,4] since with a purely discrete spectrum, any initial pure state can 
be expanded as a sum over eigenstates. Hence the time evolution is given by a discrete 
number of oscillating exponentials so that it is quasiperiodic. It can also be proved in detail 
by establishing the convergence of perturbation expansions [5] for a purely discrete 
spectrum. In classical mechanics, where the energy spectrum is continuous, these 
arguments fail. One can therefore conclude that there is no chaos in discrete quantal 
systems. Yet both experimental and computational results very clearly demonstrate that 
also in quantum mechanics it is useful to consider both the 'statistical' limit[6] and the 
behavior enroute to this limit. 
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1.1 'The Distribution of Amplitudes 

In addition to the technical problem we thus have a problem of interpretation. The wave 
functions of even the highly excited states can be numerically detennined. Using enough 
care and computer time such converged computations have indeed been carried out. How 
then can we apply statistical considerations to the result? The problem is quite reminiscent 
of the basic issue in classical statistical mechanics. At a given instant in time, each 
molecule in a (dilute) gas has a well defined position and momentum. These will evolve 
according to the (Hamilton) equation of motion. Even for a chaotic system, given precise 
initial conditions, the future evolution is uniquely specified. Statistics only comes in when 
we ask for the distribution of velocities of all molecules at a given instant. In otherwords, 
when we ask for the distribution of velocities irrespective of position. 

In constructing the distribution of amplitudes we shall use a similar approach. We 
shall ask for the distribution of amplitudes irrespective of, say, the corresponding energy. 
This can be understood in two ways. The first is that we pick a particular 'reference 
vector' in Hilbert space, say Ii> and consider the distribution of the amplitudes <iii> as we 
go over all the vectors If> of interest. (As appropriate for a workshop at St John's College, 
we use the Dirac braket notation). Alternatively, we can specify a complete reference basis 
set of vectors {In>} and examine the distribution of amplitudes <nlf> for a particular state 
If> of interest. 

In terms of the analogy with classical statistical mechanics, what we are doing is 
equivalent to our understanding of the Boltzmann velocity distribution circa 1890. Indeed, 
our invariance argument below (namely that in the limit, the distribution of the amplitudes 
<nlf> must be independent of the choice of the particular 'coordinate set' {In> }), is 
fashioned precisely by analogy with Maxwell's derivation of the Boltzmann distribution. 
(Recall that he required the velocity distribution to be invariant to the choice of the 
coordinate system used to define the components of the velocity vector. See e.g., [7]) 

There is one further amusing analogy with the example of the Boltzmann velocity 
distribution. When Otto Stern set out an experiment to verify the predicted distribution, the 
initial agreement was not perfect. The fit was much improved after Einstein pointed out 
that the experimental distribution must incorporate an additional Jacobian [8] (which is due 
to the faster molecules being preferentially sampled in the effusion). Here too, we shall 
find that the distribution that can be observed is not the one that we can most readily predict 
and differs from it by a Jacobian. 

1.2 Quantum Chaos? 

There is also a second sense in which the consideration of the distribution of quantal 
amplitudes is analogous to classical statistical mechanics. The time evolution of a trajectory 
in classical phase space which originates from sharply specified initial conditions can be 
traced back precisely. This is not the case when the initial conditions specify only a region 
and the dynamics are chaotic. Two trajectories which originate quite near to one another 
will, in time, exponentially diverge. This 'spreading out' or 'mixing' of an initially 
localized region in phase space is an important ingredient in modern ergodic theory[9]. It 
would be of interest to pursue a similar point of view with regards to the distribution of 
amplitudes. There have been preliminary attempts [10] to use such an approach, but much 
more work remains to be done. 

1.3 Objective vs. Subjective in Quantum Mechanics 

Beyond the purely technical problem, our considerations have a bearing on the issue of 
what is 'objective', (i.e., representing the real world), and what is 'subjective' (i.e., 
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representing our knowledge of the real world) in quantum mechanics[ 11]. Our approach is 
that the amplitudes are objective. What is subjective is the distribution over the amplitudes. 
A fully specified pure state corresponds to a unique set of amplitudes and as such is 
analogous to a point in classical phase space. Typically, however, we can only specify a 
region in phase space (or a distribution therein) and we take the same to be true for the 
amplitudes which we regard as the 'coordinates' of the system in a Hilbert space. 
Elsewhere, [12], we have discussed the 'collapse' of the wavefunction upon measurement 
from the present point of view. 

2. The statistical Wavefunction 

To specify the wavefunction If> of the final state accessed in the spectral transition we 
expand it in a fixed orthonormal basis set {In>} in an N dimensional (Hilbert) space 

N 

If> = L xfn In> 
n=l 

(1) 

The expansion coefficients Xfn are known as amplitudes since it is their squares which are 
probabilities. For our purpose it is convenient to think of them as the coordinates of the 
state If> where Xfn is the projection of If> along the n'th axis <nlf> = Xfn. Strictly speaking 
the amplitudes can be complex numbers but for the moment we shall take them to be real. 
Hence, since the state If> is normalised, 

N 2 
1 = <flf> = L Xfn 

n = 1 

(2) 

the amplitudes (for a given f) can therefore be regarded as the direction cosines of a unit 
vector in an N dimensional vector space. Different states If> are orthogonal, 

N 

Of,f' = <f I f'> = L xfn XI n (3) 
n=l 

which brings in correlations between the amplitudes belonging to different states. 
In the chaotic limit we expect the state If> to have components along many 

directions. They cannot all be equal to one another (and to llYN) since different states need 
be orthogonal. We can, however, ask for their distribution, i.e. for the number of 
components Pf (x) dx which have a magnitude between x and x + dx, for the given state f. 
Of course, the question is operationally reasonable only if the number, N, of possible 
components is large. 

Note that the distribution is introduced in terms of the amplitudes rather than as the 
distribution of the probabilities. The reason is that one expects the distribution, in the 
chaotic limit, to be independent of any particular basis {In>}. Since it is the amplitudes 
which are the 'direction cosines' and hence it is the vector x of amplitudes which will be 
linearly transformed upon rotation, (i.e., upon change of basis) 

Xfn'== <n'l f>, U , == <n'ln>, n n 
(4) 

to a different basis {I n'>}, it is the distribution of amplitudes which is of primary concern. 
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As discussed in the introduction, the reasoning is quite analogous to the statistical 
mechanics of a classical ideal monoatomic gas. Any mechanical state of the gas 
corresponds to a particular point in the 6N dimensional phase space of the N atoms. When 
however we ask for, say, the distribution of velocities irrespective of which atom, we get 
sensible results. Indeed, the invariance under rotation of axis is precisely the argument 
used by Maxwell [7] to derive the Boltzman distribution. 

The distribution we are concerned with here is therefore of our own making and 
hence reflects our own state of knowledge. Any particular state If> has definite values for 
the amplitudes along any particular direction In>. The probability density Pr(x) is 
introduced by our asking for the distribution of the values of the amplitudes irrespective of 
the direction. 

2.1. Maximum Entropy 

In the limit of large N we can write the condition that the state If> is normalised, equation 
(2), as 

IN 2 ooJ2 
N L xfn = x Pr{x) dx == <x2:> 

n=l -00 

(5) 

In (5), summation over all basis vectors n is replaced by an integration over all values of 
the amplitude, with Pr (x)dx as the fraction of amplitudes with values in the range x to x + 
dx. Hence Pr (x) itself need to be normalised 

(6) 
- 00 

If (5) and (6) are the only two constraints on Pf (x), we obtain as the distribution of 
maximum entropy [13] 

P (x) = (21t <x;. rl!2 exp (-x2/2 <x 2:> ) (7) 

We have dropped the subscript f since the density is universal. Note also that the Gaussian 
distribution (7) inherently satisfies the constraint that positive and negative values of x are 
equally probable, <x> = O. 

2.2 The Distribution of Probabilities 

The corresponding density of probabilities y = x2 can now be obtained by the usual rule for 
change of variable in a probability density 

(8) 

The factor y-l/2 comes from the Jacobian dx/dy and implies that low values of the 
probability y = x2 are strongly favored. 
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2.3 The Prior Distribution of Probabilities 

The probability distribution (8) can be derived directly as the distribution of maximal 
entropy provided one uses a measure (or a prior probability) for the distribution of y 

(9) 

One can indeed bring forth very general arguments why y-l/2 is the proper prior 
distribution for probabilities [14]. Independent arguments leading to the same result have 
been presented at this meeting by Skilling. In the present context we prefer, however, the 
argument which uses a prior uniform density for the amplitudes because the physics is 
more obvious. 

2.4 Complex Amplitudes 

So far we have taken the amplitudes to be real. If they are complex, the required changes 
are quite straight-forward. Since the normalization is a constraint on <I x 12>, the real and 
imaginary parts of x are independently distributed with a Gaussian density of width 
<I x 12>. The essential change is that y = I x 12 now has an exponential distribution 

P (y) = «y»-l exp (-y I <y» (10) 

Numerical studies (e.g., [15] for an early example) show that, in the statistical limit, the 
Gaussian density is accurate provided that one considers the amplitudes with respect to 
basis states of comparable energy. Many more details can be found in [16]. 

3. The Optical Spectrum 

An ideal 'stick' spectrum is given by 

S (E) = LYfO (E - EO 
f 

(11) 

where Yf is the intensity of the transition to the fmal state If> of energy Ef, 

(12) 

D is the transition operator and Ii> is the initial state. What we are concerned with is the 
distribution P(y) of intensities irrespective of the energy of the final state. In otherwords, 
here too we generate a distribution by collapsing the energy resolved spectrum onto the 
intensity axis and examining the fraction, P(y) dy, of transitions with intensities in the 
range y to y + dy. 

The intensities Yf satisfy a sum rule: 

(13) 

which can be regarded as the analog of the normalization condition (2) for the state d Ii>. 
Hence the distribution of spectral intensities in the chaotic limit is given by (8), (or by (10), 
if the amplitudes are complex). 
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3.1 Additional Constraints 

The simple derivation above does lead to a distribution which sometimes but not always 
agrees with experimental results. To examine one (out of several) reasons for deviations 
we note that for spectra which access very highly excited states, each final state If> in (12) 
can be expanded as in (1), hence 

xi': <flD Ii> = L xfn<n ID Ii>= Xf. d T (14) 
n 

where d is a fixed (for all final states f) vector whose components are the amplitudes 
<i I Din>. In otherwords, the set of amplitudes {Xf}, f variable, is obtained by a rotation 
of the set {dn }. In the strict chaotic limit such rotations will have no effect on the 
distribution of amplitudes. If, however, it is possible to introduce a privileged basis set 
such that at the energy range of interest, the amplitudes <n I D I i> have a systematic 
structure then this will be reflected in the distribution of intensities. This diagnostic tool 
has served us well in a number of concrete examples (e.g. [17]). 
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Abstract. By relying on the principle of indifference in a form suited to quantum 
mechanics, we prove that the density operator which should be assigned to a quan­
tum system when only partial information is available has a generalized canonical 
form. This result provides an indirect justification of the quantal maximum en­
tropy criterion, based on the use of von Neumann's entropy with constraints on 
the known expectation values. 

We present below the main ideas of a work already published in a detailed form. 
We include some relevant references [1-5], in which a more complete bibliography 
can be found. 

Our aim is to select the least biased density operator D in case the only available 
information is the set of expectation values ai = (Ai) of some observables A;. 
The state D of the system is supposed to be generated by some reproducible 
statistical device. In equilibrium statistical mechanics, the observables Ai are 
the constants of the motion; for irreversible processes, they are macroscopic non­
commuting quantities, taken either at the initial time or at arbitrary times [3] j we 
also have in mind small quantum systems, prepared in a systematic fashion, then 
tested by measuring some observables A; [5]. We assume that the data ai have 
been observed on some samples of the statistical ensemble described by Dj these 
samples must differ from one another if the observables Ai do not commute. We 
are interested in D before measurement, so as to disregard the resulting quantum 
perturbation and to make predictions about untested samples. 

The available data 
(1) 

are not sufficient in general for determining D. The maximum entropy criterion 
advocated long ago by Jaynes may achieve such a determination, through the 
maximization of 
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S(D) == -TrDlnD (2) 

subject to the contraints (1). As in equilibrium. statistical mechanics, this yields 
the generalized canonical distribution 

(3) 

where the Lagrange multipliers Pi are related to the data a. by 

8lnZj8P. = -a •. (4) 

The maximum of (2) defines the relevant entropy relative to the data a., a quantity 
useful in irreversible statistical mechanics [3J as well as in measurement theory [5J. 

In spite of its many successes, this procedure has been criticized, even by Jaynes 
himself. Within the context of information theory, it is natural to require that the 
uncertainty due to the statistical description of a state by a density operator D 
should be measured by a quantity S(D) which is additive and invariant in a change 
of basis; these conditions justify von Neumann's form (2) for S(D). Moreover, 
when the observables As are constants of the motion, (2) can be identified with 
the thermodynamic entropy. But the identification of the information content 
(2) as a measure of bias in the choice of D is questionable: why should we 
require additivity for a measure of bias? A direct justification of (3),(4) from (1), 
by-passing the maximum entropy criterion, is therefore desirable. This has been 
achieved in various ways in ordinary statistics [lJ. Quantum mechanics brings in 
difficulties, due to the non-commutation of the observables As and to the operator 
nature of quantum states D, which we have solved as follows [2J. 

Hypotheses. We shall rely only on the principle of indifference (or of insufficient 
reason) introduced by Laplace: equal ignorance implies equal likelihood. In order 
to apply this priciple, it is necessary to define the possible elementary equivalent 
events which will be considered equally probable. Their choice, which may be a 
source of difficulties [4], is always (though sometimes implicitly) based on some 
invariance, for instance under permutations for discrete events. In quantum me­
chanics, the required equivalence between events is defined by the group of unitary 
transformations in Hilbert space. Then, if our knowledge just amounts to arrang­
ing the basic events into two groups, those which are allowed and those which 
are incompatible with the available information, we should assign to the state a 
density operator acting in the subspace thus defined and invariant under unitary 
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transformations, i.e., D should be taken as proportional to the projector on this 
subspace. 

The constraints (1) do not define such a subspace of the Hilbert space, and we 
now recast our problem into a form allowing to use the principle of indifference. 
To this end, we treat as a unique "supersystem" a set of N replicas (N -+ 00) 
of the system under study, labelled as 0: = 1, ... N, and reminiscent of the Gibbs 
ensemble. This system has not a real existence, but represents a collection of 
real or thought experiments performed on the actual system, with always the same 
preparation. An elementary event for the supersytem is thus a collection of results 
for N experiments. With each replica of the original system is associated a Hilbert 
space ha (all ha have the same structure), and the overall Hilbert space )/ of the 
supersystem is the direct product of the spaces ha • The (statistical) state of the 
supersystem is represented by a density operator V in)/. The single systems 
constituting the supersystem may be correlated because they belong to the same 
population; their individual density operators Da are all equal to D, and can be 
derived from V by taking a partial trace over N - 1 systems: 

D = Tra =2, ... N V. (5) 

We shall first select V by means of the principle of indifference, then deduce D 
from it by calculating (5). 

Choice of V. In order to transfer to the supersystem our information (1) about 
each of its constituents 0: , we introduce in )/ the mean observable 

(6) 

associated with each physical quantity Ai. The state D satisfies 

Tr VA i = ai, (7) 

consistently with (1),(6). However, Ai does not behave as Ai. In the limit N -+ 00, 
each Ai has a nearly continuous spectrum; moreover the commutators 

(8) 

(where Ai; is associated through (6) with Ai; == [Ai, Ai]) tend to zero. We can 
thus treat the observables Ai as nearly classical variables, which take the values 
ai within vanishingly small errors for N large. This allows us to identify the 
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expectation values (1) for a single system with the mean values (6) over the super­
system. A careless application of the principle of indifference would then provide 
for N = 00 

(9) 

which both satisfies the constraints on mean values and is invariant under the 
unitary transformations compatible with these constraints. 

However, in order to work out (5) explicitly, we have to take N large but finite, and 
then (9) is unsatisfactory. Indeed, small fluctuations of Aj around ai are required 
because (8) (where liN plays the role of Ii) implies uncertainties of order 1/VN. 
We perform therefore a coarse-graining on (9), taking for N finite 

(10) 

The factor W ensures normalization; when N -t 00 , we shall let a; -t ai and 
Ci -t 0, while the Ai'S (introduced for dimensional reasons) remain constant. For 
N large, (10) behaves as (9), but it is meaningful for N finite while (9) is not. 
Because the final result (3), (4) will not depend on the particulars a;, Ai of (10), 
we can also take for D more general expressions, which involve other shapes for 
the widening of Aj around aj and which are obtained by superposition of forms 
(10) with different parameters a;, Ai' We thus choose for D a form approaching a 
projector on a subspace such that Ai ~ ai' 

Calculation of D. It remains to derive from (5) and (10) the density operator 
D of a single system, letting N -t 00 in the end. This calculation, which is not 
straightforward, turns out to be an amusing and instructive exercise, involving 
rather unexpectedly many techniques of field theory [2]. We present here just its 
first stages. 

The explicit evaluation of a partial trace such as (5) over many subsystems 0: = 
2, ... N is easy only if the contributions of the subsystems are factorized. We wish 
therefore to rewrite (10) as the integral of a product of factors depending each 
on 0: = 1,2, ... N. This would be readily done for each i if (10) were a product of 
exponentials rather than the exponential of a sum over i. Indeed, by carrying out 
for each i the Fourier transform 

Jl. - a'. 
X =' • 

- Ajc ' 
(11) 
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we would then obtain an integrand which, according to (6), is a product of opera­
tors indexed by a and i. However, the contributions of the various i's to (10) are 
entangled. In order to treat each i separately while accounting properly for non­
commutation, we use a standard trick in field theory : we introduce a fictitious 
time 0 < t < 1, replace (Ai - a;)2 in the exponent of (10) by 

and order the operators Ai (t) (now indexed by t) by means of a T-product. We 
can thus rewrite (10) as 

D = ~Trre- K;(t)6t, 

W . t,. 

The Fourier transform (11) can now be performed for each time t and each i, 
and D is expressed in the limit of infinitesimal time-steps dt as the functional 
integral 

over variables tpi (t) running from -ioo to +ioo for each i and t (we have set 
p.~ == N g2 An. The precise definition of the measure dtp is given in 12]. 

Under the T-product, each contribution a = 1,2, ... N now factorizes. The partial 
traces of (5) are easily performed, and each one brings in a factor 

(13) 

which is a functional of tpi (t). The resulting expression 

(14) 

involves the functional 

E Itp] == ~ + ~ 11 dt [a:tpi (t) + ~P.itp~ (t)] , 
• 

(15) 
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and the functional 

(16) 

which is moreover an operator in the original Hilbert space h. The analogy of 
(14) with field theory is complete. The integration variables Pi (t) play the role 
of (Bose) fields with an effective action E [pI , which includes, besides ~ [p], a 
(time-independent) source term and a mass term (with bare masses lLi small as 
Ne2 ). We are interested in the average (14) of R over the fields p. In (14), N 
plays the role of lin, and our field theory should therefore be worked out in its 
"classical" limit (although the operators Ao do not commute). 

The result is easy to guess, since in this limit the weight is expected to be con­
centrated around the maximum of E [PJ , the fluctuations of the fields becoming 
negligible. In the limit N --+ 00,Ne2 < 1 ,we have a~ --+ ai' lLi --+ 0, and E [PJ 
is maximum for time-independent fields Pi (t) = Pi satisfying the condition (4) 
(note that (15) reduces then to InZ + Ei a.Pi). For this "classical" value Pi ofthe 
fields, (16) is identical to (3). We thus get the same result as with the maximum 
entropy criterion, by simply starting from equiprobability for the supersystem. 

In order to make this argument rigorous, we still have to show that the tree 
approximation which we have just sketched becomes exact in the limit N --+ 00. 

This is hard because the maximum of E [pI is very flat for e --+ o. Indeed, the 
second order contribution in Pi (t) - Pi of (15) involves the vanishingly small mass 
term IL. , plus a term from ~ which may also vanish. This vanishing reflects a kind 
of gauge invariance arizing from commutation of (3) with some linear combinations 
of Ao; actually, if the observables Ao all commute with one another, (13) does not 
depend fully on Pi (t) but only on its zero-frequency Fourier component (in this 
case, it is not necessary to introduce a time-dependence, and the set of fields 
Pi (t) is overabundant). Nevertheless, the estimation of the successive terms in 
the diagrammatic expansion of (14) has shown [2J that they are negligible in the 
limit N --+ 00, provided 

(17) 

The upper bound for e was expected. This bound is necessary to fix effectively Ai 
at ai in (10), within an error of order N- 1 / 2 imposed by the commutation relations 
(8). The lower bound has a purely quantal origin. It ensures that the number of 
orthogonal quantum states involved in (10) with approximately equal probabilities 
is large. In other words, [) is approximately equal to a projector over a subspace 
with large dimension. This dimension, of the same order as W, behaves as an 
exponential of N. Thus, possible regularities in the spectrum of [) are smoothed 
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out by the large enough width c, and (10) nearly describes equiprobability in spite 
of its rounding-off. 

We have shown above how the maximum entropy criterion in quantum mechanics 
can be proved indirectly through its consequences (3),(4). A more direct derivation 
from the principle of indifference implemented as (10) can also be built [2J by 
defining the relevant entropy associated with the data ai as limN _ 00 In W / N (where 
W behaves as the number of equiprobable states of the supersystem compatible with 
the data ad, then by identifying this quantity with the von Neumann entropy (2) 
of the state (3),(4). Alternatively, it would be desirable to justify the quantal 
maximum entropy criterion from consistency requirements (as in the works of 
Shore and Johnson, and of Tikochinsky, Tishby and Levine, ref. [1]), rather than 
by using the principle of indifference; but non-commutation of the observables A 
brings in serious difficulties. 

As a final remark, note that the projection of the state by a quantum measure­
ment enters the above framework [5]. Consider an ideal measurement of Ao where 
all samples of the statistical ensemble are retained, irrespective of the result ob­
tained about Ao. Take as observables Ai the ones which commute with Ao 
their expectation values ai are specified, being unchanged afin measurement of 
Ao , while any other information is lost in the process. This is consistent with 
the fact that the projected state has just the form (3), where the A~s are the 
observables commuting with Ao. 
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ABS1RACT. This work explores the relationship (if any) between two apparently disparate 
approaches to non-equilibrium statistical mechanics. These are (1) the methods of the Brussels School, 
notably that of subdynamics, (2) the methods developed by those working in the field of maximum 
entropy. 

While the technical details of these approaches are both very formidable and quite different, it is 
possible to see in general terms how they are related. It is suggested that for many dynamical systems 
the approaches are likely to lead to the same results. 

1. Introduction 

The aim of statistical mechanics is to understand the macroscopic behaviour and properties of 
matter in terms of its microscopic (Le. molecular) physics. While that may seem at first to be 
largely a technical matter, it can also be regarded as a paradigm for science generally; in that 
connection one may recall Popper's phrase " ... the art of discerning what we may with 
advantage omit" (popper 1982, p.44). Clearly, a very great deal of information has to be 
omitted, and in the present company this suggests that where 'information' is unavailable, 
maximum entropy procedures should be applied to make the best predictions. Such a 
development was initiated and pursued vigorously by Jaynes, starting in 1957 (see his 
collected papers, Jaynes 1983) and by his co-wolkers; a valuable exposition by Grandy 
(1988) has appeared recently. The same idea was developed independently by Zubarev 
(1974). 

Another approach to this area is due to the so-called 'Brussels School' of statistical 
mechanics. An early account of it appears in the book by Prigogine (1962) but it has been 
much revised and extended since then, notably by the introduction of the concept of 
subdynamics. One version of it has been expounded systematically in the book by Balescu 
(1975). A central tenet of this approach is that everything should originate in the microscopic 
dynamics, implying that entropy maximisation is an additional assumption that should be 
unnecessary. 

Neither of these schools has earned widespread external acceptance; they both appear to 
be very introvert, and each rigorously excludes reference to the other. 

2. Basic Ideas 

To expedite the simplification required in science, one wants to consider a macroscopic but 
relatively small and straightforward system, supposed isolated from the rest of the universe. 
The starting point is thus Hamilton's or Schttklinger's equations. This leads immediately to 
the fundamental problem of explaining irreversibility (Loschmidt's paradox). 

The observed approach to equilibrium implies the existence of equilibrium macroscopic 
states even though microscopic dynamics would not recognize that concept. This in turn 
divides the subject into equilibrium statistical mechanics and non-equilibrium statistical 
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mechanics (NESM). 
The following are among the ingredients that have been proposed for understanding the 

foundations of statistical mechanics. 
(a) Open systems No system can be completely isolated, and extremely small discrepancies 

involving very remote regions can produce large perturbations eventually. This is illustrated 
by Borel's well-known example, as refined by Berry (see Denbigh & Denbigh 1985, pp. 32-
33). Fonnal consideration of the system in an infinite universe introduces the question of 
boundary conditions at infinity (as with the retarded potential in electromagnetism), so linking 
the 'arrow of time' to cosmology. Mathematically this often appears in manipulations of 
Fourier transfonns. requiring a singularity to be displaced for reasons of 'causality', (e.g. in 
the Gell-Mann-Goldberger theory of quantum scattering, Landau damping in plasma physics, 
etc.). This can be referred to as the 'iE-trick' for introducing irreversibility. 

(b) Chaotic dynamics This recognizes that, in a fonnally detenninistic system, 
predictability over a long time may be unattainable. There are various levels of chaotic 
behaviour, but a good example is the 'mixing' condition (introduced intuitively by Gibbs with 
his illustration of ink and water), where the exponential divergence of orbits in phase space is 
involved. The result is that the mathematical problem of prediction is technically not a well­
posed one because of sensitive dependence on initial conditions. 

(c) Information theory can also be traced to Gibbs ideas (e.g. the most probable state) and 
the subsequent development by Shannon, but needs no further elaboration here. 

The relevance of these points may well be challenged. In contemplating the diffusion of 
sugar into hot coffee it is hard to believe that the diffusion coefficient is controlled by events 
on distant galaxies as might be supposed from (a). Point (b) does not in itself introduce 
irreversibility, as it applies equally to retrodiction. To some physiciSts, point (c) introduces an 
unacceptable subjective element, which is examined in detail by Denbigh & Denbigh (1985). 

3. Equilibrium Theory 

Even here there appear to be rival versions for the Liouville density p(X), the well-known 
microcanonical and canonical distributions. (X denotes a point of phase space.) These can be 
connected, respectively, with the strictly dynamical and the infonnation-theoretical approaches 
to statistical mechanics. However, they lead to equivalent results for all practical problems (a 
consequence of a version of the central limit theorem, see Khinchin, 1949). There is therefore 
no opportunity to make a decisive choice either theoretically or experimentally. 

We merely observe here that, in equilibrium theory, very general methods exist, but that 
there is not a unique choice of p that can be said to correspond to reality. 

We note also that the canonical distribution leads' to technically more tractable 
calculations. 

4. Non-equilibrium Statistical Mechanics 

It is natural to ask whether methods of similar generality exist in NESM. The verdict among 
physiciSts generally appears to be negative. For example Kubo (1978, p.lO) wrote 

Is it possible to generalize Gibbs' ensembles to NESM? It would be great if we 
could answer this affinnatively, because we should be able then to start NESM from a 
basis as general at the microscopiC level as we do in equilibrium statistical mechanics. 
But I think this is too much to be hoped. It cannot be done with such great generality, 
although I do not deny the possibility of doing it within a certain limitation or as an 
approximation. 
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Other quotations are given by Grandy (1988) in his preface. This point of view seems to 
originate in a feeling that the field of enquiry is too wide, encompassing the whole of the 
science of matter. 

To the proponents of the approaches of the two schools that we have referred to, the 
answer is naturally positive; but their procedures are apparently unrelated. As noted in the 
equilibrium case the same macroscopic results may follow from differing methodologies, 
though such equivalence will be far more difficult to establish in the time-dependent case. 

The difference between the two approaches can be traced to deep questions in the 
epistemology of probability. It seems better at present not to get immersed in ideology, but to 
note that both groups manipulate a time-dependent probability density p(X,t) that satisfies 
Liouville's equation. We describe these procedures intuitively by regarding p as a vector in 
the appropriate Hilbert space, H, as in Figure 1. A level of macroscopic description is 
selected, with the result that p may be split (though not uniquely) into 'wanted' and 
'unwanted' parts as shown. Each of the two axes actually represents an infinite-dimensional 
subspace. Liouville's equation, written symbolically 

dp/at = Lp 

where L is a linear operator, defines trajectories p(t) in H. 

UNWANTED 

~--------------~----------------------~WANTED 

Figure 1 

5. Subdynamics 

Central to the Brussels school approach is the idea that a linear subspace of H exists, having 
such a dimensionality that to a given macroscopic state there corresponds a unique member 
Ps of the subspace, as in Figure 2. The subspace must have the additional property that any 
orbit p(t) that intersects the space lies wholly in it. Macroscopic physics (at the level of 
description chosen) then corresponds to this 'priveleged' set of solutions of Liouville's 
equation. Dynamics thus becomes confined to the subspace, hence the name "Subdynamics". 
This procedure, (formidably difficult in practice) articulates earlier ideas about unwanted 
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details decaying rapidly (Bogoliubov's hypothesis). Irreversibility can be traced to the 'ie­
trick'. (George, 1970). 

This procedure is convincing if (as infonnally suggested in Figure 2) additional 
contributions lying outside the priveleged subspace decay, and especially if they do so 
rapidly. For this to be true, the operator L must have an approprate spectral property, which 
can in tum be related to the level of ergodicity (see for example, Parry, 1981). 

The reduction results entirely from the properties of the Hamiltonian, i.e. from dynamics, 
and is obtained by applying asymptotic analysis to the fonnal solution of Liouville's equation 
in tenns of its Laplace transfonn. There is no appeal to entropy or infonnation. 

Figure 2 shows how a a general Liouville function p can be mapped into p =ITp that lies 
in the subspace aI!d implies the same mayoscopic state (i.e. wanted infonnation). The map IT 
is then a projection operator in H, i.e. IT =IT. It has the further property 

LIT=ITL 

which ensures that the special choice P=Ps' if made at t=O, is preserved in the time evolution. 

UNWANTED 

IT-SUBSPACE 

~----------~--------------------------~WANTED 

Figure 2 

This may be contrasted with early attempts to 'discard infonnation' by means of a 
projection operator, the well-known example being coarse-graining. There, the projection 
operator was selected on an intuitive basis, and does not commute with L. In subdynamics, 
IT, if it exists, is already detennined by the dynamics of the system. 

Balescu (1975) should be consulted for details of this theory, and its applications to a 
number of physical systems. He also gives the quantum mechanical version of the fonnalism. 

6. Maximum Entropy Methods 

To the present audience, an attractive way to select p at one instant, with prescribed values of 
the 'wanted' infonnation, is to maximise the infonnation entropy (which physicists call the 
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Gibbs entropy). The resulting values P=Pm then lie on a curved manifold, as in Figure 3. 
This does not solve the problem, however, since the trajectories p(t) satisfying Liouville's 
equation do not in general lie in the manifold. So the (nonlinear but idempotent) map from a 
general P to Pm does not commute with L. As Jaynes (1983, p.289) notes in the case of gas 
dynamics, the adoption of Pm at an instant implies the absence of transport effects at that 
instant, although the subsequent evolution would start them up after a very short time. But by 
then P would no longer be on the maximum entropy manifold. Jaynes and his coauthors 
modified the maximum entropy approach, adopting the following prescription. P must be a 
solution of Liouville's equation with the property that at each time t it maximizes the Gibbs 
entropy subject not just to the macroscopic data at time t but to values of that data at all 
earlier times <t. By means of a Heisenberg-picture calculation, this requirement can be 
expressed as an integral equation, with integrals over past time. The involvement over past 
but not future times introduces the symmetry-breaking. 

UNWANTED 

Pm: p(t) 

I 
MAXENT MANIFOLD 

~--------L----------------------------'WANTED 

Figure 3 

However Zubarev (1974) reaches essentially the same conclusion merely by displacing P 
from PI.I1 and using Liouville's equation to solve for the displacement, in a way that is 
SUperfiCIally similar to the construction of the master equation, but in terms of logp rather 
than p. Calculations of this type, in P itself, were precursors of subdynamics, see Balescu 
1975, p.526. 

The integral over past time that appears in these calculations must converge if the method 
is to succeed, and this too leads to an 'ie-trick' situation. This is explained in some detail by 
Zubarev. Very rapid convergence implies that the macroscopic variables evolve essentially in 
a Markovian way (no 'memory' effects). But their evolution is accompanied by transport 
effects, i.e. irreversible phenomena, though as mentioned above these are not present if one 
tries to base the theory on entropy maximisation at a single instant. 

Presumably, a condition is required for this to be valid, just as was the case in 
subdynamics. However no such conditions are explicitly discussed in this part of the 
literature. The presentations by Jaynes (1983) and Grandy (1988) start in a more general 
formulation. They suppose that any set of incomplete data, extending over arbitrary subsets of 
space-time, is supplied. Their application of entropy maximisation then gives a prediction for 
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events in any part of space time that is entirely in the future of the regions containing the 
data. Nevertheless the problem considered here, the construction of closed equations for a 
given level of description, appears to be wide enough for NESM as generally understovd. 

7. Comparison 

At first sight, the two approaches seem so different, both in philosophical foundations and in 
methodology, that comparison can hardly start. But underlying each of them is the essential 
idea of making a special selection from the class of solutions of Liouville's equation, in such 
a way that macroscopic physics is expressed by the appropriate projection onto the 'wanted' 
subspace. A unique value of p can then be ascribed to each macroscopic state, and this can 
serve as an initial condition for the special solution of Liouville's equation. 

These specially selected solutions are different in the two approaches. We note from the 
equilibrium case that this is not necessarily a conflict, as the eventual macroscopic results 
may still agree, at least for large systems. Such very simple cases as can be handled at all 
indicate that outcome. 

The mathematical relationship between the two approaches originates in the fact that 
subdynamics applies methods of linear analysis to Liouville's equation for p itself, while 
maximum entropy follows somewhat similar procedures for Liouville's equation in logp. The 
detailed investigation is beyond the scope of the present paper. 

8. References 

Balescu, R. 1975 Equilibrium and non-equilibrium statistical mechanics. Wiley. 
Denbigh, K.G. & Denbigh, 1.S. 1985 Entropy in relation to incomplete knowledge. Cambridge 

University Press. 
George, C. 1970 Bull. Acad. Roy. Belg (el. Sci.) 56, 505. 
Grandy, W.T. 1988 Foundations of statistical mechanics. Volume 2: Nonequilibrium 

phenomena. Reidel. 
Jaynes, E.T. 1983 Papers on probability, statistics and statistical physics. Reidel. 
Khinchin, A.I. 1949 Mathematical foundations of statistical mechanics. Dover. 
Kubo, R. 1978 Prog. Theor. Phys. Supp. no. 64, p.l. 
Parry, W. 1981 Topics in ergodic theory. Cambridge University Press. 
Popper, K.R. 1982 The open universe: an argument for indeterminism. Hutchinson. 
Zubarev, D.N. 1974 Non-equilibrium statistical thermodynamics. Plenum. 



APPLICATIONS OF MAXIMUM ENTROPY TO CONDENSED MATTER PHYSICS 

D. A. Drabold, A. E. Carlsson, and P. A. Fedders 
Department of Physics, Washington University, 
St. Louis, Missouri 63130, U.S.A. 

ABSTRACT. We describe recent applications of maximum entropy to matter in 
condensed phases. Applications to spin systems, electronic structure, and calculating 
interatomic potentials are included. 

I. INTRODUCTION 

Maximum entropy methods have recently been applied to several kinds of problems 
in condensed matter physics. In broad outline these applications have fallen into 
either of two categories: moment problems (useful in spin systems, electronic 
structure calculations and densities of states for lattice vibrations), and a sophisticated 
application of maxent to the calculation of interatomic potentials in metals. These 
approaches have had considerable success, and our expectation is that extensions of 
these methods, and entirely new applications will be developed in the future. In 
solid state physics workers sometimes resort to approximations that have no a priori 
justification -- an example we will mention is the use of ad hoc functional forms to 
invert moment problems. Beside the information theoretic advantage of using 
maxent, another point in favor of this procedure is that it provides concrete functional 
forms to manipulate and base other approximations on: this can be compared to 
some large-scale computer calculations. It will be the goal of this paper to 
familiarize maxent practitioners with recent work in condensed matter and to relate a 
few rather generally encountered properties that might occur in other applications. 
We will organize this paper as follows: Section II will discuss the maxent solution 
of the classical moment problem and physical applications. Section III will include a 
brief discussion of methods for obtaining interatomic potentials via maxent. 

II. MOMENT PROBLEMS IN CONDENSED MATTER 

The classical moment problem may be stated as follows: Given the first N power 
moments of a non-negative function p(x) on some interval a ~ x ~ b: 

b 

J.In = J dx xn p(x) , n = 0,1,2, ... ,N , 
a 
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develop an approximation for p based on the information contained in the moments 
J.ln. For finite N, it is clear that the solution to the moment problem is not unique: 
many functional forms can be invented which correctly reproduce the known 
moments, but which may differ (sometimes radically) in the unknown higer moments. 
This lack of a unique solution leads us to consider what the "optimal" functional 
form might be. The answer is provided by the method of maximum entropy.1 
Following Mead and Papanicolaou, we may construct an entropy 

b 

S = - f dx p(x)[log p(x) - 1] (2) 
a 

to be maximized subject to the constraint that p should have the required first N 
moments. Using the usual procedure of introducing an auxiliary functional with 
undetermined Lagrange multipliers to include the constraints, and functionally 
differentiating with respect to p, we easily arrive at the maxent solution of the 
problem: 

p(x) = ..!.. exp { - ~ AjXi } 
Z i=1 

(3) 

and Z, ~ are determined by requiring that p satisfy the moment constraints. The 
determination of the Ai is difficult, owing to the nonlinearity of the maxent p and the 
many quadratures involved in an iterative procedure. A Newton minimization 
procedure was given in Ref. 1. Bretthorst2 has developed a more robust algorithm, 
and Drabold3 has found some sum rules that speed the original Mead and 
Papanicolaou code up by more than a factor of two. Despite all of this, it is not hard 
to find examples for which the maxent code fails. Not surprisingly, this tends to 
happen for functions which have explicit singularities, or those with discontinous 
derivatives. Such functions are sometimes of physical interest. 

Before discussing examples of moment problems in condensed matter, we note 
that these moment problems are a recurring theme of the subject. Solid state theorists 
tend to work with moment formulations of problems because they offer an alternative 
to the task of diagonalizing large matrices. For a spin 'l2 problem for example, the 
dimensionality of the Hamiltonian matrix which contains all dynamical information is 
2K where K is the number of spins -- typically order 1023 for a macroscopic system! 
In contrast, calculation of the low order moments is usually fairly straightforward.4 

Also, the moments tend to contain information about the local environment of a 
particular site; information one is usually interested in. The complete set of 
eigenvalues and eigenvectors associated with the Hamiltonian contains vastly more 
information, most of which is irrelevant to an investigators specific interests. It is 
also worth noting in passing that the reason why one can readily extract the moments 
is related to the fact that the trace of a quantum mechanical operator is independent 
of the choice of basis.5 In each of the examples we discuss, this is the key to 
obtaining the moments of physically relevant functions. In fact, with the appearance 
of reasonably reliable code for solving the maxent moment problem, we may think of 
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maxent as providing us with an alternate numerical method for diagonalizing 
Hamiltonian matrices: After all, we can (in principle) always calculate traces of 
powers of such matrices. These traces are to within a normalization exactly the 
power moments of the density of states for the Hamiltonian matrix. So for cases 
where symmetries or other considerations allow easy calculation of powers of the 
Hamiltonian, maxent should be considered as a means of obtaining the density of 
states. One other potential application of maxent moment methods to solid state 
physics is the improvement of convergence of certain expansions. For example, a 
high-temperature expansion takes the form of an infinite series in traces of powers of 
the Hamiltonian. Information theoretic extrapolation for higher order terms in the 
series may provide a useful means of extracting physically meaningful results for 
lower temperatures. 

The first physical application of the moment problem we discuss is the 
calculation of response function G(oo) for spin systems.6 This function has the 
physical interpretation of a spectral density: it may be thought of as indicating the 
"density of excitation" per unit frequency range. It is clear that such a function must 
depend upon the detailed dynamics of the spins, which is naturally a many-body 
quantum mechanical problem. Several kinds of spin-spin interactions have been 
examined: Mead and Papanicolaou 1 applied maxent to the one-dimensional XY 
model and Heisenberg exchange. Impressive agreement with the exact solution of 
the XY model was obtained. Because maxent was well converged in the Heisenberg 
case (in the sense that the answer did not change appreciably with additional 
moments), these authors reasonably concluded that they had an essentially exact 
solution for the spin dynamics of the Heisenberg system. This result is significant, 
because there is no exact solution known. 

For a calculation which may be directly compared to experiment, we tum to the 
case of a magnetic dipolar coupling between spins 1f2. Here, careful experiments have 
been done on CaF2 where the fluorine nuclear spins are arranged in a simple cubic 
lattice. Some complicated calculations 7 have produced eight exact moments for the 
physically measurable "lineshape" function G(ro) for this system. In Ref. 8 maxent 
was applied to the theoretical moments and found to agree with experiment to within 
- 2%. In general the function G(oo) is complex-valued, the real part representing the 
NMR absorption spectrum, which is clearly positive definite. It has been found 
convenient in other calculations 9 to introduce a function related to G, the self energy 
l:(oo) which satisfies the equation G(ro) = i/{[oo - IT(oo) + ir(ro)]}, where IT and -r 
are the real and imaginary parts of l: respectively. It can be shown that r is of one 
sign, and therefore another candidate for the application of maxent. Power moments 
of r are readily related to the known theoretical moments of G(oo). Although the 
direct use of maxent on the function G was very satisfactory, optimal agreement was 
obtained by fitting r as an intermediate step. The reason for this appears to be that r 
has less structure than G and is therefore easier to apply maxent to. The utility of 
the auxiliary function l: is related to the function-theoretic properties of G and l: on 
the complex plane. This point is discussed further in Ref. 8. Another interesting 
feature of the work on the dipolar lattice was the appearance of an oscillating pattern 
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of convergence. As others have shown, it is quite possible to find sets of moments 
for which the maxent procedure does not converge. By this we do not refer to a 
numerical difficulty, but to an intrinsic limitation of the method for certain sets of 
input moments. For the dipolar case it was observed that for N = 4k + 2 (N the 
number of input moments, k an integer), no maxent solution existed on the infinite 
interval. This result is connected with the expected large-ro behavior of the exact G, 
which on physical grounds is expected to decay like e-a\OO\, for some a. On the other 
hand, the maxent fitting function behaves like e -').,r;C# thus to reproduce the correct 
behavior, there must be considerable cancellation for large ro, implying that the 
Lagrange multipliers should not be of one sign. Cases for which A.N < 0 can lead to 
situations for which there is no maxent solution. Numerically this non-convergence 
is manifested by a dependence of the A; on the cutoffs for the numerical integrals (the 
actual range of integration for G and r is ro E (-<>0, 00». It was also found that self­
energy and lineshape fits were complimentary in the sense that when the lineshape 
(self energy) produced a non-converged calculation, the self-energy (lineshape) 
function converged. So in some cases, one may be forced to use an auxiliary 
function to obtain a converged maxent fit. 

We have also applied maxent to a more complicated version of the previous 
problem, the case of a nonmagnetic host with spins -Y2 randomly diluted throughout 
a crysta1.10 A particular realization of such a system is ordinary diamond, due to the 
existence of two isotopic species of carbon: spin 0 (magnetically inert) and spin Y2. 
For high concentrations of magnetic particles it was found that maxent and 
configuration averaged moments produced good line shapes. For low concentrations 
of spins, we used maxent as an aid in inferring to what extent spin wavefunctions 
were localized (in the terminology of magnetic resonance this characterized the 
dipolar broadening as inhomogeneous or homogeneous). 

We have also recently applied maxent to the problem of obtaining theoretical 
estimates of relaxation times in solid molecular hydrogen. We have observed 
reasonable agreement between theory and experiment 11 

Maxent has been used to obtain densities of states in binary random alloys. 
Here, there have been a wide range of methods applied, from exact diagaonalization 
of large matrices to recursion methods. For a particular model calculationl2 it was 
found that maxent offered a real alternative to continued fraction and coherent 
potential approximation (CPA) methods. While it is certainly true that the CPA 
method produces very satisfactory results in a wide range of regimes, it is limited in 
some contexts by mean-field like assumptions underlying its derivation. The 
formulation of recursion and maxent moment methods do not suffer from this 
weakness. Maxent also has an advantage over recursion; in the usual implementation 
of recursion the electronic Green's function takes the form of a continued fraction 
which must be terminated in some way. This is unfortunately more an art than a 
science. While an experienced practitioner of recursion would correctly argue that a 
particular choice of truncation schemes incorporates knowledge of the physics of the 
problem, we point out that such information could also be included as an additional 
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constraint on maxent, without the introduction of bias. As in the spin problem it was 
useful to reconstruct functions related to the electronic Green's function rather than 
the Green's function directly. This was again because the auxiliary functions were 
better behaved. In the alloy problem it was best to use a function which bears the 
same relation to the self energy that the self energy did to the Green's function in the 
spin problem. This procedure produced the best agreement with a CPA calculation. 
We should also point out that maxent and recursion are complementary to some 
extent, as recursion provides the most efficient means of calculating the moments 
needed for the maxent procedure. We also tried a specific example of one vacancy 
in crystalline Si, and found maxent to be superior to continued fractions. 13 

Brown and Carlsson 14 provided the first application of maxent to structural 
energy calculations in the presence of defects such as vacancies. Very recently a 
comprehensive study of methods for calculating bond energies in a tight binding 
model has appeared. IS It was found that maxent was a useful means for computing 
structural energies in the presence of defects, better than continued fractions with a 
square root terminator, but only roughly equal inaccuracy to a gaussian quadrature1? 

approach which was computationally easier for more than six recursion levels. 
Glanville, et al. ls observed that there were computational difficulties with maxent due 
to an extreme sensitivity of the maxent fit to the values of the Lagrange multipliers 
conjugate to the moments. A possible remedy for this difficulty is to solve the 
moment problem on a different basis. The origin of the trouble lies in the nearly 
singular nature of the covariance (Hessian) matrix -- this is a consequence of the 
increasing degree of correlation between higher moments. A possible solution is to 
take N linearly independent combinations of the moment constraints, solve the 
moment problem on the new constraints, and transform back. Bretthorst2 has even 
gone so far as to construct an orthogonal basis, though any reasonable combinations 
should help significantly. Turek16 has independently implemented these ideas and 
finds that his code is much improved over the original approach of Mead and 
Papanicolaou. 1 

m. INTER A TOMIC POTENTIALS VIA THE MAXIMUM ENTROPY PRINCIPLE 

The study of defects and structural energetics in metals is greatly aided by the 
concept of effective interatomic potentials. This field has suffered from the lack of 
uniform methods for obtaining such potentials. One of us has recently shown18 that 
calculating interatomic potentials can be formulated as a problem of incomplete 
information: Given knowledge of the changes in the two point density-density 
correlation function in a condensed matter system, how can one best guess the 
associated energy changes? To answer this question, one must obtain guesses for 
higher order correlation functions (i.e., triplet, four-body ... ). Knowledge of these 
functions is necessary for calculating total energies since these depend on clusters of 
3,4, ... particles. Maxent can be used to estimate these functions, and thus 
produce a rigorous foundation for future work in the area. The method produces 
expressions for the effective potential as a functional of the pair density-density 
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correlation function. For further details of this approach, we refer the reader to 
Ref. 15. 
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ABSTRACT. Recent work has revived the approach to the equilibrium theory of 
classical liquids via coding theory and statistical geometry. Each atomic configuration 
is specified in terms of its Voronoi honeycomb and Delaunay graph, and the perfect 
gas distribution is used as a prior for the probability density of a Voronoi 
bond-length. An entropy maximisation then leads to an equation of state in closed 
form. Preliminary results in two dimensions agree with computer simulations within 
the approximations made, and include a qualitatively correct account of the liquid/gas 
phase transition. Further progress, including a description of ordering, requires the 
solution of several formal problems. These are discussed here in some detail since 
some of them seem to involve points of general interest in the formulation of 
maximum entropy methods. 

1. Introduction. 

The equilibrium theory of simple monatomic liquids is now generally regarded as 
well-established, in that it is possible to obtain close numerical agreement between 
theory and experiment in particular density ranges by using the YBG, PY or HNC 
systems of equations (see Hansen and McDonald 1986 for a recent review). 
However, there is still no single formalism applicable to the liquid/vapour system over 
the whole range of fluid densities. In an attempt to supply this, it was decided to 
re-examine the approach via statistical geometry originally due to J .D.Bernal. This 
had been later combined with the Jaynes-Shannon maximum-entropy formalism (see 
for example Collins (1972) for a historical review) but the results gave no liquid/gas 
phase transition, and the wrong low-density limit for the bond distribution. 

The new point of departure of the recent work was to use prior distributions 
which are those of a perfect gas. Even in two dimensions and with a first-order 
treatment using relatively crude approximations, the results show an immense 
improvement (Collins, Ogawa and Ogawa 1987. Since this paper will be cited 
repeatedly in what follows, for conciseness it will be denoted by I). The liquid/gas 
transition now appears naturally and of course the low-density limit is now trivially 
correct. In this paper we summarize the present formalism and discuss the problems 
of extending it to account for an ordering transition. In two dimensions this might 
be to a genuine solid crystal, as indicated by some computer simulations (Abraham 
1980), or a "hexatic phase" (Kosterlitz and Thouless 1972,1973; Halperin and Nelson 
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1978; Nelson and Halperin 1979). In either case the transition will here be termed 
"ordering" . 

2. Voronoi Coding of a Two-Dimensional Liquid. 

The liquid is assumed to consist of a large number N of identical atoms in an area 
(2-dim. volume) V. Boundary effects are ignored. The arrangement of atoms is 
irregular, with no long-range correlation, and statistics independent of position (no 
gravitational field). In particular the expectation atomic density averaged over any 
small region is p=N/V. 

Any given atomic configuration is specified in terms of its Voronoi honeycomb H 
and its topological dual Delaunay net D, shown in Figure 1. 

Fig.I. Voronoi honeycomb and Delaunay net for an arbitrary 
liquid-like atomic configuration. 

To a typical atom A is assigned a polygonal neighbourhood cell (shaded) consisting 
of all points nearer to A than to any other atom. The set of these cells constitutes 
H (dotted lines). Except for degenerate cases (of zero total probability) three cells 
meet at any vertex of H. Atoms with adjacent cells are defined to be neighbours, 
irrespective of their distance apart. To construct D we join all neighbour pairs by 
straight lines termed bonds (solid lines), so that D consists of an irregular set of 
close-packed triangles with the atoms at their vertices. An atom where q bonds 
terminate is said to have (Voronoi) valency q, or (for short) to be a q-atom (In 
Figure 1, A is a 4-atom with neighbours B,C,D,E). In general 3"<t, although 
3-atoms are rare even in a (two-dimensional) perfect gas. Any bonds from the 
same atom will be termed adjoining. 

The atomic configuration is specified if all the bond-lengths and atomic valencies 
are given (Collins 1967). We now set up an expression for the information entropy 
H of the system relative to that of a perfect gas (here called the "G-case" for short, 
to avoid confusion with pressure P) in which there are no interatomic forces and the 
atoms have a random (Poisson) distribution. The suffix G denotes quantities 
evaluated for this case. For a first treatment no attempt is made to model the 
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details of local correlations. The information entropy h=H/N per atom is then given 
by 

00 

h 10g(Pref I p) - 2 I dp f(p) log[ f(p)/fref ] 
-00 

00 00 

- 2 Wq log(Wq/WGq) - jJ db ~(b)log[~(b)/~G(b)] (1) 
q=3 0 

Here f(p) is the probability density of a Cartesian momentum component p of a 
randomly selected atom. Pref and fref are constant priors. Their actual values do 
not affect the calculation and for present purposes they may be ignored. W q and 
WGq are (general and G-case) probabilities that a randomly selected atom has valency 
q. Similarly, ~(b) and ~G(b) are the corresponding probability densities for a 
randomly selected bond-length b. The parameter j (=3 r in I) is defined to be the 
mean effective number of independently assignable bond lengths needed to fix the 
position of an atom. This parameter is essential since to replace j by 3 (the actual 
number of bonds per atom) would greatly overestimate h by neglecting correlations 
between adjacent bonds. For any plane D containing N atoms there are (neglecting 
edge effects) a total of 3N bonds (I) so that trivially j <3. However D can be built 
up by fixing the positions of each atom in succession. Each position is defined by 
two bonds linking the atom to those already fixed and hence we can write down the 
stronger inequality jQ.. Comparison with computer simulation results (I) suggests that 
the appropriate value of j is very close to its upper limit, i.e. j=2. 

The term 10g(Pret' p) is the entropy change of a perfect gas for a density change 
from Pref to p. From the information theory viewpoint it expresses, for example, 
the fact that it takes 1 bit extra of information to locate an atom in a box which is 
twice as big. The reason that a uniform prior fref for f(p) is adequate, while the 
non-uniform prior ~G(b) is required for ~(b) is that the set of b's forming D is 
subject to the topological and geometric constraints of the 2-dimensional space in 
which it is embedded, while the p's are not. Even when explicit relations for these 
constraints can be found (e.g. Collins 1968) they are not well-adapted for use in a 
variational calculation. Since the G-case is also subject to these constraints, they can 
be made implicit in the calculation by using G-case priors. The exact analytic form 
of ~G(b) is known (Collins 1968) and the WGq can be obtained by computer 
simulation (Finney 1970). 

3. Thermodynamics and the Equation of State. 

In I it was argued that the terms in W'l. should be of minor importance except near 
an ordering transition and they were omItted (this view was supported by the eventual 
reSUlts). The interatomic forces were modelled by assigning to each bond of length b 
an additive pair potential energy <pCb). With an average of 3 bonds per atom the 
expectation internal energy u per atom is given by 

00 2 00 

u = J dp ~ f(p) + 3J db ~(b)<p(b) 
-00 0 

(2) 
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Here m is the mass of an atom. For given p and u, h was then maximised (to 
give the thermodynamic entropy s per atom) by varying f(p) and ~(b). The result 
for f(p) was the usual Boltzmann distribution, while ~(b) was given by 

1 [ -2p, [P] 3",(b) ] ~(b) = - ~G(b)exp -. - -1 bJP - -.-
Z J pT JT 

(3) 

Here z normalizes ~(b) to unity and p,(:::eO.9) is a geometric factor relating mean bond 
length to mean triangle area. P is the pressure and T is the temperature in energy 
units (so that Boltzmann's constant is unity). The equation of state is obtained by 
substituting from (3) into the relation 

00 

I db (1-p,bJP)~(b) 
o 

o 

This was tested using the standard Lennard-Jones potential 

12 6 
",(b) = 4E[(a/b) -(a/b) ] 

(4) 

(5) 

and comparing with computer simulation results (Abraham 1980). The resulting 
isotherms agree with the computer results to within about 15% over the whole density 
range, and the critical temperature T c is given to within 5%, although the values of 
Pc and Pc are wrong by factors of 2 and 4 (for details see I). This is as much as 
could be expected with the approximations made, and at least establishes the viability 
of the general method. The ordering transition (shown by the simulation results) was 
absent from the theoretical curves, as would be expected following the omission of 
the valency terms from (1). 

3. Inclusion of Valency and Correlation Terms. 

The most obvious improvement to be made in maximisation of h is to retain the 
terms in W q in (1), subject to the extra constraint 

00 

<q> == 2 qWq 
q=3 

6 (two dimensions) (6) 

which is exact in the limit V-¥X> for any two-dimensional D. This by itself, however, 
gives no new physics, since the h maximisation simply gives W q decaying 
exponentially with q independently of ~(b) (which is unaffected by the new terms) 
and so we obtain the same equation of state as before. It follows that if the 
formalism is to account for an ordering transition, terms (called "q-b" correlations for 
short) specifically correlating the W q with ~(b) must be included. At the simplest 
useful level, these are the conditional probabilities Wq[~(b)] that a randomly selected 
atom has valency q given a particular ~(b). 

For T < E, ~(b) consists (see Fig.5 of I) of a sharp peak (representing the 
condensed liquid or ordered phase) together with a long "tail" (vapour phase). The 
peak occurs at bm (= 2116a for the Lennard-Jones case) where ",(b) has its 
minimum value -E. Consider for simplicity the case where P is much larger than 
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the saturated vapour pressure P sv of the condensed phase), so that the vapour phase 
tail is absent and 1f(b) is negligible except near bm. The proposed ordering 
mechanism is then as follows. As T is further reduced, the peak at bm becomes 
higher and narrower. Formally we can write 

(7) 

so that all the triangles in D are nearly equilateral of side bm' Their internal angles 
are then all nearly 7[/3 and hence all the atoms must be 6-atoms. Hence we must 
have 

(8) 

There is a qualitative argument (Collins 1 %7) that a plane D containing only 6-atoms 
is necessarily ordered (at least in the hexatic sense). Hence an entropy maximisation 
leading to a sharp change of the W q to ~ ,6 would by itself denote an ordering 
transition. The theory would then De (widiin the approximations made) a unified 
theory of the 2-dimensional solid/liquid/gas system, and in particular should predict a 
triple-point. So far however, no analytic functional form for Wq[y,(b)] has been 
found. 

Correlations ("b-b") between adjoining bonds have already been partially allowed 
for in the factor j, which is related to the concept of the "entropy power II of an 
information source (p.60 of Shannon and Weaver 1949). In fact j is probably the 
best way of expressing b-b correlations. Detailed considerations of local geometry 
would then "fine-tune" the theory to reveal (for example) any density-dependency of 
j. 

Inclusion of "q-q" correlations (between valencies of neighbouring atoms) may also 
be regarded as fine-tuning, in that the main qualitative features of the isotherms can 
be obtained without them. However, they must be included for the theory to predict 
the correct values of the critical exponents. Without these correlations, although the 
general shape of the isotherms near the critical point is correct (Fig.4 of [1]) the 
predicted exponents have their (incorrect) classical values (e.g. -y=1 instead of the 
correct 7/4 (Fisher 1974». The difficulty here is that current maxent formalism 
provides no clear way to include correlations of this type. Since this correlation 
problem must occur in other applications, there may be a gap in the general theory 
which could usefully be filled. 

4. Extension to Three Dimensions. 

In three dimensions, the cells of H are polyhedra. For a general statistical structure, 
except for a set Q of configurations of total probability zero, 4 cells meet at any 
vertex of H and hence (again except for Q) D consists of close-packed tetrahedra 
instead of triangles. With these changes the general formalism can be written down 
much as before, but the actual implementation is much more difficult. Even for a 
first-order liquid/gas theory (neglecting correlation and valency terms) two immediate 
problems in three dimensions are 

(i) <q> is not a topological constant (cf. (5» 
(ii) the form of y,G(b) has yet to be found. 

In modelling the solid/liquid transition, there is the further serious difficulty that the 
perfect forms of both the close-packed crystal forms (fcc and hcp) fall into the 
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degenerate zero-probability set Q previously mentioned. Consequently in the solid 
state the atomic positions must be given small random perturbations to break this 
degeneracy. When this is done, there is much evidence that (5) can be replaced to 
a good approximation by <q>::::14, at least for high densities (Collins 1968). Point 
(i) still presents a serious problem in the liquid/gas critical region since there <q> 
could vary quite rapidly with p. 

We may summarize the foregoing by noting that all the extra problems in three 
dimensions arise from the topological and geometric differences between two and three 
dimensions. Those problems which seem to have wider implications for general 
maxent problems, occur already in the two-dimensional case. 

5. Conclusions. 

The combination of statistical geometry with a maximum entropy formulation seems to 
provide a good qualitative description of the two-dimensional liquid/gas system with a 
simple interatomic additive pair potential. We can identify the specific problems 
which need to be solved in order that the theory may account for ordering, and to 
extend it to three dimensions. Some of these are special to this particular problem, 
but others may require further developments in general maximum entropy formalism. 

The method described here seems to be one of the few maxent calculations in 
which it is crucially important to use exactly the right prior. It also demonstrates 
that, in order actually to use the concept of S as the maximised information entropy 
H, it is not necessary to start from the convential partition function Z of equilibrium 
statistical mechanics. In fact it seems extremely doubtful if the results described here 
could be obtained in any straightforward way starting from Z. To quote Domb and 
Green (1972, p.xi) "The theory, although far from the fundamental principles of 
statistical mechanics, is very near to our intuitive conception of what a liquid really 
is." The work described here seems to go some way torward removing the reservation 
while preserving the main comment. 

There is still a widely-held view that, although the Jaynes-Shannon formalism 
provides an improved foundation for equilibrium statistical mechanics, the actual 
results of JS calculations could equally well be obtained by traditional methods. The 
translation of Bernal's statistical geometry into liquid thermodynamics seems to provide 
quite an effective counter-example to this view. 
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LIQUID STRUCTURE FACTOR DETERMINATION BY NEUTRON SCATTERING - SOME 
DANGERS OF MAXIMUM ENTROPY 
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ABSTRACT: This paper is a tutorial account of how the maximum entropy 
method has been applied to the determination of pair correlation 
functions of liquids and amorphous materials using neutron scattering. 
This is an example where care needs to be taken in the definition of 
the entropy, in the inclusi.on of prtor information and in the stopping 
criterion. It is easy to obtain results that are misleading or 
manifestly wrong and these dangers are particularly stressed. 
Nevertheless when used with understanding the method is a very 
satisfactory approach to this unstable inverse problem. 

I. Introduction to the problem 

In this tutorial paper we consider in detail one problem in 
neutron scattering: the determination of structure factors or pair 
correlation functions. This is a problem requiring several of the 
advanced tricks of the maximum entropy method and we illustrate the use 
of these. 

We are concerned with liquids or amorphous solids where the atoms 
are not on a regular lattice and want to determine a function g(R) 
which describes the statistics of the interatomic separations. Suppose 
we pick one atom and look at a distance R from its centre. There is no 
chance of finding the centre of another atom very close to the first 
but at a separation corresponding to one atomic diameter the 
probability rises to a maximum. Subsidiary maxima occur at distances 
corresponding to other coordination shells and at large separations the 
probability of finding another atom becomes constant in the random 
structure. Figure 2 shows experimentally determined functions g(R) 
showing these features. 

The data obtained by neutron 
function S(Q) where Q = (4~/A)sin 
A the wavelength of the neutrons. 
to g(R) by 

scattering are measurements of a 
9/2 and 9 is the scattering angle and 

Theory shows that S(Q) is related 

151 

J. Skilling (ed.), Maximum Entropy and Bayesian Methods. 151-162. 
© 1989 by Kluwer Academic Publishers. 



152 G. J. DANIELL AND J. A. POTION 

seq) = 1 + 4~P 1: R[g(R) - 11 sinQR dR (1) 

where p is the density of the material. This integral equation for 
g(R) has an analytic solution: Q(S(Q)-I) and R(g(R)-I) are Fourier sine 
transforms. 

It is clear that for Q(S(Q)-I) to possess a sine transform 
Q(S(Q)-l) must approach zero sufficiently fast as Q -+ 00. If our data 
has systematic errors so that this limit is violated we might 
anticipate trouble in finding a solution by Maximum Entropy. 

Although the inversion of a Fourier transform is stable this 
problem is not very stable because of the factor R inside the integral. 
The vallie of g(R) for small R gets suppressed and is poorly represented 
in the data. Therefore although the Fourier inversion proves the 
existence and uniqueness of the solution it is not a good way of 
calculating it. 

The serious objection to any use of the analytic inverse is that 
we do not have seq) for all Q. In any scattering problem we have a 
limited range of scattering angles and we cannot resolve detail in g(R) 
on a scale much less than the wavelength of the neutrons or much 
greater than a limit set by the angular resolution of the detector. 

Figure la shows a typical analytic inverse. Note the instability 
for small R. 

2. Use of the Maximum Entropy Method 

This is an obvious target for the Maximum Entropy method but we 
must define a proper probability density before it can be applied. 
Consider a spherical sample of radius a with n atoms per unit volume, 
then 

fa 2 
o 4~ R g(R) dR = n. 

Define 

peR) 

so that 

foP(R) dR = 1 , 

then peR) is the required probability density. In the absence of data 
the simplest assumption requires that peR) is ~ro~ortional to the 
volume of a spherical shell, that is peR) = 3R fa n or g(R) = I. 

We make the unconstrained maximum of the entropy equal to this by 
adopting a measure meR) on R space meR) oc R2. 
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The entropy is therefore 

f p(R) 
S = - p(R) log -­

m(R) 

2 
3 f 2 R g(R) 

dR = - -3 R g(R) log ----,,;2,-
na eR 

(2) 

The scale of S is irrelevant so we can drop the premultiplying 
constant. The result is that in our l.nverse problem we should 
determine R2g(R) with a default proportional to R2 and get g(R) by 
dividing at the end by R2. 

We have to discretise the problem to apply a Maximum Entropy 
computer package and since this is a frequent source of confusion we 
include the steps in detail. 
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Our experiment ftxes two quanti.ties. ~ax which is greater than 
the largest value of Q in use and 6Q which 1S less than the smallest 
resolvable difference in Q. The first is fixed by the wavelength of 
the neutrons and the second usually by the resolution of the 
diffractometer. These numbers imply that we cannot obtain a resolution 
in R much better than 1/~ax or dete.rmine g(R) for R much greater than 
1/6Q. 

To dtscretise equation (1) cut off the integral at ~ax » l/6Q. 
introduce 6R « 1/~ax and replace the integral by a sum. so that 

S(Q) = 1 + 411p 6R2 2 r (gr - 1] sin rQ6R (3) 
Q r 

where we have written R = r6R and g(r6R) = gr with r an integer. We 
have to perform this sum for each value of Q for which we have a 
measured S(Q). 

Experiments are rarely done in equal steps of Q. more frequently 
in equal steps in e. Nevertheless we will often want to use the Fast 
Fourier transform to evaluate the sum because of its speed; but we then 
get S(Q) on a uniform grid in Q. To lise the Fast Fourier transform we 
fill out the r sum with zeros unt.i1 the number of terms is a power of 
two and to take 6Q6R = 211/2N to use a 2N point transform. The 
inequalities for 6Q and 6R imply an inequality for N. In particular 
2N »21!~ax/t.Q. In contrast with the use of the FFT to compute the 
analytic inverse the value of 2N is not fixed by the number of data 
points. There is no objection to using t.oo large a value of N apart 
from the speed of the calculation but as we illustrate below there are 
dangers in using too small a value. 

In our calculations we have used the Fast Fourier transform and 
interpolated on the Q grid to get S(Q) at the experimental Q values. We 
also at this point take into account the resolution of the 
diffractometer. The actual data are averages over a small range of Q. 
Since we need to interpolate in any case the inclusion of some 
smoothing in Q corresponding to the di.ffractometer resolution merely 
changes the weights that are used. 

The problem is now almost in standard form. The Maximum Entropy 
package that we have used is written for the strictly linear problem so 
in equation (3) the constant term and L r sinrQ6R are moved to the left 
hand side and combined with Sq producing modified data. Although such 
preprocessing of data is contrary to the philosophy of modern data 
processing there is no great objection in this particular case. 
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Figure lb shows the Maximum Entropy calculation on the same data 
as Fig. la, which is for a Y63Cu37 alloy. The double main peak 
corresponds to the Cu-Y spacing and the Y-Y spacing. No peak is 
visible corresponding to the Cu-Cu spacing but this is expected to be 
weak. The result is very satisfactory. Note particularly the smooth 
rise of g(R) to I at small R in contrast to the erratic behaviour in 
Fig. la. This is due to the absence of large Q data; because there is 
no information about small distances the solution goes to the default 
level g(R) = 1. 

We do actually have extra information that is not contained in the 
data; atoms cannot be arbitrarily close together and g(R) ~ 0 at small 
R. For aesthetic reasons this was built into the solution by 
modifying the default level m(R) in equation (2) and the result is 
shown in Fig. Ie. A striking feature has appeared, the new peak 
corresponds more or less to the expected Cu-Cu separation. We should 
however be very suspicious of something that is very sensitive to the 
default level; the new peak is barely resolved and a smaller value of 
~ is called for. When the calculation is repeated with a smaller 
value of ~, the result of Fig. 2a is obtained. When we try to resolve 
the peak it has vanished! 

It is frequently stated that maximum entropy cannot introduce 
artifacts into the solution as a result of the data processing. This 
is true but only if it is used correctly. The discretised problem must 
adequately describe the real problem to better than the accuracy of the 
data. There is no objection to taking ~ too small, Maximum Entropy 
will correctly give a smooth curve. The only penalty is increased 
computer time and ultimately poor convergence of the algorithm. Figs. 
Ic and 2a strikingly illustrate the dangers of taking ~ too large. 

We can also note another artifact that has crept in at large R. 
This is because ~ax is too small, and increasing it removes the 
problem, as illustrated in fig.2b. 

3. The automatic correction of background and density values 

It was pointed out in section I that S(Q) must approach unity 
correctly as Q ~ 00 or there may not exist a solution even for perfect 
data. 

Since large Q corresponds to fine structure in R we might 
anticipate spurious fine structure in g(R). This is illustrated in 
Figure 3. This was calculated earlier in our work and suffers from the 
wrong value of ~ but it shows rather a lot of fine structure in R that 
is not physically explicable. Although we want to see fine structure 
we want only credible fine structure. 

We need to remember that in the actual experiment the measured 
count rate has to be corrected for the background. If we get the 
background subtraction or calibration wrong then S(Q) will not approach 
unity but some other value and we expect small changes in the 
asymptotic level of S(Q) to produce big changes in the fine structure 
of g(R). We should therefore subtract or add a constant to S(Q) and 
see the effect on the solution. If we are really not sure of the 
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background we could choose a shift in S(Q) that maximises the final 
entropy of the solution. This will remove as much structure as 
possible from g(R). 

Similarly we need the value of p, the density. This is bound to 
be uncertain and we can also adjust p to maximise the entropy. One 
loses structure in g(R) by doing so, but it is better to lose some if 
what remains is more credible. Figures 3a to 3d show in sequence the 
results of systematically adjusting the background and density values 
to increase the final entropy. It is clear that much of the structure 
in the initial g(R) can be attributed to incorrect values of these 
parameters. This is a second example of a danger in Maximum Entropy; 
the data and the theory must be consistent to an accuracy better than 
the noise in the data or artifacts can be introduced into the result. 

4. The Residuals 
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To convince the experimentalist that we have correctly analysed 
his data we should look at the residuals in the fit of the predicted 
data to the observed data. This is shown in Fig. 4 for simulated data. 
We see that there is a poor fit and that will not endear us to the 
experimentalist. Other contributors to this conference have described 
different stopping criteria and better models; these are obviously the 
sort of things that are needed. Here we just want to explain why this 
poor fit between the predictions and the data occurs. 

The entropy is maximised by making the solution as close as 
possible to the default level and that is unity for most of the range 
R. Peaks in g(R) are pulled down and troughs in g(R) are filled in and 
the amplitude of the oscillations in g(R) is kept as small as possible. 
Because the operation in equation (1) is roughly a Fourier transform 
the oscillations in g(R) correspond to the peak in S(Q). SO the 
predicted data has a significantly lower peak in S(Q) than the real 
data, and this is clearly shown in fig. 4. 

Similarly, the main peak in g(R) is pulled down most strongly. 
Peaks in g(R) correspond to oscillations in seQ) and therefore the 
oscillations in S(Q) have too small an amplitude. Again Fig. 4 shows 
these features in the misfits to the data. 

We know the Maximum Entropy method produces biassed results; we 
put up with this because of its good points, but there is a serious 
side effect in this problem which is illustrated in fig. 5 where noise 
has been added to the simulated data. So much X2 is used up in the 
bias that there is little left over for the noise. The consequence is 
that noise in the data gets through into g(R). The bias, the 
overfitting of the noise in the data, and the noise in the resulting 
g(R) are clearly visible in fig. 5. This seems to us to be a 
fundamental limitation of classic maximum entropy in this problem. 

Finally on this problem we show the good points. One of the main 
reasons for using maximum entropy is to overcome lack of data at large 
Q. Fig. 6 shows the effect of truncation and it is clear that 
acceptable results can be obtained even from severely truncated data. 
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5. Partial Structure Factors 

We finally turn to an extent ion of· this problem. The function 
g(R) contained information about the distribution of interatomic 
spacings but it said nothing about the different atomic species. 
Because different isotopes have different scattering lengths, 
measurements with different isotopes of the same material enable us to 
determine which bond lengths correspond to which pairs of atoms. 

For a binary material there will be four functions gll(R), g12(R), 
g21(R), g22(R). Roughly speaking gI2(R) is the probability of finding 
an atom of species 2 at a distance R from one of species I. Obviously 
g12 = g21 but both functions need to be included separately in the 
entropy which is defined as 

2 - ~ R g .. (R) log g .. (R). 
ijR 1J 1J 

S = 

The data are 3 sets of measurements which we write as a 3 component 
vector ~(Q). This is related to the vector of g functions by an 
equation of the form 

~(Q) ~ 1: ij ,(R) sinQR dR (4) 

where ~ is a 3 x 3 matrix involving the scattering lengths of the 
nuclei. 

The obviously correct approach to this problem is to choose a set 
of gIl' g12 and g22 that maximises the overall entropy and fits the 3 
data sets with a constraint on the overall total X2• 

Fig. 7 shows some results with simulated data. We expect the 
superimposed overlapping peaks seen, for example, in fig. 2b to be 
separated and each peak to appear in one of the three functions g11,g12 
and g22' Fig. 7a, obtained using the method just described, shows 
that our expectations are not borne out and each of the functions 
contains all three peaks. The algorithm has moved "g value" between 
the three curves and thereby got a higher entropy. We stress that this 
solution fits the data! The overall X2 is correct and there is no 
doubt this is a correct solution, to the maximnm entropy problem 
formulated above. 

If we look at the X2 for the three individual data sets that went 
into this calculation they are not equally well fitted, but we do not 
normally divide our data into groups and apportion equal amounts of X2 
to each group. The extreme case where each data point must make one 
unit contribution to X2 is absurd. 

We have tried a lot of things to get rid of this failure to 
separate the three functions. There is nothing to prevent "g value" 
being traded between them. Of course we want it traded between 
different points of the same function; that is the whole philosophy of 
Maximum Entropy. The only way out would seem to be a better default, 
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but we don't know where the peaks are; the point of the experiment is 
to find them. The improved default models suggested by other speakers 
at this conference suggest possible ways forward. 

Until such investigations have been tried a practical alternative 
is to write equation (4) as 

~-1 Q(Q) roo R ~(R) sin QR dR. Jo Q 
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We first construct new data A-I d(Q) and analyse these three new data 
sets separately. A is poorly conditioned and the errors in the data 
are magnified when=~-lQ is computed but providing we allow for this we 
see no objection to this approach. The resulting J functions ~(R) will 
not of course be independent. 

We have obtained very satisfactory results from real experimental 
data using this method. 
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Fig. 1. Pair distribution function g(R) for CU-Y alloy. a) Fourier 
Inversion. b) Maximum Entropy, flat default. c) Maximum 
Entropy, more realistic default but showing spurious line. 
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Fig. 2 The same as Ic but with increased resolution. 
a) Showing small artifact at large R. b) Artifact removed. 
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Fig. 3 (a), (b), (c), (d). Successive stages in adjusting backgroufli 
and density values showing removal of artifacts. The spuriou 
line at small R arises because of insufficient resolution. 
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Fig. 4 The residuals. Solid line: values of S(Q) predicted from the 
maximum entropy solution. Bars: actual data points and errors. 
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Fig. 5 The addition of noise to Fig. 4. The bias causes noise in the 
maximum entropy solution for g(R). 
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Fig. 6 Effect of truncation of large Q data. a) Moderate truncation 
and b) severe truncation. The resulting maximum entropy 
solutions are hardly effected. 
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Fig. 7 Partial Structure factors. a) The simultaneous calculation by 
Maximum Entropy showing failure to separate the functions. 
b) An alternative method showing acceptable results. 
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The 
the 

central problem 
recovery of the 

in Quasielastic Neutron Spectroscopy 
scattering function S(Q,w) or the 

recovery of the intermediate scattering function S(Q,t). Either of 
these two functions characterize the dynamics of the target under 
investigation. Time-of-Flight (TOF) spectroscopy aims at retrieving 
S(Q,W) by performing a deconvolution involving the Point Spread 
Function (PSF) of the TOF instrument. The current TOF data analysis 
involves Least Squares Fitting (LSF) of strongly nonlinear parameters 
(e.g. linewidths) pertaining to phenomenological models. Neutron 

Spin-Echo (NSE) spectroscopy consists essentially in measuring S(Q,t) 
and subsequently Laplace transforming the intermediate scattering 
function to obtain a distribution of relaxation rates. This is a very 
ill-conditioned problem, for which LSF is known to yield very poor 
results. Now, in both the TOF and NSE cases, the data are expressed as 
linear forms of the sought scattering or distribution functions, for 

which the Maximum Entropy Method (MaxEnt) is known to yield a unique 
solution. This method was therefore used to analyze computer-simulated 
noisy data as well as real experimental data and it is shown to be 
quite successful for both TOF and NSE spectroscopies. 
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1. Introduction 

Since the beginning of the seventies, the advent of neutron high flux 
reactors (e.g. the ILL in France, ISIS in the U.K.) as well as novel 
techniques involving polarized neutrons have pushed further the limits 
of investigation of condensed matter in such exciting fields as 
polymer and proteins dynamics, critical phenomena, glasses or 
structural phase transitions, to name a few. As a rule, the 
physical/chemical information is deduced fr~m the so-called scattering 

function S(Q,W) or its Fourier transform S(Q,t), with respect to the 
energy-transfer w, the so-called intermediate scattering function. 
None of these two quantities is directly measured. But, as opposed to 
the crystallographic phased case, the neutron cross-section, which is 
the observed quantity, relates linearly to the sought information, 
albeit in a complicated way. The data are always too scarce and too 
noisy. Most often, the current data treatments involve: 

- a convolution with an instrumental point spread function. 
- the use of phenomenological models, which depend strongly 

non-linearly on the parameters of interest : linewidths or relaxation 
rates. Consequently, the generally non unique extrema exhibit a very 
strong correlation of the fitted parameters. 

- Moreover, in the case where a sum of exponentials or 
Lorentzians is sought, the problem becomes strongly ill-conditioned 
since the trial functions are highly non-orthogonal. 

By contrast, the continuous development of a powerful method, 
MaxEnt, which maximizes the Shannon-Jaynes entropy and yields a unique 
solution for linear problems, has led to : 

- efficient algorithms (Skilling and Gull, 1985) 
- a wealth of applications and spectacular image restorations 

(Gull and Skilling, 1984). 
- not to mention more theoretical justifications (Levine, 

1986) 
- and more technical improvements (Skilling, Gull this 

workshop) 
As a matter of fact, MaxEnt has already broken into elastic 

neutron scattering (e.g. Daniell, 1988 and Johnson, 1986). The aim of 
this paper is to show how MaxEnt can be applied to 
inelastic/quasielastic neutron scattering. 
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Before turning to these new applications, let us recall that: 
- Data space consists of Dk noisy values (k = 1,M) of standard 

deviations uk. 
- Image space consists of I j values (j = 1,N) that we seek. 

N 

Dk's relate to IJ.'s through Dk = ~ Rk . * I J. * mJ. , . 1 • J 
J= 

an equality which holds only to a noise term of order uk. 
Rk• j is the discretized PSD in matrix form. We encode our prior 
knowledge through the mj's, the sum of which is unity. 

N 

- We maximize the entropy S = - ~ p.*log(p./m.) 
. 1 J J J 
J= 

- where Pj = 

- This maximization is subject to the constraint ~ M, 
N 2 

M [Dk - ~ Rk .*I.*m.j "" . 1 .J J J 
_ where ~ = L... _--=J:......= __ _ 

k=l Uk 

- MaxEnt is an iterative procedure, in which the initial guess 

is a flat image: I j = Idefault = constant. We choose that value of 

Idefault which minimizes~. 
~ ~ 

- Our ending criterion is : V~ is parallel to VS. 

2. Neutron Spin-Echo (F. Hezei, 1980) 

Neutron Spin-Echo (NSE) Spectrometry is an irreplaceable tool to 
observe minute energy-transfers (down to about 1 nev) and hence large 
relaxation rates (up to 500 ns) in condensed matter. For instance, in 

the case of polymers or proteins, Quasie1astic Light Scattering (QLS) 
often cannot be 
and/or lack of 

used since a too restricted scattering vector range 
contrast forbid it. 

rate at a detector as a function of 

be essential (Livesey et a1, 1987, 
QLS data. Can NSE, which does not 

Both techniques measure a counting 
time. MaxEnt has already proven to 

Livesey, this workshop) to analyze 
afford hundreds of data points but 

at most a few tens on the one hand, and which has a much smaller 
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signal/noise ratio (> 1000 for QLS, < 100 for NSE) , benefit from the 
use of MaxEnt ? Paragraphs a) and b) will show below that this is 
indeed the case. 

a) Mathematically, the general inverse problem one has to 
solve in NSE in order to retrieve the relaxation rate distribution 
h(Q,T) is described by : 

D(9, t) = f d90 ·f(9,90 ) f dA.g(A).S(Q,t) 
all neutron paths 

or 

D(9, t) = f d90 ·f(9,90 ) f dA.g(A) f dT.e-t/T.h(Q,T) 

introducing the relaxation rate distribution function h(Q,T). In the 
above formulae, 

29 is the detector angle and 290 

physical origin of the spread function 
collimation of the neutron beam. It is 
standard NSE analysis. 

the scattering angle. The 
f(9,9 0 ) is the finite 
most often neglected in 

A is the incident wavelength and g(A) describes the 
wavelength distribution. The latter is also often neglected. 

by : 
- Q is the scattering vector, which is very well approximated 

sin90 

Q - 4"'-­A 
in NSE spectroscopy. 

The problem of inverting the Laplace transform to obtain time rates 
has long been known to require a non-flat prior in time-rate space : 
Jeffreys's prior is called for (Jaynes, 1968, Livesey et aI, 1987, and 
references therein). Using Jeffreys' prior amounts instead to looking 
for the image in the log time-rate space where our prior knowledge is 
flat. The underlying idea for that is that total ignorance a priori 
regarding the relaxation rates should not depend on the time scale 
which is used. A straightforward consequence is that, in order to have 
a PSF matrix as well conditioned as possible, one should measure 
equidistant data points in a logarithmic scale as well. 

Finally, let us mention that, because we cannot measure as 
many data points as in QLS and in particular, because we cannot 
measure at experimental times large enough for all relaxation 
components to have died out, our goal is more restricted from the 
start, namely: i) can we satisfactorily retrieve a portion of the 
distribution (that seen by the time-window of the spectrometer) ? and 
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ii) is MaxEnt powerful enough to separate two neighboring time 
contributions ? The answer is positive indeed. 

1.0 0.1 
a) simulation 
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Figure 1. a) Measured NSE spectra (Mezei et al., 1987) evidencing the 
slowing down of the dynamics of a glass forming system as a function 
of temperature. (e : data points; ---, ... and -- : MaxEnt fits). 

b) The 3 MaxEnt reconstructions corresponding to the 3 data 
curves of a).Insert : Numerical simulation using the same noise level 
and data time range as in a). It shows that increasing the number of 
points from 10 (typical spectrum) to 30 can help to resolve a 
mu1timoda1 time rate distribution. (-- : using 10 data points, --- : 
using 30 data points). 
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First, many simulations with noise were made in order to make 
sure that a single rate could be properly recovered. These simulations 
were run in conditions close to the real experimental ones, especially 
as regards the number of data points (about 10) and the dynamical data 
time range. The latter is defined as the ratio of tmax/tmin and is 
generally of the order of 50 to 100. The image is defined using 51 
pixels. Provided that i) the sought rate was included between the 
minimum and maximum data times and ii) that the ratio of the simulated 
dynamical data intensity range was larger than e ~ 2.718, the recovery 
was very good. Conditions i) and ii) merely express that the time 
window is properly set to observe the simulated phenomenon. 

A real example (data from Mezei et al., 1987) is shown in 
fig.l. It can be seen from fig.lb that MaxEnt reconstruction 
corresponding to 172°C seems to be bimodal. In order to check that it 
could have been possible experimentally to resolve the distribution 
better, we ran a simulation in the same conditions (insert of fig.lb). 
Using 10 data points, we obtained the solid line, whereas using 30 
data points with the same dynamic range, we obtained a nice two-peak 
distribution. This shows that if the physics had involved 2 peaks, 
these could have been separated by measuring 30 data points and using 
MaxEnt. 

b) A second fundamental quantity to be determined 
experimentally is the wavelength distribution g(A) of the NSE 
spectrometer. Besides the fact that it can easily be taken into 
account using MaxEnt as in a), its precise knowledge is necessary to 
see if the instrument is properly set and/or to determine Q and data 
time values with enough accuracy. 

It can be shown (Mezei, 1980) that we can easily measure 
directly its Cosine Fourier transform. Moreover, we are looking for a 
positive distribution. This is an another case for which MaxEnt is 
best suited: no need for equi-spaced data points and no need to 

complement the data points by fake points before Fourier transforming 
back a noisy data set. Let us just mention an extra technicality 
involved, autocalibration (Gull and Skilling, 1984), which does not 
pose any problem in our case. 

A real data example is given in fig.2. The recovered image is 
almost noise-free. In order to check that we could believe in this 
result, numerical simulations were also run, yielding an excellent 
agreement between the original images and MaxEnt reconstructions. 
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Figure 2. a) Measured neutron spin-echo group. 
b) The corresponding MaxEnt wavelength distribution. 

3. Time-of-Flight neutron spectroscopy (Lechner, 1984) 

Here, the very general problem involved is that of separating an 
elastic (or Bragg) contribution from an inelastic or quasielastic one. 
The image space is the neutron energy-transfer ro-space and the data 
space is the time of arrival t-space (of the neutrons at the 
detector). The sought image consists of a spike plus a well-behaved 
bell-shaped distribution. The difficulty here is that, while the 
sought image is discontinuous, MaxEnt provides us with the smoothest 
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image compatible with the data. Skilling addressed this problem in 
1986 and Skilling and Gull in 1987. Here, we use a numerical 
simulation of the data and image to illustrate the pitfalls and 
describe our preferred procedure. 

Let the simulated image consist of N - 301 pixels. It is the 
sum of a broad line centered in pixel 151 and a spike located in the 
same pixel. The latter corresponds to a zero energy-transfer. 
Numerically, 

I(~) - 20000*S(~) + 30000*[ 25jW ] 
~+625 

The TOF data space is divided into channels of known width and central 
time values. The 'image is convolved with the PSF, which can be 
represented by : 

[ fill] 1 12 [ 1 {n-n(~)}2]1 ,r::= R(n,~) - 1 + Eo * exp - 2 u(~) (u(~)*~2W) 

where n applies to the n-th TOF channel, n(~) and u(~) are known well 
behaved functions of instrumental parameters and Eo is the average 
incident neutron energy of a suitably monochromatized neutron beam. 
Finally, a gaussian random noise is added, resulting in fig.3a. A 
first run of MaxEnt using no prior at all yielded the solid curve in 
fig.3b, pointing out the location of the spike. but clearly not the 
ideal original image. As a consequence, prior knowledge should be used. 
Note, in passing, that the left side of the reconstruction starts with 
a constant equal to the default level : no simulated data point 
provides information over the related energy-transfer range ! The 
following prior was then used (Skilling, 1986) : the pixel containing 
the spike is so many times more intense than the average of the 
remaining pixels. Applying this criterion to define our mj's, our 
reconstruction, evidencing some huge ringing about the spike, is shown 
in fig.3c. Something must have gone wrong I Still keeping in mind a 
uniform prior except for one pixel, we then added the following 
requirement CONTINUITY. Once divided by the prior, the reSUlting 
image (the Ij's) must be continuous. Mathematically, the only relevant 
parameter is P, the fraction of the spike intensity in the related 
pixel. After some elementary algebra, one obtains : 
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Figure 3. a) Simulated time-of-flight data spectrum. The PSF corres­
ponds to that of the Saclay TOF instrument at 7.07 angstroms. 
In b), c) and d) the dotted line corresponds to the original image. 
The solid line represents the MaxEnt reconstruction. 
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Using our new criterion, one finds P - .5416171 as opposed to 
P - .8939298 using Skilling's. The reconstruction is improved indeed, 
as can be seen from fig. 3d. Finally, note that in Skilling's paper 
(1986, p.176, fig.15), BOTH criteria are obeyed, which can never be 
the case in Quasielastic Neutron Scattering since the spike sits on 
top of the maximum of the quasielastic line ! 

4. Conclusion 

In this paper, we have demonstrated the ability of MaxEnt to recover 
incident wavelength distributions and to separate two relaxation rates 
in NSE spectrocopy, as well as to recover the proper 1ineshapes and 
linewidths without making any assumptions using an a priori model in 
TOF spectroscopy. 

Moreover, Quasielastic Neutron Scattering provides MaxEnt with 
straightforward examples illustrating typical inverse problems 
(Fourier, Laplace) as well as the importance of using Prior Knowledge. 
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Maximum Entropy Reconstruction in Magnetic Resonance Imaging 
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Abstract: The maximum entropy method of reconstruction is applied to 
magnetic resonance images. The results indicate that MEM is not a good 
measure of image quality and that the maximum entropy image is not 
neccesarily the image we desire. 

In conventional Magnetic Resonance (MR) Imaging the data is collected 
in the time domain and a two-dimensional Fourier transform is used to 
convert the time domain signal into its spatial frequency 
representation in the formation of an image. However, two problems 
exist with this method of image reconstruction. First, it assumes that 
the data is band limited, in the sense that the highest frequency of 
the sampled signal is less than half the sampling frequency. This 
assumption is invalid for human anatomy and as a result truncation 
artifacts arise in images reconstructed using the Fourier transform. 
These artifacts can be important in the clinical setting where they 
may be mistaken for pathology(l). Furthermore, truncation artifacts 
increase in severity with reduction in the size of the data set 
collected precluding reduction in imaging time by aquiring less data. 
These artifacts also confound 3D volume reconstructions where imaging 
time further restricts the amount of data that may be collected. 

Secondly, the Fourier transform makes no distinction between noise 
and valid signal. Thus attempts at reducing high frequency noise in an 
image through filtering in either the data or image space lead to an 
unsatisfactory loss of resolution in the final image. 

With these inadequacies in the Fourier transform, new methods of 
reconstruction have been considered(2,3). The application of the 
Maximum Entropy Method (MEM) to MR imaging data is the subject of this 
work. To date, a detailed analysis of the behaviour of the entropy 
regularizer on MR imaging data has not been presented. In this paper, 
characteristics of the method and the basic problems encountered 
implementing the maximum entropy technique in MR imaging are 
presented. A counter example is shown demonstrating that the maximum 
entropy solution is not necessarily representative of the image we 
desire. 
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Theory: 

MEM has found considerable success in many diverse fields such as 
radio-astronomy(4), NMR spectroscopy(S), x-ray diffraction analysis(6) 
and geophysics(7). In these fields MEM has increased the conspicuity 
of signals and suppressed background noise making interpretation of 
spectra and images a much simpler task. With this success in mind MEM 
was investigated as a possible approach to the reconstruction problem 
in MR imaging. 

Justification of the MEM stems from both a probability theory 
approach, as in Jaynes(7), and from an information theory approach; 
see Ulrych(8) and Shannon(9). MEM applied without any constraints to 
model the measured data, yields a completely flat image with no 
information. As constraints are applied, the solution moves away from 
that of a totally flat image and begins to gain information with a 
resultant decrease in entropy. Thus any information in the image 
arises directly from the data and the final image will be as smooth, 
in the multiplicity sense, as allowed by the data. 

The application of MEM to the reconstruction of MR images proceeds 
by maximizing the entropy in image space subject to a x2 fit to the 
data(lO). That is, maximize 

N 
Q(A) = - I m· log mj - A x2 

j=l J 
M 

where, x2 = I (Mk - Ek)2 la2 

k=l 

and, mj represents the intensity of a pixel in the proposed image, 
Mk the Fourier transform of mj and Ek is the actual data measured in 
the MR experiment. A is a Lagrangian multiplier and a is the standard 
deviation of the noise. The actual solution to this maximization 
problem was found using the algorithm of Skilling and Bryan(ll). The 
solution is reached when x2 equals the number of data points. 

Results: 

Other author's(12,13)have shown that MEM decreases the background 
noise and leaves noise on top of the image unaltered. Figures (1) and 
(2) show l-D reconstructions of a series of top-hat functions from a 
noisy time domain data set. Figure (1) is a magnitude image 
reconstructed using the conventional FT method while Figure (2) is the 
MEM solution from the same data set. Note that in the MEM 
reconstruction the background noise has been reduced significantly but 
the noise on the top-hat functions remains essentially unaltered. 
Figures (3) and (4) show FT and MEM reconstructions of a coronal MR 
brain image. Intensity differences are seen in the MEM image as a 
result of line by line processing. Noise measurements indicate that 
the background noise has been reduced in the MEM image while the noise 
within the high intenSity regions of the brain remains unaltered. 
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Such an 'improvement' in the image makes no contribution to MR imaging 
because the diagnostic value of the image is not increased. This has 
been the major complaint with the technique and is the reason for the 
methods failure in MR imaging. It has not been clear until now 
however, whether this problem was due to improper application of the 
technique or if it is in fact intrinsic to the method. 

FFT 256125& MEM 2561258 

Figure 1 . A series of noisy top-hat functions reconstructed using 
the conventional Fourier tranform method. Figure 2. The same series of 
top-hat functions reconstructed using MEM. 

Figure 3. Magnitude image of the brain reconstructed uSing the 
conventional FT method of reconstruction. Figure 4. Same image 
reconstructed using MEM. 

Discussion: 

That MEM flattens the background can be attributed to two factors. 
Firstly, the shape of the entropy curve favours changing the lower 
amplitude background pixels as more entropy is gained per unit change 
in these pixels than in the high intensity pixels. This would imply 
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that preferential weighting is given to the lower amplitude values. In 
addition, some author's(lJ) have applied HEM (incorrectly) without the 
constraint that the sum of the probabilities must be 1. If this 
constraint is ignored, the shape of the entropy curve for intensities 
much greater than one is essentially linear with a negative slope. The 
entropy regularizer in this case will simply try to pull all pixel 
values down to lower amplitudes in an effort to increase the entropy. 
However, the entropy criteria necessitates the reconstruction of 
positive images only. Therefore, any background components which are 
made negative through the entropy regularizer must be set to some 
default positive value. If enough of these points are flipped up, the 
background becomes completely flat with no visible structure. 

To understand why the noise on top of the signals remains 
unchanged one must consider how the entrop~ term influences the x2 fit 
to the data. The entropy term biases the X fit in such a way as to 
gain the maximum increase in entropy. Little gain in entropy is 
obtained by flattening out the high frequency noise on top of the 
Signals. Therefore, the high frequency noise is fit closely and the 
freedom in the x2 goes into simply compressing the dynamic range of 
the image. 

However t the noise in MR is distributed uniformly across all 
frequencies(lS). Therefore any fitting criteria, such as x2, should 
not allow some data components to be fit exactly while putting more 
freedom into other components. Fitting ordered residuals could be 
applied as an alternative constraint although this would not lead to a 
significant change in the final answer as the residuals in the biased 
solution are in fact very close to gaussianly distributed. In 
addition, a typical MR imaging experiment collects only 128 or 256 
data points per line; this leads to poor statistics in fitting 
residuals. Furthermore, applying constraints to counteract the 
properties of the applied regularizer does not address the real 
problem. 

The difficulty lies with the entropy regularizer itself. The 
entropy expression contains no neighbour to neighbour information. 
Thus alternating high frequency fluctuations are quite acceptable to 
the entropy regularizer. Figure (Sa) shows a perfect profile of a 
series of top hat functions with a total entropy measure of 5 = 1.95. 
This represents the ideal reconstruction. Figure (Sb) meanwhile shows 
another series of top hat functions with high frequency fluctuations 
on top of the signals and a slightly elevated baseline with an entropy 
of 5 = 1.96, representative in part, of the noisy images we wish to 
improve. Both profiles have been normalized to the same intenSity. 
From this example it is apparent that entropy is not a good measure of 
image quality and that the maximum entropy image is not necessarily 
the image we desire. Furthermore, this example also indicates that MEM 
cannot be expected to flatten the noise on top of the Signals as this 
does not lead to the maximum entropy solution. This example does not 
suggest that using the data of Figure (Sa) will yield a maximum 
entropy solution of the form of Figure (Sb); it will not. What it does 
demonstrate is, if there is evidence for those high frequency 
fluctuations in the data, HEM cannot be asked to remove them as the 
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desired solution has a lower entropy than the unacceptable image we 
wish to improve. 

5, • 1.95 

a b 

Figure Sa. Perfect profile of S top-hat functions. Figure Sb. Counter 
example with high frequency noise present and a higher entropy than in 
Figure Sa. This example demonstrates that entropy is not a good 
measure of image quality. 

Conclusions: 

MEM works well if the reconstruction is required to have distinct 
peaks with a flat baseline as in spectroscopy(14). While the 
justification of MEM given in section 2.1 is sound for statistical 
processes, difficulties arise when noise is introduced and constraints 
must be applied to the data. The point has often been made that the 
entropy favours smooth images since the global (unconstrained) maximum 
is given by the uniform image. The final image, when constraints are 
applied, is in fact smooth in the multiplicity sense, but since no 
neighbour to neighbour information is contained in the entropy term, 
high frequency fluctuations may remain. It is therefore misleading to 
say that the reconstruction is as smooth, in the conventional sense, 
or featureless as possible. Finally we may conclude that MEM as 
applied above is inappropriate for use in MR imaging as the maximum 
entropy solution does not select the most desireable image for medical 
interpretation. 
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ABSTRACT. An algorithm is presented that constrains the autocorrelation 
noise removed when a maximum entropy model of noisy data is 
The algorithm uses the method of simulated annealing and is 

to a model data set. The algorithm is successful in finding 
to both unconstrained and constrained maximum entropy 

function of 
selected. 
applied 
solutions 
problems. 

INTRODUCTION 

Dark field electron microscope images are often corrupted by noise, the 
main source of which is the random scatter of electrons by the near 
random structure of the carbon film used to support the biological 
sample. This noise often obscures structures of interest within the 
micrograph. Various image processing techniques have been used in the 
past in an attempt to try and remove the noise from these images but 
many of the conventional methods, e.g. averaging or low pass filtering, 
inevitably lead to a drop in the spatial resolution of the images. This 
inherent loss of resolution led us to consider the application of 
maximum entropy methods to the problem of noise removal. We have 
reported earlier (1,2) preliminary results with these techniques. 
Concern about the distribution of the residuals, differences between the 
data and model solution, led us to use an error fitting statistic (3), 
E2, rather than the more conventional Chi squared. E2 is a measure of 
the similarity between the residuals u, the differences between the data 
and "models" produced by the algorithm in the search for the maximum 
entropy solution, and the distribution of the noise corrupting the data 
v. E2 is defined, 

n 
E2 ~ (U(i)-V(i»2 

i=l 
( 1) 

where the residuals between the data set D={d(i):i=l,n} and the model 
M={m(i):i=l,n} are defined, 
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u(i) = (d(i)-m(i»/o (2) 

and in the definition of E2 N={v(i):i=l,n} is the sample noise 
distribution. 0 is a measure of" the standard deviation of the noise 
present in the data. The subscripted parentheses in the definition of E2 
indicate that the residual distribution and the noise distribution are 
compared after ordering, e.g. the largest experimental residual is 
compared to the largest expected noise value in a sample of similar size 
and variance. 

.<:I .. 

.<:I 
o .. 

0.. 

Position 

.0 

Figure 1. Illustration of the maximum entropy combination of residuals 
and data. The original data -------, the maximum entropy solution 
---+--- and the step function that we require the entropy maximisation 
algorithm to return---*---. 

The method by which we adapted and applied the concept of error 
fitting to the electron microscopy problem has been described elsewhere 
(1). The method of entropy maximisation using an E2 constraint was found 
to produce an amplitude distribution of residuals in agreement with that 
of the noise corrupting the data but lack of control of the position of 
the residuals led the algorithm to introduce an artefact into the final 
solution (2). The artefact results from the tendency of the maximum 
entropy method to produce solutions in which the points in the processed 
image all move towards the mean of the data. It was found that a 
maximum entropy solution was always achieved when all data values above 
the mean were brought down towards it and all those below the.mean were 
adjusted upwards towards it. The distribution of residuals was obviously 
strongly affected by the gross features in the data. Had some smaller 
section of the data set been considered then a different solution would 
have resulted, not a desirable property for this type of processing 
algorithm. Indeed if the algorithm is applied to a noisy but ergotic 
data set then the results of the error fitting maximum entropy process 



SOLUTION OF AUTOCORRELATION FUNCTION CONSTRAINED MAXIMUM ENTROPY PROBLEMS 183 

were much more satisfactory. 
An example of the effect of error fitting and entropy maximisation 

on non-ergotic data is shown in figure 1. To generate the figure a 10 
point data set was used. The original data consisted of a step function 
to which was added noise with a known amplitude distribution. Model 
distributions were then created by the addition of the same noise 
distribution to the data in an attempt to return the original step 
function. As the noise distribution is symmetric, one combination of 
the noise and the data will produce the step function. Dealing with as 
few as 10 points we were able to examine all the possible solutions that 
resulted from combining the known residuals with the data. From the 
resulting models we were able to select the one that had the maximum 
entropy, 5, defined, 

5 
n 
L (d(i)+u(i»log(d(i)+u(i» 

i=l 

The artefact described above can clearly be seen in figure 1. 

(3) 

The noise removed from the data is found to have an autocorrelation 
function similar in form to that of the step function rather than the 
noise that was added to the step function. The autocorrelation 
function, ACF, of a function F={f(i):i=l,n} was defined, 

ACF(r) 
n-r 

1 L f(i)f(i+r) 
n-r i=l 

(4) 

where r is the lag and the autocorrelation function is defined for r 
from 1 to n-l.In figure 2(a), (b) and (c) the normalised autocorrelation 
functions of the step function, the noise added to the step function, 
and the residuals removed from the noisy data to give the final model 
are plotted. Ideally the distribution in figure 2(c) should be the same 
as that in figure 2(b) indicating that the autocorrelation of the noise 
removed was the same as that added. In fact, the distribution of figure 
2(c) has a stronger similarity to that of figure 2(a) the 
autocorrelation function of the step function. 

Lag 

(b) 

Lag 

(c) 

Figure 2. The normalised autocorrelation function of (a) the step 
function without noise, (b) the noise added to the step function to 
produce the data set, (c)the noise removed from the data set to produce 
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the maximum entropy solution. 
To ensure that the spatial distribution of the residuals removed by 

the maximum entropy method was the same as that present in the noise 
corrupting the true signal, we compared their autocorrelation functions. 
The autocorrelation function as defined in equation 4 was calculated for 
both the noise added to the step function, ACF+, and the residuals 
between the data and the model, ACF-. These two functions were then 
compared using the following measure, k, of the differences between the 
two functions squared. 

n-l 
k = r (ACF+(r) - ACF-(r»2 

r=l 
(5) 

We can now state what is demanded of the maximum entropy procedure 
when it is considered applied to the combination of known noise 
residuals and a data set corrupted by the same residuals. The maximum 
entropy process must not select the combination with maximum entropy 
resulting from all the possible combinations but from only those that 
have an autocorrelation function of their residuals not significantly 
different to that of the noise present in the data. In other words we 
want a process yielding a model with high entropy S, and a low 
autocorrelation dissimilarity k. 

In figure 3 we have plotted the distribution of k between the the 
autocorrelation function of the noise added to the step function and all 
the possible autocorrelation functions that could be generated by 
reordering the residuals. The position of the maximum entropy solution's 
value of k is 3.43xI0-3 • At this value of k random configurations of the 
residuals would yield autocorrelation functions more dissimilar to that 
of the maximum entropy solution 28% of the time. This degree of 
dissimilarity is not extremely significant. However the chances of 
getting a combination with only a Single zero crossing (change from 
positive to negative residuals) as this configuration has is only 0.4%. 
It would not be unreasonable to conclude that the step function form of 
the data had affected the spatial distribution of residuals. 

THE METHOD OF SIMULATED ANNEALING 

Maximisation of entropy in the manner described for the generation of 
figure I becomes completely infeasible for data sets with more than 10 
points. The entropy maximisation problem considered in this way is not 
a maximisation in an n dimensional space of continuously varying 
parameters but rather an n dimensional configurational space, where the 
configurations are the combinations of different noise residuals with 
data. The number of different combinations possible within this space 
is n!. It quickly becomes impossible to explore them all. To tackle 
this problem we have applied the method of simulated annealing (4,5) in 
a manner similar to that used to solve the most famous of the set of 
combinatorial problems, that of the "travelling salesman" (4). In the 
travelling salesman problem one has to decide upon a path between n 



SOLUTION OF AUTOCORRELATION FUNCTION CONSTRAINED MAXIMUM ENTROPY PROBLEMS 185 

cities which minimises the total distance travelled but passes through 
each city only once and returns to its starting point. 

2.0 

0.0 L-_______ ---.,:-~ __ "--__'=~_~ 
0.0 k x 10-3 6.3 

Figure 3. Distribution of the parameter k comparing noise 
for all possible combinations of residuals to that of 
noise. 

distributions 
the original 

The method is called annealing because of the parallels between the 
way a final configuration is settled upon and the way a slowly cooled 
melt will find a low energy crystal configuration. When molten, the 
elements in a melt are able to move freely throughout the body of the 
material due to the high temperatures. As the temperature begins to 
drop crystal structures of lower energy will begin to form. The 
probability that an element of the system is in a given state with 
energy E is given by the Boltzmann distribution peE) a exp(-E/kT). Thus 
as a system cools there is a possibility that the energy of a part of 
the system may increase. As the temperature falls the chances of moving 
to a higher energy state become smaller. Because the chance of being in 
a higher energy state does exist, the system is able to move out of 
local m~n~ma configurations and eventually form a stable low energy 
crystal structure throughout the entire material. In contrast rapid 
cooling, quenching, leads to less ordered states in which crystal 
structures are often locally minimum. To employ the method of simulated 
annealing to solve the travelling salesman problem the configuration of 
the cities on the path was equated to the state of the crystal lattice 
and the distance between the cities to the energy of the crystal 
configuration. To use the method to maximise entrop¥ we will equate the 
the configuration of the residuals to be removed with the crystal 
lattice state and the entropy of the resulting model to the energy of 
the structure. Obviously we will be maximising the entropy rather than 
minimising the energy. 

The algorithm to find the 
removed noise now proceeds 

maximum entropy combination of data and 
in the following manner. The data is 
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considered to be a fixed array D={d(i):i=l,n}, the residuals to be 
removed are in an array of the same size U={u(i):i=l,n}. The order of 
the residuals in the array may be altered at random, e.g. element i and 
element i+3 may be interchanged. The algorithm considers two types of 
rearrangements, randomly deciding between the two choices. One choice, 
reversal, involves the reversal in the order of a random length section 
of the array. The other choice, transport, involves the removal of a 
random length section of the array and its reinsertion into the array at 
another randomly chosen position. Having made one of these changes the 
entropy, S, of the new combination of U and D is calculated as in 
equation 1. 

The entropy of the new configuration is compared to the previous 
entropy prior to the rearrangement, the difference between the two 
entropies is referred to as the "entropy cost", L\S, of the 
rearrangement. It is at this point that the concept of a "temperature" 
must be introduced into the algorithm, this will allow the creation of a 
parallel to the Boltzmann distribution. The distribution used is given 
by, 

P(L\S) a exp(L\S/T) (6) 

If the entropy cost is positive, i.e. the entropy is higher after 
rearrangement, then the new configuration is always accepted. If the 
cost is negative the chance of acceptance of the new configuration is 
governed by the above distribution. 

To begin, a sufficiently large value of T is employed so that all 
rearrangements are accepted, which is equivalent to the situation of a 
free flowing melt. The algorithm then searches for lOn successful 
changes in configuration. At the initial high temperature it will find 
lOn successes in IOn trial rearrangements. Once lOn changes have been 
made then the temperature is reduced by a factor of 0.9. As the 
temperature falls, more and more rearrangements will be rejected. If 
the algorithm has not found lOn successful rearrangements in lOOn tries 
the temperature is reduced, this stage is equivalent to the beginnings 
of crystallisation. The process is deemed complete when no successes 
are found in lOOn rearrangements. 

Figure 4 shows the results of applying the annealing process to the 
same data as that shown in figure 1. The algorithm was able to find the 
same solution as that shown in figure 1 in 212 CPU seconds when run on a 
Microvax II computer. The algorithm examined 54485 combinations of data 
and residuals and made 6716 rearrangements. 

INTRODUCTION OF THE AUTOCORRELATION FUNCTION INTO THE ANNEALING PROCESS 

Introduction of the autocorrelation function into the cost function is 
achieved by redefining the entropy cost to include the measure k. The 
new cost is denoted by L\S', and is defined, 

liS' = liS - At.k (7) 
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Figure 4. The maximum entropy solution selected by the method of 
simulated annealing. 

where k is the difference between the two autocorrelation functions 
squared and ~ is the difference in k before and after the rearrangement 
of residuals. If A is set to zero then the annealing process is 
equivalent to maximising entropy alone. As A becomes larger then the 
similarity between the two autocorrelation functions becomes more 
important and the algorithm will tend to yield solutions with the 
required autocorrelation functions. However for a given "goodness of 
fit" between the autocorrelation functions, the algorithm should select 
the highest entropy configuration of residuals with such a fit. 

To examine the effect of increasing A we have plotted the entropy 
of the solution against its value of k. Figure 5 shows such a plot in 
which we again used the fact that for 10 data points we can examine all 
possible outcomes of combining the data with the noise residuals. The 
contours in figure 5 represent the number of combinations ( using a log 
scale) which have a given value of entropy and k. It will be recognised 
that distribution, in its y axis, is related to the distribution 
depicted in figure 3. For A of zero the annealing algorithm returns the 
unconstrained maximum entropy solution. As A is increased from zero to 
103 the solutions returned graduall) decrease in entropy and their 
values of k also decrease. At A of 10 the algorithm returns the noise 
free step function, the noise has been removed exactly and the value of 
k for this solution is zero. There are two possible solutions that have 
a k of zero, one is the step function, the second occurs when the 
residuals are added in exactly the same configuration as that used to 
generate the noisy data from the step function. The algorithm has 
correctly selected between these two functions and found the one with 
the higher entropy. 
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Figure 5. Distribution of entropy and the 
the possible combinations of residuals and 
the log of the number of combinations with 
and k. Plotted on this distribution is 
selected by changing A from 0 to 103• 

CONCLUSIONS 

N. A. FARROW AND F. P. OTIENSMEYER 

parameter k derived from all 
data. The contours represent 
a particular value of entropy 
the locus of the solutions 

In this paper we sought to demonstrate the use of the method of 
simulated annealing to the solution of noise autocorrelation function 
constrained maximum entropy problems. Whilst we have demonstrated its 
value in finding solutions for 10 data points the algorithm is still far 
too slow for problems with large numbers of data points. Calculation of 
the solution for a 256 point problem required 31 CPU hours on the 
Microvax II computer. To be useful in electron microscopy we will 
require manageable processing times for at least 103 data points. 

The method of simulated annealing implemented as described above 
allows for the speed of solution to be increased. The increase in speed 
however will usually imply a less thorough annealing and a not 
necessarily optimal solution. If we 'cool' the system more rapidly a 
solution will be found more quickly but it may only be close to the 
optimum, for large data sets this will often be sufficient. We have 
found that beginning at very high 'temperatures' and 'cooling' slowly 
will often give an equivalent, solution to that achieved when using a 
lower starting 'temperature' and rapid 'cooling'. Careful investigation 
of the effects of the parameters of 'temperature' and 'cooling' rate 
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will be required to prevent the algorithm running too fast and finding a 
non-optimal solution, or running unnecessarily slowly, yielding no 
improvement in solution. 

Having shown that the method will work for model data we will now 
have to examine the implementation of similar algorithms to real data 
sets. Two remaining problems will be the determination of the value of 
A and the algorithmic annealing parameters which provide the correct 
balance between the fitting of the autocorrelation function and the 
maximisation of the entropy of the model. 
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ABSTRACT. References are given to the main work in this field which has 
already been published. Further progress is reported in quasi-elastic 
light scattering QLS, and pulse fluorescence. In the former, the 
program was successfully re-written to handle the measured data di­
rectly, which are a non-linear function of the spectrum. This led to an 
increase in computing speed of up to a factor of 10. In the latter, the 
program was developed to analyse both the rotational or flexural time 
constants and the decay rates, simultaneously. 

1. INTRODUCTION 

Most of our work on the application of maximum entropy to the 
Laplace transform has already been published. An overview of the use of 
maximum entropy method in Quasi-elastic light scattering (QLS) and 
pulse-fluorescence can be found in reference 1. The details of applying 
the technique to QLS is given in reference 2 and an example of its use 
in helping to solve a complex biological problem is given in reference 
3. Similarly, the details of the application to pulse-fluorescence are 
contained in reference 4, and a detailed example of its use and 
comparison with non-linear least squares techniques in an experimental 
environment is presented in reference 5. The rest of this paper 
outlines t\vO recent advances in these fields which have occurred since 
the publication of these papers. 

2. IMPROVEMENTS TO THE QLS CODE 

Following the notation of reference 2, the measured autocorrelation 
signal C(T) in a QLS experiment using "homodyne" detection (self-beating 
of the scattered field on the photocathode) is given by 

C(t) = B + y(t)2 = B + [G(T) exp - t/T d-0 2 
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w;lere we wish to obtain an estimate of the positive spectrum of decay 
times G(T). having measured an inevitably noisy and incomplete represen­
tation of the autocorrelation of the scattered light C(t). Since y(t) 
must always be positive (because of the exponential in equation 1). we 
estimated G (T) from the derived data 

y'(t) = C(t)-B 

y'(t) is thus a linear function of G(T) and the standard Cambridge 
package could be used to determine G(T). As reported in reference 2 
this was successful although convergence was frequently slow. Such 
ill-conditioned problems were at the limit of the already powerful 
Cambri~ge algorithms. We also encountered problems with our estimates 
of the errors in yet) at long delay times when the signal is very smal1 
with respect to the background. Since the variance of y is 

0': = 4I C/i"B I 
when IC~BI is small, large (statistical) fluctuations in B lead to 
erroneous estimates of the errors preventing final convergence of the 
algorithm. The algorithm did allow the user to recognise and remove the 
aberrant points, allowing these (few) dat& points to be removed, and the 
algorithm re-run. This solution gives better estimates for IClB! = y~ 
allowing the error estimates to be corrected, the erroneous points 
reinserted and the algorithm re-run. However, this increased user 
intervention and triple running of the algorithm was a poor feature of 
the program. 

The solution to this problem was to re-write the algorithm to work 
with the measured auto-correlation data. C, directly for which the 
errors are well-defined. C is not, of course, a linear function of the 
contents of G(T) of the spectrum. 

To encode this, we calculated the mock data by the correct non­
linear function. However, the quadratic models of both the entropy and 
chi-squared functions about the true position were built using the local 
differential response of the data. This could. of course, result in 
slower convergence of the program. Nevertheless. the increased power of 
the new algorithm and the removal of the need to re-run the program to 
obtain better estimates of the error bars. more than compensates for 
this. Indeed. a single run of the program runs 3-4 times faster than 
the old program, and since it now only needs to be run once (without the 
need of any user intervention) the total saving is about a factor of 10. 
Currently we find a typical spectrum of 100 data points with a signal­
to-noise of 1000:1 takes about 2 minutes CPU on a VAX 780. 
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3. EXTENDING PULSE-FLUORESCENCE TO ANALYSE ROTATIONAL AND FLEXURAL 
MOTION 
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Following the notation of reference 5 we note that with a verti­
cally polarised excitation the parallel III and perpendicular I~ compo­
nents of the fluorescence intensity at time t after the start of the 
excitation flash are 

~ E (t) * (f~ fm fO. 4 Y (t,a,A) e- t/t (1+2Ae-t/a ) dtdadA 
I11(t) = 3 A 0 0 -0.2 

1.1. (t) = 3 E (t) * (f'" fm fO. 4 Y (t,a,A) e- tlt (1 - Ae-tl0)d1dadA 
A 0 0 -0.2 

where E(t) is the temporal shape of the flash and Y(T,a, A) are the 
number of fluorophores with fluorescence decay 1, rotation time a, and 
initial amplitude of anisotropy A (related to angle between absorption 
and emission dipoles). * denotes a convolution with time. 

In reference 5 we saw that using a particular sum of the parallel 
and perpendicular components (Ill + 2~ we could reduce our problem to 
the one-dimensional problem of aeterm~ning the distribution of lifetimes 
c«-C). We have now extended our program to calculate this full 
3-dimensional density. That is we wish to determine the numbers of 
fluorophores y(A,6,1) with a particular lifetime 1, rotational constant 
6 an~ initial anisotropy A. We present here our first experimental 
result from a protein, namely the apocytochrome C protein. Since this 
protein lias only a single tryptophan residue we know that all the 
fluorophores have the same initial anisotropy A although their lifetimes 
1 and rotational constants 6 change due to local (in time and space) 
fluctuations in time and space. This reduces the problem to 2-
dimensions, easing both the computation and display. 

Data were measured at the synchrotron on a single tryptophane 
residue of apocytochrome in aqueous buffer at 20°C at the concentration 
of 2.5 mg/ml. The contour plot of a section through Y(1,e,A) for A 
0.258 is presented in figure lb. We can clearly distinguish four 
lifet:l.me components centered at 0.15, 1.2, 3.14 and 5.4 ns as found 
previously :l.n a one-dimensional analysis of T(t) (5). 

Along the e axis we can see two 
centered at 61=0.14 ns and 60 =1.4 ns 
tion to the depolarisation process. 
given by the longest 1 of 5.4 ns. 

high peaks from lifetime 1=3.1 ns 
which reflect the major contribu­
An identical minor contribution is 

On the contrar~ the shortest lifetime (T=0.15) does not play any 
role in the fast motion (eiO.14 ns). Its corresponding e value remains 
uncertain due to the weak contribution to the signal of a such short 
lifetime. 
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The intermediate T of 1.2 ns monitors the fast flexibility and the 
overall motion of the protein (MW=11 900) but is clearly not involved in 
the intermediate flexibility (82), 

The long tail component of correlation times has probably no 
physical meaning and could be related to an anisotropy of noise on Iii 
and IJ,.' 

In conclusion this example fully demonstrates th ability of Maximum 
Entropy Method of analysis to resolve both structural heterogeneity and 
complex protein dynamics from pulse fluorometry data. 
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ABSTRACT. In this paper we propose a Bayesian approach with Maximum Entropy (ME) priors to solve 
an integral equation which arises in various image restoration and reconstruction problems. Our 
contributions in this paper are the following: i) We discuss the a priori probability distributions which are 
deduced from different a priori constraints when the principle of ME is used. ii) When the a priori 
knowledge is only the noise covariance matrix and the image total intensity, and when the maximum a 
posteriori (MAP) is chosen as the decision rule to determine the values of image pixels, we show that the 
solution may be obtained by minimizing a criterion in which the structural entropy of the image is used as 
a particular choice of a regularization functional. The discussion is illustrated with some simulated results. 

1. Introduction 

In many problems of image reconstruction and restoration one must solve an integral equation of the form: 

g(x) = JDf(x') h(x, x') dx' (1) 

in which x, x'e R2 are the space variables, g is the observed data, f the image to be determined, h a 
known function which is the kernel of the imaging system, and D is the support of the image f, a compact 
region in R2. In image restoration problemsfis the original image, g is the degraded image and h is the 
point spread function (pSF) of the imaging system. In image reconstruction problems f is the object, g is 
called the projections (in fact g is not a continuous function of (x,y)e R2 but a finite set of functions in one 

space variable re R parameterized by the other space variable 8 E [0,1<]) and h is the kernel of the imaging 
system. In the two cases, the inversion of these equations is an ill-posed problem. By ill-posed problem we 
mean that it does not satisfy the three conditions of existence, uniqueness and stability of the solution. 

The numerical solution of these equations needs a discretization procedure which can be done by a 
quadrature method. The linear system of equations resulting from the discretization of an ill-posed problem 
is, in general, very ill-conditioned if not singular. So the problem is to fmd a unique and stable solution for 
this linear system. The general method which permits us to find a unique and stable solution to an ill-posed 
problem by introducing an a priori information on the solution is called the regularization. The a priori 
information can be either in a deterministic form (positivity ,00') or in a stochastic form (some contraints on 
the probability density functions). The unavoidable existence of errors and noise on the measured data leads 
us to adopt a stochastic approach. The Bayesian approach is a coherent one for solving inverse problems 
because it allows us to take into account in a coherent way the a priori information both on the solution and 
on the data as well as the errors on the data. 

This approach involves the following steps: 
i) Assign a probability distribution function (pdf) to the unknown parameter to translate our incomplet a 
priori information about these parameters; 
ii) Assign a pdf to the measured data to translate the lack of total precision and the unavoidable existence of 
the measurement noise; 
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iii) Use the Bayesian rule to calculate the a posteriori pdf of the unknown parameters; 
iv) Define a decision rule to determine the values of these parameters, for example, the values that have the 
maximum a posteriori (MAP) probabilities. 

One must note that in this approach : 
i) One is able to solve the inverse problems which are described by a finite number of parameters, for 
example when one has discretized the integral equation (I). 
ii) Assigning a probability to a parameter value does not mean forcibly that this parameter is a random 
variable or that the probability is a limit to its realization frequency. The probability is just a measure of 
our confidence to that value of parameter. 
iii) If it is easy to assign a pdf to the measured data to take into account the noise, it is more difficult to 
assign a pdf to the unknown parameters of the problem to translate our a priori knowledge about them, 
because this knowledge is not given to us directly in probabilistic terms, and it does not permit us to 
determine an unique pdf for those parameters. One can use the principle of maximum entropy (ME) to 
choose one (which has maximum entropy) between all possible pdf satisfying the a priori knowledge 
constraints. 

In this paper we first discuss the basic ideas of of the bayesian approach and principle of ME and then 
show how these ideas can be used in image reconstruction and restoration problems. Then we show some 
results simulating the X-ray and diffraction tomography image reconstruction problems. 

2. Bayesian approach of the resolution of inverse problems 

Once the integral equation (I) is discretized one has to solve a linear system of the form: 
y=Ax+b (2) 

where x is a vector containing all the unknown parameters (image pixel values for example), y is a vector 
containing all the measured data (degraded image pixel values or projections), A is a known matrix whose 
components and structure depend on the imaging system, and b is a vector containing the measurement 
errors. 

In a statistic approach, band y are considered to be the random vectors which is a natural way to 
represente the random errors and noise. In a Bayesian statistic approach x is also considered to be the 
unknown vector of parameters of a random process which we want to determine. In imaging applications 
this means that the image is considered as a random process, i.e. each pixel of the image is a random 
variable and each Xi is a parameter defining its probability distribution. This can have a realistic physical 
meaning. For example in Positron Emission Tomography (pET) the image is considered as a Poisson 
random process and Xi is the mean value of the number of positrons emitted in each pixel. But it can be 
just a mathematical tool to translate our a priori knowledge about these parameters. 

Now we suppose that we are able not only to assign a pdf to Y and b but also to assign a pdf to x to 
describe our pior knowledge about it (as mentioned this does not mean forcibly that Xi are random variables 
but that our knowledge about them is incomplete). This means that we can assign the probability densities 
P(Y1x), p(x), p(y) and p(xly) which are related by the Bayes' formula : 

p(xlY) = p(Ylx) p(x) I p(y) (3) 

Thus, in terms of the Bayesian approach p(xIY) is the solution of our problem. But in practical 
applications two major difficulties are encountered : 
i) How to determine p(x) (how to translate our a priori kowledge about the parameters x by a probabilty 
density function), and 
ii) How to give numerical values to Xi when p(xIY) is calculated. 

The second is the easier one to solve: Defme a decision rule, for example the maximum a posteriori 
(MAP) and the solution is x* which maximizes p(xlY). The first is more difficult. The problem is how to 
translate our prior knowledge about x which is often of the form : the image is support limited, or is 
positive and has a known expected gray level, etc. These knowledges are not normally sufficient to define an 
unique pdf p(x). It is here that the ME principle can be used to choose one possible distribution which is 
coherent with this prior knowledge and which does not introduce any other extra information. 
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3. Prior probabilities and maximum entropy 

We consider an image as a finite number of pixels and suppose that the pixel values are independent random 
variables of the same probability law P(Xi). So for the whole image (all the pixels) we have: 

p(x)=p(X1····,xn) = f17=1 P (xi) (4) 

If we note by Hi the entropy of the pixel i and by H the entropy of the Image we have: 

Hi = -J P(Xi) log P(Xi) dxi and H = I?=1 Hi (5) 

Consider now the following examples: 
a) We are given the average values [Ab ...• AnJ. and the variance values [0"12 •..•• O"n2] of the pixels and we 
don't known anything else and we want to determine the probabilty density function of the image x. If we 
apply the ME principle we obtain for each pixel: 

p(x) = NO"i • O"h (6) 

which is a gaussian probabilty density function. The corresponding maximum entropy is : 
Hi = (1/2) log(2n- e O"i2) = (112) log 21fe + log O"i 

The image has the probability density p(x) given by : 
p(x) = N(m. R) avec m =[A1 •...• AS et R = diag [0"12 •...• O"n2] 

and the corresponding maximum entropy of the image is : 

H = I7=1 Hi = I?=1 log O"i + (n/2) log (27t e) 

(7) 

(8) 

(9) 

What we may note in (9) is that the entropy of the image depends on the spatial distribution of the pixel 

variances O"i and we have an expression in the forme I log O"i • 

b) We are given only the average values [1..1 •...• An], and know that the pixel values are positive. Now 
maximizing the entropy Hi subject to these constraints we obtain: 

p(xi) = (l!Ai) exp[ - (X/Ai) ] (10) 

The corresponding maximum entropy for each pixel is : 
Hi = 1 + 10gAi 

and the corresponding maximum entropy of the image is : 

H = I7=1 ( 1 + 10gA) = n + I7=1 10gAi 

In this case the entropy of the image depends on the spatial distribution of the pixel mean values Ai . 
c) Suppose now that we are given only one global constraint which is in the forme: 

(11) 

(12) 

-L.i~1 Xi log Xj = S = S(x) (13) 

If the image is normalized it can be considered as a probability distribution function and S(x) is then its 
structural entropy. The name structural entropy is due to Skilling et al [1.13]. This is also equivalent to a 
knowledge of the total intensity of the image. With this only global constraint the ME principle gives us 
an exponential pdf in the forme: 

p(x) = exp [Ao + Al S(x) ] (14) 

We conclude this by noting that for different a piori knowledge one obtains different expressions for the 
a piori probability distribution of the image. When we use a positivity constraint and just the knowledge of 
the total intensity of the image we obtain an exponential probability distribution as given in (14). 

4. Bayesian solution with ME prior 

We have seen that the principal mathematical problem of image reconstruction and image restoration is to 
solve the equation y = Ax + b. Suppose that the a priori knowledge that we have on the noise band 
on the solution x are : 
i) bj .j=I •...• m are independent identical zero-mean random variables with variance a2; 
ii) Xi • i= 1 •...• n are independent identical discrete and positive random variables; 
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iii) the average value of - Xi log Xi is known; and iv) A is a deterministic known matrix. 

By applying the principle of ME we can thus conclude that: 
i) The ME density function for b is a Gaussian one. We then have 

p(y I x) = cte exp[ - Q(x)/c?- ] with Q(x) = [ y - Ax]t [ y - Ax] (14) 
ii) The ME density function for x is an exponential one so that we have 

p(x) = cte. exp[ Al Sex)] with Sex) = - "LI=I q i log qi and q i = xi / N = xi /Lxi (15) 

We can now apply the Bayes' formula to find 
p(x I y) = cte. exp[ - Q(x) + A S(x)] with A = Al (j2 (16) 

and if we decide that the best estimation for the pixel values are those which have the maximum a posteriori 
probability p(x I y) the problem becomes 

min lex) = Q(x) - A Sex) (17) 
The problem is now to minimize a non-quadratic function lex) subject to the constraint x>O. We may give 
some interpretation about this result: 
i) If we compare lex) with the deterministic regularization criterion of Tikhonov, Phillips and Twomey [10] 
we see that Sex) plays the role of a regularizing functional and A is the regularization parameter. 
ii) One can arrive at the same result which is to minimize lex) by other explanations, for example, to use a 
X2 statistics and choose between the solutions x which satisfies Q(x)<e the one which maximizes the 
entropy Sex). 

S. Algorithmic difficulties 

We have seen how the Bayesian approach with ME priors results to the problem of minimizing a function 
in the form lex) = Q(x) - A Sex) subject to the constraint x>O. Whatever the interpretation, arrived at this 
stage, one has a mathematical problem which is a constraint minimization of a non-quadratic function 
which can be achieved only by an iterative method. 

Among the iterative methods of minimizing a non-quadratic function we considered those who search the 
minimum by a series of monodimensional searches. These methods can be classified in terms of different 
local informations which one disposes about the function to be minimized. The zeroth, first and second 
order methods use respectively the function; the function and its gradient; the function, its gradient and its 
Hessian matrix; to determine the search directions. For applications of image processing it is not possible 
to use the second order methods due to the huge cpu memory and time needed. 

We used a conjugate gradient technique which can be considered as a quasi-second order method. The 
principal properties of this technique are now well established [16]. 

5.1. ALGORITHM IMPLEMENTATION 

We have implemented a general algorithm to solve the following problem: 
Given y = A x + b with y = [xlo ... , xm]t, b = [blo .•. , bm]t, x = [Xlo •.. , xn]t and A=[Aij]; 

determine x which minimizes l(x)=Q(x)-AS(x), where Sex) is the entropy expression and Q(x) is a quadratic 

expression. A is a constant which must be choosed so that the solution x* satisfies the constraint 

Q(x*)~. The optimum choice of A needs more complicated and time-consuming algorithm [13,14]. In 
our algorithm we choose it empirically at the initialization of the algorithm. Some discussions about this 
choice in differents applications are given in [7,8]. The algorithm follows these sequences: 
1) An initial estimate is calculated using x(O)= (11M) A *t.y 
2) At any iteration (k) do: 

a) apply the positivity constraint, i.e. if xn$;O then xn=e with e a small positive value. 

b) calculate lex) = Q(x) - AS(x) and his gradient Vl(x) = VQ(x) - A VS(x) 

c) deviate the gradient; i.e. if xn$;O then xn=e and if iJJ(x)/iJxn >0 then iJJ(x)/iJxn = 0 
d) calculate a new estimate of Xn by the Conjugate Gradient. 
e) Some criterion are calculated to ensure the normal execution of the algorithm [8]. 
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6. Simulations and results 

6.1. X-RAY TOMOGRAPHY WIlli LIMITED PROJECTIONS 

In these simulations we choosed a mathematical phantom as an object, calculated the projections, added 
some noise (SJN=IO dB), and considered a difficult situation where the number of projections are limited to 
12. Figure (I) shows the reconstruction results obtained by our ME method and some other classical 
methods as : ART (algebraic reconstruction techniques), SIRT (simultaneous reconstruction techniques), 
ILS (iterative least squares) and ILSP (iterative least squares with positivity constraint applied in each 
iteration). As we can see all linear methods give the results which are not acceptable. It is the same for the 
ILSP method in which one can see many abnormal point like sources outside the support of the image. We 
can conclude also that just the positivity constraint is not sufficient to insure a stable solution. 

SHEPP .DM ORICINAl onoaO.OBC ~ • .<Enl O/lP88ua.OBC 1 l S 
L l,,-1'27 Ko'-127 l,n-l ?? Kol - , ?7 llo-I. ";> ko l -I/? 
~ln~ 9 .99 "a~~ 2.QO Mln~ 0 .90 Ma~~ 2 .1~ "In ~ ~.ge "a~~ 2 .5~ 

Figure I: X-ray Tomography: a) original, b) ME, c) ILSP d) ART, e) SIRT , and f) ILS 

6.2. DIFFRACTION TOMOGRAPHY AND FOURIER SYNTIffiSIS 

To simulate the Fourier synthesis part of the diffraction tomography imaging we used the same fantom as 
in X ray tomography and calculated its FT on semi-circles and added some noise on these data. The SIN 
ratio was about 10dB (separatly for the real and imaginary parts). Then, given these data, we proceeded the 
reconstruction either by the two classical methods of interpolation used currently in diffraction tomography 
(Fourier domain interpolation: MI and spatial domain interpolation: M2) or by our ME algorithm [8]. 
For these simulations we considered two cases: i) Np=12, 9=3600 and ii) Np=8, 9=900 ; where Np is the 

number of projections and, 9 is the angle restriction. 
In these cases also the results obtained by our ME method have better resolution both in spatial extent and 
in amplitude. Thes results are also obtained after 20 iterations. 
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Figure 2: Diffraction Tomography :Upper row: Np=16 and 9=3600 , Lower row: Np=8 and 9=900 • 

a) reconstruction by MI, b) reconstruction by M2, and c) reconstruction by our ME. 

6.3. IMAGE RESTORATION BY DECONVOLUTION WITH SPARSE DATA 

In these simulations we considered an image which blured by a linear PSF and degraded by a gaussian noise 
and considered the case where we dispose only about 10% of the data samples (1 raw and 1 colomn over 3). 
Then given these data we restored the original image either by our ME method or by ILS or ILSP methods. 
Figure (3) shows these results. 

7. Conclusions 

We proposed a bayesian approach with ME prior method to solve the ill-posed problems of image 
reconstruction in tomography. We first presented this Bayesian approach, discussed about the different 
expressions of the a priori pdf and the entropy of an image. Then, we saw how the structural entropy of an 
image can be used as a regularization function. This method is used: i) to reconstruct the objects in X ray 
tomography using directly the projection data in spatial domain, ii) to reconstruct the object in diffraction 
tomography from the data in Fourier domain (Fourier synthesis problem), and iii) to image restoration in 
the situation of sparse data. We focus now our attention on the real application of the method. In a real 
world we only have the data y and a qualitative knownledge of the noise and the image that we want to 
find. The real problem is how to determine the variance of the noise and the regularization parameter A 
only from the data. 
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Figure 3: Image restoration by deconvolution in the case of spares data : 
a) original, b) blured , c) noisy sparse data, d) deconvolution by ILS, e) by ILSP, and f) by ME. 
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ABSTRACT. A brief survey is given of some maximum-entropy-based approaches to x-ray 
structure refinement and determination of macromolecules. Particular emphasis is placed on those 
approaches which primarily seek to operate in direct space and involve combining various types of 
information. Some comments on current work proceeding along these lines are offered. 

In addition, a powerful maximum-entropy-based algorithm for combined background subtrac­
tion, deconvolution and filtering of one-dimensional profiles is outlined and illustrative results pre­
sented for processing of synchrotron data for energy-dispersive powder diffraction from materials 
under high pressure. 

1 Introduction 

Crystal structure determination is not a single well-defined subject. It ranges form the de­
termination of the atomic arrangement of large to very large structures like macromolecules 
such as proteins and viruses, to the simple determination of crystal-class and unit-cell size. 
For the former, single crystal diffraction is needed while for the latter, powder diffraction 
is sufficient. Each technique poses its own problems. For the determination of large struc­
tures one main problem is that the phases of the structure factors are essentially unknown. 
In the case of powder diffraction, a key problem (apart from the phases also being un­
known) is that only a few structure factors are measured and the observed peaks in the 
profile often overlap each other. 

These two aspects are briefly discussed in the following paper starting with some re­
marks on recent advances in maxent approaches to the macromolecular structure problem. 
In a second part, a specific example of treating powder diffraction data is given. 
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2 Large struct ures 

2.1 THE PROBLEM 

The physics ofthe problem is well known. The relation between the electron density, per), 
in the unit cell and the (complex) structure factors, Fk, is given by 

per) = 'LFkeik.r 

k 

(1) 

Visually each term in the Fourier series in (1) is a sinusoid with a wavelength d/sinB, 
with d the distance between planes of atoms and (J the angle between these planes and 
the direction of the incident wave, and is generally phased such that the wave has crests 
at the atomic planes. When superposing these waves (with the correct phases) in the 
sum the waves tend to reinforce each other at the atomic positions and cancel to near 
zero at positions far from the atoms. In a general sense the amplitudes determine the 
size of the atoms while the phases determine their positions. However, the phases are 
essentially unknown, since it is not the structure factors but the intensities Ik = IFkl 2 that 
are measured, so the problem is not determinate. 

The ability of the maximum entropy principle to handle underdetermined problems 
encounters some diffuculties in this case. The reason for this is seen as follows: What 
is known is a set of intensities Ik; kEn, (n being some subset of the reciprocal lat­
tice). The uncertainty relates to: which electron density p( r) is the best estimate for 
the actual one corresponding to the measured intensities. Whithin specific models as 
discussed earlier[l] this uncertainty is expressed in terms of a discretized electron den­
sity Pi as S = - LPdnpi; Pi = Pi/ LPj or (as suggested by Skilling[2] and by[3]) by 
S = L(Pi - mil - p;ln(p;jmi), with mi a set of default values. The usual maximization 
of S with the intensities as constraints (including errors) involves some difficulties since 
the constraints do not form a convex set, so there is in general no unique solution for the 
optimization problem. (e.g. see[13]). 

Nonetheless, there are advantages in using the maxent principle since, as mentioned 
below, there is often additional a priori information available and also additional experi­
mental techniques provide some information on few phases, so that a convex or more nearly 
convex constraint set may result, leading in turn to a single "best" solution. Failing this a 
multisolution approach would appear necassary and methods for tackling this problem via 
maxent and Bayesian methods have recently been described by Bricogne[8]. 

2.2 ATTEMPTS AT SOLUTION 

The problem of ab initio determination of crystal structures from the measured x-ray 
diffraction intensity data remains essentially unsolved. For practical purposes structures 
consisting of up to the order of a hundred non-hydrogen atoms may usually be solved 
by traditional direct methods, see e.g. the recent review of Woolfson[4J. These methods 
are based on probabilistic relations for phases of invariants (quantities independent of 
the choise of origin in the unit cell) and semi-invariants (quantities which do not change 
value by transfer from one special origin to another). In the case of larger molecules such 
as proteins and viruses, crystallographers have developed a wide variety of procedures for 
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helping to elucidate their structure, including: the use of isomorphous replacement of atoms 
in the structure (the so-called "heavy atom method"), the use of anomalous dispersion 
together with multiple-wavelength measurements, the use of solvent flattening, and the 
use of partial fragments. However, with extension into the area of increased complexity 
and size, conventional methods have been found to become increasingly time consuming 
and unreliable. There is therefore a need to seek new, more efficient and less subjective 
approaches to crystal structure estimation. 

Bayesian inference combined with the maximum entropy method provide a logically 
consistent method for incorporating such information in order to make predictions of crystal 
structure. Recently, various approaches to crystal structure estimation based on maxent 
principles have been described in the literature. For example, Gull & Daniell[5], Collins[6], 
Wilkins Varghese & Lehmann[7], Bricogne[8], Navaza[9], Bryan, Bansal, Folkhard, Nave 
& Marvin[10], Wilkins and Stuart[ll], Gull, Livesey & Sivia[12], Bryan & Banner[13], and 
Bryan[14]. The precise application of maxent in each case tends to be different although 
the guiding philosophy remains the same. 

Even more recently, Bricogne[15] has described a very general approach to crystal­
structure estimation based on Bayesian inference and invoking the saddle-point method 
(maxent) to establish prior joint probability distributions of structure factors. The pro­
posed procedure potentially incorporates all the types of information listed above and 
so may provide a powerful and general approach to the x-ray structure determination of 
macromolecules. 

3 Powder diffraction 

Even for cases where the information is so incomplete that not even intensity data is 
available, the maximum entropy method is valuable for obtaining partial information such 
as the crystal class and unit cell parameters. In order to appreciate the way in which the 
maxent principle enters in some of our work, the essentials of the experimental technique 
for doing high-pressure X-ray diffraction studies with the energy dispersive technique and 
using synchrotron radiation, are briefly described[16]. 

3.1 HIGH PRESSURES WITH A DIAMOND ANVIL CELL. 

The high pressures (up to ",100GPa) are obtained in a diamond anvil cell (for a general 
review see[17]), in which two diamonds, ("" 1/2 carat each) placed in a suitable steel-holder 
and cut in a brilliant shape with the two smallest flat faces ",,1/2 mm in diameter, are 
pressed together. The sample, in the form of a powder, is placed in a hole in a thin metal 
sheet (the gasket). The hole is usually'" 100 I,m in diameter and the sample thickness is 
",80 pm. Combined with the sample are small pieces of ruby which serve to monitor the 
pressure and a liquid to ensure hydrostatic pressure. 

3.2 THE ENERGY-DISPERSIVE TECHNIQUE. 

In the energy-dispersive technique a white beam is shone through one diamond and is 
scattered from the sample. The diffracted beam is detected by an energy resolving detector 
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after having passed through the second diamond and a set of angle defining slits. A 
multichannel analyser records the spectrum. 
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Figure 1: Raw diffraction data from a sample of EuBa2Cu309_6 

A number of points are important: 

- The high pressure cell limits the scattering angle to values less than ",15 degrees. 

- The available sample and the beam size limits the number of grains contributing to 
the diffracted intensity to a small number, making texture almost unavoidable. 

- The energy resolution of the detector, even with the best Ge cooled detectors, is 
limited to around 200 eV at 20 keV[18). 

- The only practical source of white radiation is synchrotron radiation since the diffrac­
ted intensity is only a small fraction of the incoming intensity due to the small size 
of the sample. 

- The high intensity of the synchrotron beam gives rise to an important amount of 
scattered radiation yielding a high background intensity. 

To illustrate these points, a set of measurements is shown in fig. 1[19). The raw data 
from a sample of EuBa2Cu309-6, scaled to the same total number of counts, is shown for 
pressures from ambient pressure to 53.6GPa. 

At ambient pressure a conventional structure determination is possible, and is one way 
of obtaining the indexing of diffraction peaks. At higher pressures no such possibility exists 
but invoking the maximum entropy principle, spectra comparable in resolution to those 
measured with the more conventional angle-dispersive technique can be obtained. (Note 
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though, that with the actual high-pressure cell with its limited scattering angle range an 
angular dispersive measurement would not be possible. It is also worth noticing the fact 
that the time of acquisition for a spectrum as a whole is quite small, typically of the order 
of minutes). 

3.3 DATA PROCESSING 

As pointed out before, the use of all the available information in a data treatment analysis 
is extremely important. In the present context, additional pieces of information (apart 
from the data themselves) are available. There are at least three useful additional pieces 
of information: 

1. There is a fairly high background, and the physics indicate that it is a smooth slowly 
varying function of energy. 

2. The detector system degrades the spectrum in at least two respects. 

(a) The fluorescent Ge K, X-ray quanta generated in the detector can escape de­
tection giving rise to escape peaks. 

(b) The spectrum is broadened by the detector resolution function. 

3. The number of counts in each channel is non-negative. 

The most important of these additional pieces of information are the background and 
the broadening. The escape correction is not extremely important and is in any case fairly 
straightforward[20]. 

The problem then reads in terms of the measured number of counts Y; in a channel i, 
the background bi , and the undistorted spectrum J;: 

(2) 

with (i some (unknown) error term, and Rij the point-spread function. 
There is no a priori distribution between signal and background, so some further in­

formation is needed. Typically, the background is smooth and slowly varying with energy 
which suggests setting 

m 

bi = L>jP~, (3) 
j=O 

with P~ the value of an (orthogonal) polynomial at channel i. 
A direct maxent solution of (2) does not seem promising. It turns out that there is 

a simpler way which follows from the observation that there are regions in the spectra in 
which obviously there is only background and no signal. A simple least-squares determi­
nation of the polynomial coefficients and their appropriate maximal degree as well as an 
automatic detection of the purely background sections, has been shown to be possible[21]. 
The result of this background subtraction is shown in fig. 2 for the same data as shown in 
fig. 1. It is to be noted that this background subtraction may lead to negative counts in 
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Figure 2: The data of fig. 1 with background subtracted 

some channels reflecting the fact that the error in the resulting count number in a given 
channel is much larger than the one corresponding to the Poisson counting error for counts 
close to zero. 

After backgroundsubtraction a straight forward maxent solution of the still underde­
termined resulting equations: 

Yi = 'L. Rii!j + fi, (4) 

with Yi = Y; - bi is easily performed, especially if the statistical proporties of the errors 
are known (viz. E(fi) = 0 and E(fifj) = O}6ij with E(·) being the statistical expectation), 
and in principle they are as O'~ can be measured. Likewise, the point-spread function Rij is 
measurable. The point-spread function turns out to depend on energy, and the expression 
L Rii!j is not really a convolution. However, in the implementation[3] it is assumed that 
the point-spread function is only slowly varying with energy and the spectrum is treated 
in sections assuming a constant point-spread function in each section, so one may take 
advantage of the simpler convolution method in each section. 

The resulting much nicer looking spectra are shown in fig. 3. The scaling is the same 
as in figs. 1 and 2 but the peak heights are seen much greater, by almost a factor of ten. 
In fact, the main peak at 1 GPa and 3.9 GPa actually exeeds the maximum height bound 
of the figure. 

The determination of the positions of the peaks as judged from controlled" experiments" 
and from the fluorescent lines seems to be quite precise (e.g. the position of the fluorescent 
lines agree to whitin rv50eV compared with the corresponding tabulated values). The 
intensities have not yet been used, and in the present experiments are not trustworthy 
anyway due to the possibility af texture. 
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The main advantage of the present data processing procedure is of course the easier iden­
tification of diffraction peaks and fluorescent lines. For example, after deconvolution the 
Ba KO/ line at around 32 keY becomes double, i.e. resolved into a KO/! line and a K0/2 line. 

An even more interesting observation on the deconvoluted spectrum is that the (1 0 0) 
peak, (the one just below 20 ke V) which at 1.0, 3.9 and 10.7 GPa obviously is a single peak, 
is split at 14.6 and 19.3 GPa into two which are identified as (0 0 3) and (1 0 0) peaks, 
with the intensities changing drastically on going from 14.6 to 19.3 GPa. This change in 
intensity can be due either to texture or to an actual change in the atomic positions in the 
unit cell - which could well be the case since there seems to be a phase-change occuring 
between 19.3 and 33 GPa. To decide which of these possibilities is correct, some way 
of getting rid of texture must be introduced, for instance by rotating the sample. The 
intensities can then be used for the determination of the atomic positions, and work is in 
progress using the positions, widths and intensities obtained from the deconvoluted spectra 
as starting values in a nonlinear least-squares refinement of these parameters. 
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The importance of the background 
is illustrated in fig. 4 in which a 
small part of a spectrum from a 
GdBa2Cu309_6 is shown. Both the 
raw data and the background sub­
tracted data have been deconvoluted. 
It should be noted that all the peaks 
in the d) curve can be identified. The 
two most prominent peaks just below 
50 keY are the Gd K. lines. 

4 Conclusion 
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Figure 4: a) Raw data, b) background sub­
tracted data, (both left-hand scale) c) de­
convolution of the raw data, and d) de­
convolution of the background subtracted 
data (both right-hand scale). 

The ab initio determination of macromolecular structures is unsolved and is a difficult 
problem with intensive work going on in various centres, as evidenced by the references. 
For the powder diffraction problem only one aspect of the application of maxent has been 
touched upon here, although other aspects could certainly be handled with advantage 
by Bayesian and maxent methods. One such case is the refinement of atomic positions 
making use of the intensity data, which is usually done by a Rietveld-type (least-squares) 
procedure, where a Bayesian approach would probably be more appropriate. 
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ABSTRACT. Measurements of diffracted X-rays give information em the intensities, but not the phases, of 
the Fourier IraIlsfonn of the electron density of a crystal. Conventional methods for solving macromolecular 
structures collect data for isomorphous derivatives, and solve explicitly for the phases. Such phases 
are often of indifferent quality, so interpreting the resultant map in tenns of molecular structures is not 
always straightforward. Using maximum entropy one could hope to produce improved electrcm density 
maps from poor isomorphous phases, or, more ambitiously, to use native intensity data only. However, 
phase ambiguities may not be completely resolved, and the non-convexity of intensity cemstraints makes 
ccmsiderable demands on numerical algorithms. Moreover, it seems that the underlying molecular structure 
tends to weaken the assumptiem of a priori uniformity and independence. An alternative strategy for solving 
the problem would be to incorporate stereochemical infonnation at a much earlier stage than usual, which 
it is proposed to do by use of a triple correlation function. 

1. The Crystallographic Phase Problem. 

A crystal is an object which is identical if translated by any of the basis vectors ai, i = 1,2,3. 
which thus define the unit cell. If x denotes fractional unit cell coordinates (i.e .• the position r 
is given by r = E~=l xiai) so the crystal has period 1 in each axis. the Fourier transfonn of the 
electron density p is given by 

Fh = 1 p(x) exp(211"ix.h) d3x 
xEunitcell 

del 
:Fp, (1) 

and is non-zero only when each component hi of h is integral. Measurements of intensities of 
X-rays diffracted by the crystal give values of IFhl2, but not of rh.. the phase of Fh. To calculate 
the density p requires that the cf>h be found. thus posing the 'phase problem'. 

No progress can be made without some assumptions about the contents of the unit cell. 
The obvious one is that of atomicity. which immediately implies a positive electron density. 
Direct methods exploit this in several ways to give relationships between intensities and phases:­
positivity alone gives Karle-Hauptman detenninants (Karle & Hauptman. 1950); equal point atoms 
give the Sayre equation (Sayre. 1952); and the assumption of an independent random distribution 
of atoms allows calculation of the joint probability density functions of Fourier coefficients (Klug. 
1958). These methods have been successful in solving structures of 100 atoms or so. but fail for 
larger macromolecular problems. which are conventionally (Blundell & Johnson. 1976) solved by 
the method of multiple isomorphous replacement (MIR). Fourier intensity data are also collected 
for isomorphous heavy-atom derivatives. the heavY-atom oositions deduced. the phases solved 
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for explicitly, and hence a unique density map calculated, although a whole range of special 
solution methods also exist for cases where there is similarity to other solved structures, or where 
non-crystallographic symmetry provides redundancy in the data. Due to experimental difficulties, 
the calculated isomorphous phases are often of indifferent quality, in tenns of accuracy and 
resolution, and so building a stereochemically correct molecular model into the density is not 
always straightforward. The final stage of analysis consists of optimising atomic positions with 
respect to both stereochemical constraints and the native intensity data. There are often many 
more degrees of freedom than observations, and the positions of the atoms are not detennined 
by the intensity data alone. So, despite the successes of MIR, there is still a need for improved 
methods of solving structures using as little data additional to the native intensities as possible. 
For this reason, maximum entropy is seen as a promising technique in crystallographic analysis. 

In this paper, the application of maximum entropy to the phase problem and requirements for 
numerical algorithms are outlined, followed by a review of some practical calculations on trial 
data for a small protein in which the quality of the phase infonnation is successively reduced. It 
will be seen that ordinary maximum entropy is insufficient to compensate for a complete lack of 
phase infonnation, and that further knowledge of molecular structure must be introduced, which 
it is proposed to do by means of a multiple-sample prior based on the triple correlation function 
of known structures. 

1.1. APPLICATION OF MAXIMUM ENTROPY. 

Maximum entropy may be applied to this problem in a similar way to other image processing 
problems, although the exact philosophy varies (e.g., Wilkins et. al., 1983, Bricogne, 1984, 
Livesey & Skilling, 1985, Navaza, 1985, Bryan & Banner, 1987). A statistic measuring the 
misfit between the experimental data and synthesised data from a trial solution map is defined, 
and the entropy of the map maximised subject to the statistic indicating a suitable fit to the data, 
in that the differences between the observed and calculated quantities can be attributed solely to 
noise. The entropy (Jaynes, 1968) is defined on the suitably discretised density p as 

S(p) = - LPjlogpj/emj, 
j 

(2) 

and p = m has the global unconstrained entropy maximum. It is essential to use this unnonnalised 
fonn as Fo cannot be measured. All native and derivative data may be included with the correct 
weights by using the statistic 

x2(p;r,Id;,FP) = L{ wI: (IFhI2 -It:)2 
h 

+ Lw~;(JFh +H:;12 _1:;)2 

+ w::IFh - F:1 2 }, 

(3a) 

(3b) 

(3e) 

where It: are the observed native intensities, I:; the observed intensities for the i1h derivative, 
weighted by wI: and w:; (usually inverse variances) respectively, H:; the transfonn of heavy 
atom contribution to the i 1h derivative, and the F: phased data, included to take account of 
Fourier coefficients such as centrics (whose phases are restricted to 0 or 7r by the space group 
symmetry) which can be phased reliably by conventional isomorphous replacement. For a large 
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number M of observations, agreement is achieved when X2 ::; M. t If the Fh fit the native data 
exactly, (3b) is the same as the commonly used expression of Hendrickson & Lanman (1970) 
for the phase log likelihood distribution at fixed amplitude, and similar to that of Blow & Crick 
(1959). 

1.2. ALGORITHMS. 

If phased data only are used (constraint 3c), V'V' X2 is positive semi-definite, surfaces of constant 
X2 are convex, and the entropy maximisation problem has a unique solution (Gull & Daniell, 
1978). Taking one tenn from constraint (3b), V'V'X2 can be expressed in the space of the real 
and imaginary parts of one Fourier coefficient as 

(4) 

where r and i stand for real and imaginary part, and other subscripts have been dropped. 
Diagonalising gives eigenvalues 4w(31F + Hl2 - f) in the direction of F + Hand 4w(1F + Hl2 - f) 
in the orthogonal ('phase') direction. Setting H = 0 gives the results for native data. More 
generally, with MIR data there will be contributions to this matrix from each tenn in (3), but it 
is clear that V'V' X2 may have negative eigenvalues, and the problem is no longer convex. 

Non-convexity removes uniqueness of the solution and also demands a more careful analysis 
of the criteria for a local optimum. The Kuhn-Tucker conditions for a local constrained maximum 
are 
1. The gradients of S and X2 are parallel, a V' S = V' X2, a 2: 0. In the convex case this is also 

sufficient. 
2. V d such that d.V'X2 = 0, dtV'V'Qd ::; 0, where Q is the (rescaled) Lagrangian aS - X2, i.e., 

there are no directions along the constraint surface that give an improved S. 
As there are no conditions on the curvature of Q in the gradient direction, the optimum may be 
a saddlepoint of Q at fixed a, and methods based on its unconstrained maximisation may not 
work. This difficulty gave part of the motivation for modelling S and X2 as separate quadratic 
functions, rather than working just with the Lagrangian (Bryan, 1980, Skilling & Bryan, 1984). 
Such a fonnulation allows one to remain on a surface of constant X2 irrespective of convexity. 
Continuing the analysis, if Vj is an eigenvector of V'V'X2 with respect to - V'V' S == diag{l/ p}. 
eigenvalue Aj, nonnalised to v;diag{l/p}vj = O;j' then V'V'Q becomes -of - diag{>.j} in 
the {v;} basis. Assuming ordered eigenvalues, if Al > -a the second optimality condition is 
satisfied, whereas if >'2 ::; -a it certainly will not be. For the intennediate case, >'1 ::; -a < >'2, 
the eigenvalues in the subspace orthogonal to the gradient must be examined, which may be done 
via the characteristic polynomial of V'V'Q (Skilling, 1986b). 

Non-uniqueness is less easily dealt with. The multiplicity of possible solutions must depend 
on the initial object. Consider, at one extreme, intensity data for a single point source. The only 
positive solution is with all phases zero (or a trivial translation). Sparse distributions of point 
sources have indeed been successfully reconstructed by maximum entropy (Gull & Daniell, 1978, 
Bryan, 1980, Bryan & Skilling, 1986). Alternatively, a large, diffuse object can have almost any 
phase assigned to the weaker, higher resolution Fourier coefficients, and potentially many local 
entropy maxima. The practical problems of crystallography lie between these extremes. 

1.2.1. Standard algorithm. First, the algorithm for convex problems (Skilling & Bryan, 1984) is 
briefly summarised. The idea is to follow the locus of S maxima on surfaces of constant X2 in 

t Skilling and Gull have shown at this meeting that X2 = M is incorrect, and due to a frequentist 
interpretation of the noise. However, the computational results presented here should not be 
significantly affected, as the final map is more strongly dependent on the obtained phases. 
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a series of finite steps, over decreasing values of X2 until its correct value is attained. At each 
iteration the increment 0 P is found as a linear combination of a set of a small number of search 
directions el" with op = xl'el" for some set of coefficients xl'. Quadratic models of S and X2 
are constructed in the subspace spanned by the search directions, and to ensure accuracy of this 
approximation, a limit is put on the step length at each iteration, by imposing lopI2 ::; t2, where 
distances are calculated using the second derivative of S as a metric, so lopl2 = 2:; op~ / Pi. The 
problem of selecting the xl' is one of quadratic optimisation in the subspace. For convex problems, 
the el' 's are usually constructed as the contravariant gradients of S and X2, i.e., diag{p} V S and 
diag{p}Vx2, plus diag{p}VVX2 acting, perhaps repeatedly, on them. The only computations 
required in the full space are Fourier transfonns and vector operations. 

1.2.2. Finding Eigenvectors. If X2 surfaces are non-convex, S may have saddle points in 
the surface, and give rise to bifurcations in the solution path (Bryan, 1980). A multisolution 
strategy may be used to examine all optima which can be reached in this way (Bricogne, 1984, 
Gilmore et. at., 1988), although the topology of the space may be sufficiently complicated that 
other, completely isolated, optima exist (Skilling, private communication). Nevertheless, negative 
curvature directions must be investigated even if only to establish local optimality. The analysis 
above shows that the most important directions are the eigenvectors VV X2 with respect to 
diag{l/p} with the most negative eigenvalues, and one approach taken (Bryan, 1980, Bryan & 
Skilling, 1986) has been to select suitable candidate directions, and include them in the search 
space. The algorithm of §1.2.1 operates as before, but with the distance limit now playing 
an essential role when moving in negative curvature directions. A slightly more sophisticated 
approach to selecting directions, used for the calculations in Bryan & Banner (1987) and Bryan 
(1988b, c) is described here. 

If e satisfies VVx2e = .\diag{l/ p}e with .\ < 0, then etVVx2e < O. Although the spaces 
of eigenvectors with negative eigenvalue with respect to the entropy and Euclidean metrics are 
not identical, as a first approximation those with respect to a Euclidean metric are identified. 
They are easily found in the complex space of each Fourier coefficient, as in (4), leading to the 
Fourier-space Euclidean eigenvectors Ak = CkOhhl' eigenvalues Rhk' where the Ck are complex 
coefficients of unit magnitude. The VVX2 and diag{l/p} matrices in the subspace spanned by 
K such vectors can be fonned as follows, which is the Fourier space equivalent of the standard 
method, and similar to a suggestion of Bricogne (1984). If ak are the inverse Fourier transfonns 
of the Ako k = 1, ... ,K, then 

(5) 
and 

(6) 

so that the subspace C matrix is diagonal, and both matrices may again be computed by Fourier 
transfonns and purely vector operations in the full space. Complex conjugates and space group 
symmetries must be taken into account in these expressions. 

The subspace C matrix can be diagonalised with respect to the S matrix by standard 
linear algebra methods, yielding the Fourier coefficients of the approximate negative curvature 
eigenvectors. K = 50 has been used regularly, and gives a reasonable compromise between 
cost of the Fourier transfonns used in the construction of the standard search directions and the 
linear algebra in the eigenvector routine. Using 8-10 search directions in total, the eigenvector 
routine is called at intervals of a few iterations, giving a library of directions, 2-3 of which can 
supplement the main search space at each iteration, together with negative curvature eigenvectors 
retained from the previous iteration. This procedure has proved to be reasonably reliable, in that 
if a run is stopped and then restarted, so that the current map is unchanged but all accumulated 
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Figure 1. (a). Contours of exp -X2 /2 for one Fourier coefficient and SIR data. 0, origin. H, heavy atom 
vector, B 'best' value. (b). Orthogonal trajectories of (a). 

eigenvector infonnation is lost, the wanted eigenvectors are usually found again within a few 
iterations. 

2. Applications. 

Some results of applying the above algorithm are reviewed and discussed here. Complete phase 
infonnation gives the same Fourier problem with a unique solution as that of Gull & Daniell 
(1978), and maximum entropy provides the expected improvement in quality (e.g., Bricogne, 
1984, Wei, 1985, Wilkins & Stuart. 1986). Here, in §2.1 maximum entropy is shown to give 
useful solutions to some problems, which, through incompleteness of the phase infonnation, are 
insoluble by classical methods, whereas with amplitude data only (§2.2) its limitations become 
apparent. 

2.1. INCOMPLETE PHASE INFORMATION. 

2.1.1. Single isomorphous replacement. Assuming, for the moment, that the heavy atom positions 
have been established, data for the native structure and one derivative do not uniquely detennine 
the phase. Fig. 1a shows the contours of likelihood, exp _X2 /2, for one Fourier coefficient 
in the argand diagram. There are two regions of high likelihood, each with the correct native 
amplitude, but with the phases symmetrical positioned about the heavy-atom phase, one of which 
is the correct phase. Conventionally, (Blow & Rossmann, 1961) the average over this distribution 
is taken as the so-called 'best' Fourier coefficient, but a map synthesised from these is often 
uninterpretable. Maximum entropy may be used to make a selection between the two high­
likelihood possiblities, consistent across the different Fourier coefficients. However, the shape of 
the constraint leads to further algorithmic complications. If the orthogonal trajectories of the X2 
contribution for a single Fourier coefficient, fig. 1b, are examined, they are seen to be more-or­
less radial until very close to the correct intensity. Consequently, during the iterative solution, the 
Fourier coefficients increase in amplitude with virtually no change in phase until they are near the 
correct amplitude, or are deflected by an entropy gradient. If the starting map is flat, F = 0, the 
direction of departure from the origin is down the gradient of X2, proportional to (IHF - Jd)H, 
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hence either in the direction of H, or opposite, and depending on the relative amplitudes of H, 
Id and In, it could be either towards the 'best' phase, or 180° away, giving aligned phases and a 
map with a single large peak. This inevitably results in computational problems, either because 
a large number of iterates will be required eventually to move in phase at constant amplitude, or 
because the algorithm may stop at an incorrect optimum without having fitted the data. 

Previously (Bryan et. aI., 1983), this problem was avoided by imposing an upper bound on P 
via a Fermi-Dirac entropy. thus suppressing large peaks and avoiding extreme phase alignment. 
The same calculations can be performed if the phases are biased to start with, by taking origin 
and enantiomorph defining Fourier coefficients plus those with better-defined 'best' phases (e.g .• 
if the two most likely phases differ by less than 45°). calculating a map with them. and using it 
temporarily as a prior in a calculation using all the data. Clearly, many variations along these 
lines are possible. More recently (Bryan, 1988b), a calculation with a centrosyrnmetric heavy 
atom has been performed, (which conventionally would give a centrosyrnmetric map, totally 
uninterpretable). showing that this ambiguity can also be resolved. 

2.1.2. Unknown heavy-atom positions. So far, the heavy-atom Fourier coefficients have been 
fixed. The step of deducing their positions can be avoided if a second map u is introduced 
to represent the heavy-atom density, so now Hh = :Fu. The total entropy of both maps is 
maximised, again subject to the X2 constraint. It is important that the P and u maps have the 
correct relative weights in the entropy. The analysis (Bryan, 1988a) may be performed if the 
numbers and types of atoms each map represents is known. If p and u now represent the number 
density of atoms, then Fh = Zp(:Fp)h and Hh = Z,,(:FU)h' where Zp and Z" are the respective 
atomic numbers. and the priors for P and u, integrated over the respective maps, should be 
proportional to the numbers of atoms the maps represent. Anomalous scattering effects may also 
be allowed for by using a complex Z. 

This method has been demonstrated (Bryan, 1988b) on a small trial structure (160 light atoms, 
Z = 8, 1 heavy atom, Z = 32). using a small set of starting phases, and gives a u map with a 
single peak at the correct position. and the correct p map. The knowledge that u usually consists 
of only a few atoms is also important. and the solution should be completed by building an atomic 
model into the map. More generally. for the MIR problem. a further u map should be introduced 
for each derivative. 

2.1.3. Phase Extension. The formation of a heavy-atom derivative may disrupt the structure 
locally, or. if it causes changes in inter-molecular contacts, alter the unit-cell size. Thus the 
phases determined by isomorphous replacement are often accurate only to lower resolution than 
the diffraction data itself, so the 'phase extension' problem then arises. The ab initio problem is 
a limiting case, with only origin and enantiomorph defining phases specified. There have been 
many approaches suggested for phase extension, one of the most fruitful being solvent flattening, 
requiring interpretation of the low resolution map into molecule and solvent regions, and the 
seeking of a solution for the phases which leaves the solvent region uniform. Alternatively, 
one may try to extend phases directly, without preliminary interpretation of the structure, using 
constraints on Fourier coefficients at low, and on intensities at high, resolution. There is some 
scope for varying the exact details; e.g., whether the result of a lower resolution calculation with 
Fourier coefficients is used as a prior map; whether the intensity data are introduced all at once, 
or successively, according to resolution, or to some other criterion such as the accuracy of the 
predicted intensity (Gull et. aI., 1987). The final results will inevitably depend heavily on the 
predictions of the high-resolution phases from the low-resolution data, so the accuracy of these 
predictions before the intensity constraints are applied will also be investigated. 

The results of some calculations performed on synthesised data are presented here. The data 
were calculated from a solved structure, that of scorpion neurotoxin 3 (Almassy et. aI., 1983). 
which has been refined to high resolution. This small protein has 65 residues and 72 bound 
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Figure 2. Graphs of phase elTors for various phase extension problems. Continuous: mean 
intensity as a function of resolution (arbitary scale). Long-short dash: mean phase elTor of 
extrapolated Fourier coefficients using data with phases to given resolution only. Dotted: for 
comparison, the results of Bricogne (1984). Short dashes: mean phase elTOf after intensity 
constraints applied. 

solvent molecules, giving a total of around 600 atoms, whose coordinates were obtained from the 
Brookhaven database. Fig. 2 summarises the results. For comparision, the results of Bricogne 
(1984) for phases predicted beyond 3A for the somewhat smaller protein Crambin are also plotted, 
and are in close agreement. It is seen that the accuracy of predicted phases depends very strongly 
on the cutoff resolution of the Fourier coefficient data provided. Even medium resolution data of 
sA does Dot give good predictions. 10 two cases, intensity constraints at higher resolution were 
then applied. Extending from 2.5A gave an excellent result, with the additional constraints pulling 
the phases even closer to the true values. At 4A, there is a modest improvement at slightly higher 
resolution, but essentially Done beyond 3A, where the phases are hopelessly wrong. It seems to 
be necessary to have correct phases to 3.5A or so before this procedure gives reasonable good 
phases. Why should this resolution be critical? As pointed out by several authors, the entropy 
penalty on introducing new data is least if the phases cause new density to line up with old. 
Upon examination of correctly-phased maximum entropy maps at 2A and 4A resolution, fig. 3, 
it is seen that the peaks of the 4A map are centred, not at atomic positions, but more on atomic 
groups. The predicted phase for higher resolution data causes an alignment with these peaks, and 
not with the correct atomic positions. 

2.2. NO PHASE INFORMATION. 

As discussed in § 1, the pure phase problem is likely to give many local entropy optima, so 
an ab initio calculation will be avoided here, and instead the question of whether the true 
structure is indeed near some optimum will be adressed. Previously (Bryan & Banner, 1987), a 
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Figure 3. Sections of SN3 electron density, size 42 X 52A, at resolutions (a). 2A, (b). 4A. The contour 
interval in (a) is twice that in (b). 

maximum entropy map was calculated from synthetic 3A Fourier coefficients. using constraint 
(3c). The phases of the data were then forgotten. and only the intensity contraint (3a) used. 
If maximum entropy really compensated for the loss of phase information. then the same map 
should be a maximum of entropy subject to the new constraint. However. it was not, and a 
path of monotonically increasing entropy at constant X2 could be followed until a maximum 
was attained, with a considerable phase shift. Repeating the calculation with the neurotoxin 
structure again gave large phase shifts. the amplitude weighted average being some 50°. and an 
essentially uninterpretable map. Clearly, maximum entropy does not compensate for the loss of 
phase information at this resolution. If the same test is performed at better resolution, the phase 
shift is reduced, to 35° at 2A, due possibly to the stabilisation effect of a greater effective volume 
of zero density in the inter-molecular spaces. 

2.3. DISCUSSION. 

Why is there such a lack of success when the data contain little phase information? Perhaps, 
because a reconstruction of point sources will have fewer ambiguities than extended objects, it 
would be better to calculate the distribution of atomic positions, rather than the electron density 
itself. For atoms at rest, this could be done by multiplying the transform of the number density 
of atoms by the atomic scattering factor (Fourier transform of atomic electron distribution), and 
then comparing with the observed data, similar to §2.1.2., but with Z now a function of h. Direct 
methods indeed work with 'normalised structure factors', representing the estimated intensities 
of point scatterers, rather than extended atoms. Such normalisation is practicable only if the 
atoms all have the same effective shape, which is a reasonable assumption for small molecules. 
In contrast, the thermal motion of atoms in macromolecules is much larger, and moreover varies 
greatly between different parts of the structure, such that exposed sidechains are often invisible 
even in correctIy-phased maps. Thus no simple normalisation will give intensities representing 
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the scattering from point atoms. A theoretically appealing solution to this would be to have a 
series of densities, indexed by temperature, to which the appropriate factors are applied before 
combining to give the effective density. To compute many 3D maps is, however, unappealing. 
Perhaps one could go further:- maps of positions and orientations of amino-acids, etc, trading 
greater infonnation about the structures in the map for a more complicated parameterisation. 

The very failure of maximum entropy shows that 'hidden' constraints are acting (Jaynes, 1982). 
It is well-known that the density is non-unifonn, in that atoms are separated by specific bond 
lengths, that there are well-defined angles between bonds, with a further hierarchy of larger-scale 
structure, characteristic of proteins, nucleic acids, etc. Applying maximum entropy directly to the 
problem means that a priori independence of the density at different points is assumed, and also 
uniformity since a flat prior must be used, as the position of the molecule is initially unknown. 

These assumptions are seen to be broken at two length scales; at large scales, molecules 
pack together with disordered solvent filling the spaces, and at small lengths, there is the atomic 
bonding pattern. Taking these effects into account should mean that infonnation about molecular 
confonnation is used at an early stage in the phasing procedure, and not just at the end, when 
trying to build a model into an already-phased density. 

3. Triple Correlations. 

Previously (Bryan, 1988c), the use of priors based on second-order correlations of atomic positions 
in the phase problem has been considered. This function is itself the Fourier transfonn of the 
intensities, and therefore introduces no infonnation that is not in principle measurable, except 
that many protein crystals do not diffract well enough for these data to be collected. Although 
the one-dimensional examples presented showed the forcing of a density into atomic fonn, when 
extended to three-dimensions the spherically symmetric prior density that results is of little use 
(unpublished results). Inspection of molecular structures shows that bond angles. as well as bond 
lengths, fall at certain well-defined values. Considerable further infonnation should therefore be 
contained in the triple correlation. 

C(3)(p,q) = J r(x)r(x + p)r(x + q)dx, (7) 

. f Fo . ti C-(3) - - - h 'cal I ed or. m tenns 0 uner trans onns. U,v = rurvr_(u+v). w ere r represents a typl so v 
structure. C(3) is a function of two vectors, and computationally quite unmanagable. Moreover. 
for use in constructing a prior. a rotationally as well as translationally invariant function is 
required. which can be obtained by averaging C(3) over all directions of p and over the azimuthal 
angle of q about p. leaving a function of the lengths p. q and the included angle 4> only (or. in 
a more symmetric fonn. the lengths of the three sides of the triangle). 

The triple correlation has been calculated for several solved structures. and fig. 4 shows a 
typical plot. calculated from atomic coordinates. rather than density, to show the features more 
clearly. The first. at 1.3-1.5A. and second. around 2.4A. nearest neighbour positions are closely 
defined. with appropriate bond angles. With p large. beyond 6A. the function becomes almost 
independent of 4>. except near (p, p, 1). and as a function of q. closely related to the second-order 
correlation. With both p and q large. the function is modulated by the effects of molecular size. 
but is otherwise fairly smooth. There is no apparent long-range order in the atomic positions. 
Thus there are three regimes of interest:- short distances. up to perhaps three bond lengths (say 
4A). where atomic positions are highly correlated; medium distances. up to a few tens of A. 
where the atomic positions are essentially uncorrelated. but have a constant average density; and 
large distances. greater than the molecular size. where the the triple correlation takes a constant 
value related to the relative volumes occupied by molecules and solvent. 



222 R.K.BRYAN 
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Figure 4. Rotationally averaged triple correlation calculated from atomic coordinates. The q values are 
given for each section. and in each section p ranges over 0-6"\ horizontally. and cos <p over -1-1 vertically 
downwards. The origin spike and (p, p, 1). (p, 0, cos <p) and (0, q, cos <p) elements (essentially the double 
correlation) have been suppressed. The contour heights are logarithmic. with the first at twice the average 
value for large p and q. 

3.1. EFFBCI'IVE PRIOR. 

The effective prior Illeff is given (Skilling. 1986a) by the biconvolution 

logmeff(X) = J p(p)p(q)logC(3)(x - p,X - q)dpdq, (8) 

which is most time consuming to compute. requiring either N 9 operations in real-space. or. upon 
Fourier transformation. 

(.1""logmeff)u = I:FvFu_v(.1""logC(3»v,u_v, (9) 
v 

which takes N6 operations. If the range of integration in the real-space expression (8) is restricted 
to a volume V. the calculation requires only N3 V2 operations. which can be performed in a 
reasonable time for small. but useful. V. To get similar short-distance information into a Fourier 
space evaluation of the biconvolution. a sum to high resolution is required. 

If all of Illeff. p and C are assumed to be constants plus some variation (using /L. ,p. r for the 
variations). then S may be represented in terms of their Fourier transforms as 

where 

S = -I I: 1~12 + 1 I: ~~~-(k+I) + I: ~P-k +.... (10) 
k ~ k 

Pk = 2~rk,O + L: t$a~-Irl,k-h 
I 

(11) 
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If r is flat, i.e., no triple correlation effect, the second-order tenn is independent of phase and 
each tenn in the third-order expression is a maximum if <Pk + th + <P-k-l = 0, which is the usual 
triplet phase relation, well known in direct methods. Including a non-unifonn r gives 

k kl 

so the relative weighting of the tenns now depends on the triple correlation, with possibly even a 
reversal of the expected triplet phase. The rotationally averaged triple correlation is real, but this 
need not be the case in general, so phase infonnation could be imposed. Higher order correlations 
will similarly affect the quartet and higher order multiplets. Hauptman (1964) has perfonned an 
extremely lengthy Fourier space calculation to derive the distribution of triplets if infonnation 
about atomic bond lengths is used, and also shows that a modified triplet relationship may be 
derived. The current approach is very much more flexible; any infonnation to this order may be 
used directly in maximum entropy with no further calculation of phase distributions. 

3.2. A PRELIMINARY APPLICATION. 

The 'local' fonnulation of the problem can be implemented as follows. If we assume the 
correlation function is unifonn when both p and q are large, taking the value Coo, then 
log C = log C / Coo + log Coo, whose second tenn, after the biconvolution (8), gives a constant, 
and the first is non-zero only within our 'local' volume. The p-small-q-large regime can be 
similarly taken care of, and introduces a second-order correlation. The correct scaling in this 
expression is crucial, as ID,,/f results from the exponentiation of the biconvolution. This scaling, 
corresponding to powers of ID,,/f, was examined in the second-order case in Bryan (1988c), and 
was found to give a critical phenomena as it was varied. 

Even with the local fonnulation, calculating triple correlations is computationally intensive, 
and it is not yet really practicable to re-compute the prior each iteration, as one would like 
to. Updating it every few iterations is more reasonable. Perhaps a suitable criterion would be 
when the relative entropy has changed by more than a certain amount, although this is still to be 
investigated. 

This method has been applied to a very simple example, consisting of a slightly distorted ring 
of six gaussian atoms in two dimensions, fig. 5a, with its centrosymmetry ignored. A naive 
application of maximum entropy using only two origin-fixing phases, intensity data and a flat 
prior stops before fitting the data, with an obviously incorrect solution, fig. 5b. The central peak is 
much larger than the others. Applying the triple correlation (this time calculated for 2D Gaussian 
atoms) at intervals during the calculation (in fact, only three times in all) to create a new prior 
gave the results in fig. 5c and d, which speak for themselves. 
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plain maximum entropy. (c) & (d). Fmal triple correlation prior and map. 
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Abstract 

The maximum entropy method offers several advantages over 
traditional dlrect methods in the a-priori solution of crystal 
structures. These include the full use of all invariants at every point 
without their explicit generation; the use of a non-uniform 
distribution of atoms, qME(x), which is constantly updated guaranteeing 
that the aproximate joint probability distribution of structure factors 
remains valid even for large deviations from uniformity; the natural 
incorporation of the variances of the structure factors, a tolerance 
towards errors in the intensity data, and a stability that is 
independent of data resolution. In ab-initio studies on small organic 
molecules, starting with origin defining reflections only, the maximum 
entropy method is used to generate qME(x) which can then be used as a 
source of new phase information via extrapolation, and this new 
information is used to update qME(x) in a cyclic fashion. When the 
extrapolation process has exhausted the currently assumed phase 
information, strong unphased structure factors are given permuted 
phases; this recenters the asymptotic expansion for the joint 
probability distribution of the phased structure factors, and a 
likelihood criterion is used to select the most probable phases for 
these reflections and to carry out phase refinement. 

The Crystallographic Phase Problem 

A full discussion of the maximum entropy method and its 
relationship to traditional direct methods in crystallography has been 
published by Bricogne (Bricogne 1984, 1988a, 1988b). A brief summary of 
the salient features of this approach is given here, coupled with 
descriptions of the method in practice. 

As an initial step, the experimentally measured structure factor 
moduli IF~I are placed on an absolute scale with a correction for 
overall, lsotropic atomic thermal motion to give normalised, unitary 
structure factors IUhl, scaled such that Un=1.0. The phase problem is 
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concerned with the derivation of the phases ~h of these unitary 
structure factors given only their moduli. The traditional approach to 
this problem involves the application of statistical methods. 

In this approach N atoms are thrown randomly and independently 
into the asymmetric unit of the crystal. Using the standard 
mathematical techniques, we wish to calculate the joint probability 
distribution (jpd) P(U) of any collection U = (Uh1 'Uh2' •...•• Uhn ) of n 
unitary structure factors that we wish. We know by measurement the 
moduli of the structure factors, and can, therefore, substitute these 
values into the expression for the jpd P(U), and obtain the conditional 
distribution of their phases. This distribution will then be used to 
infer which combinations of phases are most likely since not all 
combinations will occur with equal probability. 

There are however several problems with this approach: 

(i) P(U) cannot be calculated exactly. The traditional approach uses the 
Gram-Charlier or Edgeworth series to generate approximations to P(U), 
and always assumes a uniform distribution of atoms. This yields 
approximations to P(U) which are good only near u=o i.e. for small 
moduli, yet the expressions obtained have to be used with large moduli 
otherwise the conditional distributions are essentially featureless. In 
fact there is no tractable unique expression for P(U) 

(ii) Direct methods fragment P(U) into small marginal distributions, of 
which the three-phase Cochran distribution is the most used. (Cochran, 
1955) These marginals are then pieced back together to give a poor 
approximation to the full jpd; it would be much better to maintain and 
use large-base jpd's at the outset but this is difficult to do with 
traditional methods. 

However, better analytical devices can be found to overcome these 
difficulties. The locus M defined by the large moduli is a high­
dimensional torus which can be split up into sub-regions. Each such 
sub-region consists of a patch of M surrounding a point U* ~ 0 located 
on M. Such a point U* is obtained by assigning trial values to the 
phases of known, large moduli and can thus be compared with the mUlti­
solution techniques used in traditional direct methods (Germain and 
Woolfson, 1968 and subsequent papers) For each sub-region a local 
approximation to P(U) can be constructed. With a sufficiently large 
collection of such constructs we have the means to calculate P(U) 
anywhere on H, and this leads to the concept of recentering . 
Recentering the Gram-Charlier or Edgeworth asymptotic expansion for P(U) 
away from U=O by making trial phase assignments is equivalent to using a 
non-uniform prior distribution of atoms q(x)~1/V (V is the volume of the 
unit cell) reproducing among its Fourier coefficients the components of 
u*. This means, of course, that q(x) is highly indeterminent. There is 
however a uniquely defined 'best' choice for it, and that is the 
distribution which has the maximum entropy under these constraints. 
This can be justified either via Shannon's theory of information 
(Shannon and Weaver, 1949) or by calculating the pSP(U) saddlepoint 
approximation to P(U) (Daniels, 1954; Bricogne, 1984, 1988a, 1988b). 
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Significantly, the saddlepoint approximation yields identical 
expressions for the best choice of a non-uniform prior q(x) without ever 
mentioning entropy or invoking the associated formalism. 

Solving Structures via the KE-Saddlepoint Method 

In the phasing process we never start from a position of complete 
ignorance. In order to define the origin of the unit cell in real space 
one to three IUhl's can usually be given arbitary phase angles (subject 
to constraints arising from space group symmetry). In addition, in the 
non-centrosymmetric case, the enantiomorph needs to be defined; this is 
done in conjunction with the origin defining reflections, and usually 
involves a further phase assignment, so that the phases of 1-4 
reflections are assigned. These form the basis-set , and they can be 
used as constraints in an entropy maximisation procedure to generate a 
non-uniform prior, qME(x). The algorithm used for entropy maximisation 
is based on exponential modelling (Collins 1978; Collins and Mahar; 
1983, Bricogne, 1984) with careful attenuation of shifts and a plane 
search algorithm which controls the rate at which detail is built in 
qME(x) by modelling the entropy and the constraint as a bi-cubic 
function of two shift variables. A general purpose computer program 
MICE (Maximum entropy In a Crystallographic Environment) has been 
written for this purpose. It has an interface to the direct methods 
program MITHRIL (Gilmore 1984, 1988), which is used to calculate U­
magnitudes, their standard deviations (Hall and Subramanian, 1982) and 
to select those reflections that optimally define the origin and the 
enantiomorph. 

The distribution qME(x) is a computational intermediate in 
obtaining an optimal approximation pSP(U) to P(U). The approximate jpd 
pSP(U) extrapolates non-zero structure factors beyond the basis 
reflections which were used as constraints in the entropy maximisation; 
i.e. qME(x) has non-zero coefficients even when no constraint values 
were specified via U*. Non basis-set reflections which are strongly 
extrapolated i.e. which have a large IUMEI value and a large 
IUobslluMEI product, can be incorporated into the basis-set with 
observed moduli and phases from the coefficients of qME(x) , and the non­
uniform prior qME(x> updated. Each new increment of the basis set 
defines a node on a phasing tree. When the basis set is small, this 
process reaches a point, however, where extrapolation becomes very weak, 
and new phase information is required. 

At this point a suitable reflection or set of reflections is chosen 
with large IUhl values. The choice is critical, and an algorithm based 
on an optimal extension of the second neighbourhood of the basis-set 
reflections is used. (For a discussion of neighbourhoods see Hauptman, 
1980) Since the phases of such reflections are unknown, all possible 
permutations of the phases are tried, and for each new node the prior 
qME(x> is updated. As described previously, this has the effect of 
recentering the distribution pSP(U). For centric reflections, this 
requires sampling the unknown phases at two points (~ and rr+~. where ~ 
is restricted by space group symmetry) and two new nodes are created, 
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whereas for acentric reflections the choices are ±n/4 and ±3n/4 so that 
four new nodes are created. This method has parallels in the highly 
successful multisolution approach to the phase problem in traditional 
direct methods (Germain and Woolfson, 1968) In the maximum entropy 
method a tree structure is thus created. Such a tree soon becomes 
computationally unwieldy and needs to be 'pruned', and for this a 
likelihood function is used. 

Likelihood 

The approximate jpd pSP(U) depends on the phases of the constraints 
used to build qME(x). For given values of these parameters yielding 
vector U* we may look at the conditional distribution pSP(U1 IU*) of any 
set U1 of structure factors for which no phase assignments have been 
made, and integrate it with respect to the phases of the U1 to get the 
conditional marginal distribution of the moduli pSP(IU11 IU*). This 
differs from the Wilson distribution that is usually used in 
crystallography (Wilson, 1949) in two respects: 

(i) pSP is centred around uME not the origin. 
(ii) pSP has a covariance matrix Q=T(qME), the Toeplitz matrix formed 

from UME , not the identity matrix. 

Thus phase choices for the basis set reflections U* induce a 
deformation of the conditional marginal distribution of the moduli lUll 
away from their usual, Wilson distribution. Hypotheses about the phase 
values in U* may then be tested as hypotheses about the distribution of 
moduli lUll. For this purpose we define the likelihood A of the 
parameter values in U* as the conditional marginal probability of the 
observed moduli: 

A(U*) = pSP(IUllobsIU*) 

This likelihood can be used as a figure of merit in a 
multisolution-tree structure environment. It was shown by Bricogne 
(Bricogne 1984, 1988a) that this is a generalised quartet figure of 
merit (De Titta, Edmonds, Langs and Hauptman, 1975). For each node on 
the tree we can use likelihood to rank the equivalent nodes and so keep 
the computational aspects of the calculations under control. 

In practice, it is convenient to normalise A with respect to the 
null h¥pothesis (HO) that the distribution of atoms is uniform (i.e. 
that U =0) and to use the likelihood ratio: 

A CU*) pSP ( lUll obs I U*) 
=-------

A (0) pSP ( I U 1 lobs 10 ) 

in its logarithmic form L(U*) - L(O) where L=logA. 
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For computational ex~ediency, the diagonal approximation to the 
covaraince matrix of Q(pS } is used, so that explicit expressions for 
likelihoods are easily obtained (Bricogne, 1984,1988a). In spite of 
this approximation, the likelihood function still retains a great deal 
of its discriminating power as is shown in the next section. 

Application to Two Saall Organic Molecules 

(i) Phase Extension 

229 

Phase extension is a process in which a set of phased U-magnitudes 
is used to generate phase angles for previously unphased reflections. 
It differs from ab-initio phasing in the size of the basis-set; for 
ab-initio methods the initial set U* is very small and typically 
comprises 8-10 reflections, whereas for phase extension a set of 50 or 
more phased reflections is available. As a test of the exponential 
modelling algorithm, phase extension was carried out on sucrose octa­
acetate C2SH38019' space group P212121 with Z=4. The top 300 U­
magnitudes calculated from experimental data were given correct phases 
and the system subjected to 23 cycles of entropy maximisation via 
exponential modelling coupled with a plane search algorithm and shift 
attenuation. This is a very demanding test of the algorithm. Since 
they are corrected for thermal motion, U-magnitudes give very sharp 
maps. In consequence, qME has a huge dynamic range with even sharper 
peaks. Aliasing is also a problem. The results are summarised in Table 
1. 

At x2=1.0, 492 non basis-set Uh's having the product IUobslluMEI 
~ 0.01 have calculated phase angles with a mean absolute phase error of 
9.0 degrees. It is worth noting that, unlike the tangent formula which 
is traditionally used in phase extension in direct methods (Karle 
and Karle, 1966), this calculation has been carried out without 
consulting the magnitudes of these reflections. 

Cycle x2 cos(VS, vC} Entropy 

1 25.0 0.83 -0.01 
5 21.3 0.96 -0.25 

10 12.8 0.94 -1.55 
15 3.5 0.69 -13.41 
20 1.4 0.82 -38.00 
23 1.0 0.84 -67.80 

Table 1: Phase Extension on Sucrose Octa-acetate. Cos(vS,vC) is 
the cosine of the angle between the gradient of the constraint C and 
the gradient of the entropy S. 
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(ii) Ab-initio phasing 

As a test of the use of likelihood and the ability of the maximum 
entropy method to extrapolate phase information even when the basis set 
is very small, the ab-initio phasing of a small organic molecule was 
performed. The molecule was (-)platynecine, CSH15N02' which 
crystallises in space group P212121 with Z=4. The basis set was chosen 
to comprise 3 reflections which simultaneously defined the origin and 
enantiomorph. From these reflections with the subsequent addition of 
permuted reflections the structure was readily solved. Figure 1 shows a 
summary of ~he first stages of the phasing tree. 

Node 1(3) 

NOdl 2(4) 

/~ 
Node 3(5) Node 4(5) 

-51.59 -0.05 
I 

Node 5(7) 

I 
Node 6(S) 

permute (220) 

~ "'" per.ute (202) 

Node 7(9) Node S(9) 

-3.50 ~f~ute (151) 

Node 9(11) Node 10(11) Node 11(11) Node 12(11) 
-7.24 -1.34 -1.84 -7.95 

Figure 1: The Initial Stages of the Phasing Tree for (-)Platynecine. 
The figures in parentheses refer to the number of basis reflections; the 
figures in italics are L(U·) - L(O). Node 11 is the correct node; Node 
10 is shown to be incorrect several levels later. 

Whereas the entropy of a node is of little value as a figure of 
merit, the power of the likelihood function as a discriminator is quite 
extraordinary: no other figure of merit exists which can discriminate so 
precisely with such a small basis set of reflections. Direct methods 
uses figures of merit based on consistency indices, but they are unable 
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to provide reliable indications until the basis set spans at least 50 
reflections and even then the reliabilty can be poor. However, care 
does need to be taken; normally large differences in likelihood are 
necessary for complete confidence, and very small differences, such as 
between Nodes 10 and 11 are such that both nodes must be further 
explored. 
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Computer graphics has an important role to play here. The visual 
examination of appropriate maps as they are generated is very important 
in following and assessing the phasing process which allows the 
incorporation of the user's chemical knowledge in a weak way. 

Phase Refinement 

Likelihood calculations also permit phase refinement of the phases 
of the basis set reflections via optimisation of L(U*) with respect to 
the phases in U*. The Jacobian matrix a(uME)/a(u*) must be obtained. 
This is a relatively simple calculation. table 2 shows how the mean 
absolute phase error is reduced from 11.1 degrees to 9.3 degrees in 
4 successive cycle of phase angle refinement for node 18 of 
(-)Platynecine. It may seem a small improvement, but small changes of 
this magnitude can have a highly significant effect on subsequent phase 
extrapolations. Note also that the likelihood function L(H) - L(HO) is 
substantially increased. 

Cycle Mean Absolute L(H) - L(HO) 
Phase Error 

1 11.1 -4.50 
2 10.1 -0.31 
3 9.7 -0.26 
4 9.3 -0.20 

Table 2: Variation of Mean Absolute Phase Error in Successive Cycles of 
Phase Angle Refinement using Likelihood Optimisation 
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THE CHALLENGE OF X-RAY AND NEUTRON POWDER DIFFRACTION 
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ABSTRACT. There are many structures of considerable interest for which 
crystals of sufficient size for single crystal diffraction experiments 
cannot be grown. In these cases powder diffraction patterns can be 
taken. Ab initIo structure solution from such patterns is difficult due 
to the limited amount of data which can be extracted. We are 
investigating the application of ME and related techniques to the 
solution of this problem. We present a method for computing the 
probability that a trial combination of phases is correct. Extensions to 
the ME formalism which are necessary to deal with unequal scatterers, 
including negative neutron scattering lengths, are then described. 

1. INTRODUCTION 

Virtually all crystal structures are solved from single crystal data, 
where each of the diffracted intensities can be observed separately. 
Frequently the task of obtaining a sufficiently large crystal for these 
methods is very difficult, and may prove impossible. This is the case 
with many crystalline substances of interest, such as for example 
zeolites. A fine powder of microcrystallites, from which a powder 
diffraction pattern may be taken, is often easily obtained. In such a 
pattern the diffracted intensities are sorted purely on their Bragg 
angle, with inevitable overlapping of data which rapidly becomes worse 
as the Bragg angle increases. As a result, the number of reflexions for 
which intensities can be unambiguously assigned is smaller than with 
single crystal diffraction, and these reflexions tend to be of low 
resolution. 

This is not to say that structures cannot be solved from their 
powder patterns. If there are a small number of parameters to be 
determined this can be done. Many examples of such determinations are to 
be found in the early volumes of Acta Crystallographica, particularly by 
Zachariasen (1948). In more recent years interest has returned, but with 
the need to solve structures of greater complexity. 

The width of the diffraction peaks comes from two distinct sources. 
The first is instrumental, and can be greatly reduced by the use of 
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devices such as focussing cameras and, more recently, the synchrotron 
(Parrish & Hart,1987)and intense neutron sources (Clearfield & 
Rudolf,1987). With such high resolution equipment the problem of overlap 
can be reduced to the level where sufficient data for input to 
conventional direct method packages can be obtained for structures of a 
few atoms. A recent paper by McCusker (1988) reports the solution of a 
zeolite with eleven atoms in the asymmetric unit. The paper also 
references some other ab initio determinations which have been made in 
the last decade. The second source of peak width is due to the 
microcrystalline composition of the specimen, and this sets an absolute 
limit on the observable peak width. 

As the structures become larger, the amount of available data will 
fall short of the amount needed by conventional techniques to solve the 
phase problem. There is thus a need for procedures which make better use 
of the available information than do the conventional approaches. 

2. EVALUATING PHASE PERMUTATIONS 

The major problem which confronts us in ab initio structure 
determination is the extension of structure factor phases from a small 
'basis set' to a number sufficient to reveal the atomic positions 
through a Fourier synthesis. 

Entropy maximisation based on the reflexions we can choose 
arbitrarily yields predictions for the rest of the data set. We might 
hope to phase extend by taking the 'extrapolated' phase and associating 
this with the known magnitude of the reflexion. In practise this 
procedure is unlikely to succeed. In the early stages of the solution 
attempt extrapolations are small and unreliable - unsurprisingly since 
many structures would satisfy the constrained reflexions. We are then 
forced into the growing of trees, each node of which involves an 
entropy maximisation. This is rather expensive in terms of computer 
time, so a question which arises is: Can we reduce the number of times 
we perform an entropy maximisation by assessing the plausibility of a 
set of permuted phases being correct? 

2.1. Derivation of the Figure of Merit 

To deal with a concrete example consider a centrosymmetric structure, 
where all structure factor phases have values of either 0 or n. We can 
say that the signs of the structure factors are either 'plus' or 'minus' 
respectively. Choosing such an example simplifies the problem in two 
ways. Firstly we do not have the problem of deciding how finely to 
sample the trial phase values. Secondly we need not worry about the 
definition of 'enantiomorph' which occurs with non centrosymmetric 
structures. 

Suppose that we wish to add m unitary structure factors Ui' with 
associated signs si. We would like to estimate the probability that the 
particular choice of signs is correct. That is, we would like to be able 
to estimate 
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where C stands for our state of knowledge at the current node. 
We can obtain such an approximation by recourse to methods which 

play an important part in traditional direct methods. If a quantity is 
formed as the sum of independently and identically distributed random 
variables, in this case a collection of structure factors is formed as 
the sum of contributions from each atom, an asymptotic expansion of the 
result exists having the general form 

p(UIC) = A exp{-(U-p)TM-l(U-P)/2 } { 1 + series in U } 

Here the exponential term is a multivariate Gaussian, P is the vector of 
mean values, M is the variance-covariance matrix and A is a normalising 
constant. This is the factor which corresponds to the central limit 
theorem of statistics. The terms in the perturbing series compensate for 
deviations from normality due to summing over a finite number of random 
variables. 

The form of M depends upon the prior distribution of atomic 
positions. If all positions are equally probable M becomes diagonal, 
decoupling the reflexions from each other. With such a prior, 
connections between different structure factors must be sought in the 
perturbing series, leading to conventional direct method formulae. 
However, if the prior distribution is non-uniform, linkage between 
reflexions occurs at the Gaussian level of approximation. We can then 
usefully approximate the joint distribution for a set of structure 
factors by the Gaussian part alone. The prior may be constructed by 
maximising the entropy of the positional distribution under the 
constraint that certain structure factors take prescribed values. 

A trial value of U may be constructed by combining the observed 
magnitudes with a trial vector of signs s, and we may then determine its 
probability of being correct by the Gaussian approximation. In practice, 
we compute the quadratic form 

The smaller this quantity is, the more likely the corresponding U is 
deemed to be correct. It is useful to look at this quantity in real 
space. It can be shown (Bricogne,1984) that Q is proportional to the 
following quantity 

where qME(x) is the prior distribution for atomic positions and B(x) is 
a fourier synthesis constructed from U-P. For this to be small, 
fluctuations in B(x) must coincide with large values of qME(x). 
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2.2 An Application 

We have applied this method to a trial structure, Mercury Phosphate, 
with the formula Hg3(P04)2(Aurivillius & Nilsson, 1975). The data is for 
X-ray diffraction so that the scattering factor for each atom is closely 
proportional to the atomic number. The Hg atoms may then be expected to 
dominate the maps. The three reflexions permitted to fix the origin were 
chosen and a prior distribution generated by entropy maximisation. The 
three Hg atoms all lie in regions of high density, the lighter P atoms 
do not. Four more structure factors were chosen to add to this set. Only 
one of the four had a substantial extrapolated value and this proved to 
be correct. The remaining three extrapolations were small, and were in 
fact all wrong. The 16 possible combinations of the 4 signs were 
evaluated by the procedure described above. Table 1 gives the results. 
Permutations are with respect to the correct set of signs, so that the 
++++ permutation which occurs first is the correct solution, which would 
be expected to have the smallest value of Q'. Also shown as Q" is the 
value Q' which would occur if we took qME(x) to be uniform. The value Q" 
thus corresponds to assuming the ME extrapolations are independent. The 
units are arbitrary since Q' and Q" were evaluated by summation over a 
grid. Evidently the value of Q' is a good discriminator against almost 
all the other sign permutations. Only one gives a smaller value for Q', 
and this corresponds to taking all signs equal to those of the 
extrapolated structure factors. Clearly the procedure is not perfect, 
but it could have substantially reduced the amount of exploration of 

TABLE I 

Permutation Q' Q" 

+ + + + 20.964 5.619 
- + + + 67.679 5.455 
+ - + + 25.260 6.762 

+ + 68.314 5.565 
+ + - + 35.065 6.597 
- + - + 35.110 5.400 
+ - - + 43.133 6.707 

- + 40.643 6.542 
+ + + - 30.278 5.120 
- + + - 35.220 4.955 
+ - + - 39.302 6.262 

+ - 40.584 6.097 
+ + 57.990 5.065 
- + 16.264 4.900 
+ - 71.912 6.207 

26.525 6.042 

nodes. After entropy maximisation with the four reflexions (with correct 
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signs) added to the origin defining set, the Hg atoms were already well 
localised, and one would anticipate phase extension proceeding easily 
from this point. 

The problem which now arises is the determination of the positions 
of the lighter atoms, here the phosphorous and oxygen. If we construct a 
measure in which the features we already know about, the Hg atoms, are 
present, we can again maximise the entropy. The quotient of the 
resulting probability and the measure, which we may call the 'modulating 
function', shows the additional modification of probability needed to 
fit the constraints. If we put the known atoms in the measure, we would 
expect the positions of any remaining atoms to become apparent in the 
modulating function. This approach was checked by generating a measure 
from an HE map formed by 28 reflexions to a resolution of 2.8A. This is 
low by direct methods standards. All density below a threshold value was 
levelled, leaving only the features due to the Hg atoms. Maximising the 
entropy with this measure yielded a modulating function in which the P 
atoms appeared clearly. 

This all appears very satisfactory, but there are aspects of 
applying a non-uniform measure in such a way which are ill founded. 

3. POSITIONAL PROBABILITIES IN MAXIMUM ENTROPY 

What do the density maps represent? From the point of view of Bayesian 
methods there is little doubt that they should be a measure of the 
probability that a particular point in the unit cell is occupied by an 
atom. Here we run into a problem that is apparent in the structure 
described earlier. In the map using origin defining reflexions alone, 
the 'heavy' Hg atoms were concentrated in high density. On the other 
hand the lighter P atoms were not. This seemed natural since the Hg 
atoms are by far the stronger scatterers. However, it means that the 
'density' generated by the entropy maximisation cannot be a real 
estimate for positional probability for all the atoms because such a 
density should depend on the strength of scattering of the atom. The 
situation becomes even more confusing if we want to consider neutron 
scattering, where the scattering length for H is negative. This would 
seem to require 'holes' in the density map to correspond to high 
probability. We really need to write the equations for entropy 
maximisation in a way in which it is clear that we are working with a 
probability of atomic position. 

The application of ME principles to crystallography, as described 
by Bricogne(1984) , Wilkins et al.(1983) and others, deal with entropy 
maximisations in a single 3 dimensional space. Extensions to this work 
have been made recently by Bricogne(1988). In Bricogne's papers the 
maximisation of entropy plays an important but incidental part in the 
approximation of joint conditional distributions of structure factors 
through a 'saddlepoint' approximation. All his results are demonstrated 
without appealing to a maximisation principle for entropy. Nevertheless, 
if we start from such a principle some of the extensions easily emerge. 

Following Bertaut(1958) , we can say that the most general form for 
the joint distribution of t atomic positions is defined within the 
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configuration space of the structure. In principle we would like to 
maximise the entropy defined as 

In practise it is not feasible to perform computations in this many 
dimensions. If we assume each of the atoms follows an independent 
distribution function, then the joint distribution of all the atoms is a 
product of distributions for the separate atoms. The entropy can then be 
written as 

S = - ~ J p-(x-){log p-(x-)-log m-(x-)}d3x- = ~ S-J J J J J J J -1J j=1 J= 

Introducing constraints on m structure factors and following the usual 
methods we find the following solutions for the positional probabilities 

m 
Pj(Xj) = mj(Xj) exp{ fj I Aktj(hk) + Vj }, j=1, •. ,t 

k=1 

with v- a multiplier for normalisation of the probability density. Ak is 
the multiplier associated with the constraint on the kth reflexion. This 
appears in the distribution for each of the atoms, so relating them, but 
each also has the scattering factor for the atom scaling the effect of 
Ak. It is apparent that the depth of modulation of the positional 
probability depends on the scattering factor for the atom. For a 
'heavy' atom (large fj> the positional probability is going to be more 
concentrated than for a lighter atom. This corresponds to our intuitions 
about atoms of different weights in the earlier maps, and results of 
this kind are well known in direct method theory. It is also clear that 
negative scattering factors do not cause any problem, so neutron 
scattering can be treated. 
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A Statistical Potential for Modelling X-ray Electron Density Maps 
with Known Phases 

Abstract 

Andrew D. McLachlan, 
Medical Research Council Laboratory of Molecular Biology, 

Hills Road Cambridge, CB2 2QH 

We describe methods for constructing a Maximum Entropy X-ray electron density map 
in crystallography that fits certain amplitudes and phases uniquely subject to a squared 
residual constraint. The calculations use a free energy analogue, or statistical potential 
that derives from the grand partition function of the maximum entropy problem in Fourier 
space. It is a function of the statistical forces, the Lagrangian multipliers of the entropy. 
Three new functions Y, G and 'IT allow us to fit the data with predetermined accuracy, 
and to avoid divergences which would otherwise OCCUI. The method is able to handle 
physically realistic and elaborate models: cells with fixed density regions, several types of 
scattering atom, anomalous dispersion. The control algorithm, and the relation between 
the domains of the force and probability variables are outlined. 

1. INTRODUCTION 

Any application of maximum entropy principles to crystallography requires trial maximum 
entropy electron dellsity maps that aim to fit certain target sets of amplitudes alld phases. 
The best current methods for calculating these maps fall into two classes. Those of the first 
class [1-7) deal directly with the entropy and the constraints, using an atomic probability 
distribution as the basic working medium. Those of the second [8-14) minimise a type of 
free energy function or 'statistical potential' and use the entropy gradients or 'statistical 
forces' as working variables. The indirect nature of the free energy methods is offset 
by certain advantages. All the generated maps are physically feasible maximum entropy 
distributions; constraints can often be transformed away; mathematical concepts drawn 
from statistical mechanics [13) and optimisation theory [15,16) can be deployed. 

Here we develop some new kinds of statistical potential [14] that are stable when the 
constraints are barely feasible, and that allow precise control of the quality of the fit to 
the target. We also outline some example applications that extend the scope of the theory 
to treat more realistic density map models. 
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2. STATISTICAL FORCES AND POTENTIALS 

2.1 Entropy and Constraint Functions 

We take a crystallographic unit cell ill real space, divided into a discrete set of grid 
points dimensioned (L 1, L2, L3) with a total of L = L1L2L3 points. Each point, indexed 
j = (jl,h,h), has coordinates Xj = (Xl>X2,X3) = (jt/L1>h/L2,h/L3)' 
Suppose that there is a random distribution of N atoms within the cell. Then we associate 
a probability density PI and an entropy 5j (Pi) with each grid point. The entropy normally 
takes the classical form 8 = -P log p. We also introduce, for later use, two dual varial;>les. 
The statistical force qj conjugate to Pj, is defined as -d5j/dpj. The statistical potential 
Wj = 8j + Pjqj is a function of qj and is defined so that Pj = dW.d dqj. Thus we have 

Sj = -PIlogPj, 

d5 
qi=--dJ =1+logPi' 
. Pi 

Wj = exp(qj - 1). 

dw 
Pj = _J = exp(qj - 1). 

dqj 

(2.1 ) 

(2.2) 

The gradients and second derivatives of 5 and ware related by a dual Legendre transfor­
mation [15-18] 

d8 = -qdp, dw = pdq, 
1 

H(sl = - . , , P H(w) = exp(q - 1), H(5)H(w) = -1. (2.3) 

In reciprocal space the probabilities and statistical forces have complex Fourier c.ompo­
nents tIl and T" respectively 

1 " . Pj = .JL L.... t"exp( -21Tlhxj}, 

" 
1 " . qj = .JL L.... T" exp( -21Tlhxj). 

I, 

(2.4) 

Here h = (hI, h], h3) is a reciprocal lat.tice vector and hx stands for the scalar product 
(hlXI + h2X2 + h3X3). We use total Sand 0 functions scaled by a factor 1/ L, so that the 
functions and their differentials are 

(2.5 ) 

1 
dO = L L L"dT". 

" 
(2.6) 

Note that in Fourier space the differentials involve conjugate pairs hand -h, and that we 
define the gradient operators by equations such as V". = La/aT_h, scaled by a factor L. 

Suppose that we wish to match a 'constraint subset' [h] of the probability Fourier 
components t" to fit some target amplitudes and phases t~~. We can either seek an exact 
fit t" = ti;, or else aim for a suitably low value E = fe", for a quadratic error function 
[2,3,5] such as 

(2.7) 



MODELUNG X-RAY ELECTRON DENSITY MAPS 243 

Here the sum is over the constraint subset [h] and the weighting factors a", are used to 
control the relative mean square deviations of the different Fourier components. For an 
exact fit the well-known normalised solution [1,8,11], with the mean value of P,j fixed as 
1, is 

Pi = ~ exp (Jr L: exp( -21rihX,dTII ) ' 
[II] 

(2.8) 

where Z is the usual partition function (scaled by a factor L). The statistical forces 
T" in the constraint subset [h]must be chosen to match the desired targets tj:. The other 
free forces vanish, n: = O. On the other hand the inexact constraint E = flU, requires the 
solution [5] of the well-known equation (! V E2 - A V 5) = 0 or 

(t" - ij;) + AT" = 0, 

a" 
(2.9) 

within the subset [h], and T" = 0 for the other terms, which corresponds to a unique 
maximum of the function W = 5 - E 2 /2,\, 

2.2 Exact Target Potentials 

The maximum entropy dist.ribution (2,8) requires that we find correct forces T" that will 
generate the exact target Fourier components tY,. This is usually done by setting up a 
special statistical function of the forces, which is minimised without constraint. One such 
exact target potential, J(T), derives from the cumulant of Z, [( = log Z(T). This is a 
function only of the forces in set [h]: 

) _) 1,",(1 
J(T = K (T - L ~ i_hT", V"J = (t" - ii:J (2.10) 

[II] 

Thus J has a unique minimulll wherever t" = tj; for all the constraints. This type of 
function is used by Wilkins [8]' Navaza [I1J and Bricogne[13], and is analogous to Levine's 
available work function [Ii, 18]. One drawback of the J -potential is that Xl appears 
as a function of the other T'l' In real space the result is that the grid forces q.i are 
not independent variables. A rather better potential, Q, is derived [14] from the grand 
partition function 0 

Q(T) = O(T) - ± [ti;XJ + L: t~IITh]' V"Q = (til - ti:J, 
[II] 

(2.11) 

which allows t~ to have any target value. Unfortunately both the Q and the J poten­
tials share a serious intrinsic weakness, which has often gone unrecognised. If the target 
amplitudes and phases tj: are physically unattainable, as for example when they demand 
negative probabilities P.i' the search for a minimum of the potential diverges, and SOllle 
forces T" tend to infinity! Obviously it is desirable to limit the magnitudes of the T" in 
some way, for example by adding a force penalty function [12J. A systematic approach is 
better. 
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2.3 Approximate Target Potentials 

We first introduce two force averages F and 8 

(2.12) 

Here F is simply the root mean square average of V S, including all h values, while 82 is 
a weighted mean square force chosen to complement the error function E ill (2.2). We 
can now replace the Q-potential by a more robust function Y(T), which includes a new 
quadratic control term C 

Y = Q+AC, (2.13) 

This possesses a unique minimum for any finite positive value of A. Furthermore, the 
stationary point of Y in the [h] space satisfies the equation 

(2.14) 

Our equation (2.14) is identical with (2.9), and thus demonstrates that Y(T) is the COUll­

terpart in the domain of force variables to Bryan and Skilling's [2] function W(p) = 
(S - E 2/2A) in the domain of probability variables. In fact Y,,,;,,(T, A) == W"",.,(t, A) at 
the corresponding solution points. 
A maximum entropy solution with the Y function can be completed when we know the 
appropriate value of A. An exact fit to the target uses A = 0, but generally we wish to 
fit E = fm, where fm is prescribed, and find a corresponding value for A = A",. We now 
deduce from (2.7),(2.12) and (2.14) that at any solution point for E 

(2.15) 

The result, that A = E /8, can be used to prove important. relations [14] which hold at the 
balance of Q and AC. Here 8 behaves like a statistical temperature parameter for E. 

dS 
dE = 8, 

dQ 
d8 = -Ej (d2S) (d2Q ) = _ 

dE2 d82 1. 
(2.16) 

More useful for our immediate purpose is the fact that (2.15) allows the construction of a 
new 'specified f", accuracy' target potential 

G(T) = Q + f", 181 (2.17) 

which has its unique minimulU at the required point where E = f",. Since the gradient of 
Gis VG = VQ+(f,,,./8)VC the factor f",./8 = A* behaves as a 'self-adjusting' Lagrangian 
multiplier that achieves the correct value Am = fm /8.". at the solution point where 8 = 8",. 

Unfortunately there remains the possibility that owing to a misjudgement the desired 
targets t7, cannot be fitted as accurately as expected, with E = fill' because Em is too 
small. This causes a divergence, as the minimum of G(T) recedes to infinity. Therefore 
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it is necessary to provide further controls. One approach is to set a fixed upper limit 
8 ... for the temperature parameter and accept the corresponding best value of E (there 
is a corresponding '8". target potential' ill probability space that achieves this: U(p) = 
S(p) - 8 ... E(p) ). However, because of the various weights a,. ill the different terms it is 
not easy to cboose 8/11 suitably in advance. We prefer to cboose a preset limit F,;, for tbe 
mean (q}) or equivalently (log Pi + 1 )2) by working with a control functioll of the form 

(2.18) 

Here the Lagrange multiplier p, is increased from zero, if necessary. to ensure that F ::; F1//.' 
The W potential control has the useful property that it first tries to fit the targets tv, with 
the desired acc.uracy if this can be done in the region F ::::; Fm. If not, then a best 
compromise fit E > (III is selected. The stationary point satisfies the equation 

v,. w = (t" - tv,) + (A*a,. + p,)11. = 0 (2.19) 

in which A* = (·m/8. The value of p, required is a unique decreasing function oftbe chosen 
F",. We see that the F2 term in W acts as if each deviation weight ak was loaded with a 
uniform increase to (a,. + (3), where (3 = p,/A*. 

2.4 Summary 

The search for a reasonable maximum entropy procedure in the statistical force domain 
has led us through several stages. We began with the well-known partition functions Z or 
n. Their 'available work' exact target potentials J and Q may, in favourable cases, possess 
unconstrained minima that yield a perfect fit to any feasible amplitude-phase target. We 
have seell, however, that the forces diverge to infinity if the target is not physically feasible, 
but that then the Y function (in the force domain) or the W function (probability domaitl) 
give a unique range of finite solutions for the typical quadratic constraint E2 = (;". When 
(til is feasible the Lagrange multiplier XI/I can be obtained uniquely by using the self­
adjusting G function. If (III is not feasible we control any divergence of G by adding a 
term proportional to ~ F2 and thus keep F within a reasonable bound F".. 

The choice of th; F", limit is a reasonable and simple practical devic.e to ensure 
convergence of the maximum entropy calculation. It has no deeper statistical significance. 
All these methods require of course that (m must be less than the global maximum 'flat 
map' value E = (111."'" The control of non-quadratic constraints in the force domain ( e.g. 
fitting Fourier intensities) [5,19,20,25J still requires further development. 

3. APPLICATIONS 
In many simple maximum entropy calculations it is equally easy to use either the proba­
bility variables (Pi, t,.) or force variables (qj, n), but for more realistic and complicated 
scientific applic.ations it is most natural to work with the forces. We outline three examples 
below. These are analysed from a different viewpoint by Bricogne [21]. 

3.1 Crystal Regions of Known Density 

Suppose that we have known tied probability densities p7 on a certain set of grid points 
[j = fl. The constrained maximum entropy map can be calculated very easily by using 
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the forces q.i and T,. as before, but with a modified 'fictitious entropy' function at each 
tied grid point in [fl. 

2 

wj = p~q! + il;, (3.1) 

wbere qJ = kJ(pJ - p,) . Tbe factor kJ bas a large value chosen to bold the density close 
to PI' The ficititious force qJ increases rapidly with any deviations from the local grid 
target density. This method can be used for solvent flattening [22-24], or for crystals that 
contain known structural fragments. Note that this method is not equivalent to the use 
of a prior model density mJ = p~, which is a part of the true entropy function [3] and 
allows no independent accuracy control . 

3.2 Several Atom Types with Spatial Exclusion 

Our cell grid is supposed to contain a population of different atoms, with N,. atoms of 
type II, each baving an atomic cbarge Z,/. Furthermore, no more than one atom will be 
allowed to occupy ea<"h grid point. The maximum entropy distribution over tbe grid will 
have a partial probability density Pj,' for each type II, whicb contributes a partial cbarge 
Pjvz,/ to the charge P.i' Tbe constraints are the given Fourier components Ph. for the total 
charge, and the given total atom populations Nv . The required statistical potential 0 is 
a generalised form of Fermi-Dirac function 

O(/-L,/, Th.) = l)og ( 1 + l:>:z:p(/-L,. + zvq.il) . 
J '/ 

(3.2) 

in which /-Lt. is a chemical potential for each atom type, in place of 11,. The forces qj are 
constructed from the remaining statistical forces 1/,. in Fourier spar.e. Tbe partial atomic. 
probability distributions come out as 

Pjv =" . 1 + L.. .. e:z:p(/-L,. + z"qj) 
(3.3) 

The wbole multi-atom density map is represented in terms of a single force lllap qj with its 
associated /-L,. parameters, rather than separate maps for the individual atom types II. The 
heavy atoms tend to congregate at the higb peaks of Pi ( driven by the factor e:z:p[z"qi] 
) wbile tbe ligbt atoms are displaced to the low peaks. A classical entropy multi-atom 0 
function can easily be generated instead. Notice that these methods allow for negative 
scattering powers in z" ( e.g. neutron diffraction ). 

3.3 Shaped Atoms with Anomalous Scattering 

Each atom bas a sbaped density contributing to real and imaginary scattering densities 
(pj + ip'j) in real space or (p;,. +itl,:) in Fourier space. The atomic centres have an unknown 
real probability distribution Pi with Fourier components t", and every atom bas a complex 
scattering factor z". = (z;. + iz;:) such that 
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, ." t (' ''') Ph + tp". = hZ", + tZh • (3.4) 

To construct a maximum entropy distribution that matches P". and P,:', using Fermi-Dirac 
statistics for the atoms, we introduce partial force fields 1',., ",: and statistical forces Til. 
into a potential O(IL, 1'", ",:) as follows: 

o = L log[l + exp(1L + qj)) 
.i 

The charge densities are expressed in the equations 

(3.5) 

(3.6) 

(3.7) 

The targets are then satisfied by minimising the appropriate target potential Q, Y or W. 
These equations allow phase information from anomalous scattering to be incorporated 
into the maximum entropy analysis. 

4. CONTROL ALGORITHMS 

The control process is the part of the maximum entropy algorithm that estimates the 
moves needed to reach a solution in force space and arrives at trial values for the Lagrange 
multiplier /\. It is not trivial [2,3,5], and the sketch below only indicates a few key points 
in our approach. 

4.1 Probability and Force Domains 

We set our first objective as finding minima of the statistical potential Y = Q + AC in the 
force domain, and estimating A. The analogous calc.ulation in the probability domain is to 
maximise W = (5 - E2/2/\). Bryan and Skilling's algorithm [2] solves the latter problem 
by maximising S on a descending sequence of error contours E = 15 where E decreases 
towards f m . The moves are over search ranges Pj + I:" U.i'"x,,, in the probability domain. 
An entropy distance metric D(S)2 = _H(p)(~p)2 = (~p2)/p is used to limit the moves 
and to precondition the search directions. 
The statistical potentials are well-behaved functions in the force domain, and we use search 
ranges q.i + I:" t'j"X" . Straight paths in q correspond to curved paths in P, and vice versa, 
but over short segments there is a linear correspondenc,e between directions and distances 
in the two domains 

(4.1) 

Since w( q) is normally an exponential function of q the curvature only becomes important 
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over force shifts of order 1:::..q = 1. The w-metric inhibits the largest force shifts at grid 
points with large densities, which often have the greatest effect on Sand E. Bryan and 
Skilling used two basic search directions u" = -pV'S and UI, = pV'( ~ E2). The counterpart 
directions in the force domain, (now converted to Fourier space) a;e 

1 
v", .. = T". = V'".C, 

0'/,. 
( 4.2) 

These are just the gradients of Q and C preconditioned [15,16) by H(C)/,/, = 0'/,. They 
give high weight to the stringent constraints with small values of 0'/,. If A is known the 
Y potential can be minimised easily by moving along these paths, or more efficiently by 
using a conjugate gradient method (15). 

4.2 The Balance Curve 

By a suitable choice [3] of basic path coordinates Xr with transformed search directions 
VI"~ we reduce Q and C locally to positive definite diagonal quadratic forms 

Q + ,\C = ~ L [q~(xr - q~)2 + AC;~(X1' - c;.)2] 
r 

(4.3) 

whose stationary points lie on the balance curve 

( ') _ q~ + AC'r x., A - • 

q~ + AC~ (4.4) 

The extreme points of this curve are the Q-point (X,. = q".) , which is the best fit point 
in the search space for the constraints, and the C-point (x.r = c~) which has the smallest 
weighted force (J. The choice of Alii to match E = f". is now made by searching along 
the x(A) curve for the unique position where A = f m.j8(A). In difficult cases, where f.". is 
not attainable, we may have to solve a more elaborate balanced model problem in search 
space of the type 

1 ? 1 ? 

V'",(Q + AC + 'iJ.LF- + 'il!D-) = 0 ( 4.5) 

with prescribed limits Fm and Dm on the mean force and the distance moved. The control 
algorithm starts at the current position Xod!I' on the current force contour F = F'>riq, and 
tries for a feasible move in order of preference: (1) towards the minimum point of G, at 
XG = X(A",)j (2) down the G-F2 balance curve towards the minimum of W, which lies at 
F = Flllj (3) along the F = F(,ri'l contour towards its intersection with the G_F 2 balance 
curve. The move must satisfy both the D", and F", limits. 
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ABSTRACT 

An outline is given of the application of MAXENT to the 
reconstruction/deconvolution of data from spectroscopic experiments. 
Examples are shown of its use in Raman and Nuclear Magnetic Resonance 
spectroscopies. In particular, quantitation and choice of lineshape 
function for deconvolution are addressed, with examples for the latter 
including the use of both analytic and experimentally determined function~ 

1. INTRODUCTION 

All data generated by spectroscopic experiments are inadequate in 
some way. Data will be incomplete because of digitisation, finite 
bandwidth, truncation etc. and contain noise. The spectroscopist's 
aim is to interpret the data to yield information and this process 
will always draw on theoretical models of the relevant spectroscopy as 
well as, usually, some data manipulation. 

This, latter, can take many forms but, typically, may involve 
filtering the data in some way. For example, it is standard practice 
in high-resolution nuclear magnetic resonance (NMR) spectroscopy to 
multiply the time domain interferogram, the free-induction decay (FlO) 
by some arbitrary weighting function which can be chosen either to 
enhance resolution or signal-to-noise (S/N) ratio (1) in the derived 
spectrum. In infrared spectroscopy this process is referred to as 
Fourier self-deconvolution (2). Whilst these methods are valuable, 
quick, and indeed, often readily available through computing 
facilities provided with modern spectroscopic equipment, they are 
limited in scope because, for example, of the trade-off noted between 
SIN and resolution. In addition, they usually lack any degree of 
objectivity or figure of merit. Recently there has been increasing 
interest in other, more elegant, data processing methods of which that 
employing the Maximum Entropy (MAXENT) criterion is an example. 

In this paper we present some results of investigations of the use 
of MAXENT in the processing of data from Raman and NMR spectroscopies. 
Our object in undertaking this work has been to evaluate the method as 
practising spectroscopists and to assess what it might offer in the 
way of improved information recovery from data. 
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The work is still in progress and this constitutes a preliminary 
report of our user's view of the method. Ve make no attempt to review 
or comment on other such investigations already published. 

2. THE HAXENT METHOD 

The immediately attractive aspect of the MAXENT method is that it 
utilises a well defined and rigorous criterion, that of maximum 
entropy (minimum information), to guide the spectroscopist. In 
addition, it immediately acknowledges the fact that, statistically, 
noise will have different properties from signal, a fact which is not 
made use of in the types of data processing referred to in the 
Introduction. Typically, an experimental data set 0 will be a 
representation of the ideal spectroscopic response f and noise n. 
Thus, one model of this could be -

D = O.f + n 1 

in which f is blurred by some natural or instrumentally imposed 
function o. The noise may have different qualities depending on the 
nature of-the experiment but, most simply, can be modelled as being 
uncorrelated with f and having a Gaussian distribution with standard 
deviation, a. -

The blurring function, 0, may be a lineshape function and may also 
involve a mathematical relationship such as Fourier transformation 
etc. The form of equation 1 is not unique. Indeed, it is a model for 
the expected response of the experiment and draws on the 
spectroscopist's knowledge of that experiment. To that extent it is 
no different from the spectroscopist's choice of, such things as, 
amplifier bandwidth, slit width, sample configuration etc, all of 
which may influence the experiment, and constitute part of the prior 
knowledge the spectroscopist should use in interpreting his data. 

The essence of the MAXENT procedure is to generate "guesses" or 
"reconstructions" of the function f and select that which, with given 
information on 0 and a or, what ever other knowledge is available, are 
minimally consistent with the data D. This involves maximising the 
entropy content of the reconstruction subject to some appropriate 
constraint on consistency with the data D. All of the examples given 
below have employed the MEMSYS programme-(3) which uses a X2 
constraint. This programme has been integrated with software written 
by us for applications to particular forms of spectroscopic data. 

3. RESULTS 

3.1 The Raman Spectrum of CC14 

The symmetric stretching mode of CC1 4 is a resolution standard for 
Raman spectroscopy. It comprises five bands arising from the five 
combinations of the two isotopes 35CI and 37CI. Figure 1(a) shows the 
Raman spectrum recorded with a slit width of 5 cm- 1 which is too large 
to allow resolution of the underlying five components. Figure 1(b) is 
a MAXENT reconstruction obtained by assuming that 0 is a Lorentz 
lineshape with a FVHM of 4.5 cm- 1 and giving the programme an 
experimental value for a. 
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Figure l(c) is an experimental spectrum recorded with a 
spectrometer slit width of 0.9 cm- 1 • It can be seen that the 
reconstruction l(b) is very similar to l(c). The experimental process 
of narrowing the slit in order to increase resolution is eventually 
limited by deteriorating SIN, already apparent in l(c). Figure l(d) 
is a MAXENT reconstruction of the data in Figure l(c), again using a 
Lorentz function for 0 but with a FYHM of 0.8 cm- 1 and, as before, an 
experimental value for a. Also shown in Figure l(d) are the integrals 
for each line in the reconstruction 

(a) (c) 

(b) (d) 

Figure 1 : Experimental (E) and MAXENT reconstruction (R) of the 459 
cm- 1 Raman band of CC1 4 a) E: slit width 5 cm- 1 ; b) R of a), 

Lorentzian profile FYHM 4.5 cm- 1 ; c) E: slit width 0.9 cm-1 ; d) R of 
c), Lorentzian profile FYHM 0.8 cm- 1 , plus integral. 
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and these are given in Table 1 together with the line intensities 
expected from the natural abundances of the two chlorine isotopes. 
The reconstructed spectrum of Figure 1(d) is quantitative in terms of 
intensity, shows remarkable resolution and an apparent SIN which is 
very large. Apparent is used to qualify the term SIN in the context 
of the reconstruction because what the process has done is to separate 
signal from noise and in this case has been very successful because 
our prior knowledge or information was itself of good quality. For the 
spectroscopist it is perhaps important to emphasise that all that was 
assumed was that the lines were Lorentzian (FVHM = O.Scm- l ) and the 
noise Gaussian (a measured and used as input). Nothing was assumed 
concerning the number or value of the frequencies present in the 
required spectrum, !. 

TABLE 1 

MEM Image' 
Band "'iIcc14 /cm- 1 Integral Theoretical 

Intensity/% Intensity/% 

C37CI 4 Not observed NIA 0.4 
C37Cl335CI I 452.0 6 4.7 
C37C1 2 35C12 456.4 20 21.1 
C37C11 35C13 459.4 41 42.2 

C35Cl4 462.4 31 31.6 

'Estimated error 0.5%: all figures rounded down to nearest integer value 

3.2 The Raman Spectra of Graphite-FeCl3 Intercalates 

Figures 2(a) and (b) shows two Raman Spectra of a graphite-FeCl3 
intercalate which have very poor SIN. Figures 2(c) and (d) show 
MAXENT reconstructions carried out as for the CCl 4 case ie. assuming 
an Lorentzian lineshape (FVHM = 20 cm- I ) and using a measured a. The 
results by any criteria are striking. The question which has to be 
addressed is whether they can be substantiated. 
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(a) (c) 

(b) (d) 

__ 1_58-J,m. L 
Figure 2 : The experimental (a and b) Raman spectra of an FeC13-
graphite intercalate taken at different times and their MAXENT 

reconstructions (c and d) obtained as described in the text. 

Literature data predict bands at the positions observed in Figures 
2(c) and (d) for intercalates with staging between 2-3 and, perhaps, 
somewhat higher. This is consistent with the nature of the samples 
which gave rise to the spectra of Figure 3 and, as we show in more 
detail elsewhere (4), leads to confidence that the features observed 
are real and reliable. Again, for the spectroscopist, once this is 
established the use of MAXENT makes possible experiments which were 
not feasible before. However, as always, the spectroscopist must be 
critical in the use of this tool, as with any other. 

3.3 The Raman Spectrum of the Sulphate ion 

Both of the above examples have used MAXENT to reconstruct 
deconvoluted spectra using an assumed, analytical lineshape. Whilst 
the chosen function, Lorentzian in these examples, may often be 
expected, there may be many situations in which the appropriate 
function is not known. However, in some cases there may be ways of 
determining the relevant line profile from experimental observations. 
The sulphate ion has been used to test this approach. Figure 3(a) is 
a composite spectrum obtained by recording the Raman band of aqueous 
sulphate ion around 980 cm- 1 and adding to it a band derived by 
shifting the same band by 0.4 of the FWHM and mUltiplying its 
intensity by 0.75. 
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1.5 2.0 2.5 3.0 3.5 4.0 

(b) (e) 

1.5 2.0 2.5 3.0 3.5 4.0 1.5 2.0 2.5 3.0 3.5 4.0 

Figure 3 : The effects of the use of a non-analytic, experimentally 
determined lineshape in MAXENT reconstruction/deconvolution. The 

spectrum in (a) was obtained by taking an experimental Raman spectrum 
of aqueous sulphate ion and, adding to it a shifted (0.4FYHM) and 
attenuated (0.75) version of itself. (b) is an optimised MAXENT 

reconstruction/deconvolution using an assumed Lorentz lineshape whilst 
(c) is a MAXENT reconstruction/deconvolution using the learnt 

experimental lineshape at the pattern match function. 

Two points are worth noting. First, the 980cm- 1 sulphate band is 
symmetric but non-Lorentzian and, secondly, the composite spectrum in 
Figure 3(a) is not readily discerned as comprising two bands. Figures 
3(b) and (c) are two MAXENT reconstructions of the data in Figure 
3(a). Figure 3(b) was obtained assuming a Lorentzian lineshape and 
has been optimised for resolution by adjusting the FYHM. Figure 3(c) 
was obtained by using the digitised experimental lineshape of the 980 
cm- 1 band as the pattern matching profile in the MAXENT 
reconstruction. It is clear that in Figure 3(c) remarkable and 
quantitative resolution of the two features is achieved. A (properly) 
critical spectroscopist might suggest that it seems as if fore­
knowledge of the answer (ie. the correct lineshape) is required to 
obtain good results. All this example illustrates, we would suggest, 
is that the better the quality of your model or prior knowledge the 
better the results achievable. The MAXENT process serves only to make 
the reconstructions minimally consistent with the data. The noise 
residuals provide a clear indication of the validity of the model 
employed. 
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3.4 29Si High-resolution NHR of a high-silica zeolite 

The last example involves the use of an experimentally determined 
lineshape for the "deconvolution" or "pattern-matching". Figure 4(a) 
shows the 29Si high-resolution NMR spectrum of a highly crystalline 
sample of the zeolite silicalite (5). The multiplicity of lines is 
interpreted as arising from the existence of 24 non-equivalent 
crystallographic sites for silicon in the unit cell. The peak at 
highest frequency corresponds to a single site and the lineshape of 
this peak has been used in the deconvolution process. Figure 4(b) is 
a MAXENT reconstruction of the spectrum in Figure 4(a). The raw data 
used was the experimental FID (5), the lineshape derived from 
Figure 4(a) and a measure of the noise a. Also shown in Figure 4(b) 
is an integral trace. 

A number of interesting points emerge from a comparison of Figures 
4(a) and (b). In Figure 4(a), the spectrum, derived by Fourier 
transformation of the raw FID data, has eighteen distinguishable 
maxima and a shoulder discernible on the low frequency side of the 
largest spectral feature. Figure 4(b) has twenty maxima with most 
lines resolved from neighbours down to baseline level. In particular, 
the group of features labelled B in Figure 4(a), comprising a broad 
line flanked by a shoulder to low frequency and a barely-resolved peak 
to high frequency, are revealed as a group of four lines with relative 
intensities 1:3:1:1 (increasing frequency). 

Both the shoulder feature and the partly resolved feature to high 
frequency in Figure 4(a) are both resolved to baseline level. It is 
also of interest to note that the integrals accurately reflect the 
1:3:1:1 ratios and the total intensity of this feature ie. 6, relative 
to those lines of unit intensity. 

A second interesting point is revealed by examination of the 
effect of MAXENT reconstruction on the group of three lines marked A 
in Figure 4(a). This group are maintained as three lines in Figure 
4(b) with resolution dramatically enhanced. The overall intensity of 
this group of three lines is, as required, 5. However, the integrals 
for the individual lines in the group are close to the ratios 
11/3:12/3:2 instead of the expected 1:2:2 based on a 24 site 
structure. At present, we have no explanation for this feature which 
requires further investigation. It seems unlikely that it arises from 
the MAXENT procedure but this requires a more thorough examination 
before it can be completely ruled out. 

A further feature to note is that the lines representing single 
sites, and which are well resolved, do not all have the same height. 
This is particularly noticeable for the second peak from the low 
frequency end. There are also a number of small features ego to low 
frequency of the peak just referred to and between the two peaks at 
highest frequency. The variation in height implies that the 
lineshapeslwidths for these lines are not identical to the pattern 
match profile used ie. the lineshape for the highest frequency line. 
This can be seen clearly in the FT spectrum in Figure 4(a). If the 
lineshape deviates significantly from the chosen pattern-match then it 
is possible for false peaks to appear (4) and this should always be 
born in mind. However, this is no more of a problem than is always 
encountered in the type of data treatments referred to in the 
introduction where, as resolution is increased, SIN decreases and the 
distinguishing of spurious side-lobes from real information becomes 
increasingly difficult and does not appear to be a problem in this 
example. The integral traces show that even the faster relaxing 
features still produce unit integral values for peak area. 
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(a) 

B 

v .. 
A 

(b) 

l-

I-

~ 

Figure 4 : (a) the experimental 29Si MAS NMR spectrum of a highly 
crystalline sample of the zeolite, silicalite, obtained by direct 
Fourie transformation of the free induction decay. (b) The MAXENT 

reconstruction/deconvolution of the data used to derive spectrum (a). 
The pattern match profile used was the lineshape of the resonance at 

higher frequency. 
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4. SUKMARY AND CONCLUSIONS 

In each of the examples presented above, MAXENT reconstructions 
have revealed enhanced and, in some cases, new information recovery 
from the raw data. No attempt has been made here to present a 
systematic evaluation of the scope of this approach but, as practising 
spectroscopists in an industrial context, the results obtained so far 
show considerable promise for enhancing information recovery from all 
manner of spectroscopic and similar data records. The enhancement may 
result in reduced time for acquiring experimental data on expensive 
instrumentation and new information not accessible in a reliable way 
using alternative approaches. 
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Abstract. In NMR data analysis a great deal of prior information is available. We 
know, in general terms, what characteristic signal will be received, that for quadrature 
measurements it will be the same in both channels and that the noise is potentially 
correlated. We have shown in previous work [1], [2] that when prior information is 
incorporated into the analysis of data, the frequencies, decay rates, and amplitudes 
may be estimated much more precisely than by using the discrete Fourier transform 
directly. Here we extend the Bayesian analysis to include the quadrature nature of the 
data and noise correlations. We then show that in typical NMR data the frequencies 
and decay rates may be estimated with a precision several orders of magnitude better 
than directly from the discrete Fourier transform. 

Introd uction 

In NMR, theory tells us that the free induction decay time series must be sinusoidal 
with exponential or Gaussian decay. When this information is incorporated into 
the spectral estimation problem, one may estimate the frequencies and decay rates 
much more accurately than directly from a discrete Fourier transform of the data [1), 
[2]. More importantly this information allows one to separate frequencies and decay 
rates that are too close for one to resolve using a discrete Fourier transform. The 
initial work [1] did not incorporate all of the information we possessed about NMR 
signals. We used the functional form of the signal, but we utilized the data as if two 
distinct measurements were available having the same frequencies and decay rates, 
but different amplitudes and phases. This gave .,fi improvement in the parameter 
estimates. However, we have more information; in particular, we know that the signal 
in the second channel is 900 out of phase with that in the first channel. Also, we 
know that the noise is potentially correlated, and that the phases of all the sinusoids 
are typically the same. When more information is incorporated into a probability 
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calculation, we expect that information to improve the estimates of the parameters. 
In this paper we specialize the Bayesian calculation to include quadrature, nOIse 
correlations, and phase coherences. 

The General Model Equation 

The basic model we are considering is: given a quadrature detected data set (i. e., two 
data sets collected with a 900 phase difference), then the real data may be modeled 
as 

where n( 0",0) is a Gaussian noise component of mean zero and standard deviation 
0", fR( t) is a model of the real signal, and the quadrature or imaginary data may be 
modeled as 

dI(ti) = fr(ti) + n(O",O). 

The basic problem we would like to solve is: "what are the best estimates of the 
parameters (frequencies and decay rates) hidden in fR and fr that one can make 
from the data and the prior information?" We will solve this problem using Bayesian 
probability theory and apply the calculation to several examples. 

We write the model equations fR(t) and fr(t) as a sum over functions Gj and Fj 
such that 

m m 

fR(t) = 2:BjGj({w},t) and fr(t) = 2: BjFj({w},t) (1) 
j=l j=l 

where m is the total number of model functions, Bj is the amplitude of the jth model 
function, and G j ( {w}, t) and Fj ( {w}, t) are typically sinusoids with either exponential 
or Gaussian decay. The model functions Fj and Gj are functions of a continuous 
variable time t; however, the data have been sampled at discrete times {tl,···, tN}. 
Additionally, the models are functions of other continuous parameters, which we 
collectively label {w}. These parameters are frequencies, decay rates or any other 
parameters which could be needed to model the data, for example the phase if it is 
the same on all of the sinusoids. Although the amplitudes {B} are of substantial 
interest, for the purposes of analyzing the data, we wish to formulate the problem 
independently of these parameters to see what probability theory can tell us about 
the frequencies and decay rates. The quadrature information has been incorporated 
by assuming the amplitudes B j are the same in both channeL 

We would like to compute the posterior probability of the frequencies and decay 
rates, given the data D and the prior information I. This requires us to obtain two 
terms: the direct probability of the data and the prior probability of the parame­
ters. We will compute the direct probability of the data first. Making the standard 
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assumptions about the noise, the direct probability of the data is: 

where p is the correlation coefficient - see Jeffreys [3] for a discussion Qf correlation, 
and [2J, [4J for a discussion of when a Gaussian should be used to represent the noise. 
The symbol I in P(DI{B},{w},O",p,I) is there as a reminder that all probability 
distributions are computed based on our prior information I. Now substituting model 
Eq. (1) we have the direct probability of the data given the parameters: 

where 

m 

2 L: Bj[dR · Gj - p(dR • Fj + dI · Gj ) + dI · FiJ 
j=1 

m m 

+ L: L: BjBk[Gj • Gk - p(Gj • Fk + Gk · Fj ) + Fi · FkJ 
j=lk=1 

and (.) means the sum over the discrete times: dI . Fj == l:~1 dI(ti)Fj{ti). 
Bayes' theorem tells us that the posterior probability of the nonlinear {w} pa­

rameters, independently of the amplitudes, given the data and our prior information 
IS 

P( {w}, O",pID, 1) ex J d{B}P( {B}, {w}, 0", pl1)P(DI{B}, {w},O",p, I), 

where P( {B}, {w}, O",pID, I) is the posterior probability of the parameters, the direct 
probability of the data is P(DI{B},{w},O",p,I), and P({B},{w},O",pl1) represents 
what was known about these parameters before we took the data and is called a 
prior probability. In this problem we assume that the data determine the parameters 
much more accurately than our prior information. Therefore, we assign a broad 
uninformative prior to the parameters: we use a uniform prior for the amplitudes and 
a Jeffreys prior for the variance. 

Introducing the transformation 

B _ ~ fljejk 
k - LJ--' 

j=1 ji; 
R ~ Gjekj 

k = LJ--' 
j=1 .;5:k 
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and 
1 1 

dBl ... dBm = A~ 2" ••• A;;? dAl ... dAm 

where ejk is the kth component of the jth eigenvector of the interaction matrix 

N 

gjk == LGj(ti)Gk(ii) - p(GjFk + GkFj ) + FAii)Fk(ti) (2) 
;=1 

and ).,j is the jth eigenvalue, then the posterior probability of the parameters becomes 

where 
m m 

Q' = dR . dR - 2pdR . d[ + dI . d[ - 2 L Ajhj + LA; 
j=l j=l 

and 
hj ( {w},p) == dR' R j - p(dR' Ij + dI · R j ) + dI · I j • 

After completing the square in Q' and performing the m integrals, we have 

where 

P({w},o-,pID,I) oc o-m-2N(1_p2)-N2m).,~~ ... ).,;,~ 

{ dR' dR - 2pdR . dI + dI . dI - mh2} 
X exp 20-2(1 _ p2) 

h2 == ~ fh;. 
m j=l 

(3) 

If the variance of the noise a 2 and the correlation coefficient p are known, then the 
problem is completed. The posterior probability of the frequencies and decay rates 
conditional on the data and our assumed knowledge of 0- and p is 

{ I -1. _1 { mh2 } 
P(w}0-,p,D,I)OC)"1 2"')"m2exp 2( 2)' 20- 1 - P 

(4) 

But if 0- is not known, then it too becomes a nuisance parameter to be removed by 
integration. Multiplying Eq. (3) by a Jeffreys prior and integrating with respect to 0-, 
we obtain the posterior probability of the frequencies, decay rates, and the correlation 
coefficient p 

m-2N 

{ } I -~ -~( 2)~ [ 2pdR · dI + mh2] -2-
P(w,pD,I)OCAl "')"m I-p 2 I- d d d d 

R' R+ I' I 
(5) 

where h2 is a sufficient statistic for inferences about the {w} parameters. Equation (5) 
is an exact result and does not depend on uniform sampling nor does it depend on 
the models being sinusoidal. Any quadrature data set that can be modeled by Eq. (1) 
can be used in these equations. 
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The Single Stationary Harmonic Frequency 

What is to be gained from the use of Eq. (4) or (5) compared to a discrete Fourier 
transform of the data? The answer to this question is easily demonstrated by in­
vestigating one of the simplest quadrature spectral estimation problems: the single 
stationary harmonic frequency. Suppose we take 

as the model for the signal in the real channel and 

fI( t) = B1 sin wt - B2 cos wt 

as the model for the signal in the imaginary channel. If the noise is uncorrelated, i.e., 
p = 0, the interaction matrix, Eq. (2), becomes 

The R j and I j functions are given by 

R _ coswt 
1- ,fN' 

R sinwt 
2 = ,fN' 

I _ sinwt 
1- ,fN' 

The sufficient statistic h2 is given by 

where 

and 

h2 = ~[(R1.dR+I1.dJ)2+(R2.dR+I2.dJ)21 

= 2~ {[CR(w) + SJ(w)]2 + [SR(W) - CJ(w)]2} 

1 N 
SR(w)=R2·dR = r.rLdR(ti)sinwti 

vN ;=1 

are the cosine and sine transforms of the real data, and CJ(w) and SI(W) are thE 
transforms for the imaginary data. The posterior probability of a stationary harmonic 
frequency w, given the variance of the noise (J'2 and assuming the noise is uncorrelated. 
1S 
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How does this compare to a discrete Fourier transform of the data? If we assume 
the data are the real and imaginary parts of a complex data set, then 

Because 
e-iwt = coswt - i sinwt, 

the squared magnitude of the discrete Fourier transform may be written 

Up to the constant factor 1/2N the sufficient statistic h2 is the squared magnitude 
of a discrete Fourier transform of the complex data. Therefore, the discrete Fourier 
transform is essentially the natural logarithm of the posterior probability of a sta­
tionary harmonic frequency, given the variance of the noise 0'2, assuming the noise is 
uncorrelated, and assuming the channels are exactly 900 out of phase. 

The implications of this are quite profound, because it means that only the highest 
peak in a discrete Fourier transform is of any importance for the estimation of a single 
stationary frequency, and then it is only the region around the maximum that is of 
importance. Moreover, the discrete Fourier transform will always interpret the data 
in terms of a single stationary harmonic frequency. If the data does not contain 
a single stationary harmonic frequency, or even if the data contain more than one 
stationary frequency, the discrete Fourier transform may give misleading or even 
incorrect results when compared to other more complex models. This is not because 
the discrete Fourier transform is wrong, but because it is answering what we should 
regard as the wrong question. 

If we know that the signal consists of a single stationary harmonic frequency, how 
accurately can a frequency be estimated? We will assume that the data contain a 
single stationary sinusoid with no noise. Thus the accuracy estimates we derive will 
be optimistic in the sense that in real data, with a given noise variance 0'2, one would 
always make slightly worse frequency estimates than the ones we will derive. We take 

as the signal in the real and imaginary channels, where il is the true amplitude of the 
sinusoid and w is the true frequency. We have set the phase of this sinusoid to zero. It 
will be obvious at the end of the calculation that the result for an arbitrarily phased 
sinusoid may be obtained by the replacement il2 -+ ill + il~. For uniformly sampled 
data we may take ti to be integer or half integer, i.e., ti = {-T, -T + 1,···, T} and 



BAYESIAN SPECfRUM ANALYSIS ON QUADRATURENMR DATA 

2T + 1 = N. The sufficient statistic h2 is 

h2 = 2~ [~.8(Coswticoswti + sinwt;sinwt;)r 

.82 [sin !f(w - W)]2 
~ 2N sin ~(w - w) 
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(6) 

where we have explicitly performed the sum and have ignored terms of order one 
compared to N. 

To estimate the accuracy of the frequency, we Taylor expand h2 in posterior prob­
ability 

P(wla, D, I) <X exp {~:} 
around the maximum, and then make the (mean) ± (standard deviation) approxima­
tion. Around the maximum, the first derivative of h2 is zero, and the second is given 
by 

82h2 .82N 3 
8w2 ~-~. 

The Gaussian approximation to the posterior probability density is 

( .82 N3 ) ~ {.82 N3 } P(wla,D,I) ~ -2 2 exp ---2-(w-W)2 , 
47ra 24a 

from which we estimate the frequency to be 

or in Hertz 

() 
A a/12 

West = w± 1.8IVW' 

(f) - fA ± a {12 H 
est - 27r1.8IT V Ii z, 

where T is now the total sampling time in seconds. The accuracy of the frequency 
estimate depends on the signal-to-noise ratio of the data, on the ..(Jii, and on the 
total sampling time T. The better the data, the better the estimate. If we double the 
number of data in the given sampling time we obtain the standard V2 improvement. 
However, if we sample two times longer, we pick up a factor of 2 from sampling 
longer and a factor of V2 from taking two times more data. Clearly for stationary 
frequencies taking data for a long time is the preferred way to sample the data. 

In many NMR applications the discrete Fourier transform is taken directly as a 
frequency estimator. The accuracy is estimated from the full-width-at-half-maximum 
of the peak in the discrete Fourier transform. For the case just given, the squared 
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magnitude of the discrete Fourier transform of the data (up to a constant) is given 
by Eq. (6). This has dropped to half its maximum value when the argument of the 
sine function has dropped to 11"/4: 

N 1w _wl =~. 
2 4 

Thus for the discrete Fourier transform we find that the frequency estimate, in Hertz, 
IS 

• 1 
(J)est-dft = f ± 4T Hz 

which neither depends on the magnitude of the signal nor the variance of noise u2 • 

Suppose we collect data for 1 second, with t;:,.T = 0.001 seconds, collecting N = 
1000 data values, and suppose we have RMS signal-to-noise ratio of B/V2u = 1. 
From the discrete Fourier transform we estimate the frequency to be 

(J)est-dft = j ± 0.25 Hertz, 

and the Bayesian estimate is 

(J)est = j ± 0.012 Hertz. 

With signal-to-noise ratio of one, the Bayesian result is about 20 times better than 
the result from the discrete Fourier transform. If the signal-to-noise ratio were more 
typical of an NMR experiment, for example 100, then the Bayesian estimate would 
be more than three orders of magnitude better! Thus the probability analysis can 
estimate the frequency several orders of magnitude more precisely than a discrete 
Fourier transform directly. But this was in noiseless data. In practice, for frequency 
estimation, these procedures work at their theoretical best. However, the same cannot 
be said for other types of model functions. The reason frequency estimation is so 
accurate has to do with an interaction between the noise and the model functions. 
The oscillatory model functions and the noise tend to average to zero. When one 
computes the sufficient statistic, there is a sum of the model function times the data. 
Since the model and the noise are summing to zero separately, the sum of the product 
between the model and the noise tends to zero. This insures the projection of the 
model onto the noise is small compared to the projection of the model onto the signal, 
and the accuracy of the estimates are near the theoretical best. If the noise or the 
model did not average to zero, the accuracy estimates would be much worse. 

The Single Frequency with Exponential Decay 

In NMR the time series is typically the result of a complex chain of events: a sample 
is placed in a high magnetic field, and the nuclear spins are "excited" using a radio 
transmitter. These spins are then detected as they relax back to equilibrium. Using 
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an RF antenna, the signal is amplified, split, mixed with a reference oscillator (a sine 
or cosine) oscillating with a frequency near the natural resonance of the sample, and 
low-pass filtered. The beats between the reference oscillator and the sample resonance 
are what is digitized and recorded. Because the signal in the two channels originated 
in the same physical event there is reason to expect the noise to be correlated. To 
give an understanding of what noise correlation can do for estimating the parameters 
we give a second example. We will use simulated data with noise correlations. 

The data used in this example were generated from the following equations: 

fR(ii) = 100 cos(0.3ii + 1) exp {-O.Olti} , 

h( Ii) = 100 sin(0.3i i + 1) exp {-O.Olt;} . 

To generate the data we first generated the signal from the above equations and then 
generated the noise. We generated the noise for the real channel from a Gaussian 
distributed random number generator with unit variance. To generate the noise for 
the imaginary channel we generated a second random number with unit variance and 
then added the noise from the real channel to this second random number. This was 
divided by v'2 and then used as the noise in the imaginary channel. The noise in the 
two channels is, thus, slightly correlated. 

The data and the discrete Fourier transform are displayed in Fig. 1. The data 
resemble an NMR signal which rapidly decays. There are N = 512 data values, and 
the signal-to-noise ratio is approximately 50. The discrete Fourier transform has a 
peak in the correct vicinity of the frequency. However, the width of the discrete 
Fourier transform is indicative of the decay rate, not the accuracy of the frequency 
estimate. 

We now apply the results of this calculation to the data. The model we use is 

fR( i) = Bl cos wi exp{ -ai} + B2 sinwi exp{ -at} 

for the real channel and 

fR( i) = Bl sinwl exp{ -ai} - B2 cos wi exp{ -at} 

for the imaginary channel. After integrating out the amplitudes and variance of 
the noise, there are three remaining parameters to be estimated from the data: the 
frequency w, the decay rate a, and the correlation coefficient p. We present the result 
of the calculation as three contour plots. First we plot the base 10 logarithm of the 
posterior probability of the frequency and decay rate while holding the correlation 
coefficient at its correct value. This is displayed in Fig. 2. We can see from this plot 
that there is a very sharp peak in the parameter space around the true value of the 
parameters. The normalization on this figure is irrelevant because of an interesting 
result, first noted by Jaynes [5]. If the contour lines are in increments of 1 (for 
example if the maximum posterior probability density were 100 and the contours be 
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Figure 1: The Computer Simulated Data and the Discrete Fourier Transform 
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This computer simulated data (A) contain a single frequency which rapidly decays. The signal­

to-noise ratio in these data is approximately 50. Now the discrete Fourier transform indicates the 

presence of a frequency in the right location. However, the width is indicative of the decay rate, 

not the accuracy of the estimate. Additionally, the discrete Fourier transform knows nothing of the 

noise correlations. 



BAYESIAN SPECfRUM ANALYSIS ON QUADRATURE NMR DATA 

L!l o 
o 

L!l 
N 

0 

0 

W 
t--< 

~8 
>-tq 
ceo 
(.J 
W 
0 

'" "-0 
CO! 
0 

0 
L!l 
0 

CO! 
0 

\ 
\ 
\ 

\ 

I 
I 

I 
I 
\ 
\ 

I 

I 
I 

\ 

I 
I 

I 

\ ~ \ 
\ V \ 

\ \ , , , , , , , , 
... , ... , 

0.290 0.295 

------

0.300 

ANGULAR FREQUENCY 

\ 
\ 
\ 
\ 

I 

I 
I 

/ 

J 

'" 

\ 
\ 
\ 
\ 

I 
I 
I 
I 

/ 

0.305 

/ 
/ 

/ 
/ 

/ 

/ 

I 
/ 

/ 

I 
I 

I 

I 
I 

I 

I 
I 

I 
I 

0.310 

271 

This is the base 10 logarithm of the posterior probability of the frequency and decay rate 
given the correlation coefficient. The total probability inside the highest contour is nearly 
1. To write it out would require a decimal point followed by a string of approximately 200 
nines. 

Figure 3: Log Posterior Probability - Frequency vs. Correlation Coefficient 
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This is the base 10 logarithm of the posterior probability of the frequency and the correlation 
coefficient given the decay rate. The total probability inside the highest contour is nearly 
1. Here it would require only a string of 20 nines to write it out. 
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Figure 4: Log Posterior Probability - Decay Rate vs. Correlation Coefficient 
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This is the base 10 logarithm of the posterior probability of the decay rate and the corre­
lation coefficient given the frequency. The total probability inside the highest contour is 
approximately 0.99999. 

labeled 99, 98, etc.), then for a 2D contour plot the first contour line contains 90% 
of the posterior probability, the second contour line contains 99% of the posterior 
probability, etc. Therefore, Fig. 2 represents an incredibly sharply peaked posterior 
probability density. The region inside the first contour line contains essentially all of 
the posterior probability. To write out the total probability enclosed by this contour 
would require a decimal point followed by a string of 200 nines. The second contour 
plot, Fig. 3, is the base 10 logarithm of the posterior probability of a frequency and 
the correlation coefficient given the true decay rate. Again there is a very sharp peak. 
The probability enclosed by the highest contour is approximately one; however, it 
would require only 20 nines to write it out. The third contour plot, Fig. 4, is of the 
base 10 logarithm of the posterior probability of the decay rate and the correlation 
coefficient given the true frequency. The probability enclosed by the highest contour 
here is only 0.99999. 

Conclusions 

In NMR a great deal of prior information is available about the time series. When 
this information is incorporated into the analysis of the data, the frequencies, decay 
rates, and amplitudes may be estimated several orders of magnitude better than by 
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direct use of the discrete Fourier transform. Additionally, if the noise is correlated, 
substantial improvement in the estimation of the amplitudes, frequencies, and decay 
rates is possible. 
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SELECTIVE DAT A·SAMPLING AND RECONSTRUCTION OF PHASE 
SENSITIVE 2D NMR SPECTRA USING MAXIMUM ENTROPY 
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Cambridge, CB21QW, 
U.K. 

ABSTRACf. Whilst one can now determine the three-dimensional structure of small proteins and 
nucleic acid fragments using two-dimensional (2D) NMR methods, the technique will always suffer 
from its inherently low sensitivity. This limits the resolution obtainable, in complex 2D NMR 
spectra of biomolecules. In this paper we review the methods of selective data-sampling and maximum 
entropy (MEM) data-processing that we have been developing. The results show that they can increase 
the resolution in 2D NMR spectra. It is hoped that these methods will help extend the use of 2D 
NMR to cases where otherwise it would be impractical. 

1. Introduction 

In recent years the development of two-dimensional nuclear magnetic resonance (20 
NMR) spectroscopic techniques has enormously increased the potential of the method. 
It is now possible to determine the structure of small proteins and nucleic acids (.Mr 
<10,(00) by 20 NMR methods alone. Currently many improvements are being made, 
with which it is hoped it will eventually be possible to study larger proteins up to 
.Mr-40,OOO. 

NMR is, however, a very insensitive technique, because the energy levels involved in 
the absorption at radiofrequencies are so close. Over the years the development of 
superconducting magnets of increasingly higher field strength (now up to 14.1 Tesla or 
600 MHz for protons) has improved the situation, but nevertheless the problem will 
always remain. Large amounts of sample, by biochemical standards, are required and 
often proteins are insufficiently soluble or they may be difficult to obtain in sufficient 
quantity. The attainment of adequate resolution and sensitivity is a major problem and 
in this paper I will review our attempts to develop methodology for data-sampling and 
data-processing in 20 NMR, which we hope will help alleviate some of these problems. 

2. 2D NMR Spectroscopy 

Since its proposal in 1971 by Jeener (1), many 20 NMR methods have been developed, 
notably by Ernst and his co-workers (2). Structural determination of proteins, 
pioneered by Wuthrich and his co-workers (3), uses in the main one 20 NMR method. 
In essence the idea is to determine whether a given two protons are close in space; if 
they are, that provides a constraint on the structure. When repeated for all possible 
pairs of protons, the structure of the protein can be determined. 
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In one-dimensional NMR, the free induction decay or FID (the signal) is recorded 
with time, following excitation of the nuclei by a radiofrequency pulse. This is then 
Fourier transformed to give a spectrum. In 20 NMR experiments a whole series of 
FID's are recorded; for each FID a variable delay is incrementally increased. This 
series in time is the second dimension (tl) and after Fourier transforming each FID, a 
Fourier transform in this second dimension leads to a 20 NMR spectrum. By 
convention, the first dimension is called t2. If this were a NOESY spectrum (a particular 
type of 20 NMR spectrum), the off diagonal or cross peaks would show that a given 
two protons were close in space ( <SAo apart), thus providing a constraint on the 
structure. 

When recording a 20 NMR spectrum, one is usually compelled to use shorter 
acquisition times than are required for complete decay of the signal in the second 
dimension (tl). This 'truncation' improves the signal to noise ratio (SIN) because the 
signal decays whilst the noise remains constant (4). However the high resolution 
information is 10SL This is very disadvantageous since obtaining high resolution is 
crucial for the very complex spectra of proteins. Truncation of the signal also leads to 
artefacts called 'sinc wiggles' in the spectrum following Fourier transformation. These 
can be avoided by multiplying the FID by a function such as a sinebell; unfortunately 
this further reduces the resolution (5). We have been developing methods of selective 
data-sampling and the maximum entropy method (MEM) with a view to avoiding these 
problems so that we can obtain the required resolution with adequate SIN and no 
artefacts. 

3. Maximum Entropy and 2D NMR 

3.1 AVOIDING LOSS OF RESOLUTION AND 1RUNCATION ARTEFACTS 

The advantage of methods such as MEM stem from the fact that they involve 'finding' 
(computing) a spectrum to fit the data; this is the reverse of conventional NMR 
dataprocessing where the FlO is filtered and Fourier transformed to give the spectrum. 
The principles are illustrated in Figure 1. First a well digitised trial spectrum is inverse 
Fourier transformed to give a mock dataset (FlO). The mock FlO data can be calculated 
for an arbitrarily longer time domain than that of the real FID when the trial spectrum is 
correspondingly well digitised in frequency space. In effect, this predicts unrecorded 
data, which would be forced to be zero in a conventional zero filled Fourier transform. 
In this way truncation artefacts are reduced without degrading the resolution. The 
resulting mock FlO data are then checked for consistency with the real FlO, though of 
course only the points corresponding to the measured points can be used. In successive 
iterations the trial spectrum is modified until its entropy is maximised, subject to the 
constraint that the corresponding mock FlO data agree with the experimental data to 
within the noise (6,7). 

When produced by conventional Fourier transformation, after zero ftlling four times in 
each dimension, the 20 NMR spectrum shows characteristic truncation artefacts (not 
shown). These artefacts were suppressed by pre-multiplication of the data by a sinebell 
(5) in both t2 and t1 prior to transformation (Figure 2(a». Comparison of this spectrum 
with the one reconstructed using MEM (Figure 2(b» shows that in the former the 
resolution is substantially degraded. The expansions of one of the multiplets show this 
particularly clearly. This result demonstrates that it should be possible to obtain a given 
resolution in a 20 NMR spectrum with a shorter measuring time when the FID data are 
reconstructed using MEM. 
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Figure 1 . Flowchart illustrating a MEM calculation; the spectrum to dara transform (for a spectrum 
containing positive peaks only) is shown, as is the result of a conventional zero filled Fourier transfonn 
of the deal dara. (Reproduced with permission from the Journal of Magnetic Resonance, 68, 14 
(1986». 

3.2 AVOIDING ARTEFACTS CAUSED BY BASELINE DISTORTION 

If the fIrst few points of an FID are corrupted for any reason, e.g. instrumental 
imperfections, then low frequency structure such as gentle rolls in the baseline are seen 
in the spectrum. Conventionally, these may be removed by attempting to fIt polynomial 
or other functions to the shape of the curve and subtracting the function from the 
spectrum. A much more general approach is provided by MEM in which we can leave 
out the fIrst few recorded data points when making the comparison with the mock data. 
This has the effect that MEM now extrapolates back to the time origin from the later 
uncorrupted data, predicting uncorrupted initial points giving no associated baseline 
distortions in the fmal spectrum. 

3.3 SUBSPECTRAL EDITING AND PATTERN RECOGNITION 
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Many 20 NMR spectra contain dispersion peaks in addition to absorption peaks. Often 
it is not possible to phase such spectra so that all signals are in pure absorption phase. 
However, because it increases resolution it would be of interest to produce spectra that 
can be so phased. For spectra that contain positive and/or negative absorption peaks we 
have both positive and negative trial spectra (fo/ and fro-). We usually display the 
difference (fro+ - fro-) (see Figure 2 (b)). This gives a double summation (8), 

[1] 

in suitable units. 
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Figure 2 . Phase sensitive 2D NMR spectra produced by (a) a conventional Fourier transform, after 
multiplication by a sinebell in both dimensions, and (b) MEM. All the spectra have equal digital 
resolution and are contoured at levels of 2% and 5% of the highest peak. Positive and negative levels 
are plotted without distinction. The expansions are of the multiplet shown. (Reproduced with 
permission from the Journal of Magnetic Resonance, 68, 14 (1986». 

Prior to inverse Fourier transfonnation (Figure 1) the two trial spectra fro+ and fro- are 
combined fro+ - fro-. With spectra containing both pure absorption an4 pure di~persion 
peaks we simple expand this to four separate trial spectra (fro+, fro-, frol and fro-l ) and 
equation [1] becomes, 

S = - L fro+ log fro+ - L fro-log fro- - L fCi,i log fCii - L froi log fro-i [2] 
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Here prior to inverse Fouriet: transformation (Figure 1) the four trial spectra are 
combined «fro+ - fro-) + (frol - fro-l ». 

Comparison of the 20 NMR spectra obtained after a conventional Fourier transform 
(zero filled once in each dimension) (Figure 3(a» with the absorption difference 
spectrum (fro+ - fro-) and the dispersion difference spectrum (froI- fro-i) (Figure 3 (b» 
obtained after reconstruction using MEM shows that we can considerably enhance 
resolution. This is because firstly, MEM separates the absorption and dispersion peaks 
into two subspectra. Secondly, peaks in the dispersion subspectrum now also have 
pure absorption phase. 
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Figure 3. (a) A phase sensitive 2D NMR spectrum produced by a conventional Fourier transform. (b) 
The absorption and dispersion subspectra produced from the same dataset using MEM All the spectra 
are contoured at levels of 20% and 40% of the highest peak. Positive levels are plotted with a solid 
line whilst negative levels are plotted with a dotted line. (Reproduced with permission from the Journal 
of Magnetic Resonance, 68, 14 (1986». 

This method is expected to also be useful when applied to the reconstruction and 
analysis of 20 NMR spectra where the multiplets can have mixed absorption/dispersion 
lineshapes. For these spectra instead of having a dispersion subspectrum which is 90° 
out of phase in both dimensions we would reconstruct over subspectra that were 90° out 
of phase in one dimension only. In more complex situations one can envisage a 
reconstruction over all the four possible subspectra, (i.e. pure absorption, pure 
dispersion and those 90° out of phase in either t1 or t2). Further details of this work can 
be found in our published papers (8,9,10). 
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A simple extension of this approach to subspectral editing allows one to recognise 
patterns in 2D NMR spectra. We have used this approach to recognise a multiplet 
structure characteristic of a particular type of cross peak in the spectrum (11). The 
spectrum to data transfonn used in the MEM calculation now involves a series of pattern 
channels in which trial spectra are first convolved with a series of patterns of different 
separation (Jmin to Jmax) corresponding to the expected range. These spectra are then 
combined and added to a background channel prior to inverse Fourier transfonnation to 
give the mock data (Figure 4). 

Using this approach we have sought to test whether pattern recognition might aid 
resolution of overlapping multiplets. In Figure 5(a) the spectrum is a conventional 
Fourier transform of a simulated noisy FID. The spectrum consists of multiplets, with 
the structure shown, overlapping in various ways. The lower spectrum (Figure 5(b» is 
the result of a MEM reconstruction (incorporating pattern recognition), where each 
negative peak now represents a complete pattern. The resolution of overlapping 
multiplets is clear, indicating that the incorporation of pattern recognition may well be 
useful in this context. 

Convolved oe 
with .0 I Jmin I Jmax 

o---e 
Convolved 

with • 0 

L-........ _,r-'-I ----' 
Add spectra 

~.o FT 
• 0) • - Mock Data 

o. 

Figure 4. Flowchart showing the spectrum to data transform used for pattern recognition using MEM. 
In the pattern, the open circles represent negative peaks whilst the fIlled circles represent positive peaks. 
A series of pattern channels are used; the number depends on the expected range of separation (lrnin to 

lmax>· 
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Figure 5. (a) A simulated, noisy, phase sensitive spectrum produced by a conventional Fourier 
transform. The spectrum consists of the multiplet whose structure is shown in the upper left corner 
overlapping in various ways. (b) A MEM reconstruction (incorporating pattern recognition) of the 
same dataset. Open circles/contours represent negative peaks and filled circles/contours represent 
positive peaks. 

4. Selective Data-Sampling 

In conventional Fourier transfonn NMR one always samples the signal at fixed intervals 
in both t2 and t1. One also samples for equal amounts of time at points where the SIN 
is high and where it is lower. We have seen that MEM can 'reconstruct' some of the 
lost resolution. effectively by extrapolating from a given data set but there are limits to 
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this. It seemed that a more logical way to sample an exponentially decaying signal 
would be to do so iii an exponential manner, thus giving a better compromise between 
SIN and resolution. Many points would be sampled where SIN is high but a few 
would be sampled where SIN is very low, to aid the MEM reconstruction of bigh­
resoluton information. We have tested our proposal on various one-dimensional spectra 
which can act as models for the second dimension of 20 NMR experiments. 

These tests have demonstrated that the use of selective (exponential) data-sampling 
allied with MEM data-processing should enable one to increase the available resolution 
in 20 NMR experiments (12,13,14). This combination gives better results than 
conventional data-sampling whether allied with either conventional or MEM data­
processing methods. 

We illustrate here the sort of results one can obtain using a small section of a 20 NMR 
spectrum. Figure 6(a) shows the result obtained after a conventional Fourier transfonn 
of the rtrst 128 peaks in t10 zero-filled to 1024 points, which represents the case where 
the data have been truncated in tl. Multiplication by a sinebell shifted by 45°, was used 
in tl and no filter function was used in t2. Figure 6(b) shows the MEM result using the 
same 128 points; it is a slight improvement Figure 6(c) however, shows the MEM 
result obtained by sampling 128 points selectively (exponentially) from the first 256 
points in tl. It is dramatically better, as it is very similar to the result obtained by 
Fourier transfonnation of 512 points in tl, shown in Figure 6( d). The last spectrum 
was obtained using the same filter function as for Figure 6(a). Thus the result in Figure 
6(c) is remarkably close to the assumed 'right answer', that is, the conventional Fourier 
transfonn of 512 points, Figure 6(d). This represents a quarter of the recording time. 
Alternatively, in a situation where much less sample was available, exponential sampling 
could render feasible the recording of useful spectra not otherwise obtainable. 

We expect that selective data-sampling should be generally useful in 20 NMR 
experiments. Exponential sampling is suitable for many 20 NMR experiments but 
alternative sampling methods have been developed for other experiments where this is 
necessary (15). 

5. Conclusion 

We have shown that MEM can be used to increase the resolution in 20 NMR spectra. 
A combination of selective data-sampling and MEM dataprocessing has been shown to 
give the best results in general. Where appropriate, however, subspectral editing and 
pattern recognition methods should offer further improvements. It is hoped that these 
methods will help extend the use of NMR to cases where otherwise it would be 
impractical. 
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Figure 6. A region of a 2D NMR spectrum produced by (a) a conventional Fourier transform of the frrst 
128 points in t} multiplied by a sinebell shifted by 45°, zero-fIlled to 1024 points; (b) a MEM 
reconstruction using the same 128 points; (c) a MEM reconstruction using 128 points exponentially 
sampled out of the frrst 256 points in tl; and (d) a conventional Fourier transform of 512 points in tl, 
using the same fIlter function as for (a). All spectra have the same digital resolution and are contoured 
at the same levels (0.1 to 1.3% of the maximum diagonal peak, not shown here). 
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Since the introduction of maximum entropy in astronomical images processing(1), this 
technique has been successfully applied in fields as diverse as astronomy, X-ray cristallo­
graphy, RAMAN spectroscopy, NMR spectroscopy, medical imaging, etc (1-5). 
Unfortunately, the difficulty to develop an efficient and simple enough algorithm, seriously 
hampered the generalization of this very promising technique. 

Here we describe a new algorithm, based on a generalization of the Gull & Daniell 
approach which presents the same ease of implementation associated to a very stable 
behaviour which permits to handle efficiently a large spectrum of processing conditions. 
Applications of this algorithm are shown for NMR spectroscopy. 

Let consider an object 0 under study, and the data D resulting from a measurement of 
this object. Let consider that a linear tranform T can be expressed such as: 

M 

Di:::: 2. Tij OJ + Noisei 1 
j::::l 

Then the purpose of processing is to reconstruct an image F of the object such that the 
transform R of this image (R::::T(F) ) matches as closely as possible the experimental data. 
The estimator used to evaluate the likelihood of this reconstruction is the classical chi 
squared statistics C: 

N 
C:::: 2. (Di - Ri)2.crr l 1 

i::::l 

where cri is the standard deviation of the measurement of the jth data point. 
The principle of maximum entropy processing is to choose, among all possible images, 

the one which maximizes the entropy S, being defined as: 
M M 

S = - 2. Pj 10g(Pj) with Pj = ~ and A:::: 2. F j l 
j::::l j=l 

Where M is the number of points in the image. Different expressions for the entropy 
have been used in the literature, the one proposed here has the additional advantage of 
being insensitive to data scaling. 

In order to find the image which maximizes the value of S for a given value of C, a 

function Q is constructed with the lagrange multinlier A.: 
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Q = S - AC 
The derivative of Q is given by: 

VQ=VS-AVC=O. 
with 

oS 1 
- = - A ( S + 10g(Pi» and 
oFi 

N 
= - 2 L Tij (Di-Ri).O'r l 

i=l 

At the solution point, VQ = 0, which implies: 
N 

M.A.DELSUC 

Fj = A exp( -S + A. A L Tij (Di-Ri).O'r l ) 6. 
i=l 

Note that at the solution point, the tenn within the exponential is always negative, so a 
linear extention of the exponential can be used for positive values positive values of the 
argument. This important property comes from the expression of the entropy which has 
been used here. 

Equation 6. can be applied iteratively, starting with any flat image and using the current 
image Fj (for the jth iteration) in the right hand side of equation 6., the result F'.i in the left 
hand side used as the next image Fj+l. This is the scheme proposed by Gull & Daniell(1). 
Convergence can be monitored with the value of the angle between the two vectors VS and 
VC, these two vectors being antiparallel at the convergence point. However, equation 6. is 
exact only at the solution point, and is used in this scheme far from this point, Wu(6) 
proposed a second order correction of the iterative equation which has proved to be very 
efficient in speeding up the convergence of the algorithm. 

The merits of the Gull & Daniell approach are the positiveness of successive iterates and 
rapid development of large peaks values insured by the exponential function in equation 6.. 
However, this same exponential tends to make the algorithm very unstable. In order to 
stabilize the iteration process, only a small step is usually taken in the direction F'j : 

Fj+l = (1-a;) Fj + a; F'i 1 
The step a being typicaly as small as 1 to 10 percent to insure convergence (or even 

lower values if Wu correction is not used). 
The main improvement proposed here over the scheme presented above, is to find the 
optimum a for each new computed image F'j. In order to do so, the value of Q is 
maximized over the value of a. This process is a simple one-dimensional maximization 
process, which has the effect of efficiently stabilizing the convergence, since each iteration 
insures the improvement of the function Q (this is not guaranted by equations 6. and 1 
only). 

Another critical point with such an algorithm is to find the optimum A. for which the 
maximum of Q corresponds to a value C equal to the number of data points N. 

What is proposed here is to evaluate the current value for A. such that the current step 
changes as less as possible the value of the entropy. In other words: 

VS2 
A.opt such that VQ.VS=O A.opt= VS.VC B. 

Such a Aopt would lead rapidly the process to the closer convergence point (VS and VC 
antiparallel, VQ is null, but C greater than N), so in order not to stop the convergence 
toward the point where C=N, the A. actually used Acur is evaluated from Aopt : 
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_a _L 
figure I: a) Fourier transfonn of a simulated NMR spectrum, consisting of two overlapping lines with 
caracteristic line-width and 40dB signal/noise, 1024 points spectrum. b) Fourier transfonn of the same data­
set, using only the first 128 points and padding with zero to 1024 points; c) GIFA processing of the fIrst 
128 fIrst points of the same data-set, with deconvolution of the line-width, and reconstruction on 1024 
points. 10 iterations, 60 transfonns were used. 

b 

fime 2: The 31p spectrum of an ex-vivo sample from newborn rat brain cells. Experimental data was 
acquired on a Bruker AM400-WB spectrometer, operating at 163MHz. a) classical processing of this data 
with a 20Hz exponential line-broadening prior to Fourier Transfonn; note the large base-line distortion due 
to the phospholipid background. b), result of a GIFA processing applied on the first 1500 points of the 
same data. A 8Hz exponential line-broadening was applied before processing, and a 20Hz lorentzian 
deconvolution was used. The very first 4 points were discarded in order to reduce the phospholipid signal. 10 
iterations 60 transfonns were perfonned. 
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fignm,l;, Aromatic part of the phase-sensitive 2D HOHAHA spectrum of angioginine protein (123 A.A.), 
the sample is 3mM in D20. This 2D spectrum was acquired on a Broker WM400 spectrometer operating at 
400MHz. on a data matrix 512x1024 with a spectral-width of 4000Hz in both dimensions a) classical 
processing of the data with a cosine filter and zero-ftlling prior to Fourier transform. b) GIFA processing of 
the same data set. The data set has been Fourier transformed in order to be phase corrected, a 128x256 
window corresponding to the aromatic part has been extracted and then inverse Fourier transformed, the 
result of this pre-processing was then used for image reconstruction. The reconstructed image is 256x256 
points. A 5Hz lorentzien deconvolution was used during reconstruction. 40 iterations 240 transforms were 
performed. 

a 

~b ---.,JJ,--
fi~re 4: a) Fourier transform of a simulated anti-phase doublet. with a 20dB signal/noise. b) J­
Deconvolution of the same data-set, 10 GIF A iterations. 
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"-cur = y. Aopt 2. 
y being typically in the range 3 to 10. 

To sumerize the proposed procedure is the following: (i) generate a starting image 
(usually flat), (ii) evalutate the gradients vS and VC, and the values of Aopt, Acur and of the 
angle between VS and vC (iii) using equation .6. compute the image F'j from the current 
image pj, (iv) apply if needed the Wu correction on F'j, (v) with equation 1, find the value 
of a corresponding to the maximum of Q, and compute the next image pj+ 1. (vi) loop back 
to step (ii) as long as C is larger than N or as long as C improves substantially. This 
procedure has been implemented in FORTRAN 77, on a microVax computer, along with a 
comprehensive NMR package. This programme has been nicked-named GIFA, standing 
for General Iterative Fixe-point Algorithm. 

This procedure has the advantage of being very robust: the maximization of the function 
Q for the value a of the step, insures a perfect stability of the process. Computation of the 
value of A from the current image permits an optimum driving of the programme. The 
implemention is straightforward: one only needs a one dimensional maximizing algorithm, 
and the computation of the transfonn T and its transpose tT. In the present work, the 
maximization was implemented using a simple parabolic fit (Brent method 7), which needs 
not any expression of the derivative. Experience has proved that only 4 to 6 iterations for 
the parabolic fit are usually enough to find a not-so-bad maximium, each iteration needing 
the computation of one T. This process leads to a total of 6 to 8 evaluations of T or iT for 
each maximum entropy iteration. For the present application: NMR spectroscopy, the 
transfonns T and tT used are mainly the Fourier transfonn which benefits of the very effi­
cient FFf implementation. 

As examples, this scheme was used to process NMR spectra. In figure 1 a simulated 
NMR spectrum with 2 ovedaping lines and truncature artifacts is processed. In figure 2 the 
classical processing of a 31p in-vivo spectrum of living cerebral cells is compared to the 
maximum entropy processing. The scheme was then applied to the aromatic part of the 2D 
HOHAHA spectrum of the 123 amino-acids protein Angioginine, homologous to 
Ribonuclease. The programme was then used to implement the I-Deconvolution technique 
(8). This technique is used in NMR to reduce the in-phase or anti-phase structures which 
appears in NMR; this implies deconvolution with the Fourier-transfonn of sine or cosine 
functions. Figure 4 shows the anti-phase J-Deconvolution of a simulated NMR spectrum, 
figure 5 demonstrates the enhancement of resolution obtained with this technique on a 2D­
COSY spectrum of a decanucleotide. 

• 

o 
C 

D 

figure 5: a) H5-H6 region of a DQF-COSY spectrum performed on the platinated oligonucleotide: 
(CGCTAGGCCG)-(CGGCCTAGCG) displaying 2D anti-phase patterns; b) I-Deconvolution of the same 
region. Same processing technique as in figure 3,10 GlFA iterations, 60 transforms. 
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These examples show that the maximum entropy algorithm proposed here can be 
successfully used to improve the quality of NMR spectra. More generally, this technique 
should be very usefull in a wider range of applications. 
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ABSTRACT. This contribution is concerned with quantitative analysis of the 
efficiency of sampling strategies that are intended for resolution enhancement. 
The criterion for efficiency is based on the supposition that the ultimate aim 
of a measurement is the quantification of physical model parameters. Thus, the 
Cramer- Rao lower bounds are introduced as a measure of the efficiency. 

1. INTRODUCTION 

In most magnetic resonance (MR) experiments, the signal is recorded in the 
time domain, samples being taken at uniformly distributed instants of tim!' to, 
t l , ... , tN-i' Essentially, a MR signal consists of a number of damped sinusoids 
(plus white Gaussian noise). the frequencies, damping factors, amplitudes, and 
phases of which are to be quantified. 

In order to carry out the desired quantification, one must have a means to 
first identify each sinusoid. The latter task, in turn, can be achieved by Fourier 
transformation of the data to the frequency domain and perusing the resulting 
spectrum. At this point a problem may be encountered: For economy reasons 
of some sort. it may have been necessary to limit the duration of the measure­
ment. Should such a measure have been effected by prematurely halting the 
acqUisition, while the instants of time of those samples recorded were kept 
intact, then an unacceptable loss of resolution may be incurred. This would 
seriously impair the process of identification. 

The problem noted in the preceding paragraph has recently been addressed 
by Barna et al. [1]. These authors have pointed out that the loss of resolution 
attendant on reduction of the duration of a measurement can be significantly 
alleviated by resorting to MEM (see also [2]). They proposed to restore the 
time spanned by the reduced number. N', of samples by exponentially redistri-­
buting the instants of time to, ... ,tN·- l , in such a manner that tN_CtO=tN'-Cta, 
N'<N. Fig.! serves to illustrate the principle of the sampling method, for N=32, 
N'=8. For practical reasons. the non-uniformly sampled data are constrained to 
lie on the original time grid. Also. the notion of the time span. tN_i-tO' of a 
sampling strategy should not be confused with the actual duration of the 
associated measurement. 

Understandably, Fourier transformation of exponentially sampled data 
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yields a severely distorted spectrum, but it is this very aspect that can be 
effectively remedied by MEM. See [t] for details. 

0 31 
« « N=32 

0 3 6 11 19 31 
N~8 

4 5 6 7 

0 7 , 
I I I I I I I I N=8 

Figure 1. Two alternative ways to reduce the duration of a measurement com­
prising N=32 samples by a factor of four. Upper: Original uniform sampling 
scheme, of duration T. Middle: Exponential sampling, such that t 7-tO=t31-to, 
and T=T/4. Bottom: Truncated uniform sampling scheme, i.e., t7-tO=(t31-tO)/4, 
and T=T/4. See also text. 

An alternative to reducing the number of the samples and redistributing 
the remaining ones, as shown in Fig.t, is to reduce the signai-to-noise ratios 
(SNR's) of the samples. Better still, one could devise a combination of the two. 
In summary, there seems to be a variety of choices to comply with the need to 
contain the duration of a measurement without unnecessary loss of resolution. 

In this contribution we address the problem of how to choose between 
alternative sampling strategies without carrying out trial experiments for each 
case, so as to save precious time and manpower. We propose to treat the 
problem from the standpoint of parameter estimation, assuming that quantifi­
cation of the model parameters pertaining to the signal under investigation is 
the ultimate goal. Our method implies that one evaluate the so-called Cra­
mer-Rao lower bounds on the model parameters [3,4,5] associated with the 
quantification experiment at hand. 

In the sequel, we indicate how to effect the proposed procedure, for the 
case that the noise that corrupts the signal is white and Gaussian. Subse­
quently, the procedure is applied to three exponentially damped sinusoids plus 
white Gaussian noise. 

2. EVALUATION OF THE CRAMER-RAO LOWER BOUNDS 

The theory and application of the Cramer-Rao (CR) lower bounds is well de­
scribed in [3,4,5]. Here we confine ourselves to giving a recipe for numerical 
calculation of the CR bounds. Once numerical results have been obtained, they 
should be interpreted as follows. Suppose, one has simulated data, consecu­
tively corrupted with, say, 100 realizations of noise. These realizations are all 
different from each other, but they satisfy one and the same distribution func­
tion. Fitting a model fUnction to each of the 100 noise-corrupted versions of 
the same signal, one obtains 100 noise-corrupted values for each model para­
meter. If the model fUnction used is correct, the fit procedure efficient, and 
the number of data points not too small, then the standard deviation of each 
parameter approaches the CR lower bounds. Thus, the CR lower bounds pertain 
to average results, obtained by repeating an experiment many times. (It should 
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be realized that it is hazardous to draw conclusions from a single trial.) 
The model function of the signal. x n' sampled at times tn' n=O, ...• N-l, is 

K 
xn= L ck exp[(ock+i21tvk)tn] • n=O ..... N-l. 

k=1 
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where Ck' OCk. Vk' k=l, ... ,K, are the amplitudes, damping factors, and frequen­
cies of the K sinusoids. The noise that corrupts the data is assumed to be 
Gaussian and white. which is reasonable. This assumption enables one to sim­
plify the calculation considerably [3,4,5]' The recipe then amounts to the fol­
lowing. First one forms a matrix, F, comprising the first derivatives of the 
model function with respect to all 3xK model parameters that have to quanti­
fied, for all tn. In addition. each derivative is divided by the noise standard de­
viation, on' associated with the real and imaginary parts of sample xn . Thus. 
indicating the model parameters by the symbols Pl' l=I .... , L, where L=3xK. we 
write 

F= 

_1_ OX1 

01 OP1 

_1_ OX2 

02 OP1 

_1_ OXN_1 

0N-1 oP1 

_1_ OX1 

01 c)P2 

_1_ OX2 

02 OP2 

_1_ OXN_l . 

°N-l oP2 

_1_ OX1 

01 OPL 

_1_ OX2 

°2 OPL 

_1_ OXN_l 

°N-l oPL 

(2) 

The derivatives in F can easily be worked out analytically. Subsequently, 
the values of all model parameters. noise standard deviations. and sampling 
times, pertaining to the case at hand are substituted. Finally. the Cramer-Rao 
lower bounds. 0Pr follow from taking the square roots of the diagonal ele­
ments of the inverse of the real part of the matrix product Ft F. i.e., 

l=I ..... L. (3) 

where t denotes Hermitian conjugation. The interpretation of the numbers 
obtained from Eq.(3) is given in the first paragraph of this Section. 

3. NUMERICAL EXAMPLE 

In this Section, we apply the formulae of Sec.2 to a simulated signal compris­
ing three damped sinusoids satisfying the model function of Eq.W. The values 
of the nine model parameters are listed in the heading of Table 1. Fig.2 shows 
the real part of the signal for n=O, .... 511. Each of the 512 samples can be 
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thought of as the result of averaging an equal number of scans, Nscan. Thus, 
the duration of the simulated measurement was proportional to 512xNscan. 
Fig.3a shows the spectrum, as obtained by FFT of all 512 (complex-valued) data 
points. The three spectral components can clearly be distinguished from each 
other. The CR lower bounds for this case are listed in the first three rows of 
Table 1. 

31 127 

o 
time 

511 

Figure 2. Real part of a time domain signal comprising three sinusoids. The 
model parameters are given in the heading of Table t (noise is omitted here)' 

b 

a 

-0.5 
frequency 0.5 

Figure 3. a) FFT of all data points of the simulated signal. b) FFT of the first 
128 data points of the signal. 

We now turn to the task of reducing the duration of the measurement by 
a factor of four. In this work four methods are applied: 
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1) Uniform reduction of the number of scans by a factor of four, while keeping 
the number of samples constant. When one realizes that the noise standard 
deviation of a sample at t=tn is proportional to -I(1INscan(tn))' then the CR lo­
wer bounds pertaining to this situation can be obtained by multiplying the ori­
ginal ones by -14. This applies to all numbers in Table 1. 
2) Truncation of the measurement at N'=N/4, while keeping Nscan of each 
sample at its original value. The attendant CR lower bounds are given in rows 
4,5,6 of Table 1, for N'=512/4=128, and in rows 10,11,12 for N"=128/4=32. 

TABLE 1. Cramer- Rao lower bounds on the standard deviations of the ampli­
tudes, damping factors, and frequencies of three exponentially damped sinu­
soids, numbered 1,2,3. The amplitudes are 1.0, 0.1, 0.2, the damping factors 
-0.015, -0.025, -0.015, the frequencies -0.150, 0.200, 0.210; the standard devia­
tion of both the real part and the imaginary part of each sample is 0.01, except 
in rows 16,17,18. 

Sampling 
Data Time 
points span 

512 511 
uniform 

128 127 
uniform 

128 511 
exponential 

32 31 
uniform 

32 128 
exponential 

32 128 
exponential 

Averaging 
per 

Sample 

uniform 

uniform 

uniform 

uniform 

uniform 

exponential 

Duration 
of 

Measurem. 

T 

T/4 

T/4 

T/16 

T/16 

T/16 

Amplitude Damping Frequency No. 

0.00242 0.00005 0.00001 1 
0.00450 0.00139 0.00014 2 
0.00363 0.00032 0.00003 3 

0.00259 0.00006 0.00001 1 
0.00538 0.00163 0.00015 .2 
0.00461 0.00046 0.00004 3 

0.00267 0.00007 0.00001 1 
0.00656 0.00197 0.00020 2 
0.00572 0.00060 0.00005 3 

0.00386 0.00024 0.00002 1 
0.15942 0.01614 0.00817 2 
0.15796 0.01217 0.00305 3 

0.00320 0.00017 0.00002 1 
0.01 179 0.00399 0.00054 2 
0.01083 0.00128 0.00013 3 

0.00375 0.00015 0.00002 1 
0.00986 0.00355 0.00042 2 
0.00868 0.00096 0.00009 3 

3) Following Barna et a1. [1], the number of samples was reduced by a factor 
of four, and the remaining samples were redistributed exponentiaIly on the 
time axis, in such a manner that tN/4 -CtO=tN-CtO' Nscan was not changed, as 
in 2), The attendant CR lower bounds are given in rows 7,8,9 of Table 1 for 



296 R. DE BEER ET AL. 

N'=128 and ti27-tO=tsu-to' and in rows 13,14,15 for N"=32 and tjCtO=ti27-tO' 
4) The number of samples is reduced by a factor of four, while the instants of 
time of the samples and the number of scans per sample were both distributed 
exponentially. Thus, the sample times were distributed as in the case of rows 
13,14,15, while Nscan of sample n' was mUltiplied by axexp(O.Ot5xt~,), in which 
a is a normalizing constant that serves to keep the total number of scans (i.e. 
for all t~, used) unchanged. The attendant CR lower bounds are given in rows 
16,17,18 of Table 1. 

4. DISCUSSION AND CONCLUSION 

Clearly, the smallest CR lower bounds are attained when all 512 data points 
are available. 

If the duration of the measurement is to be cut by a factor of four, then, 
in the chosen case, it seems best to simply truncate the measurement at n=127, 
rather than sampling exponentially. Presumably, this is because the signal has 
already decayed substantially at n=127, so that the SNR of the samples beyond 
this number is rather low. 

When the duration is to be cut by another factor of four, the situation is 
reversed. Simple truncation at one quarter of the time yields very large CR lo­
wer bounds, at least for sinusoids 2 and 3. A dramatic improvement is found 
for the latter sinusoids, when exponential sampling, devised by Barna et a1., is 
applied. Apparently, it is possible to improve on this further by combining 
exponential sampling and exponential averaging. Note that the latter result 
does not apply to the amplitude of sinusoid 1. 

In conclusion, the results in Table t indicate that the CR lower bounds can 
provide a criterion for choosing between various alternative sampling strategies 
devised for resolution enhancement. This finding should enable one to save 
time and manpower. To arrive at this result it was assumed that quantification 
of the model parameters (in the time domain) is the ultimate aim of the expe­
riment. In this scheme, MEM will often be indispensable to identify spectral 
features and to provide starting values of the model parameters. 
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ABSTRACT. We discuss the physical interpretation of nuclear magnetic 
resonance spectra and the relation between the spectra and the data 
obtained in pulse experiments. A consideration of a classical theory 
of NMR suggests how the maximum entropy method can be used to obtain 
spectra containing lines with arbitrary phases. The quantum 
modifications are given together with some illustrative results. 

1. The Inverse Problem 

In this paper we address some fundamental questions about data 
processing in NMR. The experimental situation is that we have a sample 
in a magnetic field along the z axis, we apply a radio frequency pulse, 
which sets the nuclei precessing and we measure the time evolution of 
the magnetic moment. 

The first question is "What are we trying to measure?". If we 
question a random NMR spectroscopist the most probable answer is "The 
Fourier transform of the free induction decay", but this is 
unacceptable as a definition of the spectrum. What we want must not be 
defined by an operation on the data, since these are usually 
incomplete and contain noise. 

In order to answer our question let us calculate the Fourier 
transform of the data in a perfect experiment. Consider the simplest 
ideal experiment with the sample in equilibrium, a very short 90° pulse 
applied, and a perfectly phased spectrometer. 

Let n(w) dw be the number of nuclei with chemical shift 
corresponding to a precession frequency in the range w ~ w + dw. The 
pulse rotates the nuclei to produce a magnetic moment which immediately 
after the pulse is in the x direction, say. 

Let Mx(w) dw be the contribution to the initial moment from nuclei 
that are going to precess with frequency w. In this simple experiment 

~(w) = K n(w) 
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with K independent of w, real and positive. 
The signal at time t is then 

d(t) r 
-00 

iwt M (w) e dw, x t > O. (1) 

There has been some confusion over what happens for t < O. From 
the point of view of inverse theory the answer is that there are no 
data for t < O. The function d(t) is not zero; it is not defined. 

The spectrometer takes the Fourier transform of d(t). Because we 
only have d(t) for t > 0 we have to take the one sided transform 

'spectrum' = 1: d(t) e-iwt dt. 

If we substitute for d(t) from (1) we see that the spectrum is ~(w) 
convolved with the Fourier transform of a step function, that is 

'spectrum' = Mx(w) * (S(w) - i/w). 

Our experiment does not measure Mx(w) or n(w) but a convolution. 
Normally when we measure a convolution we attempt a deconvolution 

and we might be tempted to reach for the maximum entropy package. 
However, in the case we have described Mx(w) = K n(w), and Mx(w) is 
real. This is extra information about the experiment and we can use it 
to construct a trivial deconvolution algorithm, that is: take the real 
part of the spectrum. 

In more complicated experiments some nuclei may, at the end of the 
pulse sequence, be pointing in the y direction, so we also have My(w) 
and in this case 

'spectrum' = (Mx(w) + i My(w» * (S(w) - i/w). 

In these experiments we lose the formula Mx(w) = K n(w) and 
moreover Mx and My may be negative. Now our simple deconvolution rule 
fails. 

We may have additional information that a particular line should 
have a phase of 0° or 90° and appear in either ~ or My. Then we can 
deconvolve by picking individual lines from the real or imaginary part 
of the spectrum, but if lines overlap this is impossible. We must then 
accept that our experiment measures 

and there is no unique way of getting ~ and My from our data. 
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We can now define what we are trying to measure. In simple 
experiments it is Mx(w) or n(w) and Mx(w) > O. In other experiments 
although we would like Mx(w) + iMy(w) we have to settle for (Mx(w) + 
iMy(w» * (S(w) - i/w). 

2. Maximum Entropy 
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We have not mentioned maximum entropy and the analysis in section 
1 applies to any data processing method. In practice we are faced with 
incomplete knowledge of the function d(t), the data may be missing for 
large and small t and there is noise. 

We need a probability distribution to define entropy. A normalised 
version of n(w) is a probability distribution and in the simple 
experiments where Mx( l.J) = K n( w) with K > 0 a normalised Mx( w) is also 
a probability distribution. We can therefore define 

S "" M (w) log M (w) L. x x 
w 

and maximise S subject to the Fourier transform of Mx«('J) agreeing with 
the data. 

Several people have done this and the results are as expected. 
This approach can be extended to use positivity to phase the 
spectrometer. An extensive review of previous work is given by 
Stevenson (1988). 

We are concerned in this paper with the more complicated 
experiments where K is not a real and positive constant. For some 
experiments we know K(w) in principle; we know the pulse sequence we 
have used; that is additional knowledge and using it we could still 
define the entropy on n(w). Again this is not the problem we are 
concerned with. We address the problem where we choose not to know K(w) 
and we want to get the spectrum from the free induction decay alone. 

In order to have a probability distribution on which to define 
entropy we will describe a classical theory of NMR - magnets attached 
to gyroscopes. Let n(w,a,+) dw da d+ be the number of nuclei, 
precessing with frequency between wand w + dw, at t = 0 (after the 
pulse sequence) oriented between a and a + da and + and + + d+, where a 
and. are spherical polar coordinates. 

We can define an entropy on this distribution: 

S = - n(w,a,+) log n(w,a,+) 
sina 

The sina factor is needed to make the unconstrained maximum of S 
isotropic. The magnetic moment is 

M (w) + iM (w) 
x Y 

2 n(w,e,+) sina ei + 
a,. 

(2) 

(3) 
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and d(t) is the Fourier transform of M (w) + i M (w). x y 
This is a standard linear maximum entropy problem for the 

distribution n(w,e,+) and could be solved in the standard way. The 
only difficulty is that it is in three dimensions with say 1000 points 
in wand at least 10 in e and + giving 105 variables. Fortunately there 
is a much more efficient way of solving the problem. 

The data depend only on ~ + iMy so we can maximise S partially, 
over e and +, fixing ~ + iMy for each value of w. The result is 

( e ~) . e (~(w)cos+ + ~(w)sin+) cose n w, ,~ ~ S1n e 

where ~ and ~ are Lagrange multipliers. 
We have determined the e,+ variation of n analytically by maximum 

entropy, only the w variation needs to be determined numerically. 
If we substitute this form of n into the equations (2) and (3) for 

S and ~ + iMy we get equations of the form 

2 2 
S = f(~ + ~ ) 

and (M 2 + M 2)~ = g(~2 + ~2) 
x y 

where the functions f and g are rather complicated. We can eliminate 
~2 + ~2 and write 

S = - h( (M 2 + M 2)~) 
x y 

and d(t) = "" [M (w) + iM (w)] 
L. x Y 
w 

iwt e 

This is now a non standard maximum entropy problem because of the 
function hi but h is a convex function of both Mx and My and so the 
standard algorithms can be modified. 

For the classical theory we have described 

where iO and i l are the modified spherical Bessel functions and we have 
used the convenient notation of arcil(x) for the inverse function of 
i l (x). 

For the spin-~ quantum theory the corresponding result is 
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3. Discussion 

We need to note two related features of any variational method. 
Because the data are used only through X2 we can add to the spectrum 
any function whose Fourier transform vanishes for t > O. Maximum 
entropy will do this if the entropy is thereby raised and the Fourier 
transform of a maximum entropy spectrum will not be zero for t < O. 
Another way of stating the same thing is to say that the maximum 
entropy algorithm attempts to do the deconvolution by (S(w) - i/w). 
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Bearing these points in mind we can ask what should we display as 
a maximum entropy spectrum. Of the possible candidates n(w,e,~) is 
difficult to visualise since it is a function of three variables and 
n(w) omits useful phase information in the experiments we are 
discussing. Mx(w) + iM (w) is probably the 'best' answer but the 
shapes of the lines in the spectrum are distorted in comparison with 
the lines in the Fourier transform spectrum. This is because the 
corresponding time domain function does not vanish for t < O. An 
alternative is to accept that, as explained in section I, we really 
want (Mx(w) + iMy(~»)*(S(w) - i/w» and to calculate this quantity by 
performing the convolution after computing the maximum entropy estimate 
of Mx(w) + iMy(w). This loses a little information but the spectrum 
now looks famlliar and the interpretation is easy. 

The figure shows that the method we have described produces a 
spectrum similar to the Fourier transform but with the expected 
advantages of the maximum entropy method. The left hand half of each 
trace is the real part and the right hand the imaginary part. The 
molecule is the trisaccharide N-acetyl glucosamine-galactose-glucose in 
a 90 0 acquire experiment and the large peak in the middle of the 
spectrum is due t.o water. The upper trace was computed by Fourier 
transformation after zero filling in the usual way. For the lower 
trace Mx(~» + iMy(w) was computed by t.he maximum entropy algorithm we 
describe and this was then transformed to the time domain, the part 
with t < 0 replaced by zero and the frequency domain spectrum 
recomputed. The features to note are the lower noise and reduced 
truncation artifacts. 

4. Summary 

We are concerned in this paper only with the more complicated type 
of experiments where Mx(~» is not essentially the same as new) and we 
are assuming we do not build into the analysis the knowledge of the 
pulse sequence. 

By using classical theory there is no doubt that the maximum 
entropy method is correctly applied to determine a probability 
distribution. 

The method pruduces a complex spectrum like the Fourier transform 
but we cannot use the method to adjust the phase automatically since 
automatic methods have to rely on positivity of the spectrum. In the 
case where all the lines in the spectrum have the same phase then this 
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additional information means that we should apply the entropy to n(w). 
not to n(w,e.+>. There are however many types of NMR experiment (for 
example relaxation time measurements and coherence transfer 
experiments) for which our approach should be a new useful method. 

Proton NMR spectra of N-acetyl glucosamine-galactose-glucose. 
Top: Fourier transform spectrum. Bottom: Maximum Entropy spectrum. 
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ABSTRACT. Measurements on the shape of Wolf's dice have recently become 
available. These measurements compare favorably with Maximal 
Entropy (ME) predictions made previously. These measurements also yield 
new constraints which are then used to modify the previously written ME 
program. The new shape constraints are very nearly as effective as the 
previously used oblateness constraints, derived from the observed fre­
quencies. 

1. Introduction 

In the paper "Maximum Entropy Calculations on a Discrete Probability 
Space" (Fougere, 1988) hereinafter called DPS, I analyzed, using the 
maximum entropy (ME) prescription of Jaynes (1957,1963,1968,1978,1979, 
1982), a unique set of experiments performed by Wolf(see Czuber,1908) 
about 100 years ago. These experiments involved throwing a pair of ord­
inary playing dice,one white (the" Weisser Wllrfel"),and one red (the 
"Roter Wllrfel") a total of 20,000 times and recording the total number 
of times that each of the 36 possible combinations (wl,rl),(w2,rl) ..... 
(w6,r6) appeared. Since no correlations were either expected or 
observed between the white and red results, the red and white marginals 
were calculated and are repeated for convenience in Table I. 

Table I. Marginals and relative frequencies 
for Wolf's dice. 

White Die Red Die 
i Marginal Frequency Marginal Frequency 
1 3246 .16230 3407 .17035 
2 3449 .17245 3631 .18155 
3 2897 .14485 3176 .15880 
4 2841 .14205 2916 .14580 
5 3635 .18175 3448 .17240 
6 3932 .19660 3422 .l7110 

SUM 20,000 1.00000 20,000 1.00000 
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Inspection of these red and white marginals quickly revealed that 
neither die was "fair". The expected marginals for a fair die are all 
equal to 20000/6-3333+. Table I shows, for example that w4 occurs 2841 
times, 492 less than expected and w6 occurs 3932 times, 599 times more 
than expected. Furthermore, these deviations from fairness are far 
greater than expected for normal sampling deviations when casting a 
fair die. We expect deviations from fairness to be of order square root 
of 20000/6 - 58. Thus the observed deviations are around ten times the 
expected deviations. 

The most likely physical imperfections to be expected in the construc­
tion of a real die were then discussed in detail. For convenience we 
repeat from DPS that the three constraints for the white die were : 

1. Spot excavations. Since the higher 
have more material removed, these 
"lighter" and more likely to be "up". 

numbered spots 
faces would be 

2. Prolateness. The 3-4 axis was longer than the other 
two, approximately equal axes. Thus spots 3 and 4 would 
be less likely to occur than the others. 

3. Corner chip. If the the 2-3-6 corner were chipped 
off, faces 2 ,3 and 6 would be more likely than the 
other three. 

For the red die, the first two constraints were exactly the same but 
the third constraint was a little different. Its effect was to make I 
and 4 less likely, 2 and 3 more likely and 5 and 6 were unaffected. 

The following predictions were then made: 

n We can now see quite clearly, that the white die must 
have been prolate with the 3-4 dimension being 
slightly greater than the 1-6 and 2-5 dimensions! .. 

.. The red die is also prolate in exactly the same way as 
the red die! n 

2. The Nev Observations 

Shortly after the camera-ready copy for DPS was sent to the publisher I 
received a letter from Prof. Jaynes in which he revealed some 
measurements which had been made by Wolf himself and which were 
reported to Prof. Jaynes during a visit he made to Wolf's observatory 
in ZUrich. Each measurement was the average of ten micrometer readings 
of the length of the three sets of axes: the 1-6, 2-5, and 3-4 axes. 
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Table II quotes these measurements which are reported here for the 
first time with the express written permission of Professor Jaynes. 

Table II. Measurements by Yolf as reported 
by Jaynes. (millimeters) 

Axis 1-6 
White Die 16.004 

Red Die 16.303 

2-5 
16.129 
16.288 

3-4 
16.402 
16.621 

Each measurement is the average 
of ten micrometer readings. 

The measurements in Table II verify both predictions quite well. For 
the white die, the 3-4 dimension (16.402) is indeed larger than the 
other two dimensions whose average is 16.067. Similarly for the red 
die the 3-4 dimension (16.621) is larger than the the other two 
dimensions whose average is 16.297. 

Of course the dimensional information was not available when DPS was 
being written, but now that it is available we should be able to use 
this information as a constraint ,in place of or in addition to the ob­
lateness constraint used in DPS. 

Using the dimensions in Table II we can easily find the area of each 
pair of opposite faces : 1-6, 2-5, and 3-4. For example, the length of 
the 1-6 axis multiplied by the length of the 2-5 axis gives the area of 
faces 3 and 4. 

The constraints derived in Table III are small integers approximately 
proportional to Delta, the difference between the area of a face and 
the average area of all three face (pairs). 

Table III. Face areas of the dice; Delta,the difference between 
an area and the mean area and CON, the approximate constraint. 

White Die Red Die 
Face Area Delta CON Area Delta 
1-6 26.455 0.282 7 27.072 0.164 
2-5 26.250 0.077 2 27.097 0.189 
3-4 25,813 -0.360 -9 26.554 -0.354 

Mean 26.173 26.908 

The computer program discussed at length in DPS 
modified to add a fourth constraint from table III. 
constraints can be turned on and off quite simply. 

CON 
3 
4 

-7 

was accordingly 
As before, the 

Results for the white die appear in Table IV. The column labelled 
"significant?" indicates with the symbol">" that the particular set of 
constraints acting was not sufficient to explain the observed die 
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frequencies. All sets after the first four are in this category. The 
first two rows, with all four constraints on , and with the first three 
on respectively, show very tiny values of chi-squared, 0.11 and 0.39 
respectively. With either of these two constraint sets there are 
definitely no important constraints omitted. The next row shows chi­
squared of 8.94 on two degrees of freedom(df). This is significant at 
the 98% level. That is the constraints numbered 1,2 and 4 are not 
sufficient to explain the observed frequencies. Similarly the fourth 
row shows a chi-squared of 9.37 on 3 df, significant at the 97.5% 
level. The first two constraints by themselves do not quite fully ac­
count for the observations. 

Table IV. Maxent results on white die. Variation of chi squared 
(CS) as the constraints are turned on and off. Listed in order of 
increasing chi squared. O-constraint off,l-on. ">" under significant 
indicates very highly significant, at higher than 99.5% level. "df" is 
number of degrees of freedom. 

Serial Il 12 13 14 CS df SIG? 
1 1 1 1 1 0.11 1 
2 1 1 1 0 0.39 2 
3 1 1 0 1 8.94 2 -98% 
4 1 1 0 0 9.37 3 -98% 
5 1 0 1 1 12.88 2 > 
6 1 0 0 1 20.86 3 > 
7 0 1 1 1 55.58 2 > 
8 0 1 1 0 56.28 3 > 
9 0 0 1 1 66.91 3 > 

10 0 1 0 1 70.99 3 > 
11 0 1 0 0 72.01 4 > 
12 0 0 0 1 81.12 4 > 
13 1 0 1 0 89.77 3 > 
14 1 0 0 0 199.42 4 > 
15 0 0 1 0 253.85 4 > 
16 0 0 0 0 270.90 5 > 

From Table IV we can easily read off that the most important constraint 
was number 2 oblateness, but close behind was number 4 the obs­
erved shape of the die. Similarly, the most important pair of con­
straints was numbers 1 and 2, with 1 and 4 close behind. The 
constraint labelled number 3, the tiny 2-3-6 corner chip was the least 
important single constraint, but after no 1 and 2 had been taken into 
account, number 3 was necessary to match the observed frequencies. 

Table V lists similar results for the red die. From Table V we can read 
off that for the red die, the most important constraint was number 4, 
the observed shape of the die, but close behind it was number 2, the 
oblateness. The most important pair was 2 and 3, with 2 and 4 close 
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indeed. In fact either pair (2,3) or pair (3,4) would be completely 
adequate to explain the observed frequencies. 

Table V. Same as Table IV ,but for red die. 

Serial 
1 
2 
3 
4 
5 
6 
7 
B 
9 

10 
11 
12 
13 
14 
15 
16 

11 12 13 14 
1 111 
1 1 1 0 
101 1 
o 1 1 1 
o 1 1 0 
001 1 
110 1 
100 1 
010 1 
o 0 0 1 
1 100 
o 100 
1 0 1 0 
o 0 1 0 
1 000 
o 0 0 0 

3. Summary and Conclusions 

CS 
0.07 
O.OB 
0.61 
2.39 
2.40 
2.91 

13.62 
15.52 
15.B6 
17.B1 
1B.13 
20.44 
74.B6 
77.16 
91. 90 
94.19 

df 
1 
2 
2 
2 
2 
3 
2 
3 
3 
4 
3 
4 
3 
4 
4 
5 

SIG? 

> 
> 
> 
> 
> 
> 
> 
> 
> 
> 

A. The major predictions made before the shape information became 
available were nicely borne out by the measurements on the actual dice. 
Both dice were very close to oblate in the manner indicated in the 
predictions: the 3-4 dimension was greater than 1-6 and 2-5 dimensions, 
and this was true for both dice. 

B. The smaller constraints: number 3 for both dice, are required to 
adequately explain the observed frequencies. It is to be hoped that 
the actual dice used by Wolf over 100 years ago, and believed to be 
still in existence, can be made available to the scientific community. 
In that event all of the predictions of Maximum Entropy could be com­
pared with reality. 
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APPLICATION OF CLASSICAL, BAYESIAN AND MAXIMUM 
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ABSTRACT. This paper contains some preliminary results from an analysis of the sensitivity of 

Classical, Bayesian and Maximum Entropy Spectrum analysis to detrending procedures. The fInd­

ings suggest that their perform ance in discovering periodicities in nonstationary series is affected 

by the assumption made about the trend. A combination of the three methods when trend. are 

not simple functions of time is desirable and necessary to obtain precise information about the 

periodic behavior of the data analy.ed. 

1. Introduction 

The most commonly used methods of time series analysis are based on the 
assumption of stationarity. Many economic time series are nonstationary. Thus in 
order to apply those methods the nature of the nonstationarities must be discerned 
and the data transformed accordingly. Recent work in the analysis of economic 
time series has focused on the effect that wrong assumptions about trends have on 
the conclusions extracted from data treated with stationarity-dependent methods. 
Stock & Watson (1988), Serietis (1988) and Nelson & Kang (1981) among others 
have concluded that the effect can be devastating. Others (e.g. Cochrane 1987) 
show that for some purposes making the wrong assumption might be even desir­
able. We analyze in this paper which of these views applies to two methods of 
analysis of time series iu the frequency domain that have not been used extensively 
with economic time series but could be good alternatives to the well known Classi­
cal Spectrum Analysis (CSA) method. These are the Autoregressive or Maximum 
Entropy Spectrum Analysis (MESA) and the Bayesian Frequency Parameter Esti­
mation (BFPE) methods. The data we use, as far as the results presented here are 
concerned, are computer generated nonstationary time series. The reason for do­
ing a preliminary analysis with artificial data is very simple: if a method performs 
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poorly with data about which we know everything we can use that as a warning 
against applying that method to real data. If the method does well in some cases 
and not in other then at least we know what to expect when we apply it. 

We have also analyzed the CSA method just for the sake of comparing it with 
the other two. Our results with it confirm those of Nelson and Kang (1981). 

The remainder of the paper is organized as follows: Section 2 briefly reviews 
the MESA, BFPE and CSA methods and their performance with stationary data. 
Section 3 presents our preliminary results concerning the sensitivity of the methods 
to detrending. Conclusions and suggestions for further research are in section 4. 

I thank Professor Edward T. Jaynes and Larry Bretthorst for their helpful 
suggestions and comments. 

2. The Methods 

We present in this section a brief review of the CSA, MESA and BFPE meth­
ods. For extensive detail on them see Jenkins & Watts (1968), Marple (1987) and 
Bretthorst (1987). 

MESA and BFPE are model based, i.e. to apply them a model for the data is 
initially assumed. This is the only aspect they have in common. On other respects 
they estimate two very different things. 

MESA gives its best estimate of the spectrum of the data. The analytic ex­
pression for this spectrum is 

P(J) = Tpw 
1 + 2::=1 an exp{-i27ffnT) 

(I) 

where P(J) is the estimated spectral density for each frequency 'f', Pw is the es­
timated driving noise variance, and an are the parameters of the Autoregressive 
model assumed to represent the data and estimated by means of Burg's algorithm 
(Burg 1975). To apply it the time series must be stationary and the lag length of 
the model must be assumed or selected according to some statistical criteria. In 
any case, what we estimate is the spectrum of both the signal and the noise present 
in the data. 

The BFPE method calculates its best estimate of the parameters present in 
the signal -such as frequencies, decay rates, chirp rates and trends - and also 
the accuracy of that estimate. It also estimates the noise level of the data. The 
analytic expression of what it calculates is found by applying the following relation: 

P{OI DI) = P{OI I)P{D IOI) 
P{D I I) (2) 
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Figure I. MESA, BFPE and C SA of a Stationary Signal with Frequency w = 1.25664 and decreasing 

signal to noise ratios 

where P(O I DI) is the joint posterior distribution of the parameters 0 present in 
a hypothesized model and whose more accurate analytic expression will depend on 
this model. IT some of these 0 are nuisance parameters and we are only interested 
in estimating the set of frequency parameters -f- contained in 0 we can integrate 
out those nuisance parameters and obtain 

p(i I o:DI) = ! P(91 DI)do: (3) 

that is, the marginal posterior distribution for the frequencies given the rest of the 
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parameters -which we call a, the data and the prior information about fJ. 
The distinctive characteristic of this method with respect to MESA is that it 

allows us to incorporate any prior information we might have about the data into 
the estimation process. It does not require stationarity and consequently allows us 
to consider a wider scope of models to represent the data. The model selection is 
done according to bayesian probability theory. 

CSA estimates the spectrum of the data by Fourier transforming it as follows: 

N 

PU) = ~ I E d,.exp(i27r/n) 12 (4) 
,.=1 

where d,. are the data values for n=l,f!, ..... ,N 
To apply a Classical Fourier Transform to the data the latter must be station­

ary. No model for the data must be assumed. The method has been extensively 
compared with MESA (see Childers 1980). As in MESA we estimate the spectrum 
of both signal and noise together. 

2.1 APPLICATION TO STATIONARY DATA 

Although stationary data are not the main concern of this paper, we have 
nevertheless to face it when we have to transform nonstationary series to apply 
MESA and CSA. It is then convenient to point out an important result that has 
been documented elsewhere concerning MESA (see Childers 1978; Marple 1987) 
and that we illustrate with the example in Figure I. Figure I shows the estimates 
obtained ape-lying the three methods to data generated by the following model: 

y(t) = cos(1.25664(t - 1) + GW N (5) 

where GW N stands for Gaussian White Noise. When the noise level is nonexistent 
-plot (a)- the three methods give us the right frequency. As the level of noise 
increases, -plots (b) to (c)- the MESA spectrum starts to lose resolution while 
the other two estimates do not. 

The bad resolution of MESA as the noise increases is explained by the lag­
length assumed. While a lag order of two is good enough to give a high resolution 
to the estimated espectrum when no noise is present -the peak occurs at w=1.26 in 
Figure I (a)- that order is no longer appropriate when the noise increases (Figures 
I (b) and (c)). In Figure I (c), for example, the peak of the MESA spectrum occurs 
at w=1.398 for lag-length two. We found that it recovers its resolution with a 
lag-length sixteen. 

MESA then is very sensitive to the level of noise in the data and to the lag­
length assumed for the autoregressive model representing the process. The method 
does not provide a model selection criterion and has to rely on ad-hoc criteria to 
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decide the lag-length. This must be kept in mind when we add in the next section 
the problems derived from the presence of trends. 

On the other hand the BFPE method provides a model selection procedure 
based on the same criterion as that used for the estimation of the frequencies, i.e. 
Bayes theorem. In the example illustrated in Figure I and other that we analyzed 
this criterion chose the correct model in the majority of cases. When the noise 
dominated the signal almost completely the posterior probability density function 
contained spurious peaks that distorted the results. 

3. Trends and Cycles 

Most economic time series are nonstationary in the sense that they tend to 
depart from any given value as time goes on. Figure II shows two examples of such 
series. 

Failure to account for nonstationarities has far-reaching consequences in the 
results obtained from applying to these series methods that assume stationarity. 
Thus, in Figure III we show what will happen if we apply MESA and Classical 
Spectrum Analysis to a nonstationary series generated by the following model: 

y(t) = 1 + 0.3t + cos(0.6283(t - 1)) + W N (6) 

that is, a model with a very simple linear trend and a periodic component of fre­
quency w = 0.6283 plus White Gaussian Noise of zero mean and standard deviation 
equal to 0.9. As it is expected, the results are misleading both for the Classical 
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(Figure III (b)) and the MESA (Figure III (c)) estimates. The two spectra concen­
trate all the power at a low frequency. This is a consequence of applying these two 
methods -which require stationarity- to nonstationary data. 
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Contrast this result with that obtained from applying the BFPE method to 
the same data (Figure III (d)). The posterior probability for the frequencies was 
calculated following the same steps described in Bretthorst (1987) to approach this 
problem. That is, after seeing the data plotted we considered that an appropriate 
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model function would be a single frequency plus a trend. Probability theory then 
prescribed that the removal of a first degree polynomial trend was enough and 
estimated the right frequency with almost complete accuracy. Removal of higher 
order trends would not change that result. 
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Figure IV. Making the right assumption about the trend of trend-stationary series 

3.1 DETRENDING TREND-STATIONARY DATA 

Faced with the misleading results obtained from MESA and CSA estimates 
when applying them directly to nonstationary data, the next step would be to 
make that data stationary and reapply the methods again. To do that we need 
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to make some assumption about the type of trend. Economists have been focus­
ing recently on two assumptions: (a) the trend is a function of time around which 
short-run fluctuations occur -trend-stationary series-; (b) the trend is the accu­
mulation of differences -difference-stationary series-. It is even considered, based 
on recently developed tests, that most macroeconomic time series are difference­
stationary (Stock and Watson 1988). And that making the wrong assumption has 
far-reaching consequences in applied work (Serietis 1988). We analyze in this sec­
tion the effect on the frequency estimates of making one assumption when the data 
has been designed under the other. 

Consider first the data in Figure 1lI which is trend-stationary according to the 
model that generated it. A common procedure to detrend this type of data would 
be to fit a polynomial function of time of appropriate degree to obtain stationary 
residuals, such as those in Figure IV (a) obtained after fitting a line to the original 
data. Figure IV (b) shows the MESA spectrum and Figure IV (c) the CSA one. In 
this case these two methods perform as well as BFPE (Figure IV (d)). 

However, if we make the wrong assumption, i.e. if we consider the series 
difference-stationary and detrend accordingly, we obtain misleading results from 
MESA and CSA as we illustrate in Figure V. 

Figure V (a) shows the residuals obtained after detrending the data in Figure 
III (a) by first order differencing. Figure V (b) is the estimated Classical Spec­
trum. Figure V (c) is the MESA estimate. As we can see many spurious effects 
have been introduced into the estimated spectrum by assuming the wrong type of 
nonstationarity for the data. 

We carried several other experiments with data that contained higher degree 
polynomial trends and several frequencies and we reached the same conclusion: if 
the trend is just a function of time around which a periodic signal and noise evolve, 
differencing that data will have far-reaching consequences in the estimated spectra. 
In none of the cases we analyzed did we get a clear answer after differencing trend­
stationary data. However, applying the BFPE method to the same data we got a 
complete information on the periodicities present in the series except in those cases 
where the noise dominated the signal completely. 

3.2 DETRENDING DIFFERENCE-STATIONARY DATA 

Many analysts of economic time series agree that most macroeconomic time 
series are difference-stationary. In particular, it has been considered that the trend 
of some variables is a random walk (Nelson & Plosser 1982; Stock & Watson 1986). 
It seems then relevant to analyze how our methods perform in this situation. Figure 
VI (a) shows artificial data with three periods (100, 10 and 4 years) and a random 
walk trend contaminated with gaussian white noise with a variance equal to 16. 
In Figure VI (b) the stationary residuals are obtained after detrending by taking 
the first difference. Figure VI (c) and (d) show the MESA and eSA spectra. 
MESA, with an assumed lag equal to sixteen gives much more information about 
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Figure V. Effect of making the wrong assumption about the trend of trend-stationary series on 

the results obtained from MESA and eSA 

the periodicities present in the data than the Classical spectrum. The latter does 
not pick up the lowest frequency in the the data. When we detrend the data fitting 
a polynomial, though, the results from the two methods are misleading. 

The application of BFPE to this method requires much more work than in the 
case when the trend was polynomial. The model selection procedure explained in 
Bretthorst (1987) tells us that besides the three frequencies present in the data the 
latter has much more structure that needs to be accounted for (Figure VI (e) and 
(f) respectively). This example suggests that using MESA and BFPE together may 
be more appropriate when we are dealing with difference- stationary data. 
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4. Conclusions 

We have presented in these pages some preliminary results concerning the 
sensitivity of the BFPE, MESA and eSA methods to two well known detrending 
procedures. With the simple examples used we have found that making the wrong 
assumption about the trend does indeed have undesirable effects on the results 
obtained from MESA and eSA. This is not the case with BFPE when the trend is 
a function of time. But when the method is applied to more complicated trends we 
need some calculations not yet done that would allow the method to incorporate 
this more complex information into the estimation process. This will be the subject 
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of further research. In any case using the three methods for the analysis of any 
time series seems a good advise to follow. 

Additional work needs to be done to fully assess the performance of the three 
methods with other sets of data. The simple results obtained here, though, are an 
indication of the great care with which they must be applied to economic or any 
type of nonstationary data. 
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ABSTRACT. There is a long tradition of observations on business "cycles". 
Such cycles may be defined as fluctuations about the trend which repeat 
themselves at roughly constant intervals. 

At SEMECON - University of Munich - a methodology was developed by 
means of which such cycles could be identified in many contemporary time 
series. The procedure used is the following: First a periodogram of the 
de trended data is computed in order to identify possibly peaks. Then a 
function of the form: 

LlltCos(u:tt+etJ 
t 

is fitted to the data by nonlinear least squares, minimizing over the parameter 
vectors (At. Wt. en. The entire methodology gave good results, but has the 
drawback that the discrimination between genuine and spurious peaks of the 
periodogram is subtle and requires considerable experience. 

Using ME-spectra, we have begun to obtain results, which match those 
obtained by our earlier methodology, but are considerably more elegant and 
definite than the periodogram. The ME-spectra are therefor a valuable 
supplement to our methodology. However, as will be shown, there are 
considerable additional advantages to be derived from the direct fitting of 
sinusoidal functions. 

1. Introduction 

Economic fluctuations have traditionally been viewed as having periodic 
components. This view, which goes back to the work of Juglar in the last 
quarter of the Nineteenth Century, motivated the term "business cycle" to 
denote such fluctuations. We use economic fluctuation as the general term and 
economic cycle to devote periodic components of fluctuations. 

Economists devoted considerable efforts to the study of economic cycles 
until about 1960. While progress was slow and somewhat unsystematic, it was, 
nevertheless, cummulatively impressive both at the descriptive and explanatory 
levels. It was discovered that economic cycles are concentrated in the 
investment components of total output and that specific forms of investment 
exhibit cycles with characteristic durations. Specifically, there is a 3-4 year 
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cycle in inventory investment and a 6-10 year cycle in equipment investment. 
These cycles are caused by inertia, meaning all of the technical and economic 
factors which prevent the instantaneous adjustment of the capital stock to its 
optimal level. These developments are closely related to the study of economic 
growth in which investment is also the driving force. We refer to the entire 
tradition, encompassing descriptive and explanatory elements as the Economic 
Theory of Cycles and Growth (ETCG). The view that economic fluctuations are 
cycles will be called the Genuine Cycle View (GCV). The GCV is a part of the 
ETCG. 

For a variety of reasons the ETCG and the GCV were abandoned by 
almost all economists during the 1960's. The tradition of analyzing discrete 
cycles in economic data was kept alive during the past quarter century mainly 
by one of us (Hillinger). Beginning with simple measures of duration between 
turning points, the methodology soon concentrated on the direct fitting of 
sinusoidal functions to data by means of nonlinear least squares. This method 
proved effective for analyzing discrete cycles in the very short economic time 
series (20-30 years) which are typically available between major wars or other 
breaks in continuity.l 

2. Methods used 

Among statistical techniques of time series analysis, the Component Model is 
closely associated with the ETCG and the GCV. In the case of economic time 
series the component model assumes that these are additively composed of a 
smooth trend, economic cycles. as well as seasonal and random components. 

2.1 TREND R~MOVAL 

We have experimented extensively with alternative methods of trend removal. 
The aim was to determine on the basis of both theoretical and practical 
considerations, those methods which allow the reliable and robust computation 
of plausible and replicable spectra for the deviations from the trend. 

The simplest method which meets these criteria and has been extensively 
used is the least squares fitting of polynomial trends. We usually select the 
trend order k for which the adjusted R2 reaches it first maximum, given k 
lower or equal 3. Otherwise the order is 3. This criterium is supplemented by 
a visual examination of a plot of the trend against the data. 

2.2 THE DIRECT FITTING OF SINUSOIDAL FUNCTIONS WITH EXPLORATORY DATA 
ANALYSIS BASED ON THE PERIODOGRAM 

The deviations from trend (or mean) are analyzed to determine if they contain 
discrete cyclical components. The most intuitive way to proceed is to fit a sum 
of m cosine functions to the detrended data. Xt. t= 1 ,n, using nonlinear least 
squares. The sum of squares of the residuals is minimized simultanously with 
respect to the amplitudes, frequencies and phases: 

1 The evolution of the ETCG and the GCV as well as previous work on 
economic cycles at SEMECON - University of Munich - are discussed in 
Hillinger (1982, 1986, 1987). 
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I,m 

We employ the normalized periodogram to select the order m of the model. 
The highest peaks of the periodogram generally correspond to the cycles 
which can be directly fitted. The problem is to distinguish between real and 
spurious peaks, such as side lobes and some of other phenomena. This could 
not be dealt successfully by smoothing the periodogram. 

Our experience with many empirical analyses and simulation experiments 
yield the following rules of thumb for the interpretation of the periodogram: 

i) A peak below 1096 in the neihbourhood of a big peak is a 
spurious peak. 
ii) Flat peaks in the long period range are remainders of the 
trend. 
iii) If two peaks are nearly of the same height, the shorter 
cycle is more significant. 

Diagnostic checks of the residuals test the model selection. Cyclical 
behaviour of the residuals and their autocorrelations indicate a higher order 
model. The double standard deviation of a white noise autocorrelation function 
is another useful instrument for the visual examination of the residuals. A 
quantitative test ar,ainst white noise is given by the the cumulated 
periodogram calculated at the orthogonal frequencies (Durbin, 1969). If the 
maximal distance between the cumulated periodogram of the residuals and the 
theoretical one for the white noise exceeds a critical value, determined by a 
procedure analogous to the Kolmogoroff-Smirnov-test, the hypothesis of white 
noise residuals is rejected. For our purposes this test is advisable, because in 
the case of rejection the location of the maximal distance gives an idea of an 
alternative model for the direct fit. 

In conclusion it may be said, that this methodology for identifying 
economic cycles is complex and requires considerable experience of the user. 

2.3 THE ME-SPECTRUM AND THE DIRECT FITTING OF SINUSOIDAL FUNCTIONS 

The ME-spectrum is given by the formula (Burg, 1967) 

where the at are the coefficients of an AR-process assumed to have generated 
the data. The coefficients of this process must first be estimated. We use 
unconstrained least squares, minimizing the unweighted sum of the squared 
forward and backward forcasting errors of the chosen AR-model (cf.Geyer, 
1986, 104-106). 

The main problem is to chose the number m of coefficients, which 
determine the order of the underlying AR-process. For this purpose we use 
the partial autocorrelation function and the CAT-criterion of Parzen (cf. 
Priestley, M.B., 1981, 370-380, 600-60l). The results of both procedures differ 
only slightly. 
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The ME-spectrum substantially eliminates the problem of spurious peaks, 
such as side lobes, which cause the periodogram to be difficult to work with. 
Empirically, the peaks produced, match closely our results from the direct 
fitting of cosine functions. 

3. Empirical results 

The two methodologies for identifying economic cycles are compared looking at 
three important economic series, observed annually, for 1960 - 1986. at 
constant prices: GOP of Germany, inventory investment of the United Kingdom 
and the equipment investment of the USA (OECO, 1988). 

According to economic theory, the investment series are both causally 
involved in the generation of cycles and also exhibit them more prominently 
than other ecomomic time series. More specifically, inventory investment 
exhibits the short (3 - 5 year) cycles and fixed investment the longer (7-10 
year) cycles. The GOP contains both of these series and in addition public and 
private consumption expenditures as well as the foreign sector. GOP is the key 
variable for evaluating economic performance and enters economic and political 
decisions. So these three series are analyzed. We chose different countries 
demonstrate the general relevance of economic cycles. 

For all series, the methodology based on the periodogram and the direct 
fitting of sinusoidal functions is compared with the ME-spectrum. The 
residuals of the direct fit are tested with the cumulated periodogram at a 
significance level of 5%. 

3.1 GOP, GERMANY 

Figure 1 shows the normalized periodogram. In the legend the periods of the 
main peaks and the corresponding R2 are given. A prominent cycle at a period 
of 7.4 years explains nearly 50% of the variation of the detrended data (trend 
order 3). Lower peaks are located at 4.1, 15.1 and 5.1 years. 

Following the rule of thumb, the long 15.1-year cycle can be interpreted 
as a remainder of the trend. The 5.1-year cycle looks like a spurious peak 
caused by the side lobes of the big peak at 7.4 years and the peak at 4.1 
years. 

A sum of two cycles is fitted directly. Starting values near 4.1 and 7.4 
for the minimizing routine produce a 4.0- and a 7.6-year cycle (Figure 2). The 
amplitude of the longer cycle is almost double that of the shorter one, as one 
expects on the basis of the periodogram. 

The validity of the regression is confirmed by a high R2 (0.62) and the 
significance of the amplitudes indicated by the standard deviations. The test 
statistic of the cumulated periodogram of 0.413 is lower than the critical value 
0.446 and accepts that there is no structure left in the residuals. Also, the 
residuals and their autocorrelation function lie between the two standard 
deviation bounds. 

The ME-spectrum is shown in Figure 3. For the peaks the periods and 
height relative to the biggest maximum are written down. A cycle in the range 
of 8.0 years is suggested. A very low peak at 3.8, which only reaches 3% of 
the height of the larger peak. indicates a second short cycle. 

All tests confirm that only two cycles of about 4 and 7.6 years are 
relevant for the German data. 
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3.2 INVENTORIES, UNITED KINGDOM 

The periodogram of the deviations from mean (Figure 4) indicates three cycles 
at 4.6, 6.2 and 3.1 years. Two flat peaks in the range of the longer periods 
could again be interpreted as remainders of the trend. The fact that a 6 year 
cycle is rarely seen in inventory data suggests some skepticism regarding this 
peak. 

Consequently, three different model are fitted and compared, to examine 
the relevance of the two lower peaks: 

1) two cycles with period 3.2 and 4.8 
H) two cycles with period 4.8 and 6.2 

iii) three cycles with period 3.2, 4.8 and 6.2 
The first regression passes all tests. The fitted model (Figure 5) matches 

the major troughs and peaks quite well. The residuals and their 
autocorrelations indicate no further structur. The value 0.21 for the statistic 
of the test for white noise lies clearly beyond the critical value 0.38. 

Although the R2 is rising from 45% to 49% for the second fit, the 
diagnostic checks show that there remains a cyclical pattern in the residuals. 
A statistic of 0.44 against a critical value of 0.38 rejects this model. The 
cumulative periodogram indicates that this is due to the excluded 3 year cycle. 

The plot of the regression with all three cycles reveals, that a third 
cycle at 6.2 years does not change the structure of the regression 
substantially. The additional cycle does not improve the location of the major 
turning points. For 1969 this regression even places a trough instead of a 
peak. The first regression is superior to it. 

The spurious nature of the 6.2 cycle is confirmed by its absence in the 
ME-spectrum (Figure 6). Two cycles at 5.1 and 2.9 years are detected. The 
maximum at the shorter cycle reaches 30% of the longer. 

This example confirms the ME-spectrum as an easy to handle instrument 
for identifying the relevant economic cycles. In the case, just discussed, an 
inexperienced user of the first methodology could easily be mislead by the 
weight of the 6.2 - peak in the periodogram and the rise of the R2. The 
ME-spectrum identified the correct model. 

3.3 FIXED INVESTMENT, USA 

In the periodogram (Figure 7) a peak at 6.7 years overshadows three lower 
peaks at 19, 10 and 4 years. The flat peak at 19 years again is interpreted as 
a remainder of the trend. The other two peaks, around the dominant 
6.7-maximum, look like side lobes. A faUed attempt to fit in addition to the 
6.7-cycle a 10.1 cycle confirms this conclusion. 

The 6.7 years cycle provides a good fit to deviations from a linear trend 
(Figure 8). The plot of the detrended data, together with the estimated 
regression, and the residual check support the hypothesis of no additional 
cycle. However, the visual examination of the detrended data suggests that the 
cycle is exploding. In this case a model with varying amplitude would yield 
better results. A modification of the constant amplitude model in this direction 
is indicated. 

The ME-spectrum (Figure 9) again supports and simplifies the above 
considerations. It shows a Single sharp peak at the period 6.4. With this as a 
starting value for the direct fit the same results as above are obtained. 
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4. Conclusion 

The positive results obtained by means of the ME-spectra have motivated us 
to incorporate them into our methodology for identifying economic cycles. This 
methodology now consists of four steps: 

1) Fit a deterministic trend. Visually examine plot of data against trend 
and of residuals from trend. 
ti) Plot the periodogram to obtain an alternative view of the data without 
imposing any assumptions. 
iii) Select the order of an AR-process, which could generate the data, 
and derive the corresponding ME-spectrum. 
iv) On the basis of the cycles selected in the previous steps, fit a sum 
of sinusoidal functions directly by nonlinear least squares. Use the 
residuals for diagnostic check. 

The advantages of the final step are 
a) Estimates of all the parameters, including the phases, as well as of the 
standard errors, are obtained. 
b) The residuals obtained can be used for diagnostic check. 
c) The functions can be extrapolated for forecasting purposes, an aspect 
on which we are currently working. 
d) The methodology is easily extended to damped or exploding cycles, 
which are often encountered in economic data. 

The four step methodology suggested, appears to be ideal for analyzing 
economic cycles. We can think of no reason why it should not work in other 
areas as well. 
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Abstract-This paper evaluates Hilbert transformed complex data using 
complex maximum entropy spectral estimation to determine if a reduction 
in pole complexity results. Since the computational load of the 
maximum entropy method (MEM) scales as a function of predictor length, 
a shorter length predictor may be used in some cases when presented 
with complex data. This paper deals with the results obtained from 
simulated real and complex data and the resultant pole locations of the 
prediction filter. 

1. INTRODUCTION 

The frequency resolving performance of maximum entropy spectral 
analysis for short data lengths is well documented. Its use is 
becoming an increasingly important spectral analysis procedure as the 
detection and classification of threats, both sonar and radar, become 
more difficult. One limitation in its use however, is the 
computational load it places on an imbedded processor operating in real 
time. These situations require the algorithm to extract as much 
information as possible with minimal computation. 

The thrust in Hilbert transforming the input data is to see whether 
two complex poles will give as accurate of a spectral estimate as would 
four real poles. If this was the case, the calculation of the power 
spectrum could be carried out with half the number of coefficients. 
Roots of the power spectral equation would also be easier to find due 
to the pole reduction. 

In section 2, a review of the important features of the Hilbert 
transform is presented. In section 3, the maximum entropy method in 
its complex form is discussed. Section 4 presents the results and 
simulation methodology used in the formulation of the results. 

2. HILBERT TRANSFORM 

The Hilbert transform is derived using the notion causality [1]. 
Causality is defined in this context as the Fourier transform of a 
sequence being zero in the frequency range -n~w<O which is the bottom 
half of the unit circle in the z domain. Therefore, given a sequence 
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sIn) and its resultant Fourier transform S(.lw). 

S(eiw) .. O. -rrSw<O 

From (1) it is required that the input sequence sIn) be complex and 
denoted by 

Sen) "" Sr(n) + jSi(n) 

where sr(n) and s,(n) are real sequences. 

(1) 

(2) 

S.(OI~) and S,(.I~) denote the Fourier transforms of the real sequences 
sr(n) and s,(n), respectively, and are given by 

Sr("l~)_~[s("l~)+s·(,,-1=)] (30) 

and 

(3b) 

By Eq. (1) and assuming no overlap between the zero and non-zero 
portions of S(.I~) and S·(.-I~), S(OI~) can be completely recovered from either 
S,(.I~) or S,(Olw). S,(OI~) can now be written in terms of S,(OI") by 

( iW)= -jSr(e}w). 
Si e { (.) jSr s /w , 

or 

where 

Osw<rr 

-rrSw<O 

Osw<rr 
-rrsw<O 

(4) 

(5) 

(6) 

Eqs. (5) and (6) show that s,(n) is found directly from sr(n) by a discrete 
system having a frequency response H(.I"). The response is one of unity 
gain and constant phase angle of -n:I2, OSw<n: and 1112, -n:sw<o. This 90 
degree phase shifter is known as a Hilbert transform. 

The impulse response h(n) of the described Hilbert transformer can be 
obtained by the inverse Fourier transform of Eq. (6) and is 

2 sin 2(rrnI2) 

hen) "" {rr n (7) 

0, n=O 

Eq. (7) is multiplied by the input data to give the Hilbert transformed 
version of the data. This is then called 'imaginary' data when 
referring to the input of the MESA procedure. 

3. MAXIMUM ENTROPY METHOD 

The maximum entropy method is a power spectral density (PSD) 
calculation technique originally proposed by Burg (3) to process finite 
lengths of real valued data. The method has been extended to include 
the processing of complex valued data as well. This paper includes the 
complex development as outlined in [4]. 
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The MEM for spectral estimation is based upon the extrapolation of 
a segment of a known autocorrelation function for lags which are not 
known. By estimating the unknown lags, the problems associated with 
truncation of the waveform or assumed periodicity found in other 
spectral analysis techniques can be avoided. The PSD of the input data 
is found by evaluating an all pole filter as a function of frequency 
whose coefficients are found using the MEM. The equation for the PSD 
is given in Eq. (8) 

P M+l 
P(f)=-----------------

1 - f aM.kexpC-i2rt/kJ.1t) 12 
k-l 

M 
'\ A. (-j2rt/iJ.1l) 
L'i'iexP (8) 

i-oM 

where P"./ and ail .• are the coefficients to be found. Eq. (8) implies a 
linear set of relations between the auto correlations ~, and the 
coefficients a".,. They satisfy the matrix equation of (9) . 

.po .p, .p2 .pM 

tJ[Tl 
.p, .po .p, .pM-' 
.p2 .p, .po .pM-2 

(9) 

.pM .pM-' .pM-> .po 

The matrix of Eq. (9) is a symmetric Toeplitz matrix where the ~, 

and a", are in general complex. The Toeplitz matrix is of order [MxM) 
and the maximum entropy method gives an estimate of the autocorrelation 
value ¢".,. An efficient algorithm for the calculation of the unknown 
coefficients was originated by Burg and is presented here. 

Initially, dummy parameters b",.b·",;k-1.2 ..... N-M where N is the input 
data record length, are calculated as follows. 

b'Mk = b' M-l.k+1 - a M - l •M - l • b M - l • k + 1 

where b".!. •• b' iI.I •• are previously defined values. Now the a". are 
calculated as follows. 

N-M 

2Lb~kb'Mk 
k-I 

aM M = -N---M---------

I (I b Mk 12 + 1 b' MAY) 
I-I 

. 
a Mk = a M - I •k - a MM ' a M - I •M - k 15.k5.M-l 

(10) 

( 1 1 ) 

(12 ) 

(13) 
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and 

(14 ) 

The initial values are 
blk=X k k=I.2 ..... N-l 

k=I.2 ..... N-l 

k>M 

and 
N 

Po= I/Xk/2/N (15) 
k- I 

Equations (10) and (11) are not used for M-I. This iterative method 
described was implemented in complex form using the programming 
language TURBO Pascal. The results presented are an outcome of this 
simulation. 

4. RESULTS 

Equation (8) shows the power spectral density relationship of the 
coefficients aM.. Eq. (8) is a polynomial in z where :>;=.,0.. By 
expanding the denominator of (8) inside the 1 I' brackets. the 
following results. 

M 
"\""' -k -I -2 -M 

1- LaMkz =1-a l z -a 2 z - ... -auz 
k-I 

(16 ) 

where H is the length of the prediction error filter and N is the 
length of the input data record. M<N. The roots of Eq. (16) are 
complex conjugates when the input data is real only. It will be seen 
that if the input consists of complex data where the imaginary part is 
obtained from the Hilbert transform of the real data. the resultant PSD 
found from the MEM will be zero for frequencies -rr~w<O. This result 
was derived in section 2. 

The roots of Eq. (16) can be found for any order H. In this paper. 
only M-I.2. and 4 will be considered for real and complex data. Fig. 
(1) shows the block diagram of the methodology used in the simulated 
data results. It shows that either one or two sinusoids were generated 
with or without Gaussian random noise summed. The signal is then input 
into the MEM procedure for the case of real data. For the case of 
complex data. this output is run through the Hilbert transformer and 
then into the MEM procedure. In either case the MEM produces a power 
spectral density plot and the coefficients of Eq. (8). These 
coefficients are then used in order to find the roots of the 
denominator polynomial in Eq. (16). The plots for the simulated cases 
can be found in figures 4-6. These figures contain six plots each and 
each plot is denoted by a different symbol. The annotations on the 
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plots such as 1Cmp1x and 4Real mean that a first order estimate of 
Hilbert transformed complex data and a fourth order estimate using real 
data was used, respectively. The other annotations follow the same 
format. The data length in all cases is 64 points and the amplitudes 
of the sine waves are all unity. 

Generate x(n) 
Hilbert 

~(n) + j1(n) -- .. .. 
Sine Wave - + - - Transforme 

1 ... n 0 
~~ ... 

Generate x(n) 
Gaussian , 

Noise 
Plot MESA 

J;:Cf) + j1Cf) 

Fig. 1 Block diagram of simulation performed. 

Case #1: M=l For the case of M=l and real data, Eq. (16) reduces 
to 

(17 ) 

Eq. (17) has one real pole located on the real z axis at a value of 

The plots obtained for a single order estimation with added 
Gaussian noise having a standard deviation of 0.5 and 1.0 and a single 
sinusoidal input is shown in Figures 4 and 5, respectively. It can be 
seen from these plots that little information about the true spectrum 
is obtained from a first order estimation using real data. There is no 
frequency information obtained from a single pole lying on the real z 
axis. 

For the case of M=l and complex data, Eq. (17) has one complex pole 
associated with it. The pole location is 0.435042 + jO.763544 and is 
shown in Fig. 2 on the z axis plot. The resultant complex MEM spectrum 
is much different from the ones in the real data case. In this case 
the MEM was able to detect the presence of a tone in the data. Figures 
3 and 4 show the resultant spectral characteristics of this complex 
estimate. These PSD plots also show the nonexistence of any 
appreciable spectral power in the range J,/2~J<J, (where J, is the sample 
rate of the system) and corresponds to the negative frequencies -n~w<O. 
This result agrees with that which was defined in Eq. (1). 

Case #2 M=2 For the case of M=2 and real data, Eq. (16) reduces to 

l-az- 1 -az- 2 
1 2 

Eq. (18) has two poles located on the complex z plane at complex 
conjugate values. 

Eq. (18) can be factored using the quadratic equation and the 
resultant pole locations are given by 

(71 ..Jar 
PI =2:::1::: 4-+-ct2 

(18) 

( 19) 
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With the coefficients calculated from the simulated data, the poles 
are p.-O.5616:jO.8273 which shows that the roots do indeed occur in 
complex conjugate pairs. Again, figures 4 and 5 represent the plots 
for a single sinusoid with additive noise for this case. For the 
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case H-2 and complex input data, Eq. (18) has two complex poles 
associated with it. Unlike the case for real data, these complex poles 
do not occur in complex conjugate pairs. 

Eq. (19) can be used to find the roots of the second order estimate 
for the coefficients obtained by using the complex form of the MEM. 
Figures 4 and 5 contain the plots obtained from this estimate. 

Case #3 H-4 For the case of M=4 and real data, Eq. (16) reduces to 
-I -2 -3 -4 (20) l-a1z -a 2 z -a 3 z -a 4 z 

Eq. (20) contains two pairs of complex conjugate poles located in the z 
plane as shown in Fig. (3). 

Factoring Eq. (20) is not as simple as using the quadratic 
equation, instead Laguerre's method for finding roots of polynomials 
having complex coefficients was employed. This method led to the 
following sets of roots for the fourth order case : 
p,-0.ssS2s0:jO.S29649. P2-0.s72610:jO.SI97s0. These roots correspond to 
those shown in Fig. 3. The spectral plots can be seen in Figs. 4 and 5 
also. 

For the case H-4 and complex input data, Eq. (20) has four complex 
poles associated with it. Unlike the case for real data, these complex 
poles do not occur in complex conjugate pairs. 

Laguerre's method is again used here to factor the polynomial of 
Eq. (20). The poles associated with this set of coefficients are: 
PI- 0.555286+ JO.830766. p, -0.135987 + jO.028344. p, - -0.050553 + j-0.139076. p, - -0.085556 + jO.I09077 . 

The resultant spectra are shown in Figs. 4 and 5. 
Figure 6 shows plots for the cases of 2nd, 4th, and 8th order 

estimates of two sinusoids summed with Gaussian random noise. The 
sinusoids are of unity amplitude and the noise has a standard deviation 
of 0.5. The data length is again 64 points. 
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Fig. 6 Real and Complex Data Comparisons. 

5. DISCUSSION 

0.9 

This paper presented the derivation of the Hilbert transform for its 
use in generating complex data from real data. It also discussed the 
generation of the complex form of the maximum entropy method. The 
results were mixed as to the effectiveness of the complex form of the 
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maximum entropy method in its use in frequency discrimination. MEM's 
effectiveness is dependent upon the data being analyzed [7]. In some 
cases the complex form of MEM was clearly superior and in others it was 
clearly inferior. In instances where a single tone buried in noise 
needs to be found quickly, a first order complex estimate does a very 
good job of extracting the tone. The first order complex MEM finds the 
dominant pole associated with the data. This can be extremely 
beneficial if one is trying to detect the presence of a single short 
duration tone. By being able to execute this detection with one 
coefficient, this method can be executed in real time on a number of 
existing digital signal processors in a few milliseconds. Observing 
figures 4 and 5 also show that little additional benefit is gained when 
higher order complex estimates are used. In fact, the plots for the 
complex cases in figs. 4 and 5 are almost directly on top of one 
another. This is because the dominant pole is essentially the same in 
all the cases tested and therefore the remaining poles have little 
effect on the resultant spectrum. These figures also show that for the 
purposes of detecting a single tone, the first order complex estimate 
provides as much detectability as the fourth order real data case. 

The results of the complex MEM procedure for greater than one tone 
does not do any better than the real data case. In most situations in 
fact, the real case performed better. 

As for the pole locations of the estimated filter, the complex form 
yielded results consistent with those found in Fourier analysis. The 
complex conjugate nature of the poles disappears when the input data is 
passed through a Hilbert transformer. The same general results held 
true for finding roots of the denominator polynomial in Eq. 8. When 
the fundamental pole location must be found quickly, the first order 
complex estimate is a good candidate solution. 
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ABSTRACT. The formation of emission lines in close binary stars is shown to be equivalent 
to the problem of X-ray tomography in medical imaging. We apply the maximum entropy 
method to find the image of a binary from a series of line profiles taken at different parts 
of its orbit. The problem is well constrained, however statistical noise does allow the form 
of prior information (through a default image) to influence some features of the image. We 
compare the effects of different defaults upon the reconstruction. 

1. Introduction 

The close binary stars are a rich source of astrophysical phenomena. Interaction between 
the two stars in close binaries can produce classical nova eruptions, type I supernova erup­
tions, powerful X-ray sources and the millisecond pulsars. In many systems mass transfer 
takes place between the two stars, and as the material loses angular momentum accretion 
discs are formed. Accretion discs play many roles in astrophysics, and probably occur in 
the formation of the planets and the power sources of quasars. Close binaries, particularly 
cataclysmic variable stars, provide the best observational examples of accretion discs. 

Emission lines produced by sources stationary in the rotating frame of the binary move 
sinusoidally in wavelength as the binary rotates. With many sources, the profiles are difficult 
to interpret. In this paper we show how observations of line profiles can be inverted to 
measure the pattern of emission as a function of velocity in the binary. We apply this 
to observations of cataclysmic binaries in which the emission lines come largely from an 
accretion disc surrounding the white dwarf component of these binaries. The accretion disc 
in these variables is supplied with gas from a near main-sequence red dwarf. 

2. Line profiles from close binaries 

The profile of an emission line from a binary can be computed by summing the contribution 
from every part of the system with the appropriate line width and Doppler shift. The line 
intensity at each point in the system is the image of the binary. 
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Figure 1: Schematic picture of a close binary with an accretion disc. The circle represents 
the outer edge of the disc and the curved line represents the gas stream from the red star 
into the disc. 

Computation of a line profile from an image which is a function of position requires a 
relation between velocity and position. Such a relation is well determined for uniformly 
rotating systems (Vogt &: Penrod 1988), but in general, and in the particular case of ac­
cretion discs, this is not the case. It is easier in such cases to consider the image to be a 
function of velocity in the binary. The velocity vectors of the binary continuously rotate 
with respect to an inertial frame, and so we define the velocity of a point to be the velocity 
as measured in a frame at rest with respect to the centre of mass of the binary at orbital 
phase zero. For a cataclysmic variable phase zero is defined as the phase at which the white 
dwarf moves perpendicular to our line of sight and is the further of the two stars; the orbital 
phase increases by one every cycle. 

We define the X-axis to point from the white dwarf to the red dwarf and the Y-axis to 
point in the direction of the red star's orbital motion. These are illustrated schematically 
in figure 1. With these definitions the radial velocity VR of a point with velocity (Vx,Vy) 
at orbital phase </> is given by 

VR = 'Y - Vx cos 27f'</> + Vy sin 27f'</>, 

where'Y is the radial velocity of the centre of mass with respect to the observer. The flux 
in the line at VR from the line centre from an image in velocity coordinates is obtained by 
adding in flux from all the points (Vx,Vy) satisfying the equation above. These lie on a 
straight line with gradient determined by the orbital phase </> and an offset determined by 
the value of YR. 

Figure 2 shows the formation of the line profile at two different orbital phases, illus­
trating some features of the discussion above. Each profile is the projection of the image, 
represented here by a greyscale image. The image has a smoothly varying background which 
rises towards the centre until a critical radius below which it falls, and a spot of emission 
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Figure 2: A simulated greyscale image of a binary in velocity coordinates and two line 
profiles plotted to show their formation as projections of the image. 

close to the critical radius. The spot approximates the region where the gas stream hits 
the accretion disc and the critical radius is equivalent to the outer edge of the disc. 

Having shown that the line profiles are projections of the desired image, the problem 
of finding the image is exactly the same as that faced when trying to reconstruct an image 
of the human head from a series of X-ray projections. The different projection angles used 
in an X-ray scanner are equivalent to different orbital phases and the opacity to X-rays 
translates to the emission line intensity. 

3. Maximum Entropy Inversion 

The problem of reconstruction of an image from a set of projections can be solved by linear 
methods (Rowland 1979). However the linear method, while fast, is difficult to modify for 
effects such as optically thick line emission. Further disadvantages of the linear inversion 
are the possibility of negative or complex data values and the propagation of statistical 
noise into the image. Instead we apply the maximum entropy method to carry out the 
inversion, using the FORTRAN code MEMSYS (Skilling & Bryan 1984). 

The image is modelled by a polar grid of pixels. The radius of the image is matched to 
the highest velocities seen in the data (typically 2000 km s-1), and the pixels are sufficiently 
small to match the spectral resolution and may typically be 50 X 50 km S-1 square. Predicted 
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Figure 3: The test image and three reconstructions from noisy data using a uniform default 
image. The circles mark the edge of the image array. 

data are computed from the image by applying the physical model of the line formation 
described in the previous section. The image is then adjusted to match the predicted with 
the true data to within a pre-set value of the X2 statistic. In general there are many such 
images, and of these we choose the one of maximum entropy, S = l:i Ij - Di - Ii In(I;/ D;). 
The Ii are the image levels and Di are the default image values. In the absence of any 
data constraints, the maximum of S occurs when the image I is the same as D. Therefore, 
in this definition of entropy, D is the default which I tends towards as the data become 
noisier. 

To test the method we generated data at 40 orbital phases from an image consisting of 
nine spots on a uniform background (top left, figure 3). The following three images were 
then reconstructed from the data after the addition of increasing amounts of gaussian noise. 
Figure 4 shows the profile at phase zero for the data with and without noise to illustrate the 
amount added. The noise was generated with a pseudo-random number generator and the 
same seed integer was used so that the pattern of noise is identical for every reconstruction. 
The numbers next to the reconstructions are the signal-to-noise ratio in the continuum in 
each case. Figure 3, reconstructed with a uniform default image, shows that the important 
features of the image can be recovered, even with large amounts of added noise. 
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Figure 4: The profile at phase 0 for the model and each reconstruction. 

4. The choice of default 

The uniform default used for figure 3 pulls the outer regions of the reconstructions higher 
than in the original image, while pulling the peaks lower. The effect becomes more impor­
tant as the noise level increases. 

The emission line intensity as a function of radius from the centre of the image is a 
useful constraint on theories of emission line formation. As we have seen above, a uniform 
default biases the result towards a flat radial distribution. We can do better than this 
by modifying the default. Following Horne (1985) we consider iteratively defined defaults 
which are a function of the reconstruction. 

Figure 5 shows the reconstructions with three different defaults. The default for image B 
was computed by taking the average of the reconstructed image at each radius. Such 
a definition removes the entropy constraint on the radial profile of the image while still 
acting on the azimuthal variations. The improved fit to the radial profile is seen in the 
outer part of the image compared to the equivalent lower left image in figure 3, however, 
this default introduces rings at the same radii as the spots. 

If we compute the default from the median at each radius, a great improvement is seen 
(image C, figure 5). This is based on an initial guess that variations in real systems will 
be isolated spots and so their effect can be removed with a median. Azimuthal defaults 
all suffer from the anisotropy of the entropy constraint which constrains the image more 
in the azimuthal direction than the radial. This can cause artefacts which mimic expected 
real features in the disc. To avoid this, we consider a final example, with the default 
derived from convolution of the reconstruction with a gaussian. Such a default removes the 
entropy constraint from large scales in the image, while retaining it for short scale structure. 
Image D of figure 5 shows the effect of this. The gaussian we used had a full width half 
maximum 0.2 times the radius of the image. 

The smoothed default captures some of the best features of the uniform and axi-



344 T. R. MARSH AND K. HORNE 

Figure 5: The test image (A), and reconstructions with (B) azimuthal average, (C) median 
and (D) gaussian smoothed default images for a signal-to-noise ratio = 2. 

symmetric defaults. It represents the radial distribution more faithfully than the uniform 
default and does not produce the asymmetric smearing of the axi-symmetric default. 

5. Results on Cataclysmic Variable stars 

Images of the cataclysmic variable star, IP Peg are shown in figure 6. Images of the Hj3 
and H, Balmer lines of hydrogen are shown during an outburst on the left and during the 
normal faint state on the left. We have also drawn the predicted positions of the red star 
and the gas stream that falls from it. 

The outburst images of IP Peg show no features connected with the gas stream, but 
there is strong emission from the red star caused by irradiation from the centre of the 
accretion disc. The quiescent images show a bright region near the region of impact of gas 
stream and disc. Further examination shows that this feature penetrates far into the disc, 
presumably as the gas stream coasts over the surface of the disc. We have examined the 
similar system WZ Sge (data kindly provided by Dr. Schlegel) and have found gas stream 
coasting here as well. Other unexplained features are the subject of current work. 
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Figure 6: Images ofIP Peg in outburst (on the right) and quiescence. The outburst images 
are ~ 100 times brighter but have been rescaled for display purposes. The size of the 
quiescent images has been increased to give the same velocity scale. 

6. Discussion 

The maximum entropy method can be applied successfully to imaging the emission lines 
in close binary stars. For this to be successful, the Doppler broadening should dominate 
over any intrinsic line broadening. The short periods of cataclysmic variables ensure this 
condition, and typical velocities are ~ 500 km s-1 compared to thermal broadening of ~ 
lOkms-1. 

To avoid the bias caused by a uniform default, we applied the maximum entropy method 
with an adjustable default. However, one has to be careful to avoid introducing spurious 
features into the image, which for binary stars, led us to use gaussian convolution to compute 
the default. 
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ABSTRACT. We present a method of estimating distances to clusters of galaxies from 
two-dimensional catalogues by using the Maximum Entropy Method. 

1. Introduction 

A basic problem in astronomy is the deduction of a 3-dimensional distribution from 
a 2-dimensional distribution projected over the sky. The problem is well illustrated in 
the study of the large-scale galaxy distribution. Magnitude (or angular diameter) lim­
ited catalogues list the angular position of galaxies with a high precision almost over 
the entire celestial sphere. On the other hand, the information on the third dimension 
is very limited. The usual way of obtaining a 3-dimensional picture of the local universe 
is to carry out redshift surveys and to deduce distance from velocity by using Hub­
ble's law. Such redshift surveys, however, cover as yet only a small fraction of the sky. 
Furthermore, the distribution of galaxies as seen in redshift surveys is distorted by local 
gravitational fields. Angular diameters (or magnitudes) of galaxies, which are listed in 2-
D catalogues in a complete way, can be used as distance indicators as well. Astronomers 
have used the nth brightest galaxy (e.g. the first ranked or the tenth brightest) in a 
cluster as a standard candle and have deduced distances by fitting luminosities of clus­
ter galaxies to the entire luminosity function. Here we study further the mapping from 
2-D to 3-D by using a diameter function (or a luminosity function), which is deduced 
from a redshift survey at a section of the sky. We give a new solution to this inversion 
problem by using the Maximum Entropy (MaxEnt) Method. 

2. The Inversion Problem 

In a universe in which all galaxies have the same metric diameter D, the distance 
to each galaxy is simply (neglecting relativistic corrections) r = D18, where 8 is the 
apparent angular diameter. However, in our own universe there is a broad 'natural' 
distribution of galaxy metric diameters. 

We define the diameter function t/>(D) in analogy with the luminosity function, such 
that the number of galaxies per volume element (]3r and with a metric diameter D in 
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the interval (D, D + dD) is 
nCr) .3 

dN = (n) a-r q,(D)dD , (2.1) 

where n(r) is the 'true' number density of galaxies at position r, and (n) is the mean 
number density of galaxies in the universe. By writing eq. (2.1) in this form we assume 
that metric diameters are uncorrelated with spatial position and local density. In this 
work we assume that the diameter function is well-known and we seek a solution for 
nCr). 

We assume now that within a narrow cone of solid angle w, n(r) = nCr), and consider 
NC~ 8), the expected number of galaxies with angular diameter greater than 8: 

N(;~ 8) = w 100 nCr) <p(r,8) r2 dr , (2.2) 

where <p(r,8) is a selection function which expresses the probability of finding a galaxy 
with an angular diameter ~ 8 at a distance r. For a catalogue with a lower cutoff in 
angular diameter this function is: 

1 100 
<p(r,8) = <p(r8) = (n) r' q,(D)dD, (2.3) 

where we neglect Galactic obscuration. 
In a discrete form we write the relation as 

(2.4) 

where ni is the density at the ith distance bin and Pil: is our 'Point-Spread Function' 
(PSF): 

(2.5) 

where V; = w [(ri + ar)3 - rn /3 is the volume of the ith distance bin of thickness ar. 
Our task now is to find the density vector ni given the counts vector Ni<. The 

deviations of the measurements Ni< from the predictions (2.4) can be expressed in terms 
of the x2 statistic: 

x2(n) = }:(NI: - Nk)2 /(1~ , (2.6) 
I: 

where (11: is the standard error on the data. A naive approach might be to set NI: = NI: 
and to invert the set of linear equations (2.4) directly to find ni. However, an inversion 
of relations which involve noisy data is unstable and has no unique solution. We suggest 
instead using the Maximum Entropy Method. 

3. Maximum Entropy Solution 

Our inversion problem can be viewed as analogous to a problem in image process­
ing. We wish to reconstruct the true radial density profile from a 'blurred' image. The 
blurring is caused by a large spread in the distribution of metric diameters. The PSF 
tells us the counts of angular diameters when all cluster galaxies are concentrated at one 
distance. This close analogy to the reconstruction of true images from distorted pictures 
suggests the application of a reconstruction technique like the MaxEnt Method to our 
problem. 
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To cope with the fact that the quantity n is unnormalized we adopt Skilling's gen­
eralisation of Shannon's entropy (Skilling &: Gull 1988, in this volume): 

s = ~)ni - mi - ni log(ndm;}) , (3.1 ) 

where mi is an initial model for ni. When the image ni matches the model perfectly the 
entropy is zero. For example one can take mi = (n), i.e. that galaxies are distributed 
uniformly. The procedure now is to define a space of the dimension of the number of 
image cells and to maximize the entropy (3.1) under the constraint: 

(3.2) 

where Cairn is a constant defined in advance (see below); any image vector ni with 
x2 > Cairn is contradicted by the data. Maximizing the entropy alone will give us a 
uniform distribution (a 'grey map') in the case of an initial uniform model. Therefore, 
maximizing the entropy under the data constraint will give us the most conservative 
picture of deviations from uniformity allowed by the data. 

As our MaxEnt algorithm we use the algorithm MEMSYS (Skilling &: Bryan 1984). 
This algorithm iterates towards the image that maximizes the entropy under the con-­
straint. A crucial question is how to choose Cairn' We present the data as cumulative 
distributions, hence we are not allowed to set Cairn to be the number of bins because 
there are correlations between the bins. Instead we apply the following procedure, in 
which we run the algorithm twice. The first run ('pass 1') is used in order to find an 
empirical Cairn, which is then used for the second run ('pass 2'). 'Pass 2' is the 'proper' 
MEMSYS run. 

In 'pass l' we set O'i = Nk and choose an arbitrary very low value for Cairn' \\'e 
monitor the iterations by the following statistical test which aims to check whether our 
predicted number counts given in eq. (2.4), Nk, after each iteration are not too different 
from the measurements Nk • After each iteration we compare the observed and predicted 
distributions by the Kolmogorov-Smirnov (KS) statistic, which tells us about the shape 
of the distributions. The smaller the KS probability PKs, the larger the difference be­
tween the two distributions. We also calculate a Poisson probability, pP, for the total 
number of gala.xies in the cone, to verify that the amplitudes of the predicted and mea­
sured distributions agree. Since the KS and Poisson probabilities are independent we 
calculate the joint probability simply by 

p= PKs pp. (3.3) 

In order to decide when to reject the null hypothesis (that the two distributions are 
the same) and therefore to continue the iterations we specify a significance level I' The 
null hypothesis is rejected if p ~ I, while the iterations are stopped if p > I' We then 
record the 'final' x2 as our new Cairn-

We then run the algorithm again ('pass 2') with the new Cairn as an input. In this 
pass we do not monitor the above probabilities but simply iterate many times. We 
only verify that after many iterations the algorithm has converged, i.e. x2 has reached 
Cairn and the MEMSYS parameter TEST (a dimensionless number measuring the angle 
between the gradients of X2 and the entropy S) is nearly zero. The only free parameter 
in our procedure is the significance level I (or in fact Caim). We would like to emphasise 
that the final output of this procedure is a probability function for the density field 
along the line of sight, not the positions of individual galaxies. 
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4. Applications 

As an example we have applied the method to galaxies from the diameter limited 
UGC catalogue (Nilson 1973). 

The diameter function is well fitted by the analytic form (Labav et al. 1988, Ap­
pendix A): 

(4.1) 

where t == (D/D.)2 and tP., p, II and D. are free parameters. The estimated parameters 
are Jl = 0.16, II = 3.78, and D. = 60.7 h-1Mpc· arcmin ( = 17.7 h- 1 Kpc). Hereafter 
we specify distances in units of Mpc/h (Ho = 100 h km S-1 Mpc1), or alternatively in 
velocity units of 100 km S-I. Our PSF is therefore: 

(4.2) 

where til; = (ri 81; /D.)2 and tmin = (Dmm /D.)2 
We bin the data in a cumulative way such that the bin boundaries are defined 

according to the 8's of the data. This binning extracts maximum information from the 
data. The distance r is binned in steps of I Mpc/h and covers the range 0-200 Mpc/h. 
We extrapolate the diameter function down to Dmin = 1 Mpc/h. arcmin. For our initial 
model we adopt as a fiducial value mi = (n) = 0.015 galaxies per (Mpc/h)3. 

We now direct our 'Maximum Entropy telescope' towards the Virgo cluster (1 = 
284°; b = 74°). We perform number counts for all galaxies within 6° of Virgo's centre 
which have major diameter 8 ~ 1 arcmin. The number counts are shown as dots in 
Fig. la. There are 320 galaxies in 53 cumulative bins. For a uniform distribution the 
expected slope in such a logarithmic plot is -3. In Fig. 1b we show results for 3 values of 
the significance level '"Y (our free parameter). As '"Y is increased from 0.1 ( a conservative 
value) the density structure becomes more detailed, and by '"Y = 0.7 (a very liberal value), 
3 peaks are apparent at 9 , 21 and 63 Mpc/h. In all the above cases the parameter TEST 
is very small (of the order of 10-5), therefore indicating good convergence to the unique 
MaxEnt solution. In Fig. 1a we show the reconstruction of number counts for each of 
the 3 density profiles. The case '"Y = 0.1 does not fit the data well, whilst the other two 
cases show good fits. The distance to Virgo is estimated to be about 12 Mpc/h (see e.g. 
Tammann 1987) . Therefore, the '"Y = 0.5 case gives a reasonable answer (13 Mpc/h). The 
density profile corresponding to '"Y = 0.7 is compatible as well, at least qualitatively, with 
other studies of the Virgo cluster. We interpret the peak at 63 Mpc/h as a background 
cluster, A1367. While the position of the peaks has a simple interpretation, the meaning 
of the amplitude and breadth of the density bumps is less trivial. We currently use the 
method mainly for the identification of peaks. 

Another application of our MaxEnt Method is to find rough estimates of distances 
to clusters in new deep 2-D catalogues. The Cambridge Automatic Plate Measuring 
(APM) machine has been used by Maddox et al. (1988) to produce a deep catalogue 
of several million galaxies from the UK Schmidt Southern Sky Survey. Our algorithm 
finds the distance of a cluster in less than few minutes CPU time (on a VAX), so 
it is an efficient way of getting some knowledge of the distance, We have explored that 
possibility by applying our procedure to APM clusters with known redshift. Redshifts to 
14 APM clusters have been measured by Colless (1987). For the APM galaxies we have 
used magnitudes instead of diameters as distance indicators and a Schechter luminosity 
function. While in most statistical applications the significance level should be defined 
in advance of the experiment, we use it here as a control parameter. We use the 14 
clusters as calibrators to tune our procedure in order to give a good fit of predicted to 
observed number counts, as well as 'correct' distances. We find the value '"Y = 0.1 as an 
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VIRGO 

LOG (8) 

Ficure 1 •• Number counl.. as a function of angular diameter for the Vir&<> cluster (6° in radius). The 
dots are the meuurement. and the dotted, aolid and dashed lines rep~ the reconstruction (according to 
the density profiles in Fig. 1 b) corresponding to significance level of 0.1, 0.5 and 0.7, respectively. The slope 
expected for a unifonn distribution is -3. 

optimal one. Fig. 2 shows our estimates '"MEM versus the redshift distance rz for the 14 
clusters. Our distance estimates I"MEM deviate by 2 - 40% from the redshift estimates rz. 
The new method slightly improves the distance estimate in comparison with the 10-th 
brightest galaxy estimator. While for some of the clusters we get good number counts 
fitting as well as a 'correct' distance for l' = 0.1, we find a trend in other clusters for lower 
prediction of number counts at the bright-end compared with what is observed. H we 
increase l' we get a better fit but (in some cases) a wrong distance. It is difficult to find 
a 'universal' behaviour of all clusters. A possible explanation is that some of the bright 
galaxies do not fit the 'universal' luminosity function, either because there are large 
cD galaxies or because there are line-of-sight overlaps (galaxy-galaxy or galaxy-star). 
Clearly, a better classification of the APM bright galaxies is required. 

5. An Alternative Approach 

As an alternative to the KS-Poisson test for finding Cairn we are currently developing 
a new procedure, the 'classic' MaxEnt (Gull &. Skilling 1988, in this volume). The idea 



352 

...... 

.!:;.N 
C 

.. 
I I, 
I I:" , 
I I: , 
I t I 
I l' 
I :~' 
I • 
I : 

I f 

O. LARA VET AL 

VIRGO 

°O~--~~~~SO====~~--'~OO~------~1~50~------~200 
r (Mpc/h) 

Figure Ib . The radial density profile towards Virgo as deduced by our MaxEnt algorithm. The dotted, ""lid 
and dashed lines correspond to significance level of 0.1, 0.5 and 0.7, respectively. The horizontal dashed line 
at n = 0.015 (Mpc/h)-3 is the initial model. Note that there is a great excess of galaxies in this direction. 

here is to fix the Lagrange-multiplier a, which measures the weight of the entropy 5 
relative to the log-likelihood function -L. It turns out from Bayesian arguments that 
the value of a can be fixed by the relation 

-2aS(ii,m)=E~, 
j j+a 

(5.1) 

where ii is the 'best' image and m is the initial model. The >';'s are the eigenvalues 
of a matrix which involves VV'L and the image n. Since >'j > a represents a 'good' 
observation, Lj >.:~a ~ N good , the number of 'good' observations. Therefore, the 'best' 
Lagrange multiplier is & ~ -Ngood/(2S). In principle the right-hand-side of eq. (5.1) can 
be calculated explicitly, but as a simple estimate we guess Ngood • This is possible for 
our case because a Singular Value Decomposition of the PSF matrix shows that the 
eigenvalues are uniformly spaced in the logarithm, hence for a wide range of problems 
we expect Ngood ~ 4. 

The likelihood in this procedure is taken to be 

• (NIo)N. 
exp(-L) ex: I] exp(-NIo) (NIo)! ' (5.2) 

where the Nj; and Nj; are the predicted and measured differential counts, respectively. 
The gradients of L are evaluated and incorporated directly into an a-controlled variant 
of MEMSYS. 



DISTANCES TO CLUSTERS OF GALAXIES USING MAXIMUM ENTROPY 353 

APM clusters 

* 
8 * • 2' 

....... 
u 
Co 

~ 

.. ; 
0 
0 
N 

I 

0 
0 200 400 600 

rz (Mpc/h) 

Figure 2 • Di.tAllces to 14 APM clusters as estimated by our Maxinmm Entropy Method versus redshift 
estimates of con""" (1987). 

In Fig. 3 we show Virgo's profile as deduced by this method (using diameters) for 
Ngood ::::: 4. Note the similarity to the results shown in Fig. lb. If we take Ngood to be a 
factor 2 larger or smaller we are getting profiles which are more 'conservative' or more 
'liberal' respectively. This method is attractive since it involves no free parameters and 
does not depend on the binning of the data. 

6. Discussion 

We have presented a new non-parametric method of estimating radial density pro­
files from magnitude/diameter limited catalogues. Currently our method is useful for 
identifying peaks along the line of sight. It is important to know more about the errors 
in the estimation of the number counts, particularly at the bright-end. Another impor­
tant issue is the universality of the luminosity function. Even if the data were free of 
noise, a variation in the luminosity function from cluster to cluster would be expected. 

Simple modifications to our procedure are possible, for example, changing the cone's 
radius. Here the trade-off is to keep the high angular resolution provided by the cat­
alogues with the need to have a large number of galaxies in a cone for the statistics. 
Another modification is to split the sample according to morphological types. That 
might give a narrower Point-Spread Function for each morphological type, but would 
decrease the number of galaxies in each cone. 

More fundamental modifications are required on both the statistical and astronom­
ical aspects of the problem. On the statistical side, we intend to use the formalism 
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which fixes the Lagrange-multiplier Q. On the astronomical side, it is important to find 
a better distance indicator. Furthermore, even the most accurate distance indicators 
(e.g. Faber-Jackson and Tully-Fisher relations) are in fact distribution functions. The 
MaxEnt Method might be useful in converting these narrow distributions functions into 
an unbiased distance estimators. 

Acknowledgements. We thank M. Colless, G. Efstathiou, N. Kaiser and S. Maddox 
for helpful discussions. 
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ABSTRACT. We discuss the application of maximum entropy techniques to 
chopped astronomical infrared data. The resulting maps are much better than 
those obtained with the only existing published algorithm. Nevertheless, we feel 
that the technique requires further improvement before it can yield all the infor­
mation inherent in such data. In the course of our investigation of the method, an 
interesting limit of the maximum entropy solution was discovered. This enables a 
solution of the maximum entropy equations for a large class of problems. The re­
sulting solution illustrates the freezing of degrees of freedom discussed elsewhere in 
these proceedings. Finally, we discuss an apparently attractive method for assessing 
the errors on a reconstruction, and why we feel that such a formalism is incomplete. 

1. Introduction 
If one observes the northern winter night sky in the region where the equatorial plane 
meets the galactic plane one is looking at the Serpens-Ophuchius giant molecular 
cloud. In this region, there is evidence for extensive dust and gas, Herbig Haro 
emission line objects, bipolar molecular outflows, and heavily reddened embedded 
sources. All of these phenomena are frequently associated with recent or ongoing 
star formation. One particular region of the cloud that shows evidence for extended 
optical emission was mapped in the near infrared by Churchwell and Koornneef[l]. 
They identified a large number of embedded point sources, many of which are not 
evident on deep CCD frames at visible wavelengths. Greater optical depth through 
the cloud implies a source is less visible at shorter wavelengths- it is reddened. The 
least reddened source IRS3 is apparently nearest to the surface of the cloud. It seems 

Based on data obtained at the European Southern Observatory. 
2 Affiliated with the Astrophysics Division, Space Science Department of the Euro­

pean Space Agency 
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to be associated with the extended optical emission that originally drew attention 
to the region and appears to be the center of a bipolar molecular outflow. The 
working hypothesis is therefore that this source represents a star near the surface of 
the cloud in the process of formation. 

We decided to obtain much more detailed infrared- maps of IRS 3 in order to 
understand the near infrared morphology and photometric properties of the source 
and its environs. We describe here some of the techniques that we used to reduce 
the maps, and discuss the problems that we encountered. 

A second point of this contribution is to describe an interesting limit of the 
maximum entropy equations in which the solution reduces to a linear problem. 
This illustrates many of the new properties of the full solution discussed at this 
workshop, and gives a concrete example of how the tradeoff between prior and pos­
terior knowledge is made. Finally we make some comments concerning the possible 
estimation of the errors associated with a reconstruction. 

2. Summary of Astronomical Data 
A fundamental problem in making infrared photometric measurements in astronomy 
is the presence of a large background, from the sky and telescope. The classical 
technique for overcoming this is to rapidly move the field of view of the telescope 
between the object of interest and a nearby reference point on the sky. This can 
be done for example by wobbling the telescope secondary mirror through a suitable 
'chopping distance.' A phase sensitive amplifier then gives the flux difference and 
effectively removes the background. This works well for point objects but fails for 
extended sources, because nearby points with no intrinsic flux are then not available. 

The solution generally adopted is to map a region in a rectangular grid, and 
thus obtain a map of differences. A point source would appear first as a positive 
contribution, when it appears in the positive beam or position of the secondary 
mirror. Then as the telescope is moved, it will appear in the negative beam. The 
effect is that when the system is suitably set up and calibrated, the point spread 
function (PSF) consists of a positive lobe separated by the chopping distance from a 
symmetrical equal negative lobe. Such a PSF convolved with a uniform background 
produces zero in the observed data. Hence, the method is insensitive to the back­
ground present. This fact is one of the crucial properties of such data, and can be 
thought of as a generic property of data with a zero volume point spread function. 

In Figure 1 is a montage of our near infrared maps of the source, together with 
part of a red CCD image obtained at the Palomar 200 inch telescope by Bel Camp­
bell. It can be seen that point sources such as number 9 contribute approximately 
equal positive and negative lobes. The bright, complex and extended structure 
around source 3 is our main interest. 

In Figure 2 is the K band scan line through the center of source 3. Each point 
has an associated error bar which was obtained experimentally by repeating the 
measurement several times. The small estimated systematic errors are added to 
such error bars in quadrature to produce an overall error estimate for each data 
point. It can be easily seen that the data has large dynamic range, and that the 
errors are largest when the data or particularly its slope is large. 
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Figure 1. The top panel shows a Gunn z CCD image due to Bel Campbell. The scale is 
2 arcseconds per pixel. The three remaining panels show our 3.6m ESO /InSB 
observations in their original (chopped) form. The lowest contours are at 3, 2 
and 0.8% of the peak signal for J, Hand K, respectively. 
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Figure 2. The data for the scan line through the center of the K band map. 

The only published method [2] for reducing the data does not work very well 
because noise tends to propagate across the image. The details of the extended 
emission from source 3 are lost in noise that propagates from the bright peak. We 
were therefore attracted to try the maximum entropy approach because it should 
tend to damp such oscillations, and will automatically ensure that the derived fluxes 
are positive. 

3. Limit of Maximum Entropy Solution for Undetermined Background 
We write the log likelihood as proportional to 

O· O· 
W = - 2:-J log -1. + AX2 

. s s 
J 

1 

Where, OJ are the unknown fluxes at pixel j, and j labels the two dimensional 
coordin~te suitably. S is the sum of the OJ and X2 is the sum of the normalised 
residuals squared. Maximizing this function with respect to the OJ gives the formal 
solution 

2 
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We attempted to solve the above equation iteratively, by starting with a flat image, 
inserting in the right hand side to get a new estimate and iterating. The variable A 
was gradually increased at the same time to implement the constraint that X2 tend 
to its expectation value, N the number of data points. This development follows 
that of Gull and Daniell [3]. Unfortunately, in this case, the iteration does not 
converge. The iterations exhibit oscillatory divergences, and the total flux becomes 
large. The oscillations can be largely controlled by averaging successive iterates 
before repeating the iteration. The variable 8, the total flux is not constrained 
by the data, and tends to larger and larger values in order to make the relative 
fluctuations about a flat image as small as possible. Given a set of OJ, that imply 
a certain X2, the image OJ + C for any positive constant C has higher entropy, and 
because the PSF has zero volume, the same X2. 

Faced with this situation, in which a solution to the maximum entropy prob­
lem does not formally exist, we can take two possible approaches. The first is to 
constrain the total flux to some particular fixed value, perhaps based on some prior 
information. The second is to investigate the limit of the solution as 8 becomes 
large, and ask what the fluctuations about the mean value tend to. The second 
approach is equivalent to the first if in that case, the constraint imposes a large 
total flux relative to the size of the fluctuations in the solution. This might well 
be the case for thermal infrared maps for example, where the sky background can 
swamp the source fluctuations. 

In the reconstruction of radio maps by maximum entropy methods, the back­
ground is also undetermined, and frequently it is made as small as can be reasonably 
imposed. This arbitrary choice leads to good reconstructions, but seems to have lit­
tle theoretical basis. Similarly, we have found that arbitrarily imposing a small 
background leads to better results, but we have no justification for this, and indeed 
our prior information will frequently be that the background is large. 

Therefore, we initially investigated the solutions that are obtained if the back­
ground is large, or the total flux is unconstrained but only the fluctuations are solved 
for. In this case, we can put 0i = 81M + hi, and expand the above expression for 
hi < < 81M, where M is the number of points in the image to be determined. The 
lowest order terms cancel, and the result is 

3 

where the arbitrary constant>. has been replaced by M>.ls2 and P·k is the contri­
bution of image point Ok to data point Ij which has variance aj. this equation is 
linear unlike the maximum entropy expression from which it is derived. It does give 
the solution essentially exactly of a well posed maximum entropy problem, and as 
such provides an interesting and solvable model for the general case. The equation 
illustrates the bias inherent in maximum entropy solutions. In this case, the solution 
is proportional to the normalised residuals convolved with the PSF. 
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As an aside, Equation 3 gives a Weiner filter solution in the particular case of a 
position independent point spread function, and data with additive white noise. In 
that case, the convolutions turn into products in Fourier space, and the solution is 

4 

In the above it is clear that when P( w) > > ~2 /). the Fourier inverse is obtained, 
but noise amplification is avoided for small P by the modification to the Fourier 
inverse given in the square brackets. 

Returning to the general case, we can write Equation 3 in the form 

~=-).(M-B.) , 5 

where PikPjk Ik 
4'=L-2- Bj=L,Pjk 

J k uk k Tk 
6 

A is a positive definite real symmetric matrix, with at least one zero eigenvalue. 
Expanding everything in terms of the complete orthonormal basis set xO:, we get 
bi = Lo: bo:xf and so on, and the formal solution is given by 

bO: = ). BO:. 
1 + ).).0: 

By substituting this solution in the expression for X2, one can show that 

2 '" B~ [ 1 ] 
X = ~ ).0" (1 + ).).0:)2 • 

7 

8 

The term in the square brackets is zero if ). < < 1/).0: and is one if the converse 
holds. Thus when ). is chosen, X2 receives contributions from important degrees 
of freedom. Gull and Siblisi in these proceedings have shown separately that a 
posterior canonical choice for ). exists, and that it measures the effective number 
of degrees of freedom in the data. This example illustrates the close relationship 
between the choice of lambda and the effective number of degrees of freedom, but 
leaves the choice of that number open. 

This formal solution also illustrates why convergence difficulties can be encoun­
tered with the iterative solution. When ).).0: is less than unity, the iteration con­
verges. When). is increased in order to decrease X2, the coefficients of the eigen­
vectors that violate this condition oscillate divergently about the correct solution. 
Averaging the successive iterates, and starting with a good initial solution reduces 
but does not entirely solve the problem. 

4. Results and discussion 
The convergence difficulties mentioned above are of a numerical nature, and do not 
reflect on the existence or uniqueness of the solution once found. Indeed, for values 
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of X2 = 3N, we were able to iteratively solve the equations by a combination of the 
methods described above. 

Unfortunately, the resulting maps are not good representations of the expected 
reality, although many correct features are present. The essential problem is that 
because the reconstructed image is superimposed on a very high background, the 
positivity constraint is not affecting the results. The solutions exhibit oscillations 
that propagate across the image with only gradually decreasing amplitude away 
from the bright sources. 

We have made considerable progress in solving this problem by arbitrarily con­
straining the total flux to a small value to force positivity, replacing the point spread 
function with a narrower pair of positive and negative lobes to reduce the ringing 
caused by superresolution, by using Skilling's MEM software to improve conver­
gence and by changing the prior or default image to reflect our preference for iso­
lated sources on a more uniform background. For the last modification, the method 
adopted was to use a Clean algorithm followed by Gaussian blurring to produce a 
default map. Unfortunately, this of course means that many arbitrary steps and 
choices are made on the way to constructing the default map. The stopping point 
of the Clean algorithm, blur diameter, background, and PSF width are all free pa­
rameters. Further, the method chosen to construct the default is itself arbitrary. 
For example the results of a MEM reconstruction could be used instead of Clean, 
or the blurring applied could be position or flux dependent. 

The result is that very reasonable maps have been constructed. We have been 
able to unambiguously determine that IRS3 is extended in the near infrared, and 
to identify some faint point sources in the data that Churchwell and Koornneef 
did not find. However, it is clear that a tradeoff is possible for example between 
assigned flux in a central point like source for IRS3, and the flux from its environs, 
for example by choosing different default images. We can proceed no further until 
a quantitative measure of the inherent errors is available. 

In maximum likelihood estimation, one can estimate the covariance of the esti­
mated parameters from the inverse of the matrix of second derivatives of the likeli­
hood function. Roughly speaking, the width of the likelihood function defines the 
possible range for the parameters. Elsewhere in these proceedings, Skilling proposes 
to use this approach to estimate the errors in an image reconstruction. We are 
concerned that this approach will tend to underestimate the errors, because it does 
not take into account the uncertainty in the prior information used. This informa­
tion has been variously described as the measure on the parameter space, and as 
the default image. Different choices of priors can lead to markedly different results, 
even if the uncertainty in the reconstruction for a given prior is small. To take an 
extreme example, if the prior happens to provide an acceptable fit to the data, the 
resulting reconstruction will be equal to the prior. The uncertainty estimate would 
be essentially zero, and yet any prior consistent with the data could have been cho­
sen. When we get into the business of improving the map by changing the prior, we 
are getting dangerously close to this limit. 

No multicolour calibrated near infrared maps of regions such as IRS 3 existed 
at the time of our measurements. Since then the use of staring infrared arrays has 
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become more widespread, and such maps have been produced. However, the staring 
arrays presently do not operate effectively in the thermal infrared, particularly in 
the atmospheric windows at 10 and 20 microns. Chopping and synchronised readout 
will be an essential technique to overcome this limitation. Further, the techniques 
described here will be useful in order to produce photometrically accurate maps 
with arrays even in the near infrared, in cases where the source contrast against the 
background is low. 
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ABSTRACT. There has been much interest recently in the use of neural networks to solve 
complicated information processing problems such as those which arise in signal and image 
processing. In this paper we review Markov random field (MRF) neural network techniques for 
representing joint probability density functions (PDF). The "Boltzmann machine" serves as the 
paradigm, and we present a generalised version of its learning algorithm. We also present a 
technique for designing MRF potentials with low information redundancy for modelling image 
texture. To improve further the computational efficiency of such neural networks we introduce a 
novel method of cluster decomposing a PDF by using topographic mappings. The outcome of this 
programme is a means of designing sampling functions for extracting information from datasets 
(typically images). 

1. Introduction 

The image processing community has shown much interest in the use of Markov 
random field models to describe probability density functions for use in Bayesian 
image reconstruction schemes [Geman and Geman 1984, Geman and Graftigne 
1987]. If we denote the field state as x and the PDF over states as P{x) then an 
MRF is defined by a consistent set of conditional PDFs (called characteristics) 
amongst the components of x. It follows from the Hammersley-Clifford theorem 
that corresponding to each consistently defined MRF there is an equivalent Gibbs 
distribution [Besag 1974, Kindermann and Snell 1980, Preston 1974], so P{x) may 
be written as 

P(x) = ~exp[ -k.s(x)] (1) 

where s(x) is a vector potential, k is a vector of coefficients, and Z is a partition 
function. We use an unconventional symbol s to denote the potential because it is in 
fact a set of sampling functions of x. Equation (1) defines a P(x) from which 
samples x may be drawn by using a Monte Carlo scheme such as the Metropolis 
algorithm [Metropolis et ai, 1953] or some variant thereof. 

P(x) is, of course, the maximum entropy PDF (with a uniform prior) which is 
consistent with the set of constraints <s(x»=so' where < .. > denotes an average 
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over x [Jaynes 1957, 1968, 1982]. Note that P(x) has the form given in equation (1) 
if, and only if, the functional derivative 8H/8P(x) lies in the function subspace 
spanned by the vector of functional derivatives 8<s(x»/8P(x), where H denotes 
the entropy ofP(x). 

The purpose of this paper is to extend the above MRF scheme by introducing a 
greater degree of adaptability into the model. Thus in section 2.1 we shall explain 
how the Boltzmann machine neural network (and its generalisations) can be used 
to learn MRF models adaptively, and in section 2.2 we shall explain how 
economical MRF models of image texture can be constructed. In section 3.1 we 
shall introduce a novel form of multilayer neural network which allows maximum 
entropy reconstructions of the input PDF to be constructed with minimal 
computational effort, and in section 3.2 we shall explain how topographic mappings 
can be used to implement the layer to layer transformations in such a network. 

2. G-maximisation models 

Equation (1) is inflexible because sex) must be selected by hand: there is no 
means of deriving sex) adaptively from a training set of samples x following some 
observed PDF P o(x) (:;t:P(x) in general). In order to acquire sex) adaptively we need 
a measure of the similarity of the (true) observed PDF Po (x) and the (maximum 
entropy) hypothesised PDF P(x) defined in equation (1). Define the relative 
entropy G 

G == -Jdx P o(x) 10g[ P o(x) ] 
P(x) 

(2) 

Assuming base 2 logarithms, 2DG is the probability that the hypothesised P(x) will 
generate high probability n-sample sequences of states x which belong to the high 
probability set generated by the true P o (x) , where n is asympotically large. Note 
that G<O, with G=O iff P(x}=P o(x). We shall deal with two types of adaptation in 
sections 2.1 and 2.2. 

2.1. THE BOLTZMANN MACHINE 

For a flXed set of potentials sex) we may optimise k by G-maximisation using 

oG Jdx P o(x) oP(x) (() ( ( ) 
ok j = P(x) okj = Sl x P(x) - Sj x P o(x) (3) 

oG/okj=O when the constraints <s(x}>=so are satisfied, so hill-climbing G in 
k-space yields the required maximum entropy PDF estimate. The first term in 
equation (3) is estimated from Monte Carlo samples ofP(x} defined in equation (1), 
whereas the second term is estimated from the training set which implicitly defines 
Po(x). 

We may construct a version of equation (3) in which sex) itself is effectively 
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learnt at the same time as the coefficient vector k. Thus we introduce hidden 
variables h by augmenting s(x) to become s(x,h). Denoting the associated Gibbs 
distribution as P(x,h) leads to 

P(x) = ~IdhexP[k.s(x,h)) (4) 

where Z is now the partition function over all states (x,h). Derming G as in equation 
(1) then leads to 

(5) 

The first term in equation (5) is estimated by using a Monte Carlo procedure, 
whereas the second term is a hybrid which uses the training set to provide samples 
from P o(x) and a Monte Carlo procedure (with x held constant) to provide samples 
from P{hlx). The advantage of introducing the hidden variables h is that a 
complicated P(x) can be generated by using simple s(x,h) because the effect ofh-h 
and h-x interactions "dresses" the bare x-x interactions. This amounts to 
learning s(x) adaptively by adjusting the strengths of the interactions with and 
amongst the hidden variables. 

The so-called Boltzmann machine [Ackley et aI, 1985] is a simple form of hidden 
variable model which uses binary variables x and h and quadratic interactions 
s(x,h) together with G-maximisation. More general hidden variable models have 
been discussed elsewhere [Luttrell, 1985; Sejnowski, 1986]. Whilst the Boltzmann 
machine is very flexible in its ability to adapt to the statistical properties of P o (x) , 
it is computationally very inefficient due to the extensive Monte Carlo simulations 
which are required. 

2.2. DESIGNING POTENTIALS 

There is another G-maximisation approach to learning s(x) for which the 
constraints are not on <s(x» but on the whole PDF Po(s) ofs(x). In general Po(s) 
is given by 

(6) 

where the Dirac delta function constrains the x integral as required. If 
the x dependence of the observed P o(x) can be expressed entirely in terms of s(x) , 
then s(x) is a sufficient set of statistics [DeGroot, 1970; Luttrell, 1987a]. The 
maximum entropy reconstruction (with a uniform prior) will then be P o (x) if the 
entire PDF Po(s) is used as a constraint. On the other hand, when s(x) is not a 
sufficient set of statistics, the maximum entropy method will, as usual, give the 
least committal reconstruction P(x) of Po (x) which is consistent with Po(s) 
[Luttrell, 1988a] 
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p(x) = Po(S(X)) 

Z(S(X)) 
Z(S)== Jdx 8(s-s(x)) 

S.P.LUTIRELL 

(7) 

Z(S) is proportional to the number of states x which map to s: it plays the role of a 
normalisation factor (it is not a partition function). With this interpretation the 
expression for P(x) in equation (7) is intuitively obvious. 

Using the definition of G in equation (2), substituting in P(x) from equation (7), 
and using the dermition ofpo(s) in equation (6) yields 

G = Go + JdS Po( S ) IOg[ Po( s) ] 
Z(s) 

(8) 

where Go is a constant. In order to optimise G we envisage two distinct types of 
change to s(x): a dimensionality preserving perturbation s(x) ... s(x)+d(x), and a 
dimensionality increasing change s(x) ... (s(x),t(x)). We shall now present the results 
for these two cases. 

For perturbations of the form s(x)--s(x)+d(x) we require the functional 
derivative 8G/8s(x) which, in turn, requires the results 

8Z(s) 
- = -V.8(s-s(x)) 
8s(x) 

(9) 

where V. is the derivative operator wrt s: these results permit functional 
differentiation to be replaced by ordinary differentiation. After some manipulation 
we then obtain the functional derivative in the form [Luttrell, 1988a] 

8(G) = [Po(x)-P(X)]V.IOg[ po(s)] 
8s x Z(s) s=s(x) 

which yields a change AG1 in G given by 

where 

AG1 = EJds dt [Po(s,t)-p(s,t)] t.V.IOg[ Po(s) ] 
Z(s) 

Po(s,t) == Jdx po(x) 8(s-s(x)) 8(t-t(x)) 

(10) 

(11) 
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p(s,t) == fax p(x) 8(s-s(x)) 8(t-t(x)) (12) 

Alternatively, for changes of the form s(x) .... (s(x) ,t(x)) we obtain a change AG2 in 
G given by [Luttrell, 1988aj 

AG2 = J ds dt Po( s,t) 10g[ Po( s,t) ] 
p(s,t) 

(13) 

Both AGI and AG2 depend on a comparison of Po(s,t) and p(s,t). Any differences 
between Po(s,t) and p(s,t) are caused by the presence of structure in P o(x) which is 
not measured by s(x) alone. 

We have used the techniques outlined in this subsection to design MRF coherent 
image texture models [Luttrell, 1987b,c,dj, where we assumed that Po(x) describes 
spatially stationary statistics (ie P o(Lx)=P o (x) where L is any image translation 
operator). It then suffices to consider only s(x) for which s(Lx)=s(x), which severely 
restricts the set of feasible s(x). The approach which we have presented in this 
subsection does not involve any hidden variables, so it has difficulty dealing with 
subtle properties of P o (x) which are better described by introducing "spectator 
variables". However it does successfully model short range textural properties. 

3. Cluster decomposition model 

We now propose a novel scheme for representing PDFs which completely 
eliminates the need for Monte Carlo simulations, whilst retaining the flexibility of 
the adaptive approach. This improvement is obtained at the cost of imposing an 
artificial hierarchical structure on the PDF reconstruction. 

3.1. MULTILAYER NEURAL NETWORK 

For simplicity consider the following situation 

(14) 

Now suppose that the estimated values of P o(xI), P o (x2) and Po(SI,S2) are used as 
constraints on a maximum entropy reconstruction P(x) of Po(x) (with a uniform 
prior). After some algebra which is similar to that which led to equation (7) we 
obtain 

(15) 

This expression has a natural interpretation. If Xl and X2 are independent random 
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variables then so also are Sl and S2' yielding Po(Sl,S2)=PO(Sl)Po(s2), hence 
P(x)=P 0(x1)P 0(x2), as expected. On the other hand, if Xl and x2 are mutually 
dependent then there is an additional correction term. 

This approach to estimating P o (x) is usually simpler than specifying P o(x) 
directly when dim(sl)<dim(x1) and dim(s2)<dim(x2)' This is because the cost of 
exhaustively specifying a PDF increases exponentially with the dimensionality of 
its underlying space, so specifying three low dimensional PDFs P 0(x1), P o(~) and 
Po(St,S2) is usually cheaper than specifying one high dimensional PDF P o(x). 

The above decomposition of P o(x) immediately generalises to 

(16) 
n 

IT Po(Sj(Xj)) 
i=1 

where x=(x1,x2, ... ,xn), S=(sl,s2"",sn), Sj =Sj (xd and dim(sj)<dim(xd for i=I,2, ... ,n. 
Now suppose that dim(xJ and dim(sJ are small enough that Po(xj) and Po(Sj) are 
easy to estimate (i=I,2, ... ,n), then it remains to estimate Po(sl,S2"",Sn)' The 
original problem of estimating P o (x) has been replaced by an analogous (but 
simpler) problem of estimating Po(s) where dim(s) <dim(x). The maximum entropy 
procedure may be iterated to yield an estimate of Po(s) itself, and so on until the 
dimensionalities encountered are low enough for a direct estimation of the 
remaining PDFs to be made. This produces a hierarchical cluster decomposition of 
the original X because the layers of sampling functions form a tree-structure. This 
is a type of multilayer neural network. 

3.2. TOPOGRAPHIC SAMPLING FUNCTIONS 

The main problem with this type of cluster decomposition is the selection of 
sampling functions. The Sj (Xi) must not only be good sampling functions insofar as 
the statistical properties of X are concerned, but also the Si (Xi) must stand as 
reduced dimension representations of the Xi themselves so that sampling process 
can be iterated. 

A novel means of deriving a reduced dimension representation s(x) of an input X 
is to use topographic sampling functions [Kohonen, 1984]. Define a vector 
quantisation s(x) ofx thus 

So minimises 1 x-x( S ) 12 wrt S (17) 

where x(s) is a code book of quantisation vectors parameterised by s. An update 
scheme which improves x(s) in response to samples X drawn from P o (x) is 

x(S) ~ x(s) + E(lS-S(X) /) [x-x(s)] (18) 
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where e(r) is a non-negative monotonically decreasing function of r. The update 
function e(r) must have a finite width (in r) to ensure that x(s) is a continuous 
function of s. The converse (s(x) a continuous function of x) is usually not possible 
when dim(s)<dim(x). Physically x(s) can be thought of as a dim(s) dimensional 
manifold embedded in dim(x) dimensions. Equation (18) describes the dynamical 
behaviour of this manifold in response to being "pulled" by x: the response of the 
manifold is rather like that of a stiff sheet. A particularly desirable property of this 
learning algorithm is that Po(s) tends to become constant, thus maximising the 
output entropy. Furthermore, the algorithm can be shown to minimise 
<log(V(x))> where V(x) is the error volume associated with the reconstruction ofx 
from s using x(s) [Luttrell, 1988b]. It is these properties of the learning algorithm 
which lead to s(x) being called a topographic sampling function. 

A hierarchy of topographic sampling functions can be derived by extending this 
optimisation scheme. This produces a cluster decomposed representation P(x) of 
Po(x) as explained after equation (16). Furthermore, various improvements can 
also be introduced which enormously speed up the convergence of the update 
scheme as originally proposed [Luttrell, 1988c]. 

4. Conclusions 

There is a pressing need for representations of PDFs in situations where direct 
physical insight fails to provide a complete model. We have discussed two 
alternative techniques: MRFs and cluster decomposition. The MRF technique 
potentially can represent a PDF very accurately by using a sufficiently complicated 
set of potentials and/or hidden variables, but the computational cost of Monte 
Carlo simulation of MRFs can be unacceptable. The cluster decomposition 
technique imposes an artificial hierarchical structure on the PDF which can lead to 
inaccuracies in representation, but it involves no Monte Carlo simulations. For real 
time applications we recommend the use of cluster decomposition. 
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ABSTRACT. Multiply connected analogue electronic circuits r neural' nets) are 
characterised by having a large number of simple processing nodes such as threshold or 
summing devices which are connected to many other nodes through weighted 
interconnects. Under certain conditions the transient and equilibrium behaviour of these 
nets can be described in terms of a stability or Lyapunov function which is minimised at 
the equilibrium conditions of the net. This paper describes a circuit which is capable of 
solving ill-posed problems through use of an infonnational entropy regulariser which is 
incorporated into the stability function of the net. A circuit has been constructed which 
provides maximum entropy solutions to the loaded dice problem. The perfonnance in 
tenns of accuracy and speed of such circuits is discussed. 

1. Introduction 

1.1 'NEURAL' NETS. 

The concept of an electronic 'neural' net is based on some gready simplified 
ideas of the processing architecture of neurobiological systems. Essentially a large 
number of simple processing nodes are connected to a large number of other nodes. The 
processing capability of such nets is detennined by such factors as the specific 
architecture, node characteristics, interconnect values etc .. Impressive demonstrations of 
the power of these nets in areas such as associative memories, artificial vision systems, 
pattern classifiers, combinatorial optimisation etc. abound in the literature [1]. 

The work of U. Hopfield and D.W. Tank [2-4] first demonstrated that one could 
build actual electronic circuits of this type which exhibited substantial computational 
power. These circuits are characterised by one layer of nodes which have interconnects 
from outputs to inputs. This is in contrast to the multi-layered or perceptron like 
architectures where the outputs of one layer are connected to the inputs of the next 
layer, an example of which is given in reference [5]. 

Under certain conditions, the behaviour of a single layer, fully interconnected net 
can be described in tenns of a stability or Lyapunov function [4,6]. This allows a net to 
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be designed to minimise a specific cost function which then detennines the equilibrium 
state of the net. 

1.2 MAXIMUM ENTROPY ALGORI1HM 

In tenns of a deconvolution problem (assumed to be ill-posed), the algorithm [7] 
detennines a solution by minimising a cost function E of the fonn: 

E = IO*T - I I 2 - pS. 

T is the known convolution function, I the observed (noisy) convolved image of an 
unknown object 0 assumed to be describable by a positive additive distribution (PAD), 
p is a constant and S is the infonnational entropy of O. The fIrst term in the expression 
for E can be considered as a measure of the amount which the solution 0 violates the 
constraints defIned by I. In cases where I is contaminated by noise which can be 
considered gaussian and stationary, this tenn is proportional to the log of the likelihood 
of O. For S, we have used a fonn of cross entropy due to J. Skilling [8] which in 
discrete notation is given by: 

S = l:0 - l:M - l:0 log (0 1M ) 
,i ,i ,i i i 
1. 1. 1. 

where the PAD, M, can be considered as a prior estimate of O. Note as l:M, is constant it 
can be ignored in minimising E. 1 

The algorithm is based on a gradient search so it is desired that: 

.d.Q, ex -U, = - 2l:T,,(l:T ,0 - I,) - Plog(O./M,) (1) de 80 j 1) k k) k) 1 1 

i 

In section 2, the implementation in a multiply connected circuit of this algorithm 
is described. In section 3, a circuit constructed to provide the maximum entropy solution 
to the <loaded dice' problem [9] is presented and its accuracy and transient behaviour 
described. Section 5 contains a discussion of the net's properties and a summary. 

3. Net Formalism 

The fIrst bracketed tenn on the right hand side of equation (1) can be achieved by 
summing currents at the inputs of Nc (number of pixels in the image data I) virtual earth 
amplifIers. For example, node j (=1 to Nc) will have the voltages 0 connected to its 
input through conductances defIned by the matrix T and an external current input equal 
to -I j' The output voltage fj of this node is a voltage proportional to the net current at its 

input. These are referred to as the constraint nodes as each I, can be considered a 
constraint which the outputs of the signal nodes must meet. ) 

The outputs of the constraint nodes are inverted and fed into the inputs of Ns 
signal nodes through conductances again defIned by the matrix T to provide a net 
current input corresponding to the frrst tenn on the right hand side of equation (1). The 
factor of 2 can be considered as part of the constant p. The time differential is achieved 
by shunting the input with a capacitor C. The second tenn on the right of (1) is applied 
as an external current input of -plog(1/MJ and by a resistor to make the total resistance 

1 
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shunting the input of each signal node lIfl. If the voltage at the input to signal node i 
(both i and k are taken to be indexed from 1 to N s) is represented by u., the current 
through the capacitor C can be written as: 1 

- r.T .. f. - fllog(1/M.) - flu. 
j 1J J 1 1 

Now if 
u = g-l(Oi) = log(Oi)' 

i.e. the input-output characteristic, g, of the signal nodes is made exponential, the 
current through the capacitor will be of the form a Eta 0 .. However du ./dt can be 
written: 1 1 

illl. = 1. .d.Q. (2) 

de ° de i 
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As 0 is a PAD which is, of course, ensured by the exponential signal nodes, the circuit 
will make a gradient search for O. The circuit then has the form shown schematically in 
figure 1, where two signal and two constraint nodes are shown. 

E can be shown to be the Lyapunov function of the circuit by summing the 
integral of the current with respect to the voltage over each capacitor in the circuit with 
the interconnects and node characteristics described above [6]. By way of confirmation, 
it can be demonstrated that E will decrease monotonically with time from equation (2), 
Le. 

~ = QE. dO = - r. 1. .d.Q. .d.Q. 
dt a 0 dt i ° de de 

i 

which is clearly ::;0 for all t as O. is >0 for all L 
1 

-f -f 1 2 

Figure 1. Schematic of the MaxEnt < Neural' net 



374 C. R. K. MARRIAN ET AL. 

4. The Loaded Dice Problem. 

4.1 CIRCUIT DESCRIPTION 

It should be emphasised that this problem was chosen for the purpose of a 
demonstration as it has a well accepted maximum entropy solution. Thus the performance 
of the net can be compared to a theoretical solution as opposed to simply the results of a 
computer simulation. The application of the algorithm and actual nets to real problems 
such as spectral deconvolution [7] and tactile sensors [6] is described elsewhere. 

The loaded dice problem [9] requires an estimate of the biases on a six sided dice 
given only information on the average throw. The net will therefore have six signal nodes 
(i.e. Ns=6) with outputs corresponding to the biases of each face and two constraint 
nodes (Nc=2) corresponding to normalisation and the observed average T. Thus the 
outputs from the two constraint nodes can be written: 

/1 = Kl CEO, - 1) and /2 = K2 (rO,i - T) 
• 1 • 1 
l l 

Le. 11 = 1 and 12 =T • K 1 and K 2 are the gains of the two constraint nodes. Thus the 
interconnects T are given by: 

T = 1 and 
i1 

T 
i2 

i 

The steady state output of the net is given by: 

-/1 -f2i o = M e 
i i 

where M, is the prior which was set to 1/6. Note that this is similar in form to the 
maximuril. entropy solution which can be written as: 

o = liz e-:U 
i 

(3 ) 

where Z is the partition function and). the Lagrange multiplier. Thus the Lagrange 
multiplier will be simply the voltage at the output of the second constraint node! 

The exact maximum entropy solution will, however, only be attained in the limit of 
infmite gains on the constraint nodes. For finite gains the accuracy can be written from 
equations (3) in terms of the closeness to normalisation and the observed average throw. 
For the case where T =4.5, the requirement of 0.1 % accuracy implies that Kl '" 1300 and 
K2",,370. In practice these are close to the maximum gains realisable with standard 
operational amplifiers. 

A circuit was constructed with the parameters defined above. The signal nodes used 
two op-amps and a diode to provide the exponential characteristic. Each constraint node 
consisted of three op-amps to provide high gain. The interconnects were 1 % resistors 
selected to be within 0.1 % of their nominal values. The size of the capacitors was chosen 
to prevent oscillations in the circuit caused by phase shifts introduced by the constraint 
nodes. As a result of the high gains, a rather high value for C (3 tlF) was required. 

4.2 STEADY STATE AND TRANSIENT MEASUREMENTS. 

The output voltages measured for various values of the input T to the average throw 
constraint node are compared to the calculated maximum entropy solution in Table I. The 
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case for r =2.5 shows the greatest discrepancies with the exact solution. This is due to the 
op-amps not having an input offset voltage nulling facility. The offsets at the two 
constraint nodes can be compensated for by adjusting their external inputs corresponding 
to normalisation (i.e. 1) and the average throw (r). This results in the reduced errors 
shown for r =4.5 and 3.5, where close to the 0.1 % accuracy is shown. 

TABLE I Steady State Circuit Outputs in volts 

Average r=4.5 r=3.5 r=2.5 
Calc. Meas. Calc. Meas. Calc. Meas. 

Face no offset null 

1 0.054 0.053 0.167 0.168 0.348 0.368 
2 0.079 0.078 0.167 0.167 0.240 0.243 
3 0.114 0.114 0.167 0.168 0.166 0.161 
4 0.166 0.167 0.167 0.166 0.114 0.098 
5 0.240 0.242 0.167 0.166 0.079 0.068 
6 0.348 0.347 0.167 0.166 0.054 0.043 

/1 1. 491 1. 41 0.000 0.00 -1.106 -1. 34 
\=/2 -0.371 -0.35 0.000 0.00 0.371 0.42 

The transient response was monitored by applying a square wave to the average 
constraint node. The transient was limited by the time required to charge the capacitors 
which is determined by their size and the maximum voltage swing of the constraint 
nodes. Settling times of the order of 15 ms were observed. Full details will be published 
separately [10]. 

5. Discussion. 

5.1 TRANSIENT TIME 

If it were possible to build perfect op-amps (i.e. with no phase shift) the capacitors 
C could be made arbitrarily small and the transient response of the circuit would be 
correspondingly arbitrarily fast. The loaded dice problem has two constraints which are 
• hard' , i.e. they must be satisfied exactly. As a result, high gains in the constraint 
nodes are required and large capacitors are necessary for stability. In the case of the 
deconvolution of noisy data, for example, the constraints (the data in the observed 
image) are • soft' , i.e. it is not required for them all to be satisfied exactly. This is 
reflected in lower constraint node gains which reduce the phase shift problem. 
Consequently, smaller capacitors can be used and transient times are decreased. A 
circuit built to deconvolve the stress-strain kernel of a tactile sensor [6] has shown 
transient times of 20 J,ls. 

5.2 UNIQUENESS OF SOLUTION 

One can show that there exists a one parameter family of solutions for the 
equilibrium equations of the net. The solutions are parameterized by the constant 
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determining the weight given to the entropy term in the cost function. Furthermore, the 
cost function is strictly convex in terms of the output from the net O. Thus it is clear that 
the minimum in the cost function will be the global minimum rather than a spurious 
local minimum. So for a given I, T and {J it is guaranteed that the net will settle into the 
same solution irrespective of the initial condition of the net. The problem of undesired 
localized minima is a significant problem with many < neural' net architectures. These 
nets reach a point of equilibrium but there is often no way of determining whether it is 
an undesired spurious minimum. As a result one cannot be certain the solution given by 
the net is that for which one is searching. In addition, there are no restrictions on the 
form of the T matrix as in reference [2], for example. Thus T may be asymmetric, 
non-square and have non-zero diagonals and reflect a measured convolution function 
from, for example, an energy dispersive spectrometer or an imaging system. 

5.3 SUMMARY 

We have described an algorithm based on an ideal multiply connected analogue 
circuit which solves ill-posed problems, such as the deconvolution of noisy data, through 
the use of an informational entropy regulariser. The behaviour of the circuit is 
characterised by a Lyapunov function which allows a specific cost function to be 
minimised. The cost function is a weighted difference between the amount the 
constraints on the solution are broken and the informational entropy of the solution. 

Actual circuits have been built to implement the algorithm using standard 
electronic components. Overall accuracies of 0.1 % and transient times of 20 JJS have 
been demonstrated. We are presently working towards the construction of an integrated 
circuit which will implement this algorithm in a compact form. 
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Abstract. The model selection problem is one of the most basic problems in data 
analysis. Given a data set one can always expand the model almost indefinitely. How 
does one pick a model which explains the data, but does not contain spurious features 
relating to the noise? Here we present the results of a Bayesian model selection 
calculation started in [1 J and then extended in [2], and show that the Bayesian answer 
to this question is essentially a quantitative statement of Occams razor: When two 
models fit the evidence in the data equally well, choose the simpler model. 

Introduction 

When analyzing the results of an experiment it is not always known which model 
function applies. We need a way to choose between several possible models. This 
is easily done using Bayes' theorem. The first step in answering this question is 
to enumerate the possible models. Suppose we have a set S of s possible models 
with model functions {II,"" fa}. We are hardly ever sure that the "true" model 
is actually contained in this set. Indeed, the "set of all possible models" is not only 
infinite, but it is also quite undefined. It is not even clear what one could mean by 
a "true" model. Both questions may take us into an area. more like theology than 
SCIence. 

The only questions we seek to examine are the ones that are answerable because 
they are mathematically well-posed. Such questions are of the form: "Given a spec­
ified set Sa of possible models {Ill"', fa} and looking only within that set, which 
model is most probable in view of all the data and prior information, and how strongly 
is it supported relative to the alternatives in that set?" Bayesian analysis can give a 
definite answer to such a question - see [2], [3], [4]. Here we give the results of the 
calculation done in [2J and present two numerical examples of its use. 

377 

J. Skilling (ed.), Maximum EnJropy and Bayesian Methods. 377-388. 
© 1989 by KIlMer Academic Publishers. 



378 G. L. BRETIHORST 

The Relative Probability of Model Ij 
Given a set S,. of models {It,···, I,.} and looking only within that set, which model 
best accounts for the data? We will take 

m 

f;(t) = E AkHk(t, {w}) (1) 
k=1 

as our model, where Hk are the orthonormal model functions defined in [1]. The 
subscript "j" refers to the j th member of the set S B of models {It,···, Is} with 
the understanding that the amplitudes {A}, the nonlinear {w} parameters, the total 
number of model functions m, the total number of nonlinear parameters r, and the 
model functions Hk(t,{W}) are different for every f;. 

The use of the orthogonal models does not change the generality of the calculation 
because any arbitrary model may be transformed into an orthogonal model. If we 
have a nonorthogonal model 

m 

f;(t) = EBkGk(t,{W}), (2) 
k=1 

where Gk is the model function (for example a sine or Bessel function) and Bk is its 
amplitude, then we may transform this model into an orthogonal model, Eq. (1), as 
follows: compute the interaction matrix 

N 

9kl = E Gk(ti)G1(ti) (3) 
i=1 

and from the kth eigenvalue Ak of the interaction matrix, Eq. (3), and the lth com­
ponent of the kth eigenvector ekl compute the orthogonal model functions Hk given 
by 

1 m 
Hk(t) = . 1\ E ekIGI(t). 

V"k 1=1 

The orthogonal amplitudes Ak may be computed from a linear combination of the 
B1: 

Ak = ,;;:;.'f B1ekl. 
1=1 

From Bayes' theorem we may compute the posterior probability of model Ij: 

P(f;ID,I) = P(f;I;/;;~]f;,I) and P(DII) = t P(f;II)P(DIf;, I). (4) 

We will assume, for now, that the variance of the noise u2 is known and derive 
P(f;lu, D, I)j then at the end of the calculation, if u is not known we will remove it. 
Thus symbolically· the heart of the problem is to compute 

P(Dlu,f;,I) = J d{A}d{w}P({A}, {w}II)P(DI{A}, {w},u,f;,I). (5) 
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When we solved this problem, there were several places where prior information had 
to be incorporated: first, when we assigned a noise prior; second, when we removed 
the amplitudes; third, when we removed the nonlinear {w} parameters; and fourth, 
when we removed the variance of the noise. When we assigned a noise prior we 
assumed the second moment of the noise was given and using maximum entropy 
arrived at a Gaussian prior as the least informative prior probability for the noise 
for a given second moment. The amplitudes are location parameters, and when 
we removed the amplitudes, we used a Gaussian, centered at zero, whose variance 
D2 expressed how strongly we believed the amplitudes to be near zero. From the 
form of the model, we do not know if the nonlinear {w} parameters were location 
parameters or scale parameters. However, when we did this calculation we made a 
local Gaussian approximation to the posterior probability (i.e. we assumed the data 
determine the parameters well and we assumed the data determine the parameters 
much more precisely than the prior information). In this approximation the {w} 
parameters are location parameters; thus we used a Gaussian centered at zero with 
variance "? to represent the prior information about the nonlinear parameters. Last, 
if the three variances 0'2, fJ2, and ,2 were not known, we removed them using a 
normalized Jeffreys prior. The normalization constant for the Jeffreys prior expresses 
the prior information in the form of a permissible range of values for the variances. 
This range of values appears in the problem as a natural logarithm of the upper limit 
divided by the lower limit. We designated this ratio as R" for the variance of the 
noise and similarly for, and D. 

If the three variances are actually known, then the direct probability of the data 
is approximately given by 

P(DI C f J) ~ (2",.C2)-"T exp {_ m~~~w})} "U,O', j, ._ "u 

(6) 

where w2 is the mean-square estimated {w} parameter 

r 

w2 = (l/r) L>~~' 
k=l 

h2 ( {w}) is the mean-square value of the hk functions 
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hk is the projection of the data onto the orthonormal model functions Hk 

N 

hk == Ed(t.)Hk(t., {w}), 
i=1 

{w} is the location of the maximum posterior probability digitized as {Wt,"', wr }, 
and Vk is one of the eigenvalues of the matrix 

m 82h2 I b'k =-
J - 2 8wj8wk {w}' 

If the three variances (72, 62 , and "'{2 are not known, then they may be removed using 
a normalized Jeffreys prior. The global likelihood of the data is then approximately 

P(DIIi,J) ~ ~ [mii2({w})]-T ~ [rW2]-~ v-L .. v;~ 
2lOg{RSJ 2 2lOg"[R:J 2 1 

mtr-N 

X r([N-m-rJ/2) [Nlfi-mii2({w})] 2 

21og(R".) 2 

(7) 

where r(x) is a gamma function of argument x. The three factors involved in nor­
malizing the Jeffreys priors (R"., 14, R6 ) appear in every model; they always cancel 
as long as we are dealing with models having all three types of parameters. However, 
as soon as we try to compare a model involving two types of parameters to a model 
involving three types of parameters (e.g. a regression model to a nonlinear model) 
they no longer cancel: the prior ranges become important. One must think carefully 
about just what prior information one actually has about 0', ",{, and /j and use that 
information to set the prior ranges. 

Example - Multiple Exponential Decays 

Two major problems in NMR are: determining the characteristic decay time of a 
signal (the so-called T2 time), and determining how many resonances (frequencies) 
are in a free induction decay. We will give two examples of the use of Eq. (4), 
one on simulated multiple decaying exponential data, and one on simulated multiple 
nonstationary frequencies. 

The data in T2 experiments are a time series (typically nonuniformly sampled) 
which decays away exponentially. The problem is to determine how many exponen­
tials are in the data, and to estimate the decay rates and their amplitudes. This is 
frequently done in one of two ways: least squares or curve stripping. In least squares, 
the experimenter will fit a model having one, two, three, etc. decaying exponentials 
to his data and then stop the process when (1) the model looks like the data, (2) the 
parameters are not physically meaningful, or (3) the parameters are not statistically 
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significant. In curve stripping, the data are plotted on a semi-logarithmic plot. On 
this plot a single exponential will appear as a straight line. The experimenter looks 
for how many straight lines are necessary to represent the data. The stopping crite­
rion is typically set by the human eye. Neither least squares nor curve stripping has 
any theoretically justifiable stopping criterion; rather, they are intuitive procedures 
that give reasonable results. 

Let us apply the procedures we have developed and see what probability theory 
can do on this problem. We take as our data, Fig. 1 (A), derived from 

d(t;) = IOOe-O.OSt; + 50e-O•02t; + n(O, 1), 

where n(O, 1) is a Gaussian random number with zero mean and standard deviation 
one. In this example we take t; = {O, 0.5,1,·· ·IOO}, N = 201, with signal-to-noise 
ratio of approximately 60 .. We have displayed the data in Fig. 1 (A) and a semi­
logarithmic plot of the data in Fig. 1 (B). We see little evidence of two decaying 
exponentials in these data. 

To apply the procedures given here, we specify the set of models to be examined. 
We take 

j 

h(t) = L. Bke-akt (j = 1,2,···) 
k=l 

as the nonorthogonal models, Eq. (2). The question we would like to answer is: 
"What value of j is necessary to account for all systematic effects in the data?" 
To answer this question we compute the orthogonal model, Eq. (1), and from the 
orthogonal model we compute the global likelihood of the data, Eq. (7). From the 
global likelihood we compute the posterior probability, Eq. (4). To compute the 
posterior probability we must assign a prior probability, P(jID,I), for the number of 
exponential components in the data. Having little prior information about this, we 
use a uniform prior probability. 

The results of this calculation are displayed in Fig. 2. There are six plots in this 
figure occurring in pairs. We have plotted the data (dotted line) in panels (A), (C), 
and (E). Included on these panels as the solid line is a one exponential model (A), 
a two exponential model (C), and a three exponential model (E). Panels (B), (D), 
and (F) contain a plot of the residuals (i.e. the difference between the data and 
the model) for the different models. The residuals for the one exponential model, 
Fig. 2 (B), show a systematic effect, and the posterior probability of this model is zero 
to eight decimal places. The residuals for the two exponential model, Fig. 2 (D), look 
like white noise, and the posterior probability of this model is 0.9984. The residuals for 
the three exponential model, Fig. 2 (F), show no noticeable improvement compared to 
the two exponential model. The posterior probability of this model is 0.0016. Given 
the three choices, Bayesian probability theory has correctly determined the number 
of exponentials in the data. 

The choice between the two and three exponential model is very interesting. The 
residuals did not improve substantially for the three exponential model, and Bayes 
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exponential. 
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Figure 2: Multiple Exponential Decays 

co 1 E:XPONENTl AL 
8'~------~~~~------~ 

(AJ 

:;-------r'-~--!;~ 
0.0 ;W.O 10.0 60.0 80.0 100.0 

TIME 

D 2 EXPONENTIALS 
~!~------~~~---------, 

(eJ 

co 

Q'~~~~--~~--~~--~~~ 
0.0 20.0 40.0 80.0 80.0 100.0 

TIME: 

D 3 EXPONENTIALS 

~I~----------------------., IEJ 

20.0 10.0 60.0 811.0 100.0 
TIME 

~~ ___________ R~E~S~IO~U~A~LS~ ________ --, 

(BJ-

9 
,~--~--~~--~--~~~ 30.0 to.O 60.0 60.0 100.0 0.0 

TIME 
~.~ ___________ R_ES_I_OU_A_L_S __________ , 

(OJ 

co 

7~~--~~--~~--~~--~~--~ 0.0 20.0 40.0 110.0 110.0 100.0 
TIME 

~.~ ____________ ~_S_I_OU_A_LS __________ --, 

(F'J 

C> 

~"0-.0';"'--""!20-.0----"'140~.O~--~IIOr'.0~--~IIOr'.~0 --~lCll.O 
TIME 

The data, (A) dotted line, were fit with a one exponential model, (A) solid line. The residuals are 
shown in (B). There is a systematic effect in the residuals. The probability of this mode is zero to 
8 places. The data were then fit with a two exponential model, (C) dotted line. The residuals are 
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in (E) and the residuals in (F). There is no noticeable improvement. The posterior probability of 
this model is 0.0016. 
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theorem then tells us to choose the simpler model. The prior information is effectively 
doing this. When we did this calculation, we put in the fact that the amplitudes and 
decay rates should be taken to be zero unless the data clearly indicate otherwise. In 
the three exponential model, the data indicate the parameters should be nonzero. 
However, the prior probability of the model depends on the mean-square amplitude 
and the mean-square decay rate. When these factors are estimated to be nonzero, 
their prior probability is low. The fit for the three exponential model did not improve 
substantially: the probability of the data for the two and the three exponential model 
is about the same. So the posterior probability of the three exponential model (which 
is related to the product of these two) is low because the prior probability is low. 
Bayesian model selection is essentially a quantitative statement of Occams razor: 
when two models fit the evidence equally well, prefer the simpler model. 

Example - Multiple Nonstationary Frequencies 

Often an experimenter is faced with a data set that looks like Fig. 3 (A). The problem 
is to determine how many resonances are present. If the resonances were stationary, 
the experimenter could sample the signal longer. The discrete Fourier transform 
would then resolve the resonances. Unfortunately, the resonances are nonstationary, 
i.e. they decay away with time. Taking data for a longer period of time samples the 
noise, not the resonances, and no improvement is found. The only recourse is to get 
the information from the data available. In fact, probability theory indicates there is 
one thing the experimenter can do: sample the data faster [2], thus obtaining more 
data in the region where the resonances are big. This gives a V f:).T improvement 
in the estimates, where f:).T is the sampling time. But, if the experimenter uses 
the discrete Fourier transform as his analysis tool, instead of probability theory, this 
procedure will improve the line shape, but it will not help separate the resonances. 

Let us see what probability theory can do on the multiple nonstationary frequency 
problem. We generated the data, Fig. 3 (A), in such a way that the discrete Fourier 
transform, Fig. 3 (B), has only a single peak. We then apply the results of the calcu­
lation to see if probability theory can determine the number of frequencies present. 
In this example, we generated the data from 

d( t;) = 100 cos(0.3t; + 1 )e-·005ti + 25 cos(0.3lt; + 3)e-·003ti + n(O, 1), 

with N = 1024, signal-to-noise ratio of approximately 20, and t; = {O, 1,···, 1023}. 
The discrete Fourier transform, Fig. 3 (B) has one peak near 0.3. There is no evidence 
in a discrete Fourier transform for the second frequency. However, we can look at 
the data and see the beats: the human eye is better at determining the presence of 
multiple close frequencies than a discrete Fourier transform. 

To compute the posterior probability of the model, we must state what set of 
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Figure 4: Multiple Nonstationary Frequencies 
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models is to be examined. Here we used 

j 

fj(t) = I: (Bkcoswt+ Bk+jsinwt)e-C>kt, (j=1,2,"') (8) 
k=l 

as the nonorthogonal models. The question we would like to ask is: "What value of 
j is needed to adequately describe the data?" To do this calculation we again fit a 
model containing one, two, three, etc. frequencies until the posterior probability of 
the data had a well defined peak. 

We again displaye the results of this calculation as six plots, Fig. 4. The data 
(dotted line) are shown in (A), (C), and (E). We have included the model as a solid 
line; a one frequency model is shown mEA), atw()frequeffcymodcl-m~C), and a three 
frequency model in (E). The residuals for the three models are shown in (B), (D), 
and (F) respectively. 

We begin by fitting a one frequency with decay model. We compute the nonorthog­
onal model, Eq. (8), and then the orthogonal model, Eq. (1). From the orthogonal 
model we compute the global likelihood of the data, Eq. (7), and last we compute 
the posterior probability, Eq. (4), using a uniform prior on the models. The poste­
rior probability of the one frequency with decay is zero to 690 decimal places, strong 
evidence indeed! Note the logarithm of the posterior probability increases like the 
number of data values. Here we have N = 1024 data values. Additionally, for this 
model, each sampled value significantly misfits the data: the data are very improbable 
in view of this model; the posterior probability of the model is extremely low. 

We then fit a two frequency model to the data, Fig. 4 (C) - the residuals are shown 
in (D). Now the model and the data are essentially identical: the residuals (D) look 
like white noise. We then compute the posterior probability of this model and find 
it to be 1 to thirteen decimal places. Of course, all we knew at this point was that 
the two frequency model was strongly preferred to the one frequency model, so we 
proceeded to the three frequency model. 

We then computed the three frequency model. The data and the model are dis­
played in Fig. 4 (E), and the residuals are shown in Fig. 4 (F). The model does not 
fit the data any better than one would expect from fitting the noise. The posterior 
probability of this model is zero to thirteen places. In this example not only does 
probability theory find the correct number of resonances, but also the evidence in 
these data is overwhelmingly in favor of the two frequency with decay model. 

Conclusions 

We have demonstrated in these two examples that Bayesian probability theory is 
capable of giving a quantitative interpretation to Occam's razor. These procedures are 
readily implemented and work well under conditions where more standard procedures 
fail. The multiple nonstationary frequency example illustrated that the human eye 



388 G. L. BRETIHORST 

is a better tool for determining the presence of multiple resonances than the discrete 
fourier transform. In data where the human eye outperforms the discrete Fourier 
transform, the Bayesian calculation gives overwhelming evidence for the frequencies. 
In the multiple decaying exponential example the human eye is no better than the 
more traditional techniques. However, the Bayesian analysis works under conditions 
where the more traditional tests fail and gives strong evidence in support of the 
correct hypothesis. 
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REGULARIZATION AND INVERSE PROBLEMS 
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ABSTRACT. We present an overview of the regularization of inverse problems from a 
Bayesian viewpoint. We derive a Bayesian principle for the optimal choice of regularizing 
parameter. We apply the principle to zeroth order quadratic regularization and extend it 
to also determine the optim~l derivative order for higher order regularization of convolution 
problems. We also briefly discuss the Generalized Cross-Validation method for choosing 
the optimal regularization parameters. We present numerical results for a severely ill­
posed problem and for the well-posed Fourier problem. 

1. INTRODUCTION 

The regularization or smoothing approaches to the treatment of inverse problems, 
density estimation, ridge regression and spline smoothing bear a lot in common. Tit­
terington [8] provides an extensive review. As practitioners in these fields know, the 
choice of smoothing or regularizing parameter can be critical, in particular for severely 
ill-posed problems. The approach most commonly used in the practical treatment of in­
verse problems (e.g image reconstruction), is the discrepancy principle which determines 
the parameter from the requirement that the reconstructed data misfit must match the 
noise level. A major drawback is that a good estimate of the noise level (J'2 must be 
available. Two alternative methods which do not require prior knowledge of the noise 
level have received considerable attention, particularly in the statistical literature. The 
one method, generalized cross validation (GCV), has been most extensively applied in 
non-parametric spline smoothing [1,7] and related areas [5,10]. Its application to large 
scale image processing problems has also been suggested [6,9]. The other method bears 
the name of generalized maximum likelihood (GML) [11] and it has, amongst other ar­
eas, been applied to deconvolution problems [2,3,4]. In addition to finding the optimal 
smoothing parameter, both methods give posterior estimates of the noise level. Despite 
the success of these techniques, they have not become a common tool in regularization 
practice. 

The second section gives a derivation of a Bayesian principle for determining the 
smoothing parameter and a posterior estimate of the noise level. For the special case of a 
quadratic smoothing function, the principle is equivalent to GML but our derivation differs 
from Wahba's [11]. We also discuss the treatment of spatial correlations in the solution 
through including derivative terms in the smoothing function. In addition to determining 
the smoothing parameter, the Bayesian principle can be used to determine the optimal 
derivative order. Details are presented for the convolution problem. The reader is also 
referred to the work of Davies et al [2,3,4]. The third section gives some details of GCV 
and the fourth section presents numerical investigations. 
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2. A BAYESIAN PRINCIPLE 

The desired principle can be derived by straghtforward application of Bayes' theorem. 
Let a be the smoothing parameter, u the noise level, I the solution and D the available 
data. The joint posterior probability of a, u, I and D given a model m for I is 

Pr(a,u,I,Dlm) = Pr(a,u) Pr(f, Dla,u,m) 

= Pr(a,u) Pr(fla, m) Pr(DI/, u) 

Also, 
Pr(a,u, I, Dim) = Pr(D) Pr(a,u,/ID,m) 

Then, the posterior of a, u and I given D and m is 

Pr(a,u) 
Pr(a,u,/ID,m) = Pr(D) Pr(fla,m) Pr(DI/,u) 

(1) 

(2) 

(3) 

Since we have a single fixed dataset, Pr(D) is a constant and our ignorance of the pa­
rameters a and u is expressed by a fiat prior Pr(a,u). Hence the posterior for a and u, 
obtained by marginalizing eq.(3) over I, is 

p=Pr(a,uID,m) ex f dNIPr(fla,m)Pr(DI/,u) (4) 

and it remains to perform the integration over I and then find the optimal values of a and 
u by maximizing p over these parameters. To perform the integration, we must provide 
explicit expressions for the prior Pr(fla,m) and the likelihood Pr(DI/,u). 

The likelihood of independent data with Gaussion noise is 

Pr(DI/,u) = e-O(f)/2a 2 /zc (u) (5) 

where C(J) = (01 - D)T(OI - D), 0 is the experimental response matrix and 

Zo(u) = f ,r De-O (f)/2a2 ex un (6) 

The prior for I, given a smoothing function S (J, m), is 

Pr(fla,m) = eaS(f,m) /Zs(a) j Zs(a) = ! dN leaS(f,m) (7) 

Zs(a) can be explicitly evaluated in the general quadratic case S = -t (f -m)·O.(f -m) 
where 0 is a non-negative definite matrix. Ignorance of I may be expressed by a fiat model, 
which, without loss of generality, can be taken to be zero in the quadratic case. Hence 

Zs(a) = f dN le- la/.n./ ex a-N / 2(detO)-1/2 

Since detO is independent of a and u, eq.(4) becomes 

p ex u-naN/ Z f dN le-q (f)/a2 

(8) 

(9) 
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where Q = C /2 - fJS and fJ = au2. Let i maximize Q at given a, u. 
Then Q(J) = Q<i) + !61' VVQ. 61 (61 = 1- J), and 

Then 

or 

/ dN le-Q(J)/a 2 = e-Q(i)/a 2 / dN le-/·(VVQ/a2 )./ 

ex (u 2)-N/2e- Q(i)/a 2 (det VVQ)-l 

• 2 -1/2 P = const. u-ne-Q(f}/a fJN/2(det VVQ) 
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(10) 

logp = const. - nlogu - Q;!) + ~ 10gfJ - ~ logdet VVQ (11) 

Now, Q depends only on fJ, which may be treated as the smoothing parameter and varied 
independently of u2 • So, we can readily maximize log p with respect to u to obtain the 
posterior noise estimate 

0-2 = 2Q(J)/n (12) 

Substituting this expression for u in eq.(11) gives 

n • N 1 
logp = const. - '2logQ(J) + 2"logfJ - '2logdet VVQ (13) 

This expression is equivalent to Wahba's GML [111. VVQ = OTO + pO may have zero 
eigenvalues, in which case det VVQ may be taken to be the product of the non-zero 
eigenvalues only. The optimal value of fJ, P*, is then found by maximizing eq.(13) with 
respect to p. Correspondingly, the optimal noise estimate, u*, is found by evaluating 0- at 
P* and the optimally regularized solution, /*, is found by evaluating j at P*. 

In the next section, we set 0 to the unit matrix and retain a flat (zero) model. Since 
there are also no derivative terms in S in .the case considered, we refer to it as the zeroth 
order case. This S contains no spatial correlation structure. 

(a) Regularization of Order Zero 

We seek explicit expressions in terms of P for j, 0- and logp. For this purpose, it is 
convenient to introduce the singular value decomposition of the response matrix 0 given 
by 0 = E A.UiV[ where {v.} and {uol are respectively the orthonormal eigenvectors of 
OTO and OOT with eigenvalues pn. Then we can readily show that 

N 

j = (PI + OTO)-10T D = E ~~~v~ j d. = Ui' D 
i=1 • 

(14) 

thus 

• 1 " fJd~ rrN 
2 

Q(J) = '27 A~; P and det VVQ = .=1 (A. + P) (15) 

Then 0-2 can be readily calculated from eq.12 and eq.(13) becomes 

n "Pat 1" ( P ) logp = const. - '2 log ~ A~ + fJ + '2 ~log A~ + P 
• • 

(16) 
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It follows from eq.(16), that logp does not have a maximum at finite P in the ideally 
well-posed case of orthogonal 0 for which all >..1 are the same (e.g. the Fourier problem). 
This is to be expected since zeroth order quadratic regularization stabilizes (smooths) an 
ill-posed problem, but does not take into account spatial correlation in the solution. One 
way of incorporating correlations in quadratic regularization is to allow S to be a function 
of derivatives of I. The derivative order, s, could, like (T and p, also be determined by 
the Bayesian method. Only for non-zero s can a quadratic S with a flat model provide 
meaningful regularization for the ideally well-posed case. But such an approach need by 
no means be restricted to this case, it may be applied to ill-posed problems where spatial 
correlation is considered appropriate. In the next section we consider s-order regularization 
in the convolution case. 

(b) Regularization of Order s: the Convolution Problem 

Given a blurring function b and noisy data D we seek I such that D = b * lor, 
equivaletly, d = BF where d = 7D, B = 7b and F = 71, 7 being the Fourier 
transform. It is convenient to consider the continuous case first. The Fourier pair I(w) 
and F(t) are related as follows 

F(t) = J dwe-iVJt I(w) and I(w) = J dteiVJt F(t) (17) 

(factors of 2", are unimportant). So 

Let SU) be a combination of zero order and s order terms 

where 6 is a (non-negative) number. Choosing 6 = 1 and discretizing gives 

(19) 

This S may also be written in the form S = -!/' n· I. Here, n = 7 T X7 where 

X = I + diag(t~2.». Then the rest of the analysis is similar to that of the preceding 
section. The 'partition function' for the prior PrU/a,s) = eOtS jZs(a,s) is 

Zs(a,s) = J d"leOtS cxa-n / 2 ll (1 + tlB)-1 
i=1 

(20) 

(The choice 6 = 0 in eq.(18) can lead to unbounded Zs(a) if the sample point ti = 0 is 
included, resulting in a partially improper prior.) Let F = 7 i, where, as before, i is the 
solution at fixed p. Then F is given by 

F. - B,.d,. k 
,. - Bl + P(l + tlB) = 1. .. n (21) 
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which leads to 

N 

and det VVQ = II (B; +,8 (1 + t;s)) (22) 
,=1 

and 

(23) 

which must be maximized with respect to s and ,8 to find the optimal values of these 
parameters. 

The Fourier problem is simply a special case of the convolution problem with the 
Fourier domain data d as the raw data and B, = 1 \h The equations indicate clearly 
that, in order to achieve any smoothing, s must be non-zero. 

3. GENERALIZED CROSS VALIDATION 

Let irk] be the regularized solution with the kth datum omitted and let the corre­
sponding mock data be b[k] = 0 i[k]. Then the choice of ,8 is good if the mock datum 
bLk] is a good prediction of the true datum D k. Thus, the optimal ,8 is the minimizer of 
the weighted mean-squared prediction error 

(24) 

The weights are chosen so as to make V invariant under data rotations [5J. Then V 
becomes 

V = n ((I - A)D)22 

(Trace (I - A)) 
(25) 

and the noise estimate can be shown [7] to be 8-2 = VTrace(I - A)/n2 where 
A = O(VVQ)-lOT. In the case of order zero regularization 

((I - A)D)2 = (L >.;;,8 ) 2 and Trace(I - A) = L >'2~,8 
J 

(26) 

leading to corresponding expressions for V and 8-2 • The expressions for the case of order 
s regularization for the convolution problem can be obtained by simply replacing >': in 
eq.26 by B; / (1 + t;8) (similarly, eq.23 could have been directly obtained from eq.16 by 
the same replacement). 

4. NUMERICAL RESULTS 

(a) A Severely ID-posed Problem (Order zero) 

We consider a one-dimensional problem with n = N = 15 and the classic ill­
conditioned Hilbert transformation matrix O'i = 1/(i + j - 1). The true solution is the 
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simulated top hat shown in fig.l(a). The maximum magnitude of the corresponding dat­
apoints is 0(1). Gaussian noise of mean zero and standard deviation u = 1.0 X 10-5 is 
added to the data. 

In figs. I (b), I (c) and 1 (d), the simulation is displayed as dots and the regularized 
solution as triangles. The regularized solution of fig.l(b), with f3 = 1.0 X 10-13 and a 
data misfIt of C == C / nu2 = 1.022, oscillates wildly and looks nothing like the simulation. 
The solutic;ms for smaller f3, and hence a better fit to the data, oscillate with an even 
higher dynamic range. Thus the value of f3 corresponding to the discrepancy constraint 
- I -C = 1.0 leaas to a catastrophic result. In fig.l(c), with f3 = 1.0 X 10-12 and C = 1.030, 

the regularized solution begins to resemble the simulation. The solution of fig.l(d), with 
f3 = 1.0 X 10-10 and C = 1.032 looks visually better but larger values of f3 lead to too 
much smoothing. Any further improvement in the solution would require additional prior 
information such as positivity. A visual judgment suggests that the optimal value of f3 is 
of the order of 10-1°. 

The Bayesian optimal f3, which maximizes eq.18, is 1.42 x 10-10 while the GCY op­
timal value, obtained from minimizing eq.29, is 2.92 x 10-11 • Both these values are in 
the expected range and the two corresponding solutions (not displayed) are hardly distin­
guishable visually. The one point of concern is that GCY has a second lower minimum at 
f3 = 5.7 X 10-22 but the highly oscillatory solution is totally unacceptable. 

. , 

~a) 
(b) 

t • 

• • I . . 

(c) (d) 

Fig.1 (a) Simulation. Solution with (b)f3 = 10-13 (c)f3 = 10-12 (d)f3 = 10- 1°. 

(b) A Fourier Problem (Order 8) 

We consider time series data generated by a sum of decaying oscillators of unit total 
amplitude. The data are corrupted by Gaussian noise with variance u 2 • The Fourier 
spectrum of Lorentzians is shown in fig.2(a) for u = 0.005. Eq.23 (Bayes) has a well-defined 
maximum at 8 = 1.7 and f3 = 3.6x 10-5 and the corresponding noise estimate is u = 0.0046 
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(several simulations were run at different seeds, giving very similar results). V (GCV), 
on the other hand, is very fiat and, correspondingly, the minimum drifts considerably for 
different seeds. Representative values are 8 = 2.5 and P = 1.0 X 10-6• The predicted 
values of iT lie in the range 0.0002 to 0.00025. The Bayes and GCV spectra generated 
using the obtained parameters are shown in fig.2(b) and fig.2(c) respectively. 

At the higher noise level of 0.02, the Bayes parameters are 8 = 1.3 and P = 1.31 x 10-3 

with iT = 0.019. GCV gives 8 = 1.9, P = 1.9 X 10-4 and iT = 0.0009. The corresponding 
Fourier, Bayes and GCV spectra are shown in fig.3(a), fig.3(b) and fig.3(c) respectively. 

CONCLUSION 

In conclusion, we have given a brief but complete derivation of a Bayesian principle 
for choosing regularizing parameters. We have tested the principle, as well as GCV, on 
an ill-posed and a well-posed problem. While the results presented do not constitute a 
thorough comparison of the two methods, we find the Bayesian principle more appealing 
because of its theoretical justification in Bayesian terms. For a further discussion of the 
principle, see the paper by Gull in these proceedings. 
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Abstract 
The following problem is currently receIvIng some attention in 
developing expert systems capable of dealing with uncertainty. 

Given sentences 01,'" ,On of the propositional calculus and 
some linear constraints on the weights of belief attached to 
those sentences what weight of belief should we give to a new 
sentence 0 from the same language? 

Here we are thinking of these weights as some kind of subjective 
probabilities. We show that if we treat the assignment of a weight 
to 0 as the result of an inference process applied to the constraints 
then there are logical requirements of consistency on such a process 
which force it to agree with the Maximum Entropy Inference Process. 
This then provides a logical rather than statistical or information 
theoretic justification for the use of the Maximum Entropy Inference 
Process. 

Introduction 
The results presented in this paper were motivated by considering the 
following problem. 

Given sentences 01,'" ,On of the propositional calculus and some 
linear constraints on the weights of belief attached to those 
sentences what weight of belief should we give to a new sentence 
o from the same language? 

In order to make this problem mathematically precise we first introduce 
some notation. 

Let SL(Ail"" ,Aim) be all those sentences of the propositional 

calculus formed using propositional variables Ail'" .,Ai m and let 

SL = U SL(Al,'" ,An)' We shall use O,~ etc for members of SL. 
n 

A function w:SL ~ [0,1) is said to be a weight of belief function 

if w satisfies 
(i) If sentences O,~ are logically equivalent then w(O) 

(ii) If 0 is a theorem of the propositional calculus then 

w(O)=l and w(,O) O. 

(iii) For sentences O,rp, if 0 A rp is contradictory then 

w(OVrp) = w(O) + w(rp). 

A set of linear constraints is a finite set of identities of the 
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form 

n 
.21 °i j w( 0 j) - (3 i ' 
J-

where the °ij' (3i are real, which is consistent in the sense that 

it is satisfied by some weight of be lief funct ion w. 

We shall use S, S' etc for sets of linear constraints and 

CL(Ai1' ... ,Ai n) etc for the set of sets of constraints for which 

each OJ E SL(Ai1' ... ,Ai n ) etc. We can now restate our problem as 

Given S E CL how should we pick a weight of belief function 

w to satisfy S? 

We wish to point out here that we are not asking the statistical 
question 'find a best estimate of the true weight of belief function.' 
Instead we are asking 'what weight of belief function w is a 
logical consequence of the set of constraints S?' A frequent retort to 
this question is that it is meaningless in that, in general, there 
will be many such function w satisfying the given constraints. 
Certainly this is justified when considering a single set of 
constraints in isolation. However, if we consider the choice of 
w as an instance of an inference process N taking sets of 
linear constraints to weight of belief functions then it is clear 
that there are natural requirements of consistency and independence 
on N which severely limit the possible choices of N(S) for a 
given set of constraints S. 

For example, if Sl and S2 are the same up to renaming of 
propositional variables then 'consistency' requires that N(Sl), N(S2) 
should be similarly related. In particular if the propositional 
variables Ai, Aj are not mentioned in a set of constraints S 
then N(S)(Ai) and N(S)(Aj) should be equal. 

In what follows let N be an inference process i.e. for all 
S E CL, w - N(S) satisfies the set of constraints S. 

The main result of this paper is that there are natural, logical 
principles which force N to be the Maximum Entropy Inference Process. 
By 'natural' here we mean principles whose failure would normally by 
described as an 'inconsistency' in the natural language sense of the 
word. 

The plan of the paper is as follows. We first introduce the 
principles and derive a straightforward consequence of them. We 
then state the main result and give a detailed description of the 
Maximum Entropy Inference Process. We end by pointing out a 
generalization of the main result. 
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The Principles 
We now present the 'natural' principles referred to above. We have 
made no effort for economy here preferring instead that each stated 
principle contains a single idea. We do not know if any of the 
principles are redundant. 

Principle 1 For S € eL, 0 € SL, N(S)(O) is continuous in the 

coefficients aij' ~i appearing in S. 

Justification: Microscopic changes in constraints should not result 
in macroscopic changes in the beliefs inferred. 

Principle 2 If Sl, S2 € CL are equivalent on the basis of 

properties (1), (ii), (iii) of w (i.e. each constraint in Sl 

is derivable form constraints in S2 using properties (i), (ii), 

(iii) of wand visa-versa) then N(Sl) = N(S2)' 

Justification: The way the constraints are expressed should be 
irrelevant to the inference process. 

Principle 3 Let B(Ai1"" ,Ai n) be the Boolean Algebra of 

equivalence classes 0 of elements of SL(Ai1"" ,Ai n) with 

respect to the relation _ of logical equivalence. Let 

S2 f CL(Aj1"" ,Ajn) are such that 

k 
1, ... ,n} Sl = {j~l aij w( 0 j) fJi i = 

k 
= 1, ... ,n} S2 = {.L1 ai j w(<pj) - ~i 

J= 

where j ~ 1, ... ,k. 

Then N(Sl)(O) = N(S2)(<P) whenever <p = g(O). 

Justification: S2 is simply a renamed version of Sl and so 
N(SI), N(S2) should agree up to this renaming since the particular 
names chosen should be irrelevant to the inference process. 

399 
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N(SI)(8) - N(SI + S2)(8). 
Justification: The belief constraints given by S2 have no effect 
on SI or 8 and so should be irrelevant to the weight of belief 
assigned to 8. 

Principle 5 Suppose SI, S2 are respectively the sets of constraints 

tD!i j w(8 jJ\p) - (3i' 

Justification: Under the assumption that ~ holds SI, S2 are 
providing identical constraints on belief. 

Principle 6: Suppose that SI, S2 f CL and that N(SI) satisfies 

the constraints in S2. Then N(SI) - N(SI + S2). 

Justification: If on the basis of SI the inference process gave 
that the constraints in S2 held then knowing S2 should not cause 
the inference process to change Its mind i.e. the inference processes 
should be self consistent. 

Principle 7: Let SI be w(Al) - D!, w(A2) - (3 and let S2 be 

SI + w(A3) -~, w(A4) - 6, w(A2AA3) - w(A2AA4) - w(A3AA4) - o. 

Then N(SI)(AlAAZ) - N(S2)(AlAA2). 

Justification: Whilst S2 puts additional constraints on A2 
these appear irrelevant to the value N should give Al A A2. 

This concludes our list of principles. Before stating our main 
theorem we show:-
~ The following principle is a consequence of principles 1-7: 

Sketch proof. For SI being w(A1) - (3, w(A2) - ~ let 

N(SI)(AlAA2) - h«(3,~). Then h is continuous by principle 1. 

Given 0 ( D!, (3, 6 (1 consider x(t) - N(S2(t»(A1AA3) where 

S2(t) is w(A1) - D! + (3, w(A2) - 6, w(A3) - t, w(A4) - 1. Then 

x(O) - 0, x(l) - D! + (3 so for some 0 ( to ( I, x(t o) - (3. Let 
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S2 - S2(t o). Define an automorphism g of B(AI. A2. A3. A4) such that 
for the corresponding equivalence classes 

g(Al A A2 A A3 A A4) - Al A ,A2 A A3 A ,A4 

g(Al A A2 A , A3 A A4) - Al A A2 A , A3 A , A4 

g(Al A ,A2 A A3 A A4) - ,Al A ,A2 A A3 A ,A4 

g(Al A ,A2 A ,A3 A A4) - ,Al A A2 A ,A3 A ,A4 

g(,Al A A2 A A3 A A4) - Al A ,A2 A ,A3 A A4 

g(,Al A A2 A ,A3 A A4) - Al A ,A2 A ,A3 A ,A4 

g(,Al A , A2 A A3 A A4) - ,Al A ,A2 A ,A3 A A4 

g(,Al A ,A2 A ,A3 A A4) - ,Al A ,A2 A ,A3 A ,A4 etc. 
, 

Then. to within a use of principle 2. g(S2) - S3 where S3 

, 
w(A2 A A4) - w(A3 A A4) - 0 and S2 - S2 + w(Al A A3) - ~. 

It follows by principles 3. 4. 6. 7 that 

h(a. a) = N(S3)(AI A A2) - N(S2)(AI A A2 A ,A3) 

h(~. a) - N(S3)(AI A A3) - N(S2)(AI A A2 A A3) 

whilst h(a +~. a) - N(S2)(AI A A2). Hence 

is 

h(a + ~. a) - h(a. a) + h(~. a) and so h(x. y) - xy by continuity. 

Now for S being as above let N(S)(AI A A2 A A3) - q(a. ~. ~). 

Let C1 •...• C2n be all the conjuncts of the A4. AS •...• A4+n 

or their negations and let 

am N(S)(AI A E) - --, N(S)(AI 
2n 

m 
E - V Ci. Then by principle 3 

i-I 
~m ~ A A2 A E) - 2n ' N(S)(AI A A3 A E) - 2n 

m 
N(S)(AI A A2 A A3 A E) - ~(a. 

2n 
~. ~). Also by principles 2. 4. 5 we 

obtain these same answers from N(S4) and N(SS + w(E) - 1) where S4 

and 

But then by principle 4 
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q[;: • ~~ • ~] - N(S5)(AI A A2 A A3) - N(S4) (AI A A2 A A3) 

= N(S4)(AI A A2 A A3 A E) - N(S)(AI A A2 A A3 A E) 

m 
= -- q(a. C. ~). Hence by continuity for a ~ 0 

2n 

q(a. C. ~) - aq(l. Cia. ~/a) - ah(Cla • ~/a) - ~ as required. a 

In fact it follows by results in [1], [2] (or directly) that 
principle 7 follows from principles 1-6 and the lemma. We prefer 
principle 7 since it appears more intuitively obvious than the lemma 
although of course the latter is clearly justifiable on probabilistic 
grounds. 

The main theorem now follows by a proof given in [2]. 

Main Theorem The Maximum Entropy Inference Process is the 
inference process satisfying principles 1-7. 

We now describe the Maximum Entropy Inference Process. 
S E CL and 8 E SL we define ME(S)(8) as follows. Let 
such that 8 E SL(Al •...• Am) and S E CL(AI •...• Am). Let 
list all sentences 

A El A A E2 A ... A A Em 
12m 

only 

ME. Given 
m be 
C1 •··· ,C2m 

where AO - A. Al - ,A. Then by the disjunctive normal form 
theorem and using properties (i). (ii). (iii) of w S can be 
expressed as a system of linear equations 

By the assumed consistency of S. 

has a solution. Let (Pl •...• P2m) be the solution to these 

constraints for which the function 

is maximal. (For a proof that there is a unique such maximum point 
we refer the reader to [5]. Let 8 be equivalent to the disjunctive 
normal form 

s 
V Cik where the 

k-l 
ik are distinct and set 

s 
ME(S)(8) - ~ Pik' 

k-l 
We remark that this value is independent of m. subject to the above 
requirements. 
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Remarks 
There are of course many other axiomatizations of the the 'Maximum 
Entropy Principle' in other areas of mathematics, e.g. [4], [5], [6]. 
In our defence we wish to remark that our original intention was to 
list thoses principles of inexact reasoning which appeared to us self 
evident and to go on to classify the inference processes satisfying 
them. It was in fact to our great surprise that we discovered that 
there was only one! 
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The main theorem can be generalized to wider classes of constraints 
(for example by including inequalities) providing that the set of 
solutions w(Cl), ... ,w(C2m), (in the notation above) form a closed, 
non-empty convex set. To see this suppose that there was a process 
N satisfying the principles but not agreeing with the ME solution. 
Then by principle 6 there would be a line segment [a,~] within the 
set C of possible w(Cl), ... ,w(C2m) such that 

N([a, ~]) = a ~ ~ - ME([a, ~]). Let lao, ~o] be the longest extension 

of [a,~] within C. Then by the main theorem 

N([ao ' ~o]) - ME([ao ' ~o]) - ~1' say, with ~ lying between a and ~1. 

But then by principle 6 N([a, ~1]) - ~1. By continuity N([a, ~]) - ~ 

some ~ between ~ and ~1. But then by principle 6 N([a, ~]) - ~ 

which is a contradiction. 

The main theorem has both positive and negative aspects. On 
the postivie side it enables us to develop a limited 'inexact proof 
theory' by treating the principles as rules of proof (see [3]) which 
provides a candidate for human inexact reasoning. On the negative 
side such an inference process appears computationally unfeasible 
(see [1]). 
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ABSTRACT. Given a set of deterministic or stochastic observations which 
relate the values of two (possibly multidimensional) variables, a pair 
of specific entropies is defined, which evaluate the average efficiency 
of inferences from one variable to the other. Further, a symmetric spe­
cific entropy is introduced which gauges the overall effectivity of the 
representation used for recording .the observations; it is complemented 
by a measure for the span of the representation. The amount of useful 
knowledge derivable from a set of observations equals the span of the 
representation. scaled with its symmetric specific entropy. An extrema­
lisation of specific entropies provides both a general solution of the 
ordering problem, and an essential insight into the mechanism of physi­
cal measurements: ordering minimizes local values of the specific entropy, 
whilst measuring is a search for neighbourhoods where the product of 
this entropy with the local density of observations is maximal. 

1. A DEFINITION OF KNOWLEDGE 

This paper is an introduction to the applications of maximum specific 
entropy methods to the problems of ordering. clustering, and optimizing 
the representation of knowledge, as well as to the analysis of physical 
measurements. The definitions and algorithms presented here rest on 
Shannon's entropy concept. or information rate. In contradistinction to 
classical usage. however I the central theme is not the flow of informa­
tion but the static representation of knowledge. Information is a dyna­
mic concept: it resides in the entropy reduction - due to an external 
event (e.g. the passage of time) - which accompanies the transition 
from a larger number of a priori possibilities to a smaller number still 
allowed after the event. Knowledge I on the other hand I is embodied in 
the static connections which past experience has shown to exist between 
entities belonging to different sets. Such an ensemble of connections 
[nexi) cannot in itself provide any information, i.e. entropy reduction I 
but it allows to transfer a reduction of entropy from one set to another. 
This is of particular importance when the latter set is directly obser­
vable whilst the former is not. 
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The distinction between information and knowledge can be readily 
visualized at the receiving end of a communication channel: each incoming 
letter of a message supplies some information to the receiver. whether 
the corresponding knowledge. which consists in the connection of the 
letter with a particular position in the message. is saved for later use 
or not. In order to read. and possibly to save. the message. the re­
ceiver must register the order in which the individual letters arrivej 
in other words he must have at his disposal a device such as a clock 
which identifies successive instants in time. and which might be called 
a source of positional entropy. or negentropy for short. Without it. the 
receiver ends up with an amorphous heap of letters from which only 
their frequencies can be inferred. not the message itself. Indeed. its 
static content conSists not of letters. but of connections between let­
ters and instants in time. or positions in the message. 

Although the negentropy furnished by the clock (or equivalent 
means) plays no role in classical communication theory. it becomes es­
sential when the message is transformed into knowledge. i.e. recorded 
for later use. be it on a piece of paper or in the memory of a computer. 
Without an investment of negentropy. it is impossible to retrieve a 
single letter located in one amongst H equiprobable positions on the 
paper. or amongst H addresses in memory. because either selection neces­
sitates an expenditure of negentropy proportional to In (H). 

Incidentally. an identification of knowledge with the awareness of 
existing connections between entities corresponds to everyday usage: 
reading the single word "Skilling" on a visiting card casually picked up 
from the pavement. provides information. but no knowledge. The associa­
tion of two words on this same card. however. say "Skilling. Carpenter". 
conveys the Knowledge that there (presumably) exists a carpenter by the 
name of Skilling. If now the card was not picked up from a nondescript 
location on the pavement. but found in one's letter box • then the connec­
tion of the same two words with that particular location gives evidence 
that (again presumably) carpenter Skilling has called during one's 
absence. 

More generally. knowledge is embodied in the relative frequencies 
of the mutual links between values of at least two discrete variables. 
where by definition each link is attributed a non-negative weight pro­
portional to the frequency with which the corresponding combination of 
values was observed. This applies not only to variables defined on a 
nominal scale as in the above examples. but also to quantitative varia­
bles I provided that their values are identified on a discrete scale I 
which may be either arbitrary or made up of intervals I the width of 
which is determined by the ultimate resolution of the instruments used 
for the observation. Thus fig.1 could for instance represent the partial 
pressure of a gas in- and outside an enclosure which stretches from A to 
B in a one-dimensional space. On a sufficently fine resolution I fluctua­
tions of the local pressure will become noticeable upon repeated obser­
vations I so that the pressure in each location must be identified by a 
distribution I as indicated in fig.1 by spots of various sizes. 

By definition I a primitive observation - hereafter called observa­
tion - consists in the selection of a value for an independent variable x I 

followed by the determination of a single value of a dependent variable y 
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conditioned by the former. Once a full set of observations has been 
carried out, each linI< (i.e.pair of values of the variables) is attri­
buted a non-negative number - or weight - proportional to its frequency 
of occurrence. 

Although it is usual to select each allowed value of x with equal 
frequency, this is not mandatorYi also, the occurrence of several nexi 
with finite weights for a single value of x need not denote a flawed 
observation. If, for instance, each x-value identifies a location in an 
image, and each y-value a colour (more precisely: a small wavelength 
interval), then all locations in an image which reflect different wave­
lengths will exhibit several non-vanishing nexi for the same value of x. 
Hence the multiple occupancy of a value of the independent variable may 
result from an essential superposition, and need not signal a lack of 
precision. 

When dealing with amounts of knowledge, a distribution which 
characterizes a multiple occupancy must be handled as an indivisible 
entitYi this requires a measure of the dissimilarity between distribu­
tions. A specific entropy will be defined, which provides such a measure, 
and which - in contradistinction e.g. to Kullback's divergence [1] -
does not require the distributions to be mutually absolutely continuous. 
It is therefore capable to handle problems which are beyond the scope of 
Kullback's divergence, and of other previous measures. 

2. THE EFFICIENCY OF INFERENCE 

In order to apply notations standard to communication theory to the 
above representations, the observation of a value of x (i.e. of an item, 
which is represented by a column of nexi in the tables) will be viewed 
as a random event, the probability of which is determined by the distri­
bution in the marginal row. Similarly, the values of the dependent 
variable y (i.e. the features Which characterize the items, and are 
represented by rows in the tables) will be viewed as observables with 
conditional probabilities represented by the distributions within the 
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columns, and with unconditional probabilities which are listed in the 
marginal column. On average, the amount of information which the obser­
vation of a feature provides about the item from which it stems equals 
the entropy of the marginal row less the average entropy of the rows, 
i.e. the mutual information: 

I(Xj y) = H(x) - H(xly) = H(y) - H(Ylx) . 

Dividing this classical measure by the entropy reduction H(x) that 
would be obtained, on average, through a direct identification of the 
item among the group of all possible ones, yields a dimensionless and 
normalized coefficient which will be called the separability of the group 
of items, and designated by i'x: 

'i x = [H (x) - H (xly ») / H (x) . (i) 

If one reverses the roles of the variables, making y the independent 
variable and x the dependent one, one obtains the separability of the 
features, to wit: 

'iy = [H(y) - H(ylx») / H(y) . 

The separability 'ix evaluates - in terms of entropy reduction -
the efficiency with which values of the independent variable can be 
inferred from the observation of the dependent one, that is the effi­
ciency with which the direct observation of an object can be replaced 

(2) 

by an observation of its features. A few easily demonstrated properties 
of the separability are the following: 

It depends only on the relative weights of the nexi. 

- It is dimensionless, and invariant with respect to the basis of the 
logarithms used for the entropies. 

- It ranges from 0 to 1, inclusive, and becomes zero when all items in 
the group are identical. Conversely, 'ix = 1 when no two items in 
the group have a feature in common. 

- It is not a probability. For instance in fig .2, one has: 'ix = 1jJt., as 
one would expect of an efficiency, considering that there are 3 chances 
in Jt. to observe feature d, which is completely uninformative about its 
column of origin whilst in all other cases each item can be unambiguous­
ly identified from its observed feature. Hote that the probability to 
successfully guess a column, given a line, is larger than 'ix' namely 1/2. 

- It depends on the direction of inference. 

- Its definition puts no restriction on the kind of features attributed 
to the items. Therefore, 'i can be used with arbitrarily defined distan­
ces, if required. 

- It satisfies a fundamental relation which is a weak counterpart of 
the triangle inequality, and which provides the space spanned by the 
items with a modicum of structure based on a generalisation of the 
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concept of convexity. This important relation will be demonstrated for 
three items A, B, C defined by the links ai' bi' ci' and a compound 
item AB defined by the links (ai +bi ), as shown in fig. 3. 
To simplify typography, define a, b, c, and m as follows: 

m = (a+b+c) . 

For the demonstration, the arguments in the expressions for the entropy 
and the mutual information will be augmented by a separating colon and 
the letter x (if needed). followed by curly brackets which enclose the 
current range of x-values, in order to indicate explicitely to which of 
the three sets of items shown in fig.3 an expression refers, e.g.: 

H(x(A,B,C}) = H(x{AB,C}) + [(a+b)/m] H(x(A,B}) , 

H(y:x{AB,C}) = [(a+b)/m) H(y:x{ABJ) + [c/m} H(y:x(Cl) etc. 

(3) 

Similarly, a curly bracket indicates the range of x-values for 'ix, e.g.: 

'ix(AB,C} = I(Yi x{AB,Cl) I H(x(AB,Cl) . 

By the definition of the mutual information one has: 

m I(Yi x(A ,B ,C}) = m H (y :x(A ,B ,C}) 

- a H(y:x{A}) - b H(y:x(Bl) - c H(y:x(C}), (4) 

m I(Yi x{AB,C}) = m H(y:x{AB,C}) - (a+b) H(y:x(ABl) - c H(y:x{C}) (5) 

Substracting (5) from (4), dividing by m, and reshuffling yields: 

I(Yi x(A,B,C}) = I(Yi x{AB,C}) + [(a+b)/m) I(Yi x{A,B}). (6) 

For brevity, define : p = I (Yi x (AB ,e}) , r = [(a+b )/m) I (Yi x (A ,B}), 

q = H(x(AB,C}), s = [(a+b)/m) H(x{A,B}) • 

Then, from the definition (1) of 'ix, and from (3) and (6) one obtains: 

'ix(A,B,C} = (p+r) I (q+s) . 

Finally, this equation, together with the nearly self-eVident lemma 

if p,q,r,s > 0 , and p/q < rls , then: p/q < (p+r)/(q+s) < rls , 

leads to the fundamental relation: 

i'x{A,B} S 'ix{A,B,C} <=> i'x{A,B,C) S 'ix(AB,C} , 

where the equality holds simultaneously on both sides. 

3. EVALUATING AMOUNTS Of" KNOWLEDGE 

(7) 

It has been shown that, given a representation of Knowledge through 
nexi, the separability calculates the efficiency with which direct ob­
servations of items can be replaced by observations of their features, 
on the strength of that Knowledge. Obviously, it is also desirable to 
evaluate the effectivity and the extension of the knowledge itself. By 
the same token as before, this effectivity is a ratio of entropies, 
namely the quotient of the entropy reduction v imposed by the existing 
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connections on allowed combinations of variable values. divided by the 
(average) negentropy needed to identify a nexus. i.e. the joint entropy 
u of all nexi. Because a representation of knowledge may have any number 
of dimensions. its effectivity must be derived in an N-dimensional space. 
However. in order to avoid a messy use of indexes. and to simplify the 
phrasing. the formulae for u and v will be derived in a four-dimensional 
space spanned by the variables w.x.y. and Zj the extension to an arbi­
trary number of dimensions is obvious. 

The determination of the joint entropy u is immediate: 

u = H(wxyz) = H(w) + H(x Iw) + H(y Iwx) + H(z Iwxy) (6) 

To determine the entropy reduction v. one may for instance chose the 
following sequence: first determine the reduction enforced by the con­
nections between wand the subspace xyz. then - within this subspace -
the reduction due to the connections between x and the sub-subspace yz. 
and finally the reduction due to the connections between y and z in the 
sub-subspace. One then obtains: 

v = I(wj xyz) + I(xj yz Iw) + I(Yi z Iwx) . 

Inserting the three standard identities: 

I(wjxyz) = H(w) - H(wlxyz) • 

I (xiyzlw) = H (xlw) - H (xlyzw ) • and 

I(Yjzlwx) = H(ylwx) - H(ylzwx) on the right side of (9) yields 

(9) 

v = H(w) + H(xlw) + H(Ylwx) - H(wlxyz) - H(xlyzw) - H(Ylzwx). (10) 

Adding and substracting the additional term H (zlwxy) on the right 
side of equation (10). and taking into account (6). one obtains 

v = H(wxyz) - [ H(wlxyz) + H(xlyzw) + H(ylzwx) + H(zlwxy) } (11) 

which shows that equation (9) actually is symmetric in the variables. 
and hence independent of the sequence in which the variables were 
called up for its derivation. Extending equation (11) to N dimensions 
x1. x2 .... xN yields: 

v = H(x1. x2' ... xN) - L. H(xi I x1 .... xi-1' xi+1' ... xN) (12) 

( here and in what follows all sums range from i = 1 to N 

Equation (12) will be taken as the definition of a generalized mutual 
information. From (6) and (12) one derives the expression for the effec­
tivity of a representation of knowledge in N dimensions. which will be 
called its diagonality. and designated by the letter t: 

t :: v/u = 1 - L. H(xi I x1' ... x1-1' xi+1' ... xN) / H(x1' x2' ... xN) . 

Obviously. one has : 

o ~ L. H(x1 I x1 .... xi-1' xi+1' .. 'XN) ~ H(x1. x2 ... ,xN) • 

with equality on the left if and only if any N-1 variables uniquely de­
termine the remaining one. and with equality on the right if and only if 
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the variables are statistically independent. Hence the diagonality is a 
measure of the dependence of single variables I and: 

o ~ e ~ 1. 

For completeness I note that the effective extension of a representation 
can be measured by its span S I which is defined as follows: 

S = exp [l: H(xi)] . 

The span is a continuous and consistent variant of the number of degrees 
of freedom. The product e·S evaluates the serviceable content of a repre­
sentation of knowledge I a topic which will not be pursued any further 
here. 

4. APPLICATIONS 

4. 1. CLUSTERING 

One of the pleasant properties of separability is to provide a con­
tingency coefficient which takes into account the direction of inference 
and is free of the problems that beset such classics as X 2, Pearson's 
C I etc .. [2]. However I the most fruitful uses of 'I have hitherto been 
its applications to clustering (or equivalently: ordering), and mensu­
ration. The algorithm for clustering is simple: given a set of items 
identified by the discrete variable x (where the items may have differ­
ent frequencies of occurrence) I and a set of features identified by the 
discrete variable y, and given further that each item is characterized 
by some features which it exhibits according to a known distribution 
when observed I then the algorithm must search for the pair of items 
with the smallest separability 'Ix I and fuse them into a new (compound) 
item I by pairwise addition of the frequencies pertaining to the same 
feature. The procedure can then be repeated until all items have been 
fused together. Relation (7) can be used to ensure a monotonous increase 
of the separability during successive fusions. 
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It is possible to keep a check on the effectivity of the clustering 
by calculating the diagonality of the representation at each step. The 
increase of t over its original value evaluates the increase in effecti­
vity obtained by the performed fusions, and the maximum of t identifies 
the optimal partition, thus providing a desirable and useful stopping 
rule. An essential property of this clustering algorithm is the possi­
bility to formally exchange the roles of both variables. and then to 
cluster the features (i.e. the values of the dependent variable) in 
precisely the same way as the items. This is not too far off the boot­
strapping practice which underlies most natural learning processes. and 
provides a ready-made solution to such problems as the automatized 
choice of optimal keywords in a database. The program TAXIS exploits 
some of these possibilities [3). 

4.2. MEASURING 

Let us now examine the mechanism of a physical mensuration. say the 
measure of the length of a stick. or - to simplify matters even further -
the determination of the position of one of its extremities. The physical 
aspects of the problem shall also be simplified in the extreme, to the 
extent that all variables are absolutely continuous, observations can be 
made with a limi Uess precision, all wave effects disregarded. etc. 
Surprisingly, even under these idealized conditions, taking a measure­
ment is not an elementary process. but requires an entire set of 
observations. followed by the extremalization of a specific entropy. 

Suppose the stick is aligned with the x-axis, and is of a lighter 
shade than the background (fig .4). Suppose further that one has at one's 
disposal a photometer, the position of which along the axis can be read 
off with unlimited accuracy. Obviously, a measure such as the following: 
"an extremity of the stick is located at coordinate 3.6501 cm ... " can­
not be derived from a primitive, irreducible observation which consists 
in a single reading of the photometer, together with its position when 
this reading was made. Indeed. no single observation of the light inten-
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sity excludes the possibility that it has the same value in all other 
locations along the x-axis I in which case the stick will be invisible to 
the photometer I and there will be nothing to measure I 

How the question arises: how is a mensuration performed? Suppose 
that a large number of observations have been made in the region of in­
terest I along the stick and beyond its ends, Depending on the amount of 
noise I the width of the viewing angle of the photometer etc, I a record 
of these observations will resemble fig ,4A I ljB I or 1lC. In these figures I 

the independent variable x represents positions of the photometer I and 
the dependent variable y light intenSities observed in these positions, 
The stick extends approximately from XL to xR I its grey value is about 
ys I and that of the background about YB' Each point in the diagram 
denotes an observation I and the grid represents the ultimate resolu­
tions I whether actual or supposed I of the photometer and of its posi­
tioning device I respectively. 

As locations in space (here values of x) are entities which cannot 
be distinguished per se I but only through the values of some dependent 
variable attached to each of them I the situation in terms of entropy is 
as follows: the observed range of x comprises three large I homogeneous 
regions A I B I C with low specific entropies I separated by two narrow 
strips around XL and XR. which form the boundaries between the 
former I and which have high specifiC entropies. In essence I the posi­
tions of the strips represent the desired "measurements". Their useful­
ness is immediately apparent: once the homogeneous regions are adequate­
ly delimited I the resolution of x within them can be significantly 
lowered without much loss of knowledge. If. further I the strips are suf­
ficiently narrow. the values of y in them become practically irrelevant. 
In the ideal case of a perfectly sharp boundary I these values become 
totally uncertain I which is why (in contradistinction to observations I 
which connect two quantities) physical measurements state only the value 
of a single quantity (e.g. the location of a boundary) I and associate 
it with an undefined qualitative entity such as "the end of a stick" I or 
"the volume of a vessel" etc. 

Hence I whilst one can assign a probability to an observation I i ,e. 
to the occurrence of a pair of values (or rather intervals) of the 
variables. this is inadequate for a mensuration. because by itself the 
frequency of observations in an interval provides no valid estimation of 
its importance as a boundary. Rather. this frequency must be weighted 
with the effectivity of an exact location of the interval or I equiva­
lently I of each value of the independent variable in it. This require­
ment entails that boundaries must be intervals of the independent 
variable in which a high local variation of the dependent one warrants a 
high precision in the determination of the former. 

Obviously. this is another way to say that boundaries must have a 
large separability: given a small interval of the independent variable. 
the separability determines how effectively its values can be inferred 
from observations of the dependent one. This determines quantitatively 
how fully the resolution of the former is exploited I as this resolution 
will only be functional if distinct values of the independent variable 
entail different values of the dependent one. Hence t x provides a speci­
fic measure of the degree to which an interval qualifies as a boundary; 
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to obtain the absolute "measuring power" of an interval, its separability 
must be multiplied with the number of observations in it. 

The reasoning is symmetric in the variables, so that after exchang­
ing their roles in the above example, one obtains yS and YB as the 
mensurations of y. In the idealized case of fig.'lA, the value of their 
measuring power is proportional to the number of observations performed 
on the stick and on the background, respectively, because ty = 1. 
If the values of y do stray, but remain unambiguous, as shown in fig.1D3, 
then ty retains the same value, but the observational weight of the 
intervals will decrease according to the reduced number of observations 
therein, provided their width remains constant. If individual obser­
vations become ambiguous, as shown in fig.IIe, then ty gets smaller, and 
it will eventually become necessary to use strips of a greater width, 
such as Q for instance. These results are a definite improvement on 
ad hoc probability interpretations, even though the question of an 
optimal choice of the strip width remains open yet. 

5. CONCLUSION 

In conclUSion, ordering (or clustering) and mensuration are two comple­
mentary aspects of the same quest for an efficient representation of the 
knowledge derived from a set of observations. Ideally, this repre­
sentation should consist of large domains with a small specific entropy 
- in which a comparatively low resolution of the independent variable 
is adequate - separated by boundary strips with a high specific entropy 
and with such a small width that only the position of a strip is of the 
essence, not individual values of the dependent variable therein. 

The extremalization of the specific entropy provides the necessary 
tool to build such a representation, or to recognize boundaries in an 
existing one. An ordering process structures the knowledge through the 
creation of domains with a low specHic entropy, in which the difference 
between individual locations may be disregarded, and treats the inter­
vals between the clusters as ideal boundaries. A mensuration I on the 
other hand, must respect the preexisting order enforced by the under­
lying continuity of the variables. It therefore searches for regions 
with a high specific entropy, and declares them as boundaries. The 
search will only be worthwhile if the distribution of the specific 
entropy is sufficiently non-uniform, unless such a distribution can be 
created by an appropriate transformation of the variables, but this 
- as Kipling said - is another story. 
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Abstract. Within the universe of the gaussian 
distributions: How far away is the N(~,o2) from the 
standard N(O,l)? Clearly, the concept of distance 
between elements of a statistical manifold is central 
to the theory of inference. It is broadly accepted 
that the meaningful distances should not depend on the 
coordinate systems used to label elements in the sample 
space and in the parameter space. We show in this 
paper that the Kullback number (entropy) induces a 
large class (possibly all of them) of invariant metrics 
on the statistical manifold. 

Introduction. 

Let (X,B) be an euclidean measurable space. The separation 
between probabilities P and Q on (X,B) is usually measured by the 
Kullback number I(P:Q) where 

1 
J log ~QP P(dx) 

I(P:Q) = 
co 

if P«Q 

otherwise 

As it is well known I(P:Q) does not satisfy the triangular 
inequality and it is clearly non symmetric. Hence, it is not a 
metric in the classical sense. However, we show in this paper 
that there exists a strong connection between the Kullback number 
and the metrics (possibly all of them) that are compatible with 
the statistical structure. i.e. that are invariant under 
reparametrizations and invaraint under monotone transformations 
of the sample space X. The language of differential geometry of 
statistical models provides the right framework to our results. 
We use the Kullback number to define a family of length functions 
on the tangent bundle of the model. The distance between two 
probability measures in the model is then given by the length of 
the geodesic joining them. 

I. Regular Models as Riemannian Manifolds 

We denote by I the set of all probability measures on (X,B). 
A subset pel is called a model (also known as the hypothesis 
space) for a given statistical problem if we assume that the 
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(true) probability measure that generated the observations 
belongs to P. A l-dimensional regular model can be written as 
P = {P9 : 9E8 C R } and in the language of differential geometry 
P is a differentiable manifold of dimension k with an atlas 
containing a single global chart (see Amari, 1985 and Thirring, 
1978). The parameter 9 plays the role of the coordinates of the 
measure Pt and thus, reparametrization corresponds to changes of 
the coord1nate system. 

The Tangent Space at P~: TPO(P) 

The tangent space at a point of an abstract manifold is the 
natural generalization of the concept of a tangent plane at a 
point on a smooth surface in euclidean 3-space. Roughly 
speaking, the tangent space at Po is the linear space of all the 
velocity vectors at Po of a point moving on the manifold. This 
is easy to visualize when the manifold is embedded in the 
familiar three dimensional space but some mental acrobatics are 
needed when the outside is not so familiar or when there is no 
outside at all! (e.g. in the space-time manifold of general 
relativity or in our hypothesis space Pl. It is therefore 
necessary to be able to define the tangent space at Po without 
reference to the "exterior" of the model P. We can do this (see 
e.g. Thirring, 1978) but here we motivate the results with an 
intuitive analysis by embedding P in the set of all the signed 
measures on X. 

A curve passing through POEP is a mapping y:[-£,£]~P (for 
some £>0) 

t ~ y(t) = P9(t) 

where y(O)=Pa(O} = PO. 
are all of the fbrm 

The elements of the tangent space Tp (P) o 
P -P 

lim a(h) 9(0) = lim Qh = QO • 
h~O h h~O 

Notice that VhE[-£,£], ~ is a signed measure on (X,!). 
Moreover, since P9Ch\ ana P9(0} are probability measures Qh(X)=o 
VhE[-£,£]. Thus, elits first lbok immediately reveals two 
important characteristics of the tangent elements Qo. They are 
signed measures and they put null mass on the whole space X. 

Let us denote by p(9) the density of P9 with respect to the 
dominating measure~. The densities are in fact functions of XE) 
i.e. p(xI9) but to simplify the notation and (more important) to 
emphasize the dependence on the coordinates 9 we keep the 
variable x only implicit. We have 

ThUS, 

dP9(h) = p(9(h» 
dP9(O) p(9(0»· 
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dQO = lim{P(9(h))/P(9(0))-1} 
dP9 (0) h~O h 

and if p(9) is differentiable at 9(0) we can write 

p(9(h» = p(9(0» + r ~ ai(o) h + O(h) 
i a9 1 

Replacing in (1.1) we obtain 

~ vi 1 !P-I 
i=l p(9(0» ao i 0(0) 

and writing log p(9)=J,(0) (the log likelihood) we have 

n (P ) = a n(h) __ 1 ___ !P-1 
~i a - i~ v - p(9) aoi a • 

From where we can write 
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(1.1) 

(1.2) 

Equation (1.2) provides the natural representation of the tangent 
elements at Po' They are signed measures with total null mass 
and their densitites with respect to Po are linear combinations 
of the derivatives of the log likelihood. Thus, since the 
densitites characterize the measures we can think.of the tangent 
~pace at Po.as the k-dim linear space spanned by J,1(P O)' 

£2(PO)""'£k(Po)' By the usual regularity assumptions 
li(Po)EL2(Po) and therefore, the thangent space at Po is a 
sUbspace of L2 (Po)' This representation has the extra virtue of 
being a Hilbert space which makes P a Riemannian manifold with 
metric tensor gij(9) equal to ~he F~sher information matrix 
gij(9) = <aiJ,(9), ajJ,(9» = I J,i(9)lj(9)P9 (dX). 

II. The Entropic Length Function 

Let 1£1~1. We define on the tangent bundle of P a family of 
length functions H£ in the following way: 

For VETp(P) 
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o if V = 0 (2.1) 

ao 
if vEL (P) or t = 0 

where, if ItIS1, VETp(P) and Ivlao=1 

P;(dX) = P(dx)[1 + tV(x)] (2.2) 

is a well defined probability measure on (X,~). We call pY the 
t-deviation from P in the tangent direction v. 

From the definition (2.1) and the convexity inequality for 
the Kullback number we have for ItlS1 

1) H€(V)~O VVE!(P) and Ht(V)=O if and only if V=O. 
2) Vc~O Ht(cv) = CHt(V) 
3) ~t is continuous (see (2.4), (2.5) and (2.6». 

From the definition of the Kullback number we can write 

UVu 2 
H2(V) = __ ao J - 109[1 + t iJ.) ] P(dx) • ',2 ao 

Using the expression 

- 10g(1+z) = r 
n=O 

(_1)n+1 zn+1 
n+1 

and the fact that Ep(V)=O we obtain 

valid for Izl<1 

H~(V) = n~o (~!~n (U!Uao)n Ep(Vn+2) 

The last equation shows that 

(2.3) 
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(2.4) 

and that 

2 212 
HO(v) = ;~~ H£(V) = 2 Ep(V (x» (2.5) 

Hence, the Riemannian length is the special case £=0. Moreover, 
from (2. 3) l<lf' have 

(2.6) 

We now associate in the classical way distances to the length 
functions Hc' Let r:[a,b]~P be a path (i.e. Piece-wise e l ) 

joining P and Q in P i.e. r(a)=P and rCb)=Q. We define the 
(-length of r by 

b 

L£Cr) = J Hc(r'(T»dT 
a , 

where r (T) E Tr (T) (P) 

the length function H£ induces a distance on P given by 

dc(P,Q) = inf Lt(r) 
r 

(2.7) 

(2.8) 

where the inf is taken over all the paths from P to Q or from Q 
to P. clearly VP, Q, REP we have: 

i) dc(P,Q) ~ 0 

ii) dc(P,Q) s d£(P,R) + dc(R,Q) 

iii) dc{P,Q) = de (Q,P) 

iv) dt(P,Q) o if and only if P=Q a.e.-J! 

Part iv) follows from Theorem 1.1 in S. Lang, 1987. Moreover, 
all these distances are invariant under reparametrizations and 
invariant under monotone transformations of the sample space X. 
This follows trivially from the invariance of the Kullback 
number. Furthermore, Theorem 1.2 in SLang, 1987 assures the 
equivalence of the metrics dc' They generate the topology of the 
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Hellinger distance since this is the underlying Hausdorff 
topology of the manifold P. 

Extension: We can increase the family of invariant length 
functions (2.1) by taking averages over c. To each distribution 
G on [-1,1] we associate the length function 

1 

HG(V) = I H€(V) dG(€) (2.9) 
-1 

Invariant metrics are obtained by replacing c by G in (2.7) 
and (2.8). 

III. The length of the Entropic Prior Model 

Example: Let P be the manifold of discrete distributions on 
X={O,l, ••• ,M}. We have 

M 
e {O = (fO, ••• ,fM): fi>O' ~ fi = 1}. 

Thus, the densities p(xIO) with respect to the counting measure 
on X are 

M M 
p(xIO) = (1 - L f.) o(x) + L fi o(x-i) 

1 ~ 1 

the metric tensor is 

1 if i=j 
fi 

gij(O) i,j=1,2, ••• ,M . (3.1) 
1 if i",j 
fo 

Notice, that in analogous way we can show that the metric tensor 
in the extended manifold P of the positive measures on X (i.e. we 
do not impose ~fi=l) is 

1 if i=j 
fi 

gij (0) = i,j=O,l, ••• ,M (3.2) 

0 if i",j 

and one can readily check that 
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dS2 = L g.. df. df . 
i,j~1 1) 1 1 
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(I thank Dr. J. Skilling for pointing out this last equation to 
me.) It is interesting to note that (3.2) appears in the 
derivation of the remarkable entropic Bayesian prior lIexp{aS}1I 
(see the paper by J. Skilling in this same volume). Therefore, 
when the underlying hypothesis space is not the manifold of 
discrete distributions but an arbitrary regular space p={Pe :ee8} 
the entropic prior model changes. It becomes the one parameter 
exponential family with sufficient statistic I(Pe:m), generated 
by the invariant measure in P i.e. ~(de) = ~det gee) de. Where 
gee) is the Fisher information matrix in P and m is an initial 
probability measure. This is itself a one dimensional Riemannian 
manifold dominated by~. The ~-densities on this IIline ll are 

d1[a 
d~ (e) = 1[(ela,m) = eXp{-aI(Pe:m) - ~(a,~)} (3.3) 

for a >aMin~ 0 where aMin= inf{a>o:I1[(ela,m)~(de)<~}. ThUS, 
the tangent (space) at IX is generated by 

i(a) = -I(Pe : m) - ~(a,~) 

which is a function of e in L2(1[a). The Fisher information 
amount is given by 

Therefore, the Riemannian length of the entropic prior model 
ITp = {1[a:a~amin} becomes 

(3.4) 

(3.5) 

where 0a(I(Pe:m» denotes the standard deviation of the random 
variable I(Pe:m) when e ~ 1[a. Equation (3.5) provides an 
information-theoretic measure of the size of P as seeing from m. 
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THE PARADOX OF THE MONEY PUMP: A RESOLUTION 

Randall Barron 
Laboratory Technologies Corp. 
400 Research Drive 
Wilmington, MA 01887 
USA 

ABSTRACT. The Paradox of the Money Pump, introduced by Carlos Rodriguez at the 1986 
MAXENT Workshop, can be qUietly resolved by a Bayesian analysis of the Envelope Game. 
Everything derives from the prior probability distribution for the total purse, that is, the 
sum of the checks in both envelopes. It turns out that the Money Pump can indeed operate -
but only when the expectation-value of the total purse is infinite. In that case, the expected 
cost to the sponsor of the game is infinite, and there is no fair price that can be charged for 
admission to the game as a player. 

THE ENVELOPE GAME 

The Paradox of the Money Pump was presented at an earlier meeting of this Workshop by 
Carlos Rodriguez of SUNY [1J. It is formulated in the context of a game of chance, known for 
convenience as the Envelope Game. You, the player, are to select one of two envelopes, 
knowing that each contains a check made out to "Bearer". You are informed that one of the 
checks has a face value twice that of the other, but you do not know the absolute values. 
After making a selection, you open the envelope and learn the face value of the check 
therein, say $A. You are now offered the option of exchanging the check you hold for the 
one in the remaining envelope. Carlos argued - more or less plausibly - that, if you 
exchange envelopes, you will, with even odds, either double your initial winnings or suffer a 
loss of half. Your expected gain on the exchange is therefore (l/2)(2A) - (l/2)(A/2) = A/4 , 
which is strictly positive. Given the symmetry inherent in the initial choice of envelopes, 
this seems absurd. 

Carlos went on to make it seem even more absurd by introducing a secondary player 
who is assigned, by default, the envelope remaining after your initial selection. Reasoning 
as above, you should both be willing to exchange your envelopes and, moreover, to pay some 
token amount to a regulatory third party for the privilege of making the exchange. 

Of course, there is no mystery about the source of the money. The game has a 
Sponsor, namely, the agency on whose account the checks are drawn. A Bayesian analysis of 
the Envelope Game is based on the prior probability distribution for the total purse, that is, 
the sum of the checks in both envelopes. The naive analysis given above tacitly assumes 
that the prior distribution for the total purse is flat -- all possible values are equally 
likely. It seems to me that the naive analysis entails an unnormalizable prior distribution 
but, as I will show, the operation of the Money Pump does not depend on a flat or 
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unnormalizable prior. There exist proper, normalized probability distributions for the total 
purse such that the expected gain on exchange of envelopes is strictly positive for all values 
of A. This latter condition, I take it, defines the essence of the Money Pump. 

STATISTICAL INDEPENDENCE AND SYMMETRY 

There are two random processes involved here: (1) the sponsor somehow decides on the total 
purse, X; and (2) you, the player, blindly select one of the two envelopes. 

Let H be the proposition that your envelope contains the smaller share, X/3, and 
H' , the complementary proposition that it contains the larger share, 2X/3. Drawing on 
your common sense, you observe that processes (1) and (2) are completely independent of each 
other, and you conclude that the joint probabilities factor, 

P(H,x=C II) = P(H I I) - P(X=C II) , 

P(H',x=C II) = P(H' II) - P(X=C II) . 

As usual, the probabilities are conditional on your prior information I. Under the 
conditions of the game, the envelopes are indistinguishable before opening and, by 
symmetry, you assign equal values to the prior probabilities of Hand H' , 

P(HII) = P(H' II) = 1/2. 

PHASE 1: SELECT AN ENVELOPE 

In Phase 1 of the game, you select an envelope. The face value of the check within is a 
random variable, Y, with a prior probability distribution given by 

P<Y=A II) = P<Y=A,H II) + P<Y=A,H' I I) 

= P(X=3A,H II) + P(X=3A/2,H' II) 

= (1/2) - P(X=3A II) + (1/2) - P(X=3A/2 II) . 

Your expected winnings in Phase 1 can be computed as 

<YII> = IA A- P<Y=AII) 

= I A (1/6)-(3A)-P(X=3A II) + (l/3)-(3A/2)-P(X=3A/211) 

= (1/6)-<X II> + (1/3)-<X II> = (1/2)-<X II> , 

which is half the expected value of the total purse. We can be free with the infinite 
summations because of positivity. We have to assume, for definiteness, that Y takes values 
in some discrete set, e.g., the integer powers of 2. 
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PHASE2: OYITONALEXCHANGE 

Suppose that you open your envelope and discover that Y=A. In Phase 2 of the game you 
consider exchanging the envelope you hold for the one remaining. The posterior probability 
distribution for (H,H') can now be computed using Bayes' Rule, 

p = P(HIY=A) = P(H,Y=AII) / P(Y=AII) 

= P(X=3A,H II) / (P(X=3A,H II) + P(X=3A/2,H' II)) 

= P(X=3A II) / (P(X=3A I 1) + P(X=3A/21 1)} , 

p' = P(H'I Y=A,n = 1 - P . 

Your expected gain on exchange of envelopes is therefore 

<G I Y=A,l> = peA + (1-p)e(-A/2) 

P(X=3A II) - (1/2)P(X=3A/21I) 

P(X=3A II) + P(X=3A/2 II) 

Whether this is positive, negative or zero depends on local details of the prior probability 
distribution for the total purse. The following example shows that this quantity may be 
strictly positive for all possible values of A, i.e., the Money Pump can operate. 

EXAMPLE 

Suppose the face values on the checks (expressed in pennies, say, or pence) are restricted to 
be non-negative integer powers of two, 

k y(k) = 2 , k = 0, 1,2, ... , 

so that the possible values of the total purse are the numbers, 

k x(k) = 3 e 2 , k = 0, 1, 2, .... 

Suppose that the prior distribution for the total purse is 

k 
p(k) = (l-z)z , k = 0, 1,2, ... , 

for some suitable positive z < 1. This is a proper, normalized probability distribution, 
although the expectation-value, 

k 
<x> = ; x(k)p(k) = ; 3(1-z)(2z) , 

will be infinite whenever z ~ 1/2. The expected gain on exchange of envelopes, 
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g(k) = 2k_ [p(k) - (1/2)p(k-1)] / [p(k) + p(k-l)] 

k 
~ : - (z - 1/2)/(z+1) k = 1, 2, ... 

k = 0, 

is strictly positive for all k = 0, 1,2,... provided that z > 1/2 . 

GENERAL CASE 

Averaging the conditional expected gain <G I Y=A,b over the prior probability distribution 
P(Y=A I I) yields a useful auxiliary quantity, 

<<G I [Y]l» = LA <G I Y=A,b - P(Y=A,I) 

= LA (A/2) - (P(X=3A I I) - (1 /2)P(X=3A/21 I) } 

= (1/6) LA (3A).P(X=3A II) - (3A/2).P(X=3A/211)} . 

The individual terms in the sum are each expressed as the difference of two non-negative 
quantities. We can split each term into positive and negative components, then regroup and 
sum the components of like sign separately, provided that at least one of the definite 
partial sums is finite. That is, 

<<G I [YU» = (1/6) LA ( (3A)·P(X=3A II) - (3A/2)-P(X=3A/211) } 

= (1/6) LA (3A)-P(X=3A II) - (1/6) LA (3A/2)·P(X=3A/21 I) 

= (1/6)-<X II> - (l/6)-<X II> = 0, 

provided <X II> is finite. If <X II> is infinite, no such conclusion can be drawn; the 
example presented earlier illustrates this point. Thus, 

~ 0 
<<G I[y]» = 

unconstrained 

if <X I I> is finite, 

otherwise . 

The gain on exchange of envelopes is a well-defined random variable, 

G = S(H)-(X/3) , 

where S(H) = H - H' is 1 if H is TRUE, and -1 if H is FALSE. If you adopt a policy of 
always exchanging envelopes (whether or not you look at the contents of the first), your 
expected gain in Phase 2 will be 

<G I I> = LC<C/3)-P(X=C,H II) + LC<-C/3).P(X=C,H'11) . 
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It is appropriate to group the positive and negative tenns and sum them separately, because 
they represent disjoint events in the product space of joint possibilities. Hence, 

<G II> = P(H 11)-(1J3)-<X II> - P(H' 11)-(1/3)-<X II> 

If <x II> is finite, the sum is zero. If <X II> is infinite, the sum is 00 - 00 , or indefinite; 
in the customary parlance, it "does not exist". 

o if <X II> is finite, 
<GII>= 

indefinite otherwise . 

EXTENDED REAL NUMBERS 

We are already familiar with the Extended Real Numbers, comprising the Real Line R 
and the Definite Infinities, +00 and ..00. Suppose that we extend the set further by means 
of the Real Indefinite quantity, - = 00 - 00. Fonnally Real sums and integrals which "do 
not exist" in the usual (Lebesgue) sense may be considered, in a consistent sense, to be Real 
Indefinite [2]. In particular, one can show that the expectation-value of a Real random 
variable, not necessarily bounded, always exists as an element of the enlarged set of 
extended real numbers consisting of R and (+OO,-,-oo). Of course, the laws of arithmetic 
are different for expressions involving -, just as they are for expressions involving ±co. 

The IEEE Standard for Binary Floating Point Arithmetic (to be perfonned by 
machines) requires reserved bit patterns encoding the definite infinities, ±co. These are 
examples of what is called a NaN <short for Not-a-Number}. The Intel 80X87 
implementation of the IEEE Standard includes a reserved NaN encoding the Real Indefinite, 
- = 00 - 00. Single-Precision (4-byte) bit patterns for these NaN's are tabulated below, 
along with some representative real numbers. For those of you who are programmers, I have 
also given the Hex representation. 

TABLE: Single-Precision Bit Patterns from the Intel 80X87 Implementation 

ASCII 

0.0 
1.0 
2.0 
+00 

-00 

CONCLUSIONS 

BINARY 

001111111000000000000000 
OlOOOlXXXlIOOOXXXlIOOOOOOCIOOO()()()()()() 
011111111000000000000000 
111111111000000000000000 
1111111111000000000000000 

HEXADECIMAL 

oooooooo 
3F800000 
40000000 
7F800000 
FFSOOOOO 
FFCOOOOO 

If <X II> is finite, the net flux of cash from the Money Pump is zero, and our intuition is 
vindicated. If <X II> is infinite, then intuition fails us, and the Money Pump can operate. 
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The technical resolution of the paradox can be stated as a theorem. 

Theorem: H <X II> is finite, then <<G I 001» = <G II> = 0 . 
H <X II> is infinite, then <<G I (Y]I» is unconstrained and <G II> = - . 

Corollary of The Money Pump: H <G I Y=A,I> is strictly positive whenever P(y=A II) > 0 , 
then <<G I 001» is positive, <X II> = +00 , and <G II> = - . 

The classical interpretation of the notion of expectation-value is provided by the 
Strong Law of Large Numbers. According to this theorem, the average over a long series of 
independent samples of a random variable G, 

N 
SN = (lIN) I 1 G . n= n 

converges as N -> 00 to <G> (with probability 1), provided <G> is finite. Special cases 
of the Strong Law have been known for more than two centuries. Recent investigations have 
uncovered an extension of the Strong Law to the case where <G> is infinite or indefinite [3]. 
If <G> =;too , then SN diverges definitely to <G> (w.p.l). If <G> = - , there are three 
possibilities, depending on finer details (4) of the probability distribution: (1) SN diverges 
definitely to +00 (w.p.1); (2) SN diverges definitely to -00 (w.p.l); or (3) SN has a non­
trivial set of limit points that (w.p.1) includes both +00 and -00 • 

In the context of the Envelope Game, we have seen that the Money Pump can operate 
only when <G II> = -. By symmetry in (H,H') we argue that case (3) then obtains. In a 
long series of independent instances of the game, the average gain on exchange of envelopes 
will (w.p.l) diverge indefinitely to both +00 and -00. However, if we select only those 
instances in which Yn = A , the average gain on exchange of envelopes will (w.p.1) converge 
to the conditional expectation, <G I Y=A,I> , which is, of course, finite - and may even be 
strictly positive. There is no contradiction here, although the result is a bit surprising. 

The Strong Law of Large Numbers provides a rationale for setting the admission fee 
to games of chance where the expected gain is finite. This rationale breaks down when the 
expected gain is infinite or indefinite, as in the classical St. Petersburg Paradox, and, also, 
in the case at hand, when the Money Pump is running. 
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Abstract 

Maximum entropy and maximum likelihood methods are compared for a simplified 
version of a medical imaging problem. Iterative reconstructions are tracked by plotting 
successive values of log-likelihood and entropy, and we find a tradeoff between these 
two measures of fit. Maximum likelihood is found to fit the data more closely, but 
maximum entropy creates more reasonable images. We conclude that the former uses 
the data efficiently, but the latter gives a better choice of image. This reasoning leads 
to a somewhat Bayesian version of the constrained maximum entropy method of Gull 
and Daniell (1978). The constraint of that method is interpreted from a Bayesian 
perspective. 

1 Background and setting up the problem 

This paper discusses image reconstruction from incomplete, noisy data. Our main example 
is a simplified model of positron emission tomography (Vardi et al. (1985)). We consider 
this problem on a theoretical level only, and the brief description which follows may be 
thought of as motivation for our study. In emission tomography, the image x of interest is 
an intensity function of radioactive emissions from a two-dimensional region in the human 
brain. We cannot directly observe x on a live person, but we can count the emissions that 
leave the brain, and observe their direction. These indirect observations come in the form 
of a finite set of counts, labeled Y = (Yl, ... , Yn), in n pairs of radiation detectors outside 
the brain. (Note: all vectors in this paper are column vectors.) The assumed probability 
model is: 

Yi independent Poisson (Mi), i = 1, ... , n, 

M (M1, ... ,Mn ) 

Ax. 

-Much of this paper derives from helpful comments by Donald Rubin and Stephen Ansolabehere. This 
research was supported by a u.S. National Science Foundation graduate fellowship. 
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The expectations Mi (the 'mock data' of Skilling (1986» are derived from x by a linear 
transformation A of conditional probabilities. To make the problem tractable, the image x 
is defined on the discrete space of a grid of N picture elements or 'pixels'. The image is 
then a vector x = (Xl, ... , x N) of nonnegative elements, and the linear transformation A 
can be identified with an matrix of rank n, each of whose columns sum to 1. (None of the 
entries of A will be negative.) The parameter N is chosen by the analyst; to avoid major 
discretization errors, we will typically assume N > n. Note, however, that care is then 
required in picking reasonable images from a large N-dimensional space. 

For this problem, the likelihood is f(yIM) oc n MY; e-M" and we define 

-2LL(Mly) = -2Iogf(yIM) + arbitrary constant 

= - 2 ~ [y;log ( ~i) + Yi - M;] . 
• 

(This corresponds to the 'chisquared' statistic of Skilling (1986).) In passing from the first 
line to the second, we have set the constant so that -2LL(MIY) = 0 at the maximum, when 
M=y. 

In general,the entropyofa vector a = (ab .. ' ,aK), relative to a measure b = (bb'" ,bK), 
is defined as: 

2 Comparing maximum entropy and maximum likelihood 
estimators 

We will consider two simple estimators x of x. In both cases, we define the estimated 
sampling expectations M = Ax. First, the constrained maximum entropy estimate of Gull 
and Daniell (1978) and Skilling (1986) is the x that maximizes S(xlm), subject to the 
constraint: -2LL(Mly) ~ n. (We will define the entropy relative to the uniform measure: 
mj = 1, for all j.) If the constraint on -2LL cannot be satisfied, then the maximum 
likelihood estimate (defined below) will be labeled as 'constrained maximum entropy', too. 

Second, the maximum likelihood estimate is an nonnegative image x that minimizes 
-2LL(Mly). The estimate x will be unique, except when the absolute minimum, -2LL(MIY) = 
o (that is, Ax = y) can be achieved. In this case, we choose, as a unique 'maximum 
likelihood estimate', the x that maximizes the entropy S(xlm), subject to the constraint: 
-2LL(Mly) = O. 

Conditional on the true image x, an estimate x is a function of the random variable y. 
Rather than examine an x directly, we look at its fit to the prior measure m, observations 
y, true image x, and true sampling expectations M. These four summary comparisons 
are: S(xlm), -2LL(Mly), S(xlx), and S(MIM), respectively. We are interested in the 
expectations of these quantities, averaged over the sampling distribution of y. For fixed 
dimensions n and N, a fixed transition matrix A, and a fixed true image x, we can simulate 
independent data sets y (from the appropriate Poisson distributions). Given n, N, A, and 
y. a computer program finds the constrained maximum entropy and maximum likelihood 
estimates of x. For each estimator, the program then calculates the average values of the 
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Table 1: Approximate sampling expectations of various functions of two estimators x of the 
image x 

Dimen- Recon- Fit to Fit to Fit to Fit to 
sion struc- prior data: true truth in 

of data tion Esti- measure: image: data space: 
True image vector grid mator -S(xlm) - 2LL(Mly) -S(xlz) -S(MIM) 

n=6 4x4 max-ent .13 6.0 .10 .0064 
m.l.e. .38 0.0 .15 .0050 

8x8 max-ent .10 6.0 .16 .0061 
m.l.e. .29 0.0 .19 .0050 

20 20 20 20 n=12 4x4 max-ent .08 12.0 .12 .0050 
20 100 100 20 m.l.e. .89 4.1 .51 .0034 
20 100 100 20 8x8 max-ent .06 12.0 .17 .0053 
20 20 20 20 m.l.e. 1.43 3.4 1.11 .0037 

n=24 4x4 max-ent .16 24.0 .07 .0115 
m.l.e. .57 9.3 .28 .0099 

8x8 max-ent .13 24.0 .12 .0117 
m.l.e. 1.60 2.2 1.35 .0132 

n=6 4x4 max-ent .07 6.0 .28 .0067 
m.l.e. .30 0.0 .38 .0048 

8x8 max-ent .06 6.0 .29 .0066 
m.l.e. .23 0.0 .38 .0048 

20 20 20 20 n=12 4x4 max-ent .19 12.1 .36 .0064 
20 200 20 20 m.l.e. 1.21 5.9 .89 .0055 
20 20 20 20 8x8 max-ent .27 12.1 .49 .0066 
20 20 20 20 m.l.e. 2.37 5.3 2.18 .0057 

n=24 4x4 max-ent .21 24.0 .19 .0299 
m.l.e. .82 11.6 .69 .0411 

8x8 max-ent .14 24.0 .21 .0133 
m.l.e. 1.69 2.2 1.24 .0152 

four comparisons described above, over 20 simulations of y. For this paper, we did the 
above computation for 12 cases: 2 true images x (each defined on a 4 X 4 grid); 3 sets of 
nand Aj and 2 reconstruction grids (4 X 4 and 8 X 8; that is, N = 16 and N = 64). The 
results are shown in Table 1. 

3 Tradeoff between likelihood and entropy 

Table 1 shows that maximum likelihood better fits the true M, as well as, of course, the 
data y. Constrained maximum entropy better fits the true x, as well as, of course, the 
prior measure m. These results imply a tradeoff between fit in data space and fit in image 
space, with constrained maximum entropy performing better in the key measure of fit to 
the true image. Looking at the results more closely, we also find that maximum likelihood 
does reasonably well when it fits the data exactly, and worse when it cannot. 

Both methods of course fit the data or prior model better when they estimate over a 
finer grid; at the same time, they fit the truth less well. This makes sense in our example, 
because we defined the true image over the coarse grid. The constrained maximum entropy 
reconstructions are only slightly worse in the fine grid, however, while some maximum 
likelihood images fit far worse when allowed these extra degrees of freedom. 
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The maximum likelihood estimate (when there is no perfect fit) is found by EM (Vardi 
et al. (1985». This is an iterative algorithm, each step of which increases the likelihood of 
the estimate (Dempster et al. (1977». We can track the entropy and likelihood of the EM 
iterates, starting at a uniform image (thus moving from maximum entropy to maximum 
likelihood). We have examined two such plots: one that converges to an image for which 
M = y (and so -2LL(Mly) = 0) and one for which no such image exists. Interestingly, 
S(xlm) decreases in each step ofthe algorithm, in both cases. These plots imply a tradeoff, 
in models, between entropy and likelihood, especially in the region near maximum likelihood, 
where entropy shows a great decrease. For these same iterative estimates, we have also 
plotted their fit S(xlx) to the true image and the corresponding fit S(MIM) to the truth 
in data space. Here we find that in the first few iterations, both measures of fit improve. 
However, as the algorithm approaches the maximum likelihood estimate, the fit in data 
space gets slightly worse, and the fit in image space gets much worse. This is apparently 
due to the spiky character of the maximum likelihood estimates and holds even in a case of 
a very spiky true image.! 

4 Rationale for constrained maximum entropy 

To understand this apparent tradeoff, we must explore the link between a model in image 
space and the data in their space. We are interested in the image x, but the data tell us 
only about the sampling expectations M, and nothing about x, given M. To get an image, 
we must estimate M from the information provided by the data, and then choose an x 
consistent with our estimate M. We need models on data space and on image space, given 
data. If we do not formalize our models, we are using implicit models. Perhaps these can 
explain the behavior of the methods presented above. 

We will embed the parameter M in a Bayesian model, and hence determine its probable 
values, given the data. Then we will use maximum entropy to select one image among all 
those consistent with M, for each value in the posterior distribution of M. We do not extend 
our Bayesian model to image space because, given M, inference on x would depend solely 
on the prior distribution. It may be more desirable to choose our image-picking criterion 
as such, rather than to model in the vast space of images. This is the rationale of Skilling 
(1986). 

As mentioned above, the fineness of the reconstruction grid is specified by the analyst; in 
fact, there is no logical upper bound for the number N of pixels. Aside from computational 
difficulties, a Bayesian modeler on x may wish to keep N low to moderate the task of 
specifying a plausible distribution over the space of all images x in N-dimensional space. 
Maximum entropy appears to solve this problem easily, however. Entropy is invariant under 
continuous reparameterization; thus, if an image is left unchanged but is pixellized more 
finely, its entropy (relative to a locally uniform measure) will not change. Furthermore, this 
identical image has the highest entropy of all images, on the fine grid, that are consistent 
with the original coarse image. The simulation results presented in Table 1 imply that 
this invariance works to our advantage, in that the maximum entropy solution performs 
relatively well over a too-fine grid. 

1 Graphs are available on request. 
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5 Bayesian maximum entropy methods 

This section discusses a maximum entropy reconstruction method based on Bayesian esti­
mation of parameters in data space, and connects it on a theoretical level to the original 
approach of Gull and Daniell (1978). Our goal is to suggest an improved method, and to 
clarify the hidden assumptions in the old method. Assume we have a posterior distribution 
on (Mly). Assign, to every M, the maximum entropy image max-ent [x(M)], satisfying 
Ax = M. This yields a probability distribution of images. H we want to pick just one 
image, we might take M to be the posterior mean E(Mly), and pick the image max-ent 
[x(M)]. 

Gull and Daniell perform the more (computationally) difficult task of maximizing S( x 1m) 
subject to the nonlinear constraint: -2LL(Mly) ~ C. H we wish to follow this route, we 
might set C to the posterior mean of -2LL, given y. Asymptotically (that is, with A and 
n fixed, but with more Poisson data), -2LL(Mly) '" X!, with mean n. This gives some 
justification for the usual constraint value C = n. From the Bayesian perspective, however, 
we should consider the posterior distribution of -2LL, conditional on the data y. In a small 
sample, we would certainly prefer to set C = E(-2LL(Mly)), rather than C = n, for the 
constraint: -2LL(Mly) ~ C. In fact, one may observe data y such that -2LL(Mly) > n for 
all positive images x. 

6 Illustrative examples 

This section shows the use of the methods described above as applied to three situations. 
We start with a simple, straightforward example and move to an approximation of the main 
example of this paper. The examples in this section will be based on the Normal model: 

The sampling expectations M will again be expressed as an all-positive linear transformation 
of an all-positive image: 

M = Ax, with N pixels in x, N ~ n. A has rank n. 

The fit to the data is then measured by a sum of squares: 

-2LL(Mly) = E(Mi - Yi?' 
i 

The range of the transformation A, applied to the set of nonnegative images x, is a convex 
region in data space that we will call P. If YEP, then there is an image (in general, an 
(N - n)-dimensional space of images) that fits the data perfectly. We put a uniform prior 
distribution on M, for all M E P. 

In our first example, we set N = n and A to the identity, so M = x. The posterior 
distribution of M is truncated Normal: 
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If all the observations Yi are appreciably greater than (J', the truncation will be unimportant. 
In this case, 

-2LL(MIY) tv X!. 
For any specific £1, the only possible image is x = £1, and the posterior distribution of 
maximum entropy estimates is the truncated n-dimensional Normal, centered at y. 

Our second example is the same, but with the additional prior restriction that all the 
M;'s be equal. Thus restricted, the n-dimensional Normal posterior distribution becomes a 
univariate Normal on the common parameter Mi: 

(MiIY) 

-2LL(MIY) = 

(J'2 

N(y, -), constrained to Mi > 0, 
n 

n(Mi - y)2 + '"' (Yi - y)2 
(J'2 LJ (J'2 

Assuming ~ is sufficiently far from 0, the conditional distribution of (n(~;-il)2IY) is xi, and 
-2LL(MIY) is just that random variable plus a constant that is known, given y. Uncondi-

tional on the data, this constant has expectation E( L;(!;-il)2) = n - 1. 
In our third example, N > n and A is a complicated matrix. P is now a convex region in 

data space bounded by m hyperplanes that intersect the origin. The posterior distribution 
of M, given y, is truncated Normal once again, but this time the truncation matters. The 
data Y might not lie within P. Also, -2LL(MIY) will no longer be approximately distributed 
as X!, and its expectation, given y, will most likely not be close to n. As (J'2 decreases, 
however, y becomes closer to the true M and less likely to be near the boundary of P. 
Thus, the truncation becomes less important, and as (J'2 _ 0, we return to the geometry 
and distribution of (Mly) of the first example of this section. Of course, for any £1, we 
must still choose a maximum-entropy image x from an (N - n )-dimensional space satisfying 
Ax = £1. This third example is very similar to the main example of this paper, inasmuch 
as the Normal distribution approximates the Poisson. The asymptotic case of infinite data 
corresponds to (J'2 _ O. 

7 Discussion 

This last example allows us to understand the problems of the maximum likelihood recon­
struction. If y f/. P, this reconstruction will lie on the boundary of P, yielding an image 
with zeroes in many cells. The chance of this happening depends on how close A is to 
being singular, as well as on the amount of Poisson data and on the true image; it can 
happen even with a smooth true image. On the other hand, if yEP, then the maximum 
likelihood estimate gives £1 = y. This may overfit the data in those dimensions in which 
M is constrained to a narrow region. In such directions, the posterior density of M may be 
nearly constant. An estimator that fits too closely to the position of y will be subject to the 
latter's great sampling variability. These problems disappear asymptotically, of course. As 
the number of counts increases, maximum likelihood becomes as precise as any estimator 
ofM. 

Our theoretical study also explains the entropy-likelihood tradeoff in two ways. First, 
as -2LL is allowed to increase, a larger region in data-space, and thus in image-space, 
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becomes available in which to search for high-entropy images. Second, if the data yare a 
small sample, parameters M with likelihoods near the maximum will generally be peculiar 
points, probably nearer to the boundary of P than any reasonably smooth true image. This 
is apparently common in practice, to judge from reports of unrealistic maximum likelihood 
reconstructions for hypothetical and real tomography data (Vardi et al. (1984), Fox (1987)). 
Such behavior can make the tradeoff more extreme near the maximum of likelihood. 

In conclusion, maximum entropy and maximum likelihood estimates for our problem 
differ; the former better fits the true image and the latter better fits the data. When fit 
on an overly fine grid of pixels, maximum entropy produces reasonable images; maximum 
likelihood does not. In light of these results, we suggest attacking our image reconstruction 
problem with separate analyses on data space and image space. We can first estimate our 
knowledge of the sampling expectations M, from the noisy data y. For any point in the 
posterior distribution of M, we can then choose the maximum entropy image x consistent 
with this incomplete information. A simple example shows the connection between this 
method and that of Gull and Daniell (1978) and Skilling (1986). We interpret the 'hard 
constraints' of the latter methods as an approximation to our Bayesian approach. 
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ENTROPY + RAIN = FLOODS 
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ABSTRACT. The paper discusses the application of the maximum entropy 
formalism to catchment behaviour and flood frequency. In the former, 
the distribution of water within a catchment is treated as a problem of 
statistical inference and speculations on the consequent behaviour of 
catchments are addressed. In the problem of flood frequency, 
appropriate statistics are deduced which would, on application of the 
entropy formalism, recover the well-known Gumbel distribution. 

1. THE FIRST PART: RAINFALL RUNOFF PROCESSES 

1. 1 CATCHMENT MODELS 

Approaches to the dynamic modelling of hydrological catchments are 
diverse. They range from black box (time series) models which make no 
pretence to mirror the physical states and processes of the system, to 
mechanistic models which seek to represent such finescale processes of 
water movement. There are innumerable models of an intermediate and 
conceptual nature. Perhaps the simplest of these conceptual models 1s 
the linear reservoir, in which the state of the system is taken to be 
the volume V = Vet) of water stored in the catchment, and runoff q from 
the catchment is assumed proportional to V such that q = k V. If inflow 
(rainfall) is denoted p, then mass continuity gives the familiar first 
order linear ordinary differential equation: 

dV = P _ q = p _ kV 
dt 

A novel departure from the general pattern outlined above was suggested 
by Clarke and Moore (1981) who sought to represent the catchment as a 
statistical population of storages of individual size s, characterised 
by a probability density function f(s). The present paper examines the 
consequences of applying the Maximum Entropy Principle to such a 
description at the micro level and its effect on dynamic behaviour at 
the macro level. Prior knowledge of the catchment is confined to Just 
two aspects, namely the mean catchment capacity (which is assumed 
time-invariant), and the mean catchment wetness. 
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1.2 MAXIMUM ENTROPY FORMS FOR CATCHMENT STORAGE AND CATCHMENT WETNESS 

1.2.1 Available Catchment Storage f(s) The form of f(s) is determined 
from the solution of the program: 

CIO 

Maximise Ss = - I f(s) loge 

subject to 

o 
CIO 

I f(s)ds = 

o 

CIOI s 
f(s)ds = 

o 

r.!.§l ds 
m(s) 

1 

s 

and where m(s) is an invariant measure function as defined by Jaynes 
(1963) 
Correspondingly, 

f(s) = m(s)exp [- ~o - ~s] 

Scale invariance suggests m(s) = constant. Incorporating this within ~o 
leads to the simplified result: 

f(s) -~s = ~ e ~ = 1/s 
1.2.2 Water Storage f(vls) The form of f(vls) is requlre~ for each 
value of s, subject to the requirement that the overall mean catchment 
water content is v. Hence the mathematical program: 

Maximise S v 

subject to 

= f(vls) log 
e 

f(vls) 
m(vls) 

CIO s I f(s) I f(vls) dv ds = 1 

o 0 

CIO s I f(s) I v f(vls)dv ds = v 

o 0 

and leading to f(vls) = mevls) exp [- ¢o - ~ \11 

dv ds 



ENTROPY + RAIN = FLOODS 439 

Scale invariance again suggests that m(vls) is independent of v, which, 
as far as f(vls) is concerned, may be incorporated within ~. 

Thus, f(vls) -; v 
; e 

-; s 
1 - e 

for all s 

The corresponding moment generation function M(pls) 

s 

M(pls) J f(vls) e-Pv dv = ; 
(p + ;) 

0 

The condit ional water storage vis is thus given by 

vis = - dM (pts) I 1 - e-;s - </> s 
dp p=o </> (1 - e -</>s 

is 

[ 1 - e-(p + ;)s] 

[1 - e-</>s] 

e -</>s 

The single parameter </>, which governs f(vls) for all s, is related to 
the overall mean catchment water content v through 

or 

00 

J f(s) sJ v f(vls)dv ds 

o o 

v = OOJ -AS Ae 

o 

= 1 
</> 

AS e OOJ -(A+q,)s 

1.3 CATCHMENT DYNAMICS 

00 

J f(s) vis ds = v 

o 

ds 

In the simple linear model referred to earlier, runoff was taken to be 
proportional to catchment storage; in the development below runoff q 
will again be taken to be proportional to catchment content v, but only 
in those elements of storage which are full. Thus 

dv = 
dt p - q 

00 

p - k J f(s) s f(v sls)ds 

o 
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The catchment dynamics may also be expressed in terms of the parameter ; 
as follows: 

ds 

The integrals in the above may be expressed in terms of Riemann's two 
parameter Zeta function ~Cz,q) and the related three-parameter Phi 

function tCs,z,q). If the dimensionless quantity y = t is introduced 
then: 

with 

and 

dy = 
dt 

v = 

q = 

2 -y 

1 
AY 

K 
y 

A 2 ky ~C 2, 1 + ! ) [p y -
Y 

1 ! ~( 3, 1 ) ] - 1 [~ ( 2, - ) -y y Y 

1 
~ (2, 

1 1 + - ) 
Ay2 Y 

~ (2, 1 + ! 
y 

Catchment storage, v, and runoff, q, are related through 

q = k( 1 - A Y v ), for all y. 

Note also that 

v(-y) = 1 - v(y) for all y. 

1.4 SOLUTIONS AND THE PROSPECT FOR MODEL VALIDATION? 

y > 0 

y > 0 

y > 0 

The differential equation describing the variation of y with t has (at 
least, to this author) no obvious solution other than a numerical one, 
and is not attempted here. The implied variation of q with v is given 
in Figure 1 for k = A = 1. The entropy model has the property that 
runoff increases with catchment wetness. Additionally, the available 
catchment storage is bounded above (at s = l/A) as well as at zero C a 
condition which is not enjoyed by the simple linear reservoir assumption 
q = kv). 
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2 THE SECOND PART: FLOODS 

2.1 UNCERTAINTY, EXTREMITY AND OBJECTIVITY 

The Gumbel (Extreme Value Type I) distribution is just one of many used 
for modelling flood frequency from catchment flood data, and whilst it 
has impeccable credentials for the modelling of extremes, actual 
catchments do not appear to follow such an ideal. The Gumbel model is 
often rejected because its coefficient of skewness is invariant at the 
level 1.14 and not mirrored by catchment data. 

The maximum entropy principle for generating least-biased distributions 
from limited information is accepted as a lesson in objectivity, at 
least when 

a) the random events are discrete. 

b) the totality of the given information can be objectively and 
suitably expressed, and refers to known ('population') information 
rather than sample information. 

Condition (a) can be relaxed so long as an invariant measure function 
can be identified (Jaynes, 1963). Condition (b) can be relaxed to 
include sample information, by the application of Bayes Theorem to 
integrate out parameter uncertainty. 

But, when the prior information comprises a set of sample data (as 
opposed to merely sample statistics of such data), then no obvious 
objective way forward exists; any set of sample moments/transformations 
could be calculated, each leading to a different maximum entropy 
distribution. Integrating out any nuisance parameters via Bayes Theorem 
will not lead to convergence toa unique maximum entropy form. The 
practitioner is thus faced with the exercise of judgement; the choice 
of sample moments will, as a result of applying the entropy formalism, 
in turn determine the statistical model. It is therefore of some 
interest to discover which forms of prior information lead, via Entropy 
Maximisation, to particular density functions. 

2.2 THE EVl DISTRIBUTION AND MAXIMUM ENTROPY 

Suppose that for some values v and b, the following distribution moments 
~ , e for a random variable x are known 

y y 

e y 

~ 

~ 

"f x - v f(x)dx 
b 

-!XI 

J exp [- x ~ v 1 f(x)dx 
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Maximising the entropy lunction 

s 
Q) 

= -k J lex) loge 
-Q) 

lex) 
m(x) dx 

subject to the above constraints (together with the normality 
condition), and setting m(x) to unity yields 

lex) b r(;\ ) 
1 

[
X - v exp -;\ (--) 

1 b 

where;\ and;\ are the Lagrangian multipliers associated with the 
1 2 

constraints on ~ and c respectively. 
y y 

Expressions lor ~ and c 
y y 

in terms of ;\ 
1 

and;\ are obtained from 
2 

partition function exp [;\ ] through 
o 

- 8;\0 and 
8;\1 

- 8;\0 yielding: 
8;\2 

log ;\ - ii (;\ ) E [ x - v 

1 ~y - -b-e 2 1 

;\ 

[exp[-{x~v}l 1 and 1 E c = 
~ 

;: 
Y 2 

where ii(. ) is the digamma lunction. 

the 

The expression for lex) reduces to the EV1 distribution when ;\ = ;\ = 1. 
1 2 

Thus, the EV1 distribution is seen to be a maximum entropy distribution 
when v and b have values u and a which produce the moments 

and 
~y = 
c 

y 

0.5772 

1 

2.3 PARAMETER ESTIMATION METHODS 

The most common ways of estimating u and a from a set of sample data 
are the methods of moments (using sample estimates of the mean and 
variance) and maximum likelihood. In 1946 Kimball noted that the EV1 
does not possess a pair of sufficient statistics and suggested an 
alternative scheme, employing what he termed "sufficient statistical 
estimation lunctions", X and Y, which when set to zero yield estimates 
of the unknown parameters u and a (Kimball, 1946). 
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viz: 

x .r+[ • uj -0.5772] 

Y 1 [-m£y 1 1 

where x is the sample mean 

~ t e~[ -(xi - u) 

] and £ y lX 

Kimball shows that if x is EV1 with parameters u and lX, then X, Yare 
asymptotically Gaussian with covariance matrix 

tT [ ~2 -1 ] 
-xy 

-1 1 

2.4 ENTROPY-BASED PARAMETER ESTIMATES 

The moments ~ and c have been shown in Section 2.2 to yield the EV1 
y Y 
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distribution after entropy maximisation; it therefore seems natural to 
use sample estimates of these same two moments for parameter estimation: 

y 

c 
y 

~ In [ x: u 1 
i=1 

[ [xi .- u 1 ] 
and seeking values u and lX to yield y = 0.5772 and c = 1. 

This pair of estimation equations are seen to be entirely equivalent to 
Kimball's sufficient statistical estimation functions X and Y. To 
paraphrase Jaynes (1976), "Kimball was right after all." Practical 
estimation of u and lX is straightforward (Jowitt (1978)). 
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2.5 THE EVI DISTRIBUTION 

The Gumbel (EV1) distribution has a skewness coefficient of 1.14 for 
all u and «. The related EV2 and EV3 distributions admit variations 
of skewness. All three distributions are regenerative, in that if x is 
EVn, then the extreme value of N samples of x is also EVn. 

The generalised form of the maximum entropy distribution outlined earlie: 
can be described in terms of the Moment Generating Function: 

=l A A1 
A (A1- s) M(s) sYf(y) dy 2 

rCA - s) 
rCA ) 

2 1 
0 1 

The resulting skewness coefficient is 

- ",(2)(A ) 
1 

0 :s :s 2 '1 = '1 [ f/2 ",( 1) (\ ) 

",(2)(.) are the Trigamma and Tetragamma functions where ",Ct) (. ), 

respect i ve ly. 
in the case A 

The usual Gumbel (EV1) distribution ('1 = 1.14) results 
= 1. 

1 

SUMMARY REMARKS ON THE GUMBEL AND THE EVI DISTRIBUTION 

The EVA distribution has stemmed from a study of the Gumbel (EVI) 
distribution and its connection with entropy maximisation. The 
distribution, whilst not generally regenerative, does offer variable 
skewness. The parameter estimations scheme for the specific case of the 
EV1 distribution is seen to be in complete correspondence to the 
estimation functions suggested by Kimball in 1946. 

Whenever statistical estimation is based on a set of sample data, there 
is no unique choice of (sample) moments to constrain the entropy 
function. In effect, the practitioner's choice of moments is equivalent 
to choosing the density function. This being so it is informative to 
determine that set of prior constraints which, via entropy maximisation, 
would lead to a particular and commonly used-distribution. 
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ABSTRACT. Previous work by the present authors [1,2] has introduced 
the idea that problems of constrained non-linear programming, which 
have hitherto been treated entirely deterministically in respect of the 
development of solution methods, may be interpreted probabi1istica11y 
and solved by appropriate methods employing entropy maximization. This 
paper gives formal proofs by entirely deterministic mathematical means 
of the results contained in the earlier work and removes the need for 
any probabilistic interpretation. This consequently establishes the 
research on a much firmer base and also implies that the probabilistic 
interpretation and use of entropy maximization, though no longer 
strictly essential, is nonetheless valid. 

1. INTRODUCTION 

The constrained optimizati~n problem studied in this paper is that of 
finding a local solution ~ of Problem P: 

Minimize: f(~) 
x 

j-1, .. ,m 

(1) 

(2) 

where f(!) and gj(!)' j-l, .. ,m denote real-valued smooth functions of a 
vector! = Xi' i-l, .. n. The approach used herein centres around 
solving prob em P indirectly through the use of the surrogate problem, 
Problem S: 

Minimize: f(~) 
x 

m 
Subject to: ~ Ajgj(~) ( 0 

j-l 
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The single surrogate constraint (3) is defined as a positive linear 
combination of the original constraints (2). ~ is an m-vector of 
non-negative weights, named surrogate multipliers, which may be 
normalised without loss of generality and which therefore satisfy: 

j-1, ... ,m (4) 

The idea underlying constraint surrogation is that the single 
constraint (3) stands in place of the m constraints (2). The various 
activity levels and interactions among the constraints (2) can be 
captured and represented by the surrogate multipliers ~ and if values 
for these are chosen correctly then the solutions to problems P and S 
will be equivalent. Many previous authors have explored the nature of 
this equivalence [3-51. 

This paper is concerned with methods for finding the correct values 
* * for -th~ surrogate multipliers, ~ , such that! which solves problem S 

with ~ also solves problem P. Previous work by th~ present authors 
[1,2] has used a maximum entropy approach to find ~. The validity of 
this method depends upon a probabilistic interpretation of the 
surrogate multipliers. From this probabilistic interpretation several 
useful results and an iterative solution method for problem P can be 
derived. 

In this paper a brief survey is made of the work of Refs. [1,2] 
establishing the probabilistic, entropy-based context of problem S. 
Then some new proofs of the main results are presented which are 
entirely deterministic in nature and remove the need for any 
intermediate assumptions about the probabilistic nature of the 
surrogate multipliers. 

2. A MAXIHUH ENTROPY APPROACH 

The Lagrangean of problem S is 

m 
f(~) + (¥ ~ ).jgj (~) 

j-1 
(5) 

in which (¥ is the Lagrange multiplier for constraint (3). An essential 
condition for the equivalence of problems P and S is that Ls must 
satisfy the Lagrangean saddle-point condition: 

(6) 

This saddle-point condition implies that a two-phase iterative approach 
can be used to solve problem P via S. A typical syhyme involves 
choosing an initial set of surrogate multipliers 1 01 and solving 
problem S to give a corresponding set of values !To (by minimization 
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over ~, corresponding to the left-h~nd inequality in (6». The 
mUltipliers are then updated to ~[lJ (by some maximization process, 
corresponding to the rtyyt-hand inequality in (6» and problem S is 
solv~d afain to five ~ . The process is repeated until the sequence 
(~lOJ, ~ oJ), (~*lJ,*~[l]), ... converges upon a solution of S and hence 
also of P, at (~ , ~). The main difficulty in this scheme resides in 
finding an up~ating s~heme to generate the sequence of surrogate 

1 . l' dOJ d 1] mu tl.p l.ers!:! '!:! , ... 
In Ref. [1] entropy maximization was used to generate ~ updates. It 

was noted that if the m components of ~ are interpreted as discrete 
probabilities then (4) represents the axiomatic normality and 
non-negativity conditions of such probabilities. For the case of 
problem P in which at least one of the constraints (2) is active at the 
optimum -the case most frequently occurring in optimum engineering 
design applications and that under consideration throughout this work -
it can easily be proved that constraint (3) must be an equality. 
Consequently, constraint (3) has the form of an expected value 
constraint. Wif~]this probabilistic view of problem S least biased 
estimates for ~ at the k-th iteration can be found by using the 
maximum entropy formalism [6], effectively by solving the problem: 

Maximize: 
~[k] 

Subject to: 

m 

S - - K ~ 
j-l 

A. [k] RnA. [k] 
J J 

i A. [k] = 1 
. 1 J J-

(7) 

(8) 

(9) 

in which S is the Shannon entropy [7] and K a positive constant. f in 
Eq. (9) is ay error term reflecting the fart that constraint function 
values g[k-l have been used in place of g k] which are not yet 
available. f should be small, P9sitive and decrease towards zero as 
iterations proceed. Values of ~lkJ which solve (7)-(9) are given by: 

m 
A.[k] _ exp [ ~g'(X[k-l])/K]/ ~ exp [ ~g'(X[k-l])/K] j-l, .. m (10) 
J J - j-l J -

in which ~ is the Lagrange multiplier for Eq. (9). Since f is not 
uniquely known and K is a positive constant, ~/K may be considered as a 
control parameter. For f to display the desired convergence character­
istics ~/K must be positive and increase towards infinity with 
successive iterations. 

Eq. (10) represents the entropy-based updating formula for the 
surrogate multipliers ~ in the two-phase iterative solution scheme 
described above. Full details of the work are given in Refs. [1,2]. 
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An alternative way of incorporating entropy is directly to augment 
f(!) in problem S with a multiplier entropy term and treat the 
resulting problem as a minimax optimization over both sets of variables 
! and~. Problem S then becomes Problem SA: 

Minimize Maximize: 
x ), 

m 

m 
f(~) - (ljp) ~ ),j tn ),j 

j-l 

Subject to: ~),j - 1 
j-l 

In (11) p is a positive constant. The Lagrangean of problem SA is 

(11) 

which is seen to be the same as Ls 
normality and entropy expressions. 
imposes the necessary saddle-point 
respect to ),j and ~ gives 

(Eq. (5» augmented by multiplier 
The minimax nature of problem SA 

condition. Stationarity of LSA with 

m 
),j - exp[pagj(~)]j ~ exp[pagj(x)] 

j-l 
j-l, .. ,m (13) 

Eq. (13) is seen to be similar to Eq. (10), the ~ update formulae in 
the two-phase method, when ~/K is replaced by pa. Substituting (13) 
into LSA gives, after algebraic manipulation, 

* m 

* 

LSA - f(~) + (ljp)tn ~ exp[pagj(~)] 
j..,l 

(14) 

Minimization of the above LsA over variables ~ and with pa taking an 
increasing positive sequence of values tending towards infinity yields 
the solution of problem P. 

This entropy augmentation approach has effectively collapsed the 
two-phase iterative method into a single phase. Eq. (14) has the 
appearance of a penalty function formulation of problem P in which the 
penalty term has been derived on the basis of maximizing the entropy of 
the surrogate multipliers. 

All the above results have hitherto rested upon and flowed from the 
validity of the assumption that the surrogate multipliers ~ in problem 
S can be treated as probabilities. This probabilistic view alone 
justifies the introduction of the Shannon entropy and its maximization 
in this problem context. The next section of the paper presents new 



MAXIMUM ENTROPY AND CONSTRAINED OPTIMIZATION 

proofs of the results derived earlier, proofs which are entirely 
deterministic and do not require any probabilistic interpretations. 

3. A DETERMINISTIC APPROACH 

The following theorem is essential to the development of alternative 
proofs of the main results of section 2. 

Theorem 

For any set of positive numbers, U1 ""Uj ""Um and weights 
A1 , •• ,Aj, .. Am satisfying 

m 
~ A. - 1 Aj ) o Vj: 

j-l J ' 

m m 
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in [ ~ Uj ] ) ~ Aj enUj - .~ AjenAj (15) 
j-l j-l J-l 

with equality when the right-hand side of the inequality is maximized 
over Aj' j-l, .. ,m. 

Proof 

The theorem and its proof are consequences of Cauchy's inequality (the 
arithmetic-geometric mean inequality) [8] which states that for 
Uj,Aj' j-l, .. ,m as defined in the theorem 

m m 
~ Uj ) n (Uj/Ajh 

j-l j-l 

Taking natural logarithms of (16) gives 

en[ .~ Uj ] ) 
m A. m 

-Aj 
~ enUj J + ~ enAj 

J-l j-l j-l 

Hence 

en[ .~ Uj ] 

m m 
) ~ AjenUj - ~ AjenAj 

J=l j=l j-l 

and the first part of the theorem is proved. 
The second part requires the maximization over Ai' j=1, .. ,m of 

right-hand side of the inequality subject to normallty and non­
negativity of the weights. The Lagrangean of this problem is 

(16) 

the 
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m m 

L(~,o) - ~ AjenU. - ~ AjenAj + 
j-l J j-l 

o[ i A' - 1 ] . 1 J J-
(17) 

There is no need to include the non-negativity conditions explicitly as 
the middle term of L imposes this. Stationarity of L with respect to 
Aj' j-l, .. ,m and 0 leads to 

m 
A' = U.j ~ U· 
J J. 1 J J-

j=l, .. ,m (18) 

Result (18) can be shown to be a maximizing point of the right-hand 
side of (15) by examining the second derivative matrix of L which is 
negative definite. 

Substituting (18) into the right-hand side of (15) gives 

Maximum 

Aj ,j-l, .. ,m 

after algebraic simplification, and the theorem is proved. 

Interesting features of the theorem are the appearance of the Shannon 
entropy function of the weights 1 in the right-hand side of (15), and 
the maximization over 1 of that right-hand side function containing 
entropy. The context is entirely deterministic, the 1 are weights not 
probabilities. 

The theorem is now used to establish some of the results of section 
2. Let 

j-l, .. ,m (19) 

where f(!) and g.(!), j-l, .. ,m are as defined for problem P, a is 
defined as in (53 and p is a positive constant. Defining Uj by (19) 
imposes restrictions upon the dimensionalities of f(!) and g(!) which 
may represent different physical quantities. Clearly f(!) + agi(!) 
must be dimensionally homogeneous for all j and, since a is a constant 
in all such expressions, the only way in which this homogeneity can be 
generally assumed is for f(!) and each of the functions g1(!) in 
problem P to be dimensionless. It is assumed hereafter t~at functions 
f(!) and g(!) in problem P, and hence in (19) have been appropriately 
non-dimensionalised. All Uj defined by (19) are then positive numbers 
as required by the theorem. 

For Uj as defined by (19) the theorem states that 

m m m 
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m m m m 
:. pf(~) + en ~ exp[pagj (~) 1 > pf(~) ~ Aj + O!p ~ Ajgj (~) - ~ Aj enAj 

j-1 j-1 j-1 j-1 

Dividing through by p and using the normality of 1 gives 

m m m 
f(~) + (l/p)en.~ exp[pagj(~)l > f(~) + a.~ Ajgj(~) - (lip) 

J-1 J-1 
~ A.enA. 

j 1 J J 
- (20) 

* The left-hand side is identical to LSA ' Eq. (14). and the right-hand 
side is identical to LSA ' Eq. (12). since the weight normalization term 
is zero. Thus. for any set of weights Aj.j-1 •.. ,m: 

* LSA ) LSA (21) 
The theorem also states that (21) becomes an equality when LSA is 
maximized over the weights. It may also be noted that values of the 
weights corresponding to this equality are given by Eq. (18) with the 
Ui.j-l •..• m defined by (19). This substitution yields results (13) for 
t~e optimal weights as in section 2. 

Inequality (21) may be further extended to 

(22) 

where LS is the Lagrangean function (5) of problem S. LSA is simply LS 
augmented by a weight normalising term (which is always zero) and by a 
weight entropy term which must always be ~on-negative. 

It is evident from (22) that LSA and LsA are upper bounds to the 
surrogate Lagrangean LS for any 1 and p. Examining LsA' Eq. (12), more 
closely it can be seen that LSA decreases as p increases until at p - ~ 
LSA - LS' . Furthermore, the weights corresponding to a maximum value of 
LSA yield LSA ' Eq. (14). Consequently the three functions in 
inequalities (22) all become equal as p tends to infinity and as the 
weights take their optimal values. All the results of section 2 are 
therefore encapsulated in (22). 

4. DISCUSSION 

The work described in section 2 of this paper was based upon assuming 
that the surrogate multipliers 1 in problem S can be interpreted as 
probabilities and that optimal values for them. corresponding to a 
solution of problem P via S. can be obtained by entropy maximization. 
The Shannon entropy function was introduced artificially to achieve 
these optimal values of 1. 

Section 3 has shown that all the formulations of section 2 can be 
generated entirely logically and deterministically through the use of 
Cauchy's inequality. No probabilistic interpretations need be made; 
section 3 deals only with normalised, non-negative weights. Neverthe­
less, the Shannon entropy function has emerged from the mathematics as 
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an integral part of the proofs and not as an artificially introduced 
element. The results of section 3 are identical to those of section 2 
and they therefore justify the probabilistic and entropic assumptions 
made in earlier work [1]. 

It is important to stress that Refs [1,2] were very exploratory in 
nature. No previous work existed to suggest that classical determinis­
tic non-linear constrained optimization problems might be connected in 
any way to entropy maximization. No previous work known to the authors 
had suggested that normalised non-negative weights might be interpreted 
as probabilities and exploited through probabilistic methods. In Refs 
[1,2] and in this paper those links between entropy maximization and 
constrained optimization have now been established and it is clear that 
normalised surrogate multipliers can be interpreted as probabilities 
and their optimum values can be inferred by probabilistic methods. 
Algorithmic aspects of the work, i.e. development of robust methods 
for the computational solution of optimization problems based upon the 
probabilistic approach, has thus far taken second place to establishing 
the validity of the approach itself but has now commenced. 

In conclusion it is noted that instances of problem P in which there 
are very many variables xi' very many constraints gi' and in which all 
the functions f(~) and g(~) are highly nonlinear are common throughout 
engineering design. Such problems are very hard to solve by 
conventional optimization algorithms. Perhaps the most interesting 
aspect of this research is that it has established a new way of 
approaching a difficult classical problem. Entropy maximization and 
general constrained optimization problems are closely linked and the 
nature of those links is worth exploring further. 
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The Eigenvalues of Mega-dimensional Matrices 
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ABSTRACT 

Often, we need to know some integral property of the eigenvalues 
{X} of a large N x N symmetric matrix A. For example, determinants 
det(A) = exp(~ log (x)) playa role in the classic maximum entropy 
algorithm [Gull, 1988]. Likewise in physics, the specific heat of a system 
is a temperature- -dependent sum over the eigenvalues of the Hamilto­
nian matrix. However, the matrix may be so large that direct 0 (N 3 ) 

calculation of all N eigenvalues is prohibited. Indeed, if A is coded as a 
"fast" procedure, then 0 (N 2 ) operations may also be prohibited. 

Then the only permitted use of A is to apply it to one or a few vectors 
vo, VI, V2, .... We use the resulting vectors in an entropic Bayesian algo­
rithm to estimate the eigenvalue spectrum of A, and thence its integral 
properties. 
A million-by-million matrix is used as an example. 

Introductory ideas. 
We start with the premise that the symmetric matrix A is so large that it 

can only be used to generate some fairly small set of vectors Avo, A VI, ... , A v m. 

The eigenvalue spectrum of A is invariant under orthogonal coordinate rotations. 
Hence any information on eigenvalues which resides in the vector set {A v} must 
share this invariance, so must be contained in scalar products. At least one exter­
nally supplied vector is needed to "seed" the vector set, and consistency demands 
that our state of knowledge of this seed should be rotationally invariant. Hence 
a seed vector, r say, must be drawn from a spherically symmetric probability 
distribution: we may conveniently set 

with each component 7'i of r drawn independently from the unit normal distribu­
tion. Each new seed vector introduces more randomness, so that for any fixed size 
of vector set, fewer of the scalar products are informative. We shall treat the case 
in which just one seed vector is used, the extension to more being straightforward. 

The vector set we must then use consists of m + 1 vectors 

Vj = Ajr, j = O,l, ... ,m 
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and the only quantities relevant to eigenvalues are their scalar products Vi T Vj, 

which define 2m + 1 data 

k = 0,1, ... ,2m 

In terms of the eigenvalues Xl, x2, ... , X N, 

N 

Dk = 2:r; x~ k=0,1, ... ,2m 
i=l 

where ri is the ith component of r in the diagonal frame of A, itself a random sam­
ple from the unit normal distribution. Thus the data are probabilistic estimates 
of successive moments 

Mk = J dxI(x)x k 

of the eigenvalue spectrum I, I(x)dx being the number of eigenvalues lying in 
range dx. Our task is to infer I from the data. With complete knowledge of all 
N eigenvalues, our estimate of I would become a sum of N delta functions, but 
of course we will have to settle for less than this certainty. 

Formalism. 

For both algebraic and arithmetical reasons, it is better to work with suitable 
polynomials Pk (x) of order k (k = 0,1,2, ... ) instead of with raw powers xk. The 
vector set becomes 

j =O,I, ... ,m 

generated as are the Pj. For example Tchebyshev polynomials Tj are generated 
by 

To (x) = 1 1i(x)=x Tj+l (x) = 2xTj (x) - Tj-I (x) 

so that in this case 

Vo = r VI = Avo 

The scalar products can be manipulated to give 

k = 0,1, ... ,2m 

For example, Tchebyshev polynomials have 

72j+l (x) = 2Tj (x)2 - 1 72i+1 (x) = 2Tj (X)Tj+l (x) -1i (x) 
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so that in this case 

D2j = 2vf v j - vJ'vo D -2 T T 2j+1 - Vj Vj+1 - Vo VI 

Whatever polynomials are chosen, D" estimates 

M" = J dx f(x) Pdx) 

It is algebraically awkward to work with the full form of 

pr(DI{x}) = J dNrpr(r) pr(Dlr, {x}) 

but we can use the mean and covariance 

where 

to set 

pr(DIf) = (471")-tN (det K)-t exp(-L(f,D» 

L(f,D) = ~ (D - Mf K-1 (D - M) 
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in the usual Gaussian approximation (derived from maximum entropy). With 
Tchebyshev polynomials, K becomes bi-Toeplitz 

so that its inversion can be performed in only 0 (m2 ) operations. Alternatively, 
with polynomials Q which are orthonormal over f, 

J dx f (x) Q j (x) Q d x) = 8 j" 

K becomes unit and its inversion is trivial. (Regrettably Q can not be defined 
until f is known!) 
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Classic entropic spectrum 

As usual in data analysis, we need to invert pr (DI!) to estimate pr (lID), and 
to do this we need the prior pr (I). Fortunately, this problem is already solved. 
Like any other number density, I is positive and additive. Hence the classic 
maximum entropy analysis [Gull, 19881 applies. The prior on I (x) is entropic 

pr (lla) ex: exp(aS (I» 

where a is an initially unknown constant and S is the entropy 

S(I,m) = J dx (I(x)-m(x)-Iog(l(x)/m(x») 

relative to a pre-assigned measure or "model" m (x). Normally, one would most 
naturally use a flat model 

N 
m (x) = constant = ( ) 

X max - Xmin 

within some range (Xmin, x max ) large enough to cover all plausible eigenvalues. 
Given this model, we have the classic posterior 

pr(l,aID) ex: II(a/(a+A;»t . exp(aS(I)-L(I» 
i 

1 1 
where the Ai are the eigenvalues of ( - vv S) - 2 VV L ( - VV S) - 2. Here, the prior 
factor pr (a) has been ignored, because any reasonable prior would be overwhelmed 
by the other terms. 

To maximise this posterior over I, it is simpler to work with the polynomial 
expansion u of log (I) , 

00 

log I(x) = log m(x) + L ujPj (x) 
j=O 

Working within the Gaussian approximation and not differentiating K, the gradi­
ents and curvatures are 

i~2m 

otherwise 

i,j ~ 2m 

otherwise 
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Accordingly, the algorithm 

{ ui - {aUi + tK;;t (Mj - Dj )} / (a + t) , 
U· +--

I 0 
i~2m 

otherwise 
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will maximise the posterior at given a, though as a detail it is advisable to restrict 
6u to lie within a trust region defined by 

Furthermore, the polynomials Q i orthonormal over f form a set of orthonormal 

eigenvectors of ( - V\7 S) - t VV L (V\7 S) - t with eigenvalues 

Ai = { t, i ~ 2m 

o otherwise 

This means that the posterior simplifies to 

( )
(m+t) 

pr(J,aID) ex: (a:t) exp(aS(J)-L(J)) 

Hence the most probable choice of a (around which the posterior will be sharply 
peaked) for any given f is 

m 
a = -..;r.::S::;:2 =-===;4;=m=:S=----=S 

This final step completes the iteration scheme, because (whatever polynomials 
are used), all of f,M,K,S,a are now defined by u. Hence the most probable 
coefficients it and the corresponding most probable spectrum j and its multiplier 
a can be found numerically (Tchebyshev polynomials being convenient because of 
their finite norms and addition properties). 

Fluctuations. 
Near the most probable spectrum j, the posterior is 

so that the Bayesian fluctuations obey 

< 6f 6fT >= (-&\7\7S + VVL)-l 

In terms of those coefficients U which correspond to the polynomials Q orthonormal 
over j, . 

i = 1 

otherwise 
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so that 

and 

i,j 

i=j::;2m 

otherwise 

i = j ::; 2m 

i = j ~ 2m 

otherwise 

~ i(x)i(y) {~Q; (x)Q; (y) f (a + D 
+ ;~~+1 Q; (x) Q; (y) fa} 

J. SKILLING 

The fluctuation splits cleanly into a "measured" part (i ::; 2m) restricted by both 
likelihood and entropic prior, and an "unmeasured" part (i > 2m) restricted by 
the prior alone. As a matter of practicality, the infinite sum can be circumvented 
by using orthonormality in the form 

00 

LQi(X)Qi(y)=6(x-Y)/f(x) 
j=O 

to give 

<6f(x)6f(y»=J(x) 6(x-y)/a 
2m 

- J (x) J (y) L Q i (x) Q i (y ) / a (2a + 1) 
i=O 

The proportional errors on any individual point x of the spectrum are arbitrarily 
large, because of the delta function, so that it is meaningless to assign pointwise 
errors to the spectrum itself. Indeed, one should expect this from finite data, 
because the actual spectrum might (and does!) exhibit large point-to-point vari­
ations. However, an integral 

cI> = J dx f (x) </J (x) 

over the spectrum can be well-determined. Its mean is 

< cI> >= J dx J(x) </J(x) 
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and its variance is 

< (6<p)2 > = 11 dxdy ¢>(x)¢>(y) < 6f(x)6f(y) > 

where ¢>i is the coefficient in the polynomial expansion of ¢>, 

¢>(x) = t¢>;Q;(x) , ¢>; = 1 dxj(x)Q;(s)¢>;(x) 
;=0 

If the first "measured" part of the variance of ¢> dominates the second "unmea­
sured" part, the estimate of ¢> is unlikely to be much improved by acquiring more 
moments. It will be better to drive the noise down by using extra random seed 
vectors. Conversely, if the variance is dominated by the unmeasured part, it will 
usually be better to acquire higher moments from the same seed( s). 

Again, the infinite sum can be circumvented by Bessel's equality 

t ¢>; = 1 dx}(x)¢>(x)2 
i=O 

Results. 
Consider a 1000 X 1000 periodic square lattice of point masses 

M;,i = (4 if i+j even, 2 if i+j odd) 

undergoing perpendicular vibrations with equation of motion 

Scaling to Zi,i = Yi,i J Mi,i , these equations define the symmetric 1000000 x 
1000000 response matrix A 

whose eigenvalues x are the squared angular frequencies of the normal modes. The 
true eigenvalues can be found by Fourier analysis (Fig. la): they lie in two bands 
o ::; x ::; 1 and 2 ::; x ::; 3. 

Using successively m = 2,10, and 30 matrix applications, the classic maximum 
entropy spectra j, reconstructed on the range (-0.5,3.5), are shown in Figs. 1b,c,d. 
The two bands are clearly reproduced, the major artefact being "ringing" with 
amplitude around 20% at a spatial frequency related to the highest measured order 
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Figure 1. Eigenvalue spectrum (normalised to unit total) of 1000000 X 1000000 
matrix describing vibrations on a 1000 X 1000 lattice. (a) True spectrum, (b,c,d) 
Reconstructed from 2, 10, 30 matrix applications. 

of moments. This is a corollary of the attempt to reproduce isolated discontinuities 
in an otherwise smooth distribution. 

Integrals over the spectrum are reproduced to the full accuracy of about 1 
in 1000 which one might expect from a technique which uses 1000000 random 
numbers. Thus the values of 

log det (A + I) = J dx f (x) log (x + 1) 

are shown in the following table (m = number matrix applications) where, if 
anything, the results are better than the quoted errors. 

m log det (A+I) 

1 
2 
3 
5 
10 
20 
30 

True value 849543 

844000 ± 11000* 
849200 ± 1400 
849100 ± 1300 
849100 ± 1300 
849000 ± 1300 
852600 ± 1300 
850000 ± 1300 

( * : deviation dominated by "unmeasured" components) 
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As another example, the correct specific heat of the lattice at temperature T 
is, in appropriate units, (Fig. 2a) 

The reconstruction j from just 2 matrix applications yields the band of values 
(±1 0') shown in Figure 2b, and reconstructions fr:>m more applications are visually 
indistinguishable from the truth. 

The following table gives results at two representative temperatures, both for 
spectra naively reconstructed on the range (-0.5,3.5) and for spectra restricted to 
the positive range (0,3.5). 

Range = (-0.5,3.5) Range = (0,3.5) 

m eV(0.5) eV(5.0) eV(0.5) eV(5.0) 

1 85000±13200* 749300±2lO0* 106800±11200* 790800±1900* 
2 102200±5300* 786500± 1200 105300±4500* 790800±1200 
3 99300±2300* 783400± 1100 108200±3100* 791100±1200 
5 106500±900* 789800±1100 lO7400±900* 790900±1100 
10 106000±300 788400±1100 lO8600±300 791300± 1100 
20 108000±200 790700±1100 108400±200 791400± 1100 
30 lO7600±200 790200±1100 108500±200 791600± 1100 

Truth 107498 791586 107498 791586 
( * : deviation dominated by "unmeasured" components) 
Here, some of the quoted deviations are somewhat too small. Any such mis­

take can presumably be traced to the most important assumption in the analysis 
- that of a flat entropic model m (x). Indeed, changing the model by zeroing 
it in x < a has demonstrably altered some of the answers by more than one or 
two quoted deviations. It seems likely that future improvements in this method 
of determining eigenvalues may be found by refining the treatment of this prior 
eigenvalue model. 
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Figure 2. Specific heat per mode of 1000000 x 1000000 matrix describing vibrations 
on a 1000 x 1000 lattice. 
(a) True specific heat of lattice, for temperatures T between 0.3 and 100. 
(b) Reconstructed from 2 matrix applications: the two curves are the formal ± 10-

bounds. 
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Conclusions. 
The eigenvalue spectra of symmetric matrices can be obtained by using a 

Bayesian algorithm with entropic prior. If a matrix is so large that it can be 
numerically applied to a vector, but nothing more, then this procedure appears 
to be the most logical way of proceeding. It produces moment data, and as has 
been noticed by Mead and Papanicolau (1986), good spectra can be obtained from 
remarkably few moments, so the procedure is efficient. 

Integrals over the eigenvalue spectrum can also be obtained, together with 
error estimates. Although the effects are relatively minor, visible artefacts in 
the spectra and mistakes in the error estimates point to the possibility of future 
improvements, presumably in the treatment of the entropic model which underlies 
the definition of the eigenvalues' entropy. 

The million-by-million matrix used as an example was programmed on the 
author's IBM AT. Although the matrix was very sparse, it took 10 hours CPU to 
apply it 30 times. By contrast, the twenty iterates which were needed for effective 
convergence to the classic solution took 10 minutes, and needed less than 1000 
words of declared storage. 
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ABSTRACT. One of the thorniest problems in data evaluation is that of 
discrepant experimental results, for instance the case of a physical 
quantity for which two independent measurements yielded values that do 
not agree "within error bars", indicating unrecognised errors in one or 
both measurements. The general case of N~2 partially discrepant measure­
ments of the same physical quantity is treated by means of a two-stage 
Bayesian approach, with normally distributed recognised and unrecognised 
errors as the statistical model. A non informative prior for the spread of 
the unrecognised errors is not sufficient for definite predictions under 
quadratic loss, but already the simplest conjugate maximum-entropy prior 
yields best estimates for the phYSical quantity and its uncertainty in a 
straightforward way. From the corresponding joint posterior of the unre­
cognised errors one obtains, in saddle point approximation, estimates 
that resemble James-Stein estimators. Unlike those, however, the Bayesian 
estimates of unrecognised errors have easily calculated uncertainties and 
correlations associated with them, and they are free of the pathological 
discontinuities of many "improved" (e. g. "plus-rUle") James-Stein esti­
mators. A practical example from the evaluation of nuclear data is given. 

1. INTRODUCTION 

Data evaluation in the modern sense began in the early 'fifties with the 
effort of DuMond and Cohen to determine a recommended set of fundamental 
physical constants (light velocity, Planck's constant, electron charge 
etc.), and to establish their uncertainties, from all relevant experimen­
tal data [1]. At about the same time the rapidly growing nuclear techno­
logy began to develop a voracious appetite for accurate nuclear data, 
especially for cross sections (i.e. probabilities) of neutron-induced 
nuclear reactions (scattering, fission, radiative capture etc.), but also 
for nuclear structure and decay data (energies, spins and half-lives of 
compound-nuclear states, transition strengths etc.), and nuclear data 
evaluation has become a veritable industry. Modern evaluated neutron data 
files contain millions of cross section values covering the whole energy 
range from 10 peV to 20 MeV for hundreds of isotopes, and computers are 
indispensable for their maintenance and utilization [2]. Similar files 
of evaluated data have been established in elementary particle physics, 
materials research, aerospace technology and other fields. 
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2. EVALUATION OF INCONSISTENT DATA 

One of the thorniest problems in data evaluation is that of inconsistent 
data. Suppose we are given the results of n completely independent and 
experimentally different measurements of the same physical quantity, ~, 

in the form x.± 0., i = 1,2 , ... n. If the separation of any two va­
lues, Ix.-x·l; is1smaller or at least not much larger than the sum of 
their uneer~ainties, 0.+0., the data are said to be consistent or to 
agree "within error bais"? (The probability is only erfc 1 = 15.7 % that 
two equally precise experiments yield a separation larger than 0.+0.= 2a, 
for Gaussian sampling distributions with standard deviation a). if ~ome 
or all separations are much larger, the data are not consistent with the 
stated uncertainties. Inconsistencies are caused by unrecognized or in­
adequately corrected experimental effects such as backgrounds, dead time 
of the counting electronics, instrumental resolution, sample impurities, 
calibration errors, etc. 

What can we say about unrecognized errors? If we have no other 
information but the data, and know nothing about the experiments that 
yielded them, positive and negative errors are equally probable, hence 
the probability distribution for the unrecognized error E. of the i-th 
experiment should be symmetric about zero, and the same distribution 
should apply to all experiments. Let us therefore assume, in the spirit 
of the maximum entropy principle, Gaussian distributions for all £i' 

2 
1 £ • 

P (Eo ! To ) d£. = -- exp [- pl ] d£. 1 1 1 r::.--->r2 To 1 
y'L1T,':" 1 

1 
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The probability to measure the value Xi' given the true value ~, the 
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If the dispersions ti of unrecognized errors are known, the joint 
posterior distribution for ~ and the E. is 

1 

n [ ( x . -)..1-£ . ) 2 £?] 
p()..I,£!x,o,T)d)..ldnE «d)..l IT dE. exp - ~ 2 1 _ pl . 

i= I 1 a i T i 
(3) 

(£, 0, t are to be understood as vectors with coordinates E ., ai' '[ J. 
Completing squares in the exponent we can easily integrate dver the E •• 

The resulting posterior distribution for ~ is a Gaussian, 1 

1 [()..I-x)2 ] --- exp - d)..l , - 00 < )..I < 00 , 

h1TV 2v 
(4 ) 

so we recommend (under quadratic loss) for ~ and its squared uncertainty 

(5) (6) 
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where the overbar denotes an average over i (i.e. over experiments) with 
wei~hts l/(oi+ti). If we integrate (3) over ~ we find the joint distri­
but10n of the E., 

1 

I n [I +1 l+lJn p(E x,0,1)d E a: exp - 2" (E-X) A- (E-X) - '2 E B- E d E (7) 

where A-I and B-1 are positive definite, symmetric matrices defined by 

(A-I) .. :: 0:-2 0.. -
1J 1 1J 

0:-2 0:-2 
1 J 

2 ok:2 
k 

(8) 1:-2 0 .. 
1 1J (9) 

This product of two multivariate Gaussians is a multivariate Gaussian 
again, with mean vector <E> = CA-1x and covariance matrix C, where 
C- l = A-1+B-1, so that (A-1+B-1)<E> = A-IX. Solving the last equation 
for <E.> one gets 

1 2 
1. 

(E) 04 ~ 
1 

2 (x. - x) • 
1. 1 

1 

( 10) 

Thus the best estimate of Ei is the deviation x.-x of the i-th datum 
from the (weighted) mean, multiplied by a "shririking factor" 1~/(0~+,~) 
which is close to zero if the expected unrecognised error is mJch gmaf­
ler, and close to unity if it is much larger, than the known uncertainty 
0 .. Of course, this is the trivial case: If we know the variances ,~ 
of the unrecognised errors we know as much about them as about the ather 
errors. We can thus simply add variances to get the total mean square 
errors oi+ti whose reciprocals appear then as weights in all i-averages 
as we have Just found. 

The simplest nontrivial case is obtained if we consider the t· as 
our best estimates of the (root-mean-square) unrecognised errors, Eased 
on the quality of the various measurements, on the accuracy of the tech­
niques employed, perhaps even on the credibility of the experimentalists 
as judged from their past record. (Note that it is perfectly alright to 
put , . = 0 for those experiments which can be considered as unaffected 
by uniecognised errors). The unknown true variances may then be taken as 
,fie where c is an adjustable common scale parameter with prior p(c)dc, 
and the joint probability for ~ and the vector E as 

p(~,Elx,0,1)d~dnE a: d~dnE f dep(e) 
o 

n 
IT 

i=1 

Integrating over all E . one gets the posterior distribution of ~, 
1 

n 
p(~lx,o,,)d~ a: d~ f dep(e) IT 

o i=1 

eEf ] 
214 . 

1 

( I I) 

If we have no numerical information at all about the scale parame­
ter Jeffreys' prior dele appears appropriate [3,4]. The integration over 
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c is easy if the known uncertainties are unimportant. With ai = 0 for 
all i the integrand becomes essentially a gamma distribution in c, inte­
gration over which yields Student's t-distribution 

- 00 < u (13) 

with 

(14) var l.I (15) 

where S'2 = ~_X2, x and x2 are averages weighted by l/ti. This is the 
same result as if the data from the various experiments were a sample 
from a Gaussian, affected by uncertainties ti. 

In the general case, a· > 0, t i > 0, the integral (11) with the 
noninformative prior, p(c)dl • dc/c, diverges logarithmically because 
the integrand becomes proportional to l/c for c ~ -. The Bayesian forma­
lism signals in this way that the prior information is insufficient for 
definite predictions. Is there anything we know in addition to the fact 
that c is a scale parameter? Actually, if the ti are our best estimates 
of the uncertainties caused by unrecognised errors, we expect c to be 
close to unity. The maximum-entropy prior constrained by <c> = 1 is [4] 

-c p(e)dc = e de o < e < 00 (16) 

This is almost as noncommittal as Jeffreys' prior, decreasing also mono­
tonically as c increases, but normalizable and giving less weight to the 
extrema. With this prior both the c-integral and the normalization con­
stant of the posterior p-distribution (12) are finite and can be calcu­
lated numerically without difficulty. Fig. 1 shows a real-life example, 
Gaussian distributions representing the results of six measurements of 
the 239pU fission cross section for 14.7 MeV neutrons listed in Table I, 
together with the estimated posterior distribution. Prior uncertainties 
of t. = 0.1 b were assigned to all experiments indiscriminately, based 
on tfie state of the art. The posterior mean and and the root-mean-square 
uncertainty computed numerically are also given in Table I. 

3. ESTIMATION OF UNKNOWN SYSTEMATIC ERRORS 

What can we learn about the unrecognised systematic errors £i from the 
set of inconsistent data, xi ± a i' i = 1, .•. n? With the prior (16) it is 
easy to integrate the posterior probability distribution (11) first over 
the gamma distribution of c, then over the Gaussian distribution of p. 
The result can be written in the form 
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Figure 1. Probability densities representing the experimental results 
in Table I (dashed Gaussians), and posterior density of the true value 
(solid curve) estimated with the two-stage Bayesian model, Eq. 11, with 
hyperprior Eq. 16. Inconsistencies are evident between the experiments 
2, 3 and 4 (curve labels correspond to the first column of the table). 

TABLE I Experimental input and estimation results for the 
%J9Pu(n,f) reaction at 14.7 MeV incident neutron energy 

i Authors Year Ref. measured estimated 
fission unrecognized 
cross section error 
(barn) (barn) 

1 Kari 1978 [ 6] 2.37 ± .09 -.019 ± .056 
2 Cance et al. 1978 [ 7] 2.29 ± .05 -.086 ± .050 
3 Adamov et al. 1979 [ 8] 2.51 ± .05 .056 ± .048 
4 Li et al. 1982 [ 9] 2.53 ± .05 .069 ± .049 
5 Mahdawi et al. 1982 [10] 2.44 ± .09 .006 ± .056 
6 Arlt et al. 1983 [11] 2.39 ± .03 -.027 ± .041 

best estimate: 2.42 ± .05 

assumed: t. = 0.1 b (for all i) 
l. 
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where the matrices A and B are defined as before (in Eqs. 8 and 9). In 
order to get the mean vector <£> and the covariance matrix C = <6£6£+> 
in analytic form we employ the saddle point approximation, i. e. we 
replace the £-distribution by a multivariate Gaussian with the same 
maximum and the same curvature at the maximum, 

where the vector operator V has coordinates V. = 3/3£ .. This shows that 
~ 1. 

(e:) = €, (19) (oe:oe: +> = [(VV+F\=£j-l • (20) 

The most probable vector E must be found as the solution of 

(21) 

and the (approximate) covariance matrix <6£6£+> as the inverse of 

(22) 

evaluated at £ = E. With the definitions of A and B, Eqs. 8 and 9, we 
get from (21) 

-2 o? £. n+2 To 

€. x.-x+€ 1. 1. 1 

1. 1. 2 
L T:-2£~/2 + 
j J J 

(23) 

where i and i are l/c~-weighted averages. This is suitable for itera­
tion. With t. = x.-x tor all i as first approximation one finds the 

d 1. 1 secon approx~mat~on 

€. '" [I _ n+2 
1. 2 1 

(x.-X) 
1 

(24) 

and then the higher ones. This treatment of systematic errors is an 
example of the "hierarchical" (here: two-stage) Bayesian method which 
involves repeated application of Bayes' theorem: The sampling distribu­
tion (2) depends on parameters £. with the prior (1) which, in turn, 
depends on the "hyperparameter" ~ with the "hyperprior" (16). 

The final estimates and their uncertainties (square roots of the 
diagonal elements of the matrix C) for our 239pU problem, obtained in 
this way, are given in the last column of Table I. No significant unre­
cognised errors are found for the measurements 1, 5 and 6, whereas 2, 4 
and perhaps 3 seem affected by unrecognized errors which are of the same 
order of magnitude as the uncertainties stated by the authors. Of course 
these conclusions could have been drawn already from the experimental 
data (and especially. from the pictorial representation by Gaussians in 
Fig. 1), but the formalism provides quantitative support for our common 
sense also under less obvious circumstances. 
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4. COMPARISON WITH JAMES-STEIN ESTIMATORS 

Our second approximation, Eq. 24, resembles the James-Stein estimators 
[12] which, since their introduction, have caused a great deal of 
excitement, confusion and a flood of papers. C. Stein showed, using the 
frequentist definition of risk (square error averaged over all possible 
samples, for a given set of parameters) that estimators similar to (24) 
have lower risk than the estimates resulting from Bayesian estimation 
under quadratic loss (which minimise the square error averaged over all 
possible parameters, for the sample at hand). Many improvements have 
been suggested to Stein's original estimators, based on distribution 
theory and educated guesswork. For instance, the "plus rule" estimator 

* [ n-2 a2 j E. '" I - - -:TZ" (x. -x) 
~ n s' + ~ 

(25) 

has been proposed for a situation which corresponds to data with equal 
uncertainties (a. = a for all i). The subscript + means that only po­
sitive values of~the shrinking factor are accepted, for negative values 
one puts E~ = O. Moreover, the estimator (25) is restricted to n ~ 3. 
Wild discugsions arose about the "paradox" that the estimator for Ei 
depends on all the other, independently sampled x·, j H. The "speed of 
light" question was askecl. whether inclusion of otfier unrelated data 
would not improve the estimate. ("Do you mean that if I want to estimate 
tea consumption in Taiwan I will do better to estimate simultaneously 
the speed of light and the weight of hogs in Montana?" [13]) So-called 
parametric empirical Bayes recipes seemed to offer some insight, e. g. 
replacement of ,2 in Eq. 10 (in the case,. = , for all i) by the sample 
variance S'2. However plausible such recip€s may be (see e.g. [14]), 
without rigorous justification they remain adhockeries. 

Under the same circumstances (a. = a, ,. = ,) Eq. 24 yields 
~ ~ 

(Eo) 
~ 

'" [I - (n+2)a2 J x-x 
TIS,2 + 2T2 (i X) (26) 

valid for all n ~ 2, without discontinuities or interpretational prob­
lems. A paradox exists only for frequentists who deny themselves the use 
of priors. For a Bayesian the fact that he considers data from a set of 
similar experiments, formally related by the hyperprior p(c)dc, induces 
correlations and shrinking factors in a perfectly natural way. From the 
Bayesian viewpOint, on the other hand, it looks odd to base the risk 
criterion not on the one available sample and on prior knowledge, but 
on the available sample and all other unobserved samples that can be 
imagined. Frequentist claims about the superiority of estimators "in the 
long run" (averaged over many samples) are not very relevant in data 
evaluation work, where one must infer best values (for quadratic or any 
other loss) from one available sample. It may be true that an estimator 
with low risk is closer to the true value for a larger fraction of all 
possible samples than an estimator which ensures minimal quadratic loss, 
but for the remaining fraction of samples the errors tend to be so much 
worse that the apparent advantage turns into a net disadvantage [15]. In 
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any case, the Bayesian two-stage method yields, in second saddle point 
approximation, estimators which are similar to, but especially for small 
samples better than, James-Stein estimators. Moreover, by itera~ion one 
finds all possible improvements and also the uncertainties in a systema­
tic and unambiguous way, without the bizarre discontinuities of many im­
proved James-Stein estimators. The Bayesian approach leaves no room for 
guesswork once statistical model, priors and loss function are fixed. 
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Abstract 

It is shown there is an absolute limit for resolution enchancement in comparison 
with the Rayleigh's classic diffraction limit. The maximum value of superresolution 
which can be obtained in principle is determined by noise and may be computed via 
Shannon's theorem concerning the maximum information transmission speed through 
the connecting channel having noise. A restoration algorithm based on maximum likeli­
hood method which has the Shannon's supremum superresolution is documented. The 
numerical tests of this algorithm is presented and the result of its application to nuclear 
magnetic resonance experiment is shown. Superresolution depends logarithmically on 
the signal/noise ratio. 

1 Introduction 

The problem of signal recovery (or inverse problem) from noisy data has a long history and 
there are a lot of papers and books covering this subject [1-8] from which should be noted 
the splendid review of B.R.Frieden [4]. In the simplest case the problem is reduced to the 
first kind integral equation 

L6 K(z,y)/o(y)dy = Fo(z), c ~ z ~ d, (1) 

which should be solved for the right hand side Fo(z) is known only together with the noise 

F(z) = Fo(z) + N(z). (2) 

The statistical characteristics of the noise N(z) (distribution function) is considered to be 
known. The goal of the inverse problem is to recover with maximum accuracy the unknown 
function lo(y) from the measurements of experimental data F(z). The function K(z, y) 
is the kernel of the integral equation (1). It depends on the physical problem from which 
we have equation (1) and in this paper we shall call the function K(z,y) the apparatus 
function or point spread function (PSF). 

For the case when the PSF is space invariant K(z, y) = K(z - y) and the function 
K(z - y) has a bounded Fourier spectrum support the general limitation on possibilities to 
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distinguish the closely spaced signals /0(11) from the noisy data F(z) follows from the well­
known Shannon's theorem [91 concerning the maximum speed of information transmission 
through a noisy channel. 

In fact the assumption that the function K(z -11) has a finite spectrum support is not 
necessary for Shannon's theorem to be correct. According to A.N.Kolmogorov [10] it is 
sufficient for the dimension of signal space F(z) to be finite. This is the case for almost all 
experimental data F(z), because the function F(z) is always measured in finite number of 
points. 

We introduce here such a definition for the superresolution coefficient 

SR=l:i./6, (3) 

where 11 is the range of apparatus function K(z -11) 

11 = L: K 2(z)dz, (4) 

providing K(O) = 1, and 6 is the minimal distance between signals /0(11) which we can 
recognize to be different. This definition is very natural and it was introduced at first by 
Rayleigh [11] as a measure of resolving power for optical devices and in these cases 11 was 
defined as the diffraction limit. We intend to show in this paper that the modern methods 
for signal restoration has much more resolving power in comparison with Rayleigh's classic 
diffraction limit and that the ultimate limit is determined by noise rather than diffraction. 

2 Shannon's limit for superresolution enchancement 

The standard form of Shannon's formula for apparatus functions K(z-1I) having a bounded 
Fourier spectrum support can be written in the form 

(5) 

where X = d - c, B / X is the maximum number of information bits per unit measure of z 
which can be obtained in principle, W is the Fourier spectrum width of apparatus function 
K(z -11), 

is the energy of signal Fo( z), 
Pta = nq2 

is the energy of noise, and q2 equals to the standard deviation of noise in each point Zi 

of experimental data. Of course formula (5) should be changed for apparatus functions 
having unbounded spectrum support because for these functions the quantity W has no 
sense. 
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From considerations based on dimensional analysis instead of the factor B/(XW) we 
can use the expression 11/5 which has the same dimensionality and instead of standard 
formula (5) we obtain a new one 

4./5 = Const ·}og2(1 + p./Pn). (6) 

The numerical value of Const can not be recognized from dimensional analysis alone. We 
can determine it in two ways. 

In the first way we can compute the range (4) for a PSF having a bounded spectrum 
support and in the second way we find the value of Const from numerical tests for dif­
ferent PSF's including the unbounded spectrum support functions such a Gaussian and a 
Lorentzian PSF's. Both ways give the same result: the maximum superresolution practical 
does not depend on the shape of the apparatus function and the most important conclusion 
is that the superresolution has a logarithmic dependence on the signal/noise ratio (SNR). 
The numerical value of Const = 1/3. The full description of all details of this conclusion 
will be published by the author elsewhere. In next section we describe the algorithm for 
signal recovery, which has the Shanon's supremum superresolution, results of its numerical 
tests and application to nuclear magnetic resonance (NMR) experiment. 

3 Restoration algorithm and its application 

For restoration we use the maximum likelihood (ML) method [12] which is the generalization 
of M.Z.Tarasko's iteration algorithm [13]. For the case where the right hand side F(xi) 
has binomial (or Poisson) distribution in each separate point Xi and jointly polynomial 
distribution for the whole set of {F(xi)} values for i = 1,2, ... ,n. the iteration formula can 
be written in the form 

g(a+1) = g(a) + hg(a) ~ POI;( Ii _ 1) 
I; I; I; L.J ''t'm (a) 

i=1 £Ji=1 Piigi 
(7) 

In this formula s = 1,2,... is the iteration number, the vector gl;, k = 1,2, "0, m 
equal to the values of the unknown function lohu) in points !/1,!/2, ... ,!/m , the vector 
Ii, i = 1, 2, 000, n equal to right hand side function F( Xi) in points Xl, X2, ••• , x" and matrix 
Pii is equal to the values of PSF: Pii = K (Xi, !/i), h is the length step in the space of 
unknown vector {gl;} in the direction which is close to the gradient direction. At h = 1 the 
iteration procedure (7) coincides with M.Z.Tarasko's one. For more detailed specification of 
the restoration algorithm we refer readers to Ref.[12]. The actual program implementation 
will be described in a forthcoming publication. 

All computation results which are presented in this paper were obtained on HP-I000 
minicomputer at the Institute for Physical Problems with the accuracy of 39 bits per 
mantissa (IV 1.8 x 10-12). For number of data points n = 512 every 50 iterations took 
about 5 min CPU time. The total number of iterations depends first of all on how close 
the value of 5 is to the resolution limit and sometimes it takes up to 5-10 thousands. 

In numerical tests we studied the dependence of the resolution limit for two and three 
line signals as a function of signal/noise ratio for different PSF's. It was chosen three 
different PSF's: 

K(x,!/) = k;(s), s = (x - !/)/D, i = 1,2,3 
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having a Gaussian shape kl(S) = ezp( _s2), a Lorentzian one k2(S) = 1/(1 + s2) and a form 
k3(S) = (":_)2. Every of these functions we convolved with 2 or 3 Gaussian shape narrow 
lines 

lo(y) = ezp( _u2) + ezp( _,,2), D = !12 - Yl, 

where u = (y - Yl)/ Dl, " = (y - Y2)/ Dl, Dl = D/40 and convolution integral (1) is 
computed by fast Fourier transform. The parameter D is chosen to be equal to such a 
value so that the PSF decreases to zero inside the interval (a,b). The noise N(z) is added 
to the computed values of Fo(z) and this values are concidered as initial data F(z) for 
numerical tests. 

The example of two line restoration is shown in Fig.l for Lorentzian PSF with D = 60, 
SNR=20 dB and distances between the two lines 6 = 35 and D = 28. In the first case this 
distance is larger than the Shannon's resolution limit and in the second one it is less. We 
can see on this figure that for D = 35 the two lines are well resolved and for 6 = 28 they 
are not. 

Summary of such tests is presented in Fig.2 for all three PSF types mentioned above 
and SNR between 10 and 50 dB. In this figure is also shown Shannon's resolution limit 

(8) 

the regression line for numerical experiment data and the confidence interval for this line. 
There is a good agreement between them. 

This result is quite a new one and it differs from the factorial dependence of superresolu­
tion as a function of SNR which was stated in earlier papers [14-161. This is because we do 
not use any parametrization for restoration. H we could have some information concerning 
the unknown signal/o(y) to be restored the superresolution limit (8) can be exceeded. 

The application of the ML algorithm (7) to NMR experiment [171 is presented in Fig.3. 
All restored lines which are quite distinguished in this figure are fully interpreted in [17]. 
This example demonstrates not only the efficiency of restoration method (7) and also re­
veals information in the raw experimental data which would be fully unrecognized and lost 
without the use the modern restoration methods. 
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Fig.1 Restoration of 2 lines convolved with Lorentzian shape point spread function and 
signal to noise ratio 20 dB. A - space between each of lines S = 35 is greater than resolution 
limit (8); B - space S = 28 is less than resolution limit; 1 - the original lines; 2 - point 
spread function; 3 - initial data for restoration algorithm; 4 - the restoration results. 
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Fig.2 Summary of numerical tests for 2 and 3 lines restoration. 
Circles - results for Gaussian PSF, 2 lines; white squares - the Lorentzian PSF, 2 lines; 
black square - the Lorentzian PSF, 3 lines; triangles - PSF in the form of (M: :1:)2,2 lines. 1 
- the Shannon's superresolution limit (8); 2 - the regression line for numerical tests, which 
coincides with Shannon's limit within the corridor of errors. The dashed strip is the 95% 
confidence interval between domains above and under the superresolution limit. 
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o tso 300 .(50 600 

Fig.3 Application ofML algorithm (7) to NMR data processing [17]. 
1 - original experimental data for NMR absorbtionj 2 - PSF, which was determined by gluing 
together the left and the right tails of curve Ij 3 - restoration result for NMR absorbtionj 
4 - numerical integral ofthe curve 1. 
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A MONOTONIC PROPERTY OF DISTRIBUTIONS BASED ON ENTROPY 
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ABSTRACT. A consistency principle for distribution functions used in reliability and risk analysis 
has been proposed recently as follows: The distribution function Qx(x, Xl, X2, ... , xr) of a real 
random variable X assigned on the basis of a random sample [Xl, ... , xrl of X, should everywhere 
be monotonically non-increasing in all elements of the sample (aQx laxi :s; 0, \;f i c 1, ... , r). 
This principle is sometimes, but generally not, satisfied by conventional methods of estimation 
that employ sample moments. 

The paper shows that this principle of consistency is satisfied by the posterior distribution 
obtained by minimizing the cross-entropy with respect to any reference ("prior") distribution under 
fractile constraints. This "data monotonicity" is also shown to extend to the case of multivariate 
distributions. The marginal distribution function obtained by a probability-preserving monotonic 
transformation of a finite set of random variables is everywhere monotonically non-increasing with 
respect to any jointly observed realizations of the random variables. 

The consistency property is further shown to hold for system reliabilities in the multivariate 
case. This consistency of entropy-based reliability analysis is methodologically of great importance 
and provides a strong reason to use the entropy method together with fractile constraints in the 
assignment of distributions. 

1. INTRODUCTION 
The subject of this paper is the problem of assigning a probability distribution q{x} to a 
random variable X, given only a random sample. Each solution to this inference problem 
rests on a specific set of assumptions, the solution "rationale" , that must not be in conflict 
with the reality that the distribution is meant to represent. Increasingly there are severe 
requirements placed on such rationales, particularly in reliability and risk analysis when 
the distribution is part of a model used to assess great risks, risks to the public, or risk 
to people who receive little concomitant benefit. Arbitrary assumptions of distribution 
type, as employed in many classical and Bayesian methods to solve this problem, are often 
unacceptable. 

Even when the distribution type assumption may be acceptable, there may be short­
comings in the methods of parameter estimation. One such defect occurs in reliability 
analysis when using classical estimation methods. In reliability analysis the set of failed 
states is a region of the space of basic random variables. Failure is the crossing of the limit 
states surface separating the failed states from the safe states. The probability of failure is 
calculated as the integral of the probability density of states over this region. The simplest 
example is a system having two independent basic random variables, namely a load Sand 
the capacity R to resist this load. The reliability measure is calculated by a subtracted 
convolution of Rand S. Suppose that the load variable S is modelled by a normal distri­
bution, with parameters estimated from the sample mean m, and sample variance s; of a 
set of observed loads. Now imagine that one sample value Xi below the mean is reduced; 
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this lowers the mean load but increases the standard deviation. The combined effect may 
be to lower the reliability, which is absurd, as pointed out by Of verbeck (1984) and others. 

To avoid this absurdity, a consistency principle for distribution functions in reliability 
and risk analysis has been proposed as follows (Lind and Chen 1987): The distribution 
function Qx(x, Xl, X2, ••• , xr ) of a random variable X, defined on a domain Dr+!, where 
D is a continuous subset of the set of real numbers, and assigned on the basis of a random 
sample [x!, ... , xrl of X, should be monotonically non-increasing in all elements of the 
sample (8QX/8xi ::; 0, Vi c 1, ... ,r). This principle is not normally satisfied by the 
conventional methods of estimation that employ sample moments. The main result of this 
paper is that this principle is satisfied by distributions that minimize the cross-entropy 
subject to fractile constraints. A function of the elements of a random sample is said 
in this paper to be data monotonic if it is monotonically non-increasing in every sample 
element everywhere in its domain. Otherwise, the monotonically non-decreasing condition 
in every sample element will be specified. The consistency principle states that distribution 
functions in reliability and risk analysis should be data monotonic. 

Unjustifiable assumptions of distribution type may be avoided if Jaynes' principle of 
maximum entropy is invoked to identify the unique solution to the problem that can be 
called the least biased distribution. This is accomplished by minimizing the Kullback­
Leibler cross-entropy (Shore and Johnson 1980). It must be admitted that this involves a 
reference distribution, usually called the "prior" distribution, which must be assumed. 

The constraints in the entropy method are normally in the form of prescribed expec­
tations of functions of x. When the information about X is obtained directly in the form 
of observed moments, it is natural to use these measured moments as constraints. But 
the case considered in this paper, when the data are a set of individual sample values of 
X, is perhaps more common. The straightforward way to produce the constraints from 
such data is to calculate some set of sample moments [mkl and put this equal to the corre­
sponding set of moments of q(x). Unfortunately, several objections can be raised against 
this "method of moments". It is sufficient to note that a selection of a particular subset of 
moments [mkl to represent the data involves an arbitrary choice and induces extraneous 
information. This common adaptation of the method of moments is incorrect. 

2. DISTRIBUTIONS WITH FRACTILE CONSTRAINTS 
However, there is a practical alternative to moment constraints, namely fractile con­
straints. The basis is the following well known exact property of random sampling (Feller 
1968; Madsen et a1. 1986). A new observation of a random variable X has equal proba­
bility of falling in the r + 1 intervals into which the elements of a random sample of size r 
divides the domain of X. This may be expressed in the form of the following Sample Rule: 
The elements of a random sample of size r of a random variable are the i/(r + 1)-fractiles 
(i = 1,2, ... , r) of the distribution of the random variable. 

Consider a real-valued random variable X that has the finite or infinite domain 1 = 
[xo, Xr+1], partitioned into r + 1 subintervals 10 = [xo, XI),!1 = [Xl, X2), . .. '!r = [xr, Xr+11. 
Given is a reference distribution P(x) having density function p(x) that is positive every­
where in I. The value of P(x) at X = Xi is denoted by p;. The fractile pairs 

(X,Q(X))i=(Xi,Qi), i=1,2, ... ,r (1) 
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are prescribed, for example according the sample rule; we seek a posterior distribution 
q(x), with distribution function Q(x), that minimizes the cross-entropy functional 

D(q,p) = 1r q(x)[/og q(x) -log p(x)]dx, (2) 

and satisfies the fractile constraints (1). The general solution, determined using discontinu­
ity functions and Lagrange's multiplier method (Lind and Solana 1988), may be expressed 
in terms of the interval multipliers 

(3) 

The solution is 
q(x) = /-Li p(x), x E Ii,i = 1, ... ,r, (4) 

Q(x) = Qi + /-Li (P(x) - Pi), x E Ii,i = 1, ... ,r. (5) 

The cross-entropy functional (2) takes the minimum value 

r 

Dmin = l)Qi+! - Qi) /o9[(QHI - Qi)/(P;+l - P;)]. (6) 
o 

The posterior density function q(x) in (4) has piecewise the form of the reference 
density function p(x) scaled over each interval Ii by the constant factor /-Li. The minimum 
value of the cross-entropy functional is functionally independent of the reference density 
p( x), and of the reference distribution function P( x) except for the values Pi assumed at 
points Xi , i = 1, ... , r. The expression for the minimum value of the cross-entropy (6) is 
analogous to the minimum cross-entropy for discrete distributions (Kapur and Kesavan 
1987)' corresponding to a set of r + 1 possible events. 

3. DATA MONOTONICITY OF UNIVARIATE DISTRIBUTION FUNCTIONS 
Consider now the effect on Q(x) == Qx(x, XI, X2, ... , xr ) of a change in one of the fractile 
constraints (1). Assume that there is a constraint on such changes in the form of a 
functional dependence of the probability value on the fractile. This dependence may be 
written as Q = F(x), i.e. formally as a distribution function containing the fractiles 
Qi = F(Xi), i = 1, ... , r. By differentiation of (3), 

a /-Li 1 [() dQ i ] . 
- = /-LiP Xi - -d ' 1= 1, ... ,r 
aXi P;+! - P; Xi 

(7) 

a/-Li 1 [( ) dQH1 ] . -a-- = - p. P. /-LiP Xi+! - -d-- , I = 1, ... , r 
XH I i+! - i Xi+! 

(8) 

Substituting (7) into the partial derivatives of (5) gives 

aQ(x) [ P(x) - P;] [ dQi ] . -a-- = - 1- /-Lip(Xi) - -d ,Xi E Ii,I = 1, ... ,r 
Xi PHI - Pi Xi 

(9) 

aQ(x) _ r P(x) - P;] [ dQi+l] ._ -- - -l /-LiP(XHI) - -d-- , Xi E Ii,l-l, ... ,r 
aXi+1 P;+l - P; XHI 

(10) 
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All other partial derivatives of Q(x) with respect to the sample elements vanish. Since 
the terms in the first brackets on the right hand side of (9) and (10) are positive, a 
condition that Q(x) is data monotonic is simply that the second brackets are positive. 
These conditions depend, however, on the density values q(Xi), i = 1, ... , r of the posterior 
distribution, which also depend on the prior density (4). Q(x) is data monotonic if the 
slope dF / dx of the function constraining the changes in the fractiles is less than the slopes 
q(x) of the posterior distribution function in a neighborhood of all constraints (Xi, Q;). 

In particular, when the fractile constraints arise from the sample rule given in section 
2, the probability values Qi are independent of the observations Xi, i.e. dQi/dx; = o. 
Then, the second brackets in (9) and (10) are always positive. Thus, if the probabilities 
of the fractile constrain pairs (x;,Q;), are as stated by the sample rule, then the value of 
the assigned posterior distribution Q(x), for any argument, is data monotonic. 

This data monotonicity of univariate distribution functions is the same as the "consis­
tency principle" for distributions in reliability and risk analysis stated by Lind and Chen 
(1987). However, data monotonicity is found herein not as a principle, but as a property 
of distributions that satisfy the sample rule and minimize the cross-entropy with respect 
to a fixed reference distribution. 

The data monotonicity property extends immediately to the distributions Qz(z) of 
any random variable Z defined by a monotonic transformation of X, z = g( x), preserving 
the probability measure. This follows as a consequence of the invariance of cross-entropy 
methods (Shore and Johnson 1980) and the invariance of the sample rule under monotonic 
transformations of the random variable. Hence, data monotonicity of a distribution Qx(x) 
is an invariant property under the group of monotonic transformations of variables. 

4. DATA MONOTONICITY IN THE MULTNARIATE CASE 
The general solution of cross-entropy estimation of multivariate distributions subjected to 
fractile constraints has been obtained by Lind and Solana (1988a) in the cases of stochastic 
dependence and independence of random variables. In this solution the sample rule given 
in section 2 was employed to define the fractile constraints. 

In the following we consider only the case of stochastic independence. The main result 
in this case is that data monotonicity is a property of the marginal distributions of the 
minimum cross-entropy multivariate distributions. This is a consequence of the system 
independence property of entropy methods (Shore and Johnson. 1980). The solution 
of distributions minimizing cross-entropy and the data monotonicity property of their 
marginal distributions are only illustrated for the case of two random variables. 

Let (Xk' Yk), kEN = (1,2, ... , r), be a set of observed pairs of values of a continu­
ous vector-valued random variable (X, Y) for some system that has a continuous set E 
of possible states, E c R2. The components of the observed data vectors are reordered 
as increasing values. Thus, two sets of r-scalar pairs (Xi,QXi) and (Yj,QYi),i,j E N, 
of marginal fractile data are obtained, in which QXi and QYi are the marginal cumula­
tive probabilities at data points Xi and Yi, Qx; = QX(Xi) and QYj = QY(Yj). These 
probabilities are obtained, for instance, by the sample rule. 

Next, the fractile constraints arise from the set of 2r marginal fractile pairs (Xi,QX;) 
and (Yi,QYi) and the condition that X and Yare stochastically independent. These 
constraints can be represented as a whole, in a unique way, by the set of r2-vectorial fractile 
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constraints pairs «Xi,Yj),QXYii),i,j EN, where QXYii are the cumulative probabilities 
at the vector data point, such that QXYij = QXi(Xi) QYj(Yi). 

Given is a reference distribution function PXY(x,y) = Px(x) Py(y) having reference 
density PXy(x,y) = px(x)py(y). Consider the cells Eii in which the state domain E is 
partitioned, such that Eii = IXi n hi· IXi and hi are the subintervals IXi = [Xi,Xi+l) 

and IYi = (Yj, Yi+l] , i,j E N U {a}. 
The general solution may be found by Lagrange's multiplier method. It may be ex­

pressed in terms of the cell multipliers 

(11) 

The minimum cross-entropy density functions and distributions are 

qXY(x, y) = J.lii px(x) py(y), (x, y) E Eii; i,j EN U {a} (12) 

[Qx(x) - QXi][Qy(y) - QYi] = J.lii [Px(x) - PXi][Py(y) - Pyj], (x, y) E Eij; i,j E Nu {a}. 
(13) 

The posterior density qXY(x,y) in (12) has piecewise the form of the reference density 
function PXY (x, y) scaled over each cell Eij by the constant factor J.lii. 

Now the marginal distributions of the minimum cross-entropy bivariate distribution 
QXY(x, y) are derived from (11) and (13) as follows. 

The specialization of (13) for x = Xi+l> and Y = Yj+1. and the substitutions of the cell 
multiplier J.lij given by (11), determine the following expressions for marginal distributions: 

QX(x) - QXi = ~Xi+l - ~Xi [Px(x) - PXi], x E lXi, i E N U {a}. (14) 
Xi+l - Xi 

QYj+l - QYj . 
Qy(y) - QYi = Pyi+l _ Pyj [Py(y) - Pyj]'y E hi> J E N U {a}. (15) 

The entropy method for estimation of univariate distributions with fractile constraints, 
given in section 2, may also be applied to the marginal reference distributions Px(x) and 
Py(y). The results are equivalent to (14) and (15), and the interval multipliers are 

J.lXi = (QXi+l - QXi)/(PXi+l - PXi ) (16) 

(17) 

Therefore, the data monotonicity of the minimum cross-entropy univariate distribu­
tion, established in section 3, is also a property of the marginal distributions (14) and (15). 
Hence, if the marginal fractile constraints (Xi, Qx;) and (Yj, QYj), 
i,j E N, are assigned from the sample rule, then the marginal distributions Qx(x) and 
Qy (y) of the multivariate posterior distribution, for any values of their argument x or y, 
are monotonically non-increasing as functions of the observations Xi and yj; i,j E N. 
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5. INVARIANCE OF MARGINAL DISTRIBUTION DATA MONOTONICITY 
In section 3 it was shown that data monotonicity of univariate distributions is an invariant 
property of the set of monotonic transformations of a random variable. Now, data mono­
tonicity of the marginal distributions of multivariate distributions, established in section 
4, is examined in the case of a change of random variables. 

The main result in this section is that data monotonicity of marginal distributions is 
an invariant property of a set of random variables transformations. In the same way as in 
section 4, only the case of two random variables is presented. Extension of results to the 
case of multiple variables is easily derived. 

Let T be a monotonic probability-preserving transformation from random variables X 
and Y to random variables U and V, given by the mapping u = g(x, y) and tJ = hex, y). 
Monotonicity of T implies that the first order partial derivatives of the functions 9 and h 
do not vanish in any point of E. Let Qu(u) and Qv(tJ) be the marginal distributions of the 
multivariate posterior distribution Quv (u, tJ). These marginal distributions correspond to 
the following integrals: 

Qu(u) = ( qXy(x,y)dxdy lEu 

Qv(tJ) = ( qXY(x,y) dx dy lEv 

(18) 

(19) 

where the integral domains are the subsets Eu and Ev, such that g(x, y) 5 u, \f(x, y) E 
Eu, and h(x,y) 5 tJ, \f(x,y) E Ev. 

Integrals (18) and (19) extend over all the cells Ei; which are total or partially con­
tained in the subsets Eu and Ev. Thus, in view of (12),(18) and (19), the marginal 
distributions may be rewritten 

r r 

Qu(u) = EEQu,i;(U) (20) 
o 0 

r r 

Qv(tJ) = EEQv,i;(tJ) (21) 
o 0 

QU,ij(U) and QV,ij(tJ) are auxiliary step functions for each cell Ei;, given by 

QU,ij(U) = Pi; 1 px(x)py(y) dx dy. (x, y) E Ei; 
EU,ii 

(22) 

QV,i;(U) = Pi; 1 px(x) py(y) dx dy, (x.y) E Ei; 
EV,ii 

(23) 

where the integration domains are EU,i; = Eu n Ei;and EV,i; = Ev n Eij. 
The sums in (20) and (21) extend to all non-empty subsets EU,i; and EV,i;' respectively. 
The partial derivatives of marginal distributions Qu(u) and Qv(tJ) with respect to the 

components of the observed data vectors, Xi and !Ii, i,j EN, of vector random variable 
(X, Y) are calculated next. By (20) and (21), they reduce to the sums of partial derivatives 
of QU,i;(U) and QV,i;(tJ). 
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When one cell Ei ; is totally contained in Eu and Ev, the auxiliary step functions 
obtained from (13) are reduced to the following constant values 

QU,i;(U) } 
and = (QXi+l - QXi)(QYi+l - QYi), for EU,ii = Eii and EV,ii = Eii (24) 

QV,i;(V) 

Since the derivatives of (24) vanish, the non-zero contributions from QU,i;(U) and 
QV,ii (v) to the partial derivatives of Qu (u) and Qv (v) only correspond to the cells Eii 
partially contained in Eu and Ev. These cells are expressed by the conditions EU,i; i- Ei; 
and EV,i; i- Eii. Next, such contributions are calculated for a typical cell. 

Only the derivatives of one of the marginal distributions, typically Qu(u), will be 
necessary. Then, two types of functions U = g(x, y) are possible, which correspond to the 
monotonic conditions dy/dx < 0, case a) and dy/dx > 0, case b), for only constant value 
of U • The analysis is made, for instance, in the first case (dy/dx < 0). Yet, there are two 
possibilities as the way in which the values of u increase, such that g( x, y) < u. Suppose 
that u increase on the right hand part in which E is divided by a function u = g(x, y) and 
dy/dx < 0 for only constant value of u. 

Now, the partial derivatives of the integrals in (22) are equivalent to the following 
expressions: 

a[QU,ii(u)/ILi;] = -PX(Xi) [Py(ti) - Pyi] 
aXi 

a [Qu,ii (U)/lLii] ( ) [P ( ) P] = -PY Yi x s; - Xi ay; 
(25) 

(26) 

In (25) and (26) the variables s and t define the crossing points of curves g(x,y) = u 
and the cell boundaries of Ei;. Such points are two of the next four: 

(27) 

Substituting (25), (26) and derivatives of (11) into the partial derivatives of (22) give 

aQu,ii(u) = 1Li; PX(Xi) [QU,i;(U) _ [Py(ti) - Pyi](PXi+l - PXi)] 
aXi PXi+1 - PXi lLii 
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Since the terms in the main brackets on (28) are not positive, the derivatives of QU,i;(U) 
with respect to the sample values zi,Zi+IIY; and Y;+1 are data monotonic. 

Therefore, in the case a), i.e. when the values of U increase on the right hand side 
from the curve g(z,y) = u, the values of derivatives of Qu(u), for each cell such that 
EU,i; =t Ei;' are data monotonic. Otherwise, in the case b), i.e. when the values of u 
increase on the left hand side from g(z, y) = u, the values of derivatives of Qu(u), for each 
cell such that EU,i; =t Ei;' are data monotonic (non-decreasing). 

As conclusion, in the case of a function u = g(z,y) such that dy/dz < 0 when u is a 
constant, the derivatives of marginal distributions Qu(u) obtained from (20), as the sum 
of derivatives of QU,i;(U) for individual cells, are data monotonic when: 

(a) the values of u increase on the right hand side from the curve u = g(z, y), 

aQu(u) aQu(u) . . a ~ 0 and a ~ 0, for, = 1, ... ,r, J = 1, ... ,r. (29) 
Zi y; 

(b) the values of u increase on the left hand side from the curve u = g(z, y), 

aQu(u) aQu(u) . . a ~ 0 and a ~ 0, fora = 1, ... , r, J = 1, ... , r. (30) 
Xi y; 

The marginal distributions QU(U,ZI, ... ,Zr, Yl, ... , Yr) may be also given as functions 
of r2 ordered values of u, defined by Uk = g(Zi' y;), k = 1, ... , r2, for i = 1, ... , rand 
j = 1, ... , r. This is a consequence of transformation T being monotonic and probability­
preserving, in which case the inverse transformation T-1 exist providing the inverse func­
tions for z and y values. 

Hence, in the case a), taken into account (29) and the positiveness of aZi/aUk and 
ay;/aUk, give 

(31) 

In case b), taken into account (30) and the negativeness of aZi/aUk and ay;/aUk, give 
the same inequality (31) as in the case a). 

The same results are obtained in case of a function u = g(z,y) such that dy/dz > 0 
when u is a constant. The proof is immediately derived in this case by changing the 
random variable X for (-X), reducing it to the first case (dy / dz < 0). 
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Finally the following conclusion is drawn: Data monotonicity of the marginals Qx(x) 
and Qy(y) of the multivariate distributions of QXY(x,y) when X and Yare stochastic 
independent variables, extends to the marginal distributions Qu(u) and Qv(v) of mul­
tivariate distributions of random variables U and V given by a monotonic probability 
preserving transformation of X and Y, u = g(x, y) and v = h(x, y). 

Therefore, the data monotonicity of the marginal distributions of multivariate distri­
butions that minimize the cross-entropy subjected to fractile constraints with probabilities 
stated by the sample rule, is an invariant property of the group of monotonic probability­
preserving transformations , given by 

8Qu(u) < 0 , and 8Qv(v) < 0 
aUk - aVl-

for Uk =g(Xi,Yj),Vt= h(Xi,Yj); suchthatkandl=I, ... ,r2, fori,jEN. (32) 

6. APPLICATION TO RELIABILITY OF SYSTEMS 
The data monotonicity property of marginal distributions of multivariate distributions 
based on entropy with fractile constrains is immediately applied to the analysis of system 
reliability, as follows. 

A reliability measure is given by the probability of failure that corresponds to the prob­
ability density of states of a system over a failure region. Assume that the failure region 
is given by the limit state functions u = g(x,y) and v = h(x,y), which correspond to the 
group of monotonic probability-preserving transformations of variables. Then, the relia­
bility distributions for these limit states can be interpreted as the marginal distributions 
4>u (u) and 4>v (v) of the multivariate distributions of transformed variables U and V, re­
spectively. Then, the data monotonicity of marginal distributions gives that the reliability 
distribution function for each limit state function, is monotonically non-increasing for any 
argument, with regard to the values Uk, k = 1, ... , r2, of the state function U = g(x, y), 
for the set of r2-vectorial fractile data points with components Xi and Yj; i,j = 1, ... ,r. 

This amounts to a generalization of the "consistence principle" of distributions of 
random variables for reliability and risk analysis, stated by Lind and Chen (1987). In 
this generalization the "consistency principle" refers not only to the assigned univariate 
distributions of random variables, such as the entropy-based distributions with fractile 
constrains, but also to the reliability distributions for any limit state function. 

7. CONCLUSIONS 
(1) The conventional use of moments to provide constraints from a random sample 

for the entropy-based assignment of a random variable is incorrect, mainly because it 
introduces arbitrary information implied in the selection of moments. 

(2) The method of minimum cross-entropy is preferable for the assignment of distri­
butions to continuous random variables because it yields results that are invariant under 
monotonic variable transformations. This extends to the invariance of monotonicity with 
respect to observations in a random sample, i.e. data monotonicity. 

(3) Distributions assigned by the minimum cross-entropy method using fractile con­
straints that arise from the sample rule are data consistent, i.e. monotonically non­
increasing over their entire domain in all elements of the sample. 
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(4) Data consistency in the sense of this paper for a distribution is the same as the 
consistency principle for reliability and risk analysis stated by Lind and Chen (1987). 

(5) Data monotonicity of univariate distributions is an invariant property under the 
group of monotonic transformations of variables. 

(6) The marginal distributions of any multivariate distribution assigned by cross­
entropy minimization, using independent reference distributions, subject to sample rule 
fractile constraints, are data monotonic. Data monotonicity of these marginal distribu­
tions is an invariant property of the group of monotonic probability-preserving variable 
transformations. 

ACKNOWLEDGMENT. Sincere thanks are due to A. Arteaga who gave freely of his 
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ABSTRACT. A general formalism based upon maximization of entropy is 
utilized to derive a kinetic theory for simple liquids. The first two 
equations of the BBGKY hierarchy are rendered into a set of closed 
kinetic equations by expressing the two-particle function as a 
functional of the one-particle function through maximizing entropy 
subject to constraints. The theory exhibits a strong H-theorem and 
yields the canonical ensemble as its equilibrium solution. For non­
equilibrium states the theory admits two temperature scales, the 
distinction between which has significant effect on the value of the 
bulk viscosity and on the dynamics of short-time density fluctuations. 
The kinetic theory subsumes or eclipses many of the theories commonly 
applied to liquids. These techniques represent a much simpler and more 
transparent method to obtaining the latter and they are more amenable 
for making generalizations. 

1. INTRODUCTION 

To reconcile observed macroscopic irreversibility with the inherent 
reversibility of the microscopic equations of motion, e.g. Newton's 
second law or the Liouville equation when discussing classical systems, 
remains an outstanding problem in nonequilibrium statistical mechanics l • 

The former is typified, for fluids, by the equations of hydro­
dynamics which emanate from macroscopic conservation of mass, momentum, 
and energy2 when supplemented with phenomenological relations -
Fourier's law of heat conduction and Newton's stress tensor - and an 
equation of state which relates energy to density and temperature. 

Two remarkable features of these equations are pertinent here: 
their very small number - five coupled irreversible equations - and 
their formal "closedness" which in essence makes the hydrodynamic 
variables a complete set3 for describing the state of the fluid. 
Though the applicability of these conventional hydrodynamic equations 
is limited to states for which the variables are well-defined and their 
spatial and temporal variation are slow4, nonetheless, the viability of 
this contracted description demonstrates that the full many-body micro-
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scopic description contains considerably more information than is 
elicited in experiments. Since the Liouville equation is reversible. 
it is through the contraction procedure that irreversibility enters. 
though precisely how remains an open question. 

From the statistical-mechanical viewpoint. one seeks to project out 
irrelevant information from the Liouville equation to produce simpler 
kinetic theories which not only support the hydrodynamic equations but 
also provide equations of state and microscopic expressions for the 
transport coefficients. How to project and what to project. and what 
are appropriate ensembles for nonequilibrium states. are examined here 
by using maximization of entropy to effect closure of the BBGKY hier­
archy. 

2. DESCRIPTION OF THE THEORY 

For definiteness. we consider an interatomic potential, V(r). of the 
form 

co r < a 
V(r) 

$(r)e(R - r) r > a 
(1) 

where $(r) is a smooth function. The discontinuity in the potential, 
E = -$(R) > O. introduced by the Heaviside function. e. is used to effect 
instantaneous interchange of kinetic and potential energy between a 
pair of particles passing through a separation r = R. 

The kinetic theory is required to yield hydrodynamic equations. 
To produce conservation of mass and momentum equations. it is sufficient 
to have an equation for fl' the one-particle distribution function. 
But for conservation of energy we must append an equation for the 
potential energy density, 

-t--t­
where the position-velocity sextuple x = r,v. 
f2 is the two-particle distribution function. 
these. obtained from the BBGKY hierarchy, are 

r1 2 = IiI - i21, and 
Exact equations for 

(2) 
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+ e(oo-g -1¥)(f2(11,t~,1ct,t;,t)-f2(X1't1+iC,t2't») + 

+ e(.4f - oo-g)(f2(t1,t;,t1-iC,t;,t)-f2(X1,t1+iC,t2,t»)]} (3) 

(4) 

The singular nature of the collisions requires careful analysis in con­
structing the collision integrals. 5 As constructed, these equations 
evolve forward in time,6 though the collision operator itself is sym­
metric under time reversal. 7 See ref. [8] for discussion of notation. 

This pair of equations contains the unknown f2. By expressing f2 
as a functional of f1 and ep, a closed set of equations is obtained. 
However, there is not a unique choice for f 2• Here we obtain a specific 
form via the approximate ensemble, Pm' which follows from maximizing the 
grand ensemble entropy 

(5) 

subject to the constraints of f1 and epo These are not viewed as limi­
tations on knowledge of the system. Rather, the approach affords an 
objective evaluation of what information is essential9 to permit accu­
rate inferences about behavior and properties of the many-body system. 
The a = (h/m)3 and hand kB are the Planck and Boltzmann constants, 
respectively. The resulting ensemble is 

. 1 -+- -+-
where Z is a normalizat10n factor, and ~i' = 2 [~(ri,t)+~(rj,t)] and A 
are Lagrange multiplier fields conjugate to ep and f 1, respectively. 
This ensemble bears the same algebraic form as its equilibrium counter­
part, and so yields 

(7) 

The pair correlation function g2 can be expressed formally by the 
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cluster expansion 

(8) 

where the Mayer function now has the form ~j = exp{-aijV(rij)} - 1. 

In principle, eq. (2) permits solving for a in terms of ep and fl so 
that f2 is a functional of these; using (7) in (3) and (4) renders them 
closed. Finally, inserting (6) into (5) yields the extremum entropy 

3. DISCUSSION 

The form of Pm' eq. (6), permits the existence of two temperatures in 
the nonequilibrium fluid. The kinetic-energy temperature vested in A 
and the potential-energy temperature vested in a are not equal, in 
general. Distinction between them is manifested in the value of the 
bulk viscosity. 10 

(9) 

The theory exhibits a strong H-theorem: dSm/dt ~ O. From (9) and 
normalization of (6) it follows that dSm/dt = kB{fdxA(afl/at) + 
fdta(aep/at)}. Employing (3), (4), and (7) there follows8 dSm/dt = 

t kB fdx l dx2 f2(xl,x2't){~12·r12[o(r12-cr+) + o(r12-R+) -

_ 1+ ~ 4 * + ~ 
o(r12-R )] + v12·r12Ii~1 o(r12-Ri)0i(v12·r12) x 

core, R i = cr, yields 

+ + 2 
{ -m[v - V(t)] } 

exp 2~kBT(t) • Those at the square-well edge, Ri = R, yield 

a(t) = l/kBT(t). At complete equilibrium, time derivatives vanish and 
the customary grand canonical ensemble is obtained: Pm = exp{-aH}. 

The H-theorem reveals that the mean-field terms in (3) and (4) do 
not contribute to the irreversible behavior. Thus, as exhibited here, 
irreversibility is a consequence of statistics - the form (7) is 
crucial to the analysis - and of collisional dynamics in which energy 
and momentum transfer occur. 
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The kinetic theory described here subsumes or encompasses a wide 
array of other theories that have been obtained by different methods. 
Setting ~ = constant yields a square-well theory8 that improves upon8 ,10 
the theory of Davis, Rice, and Sengers. 11 Setting ~ = 0 yields the 
revised Enskog theory which was derived through diagrammatic methods. 12 
In the R ~ 00 limit such that £ ~ 0, the linearized version6,13 of the 
new theory encompasses the short-time kinetic theory of Lebowitz, 
Percus, and Sykes which was derived through linear response theory.14 

The veracity of the theory stands in relation to the questions 
asked of it, since in an absolute sense the theory is only approximate. 
The ensemble (6) contains sufficient correlation to produce an exact 
short-time linearized theory15 , and the theory yields the hydrodynamic 
equations and provides expressions for the transport coefficients. 
However, the ensemble lacks velocity correlations which build up in time 
and appear to have a significant effect on the values of the transport 
coefficients, especially the shear viscosity, as compared to computer 
simulation results. 16 Since the transport coefficients depend upon 
different projections of f2 than does ep' an improved theory is expected 
if the full f2 is used to characterize the ensemble. Such a theory has 
been proposed for hard spheres. 17 It is explicit but complex and has 
not been analyzed for transport. 

Though the set of kinetic equations is Markovian, contraction down 
to an equation for fl alone yields a nonMarkovian closed equation. 
Thus, generally, memory can be built into a theory by imposing con­
straints that bear memory explicitly, as proposed by Jaynes 18 , or 
through contraction of excess degrees of freedom. The latter seems more 
transparent than the former, which requires knowledge of duration of 
memory. 

Finally the techniques described here also yield the Boltzmann 
equation. 17,19 
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ABSTRACT. In some circumstances, the objective function for Maximum 
Entropy image restoration can be closely approximated by a quadratic 
regularisation criterion. The details are set out for the case of the 
global Shannon entropy function as well as for local first-order and 
second order entropy functions for one- and two-dimensional pixellated 
images. It is proposed to use the quadratic approximation to choose the 
regularisation constant, which we then use, suitably scaled, as the 
regularisation constant in the Maximum Entropy method in order to 
construct a restoration of the image. Numerical simulations will be 
reported that demonstrate, in simple examples, the apparent 
effectiveness of this hybrid approach in terms of achieving a 
restoration that is likely to be close to the true scene. 

1. INTRODUCTION 

Many of the restoration techniques used for stabilising the 
deconvolution of pixellated images fall into one of two classes: 
Quadratic Regularisation techniques and Maximum Entropy Methods. 

Quadratic Regularisation methods have many theoretical and 
computational attractions, associated with the fact that an explicit 
expression can be found for the recovered or estimated source function f 
(regarded as a vector) in terms of the point spread matrix H, th;; 
smoothing or regularisation matrix C, and the data vector g i.e. 

(1) 

where ~ > 0 is the smoothing parameter or regularisation constant. 
Quadratic Regularisation can however produce unphysical solutions 

containing negative pixel values. 
Maximum Entropy methods, on the other hand, impose positivity on the 

source function by means of a logarithmic term in the smoothing 
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function, at the expense of introducing non-linearity into the problem 
of estimating the source function. 

It is well known that, under certain circumstances, the global 
Shannon Entropy Function used in Maximum Entropy image reconstruction 
can be closely approximated by the Zeroth Order Quadratic Regularisation 
function. In this paper we shall set out the argument that leads to 
this approximate correspondence. We will also show that the same 
argument can be applied to demonstrate similar asymptotic relationships 
between higher orders of Quadratic Regularisation functions and 
localised forms of Maximum Entropy objective functions for both 1D and 
2D pixellated images. In addition we suggest that, by suitable scaling, 
the smoothing parameter determined using a Quadratic Regularisation 
method can be used to calculate a suitable smoothing parameter for use 
in the corresponding Maximum Entropy image restoration method. 

We shall also present the results of numerical simulations which 
show that, for a variety of source functions (including ones for which 
we would not expect the asymptotic relationships described above to 
hold), this quadratic method provides an 'acceptable' choice of 
smoothing parameter for use with Maximum Entropy methods. Thus we can 
use the benefits of Quadratic Regularisation in terms of speed and more 
effective choice of smoothing parameter while still retaining the 
positivity associated with Maximum Entropy techniques. 

2. THE APPROXIMATE EQUIVALENCE OF MAXIMUM ENTROPY AND 
QUADRATIC REGULARISATION TECHNIQUES 

Consider a one-dimensional true image f, with elements fi' distorted by 
a point spread matrix H with additive Gaussian white noise of variance 
0 2 , giving a data vector g. Thus 

g = Hf + f. where f. N N(O,02I) (2) 

In order to determine the Maximum Entropy reconstruction f of f, we 
require to minimise the function 

where Pi = filEfi and where the smoothing parameter ~ME is a Lagrange 
i 

multiplier which we obtain from some additional constraint, such as 

where Np is the number of pixels (e.g. Zhuang et al. 1987). 
If, in the entropy term in expression (3), 

{{-fi)/{} is small, where { = EfilNp' then 

(3) 

(4) 

(5) 
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E{fi[fi/f - l]}/Nf - log N + 

+ O(f i [1-f i/f]2) 

~ (Efi2)/(fN) - 1 - log N 

to first order. 
Thus if f is a slowly varying function of ~ 
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(6) 

(7) 

(8) 

which is simply the Zeroth Order Regularisation function (Titterington 
1985) . 

Thus expression (3) is approximately 

where 

min{lIg-HfIl 2 + ~QEfi2} 

).Q = ~ME N f2 

(9) 

(10) 

In obtaining th.!s result we have made two assumptions. First we 
have assumed that f = constant. In many image processing problems, 
particularly those involving photographic type images, as obtained for 
instance from the HXIS instrument on the SMM satellite (Mackinnon et aI, 
1985) we expect this to be true since we would expect Efi = Egi : the 
total observed number of counts in the blurred image is the same as in 
the true image. 

The second assumption we have made is that each f i is close to f. 
Clearly, in a great many problems this will not be valid. Indeed, the 
elements of f may vary over several orders of magnitude. We shall 
however show, by means of numerical examples, that even although the 
values of f obtained using Maximum Entropy may be substantially 
different from those obtained using Quadratic Regularisation, the 
quadratic method can still be used to find a 'satisfactory' estimate for 
~ME' 

The arguments used to get from (3) to (9) and (10) can equally well 
be applied to localised forms of the Maximum Entropy function. For 
example, 

2 E Pilog(Pi/(Pi+1Pi-1]~) E (pi-Pi+1)(logpi - logpi+1) 

= (Nf2 )-lE(fi- f i+1)2, 

(11) 

(12) 

so that Maximum Entropy with a data adaptive prior mi = [Pi+1Pi-1]~ is 
asymptotically equivalent to first order regularisation. 

In general we can write 

(13) 

where log Q is the vector whose ith element is 10g(Pi), C is some order 
of regularisation matrix and 
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(14) 

Similar results can be obtained for two-dimensional images where the 
equivalent of (13) would be 

(15) 

where XME = ~/Nf2, f = t t f ij/N and CijJlv are the elements of a 
smoothing or regularisation tensor. 

For example, in the zeroth order case of the Shannon Entropy 
function, 

Cijij 1 for all ij and CijJlv o (JI.v) ,. (i,j) 

and, in the case of first order smoothing 

Cijij 4 Cij,i+1,j = Ciji,j-1 Cij,i+1,j Ciji,j+1 -1 

for all ij and CijJlv o otherwise. 

3. NUMERICAL SIMULATIONS 

Maximum Entropy and Quadratic Regularisation image reconstruction 
problems can be split up into 5 characteristic components: 

(1) True image f 
(2) Point spread function H 
(3) Type of noise ~ 
(4) Smoothing function 
(5) Choice of smoothing parameter. 
In the remainder of this paper we present the results of some 

numerical simulations based on the 4 one-dimensional source functions 
shown in figure 1. 

The source functions were convolved with a circulant point spread 
matrix 

[ ,. .2 0 0 0 

'r] 
.2 .6 .2 0 0 

(16) 

0 0 0 .2 .6 .2 
.2 0 0 0 .2 .6 

and white Guassian noise with variance 0 2 , was added. 500 random 
realisations were produced and the estimated source function f was 
calculated using the zeroth and first order Quadratic Regularisation and 
the corresponding Maximum Entropy method described above. 

The smoothing parameters for the Regularisation methods were chosen 
using 2 methods. The first was the commonly used chisquared method, in 
which x is chosen to satisfy 
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Figure 1: The four source functions used ~ .• the numerical 
simulations. 

RSS(X) = Npo2 (17) 

where RSS(X) gT(I-K(X) )T(I-K(X»g and K(X) = H(HTH+XC)-lHT. The 
second is called the Equivalent Degrees of Freedom method. This is 
essentially a method for correcting the over smoothing associated with 
the chisquared method (Wold & Wahba. 1975). 

Instead of solving (17) we solve 

RSS(X) = o2tr {I-K(X)}, (18) 

where tr{K(X)} is interpreted as the number of degrees of freedom for 
estimating I(g) = Hf, and Np-tr{K(X)} is the equivalent degrees of 
freedom for estimating error. (For a fuller discussion of these methods 
of choosing the smoothing parameter see Thompson et al (1988).) 

In the case of the Maximum Entropy method we use two ways of 
estimating xME' In the first we use the solution of RSS(XME) = Npo2, 
whereas, in the second, we take the values of XQ (defined in (9) and 
(10» calculated using (17) and (18) and use the resulting value of XME 
as the basis for a Maximum Entropy reconstruction. 

The results of the numerical simulations described above are 
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presented in the form of three summary statistics. The first is 

(19) 

where fij is the value of the intensity on ith pixel as estimated in the 
NSA 

jth simulation. fi = E fij/Ns is the estimate for ith pixel averaged 
j=l 

over data sets. fi is the true intensity. ANs is the number of 
simulations and Nt! is the number of pixels. V is a measure of the 
instability or variability around the mean resulting from a given method 
of choosing A. 

The second statistic is 

(20) 

which provides a measure of the bias imposed on the estimate of f as a 
result of the smoothing operation. Finally. the third statistic is the 
Total Mean Squared Error. 

TMSE = V + B (21) 

which provides a measure of the average proximity of f is to the 
original image. 

4. RESULTS AND CONCLUSIONS 

Table 1 displays the summary statistics produced by the numerical 
simulations described in section 3. Source function 1. the small square 
well. satisfies the conditions outlined in section 2 for the asymptotic 
equivalence of Maximum Entropy and Quadratic Regularisation. We would 
therefore expect the results produced using these methods to be similar. 
This is confirmed by the almost identical results produced by each of 
these methods for both choices of smoothing parameter. 

The results for source function 1 also illustrate the characteristic 
properties of the chisquared and EDF methods of choosing A which is 
reproduced by all the data sets we have examined. the relative 
over-smoothing of the chisquared choice of A and the under-smoothing of 
the EDF choice of A: the chisquared method tends to produce a value for 
TMSE which is larger than the minimum value because it produces 
excessive bias B. while the EDF method produces a larger than optimal 
TMSE because of an excessive value of V. 

Source function 2 is a one-dimensional image containing a series of 
narrow spikes. As can be seen by comparing the results produced using 
Maximum Entropy and Quadratic Regularisation, the asymptotic 
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approximation breaks down for this source function. It is however 
noticeable that the quadratic method of estimating AME tends to perform 
better than the straightforward chisquared choice of smoothing 
parameter. Similar resul ts can be seen for source functions 3 and 4. 
In particular the EDF method of choosing AME does consistently better in 
terms of providing reconstructions which have a small Total Mean Squared 
Error thereby being in this sense closer to the true scene. 

Another point of note is that if we compare the results using the 
Zeroth and First Order forms of both Maximum Entropy and Quadratic 
Regularisation it is clear that the localised First Order method 
frequently provides a reconstruction closer to the truth than the Zeroth 
Order method. In fact. of the 4 source functions examined here all are 
recovered better by the First Order method. 

We should. however. add one cautionary note to these conclusions. 
The numerical simulations carried out here are very limited, 
particularly since we have examined only one kernel. and further 
simulations on other versions of the problem would be valuable. These 
preliminary results are. however. encouraging. 
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ABSTRACT 

Engineering workstations will be used in conjunction with a silicon com­
piler to design a Very Large Scale Integrated Circuit for a specific use, called 
an Application Specific Integrated Circuit, to analyze chirped signals of the form 
I (t) = Al cos (wt + at2 ) + A2 sin (wt + at2 ). This circuit should have the ability 
to analyze chirped signals from audio to lOMHz. The preliminary design of the 
chip is complete and fabrication will follow as soon as practical. 

THE ALGORITHM 

Very Large Scale Integrated Circuit (VLSI) design has entered in the under­
graduate electrical engineering curriculum, and interesting, realistic design prob­
lems are always being sought. The practical analysis of chirped signals by means 
of the algorithm derived by Larry Bretthorst [1987, 19881 represents a worthy 
project for implementation. To test the problem for its suitability and degree of 
difficulty, we have taken it through the design and simulation phases on a com­
mercial workstation. 

To give the reader a better understanding of the algorithm to be implemented, 
we give a brief summary of the Bayesian analysis of chirped signals developed by 
Bretthorst, which proceeds from the earlier analysis of Jaynes [1987] 

We have, in general, a signal of interest: I (t) = I (t, {d}), where I (t) is 
assumed to be a known function containing unknown parameters {19}, some of 
which are of interest,and some of which are not of interest (called nuisance param­
eters). We refer to I(t) as the model. Now the signal measured in some system 

land Puget Sound Power & Light Company, Bellevue, Washington U.S.A. 
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will be: y (t) = f (t) + e (t), where e (t) is the noise, including errors in the system. 
Measurements are made at sample times: 

ti , i=I, ... ,N. 

Thus we have data D = (d1 , • •• ,dN ), where ei = e (ti) and 

(1) 

Noise (given that only the noise power is known) is given only through its proba­
bility density: 

(2) 

Let H represent hypotheses regarding values of the parameters {19}. The H's 
are the objects of interest in this analysis. Our information concerning them is 
given, via Bayes' theorem, by 

(HID E) = p(HIE)p(DIH,E) 
p, p(DIE) , (3) 

where E represents the prior information that we are able to include in the calcula­
tion. It is this expression which generates the algorithm that will be implimented 
in the integrated circuit. It is desirable to incorporate several prior probability 
distributions in the design of the chip. 

We now substitute Eq. (1) into Eq. (2), lei = di - f (ti)l: this represents 
a change of variables from the unknown {ei} to the unknown {19}. This will 
determine, therefore, p(DIH, I). The result is 

p(DIH,I) = p(DI{19}, u,1) = tI (211"u 2 ) -t exp { - [di -2~;ti)j2} (4) 
1=1 

= (211"u2)-f exp{--;' t[di - f (tdl 2 }. (5) 
2u i=1 

The next step is to choose a model function. First, write 

m 

f (t) = L BjGj (t, {19}) (6) 
j=1 

Then Eq. (5) becomes 

(7) 
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where 

_ 2 m N Imm 
Q = d2 - N LBj LdiGj (ti) + N L LgikBjBk (8) 

j=1 i=1 j=lk=1 
N 

d2 = ~ Ld; (9) 
i=1 

N 

gjk = L Gj (ti) G k (t;) (10) 
;=1 

Now we diagonalize the matrix (gjk) by introducing new functions Hi (t) as follows: 

Note that: 

(1) 

(2) 

(3) 

m 

J(t) = LA;Hi(t) , 
i=1 

m 

Hi (t) = A;t L eijGj (t) , 
j=1 

m m 

L gjkelk = Alelk , L elkelk = 1 , 
k=1 k=1 

N 

L H j (ti) Hk (t;) = Djk . 
i=1 

The Likelihood function in equation 7 becomes 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

p(DJ{A}, {~lIa, E) ~ (2~aTt exp { -;-, [<1' - ~ ~ h;A; + ~ ~ All } 

(17) 
where 

N 

hj = L d;H j (ti)' (18) 
i=1 

Finally, we introduce the chirped signal: 

J (t) = C cos (wt + at2 + B) 
= Bl cos (wt + at2) + B2 sin (wt + atz) . (19) 
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So comparing with Eq. (6) we have 

G1 (t) = cos (wt + crt2) 

G2 (t) = sin (wt + crt2 ) 

{t?} = (w,cr). 

G. J. ERICKSON ET AL. 

(20a) 

(20b) 

(21) 

The above material should give an indication of the nature of the calculations 
that the chip must be able to perform. Depending on the actual problem to be 
solved (which parameters are known, which ones are to be estimated and which are 
nuisance parameters), the specifics of the calculation will vary considerably and 
will go far beyond our summary - for a detailed analysis see Bretthorst [1987, 
1988]. 

THE CHIP DESIGN 

Preliminary design of an Application Specific Integrated Circuit (ASIC) to 
solve the above algorithm has been completed. The design was done on a Sun 
workstation with a silicon compiler, Concorde, from Seattle Silicon. This compiler 
allows one to easily enter the design as a schematic, and to simulate the design 
once it is done. 

Our first design resembles Figure 1, which is a general design that is capable 
of using different algorithms. It was decided to design a chip with digital input, 
and to do the analog to digital conversion in another chip for two reasons: to 
simplify the first design, and to make it easy to work with computer simulated 
data. Simulations of this design indicate that it does do the mathematics that it 
was designed to do. A chip will be fabricated and placed on a circuit board, with 
the appropriate peripheral devices, which will be inserted in a small computer. 
This arrangement will allow easy simulation and display of the output of the 
processor. 

The Random Access Memory (RAM), on the chip, stores the program, while 
the datapaths carry the data through a series of Arithmetic Logic Units (ALU's) 
that do the calculations. There are the equivalent of 238,000 transistors in this 
design. The chip should be capable of operating at 20 MHz, so signals up to lOMHz 
can be analyzed. Future versions of this chip, which will be faster, are under design. 
Parallel processors may be used to speed up the processing, or faster technology, 
such as Gallium Arsenide, 'may be used. 
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Abstract 

A Bayesian solution is presented to the problem of straight-line 
fitting when both variables x and yare subject to error. The 
solution, which is fully synmetric with respect to x and y, contains 
a very surprising feature: it requires a informative prior for the 
distribution of sample positions. An uninformative prior leads to a 
bias in the estimated slope. 

1. Introduction 

An apparently simple data analysis problem that often arises is that of fitting 
a straight line to measurements of two quantities (x,y). Suppose that we have N 
such measurements {xi,Yi} and that they are each subject to independent Gaussian 
errors (O'x,O'y) (for the moment assumed known). Our task is to find a 
relationship of the foon: 

'" a i + b , '" '" y where Xi = Xi ± O'x; Yi ... Yi ± O'y • 

Note that we are considering a problem",~ which there is an underlying ~ 
relation for the (unknown) quantities (x,y) and that the measurements {xi,Yi} 
are subject to error. A related, but different problem is the case where there 
is very little experimental error, but the measurements refer to different 
objects with an intrinsic spread of (a,b) values. An example of this type would 
be the height and weight distributions of a set of students. Problems of this 
latter type are known as regression and, although they are clearly interesting, 
they are not the type of problem considered here. 

2. The joint distribution 

We now begin a careful Bayesian analysis of the straight-line-fitting problem, 
and will derive the joint probability distribution of the data and the 
parameters. For the case where both variables are SUbject to error we cannot 
avoid introducing the "hidden variables' {ii} (and h-axi+b). which are a set of 
N nuisance parameters. We need these before we can even write down the 
likelihood function: 

pr(x,yli,a,b.O'x.O'y) ... (4~~)-N/2 exp -(;(Xi-ii)2/ai + ;(Yi-Yi)2/oj)/2 • 
~ ~ 

When we have completed the assignment of the joint p.d.f., we will integrate the 
nuisance parameters out of the posterior distribution. 

To make further progress we need to refine our thinking about the nature of 
the problem. The variables x and y may not be of the same type, but it is 
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usually as natural to plot x against y as y against x. We must therefore treat x 
and y in a symmetrical fashion. Recognising this, a sensible way to treat the 
problem is to suppose that there are separate scalings and offsets of the x and 
y variables that map them both into a given interval. for example (-1,+1). We 
define new scaled variables X and Y. which are related as follows: 

'" X '" (x-XQ) I Rx • 
a - Ry/Rx. 

Y - (y-YO) I Ry • 
b - YO - a XQ • 

This procedure closely follows what we do in practice when plotting points on 
graph-paper or on a display screen - we ascertain the range of both variables 
and plot accordingly. In this way our relationship takes the simple form: 

X - ±Y . 

In what follows we will derive fonrulae appropriate for the positive sign. In 
order to cope with this ambiguity of the sign of the slope. we should. strictly. 
always compute both cases. and compare their posterior probabilities. In many 
cases it will be obvious which case is better. Two other extreme cases that 
might also be worth considering separately are the degenerate cases X - 0 and 
Y'" O. 

At this point the reader may be forgiven for thinking that we have gone 
backwards; we started with two variables (a.b) and have replaced them by four 
(XQ.yo.Rx.Ry). However. we will find that " there are great advantages to be had 
from this more synmetrical formulation of the problem. 

We start our developnent with the prior for pr(XQ.yo.Rx.Ry). Because the 
units of x and yare related to Rx and Ry. we can reasonably take Rx and Ry to 
be scale parameters. and the offsets XQ and yo to be location parameters. We 
therefore take the prior as uniform in 10gRx. l0gRy. XQ and yO: 

pr(xo.Yo.Rx.Ry) dxo dyO dRx dRy IX dxo dyO d(logRx) d(logRy> • 

IX d(loga) d(ba-1/2) d(logR) d(XOal/2) • 

where R '" (Rx Ry)1/2 is a synmetric range parameter. We should also. for 
completeness. specify same sensible ranges for these parameters. In fact. the 
posterior distribution is normalisable over infinite ranges of XO and YO when 
there are more than two samples. and we shall return to the question of what 
(Bmin' Bmax) and (Rmin' Rmax) should be later. 

The final expression for the ~rior in terms of our original variables a and 
b (and the range and offset of X) is very instructive. In particular. the 
(da db a-3/2 ) part of this prior can be compared to that obtained by Jaynes 
(1967) for an allegedly similar problem: he finds (da db (a2 + 1)-3/2). using a 
transformation group argument. Whilst I am always very wary of disagreeing with 
Ed. I note the following points. 

1) the flUlctional relationship derived by Jaynes: 

a3 f(a.b) f(l/a. -b/a) (in the present notation). 

is satisfied by both candidate priors ••• and many others - this functional 
relationship is too weak to determine the prior uniquely. 
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2) The (da db (a2 + 1)-3/2) prior is the correct answer to a different 
problem. Suppose that (as in the Bertrand problem (Jaynes 1973» a straw is 
thrown at random onto a piece of square graph paper. Imagine then that this 
straw defines a regression line. The rotational symmetry inherent in this second 
problem is now sufficient to determine the prior uniquely, but is not relevant 
to the straight-line fitting problem, even when the variables are of the same 
type. Indeed, for the particular example given by Jaynes, that of the daily 
temperature variations at New York and Boston (which is actually a regression 
problem, rather than line-fitting), it is rather difficult to understand why we 
should ~t to consider rotation of one axis onto the other. 

For these reasons I believe that the hypothesis space defined here by 
(xo,YQ,Rx,R,,) is more useful for the line-fitting problem than that implied by 
Jaynes' prlor, but it was his prior (and the obvious non-uniqueness of the 
functional equation) that stimulated my interest in this problem. 

We now arrive at a very interesting stage. The joint p.d.f. can be written 
as: 

pr(x,y,i,xo,YQ,Rx,Ry) - pr(xQ,Yo,Rx,Ry) pr(iIXO,YQ,Rx,Ry) pr(x,yli,ux,uy), 

where irrelevant conditionals have been dropped. Our remaining problem is the 
prior pr(ilxQ,YQ,Rx,Ry). At first sight it may seem peculiar that our answe~s 
are going to depend on our prior knowledge of the distribution of the "true" x, 
and I imagine that strong objections will be voiced from same directions. 
However, my intuition about this matter has now been educated a little, and it 
is from this part of the prior that the most unexpected (and pleasing) feature 
of the Bayesian solution emerges. Let us take for this prior the independent 
Gaussian form: 

pr(ilxQ,Yo,Rx,Ry) = (2~)-N/2 exp -;«ii-XQ)2/~)/2 • 
l. 

This form can be derived by invoking the principle of MaxiImml Entropy, using 
constraints on <I(i-XO )2> .. N ~ and <Ii> - N XO. Note also that, because of the 
definition of the parameters, this prior is fully synmmtric with respect to x 
and y. Perhaps the choice of a Gaussian prior for i and Y does not really 
correspond to our best intuition for this problem; we might prefer to consider 
the points spread evenly over the graph paper. However, we shall continue to use 
a Gaussian prior, because it makes the algebra tractable, if not actually 
pleasant. 

We now write down the full symmetric joint p.d.f.: 

pr(x,y,i,XO,YQ,logRx,logRylux,uy) 

(8~3~)-N/2 exp - ; «ii-XQ)2/~(Xi-ii)2/~+(Yi-Yi)2/oj)/2 , 
l. 

which, using Bayes' theorem, is then proportional to the posterior distribution 
pr(i,XO,YQ,logRx,logaylx,y,ux,uy). 

3. Estimation of parameters 

At this point we draw a polite veil over the algebra as we integrate the 
nuisance parameters X out of the problem. We note that the X have independent 
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Gaussian distributions which lead in turn to Gaussian distributions for xO and 
Yo: 

This yields estimators for xo and YO, together with their covariance matrix: 

<xo> = ~ xi/N = X; <YO> = ~ Yi/N = y; or 
~ ~ 

<b> = Y - a X . 

<Bxfi> = (~ + aR2)/N; <BxOByO> = R2/N; 
and 

<Bb2> = (~ + a2~)/N. 

Note that the error estimates for xo and Yo depend on the range parameter R, but 
that the error in the intercept value b depends only on the measurement errors 
O"x and 0"1' We take this opportunity to integrate xo and yO out of the problem 
also, and to express the answer in tems of a and R. Finally, we find: 

log pr(loga,logRlx,y) constant - (N-l)/2 10g(a~R2~~+a-l~R2) 

(Vxx(aR2~)-2VxyR2+vyy(a-lR2~» 

2 (a~R2~~+a-lu2yR2) 

where the sample sum-squares are defined: 

Vxx = t (xi-x)2; Vxy = ~ (xi-x)(Yi-y); Vyy = ~ (Yi-y)2. 
~ ~ ~ 

There is little insight to be gained in developing this formula further 
analytically, but it is interesting to note its behaviour in certain limits. The 
estimated slope a is close to either Vxy/Vxx or V IV~, depending on the 
relative sizes of o"x and O"y; its error is aetermined ~ the measurement errors, 
not the range parameter. The range parameter R is similarly determined by either 
~ - Vxx/N or ~ - Vyy/N, and its error BlogR - N-1/2. 

4. Discussion 

We now illustrate this formula with a computer example. Figure 1 shows a dataset 
of 100 samples together with the best-fitted line. This looks to be a sensible 
fit, though we claim little credit for this in itself, because an equally good 
job can be done by eye. Figure 2 shows the posterior distribution of the 
interesting parameters Rx and ~, confirming the presence of a single, well­
defined maximum in the posterior p.d.f. We see also that there are certain 
problems of normalisation of the posterior distribution, because the p.d.f. 
tends to a constant value as Rx --> 0 and Ry --> 00. As Rx or Ry --> 00 the 
distribution falls off sufficiently fast to be integrable over an infinite 
range. This therefore raises again the question of a "sensible" cut-off for 
Rxmin and Rymin· We can answer the question of what a sensible cut-off means by 
investigating just what these cut-offs would have to be so that the contribution 
from the quadrant (Rx,Ry) --> 0 made a 50 per cent contribution to the posterior 
probability integral. For our dataset we find Rxmin and ~n < exp(exp(-lOOO». 
This is clearly a crazy number, and indicate that we are solving an essentially 
well-posed problem. 
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Figure Z. Posterior distribution of the range parameters Rx and Ry. The contour 
intervals are logarithmic, each level representing a probability difference of 
exp(lOO) • 

In other cases, though, we could well imagine that these numbers would not 
be so crazy, but instead give us insight into very real dilemmas. For example, 
suppose that the range of the data in one variable, say y, is very nearly 
covered by its error uy ' This could easily happen, and implies Rx - O. In this 
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case are we really so sure that there is any real variation of y present in the 
data? Only our prior probability of the range of Rymin can help us here - Rymin 
does matter. Of course, a change of prior for a, such as that suggested by 
Jaynes, can make this p.d.f. integrable, but at the cost of disguising what is 
an essential part of the problem. "When the x variation is similar to O'x' then 
Rxmax is also important. 

"Whilst the assignment of priors for a and b leads to interesting 
discussions, it does not actually affect the numerical estimates greatly. It is 
a bit like arguing about whether to use V/N or V/(N-1) when calculating standard 
deviations; the prior information becomes swamped as we gather more data. There 
are, however, DUch IOOre important matters that are raised by our foruula. The 
prior pr(xlxo,Yo,Rx,Ry) is the most contentious part of the analysis, forA the 
reason that there are so many nuisance parameters. We cannot swamp the x by 
gathering more data: we introduce a new x for each sample. We therefore have to 
be rather more careful about this prior. 

OUr first instinct, perhaps, would be to say 'x is a location parameter" 
and assign to it a uniform prior over an infinite interval. There is no 
mathematical difficulty in this, indeed the analysis is far easier, and 
corresponds to our case R --> ~ I freely admit that this was the first case 
that I tried, and I only abandoned it because it doesn't work. Indeed, if it had 
worked, then this analysis would have stayed in my research notebook as a 
trivial application of Bayesian methods. To see that the foruula goes wrong, 
look at it in the limits O'x = 0, R = 00: 

log pr(alx,y,O'y) = constant - «N-1)/2) log a - «a2Vxx + aVxy)/oj)/z . 

The last term is fine, but the first term biasses the answer, increasing a by 
one-half of a standard deviation. But this term cannot just be dropped I We could 
get rid of it by re-foruulating our hypothesis space in a different way, by 
dropping the syumetry with respect to x and y. But that in turn would exacerbate 
the problem for the canp1ementary case O'y .. 0, where the present one-half 
standard deviation bias would be doubled. 

All my Bayesian friends have objected at this point that "there's no such 
concept as bias in Bayesian analysis". It is true that there is no meaningful, 
exact definition of bias except in a frequentist sense. "What I mean here is that 
the answer given by the R --> 00 estimator is usually wrong, and in a given 
direction. The dictionary calls this "bias·. 

"When a Bayesian calculation gives the wrong answer, it simply means that 
the hypothesis space contains wrong information. Here, we assembled the joint 
p.d.f. in a systematic way that I reconmend be used in all Bayesian 
calculations (Gull 1988), so it is easy to see what went wrong. It was clear at 
the time that we needed the prior pr(xlxo,yo.Rx.Ry) for all the M samples 
simultaneously. We might swallow the "location parameter" argument for the first 
sample, but for N all at once it looks very strange. Suppose that the first (N-
1) samples all lie in -3 < x <2.5. Do we really believe that the next sample can 
be anywhere in (-00, 00) 7 Our original Gaussian prior amounts to the reasonable 
suggestion that we learn about the mean and variance of the x distribution from 
the sample. We can of course do this, so that R is in general well-determined by 
the sample. Seen this way, we mipt it think it advisable to learn some other 
parameters of the shape of the x distribution as well. This will improve our 
results, but probably not very DUch, and at a terrible price: we would then be 
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unable to perfonn the required integrals analytically. 
We can see now why the range parameter R corrects the bias of the estimated 

slope. Suppose, again, that Ux = O. The «N-l)/2 log a) tenn fram the 
detenninant increases the slope by one-half of a standard deviation, but, as R 
is reduced, the yare gently squeezed in range, reducing the slope. When R 
reaches its most likely value the bias in the slope is exactly corrected. Seen 
the other way around: the range parameter biasses the slope against the weaker 
direction of the error bars; the detenninant tenn corrects this. The fonnula 
given earlier seems to work for all combinations of Ux and uy ' 

Can such a simple problem really require so complicated a solution? If all 
you want is the answer I can recommend an estimator for a: 

min 
(a Vxx - 2 Vxy + a-I Vyy) 

(a O"i + a-I oj) 
This is our answer with R --> (Xl and the detenninant tenn dropped, so it 

will probably work. In can be derived by an ingenious argument (Brian Ripley, 
private communication, see also Ripley 1987 and Sprent 1969). The problem is 
scaled, not on the range of the data, but on the size of the errors o"x and O"y' 
The range itself is then allowed to go to infinity. If you scale on o"x and O"y' 
then there is no longer a 'weak' direction to be biassed, so no problems appear 
with the R --> (Xl solution. However, we note that a finite range R2 - V/N is 
still more likely than R = ~ and because the problem is no longer scaled 
symmetrically on the range of the data, bias would return if R were reduced. In 
any case, scaling on the size of the errors looks a bit peculiar if either Ux or 
O"y is zero. Again, this modification of the hypothesis space seems to be an 
attempt to disguise what is a real problem. One is even led to speculate that 
scaling on o"x and uy is a subconscious admission that same statisticians are 
more interested in the errors than they are in the data themselvesl 

Finally, we examine the problem of detennining the level of the errors Ux 
and uy if they are unknown. This does not involve any more analysis, because we 
have already been careful to retain all factors of o"x and uy from the 
likelihood. We assign an uninformative prior for these variables, unifonn in 
log o"x and log O"y' so that our previous fonnula will also be the posterior: 
pr(logO"x,logO"y,loga,logRlx,y), which is illustrated in Figure 3. As we would 
expect, if only one of o"x or O"y is unknown, then the data detennine the other 
extremely well, but it is too much to expect that both can be detennined 
simultaneously. Rather, it is the combination (a~ + a~) that is accurately 
detennined, but the error cannot be very reliably assigned to x or y 
individually. However, Figure 3 does show that there is just a little 
information about the rati~ O"y/O"x contained in the dataset, presumably 
reflecting the fact that the x were unifonnly sampled, rather than taken from a 
Gaussian distribution. Looking at the data by eye confinns this feeling; for a 
unifonn distribution one can guess the relative contributions to the error. This 
indicates that there might be same real merit in using a more complicated 
hypothesis space, despite the difficulties of the computations involved. 

5. Conclusions 

The apparently simple Bayesian problem of straight-line fitting with both 
variables subject to error contains a subtle twist. The ranges of the variables 
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are usually well-determined by the dataset, equivalent to an "informative" prior 
for the sample positions. The use of a unifoIlll, uninformative prior would lead 
to a bias in the estimated slope. The use of informative priors containing range 
parameters is a common feature of Bayesian analyses of this type: the ·Classic· 
Maximum Entropy presented here by Skilling (1988) is another example. 
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