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Dedication

To the ideal of rational inference



PREFACE

The "8th MaxEnt Workshop", to give it its short name, was
held in St. John’s College, Cambridge, England, on August 1 - 5,
1988, and this Volume of 55 papers records the Proceedings.

History repeats itself in many ways. All ancient
civilisations evolved some core of basic practical mathematics,
but it was the Greeks who insisted upon superior intellectual
standards. It was the Greeks who invented the world of axioms
and theorems. They invented and formalised the central idea of
logical proof, so that assent to axioms perforce requires assent
to their consequences, however long the <chain of reasoning
involved. Conversely, any attack on the consequences becomes an
attack upon the axioms, which are wusually much simpler to
discuss. This power and beauty swept cruder mathematics aside
for ever.

An echo of this occurs in our own century. We live in a
complicated world, and our procedures for learning from
observations are codified as the subject of statistics. Often
enough, we are concerned with difficult problems, and a variety
of more or less ad hoc practical techniques has evolved to deal
with them. Yet there is an inner logic to the practice of
inference, which 1leads inevitably to the wuse of quantified
probabilities, manipulated by Bayes’ theorem and assigned by the
principle of maximum entropy (MaxEnt). Those who live by this
logic are called Bayesians. Because of their inner certainty of
methodology, they are sometimes perceived as religious
fundamentalists - but that does not in itself mean that they are
wrong.

The Bayesian/MaxEnt church is alive and well, and has its
own calendar of saints (and devils). Foreshadowed by the MIT
meeting of 1978, the first formal assembly was held in Laramie,
Wyoming in June 1981. It was my particular pleasure to attend
that first "Workshop on Maximum Entropy and Bayesian Methods in
Applied Statistics", organised by Ray Smith and Tom Grandy, who
have since become lasting friends of mine. MaxEnt was then
beginning to grow beyond the confines of statistical thermo-
dynamics, where it had enjoyed a certain degree of protection
afforded by the abstract nature of the subject, by the
conveniently large value of Avogadro’s number, and by the
demonstrable success of its predictions. Bayes’ theorem,
likewise, was beginning to break free of the suffocating weight
of "orthodox" statistics, substantially aided by the brilliant
logic and polemic of Edwin Jaynes. Each summer since 1981 has
seen a further meeting in the series. Each has been notable for
some new inspiration and application, for the particular strength
of rational thought is that it works. More and more quickly,
inference problems in all sorts of disciplines are being brought
within the purview of Bayesian/MaxEnt analysis.

The 1988 meeting, held in St. John’s College, Cambridge,
had a particularly appropriate venue. Sir Harold Jeffreys, who

vii



viii PREFACE

cared deeply about rational inference throughout a long working
life, is the Senior Fellow. Prof. Edwin T. Jaynes, whose
influence on the subject has been so profound, is also connected
with St. John’s, having been Overseas Fellow in 1983/4. On a
lesser plane, my own introduction to MaxEnt was a lunch-time
conversation in College with my mentor, friend and colleague,
Steve Gull.

Being the first of the workshops to be held in Europe,
this meeting attracted over 100 delegates, from industry and from
defence establishments as well as from academia. A central topic
such as inference can be expected to touch a number of other
subjects, but even the organisers were surprised by the variety
of topics which were offered and presented, from philosophy to
floods, from biology to astronomy, and with references ranging
from New Left Publications to Acta Crystallographica.

Profound thanks are due to our financial sponsors, who
provided the funds needed to invite distinguished overseas
speakers whilst keeping the fees low enough for the academic
pocket. The United States Navy Office of Naval Research
maintained its valued connection with the workshop series through
its grant N00014-88-J-1126, and industrial support was provided
by E.I. DuPont Company Central Research and Development, ICI
Chemicals and Polymers Group, Glaxo Group Research Limited,
British Petroleum plc, and Maximum Entropy Data Consultants

Limited. Thanks are also due to St. John’s College, which
provided such appropriate and attractive facilities, and whose
staff were unfailingly generous with their time and effort. Not

least, I wish to thank in particular my wife and son, Jennifer
and Martin Skilling, for their secretarial and organisational
help, which contributed so much to the smooth running of the
meeting. Thank you, all.

The authors of the papers published here also deserve my
editorial thanks for producing their papers so well and so
promptly. In the interests of quick publication, the workshop is
continuing the recent practice of wusing camera-ready copy.
Because interest continues to grow, the workshops are currently
being formally organised on a continuing basis, with a permanent
organising committee, and their Proceedings are henceforward to
be published by Kluwer Academic Publishers under the generic
title

"Maximum Entropy and Bayesian Methods (location) (year)".
It is hoped that each successive volume will continue to capture
something of the excitement and vitality of current research.

Lastly, I wish as Editor to dedicate this Volume, not to
any particular individual, but to that transcending ideal to
which we try to aspire - the ideal of rational inference.

St. John’s College John Skilling
Cambridge
January 1989
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CLEARING UP MYSTERIES - THE ORIGINAL GOAL

E. T. Jaynes
Wayman Crow Professor of Physics
Washington University, St. Louis MO 63130, USA

Abstract. 'We show how the character of a scientific theory depends on one’s attitude toward
probability. Many circumstances seem mysterious or paradoxical to one who thinks that probabilities
are physically real things. But when we adopt the "Bayesian Inference" viewpoint of Harold Jeffreys,
paradoxes often become simple platitudes and we have a more powerful tool for useful calculations.
This is illustrated by three examples from widely different fields: diffusion in kinetic theory, the
Einstein-Podolsky-Rosen (EPR) paradox in quantum theory, and the second law of thermodynamics in
biology.

INTRODUCTORY REMARKS

Our group has the honour to be among the first to use this splendid new Fisher building
with its 300 seat auditorium. But perhaps, at a meeting concerned with Bayesian inference, we
should clarify which Fisher inspired that name.

St. John’s College was founded in the year 1511, its foundress being the Lady Margaret
Beaufort. John Fisher was then Chancellor of the University of Cambridge, and after her
death he found himself obliged to make heroic efforts to ensure that her wishes were carried
out. But for those efforts, made some 480 years ago, St. John’s College would not cxist
today. Historians have suggested that, but for the efforts of John Fisher in holding things
together through a turbulent period, the entire University of Cambridge might not exist today.

Although the terms "Bayesian" and "Maximum Entropy" appear prominently in the
announcements of our meetings, our efforts are somewhat more general. Stated broadly, we
are concemned with this: "What are the theoretically valid, and pragmatically useful, ways of
applying probability theory in science?"

The new advances of concemn to us flow from the recognition that, in almost all respects
that matter, the correct answers were given here in St. John’s College some fifty ycars ago, by
Sir Harold Jeffreys. He stated the general philosophy of what scientific inference is, fully and
correctly, for the first time; and then proceeded to carry both the mathematical theory and its
practical implementation farther than anyone can believe today, who has not studicd his works.

The ideas were subtle, and it required a long time for their merit to be appreciated; but
we can take satisfaction in knowing that Sir Harold lived to see a younger generation of
scientists eagerly reading, and profiting by, his work. In September 1983 I had a long,
delightful conversation over tea with Sir Harold and Lady Jeffreys, and know how pleased
they both were.

Important progress is now being made in many areas of science by adopting the
viewpoint and extending the methods of Harold Jeffreys. Even those of us who were long
since convinced of their theoretical merit are often astonished to discover the amount of
numerical improvement over "orthodox" statistical methods, that they can yicld when
programmed into computers. It is hardly ever small except in trivial problems, and nontrivial
cases have come up where they yield orders of magnitude better sensitivity and resolution in
extracting information from data.

1

J. Skilling (ed.), Maximum Entropy and Bayesian Methods, 1-27.
© 1989 by Kluwer Academic Publishers.



2 E. T.JAYNES

This mcans that in some areas, such as magnctic resonance, it is now possible to conduct
quantitative study of phcnomcna which were not accessible to obscrvation at all by the
previously uscd Fourier transform mcthods of data analysis; old data which have been
preserved may have a new Icase on life. The technical details of this are to appear in the
forthcoming book of G. L. Bretthorst (1988).

Even when the numerical improvement is small, the greater computational cfficicncy of
the Jeffreys mcthods, which can reduce the dimensionality of a search algorithm by climinating
unintercsting parameters at the start, can mean the difference between what is fcasible and
what is not, with a given computer. As the complexity of our problems increascs, so docs the
rclative advantage of the Jeffrcys mecthods; thercfore we think that in the future they will
become a practical necessity for all workers in the quantitative sciences.

How fitting it is that this mecting is being held back where these advances started. Our
thanks to the Master and Council of St. John’s College, who made it possiblc.

THE MOTIVATION

Probability thcory is a versatile tool, which can serve many diffcrent purposes. The
carliest signs of my own intcrest in the ficld involved not data analysis, but rccognition that the
Jeffreys viewpoint can clear up outstanding mysterics in thcoretical physics, by raising our
standards of logic. As Jamcs Clerk Maxwecll wrote over 100 years ago and Harold Jeffreys
quoted 50 ycars ago, probability theory is itself the true logic of science.

The recent emphasis on the data analysis aspect stems from the availability of computers
and the failurc of "orthodox" statistics to keep up with the needs of scicnce. This created
many opportunitics for us, about which other spcakers will have a grcat deal to say here.
Also, as will be noted here by David Drabold, John Skilling, and others, the MAXENT
algorithm has proved to be a powerful tool for theoretical calculations. But while pursuing
these important applications we should not lose sight of the original goal, which is in a sense
cven more fundamental to scicnce.

Therefore in this opening talk we want to point out a ficld ripe for exploration by giving
threc examples, from widcly different areas, of how scientific mysteries are cleared up, and
paradoxes bccome platitudes, when we adopt the Jeffreys viewpoint. Once the logic of it is
scen, it becomes cvident that there are many other mysteries, in all sciences, calling out for the
same trcatment.

The first cxample is a simple exercise in kinetic theory that has puzzled generations of
physics students: how docs one calculate a diffusion coefficient and not get zero? The second
concerns the currenily interesting "Einstein-Podolsky-Rosen paradox" and "Bell inequality"
mysteries in quantum theory: do physical influences travel faster than light? The third
recxamines the old mystery about whether thermodynamics applies to biology: does the high
efficiency of our muscles violate the sccond law?

DIFFUSION

Think, for concreteness, of a solution of sugar in water, so dilute that each sugar
molecule interacts constantly with the surrounding water, but almost never encounters another
sugar molecule. At time t=0 the sugar concentration varies with position according to a
function n(x,0). At a later time we expect that these variations will smooth out, and eventually
n(x,t) will tend to a uniform distribution.
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Since sugar molecules -- or as we shall call them, "particles" -- are not created or
destroyed, it seems natural to think that there must have been a diffusion current, or flux J(x,t)
carrying them from the high density regions to the low, so that the change in density with time
is accounted for by the conservation law:

m .o
o +div)=0 . 1)

Phenomenologically, Fick’s law relates this to the density gradient:
J =~ D grad(n) 2)

In the case of sugars, this is easy to measure by optical rotation. In Maxwell’s great
Encyclopaedia Brittanica article on diffusion he quotes the experimental result of Voit for
sucrose: D = 3.65 E-0S5 square cm/sec.

Our present problem is: how do we calculate J(x,t) from first principles? Maxwell gave
the simple kinetic theory of diffusion in gases, based on the idea of the mean frec path. But in
a liquid there is no mean free path. Maxwell, who died in 1879, never knew the general
theoretical formula for the diffusion coefficient which we now seck, and which applies equally
to gases, liquids, and solids.

Only with the work of Einstein in the first decade of this Century were the beginnings
made in seeing how to deal with the problem, culminating finally in the correct formula for the
diffusion coefficient. But Einstein had to work at it harder than we shall, because he did not
have Harold Jeffreys around to show him how to use probability theory.

It would seem that, given where a particle is now, we should find its velocity v, and
summing this over all particles in a small region would give the local flux J(x,t). However,
the instantaneous velocity of a particle is fluctuating wildly, with a mean-square value given by
the Rayleigh-Jeans equipartition law; and that is not the velocity we seek. Superposed on this
rapidly fluctuating and reversing thermal velocity, of the order of 100 meters/sec, is a very
much slower average drift velocity representing diffusion, which is our present interest.

Given where a particle is now, x(t), its average velocity over a time interval 2T centered
at the present is

x(t+ 1) — x(t — 1)
21

so if we make our best estimate of where the particle will be a time T in the future that is long
on the time scale of thermal fluctuations, and where it was an equal time in the past, we have
an estimate of its average slow velocity about the present time. The probability that it will
move from x(t) to y = x(t + 1) in the future is given by some distribution P(y 1x,7). Its motion
is the result of a large number of small increments (encounters with individual water
molecules). Therefore the Central Limit Theorem, interpreted with the judgment that scientists
develop (but cannot always explain to mathematicians, because it draws on extra information
that a mathematician would never use in proving the theorem) tells us that this will have a
Gaussian form, and from symmetry the mean displacement is zero:

P(yIx,]) = A exp[- (y-x)%26%(1)] @)

V=

3)

where I stands for the general prior information stated or implied in our formulation of the
problem. All the analysis one could make of the dynamics of sugar-water interactions would,
in the end, serve only to determine the spreading function 02(1) = (8x)2, the expected square of
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the displacement.

But now our trouble begins; the particle is as likely to be battered to the right as to the
left; so from symmetry, the expectation of y is <y>=x. Now all the equations of motion,
however complicated, are at least time-reversal invariant. Therefore for the past position
z = x(t—t) we should have the same probability distribution (4) which is independent of the
sign of 7, and again <z> = x(t). Therefore the estimated velocity is zero.

Surely, this must be right, for our particle, interacting only with the surrounding water,
has no way of knowing that other sugar molecules are present, much less that there is any
density gradient. From the standpoint of dynamics alone (i.e., forces and equations of motion)
there is nothing that can give it any tendency to drift to regions of lower rather than higher
density. Yet diffusion does happen!

In the face of this dilemma, Einstein was forced to invent strange, roundabout
arguments -- half theoretical, half phenomenological -- in order to get a formula for diffusion.
For example, first estimate how the density n(x,t) would be changed a long time in the future
by combining the distributions (4) generated by many different particles, then substitute it into
the phenomenological diffusion equation that we get by combining (1) and (2); and from that
reason backwards to the present time to see what the diffusion flux must have been.

This kind of indirect reasoning has been followed faithfully ever since in treatments of
irreversible processes, because it seems to be the only thing that works. Attempts to calculate
a flux directly at the present time give zero from symmetry, so one resorts to "forward
integration" followed by backward reasoning. Yet this puzzles every thoughtful student, who
thinks that we ought to be able to solve the problem by direct reasoning: calculate the flux
J(x,t) here and now, straight out of the physics of the situation.

Furthermore, instead of our having to assume a phenomenological form, a correct
analysis ought to give it automatically; i.e. it should tell us from first principles why it is the
density gradient, and not some other function of the density, that matters, and also under what
conditions this will be true. Evidently, we have a real mystery here.

Why did our first attempt at direct reasoning fail? Because the problem is not one of
physical prediction from the dynamics; it is a problem of inference. The question is not "How
do the equations of motion require the particles to move about on the average?" The equations
of motion do not require them to move about at all. The question is: "What is the best estimate
we can make about how the particles are in fact moving in the present instance, based on all
the information we have?” The equations of motion are symmetric in past and future; but our
information about the particles is not.

Given the present position of a particle, what can we say about its future position? The
zero movement answer above was correct; for predicting where it will be in the future, the
knowledge of where it is now makes all prior information about where it might have been in
the past irrelevant. But estimating where it was in the past is not a time-reversed mirror image
of this, for we have prior knowledge of the varying density of particles in the past.
Knowledge of where it is now does not make that prior knowledge irrelevant; and sound logic
must take both into account.

Let us restate this in different language. Equation (4) expresses an average over the class
of all possible motions compatible with the dynamics, in which movements to the right and the
left have, from symmetry, equal weight. But of course, our particular particle is in fact
executing only one of those motions. Our prior information selects out of the class of all
possibilities in (4) a smaller class in which our particle is likely to be, in which movements to
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the right and left do not have equal weight. It is not the dynamics, but the prior information,
that breaks the symmetry and leads us to predict a non-zero flux.

While P(x1z,;t) is a direct probability, the same function as (4), the probability we now
need is P(z!x,t), an inverse probability which requires the use of Bayes’ theorem:

PzIx,tI) = AP(zIDP(x1z]I) . (5)
The prior probability P(z 1) is clearly proportional to n(z), and so from (3)
log P(z1x,]) = log n(z) — (z-x)*/26%(t) + (const.) . (6)
Differentiating, the most probable value of the past position z is not x, but
2 = x + o2 grad(log n) = x + (8x)? grad(log n) )
whereupon, substituting into (3) we estimate the drift velocity to be
v = — (8x)%/21 grad(log n) (8)
and our predicted average diffusion flux over the time interval 2t is
J(x,t) =n vV = — (8x)*21 grad(n) . ©)
Bayes’ theorem has given us just Einstein’s formula for the diffusion coefficient:
D= %2- (10)

and a good deal more. We did not assume that grad(n) was the appropriate phenomenological
form; Bayes’ theorem told us that automatically. At the same time, it told us the condition for
validity of that form; unless (8x)? is proportional to T, there will be no unique diffusion
coefficient, but only a sequence of apparent diffusion coefficients D(t) for the average drift
over different time intervals 2t. Then the flux J(x,t) will depend on other properties of n(x,t)
than its gradient, and in place of (2) a more complete Bayesian analysis will give a different
phenomenological relation, involving an average of grad(n) over a short time in the past. Thus
(9) is only the beginning of the physical predictions that we can extract by Bayesian analysis.

While (8) is the best estimate of the average velocity that we could make from the
assumed information, it does not determine the velocity of any one particle very well. But
what matters is the prediction of the observable net flux of N particles. In principle we should
have calculated the joint posterior distribution for the velocities of N particles, and estimated
their sum. But since that distribution factors, the calculation reduces to N repetitions of the
above one, and the relative accuracy of the prediction improves like the square root of N, the
usual rule in probability theory.

In practice, with perhaps 0.001M sugar solutions, the relevant values of N are of the
order of 1 E+16, and the prediction is highly reliable, in the following sense: for the great
majority of the N-particle motions consistent with the information used, the flux is very close
to the predicted value.
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DISCUSSION

The above example may indicate the price that kinetic theory has paid for its failure to
comprehend and use the Bayesian methods that Harold Jeffreys gave us 50 years ago, and how
many other puzzles need to be reexamined from that viewpoint. The only reason why the
fluxes persisted in being zero was failure to put the obviously necessary prior information into
the probabilities. But as long as one thinks that probabilities are physically real things, it
seems wrong to modify a probability merely because our state of knowledge has changed.

The idea that probabilities can be used to represent our own information is still foreign to
"orthodox" teaching, although the above example shows what one gains by so doing. Prior
information is often highly cogent, and sound reasoning requires that it be taken into account.
In other fields this is considered a platitude; what would you think of a physician who looked
only at your present symptoms, and refused to take note of your medical history?

In the next talk, Ray Smith will survey the arguments of George Polya and Richard Cox
indicating the sense in which Bayesian inference is uniquely determined by simple qualitative
desiderata of rationality and logical consistency. Here I want only to indicate something about
the rationale of their application in real problems.

Conventional training in the physical sciences concentrates attention 100% on physical
prediction; the word "inference" was never uttered once in all the science courses I ever took.
Therefore, the above example was chosen because its rationale is clear and the actual
calculation is utterly trivial; yet its power to yield not only results that previously required
more work but also more details about them, is apparent at once.

To appreciate the distinction between physical prediction and inference it is essential to
recognize that propositions at two different levels are involved. In physical prediction we are
trying to describe the real world; in inference we are describing only our state of knowledge
about the world. A philosopher would say that physical prediction operates at the ontological
level, inference at the epistemological level. Failure to see the distinction between reality and
our knowledge of reality puts us on the Royal Road to Confusion; this usually takes the form
of the Mind Projection Fallacy, discussed below.

The confusion proceeds to the following terminal phase: a Bayesian calculation like the
above one operates on the epistemological level and gives us only the best predictions that can
be made from the information that was used in the calculation. But it is always possible that
in the real world there are extra controlling factors of which we were unaware; so our
predictions may be wrong. Then one who confuses inference with physical prediction would
reject the calculation and the method; but in so doing he would miss the point entirely.

For one who understands the difference between the epistemological and ontological
levels, a wrong prediction is not disconcerting; quite the opposite. For how else could we
have learned about those unknown factors? It is-only when our epistemological predictions
fail that we learn new things about the real world; those are just the cases where probability
theory is performing its most valuable function. Therefore, to reject a Bayesian calculation
because it has given us an incorrect prediction is like disconnecting a fire alarm because that
annoying bell keeps ringing. Probability theory is trying to tell us something important, and it
behooves us to listen.



CLEARING UP MYSTERIES - THE ORIGINAL GOAL 7
THE MIND PROJECTION FALLACY

It is very difficult to get this point across to those who think that in doing probability
calculations their equations are describing the real world. But that is claiming something that
one could never know to be true; we call it the Mind Projection Fallacy. The analogy is to a
movie projector, whereby things that exist only as marks on a tiny strip of film appear to be
real objects moving across a large screen. Similarly, we are all under an ego-driven temptation
to project our private thoughts out onto the real world, by supposing that the creations of one’s
own imagination are real properties of Nature, or that one’s own ignorance signifies some kind
of indecision on the part of Nature.

The current literature of quantum theory is saturated with the Mind Projection Fallacy.
Many of us were first told, as undergraduates, about Bose and Fermi statistics by an argument
like this: "You and I cannot distinguish between the particles; therefore the particles behave
differently than if we could." Or the mysteries of the uncertainty principle were explained to
us thus: "The momentum of the particle is unknown; therefore it has a high kinetic energy." A
standard of logic that would be considered a psychiatric disorder in other fields, is the accepted
norm in quantum theory. But this is really a form of arrogance, as if one were claiming to
control Nature by psychokinesis.

In our more humble view of things, the probability distributions that we use for inference
do not describe any property of the world, only a certain state of information about the world.
This is not just a philosophical position; it gives us important technical advantages because of
the more flexible way we can then use probability theory. In addition to giving us the means
to use prior information, it makes an analytical apparatus available for such things as
eliminating nuisance parameters, at which orthodox methods are helpless. This is a major
reason for the greater computational efficiency of the Jeffreys methods in data analysis.

In our system, a probability is a theoretical construct, on the epistemological level, which
we assign in order to represent a state of knowledge, or that we calculate from other
probabilities according to the rules of probability theory. A frequency is a property of the real
world, on the ontological level, that we measure or estimate. So for us, probability theory is
not an Oracle telling how the world must be: it is a tool for learning (1) Is our state of
knowledge adequate to describe the world? or (2) For which aspects of the world is our
information adequate to make predictions?

This point comes across much more strongly in our next example, where belief that
probabilities are physically real produces a major quandary for quantum theory, in the EPR
paradox. It is so bad that some have concluded, with the usual consistency of quantum theory,
that (1) there is no real world, after all, and (2) physical influences travel faster than light.

BACKGROUND OF EPR

Quantum Mechanics (QM) is a system of mathematics that was not developed to express
any particular physical ideas, in the sense that the mathematics of relativity theory expresses
the ideas of Einstein, or that of genetics expresses the ideas of Mendel. Rather, it grew
empirically, over about four decades, through a long series of trial-and-error steps. But QM
has two difficulties; firstly, like all empirical equations, the process by which it was found
gives no clue as to its meaning. QM has the additional difficulty that its predictions are
incomplete, since in general it gives only probabilities instead of definite predictions, and it
does not indicate what extra information would be required to make definite predictions.
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Einstein and Schroedinger saw this incompleteness as a defect calling for correction in
some future more complete theory. Niels Bohr tried instead to turn it into a merit by fitting it
into his philosophy of complementarity, according to which one can have two different sets of
concepts, mutually incompatible, one set meaningful in one situation, the complementary set in
another. As several of his early acquaintances have testified (Rozental, 1964), the idea of
complementarity had taken control of his mind years before he started to study quantum
physics.

Bohr’s "Copenhagen Theory" held that, even when the QM state vector gives only
probabilities, it is a complete description of reality in the sense that nothing more can ever be
known; not because of technological limitations, but as a matter of fundamental principle. It
seemed to Einstein that this completeness claim was a gratuitous addition, in no way called for
by the facts; and he tried to refute it by inventing thought experiments which would enable one
to get more information than Bohr wished us to have. Somehow, the belief has been
promulgated that Bohr successfully answered all of Einstein’s objections.

But when we examine Bohr’s arguments, we find a common logical structure; always
they start by postulating that the available measurement apparatus is subject to his
"uncertainty” limitations; and then by using only classical physics (essentially, only Liouville’s
theorem) they come to the conclusion that such an apparatus could not be used for Einstein’s
purpose. Bohr’s foregone conclusion is always assured by his initial postulate, which simply
appears out of nowhere. In our view, then, the issue remains open and we must raise our
standards of logic before there can be any hope of resolving it.

Leslie Ballentine (1970) analyzed the Bohr and Einstein positions and showed that much
of the chanting to the effect that "Bohr won, Einstein lost" is sustained by quoting Einstein’s
views and attributing them to Bohr. Virtually all physicists who do real quantum-mechanical
calculations interpret their results in the sense of Einstein, according to which a pure state
represents an ensemble of similarly prepared systems and is thus an incomplete description of
an individual system. Bohr’s completeness claim has never played any functional role in
applications, and in that sense it is indeed gratuitous.

CONFRONTATION OR RECONCILIATION?

Put most briefly, Einstein held that the QM formalism is incomplete and that it is the job
of theoretical physics to supply the missing parts; Bohr claimed that there are no missing parts.
To most, their positions seemed diametrically opposed; however, if we can understand better
what Bohr was trying to say, it is possible to reconcile their positions and believe them both.
Each had an important truth to tell us.

But Bohr and Einstein could never understand each other because they were thinking on
different levels. When Einstein says QM is incomplete, he means it in the ontological sense;
when Bohr says QM is complete, he means it in the epistemological sense. Recognizing this,
their statements are no longer contradictory. Indeed, Bohr’s vague, puzzling sentences --
always groping for the right word, never finding it -- emerge from the fog and we see their
underlying sense, if we keep in mind that Bohr’s thinking is never on the ontological level
traditional in physics. Always he is discussing not Nature, but our information about Nature.
But physics did not have the vocabulary for expressing ideas on that level, hence the groping.

Paul Dirac, who was also living here in St. John’s College at the time when he and
Harold Jeffreys were doing their most important work side by side, seems never to have
realized what Jeffreys had to offer him: probability theory as the vehicle for expressing
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epistemological notions quantitatively. It appears to us that, had either Bohr or Dirac
understood the work of Jeffreys, the recent history of theoretical physics might have been very
different. They would have had the language and technical apparatus with which Bohr’s ideas
could be stated and worked out precisely without mysticism, and which Einstein would have
understood and accepted at once.

Needless to say, we consider all of Einstein’s reasoning and conclusions correct on his
level; but on the other hand we think that Bohr was equally correct on his level, in saying that
the act of measurement perturbs the system being measured, and this places a limitation on the
information we can acquire and therefore on the predictions we are able to make. The issue is
merely whether this limitation is as great, and has the same quantitative form, as Bohr
supposed. This is still an open question, but we may be able to settle it soon in the quantum
optics laboratory, thanks to the spectacular recent advances in experimental techniques such as
those by H. Walther and coworkers (Rempe et al, 1987) as discussed by Knight (1987) and in
the Scientific American (June 1987, p. 25).

Bohr had no really cogent reason for his postulate that the limitations on the ability of
the QM formalism to predict are also -- in complete, quantitative detail -- limitations on what
the experimenter can measure; this seems to us an outstanding example of the Mind Projection
Fallacy. We need a more orderly division of labour; it is simply not the proper business of
theoretical physics to make pronouncements about what can and what cannot be measured in
the laboratory, any more than it would be for an experimenter to issue proclamations about
what can and cannot be calculated in the theory.

We believe that to achieve a rational picture of the world it is necessary to set up another
clear division of labour within theoretical physics; it is the job of the laws of physics to
describe physical causation at the level of ontology, and the job of probability theory to
describe human inferences at the level of epistemology. The Copenhagen theory scrambles
these very different functions into a nasty omelette in which the distinction between reality and
our knowledge of reality is lost.

Although we agree with Bohr that in different circumstances different quantities are
predictable, in our view this does not cause the concepts themselves to fade in and out; valid
concepts are not mutually incompatible. Therefore, to express precisely the effect of
disturbance by measurement, on our information and our ability to predict, is not a
philosophical problem calling for complementarity; it is a technical problem calling for
probability theory as expounded by Jeffreys, and information theory. Indeed, we know that
toward the end of his life, Bohr showed an interest in information theory.

EPR

But to return to the historical account; somehow, many physicists became persuaded that
the success of the QM mathematical formalism proved the correctness of Bohr’s private
philosophy, even though few understood what that philosophy was. All the attempts of
Einstein, Schroedinger, and others to point out the patent illogic of this were rejected and
sneered at; it is a worthy project for future psychologists to explain why.

The Einstein-Podolsky-Rosen (EPR) article of 1935 is Einstein’s major effort to explain
his objection to the completeness claim by an example that he thought was so forceful that
nobody could miss the point. Two systems, S; and S,, that were in interaction in the past are
now separated, but they remain jointly in a pure state. Then EPR showed that according to
QM an experimenter can measure a quantity q; in S;, whereupon he can predict with certainty
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the value of q, in S,. But he can equally well decide to measure a quantity p; that does not
commute with q;; whereupon he can predict with certainty the value of p, in S,.

The systems can be so far apart that no light signal could have traveled between them in
the time interval between the S; and S, measurements. Therefore, by means that could exert
no causal influence on S, according to relativity theory, one can predict with certainty either of
two noncommuting quantities, g, and p,. EPR concluded that both g, and p, must have had
existence as definite physical quantities before the measurements; but since no QM state vector
is capable of representing this, the state vector cannot be the whole story.

Since today some think that merely to verify the correlations experimentally is to refute
the EPR argument, let us stress that EPR did not question the existence of the correlations,
which are to be expected in a classical theory. Indeed, were the correlations absent, their
argument against the QM formalism would have failed. Their complaint was that, with
physical causation unavailable, only instantaneous psychokinesis (the experimenter’s free-will
decision which experiment to do) is left to control distant events, the forcing of S, into an
eigenstate of either g, or p,. Einstein called this "a spooky kind of action at a distance".

To understand this, we must keep in mind that Einstein’s thinking is always on the
ontological level; the purpose of the EPR argument was to show that the QM state vector
cannot be a representation of the "real physical situation" of a system. Bohr had never
claimed that it was, although his strange way of expressing himself often led others to think
that he was claiming this.

From his reply to EPR, we find that Bohr’s position was like this: "You may decide, of
your own free will, which experiment to do. If you do experiment E; you will get result R;.
If you do E, you will get R,. Since it is fundamentally impossible to do both on the same
system, and the present theory correctly predicts the results of either, how can you say that the
theory is incomplete? What more can one ask of a theory?"

While it is easy to understand and agree with this on the epistemological level, the
answer that I and many others would give is that we expect a physical theory to do more than
merely predict experimental results in the manner of an empirical equation; we want to come
down to Einstein’s ontological level and understand what is happening when an atom emits
light, when a spin enters a Stern-Gerlach magnet, etc. The Copenhagen theory, having no
answer to any question of the form: "What is really happening when - - - ?", forbids us to ask
such questions and tries to persuade us that it is philosophically naive to want to know what is
happening. But I do want to know, and I do not think this is naive; and so for me QM is not
a physical theory at all, only an empty mathematical shell in which a future theory may,
perhaps, be built.

THE BELL INEQUALITIES

John Bell (1964) studied a simple realization of the EPR scenario in which two spin 1/2
particles denoted A and B were jointly in a pure singlet state (like the ground state of the
Helium atom) in the past. This is ionized by a spin-independent interaction and they move far
apart, but they remain jointly in a pure singlet state, in which their spins are perfectly
anticorrelated.

Each of two experimenters, stationed at A and B, has a Stemn-Gerlach apparatus, which
he can rotate to any angle. Following Bell’s notation, we denote by P(Ala) the probability that
spin A will be found up in the direction of the unit vector "a"; and likewise P(BIb) refers to
spin B being up in the direction b. For a singlet state, these are each equal to 1/2 from
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symmetry. The spooky business appears in the joint probability, which QM gives as
P(AB | ab) = % sin(6/2) a1

where cos 6 = a-b. This does not factor in the form P(AB lab) = P(A1a)P(B|b) as one might
expect for independent measurements. We can measure A in any direction we please;
whereupon we can predict with certainty the value of B in the same direction.

From this, EPR would naturally conclude that the results of all possible measurements on
B were predetermined by the real physical situation at B; i.e., if we find B up in any direction
b, then we would have found the same result whether or not the A measurement was made.
Bohr would consider this a meaningless statement, since there is no way to verify it or refute
it. Also, he would stress that we can measure B in only one direction, whereupon the
perturbation of the measurement destroys whatever might have been seen in any other
direction. Note that, as always, Bohr is epistemological; the notion of a "real physical
situation” is just not in his vocabulary or his thinking.

EPR will then require some hidden variables in addition to the QM state vector to define
that "real physical situation" which is to predetermine the results of all measurements on B.
Bell, seeking to accommodate them, defines a class of hidden variable theories -- call them
Bell theories -- in which a set of variables denoted collectively by A also influences the
outcomes A and B. It appears to him that the intentions of EPR are expressed in the most
general way by writing

P(ABlab) = j P(AlaA) P(BIbA) p(A) dA (12)

and he derives some inequalities that must be satisfied by any probability expressible in this
form. But the QM probabilities easily violate these inequalities, and therefore they cannot
result from any Bell theory.

Of course, the fundamentally correct relation according to probability theory would be,
P(AB |ab) = [ P(ABlab}) P(Alab) dA . (13)

But if we grant that knowledge of the experimenters’ free choices (a,b) would give us no
information about A: P(Alab) = p(A) (and in this verbiage we too are being carefully
epistemological), then Bell’s interpretation of the EPR intentions lies in the factorization

P(AB|abA) = P(Ala)) P(B1bA) (14)
whereas the fundamentally correct factorization would read:
P(AB labA) = P(A |Bab)) P(B labA) = P(AlabA) P(B|Aab)) (15)

in which both a,b always appear as conditioning statements. However, Bell thinks that the
EPR demand for locality, in which events at A should not influence events at B when the
interval is spacelike, require the form (14). In his words, "It would be very remarkable if b
proved to be a causal factor for A, or a for B; i.e., if P(Alal) depended on b or P(BIbA)
depended on a. But according to quantum mechanics, such a dilemma can happen. Moreover,
this peculiar long-range influence in question seems to go faster than light".

Note, however, that merely knowing the direction of the A measurement does not change
any predictions at B, although it converts the initial pure singlet state into a mixture. It is easy
to verify that according to QM, P(Blab)=P(BIb)=1/2 for all a,b. As we would expect
from (15), it is necessary to know also the result of the A measurement before the correlation
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affects our predictions; according to QM, P(B|Aab) = (1 — cos 0)/2. Thus- while the QM
formalism disagrees with the factorization (14), it agrees with what we have called the
"fundamentally correct” probability relations (perhaps now it is clearer why we said that some
of Bohr’s ideas could have been expressed precisely in Bayesian terms).

Regardless, it seemed to everybody twenty years ago that the stage was set for an
experimental test of the issue; perform experiments where the predictions of quantum theory
violate the Bell inequalities, and see whether the data violate them also. If so, then all
possible local causal theories are demolished in a single stroke, and the Universe runs on
psychokinesis. At least, that was the reasoning.

The experiments designed to test this, of which the one of Alain Aspect (1985, 1986) is
perhaps the most cogent to date, have with only one exception ended with the verdict
"quantum theory confirmed”, and accordingly there has been quite a parade of physicists
jumping on the bandwagon, declaring publicly that they now believe in psychokinesis. Of
course, they do not use that word; but at the 1984 Santa Fe Workshop more than one was
heard to say: "The experimental evidence now forces us to believe that atoms are not real."
and nobody rose to question this, although it made me wonder what they thought Alain’s
apparatus was made of.

Alain Aspect himself has remained admirably level-headed through all this, quite
properly challenging us to produce a classical explanation of his experiment; but at the same
time refusing to be stampeded into taking an obviously insane position as did some others.

The dilemma is not that the QM formalism is giving wrong predictions, but that the
current attempts at interpreting that formalism from Einstein’s ontological viewpoint are giving
us just that spooky picture of the world that Einstein anticipated and objected to. Of course,
those with a penchant for mysticism are delighted.

How do we get out of this? Just as Bell revealed hidden assumptions in von Neumann’s
argument, so we need to reveal the hidden assumptions in Bell’s argument. There are at least
two of them, both of which require the Jeffreys viewpoint about probability to recognize:

(1) Bell took it for granted that a conditional probability P(X 1Y) expresses a physical causal
influence, exerted by Y on X. But we show presently that one cannot even reason
correctly in so simple a problem as drawing two balls from Bemoulli’s Um, if he
interprets probabilities in this way. Fundamentally, consistency requires that conditional
probabilities express logical inferences, just as Harold Jeffreys saw. Indeed, this is also
the crucial point that Bohr made in his reply to EPR, in words that Bell quoted. But Bell
added: "Indeed I have very little idea what this means."

(2) The class of Bell theories does not include all local causal theories; it appears to us that
it excludes just the class of theories that Einstein would have liked most. Again, we
need to learn from Jeffreys the distinction between the epistemological probabilities of
the QM formalism and the ontological frequencies that we measure in our experiments.
A local causal theory need not reproduce the mathematical form of the QM probabilities
in the manner of (12); rather, since by definition it operates at the ontological level, it
should predict the frequencies observed in well-defined real experiments (not just
thought-experiments).

The spooky stuff is a consequence of Hidden Assumption (1), and it disappears if we

conclude, with Jeffreys and Bohr, that what is traveling faster than light is not a physical

influence, but only a logical inference. To render Bohr’s quoted statement into plain English:
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The measurement at A at time t does not change the real physical situation at B;
but it changes our state of knowledge about that situation, and therefore it changes
the predictions we are able to make about B at some time t". Since this is a matter
of logic rather than physical causation, it does not matter whether t’ is before, equal
to, or after t.

Again we see how Bohr’s epistemological viewpoint corresponds to Bayesian inference, and
could have been expressed precisely in Bayesian terms. However, Bohr could not bring
himself to say it as we did, because for him the phrase "real physical situation" was taboo.

But it may seem paradoxical that two different pure states (eigenstates of noncommuting
quantities q, and p,) can both represent the same real physical situation; if so, then perhaps the
conclusion is that one has leamed an important fact about the relation of the QM state vector
to reality. This supports the Einstein view of the meaning of a pure state as an ensemble; for
in statistical mechanics it is a platitude that the true microstate may appear in two different
ensembles, representing two different states of knowledge about the microstate.

BERNOULLI’'S URN REVISITED

Define the propositions:

I = "Our um contains N balls, identical in every respect except that M of them are red,
the remaining (N - M) white. We have no information about the location of
particular balls in the um. They are drawn out blindfolded without replacement."”

R;= "Red on the i’thdraw, i=1,2,..."

Successive draws from the um are a microcosm of the EPR experiment. For the first draw,
given only the prior information I, we have

PR,IT) = M/N (16)

Now if we know that red was found on the first draw, then that changes the contents of the
umn for the second:

P(R,IR,.T) = (M-1)/(N-1) an

and this conditional probability expresses the causal influence of the first draw on the second,
in just the way that Bell assumed.

But suppose we are told only that red was drawn on the second draw; what is now our
probability for red on the first draw? Whatever happens on the second draw cannot exert any
physical influence on the condition of the um at the first draw; so presumably one who
believes that conditional probability must express physical causation would say that
P(R,IR,,I) = P(R;!I). But this is patently wrong; probability theory requires that

P(R; IR,I) = P(R,IR,,D) (18)

This is particularly obvious in the case M = 1; for if we know that the one red ball was taken
in the second draw, then it is certain that it could not have been taken in the first.

In (18) the probability on the right expresses a physical causation, that on the left only an
inference. Nevertheless, the probabilities are necessarily equal because, although a later draw
cannot physically affect conditions at an earlier one, information about the result of the second
draw has precisely the same effect on our state of knowledge about what could have been
taken in the first draw, as if their order were reversed.
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Eq. (18) is only a special case of a much more general result. The probability of drawing
any sequence of red and white balls (the hypergeometric distribution) depends only on the
number of red and white balls, not on the order in which they appear; i.e. it is an exchangeable
distribution. From this it follows by a simple calculation that for all i and j,

PR;IT) = P(R;IT) = M/N (19)

That is, just as in QM, merely knowing that other draws have been made does not change our
prediction for any specified draw, although it changes the hypothesis space in which the
prediction is made; before there is a change in the actual prediction it is necessary to know
also the results of other draws. But the joint probability is by the product rule,

P(R;R;IT) = P(R;IR;,]) P(R;II) = P(R;IR,I) P(R;IT) (20)
and so we have for all i and j,

and again a conditional probability which expresses only an inference is necessarily equal to
one that expresses a physical causation. This would be true not only for the hypergeometric
distribution, but for any exchangeable distribution. We see from this how far Karl Popper
would have got with his "propensity” theory of probability, had he tried to apply it to a few
simple problems.

It might be thought that this phenomenon is a peculiarity of probability theory. On the
contrary, it remains true even in pure deductive logic; for if A implies B, then not-B implies
not-A. But if we tried to interpret "A implies B" as meaning "A is the physical cause of B",
we could hardly accept that "not-B is the physical cause of not-A". Because of this lack of
contraposition, we cannot in general interpret logical implication as physical causation, any
more than we can conditional probability. Elementary facts like this are well understood in
economics (Simon & Rescher, 1966; Zellner, 1984); it is high time that they were recognized
in theoretical physics.

OTHER HIDDEN - VARIABLE THEORIES

Now consider Hidden Assumption (2). Bell theories make no allowance for time
variation of the hidden variable A; but if it is to take over the job formerly performed by the
QM state vector y, then A must obey some equations of motion which are to replace the
Schroedinger equation.

This is important, because one way for a causal theory to get probability into things is
time alternation; for example, in conditions where present QM yields a time independent
probability p for spin up, A would be oscillating in such a way that for a fraction p of the time
the result is "up", etc. Indeed, Einstein would have considered this the natural way to obtain
the QM probabilities from a causal theory, for in his early papers he defined the "probability
of a state" as the fraction of the time in which a system is in that state. But this is a relation
between QM and the causal theory of a different nature than is supposed by the form (12).

Time alternation theories have another attractive feature, that they predict new effects that
might in principle be observed experimentally, leading to a crucial test. For example, when
two spins are perfectly anticorrelated, that would presumably signify that their A’s are
oscillating in perfect synchronism so that, for a given result of the A measurement, the exact
time interval between the A and B measurements would determine the actual result at B, not
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merely its probability. Then we would be penetrating the Copenhagen fog and observing more
than Bohr thought possible. The experiments of H. Walther and coworkers on single atom
masers are already showing some resemblance to the technology that would be required to
perform such an experiment.

We have shown only that some of the conclusions that have been drawn from the Bell-
Aspect work were premature because (1) the spooky stuff was due only to the assumption that
a conditional probability must signify a physical influence, and (2) the Bell arguments do not
consider all possible local causal theories; the Bell inequalities are only limitations on what can
be predicted by Bell theories. The Aspect experiment may show that such theories are
untenable, but without further analysis it leaves open the status of other local causal theories
more to Einstein’s liking.

That further analysis is, in fact, already underway. An important part of it has been
provided by Steve Gull’s "You can’t program two independently running computers to emulate
the EPR experiment” theorem, which we learned about at this meeting. It seems, at first
glance, to be just what we have needed because it could lead to more cogent tests of these
issues than did the Bell argument. The suggestion is that some of the QM predictions can be
duplicated by local causal theories only by invoking teleological elements as in the Wheeler-
Feynman electrodynamics. If so, then a crucial experiment would be to verify the QM
predictions in such cases. It is not obvious whether the Aspect experiment serves this purpose.

The implication seems to be that, if the QM predictions continue to be confirmed, we
exorcise Bell’s superluminal spook only to face Gull’s teleological spook. However, we shall
not rush to premature judgments. Recalling that it required some 30 years to locate von
Neumann’s hidden assumptions, and then over 20 years to locate Bell’s, it seems reasonable to
ask for one year to search for Gull’s, before drawing conclusions and possibly suggesting new
experiments.

In this discussion we have not found any conflict between Bohr’s position and Bayesian
probability theory, which are both at the epistemological level. Nevertheless, differences
appear on more detailed examination to be reported elsewhere. Of course, the QM formalism
also contains fundamentally important and correct ontological elements; for example, there has
to be something physically real in the eigenvalues and matrix elements of the operators from
which we obtain detailed predictions of spectral lines. It seems that, to unscramble the
epistemological probability statements from the ontological elements we need to find a
different formalism, isomorphic in some sense but based on different variables; it was only
through some weird mathematical accident that it was possible to find a variable y which
scrambles them up in the present way.

There is clearly a major, fundamentally important mystery still to be cleared up here; but
unless you maintain your faith that there is a rational explanation, you will never find that
explanation. For 60 years, acceptance of the Copenhagen interpretation has prevented any
further progress in basic understanding of physical law. Harold Jeffreys (1957) put it just
right: "Science at any moment does not claim to have explanations of everything; and
acceptance of an inadequate explanation discourages search for a good one."

Now let us turn to an area that seems about as different as one could imagine, yet the
underlying logic of it hangs on the same point: What happens in the real world depends on
physical law and is on the level of ontology. What we can predict depends on our state of
knowledge and is necessarily on the level of epistemology. He who confuses reality with his
knowledge of reality gencrates needless artificial mysteries.
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THE SECOND LAW IN BIOLOGY

As we leamn in elementary thermodynamics, Kelvin’s formula for the efficiency of a
Camot heat engine operating between upper and lower temperatures T; T;:

nN<1-TyT; , (22)
with equality if and only if the engine is reversible, expresses a limitation imposed by the
second law of thermodynamics. But the world’s most universally available source of work --
the animal muscle -- presents us with a seemingly flagrant violation of that formula.

Our muscles deliver useful work when there is no cold reservoir at hand (on a hot day
the ambient temperature is at or above body temperature) and a naive application of (22)
would lead us to predict zero, or even negative efficiency. The observed efficiency of a
muscle, defined as
(work done)
(work done + heat generated)

‘n:

is difficult to measure, and it is difficult to find reliable experimental values with accounts of
how the experiments were done. We shall use only the latest value we have located, (Alberts,
et al. 1983). The heat generated that can be attributed to muscle activity appears to be as low
as about 3/7 of the work done; which implies that observed muscle efficiencies can be as high
as 70% in favourable conditions, although a Camot engine would require an upper temperature
T, of about 1000 K to achieve this. Many authors have wondered how this can be.

The obvious first answer is, of course, that a muscle is not a heat engine. It draws its
energy, not from any heat reservoir, but from the activated molecules produced by a chemical
reaction. Only when we first allow that primary energy to degrade itself into heat at
temperature T, -- and then extract only that heat for our engine -- does the Kelvin efficiency
formula (22) apply in its conventional meaning. It appears that our muscles have learned how
to capture the primary energy before it has a chance to degrade; but how do we relate this to
the second law?

Basic material on muscle structure and energetics of biochemical reactions is given by
Squire (1981) and Lehninger (1982), and profusely illustrated by Alberts, et al (1983). The
source of energy for muscle contraction (and indeed for almost everything a cell does that
requires energy) is believed to be hydrolysis of adenosine triphosphate (ATP), for which the
reported heat of reaction is AH = - 9.9 kcal/mol, or 0.43 ev per molecule. This energy is
delivered to some kind of "engine" in a muscle fiber, from whence emerges useful work by
contraction. The heat generated by a muscle is carried off by the blood stream, at body
temperature, 273 + 37 = 310 K. Thus the data we have to account for are:

Ambient temperature: 310 K
Source energy: 0.43 ev/molecule
Efficiency: 70%.

We do not attempt to analyze all existing biological knowledge in this field about the
details of that engine, although in our conclusions we shall be able to offer some tentative
comments on it. Our present concern is with the general physical principles that must govern
conversion of chemical energy into mechanical work in any system, equilibrium or
nonequilibrium, biological or otherwise, whatever the details of the engine. In the known facts
of muscle performance we have some uniquely cogent evidence relevant to this problem.
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The status of the second law in biology has long been a mystery. Not only was there a
seeming numerical contradiction between muscle efficiency and the second law, but also the
general self-organizing power of biological systems seemed to conflict with the "tendency to
disorder" philosophy that had become attached to the second law (much as Bohr’s philosophy
of complementarity had become attached to quantum mechanics). This led, predictably, to a
reaction in the direction of vitalism.

In our view, whatever happens in a living cell is just as much a real physical
phenomenon as what happens in a steam engine; far from violating physical laws, biological
systems exhibit the operation of those laws in their full generality and diversity, that physicists
had not considered in the historical development of thermodynamics. Therefore, if biological
systems seem to violate conventional statements of the second law, our conclusion is only that
the second law needs to be restated more carefully. Our present aim is therefore to find a
statement of the second law that reduces to the traditional statements of Clausius and Gibbs in
the domain where they were valid, but is general enough to include biological phenomena.

The "tendency to disorder" arguments are too vague to be of any use to us, although it is
clear that they must be mistaken and it would be interesting to understand why. Muscle
efficiency will provide our test case, because here we have some quantitative data to account
for. But a muscle operates in a nonequilibrium situation, for which no definite second law is to
be found in the current thermodynamic literature. The conventional second law presupposes
thermalization because temperature and entropy are defined only for states of thermal
equilibrium. How do we circumvent this?

Some have thought that it would be a highly difficult theoretical problem, calling for a
generalised ergodic theory to include analysis of ‘‘mixing’’ and ‘‘chaos’’. Another school of
thought holds that we need a modification of the microscopic equations of motion to
circumvent Liouville’s theorem (conservation of phase volume in classical Hamiltonian
systems, or unitarity in quantum theory), which is thought to be in conflict with the second
law.

We suggest, on the contrary, that only very simple physical reasoning is required, and all
the clues pointing to it can be found already in the writings of James Clerk Maxwell and J.
Willard Gibbs over 100 years ago. Both had perceived the epistemological nature of the
second law and we think that, had either lived a few years longer, our generalised second law
would long since have been familiar to all scientists. We give the argument in three steps: (a)
reinterpret the Kelvin formula, (b) make a more general statement of the second law, (c) test it
numerically against muscles.

The observed efficiency of muscles may be more cogent for this purpose than one might
at first think. Since animals have evolved the senses of sight, sound, and smell to the limiting
sensitivity permitted by physical law, it is only to be expected that they would also have
evolved muscle efficiency (which must be of equal survival value) correspondingly. If so, then
the maximum observed efficiency of muscles should be not merely a lower bound on the
maximum theoretical efficiency we seek, but close to it numerically.
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GENERALISED EFFICIENCY FORMULA

Consider the problem first in the simplicity of classical physics, where the Rayleigh-Jeans
equipartition law holds. If in the Kelvin formula (22) we replace temperature by what it then
amounts to -- energy per degree of freedom E/N = (1/2)KT, it takes the form

n =1~ (Ey/N)(Ny/E;) (23)

which does not look like much progress, but by this trivial rewriting we have removed the
limitation of thermal equilibrium on our energy source and sink. For ‘‘temperature”’ is defined
only for a system in thermal equilibrium, while *‘energy per degree of freedom’’ is meaningful
not only in thermal equilibrium, but for any small part of a system -- such as those activated
molecules -- which might be far from thermal equilibrium with the surroundings.

One might then question whether such a nonequilibrium interpretation of (22) is valid.
We may, however, reason as follows. Although conventional thermodynamics defines
temperature and entropy only in equilibrium situations where all translational and vibrational
degrees of freedom (microscopic coordinates) have the same average energy, it cannot matter
to an engine whether all parts of its energy source are in equilibrium with each other.

Only those degrees of freedom with which the engine interacts can be involved in its
efficiency; the engine has no way of knowing whether the others are or are not excited to the
same average energy. Therefore, since (23) is unquestionably valid when both reservoirs are
in thermal equilibrium, it should be correct more generally, if we take Eo/N, and E;/N; to be
the average energy in those degrees of freedom with which the engine actually interacts. But
while a muscle has a small source reservoir, it has a large sink. Therefore for Ey/N, we may
take (1/2) kT, at body temperature.

As a check on this reasoning, if the primary energy is concentrated in a single degree of
freedom and we can extract it before it spreads at all, then our engine is in effect a *‘pure
mechanism’’ like a lever. The generalised efficiency (23) then reduces to 1 — kT,/2E; or,
interpreting E; as the work delivered to it,

(Work out) = (Work in) — (1/2)kT, . 24)

The last term is just the mean thermal energy of the lever itself, which cannot be extracted
reproducibly by an apparatus that is itself at temperature T, or higher. At least, if anyone
should succeed in doing this, then he would need only to wait a short time until the lever has
absorbed another (1/2) kT, from its surroundings, extract that, and repeat -- and we would have
the perpetual motion machine that the second law holds to be impossible. Thus (24) still
expresses a second law limitation, and the simple generalisation (23) of Kelvin’s formula
appears to have a rather wide range of application.

But although these are interesting hints, we are after something more general, which can
replace the second law for all purposes, not merely engines. To achieve this we must
understand clearly the basic physical reason why there is a second law limitation on processes.
We suggest that the fundamental keyword characterizing the second law is not ‘‘disorder’’, but
“‘reproducibility’’.
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THE REASON FOR IT

The second law arises from a deep interplay between the epistemological macrostate (i.e.
the variables like pressure, volume, magnetization that an experimenter measures and which
therefore represent our knowledge about the system) and the ontological microstate (the
coordinates and momenta of individual atoms, which determine what the system will in fact
do). For example, in either a heat engine or a muscle the goal is to recapture energy that is
spread in an unknown and uncontrolled way over many microscopic degrees of freedom of the
source reservoir, and concentrate it back into a single degree of freedom, the motion of a
piston or tendon. The more it has spread, the more difficult it will be to do this.

The basic reason for the ‘‘second law’’ limitation on efficiency is that the engine must
work reproducibly; an engine that delivered work only occasionally, by chance (whenever the
initial microstate of reservoirs and engine happened to be just right) would be unacceptable in
engineering and biology alike.

The initial microstate is unknown because it is not being controlled by any of the
imposed macroscopic conditions. The initial microstate might be anywhere in some large
phase volume W; compatible with the initial macrostate M;; and the engine must still work. It
is then Liouville’s theorem that places the limitation on what can be done; physical law does
not permit us to concentrate the final microstates into a smaller phase volume than W; and
therefore we cannot go reproducibly to any final macrostate M; whose phase volume W is
smaller than W;. The inequality W¢ = W; is a necessary condition for any macroscopic process
M; — M to be reproducible, whatever the initial microstate in W;.

Of course, something may happen by chance that is not reproducible. As a close
analogy, we can pump the water from a tank of volume V; into a larger tank of volume
V, > Vi, but not into a smaller one of volume V; < V;. Therefore any particular tagged water
molecule in one tank can be moved reproducibly into a larger tank but not into a smaller one;
the probability of success would be something like V; /V;. Here the tanks correspond to the
macrostates M, their volumes V correspond to phase volumes W, the tagged molecule
represents the unknown true microstate, and the fact that the water flow is incompressible
corresponds to Liouville’s theorem.

Now we know that in classical thermodynamics, as was first noted by Boltzmann, the
thermodynamic entropy of an equilibrium macrostate M is given to within an additive constant
by S(M) = k log W(M), where k is Boltzmann’s constant. This relation was then stressed by
Planck and Einstein, who made important use of it in their research. But the above arguments
make it clear that there was no need to restrict this to equilibrium macrostates M. Any
macrostate -- equilibrium or nonequilibrium -- has an entropy S(M) =k log W(M), where
W(M) is the phase volume compatible with the controlled or observed macrovariables X;
(pressure, volume, magnetization, heat flux, electric current, etc.) that define M. Then a
generalised second law

S(final) 2 S(initial) (25)
follows immediately from Liouville’s theorem, as a necessary condition for a change of state
M; — M to be reproducible.

Stated more carefully, we mean "reproducible by an experimenter who can control only
the macrovariables {X;} that define the macrostates M". A little thought makes it clear that
this proviso was needed already in the classical equilibrium theory, in order to have an air-
tight statement of the second law which could not be violated by a clever experimenter. For if
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Mr. A defines his thermodynamic states by the n macrovariables {X;,...,X,} that he is
controlling and/or observing, his entropy S, is a function of those n variables. If now Mr. B,
unknown to Mr. A, manipulates a new macrovariable X;,; outside the set that Mr. A is
controlling or observing, he can bring about, reproducibly, a change of state for which S,
decreases, although S,,; does not. Thus he will appear to Mr. A as a magician who can
produce spontaneous violations of the second law, at will.

But now we must face an ambiguity in the definition and meaning of W; it appears to
have different aspects. The phase volume W(Xi,...,X,) consistent with a given set of
extensive macrovariables {Xj, . ..,X,} is a definite, calculable quantity which represents on
the one hand the degree of control of an experimenter over the microstate, when he can
manipulate only those macrovariables; thus W appears ontological. On the other hand, W
represents equally well our degree of ignorance about the microstate when we know only those
macrovariables and nothing else; and thus it appears epistemological. But as illustrated by the
scenario of Mr. A and Mr. B above, it is a matter of free choice on our part which set of
macrovariables we shall use to define our macrostates; thus it appears also anthropomorphic!
Finally, we have been vague about just how many microscopic degrees of freedom are to be
included in W. Then what is the meaning of the second law (25)? Is it an ontological law of
physics, an epistemological human prediction, or an anthropomorphic art form?

The answer is that Eq. (25) cannot be an ontological statement (i.e. a deductively proved
consequence of the laws of physics) because the mere calculation of W makes no use of the
equations of motion, which alone determine which macrostate will in fact evolve from a given
microstate in W;. It may be that, because of properties of the equations of motion that we did
not use, our experimenter’s method of realizing the macrostate M; would not, in many
repetitions, produce all microstates in the volume W;, only a negligibly small subset of them
occupying a phase volume W’ < < W;. Then the process M; — M; might still be possible
reproducibly even though S¢< S, if S¢> S’. Conversely, because of special circumstances
such as unusual constants of the motion, the process M; — M; might prove to be impossible
even though S¢ > S;.

On the other hand, (25) is always epistemological because it is always true that W(M)
measures our degree of ignorance about the microstate when we know only the macrostate M.
Thus the original second law and our generalisation (25) of it have the same logical status as
Bayesian inference; they represent the best predictions we can make from the information we
have. In fact, by a more sophisticated approach a refined form of (25) can be derived as an
example of Bayesian inference. Therefore the second law works functionally like any other
Bayesian inference; the predictions are usually right, indicating that the information and
assumptions used in the calculation were adequate for the purpose. Only when the predictions
are wrong do we learn new things about the ontological laws of physics.

It is greatly to our advantage to recognize this. By getting our logic straight we not only
avoid the Mind Projection Fallacy of claiming more than has been proved, we gain an
important technical flexibility in using the second law. Instead of committing the error of
supposing that a given physical system has one and only one "true" ontological entropy, we
recognize that we could have many different states of knowledge about it, leading to many
different entropies (as in the scenario of Mr. A and Mr. B above), which can serve many
different purposes.

Just as the class of phenomena that an experimenter can evoke from a given system in
the laboratory depends on the kind of apparatus he has (i.e. on which of its macrovariables he
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can manipulate), so the class of phenomena that we can predict with thermodynamics for a
given system depends on the kind of knowledge we have about it. This is not a paradox, but
a platitude.

One reason why the second law has had little useful application in biology is failure to
recognize that it is not an ontological law of physics; it is only a rule for conducting human
inference. If you fail to specify what biological information you propose to take into account,
then thermodynamics may not be able to give you any useful answer because you have not
asked any well posed question.

Even when it does not lead to different final results, taking prior information into account
can affect computational efficiency in applying the second law, because it can help us to make
a more parsimonious choice of the microvariables that we shall include in W. For it to be
generally valid, the entropy in (25) must be, in principle, the total entropy of all systems that
take part in the process. But this does not, in practice, determine exactly how much of the
outside world is to be included. In a sense everything in the universe is in constant interaction
with everything else, and one must decide when to stop including things. Including more than
we need is not harmful in the sense of leading to errors, since this only adds the same quantity
to both sides of (25). But it can cost us wasted effort in calculating unnecessary details that
cancel out of our final results.

At this point the aforementioned flexibility of our methods becomes important. We have
already made use of it in the discussion following Eq. (23); now we want to apply that
reasoning to phase volumes and to general processes. In a fast process, that happens in a time
so short that thermal equilibrium of the whole system is never reached, only the phase volume
belonging to those degrees of freedom actually involved in the interactions could be relevant;
the second law may be applied in terms of Liouville’s theorem in a relatively small subspace
of the full one that we use in equilibrium theory. In the application to muscle efficiency, this
means that we need calculate only phase volumes corresponding to degrees of freedom that are
directly involved in muscle operation; ones that are affected only later, after the muscle
contraction is over, may be relevant for the ultimate fate of the heat generated, but they cannot
affect its efficiency.

This corresponds to a familiar procedure in treatment of spin systems. Spin-spin
relaxation is often orders of magnitude faster than spin-lattice relaxation, so one can consider
the microvariables of the spin system as forming a nearly isolated dynamical system in their
own right, with a ‘“‘private’’ second law of their own. Slichter (1980) shows that this
approach enables one to predict masses of details correctly.

In the above we have supposed the classical equipartition law; but our arguments should
need modifying only if the engine (i.e., the piston or tendon) interacts directly with degrees of
freedom for which equipartition fails. In the case of muscles, it appears that the direct
interactions are with coordinates of low-frequency vibration modes of large protein molecules,
How energy gets transferred from an excited electronic state of ATP to such a vibration mode
would remain in the province of quantum theory; but this can be virtually 100% efficient.
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QUANTITATIVE DERIVATION

Now we are ready for a specific calculation of muscle efficiency using the above
principles. The phase volumes W that we calculate are, of course, functions of the
macrovariables that define the macrostates. In the case of a muscle, what is happening is just
that energy Q, is being abstracted from the source reservoir and energy Q, is delivered to the
sink, the difference appearing as work. Energy is the only macrovariable being manipulated,
so our phase volumes will be functions of source and sink energies. We need not consider a
phase volume for the engine, because that is the same at the beginning and end (the engine is
restored ready to run again). As in conventional statistical mechanics, we introduce the
density functions p(E), often called structure functions, of source and sink by considering their
energies known to some tolerances 8E. Thus the phase volumes for source and sink are

W, = pi(Ey) 3E, (26a)
W2 = p(Ey) OE, (26b)
Then the initial and final phase volumes are
Wi = py(Ep pa(Ey) E; 3E, (27a)
We=p1(E1 — Qp p2(E; + Q) OE,; 3E, (27b)

With Q; and Q, definite quantities, the tolerances 8E; and 3E, are the same at the beginning
and end, so they cancel out and their values do not matter. The necessary condition of
reproducibility W; < W, when we manipulate only energies now becomes:

P1ED p2Ey) < pi(E; - Qp poEr + Q) . (28)

Let us try to predict the maximum work obtainable, using only this relation (which makes no
use of such notions as temperature, equation of state, heat capacity, or reversible operation).
Given the energy Q; extracted from the source, the maximum work we can get reproducibly is
Q; — Q,, where from (28), Q, is the root of

log p1(Ey) + log pa(Ep) = log py(E; — Q) + log po(E; + Q) . (29)

Now vary Qy; the RHS of (29) remains constant, and Q; — Q, is a maximum when

9 J
-— 10 - Q) = ——1log p,(E, + Q,) 30
20, g P1(Er - Q 2, g P2(Ex + Q (30)
Therefore the maximum efficiency is
Q-Q

= —_— 31
n E, (31

where Q;, Q, are the simultaneous roots of (29) and (30).

Now we need to decide on the functions p,(E;) and p,(E,). Recall some familiar
examples of such functions; for an ideal gas of n particles in volume V,

3n
V"(2rmE) 2
= 32
p(E) TGn2) (32)
For n classical harmonic oscillators with frequencies {®y, . . . ,®,},
2 n
pE) = —ZE_ pr (33)

"~ (ITepln)
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In both cases, p(E) is proportional to EN2, where N is the number of degrees of freedom of
the system. This is approximately true for most systems even in quantum statistics, where N
may be regarded as a slowly varying function of E, signifying the effective number of degrees
of freedom excited at energy E. So let us take

N
log py(Ey) = —~log E; + const (342)

N
log py(Ep) = -izlog E, + const. (34b)

which seems quite realistic for the case of muscles. Eliminating Q, from (29), (30), Q; is
determined from

(N, + N) log B g | NE2 (35)
1 2 E, 2 108 NLE,
and then Q, is found from (30). But from (23) we recognize the quantity
r= 36
NE, (36)
as the analog of (T,/T}) in equilibrium theory. Then after some algebra, we find that (31) is
N2
N, N +N; | NN
=l+—r—- |[———= e 3
n N, r N, r 37

In the case Ny = N, this is (1 — Vr)? , contrasted with Kelvin’s differential efficiency (1 —1).
Appropriate for muscles is the limiting form as N — o, Ey/N, — % kT, = const. (the blood
stream is very large compared to a muscle fiber). Some care is needed in taking the limit, and
(37) then reduces to

N=1-r+rlogr (38)

Now everything boils down to the question: what is r for a muscle? As before, let us take for
the large sink reservoir, E, =% N, kT, where T, =310K. The maximum theoretical
efficiency surely corresponds to the maximum concentration of primary energy that seems
possible in a muscle; the energy of ATP hydrolysis of one molecule is concentrated into a
single vibration mode and is captured before it spreads to others. Therefore for the source, let
E; =043 n ev, the heat of reaction of n ATP molecules, and N; = 2n, corresponding to one
vibration mode per molecule. This gives

;- 310X 136 x 10716
0.43 x 1.6 x 10712

= 0.062, (39)

from which (38) gives
n=765% (40)

Doubtless, the near agreement with the value reported by Alberts et al (1983) is fortuitous; the
existing measurements are too uncertain to draw any real conclusions. But one might have
hoped that the maximum theoretical efficiency would come out just above the maximum
observed efficiency; and at least that much has been realized. It appears that the information
we used was adequate for the purpose, and there is no longer any mystery.
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A CHECK

We derived the efficiency formula (38) without assuming any slow reversible operation
as conventional thermodynamics does. On the other hand, neither did we assume that it is not
slow, so if our derivation is correct, the formula ought to remain valid in the limit when the
process is so slow that the conventional theory does apply. To check this, let us apply
conventional theory to a small source whose temperature T; drops slowly as the engine runs,
so we have a sequence of infinitesimal reversible Camot cycles. Suppose that the sink is so
large that T, remains constant. Then drawing heat Q; from the source, the maximum work we
can get according to classical thermodynamics is

Q
W@ = [ [1- == lao @1
‘ J Q|
Now suppose, corresponding to the Rayleigh-Jeans assumptions in our first derivation, that the
source has a constant heat capacity C, so that T{(Q) = T; — Q/C, where T is the initial source
temperature; then E; = CTy. The engine will run only as long as T;(Q) > T,, so the maximum
obtainable work is given when the upper limit of integration is Q; = C(T; — T,). Making these
substitutions, the integral is easily evaluated, with the result

Whax = C T,

T
ﬂ—ﬁ+hwpl]. 42)

Dividing by E; = CT}, we recover the result (38) that we derived previously using only phase
volume considerations. This confirms that our generalised second law reduces, as it should, to
the conventional one when the latter is applicable.

But this conventional "slow, reversible" second law is not applicable to a muscle,
because if a muscle operated slowly enough to make its assumptions valid, other degrees of
freedom that we have left out of our calculation would take over and thermalize the primary
energy, making the muscle nearly useless. It is just to avoid thermalization that biological
processes must take place rapidly, and thus we require a "fast" second law to analyze them.

Our generalisation of the second law not only preserves the dynamics and therefore the
Liouville theorem, it preserves the Clausius relation S; > S; and the Boltzmann entropy formula
S=klogW; and it even preserves the intuitive meaning of it that was recognized by
Boltzmann, Einstein, and Planck. Therefore we have not changed the basic rationale
underlying the second law and the Kelvin efficiency rule in any way; we have only opened our
eyes to their full meaning.

Far from being in conflict with the second law, Liouville’s theorem is the reason for it.
Had Liouville’s theorem been discovered before the work of Camot, it appears to us that the
second law, in the full generality we have given it, might have been anticipated theoretically
without any reference to heat engines; or indeed to the notions of temperature and thermal
equilibrium. Note that we have made no use of the notions of order and disorder. Indeed, as
Maxwell noted in the aforementioned article on diffusion, those notions are only expressions
of human aesthetic judgments; Nature has no way of knowing what you or I consider
"orderly”. The second law limitation on macroscopic processes is easily understood, in
physically meaningful terms, as the price we pay for reproducibility.
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CONCLUSION

As those promised tentative comments on biological information, we see the above as
evidence that the energy of ATP hydrolysis is confined to a single vibration mode in a muscle;
if it spread to two modes, then we would have r =2 x 0.062 = 0.124, and (38) would predict
a theoretical maximum efficiency of only 62%. Had the energy spread to ten vibration modes
before being recaptured, the predicted efficiency would be only 8%. It appears that animals
have indeed evolved muscle efficiency to the maximum that could be realized in a biochemical
environment powered by the ATP hydrolysis reaction, although a reaction with a greater AH
would permit still higher efficiency.

Finally, what was the effective upper temperature T; for the muscle? With two degrees
of freedom per ATP molecule, this is given by kT, = 0.43ev, or
1. = 0:43x1.6x107'?
1.36x1071

This is startling because it is about the temperature at the surface of the sun! It appears, then,
that a muscle is able to work efficiently not because it violates any laws of thermodynamics,
but because it is powered by tiny "hot spots" of molecular size, as hot as the sun.

= 5060 K 117)

This shows how far a biological system is from thermal equilibrium in the respects that
matter. If one says that the temperature in a living cell is "uniform", he can mean only that it
is uniform as registered by a thermometer whose bulb is thousands of times coarser than the
units that are performing the essential biological functions.

If we examine the current literature of bioenergetics with this in mind, we are struck by
the fact that virtually all treatments begin by stating that biological systems are at uniform
temperature and the chemical reactions proceed isothermally; then virtually all the discussion is
in terms of reaction free energies AF or AG.

Now the free energy change of a reaction is only a fictitious kind of energy, that could in
principle be observed in very special circumstances. It is the work made available when the
temperature and concentrations are uniform and the reaction proceeds so slowly that it remains
at equilibrium with respect to the original temperature and concentration; i.e. when heat can
flow in or out of the cell rapidly enough, and the reactants and products can diffuse in and out
rapidly enough, to maintain the initial uniformity. Conditions in a biological process such as
nucleotide synthesis are about as far from this as can be imagined, in several respects:

(1) A cell may have very few (i.e., less than 20) molecules of a given type, and they are not
free to diffuse about because of intracellular membranes; thus the uniform concentrations
presupposed in the definition of reaction free energies seem not only not realized, but not
even meaningful. Lehninger (1982) wamns us that this might invalidate conventional
thermodynamic treatments.

(2) A reaction is over -- the job is done -- in a time too short to reach equilibrium anyway.
For many reactions the situation may be more nearly adiabatic than isothermal; thus the
"real" physical energies AU, AH that have a meaning independently of thermal
equilibrium, are the ones most relevant for biological processes.

(3) Hundreds of other reactions are going on simultaneously, and while they may not
interfere directly with a reaction of interest, they must modify the environment in which
that reaction takes place. On the scale of sizes and times that matter, a living cell is
never in a state remotely like thermal equilibrium or uniform concentrations.
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Recognizing this, we can understand another reason why biological thermodynamics has been
puzzling in the past. Conventional free energy thermodynamics is doubtless adequate to
describe slow, gross phenomena such as osmotic effects, but it may be irrelevant for biological
functions like muscle contraction and protein synthesis, which necessarily, to avoid
thermalization from the surroundings, take place rapidly and on the molecular scale.

As our treatment of muscle efficiency shows, the small scale does not in itself preclude
the application of thermodynamics, but attempts to do this could not have succeeded until the
above points were recognized and we had a quite different statement of the second law. Of
course, muscle performance is only a special case of the general problem, but seeing how to
apply the second law to muscle behaviour should give a useful clue for other cases.

In these first crude estimates to illustrate the principle, our reasoning was so general --
conceming only phase volumes -- that we did not need to invoke any particular details of the
mechanism of muscle action. However, the myosin bridge mechanism for striated muscle
contraction proposed by Sir A. F. Huxley (1957) and described by Squire (1981) and Alberts,
et al. (1983) appears not only consistent with our speculations; it fits in very nicely with them.
The bending of that bridge is a degree of freedom that corresponds to a low-frequency
vibration mode for which the classical equipartition law would hold, and the relative stiffness
and massiveness of the myosin head makes it seem well adapted to resisting rapid
thermalization while transferring its energy into the macroscopic sliding of the actin fiber. We
could hardly have asked for a better candidate for our one vibrational mode to receive the ATP
hydrolysis energy.

Presumably, our argument could be refined by taking further information of this kind into
account, although the observed facts of muscle performance suggest that the final conclusion
cannot be very different; i.e. most of that information will be irrelevant for predicting the net
efficiency, although it is highly relevant for predicting finer details such as force-velocity
curves, fatigue, etc.

Having seen this biological mechanism, it is easy to believe that synthesized or extracted
macromolecules could do similar things in vitro. Indeed, the first step in this direction has
been taken already. In the fascinating ‘‘myosin motor’’ of Shimizu (1979) we have a
molecular engine operating in vitro; not very efficiently, but nevertheless confirming the idea.
In time the design of useful anti-Carnot molecular engines (artificial muscles) might become
about as systematic and well understood as the design of dyes, drugs, and antibiotics is now.
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ABSTRACT

The presentation by Jaynes of Bayesian probability theory, among other
things, served to unify and strengthen the earlier work of Cox and Polya. While
the above approach to probability theory is well-known to many proponents of
maximum-entropy and Bayesian methods, it deserves to be more widely promul-
gated and studied. This paper is a tutorial introduction to the Cox—Polya-Jaynes
consistency and rationality requirements as the basis of Bayesian probability the-
ory.

1. INTRODUCTION

Bayesian probability theory continues to be applied to many problems of a
serious nature [Smith and Grandy, 1985; Justice, 1986; Smith and Erickson, 1987;
Erickson and Smith, 1988; Bretthorst, 1987, 1988a, 1988b]. In addition to applying
scientific knowledge, there exists a strong propensity in science to dig more deeply,
to scek the foundations of that knowledge; so, inquiry into the foundations and
rationale of the theory has proceeded apace.

For all practical purposes, the noncollaborative but synergistic efforts of Cox
[1946], Polya [1954], and Jaynes [1957] furnish a highly compelling rationale for
Bayesian probability theory. Rarely do we wish to say in science that anything is
“final;” there is almost always room for refinement, extension and growth. But
the work of Cox, Polya, and Jaynes was clearly a satisfactory basis from which
to proceed. Most practitioners of maximum-entropy and Bayesian methods have
studied — indeed savored — the original works, but too many have not had occa-
sion to delve into them. We therefore present here a quick tutorial tour through
these classics, although it must be said that condensation and interpretation by
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their very nature can subtly alter the perspective of an original work. We thus ad-
vise the interested reader to consult the original sources for the fullest impression
of the authors’ intent, tone and accomplishment.

Until very recently, the 1957 report by Jaynes was difficult to obtain. Now
that Jaynes’ approach to probability theory has become available [Erickson and
Smith, 1988, I, Ch. 1], it is not reasonable to here reiterate his presentation.
Rather, our emphasis will be on background, concepts, definitions and similar
elements experience has shown to prove troublesome to many. In the beginning,
we tend to avoid even the word probability so we can focus on the question of how
far toward an inductive logic rationality and consistency can carry us.

2. PATTERNS OF DEDUCTIVE REASONING

We shall eventually be concerned with potential measures of the plausibility
of one proposition given the truth of another. Our discussion will lead to Polya’s
inductive syllogism, which has its roots in the syllogisms of deductive logic. But we
are getting ahead of the story; we must first supply some definitions and essential
background.

Deductive reasoning is the inferring of specific conclusions from known prin-
ciples or premises; the conclusions are unique. Deductive logic formalizes the pro-
cesses of deductive reasoning by means of symbols and rules. Apparently, Aristotle
was the first to observe that deductive reasoning follows definite patterns, called
syllogisms. The syllogisms we shall focus on consist of a major premise, a minor
premise and a conclusion. A premise is a proposition accepted as true (or false)
from the beginning of a development. As used here, “proposition” has a specific
meaning.

A proposition is an unambiguous statement which is, or will become, either
true or false in the problem under consideration — in other problems, the state-
ment may not be a proposition. It is important to note that in an environment in
which our reasoning cannot be deductive, the actual validity of a proposition may
not be accessible at the time an inference must be made.

We shall denote propositions by upper case letters like 4, B,C, Ay, A,. It
is risky to illustrate propositions without stating the problems in which they are
embedded, for, as noted above, one can often think of situations in which an
example ceases to be a proposition. The following examples should be viewed
with this caveat in mind:

A = “On the next toss, a die will show § dots,”

1
B — [43 Z __' > 3,”
n=1 n
C = “It will rain tomorrow.”

To a person who had never heard of e*, some numerical experimentation may be
needed to determine that B is false. For C' to be a proposition, we must have
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adopted a procedure for deciding whether rain has occurred (Is a light mist for a
few seconds regarded as rain?).

Certain natural operations for propositions come to mind; these operations
and the peculiar property of propositions to be either true or false can be used to
establish an algebra of propositions, the subject of the next section of this paper.
But at this time, we want to return to our unfinished discussion of syllogisms.

A deductive syllogism has the structure:

Major premise

Minor premise (1)

Conclusion

where the horizontal line plays the role of “therefore.” One important syllogism
with this structure, called the modus ponens (ponere = affirm), is the following:

A implies B
A true (2)
B true

Obviously, if A implies B and A turns out to be true, then B must be true. As a
concrete example of modus ponens, we take

A=“1SS_<_4,”
B=%1<s<11” (3)

Here, s is a parameter in the problem under investigation.
The other deductive syllogism we consider is the modus tollens (tollere =
deny):

A implies B
B false (4)
A false

That this mode of deduction is valid may not be instantly obvious. Consider: If
A 13 true, then B is true; but B is false, so A cannot be true. The propositions in
Eq. (3) can be used in the modus tollens, as an example.

We are not finished with syllogisms; but to prepare for a more symbolic and
quantitative approach, we give next a brief sketch of Boolean algebra.

3. BOOLEAN ALGEBRA

In his investigation of logic, George Boole [1854] developed an algebra of
propositions whose importance has increased steadily since the late 1930’s. This
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Boolean algebra is an algebra of objects which can have only one of two possible
values or states, such as numbers like 0 and 1, positions like up and down, and
truth values like true and false. The applications of Boolean algebra to switching
circuits and digital computers account for much of its current importance; our
discussion will center on propositions. Our presentation of Boolean algebra is
self-contained, though it is brisk and omits many standard topics.

If a proposition A is true, we say it has truth value 1 and write A = 1;
similarly, if A is false its truth value is Q and A = Q. The negation of the
proposition A means not A and is denoted by A; A has the truth value opposite
that of A and as a proposition is

A = “Ais false.” (5)

For example, if A =“The mayor’s house is white,” then A =“The mayor’s house
is not white” or A =“It is false that the mayor’s house is white.” If B =“The
mayor’s house is yellow,” even though B = 1 requires A = Q and hence 4 = 1,
care must be exercised in relating B and A — for example, both A and B could
be false.

Negation is called a unary operation, because a single proposition enters the
operation. There are many binary operations which combine pairs of propositions.
Two such operations are of special interest: the logical product and logical sum.

The logical product (or conjunction) AB is defined as follows:

AB = “Both A and B are true.” (6)

The logical sum (or inclusive disjunction) of any two propositions A and B is

denoted by A + B and defined by

A + B =“Either A is true, or B is true, or
both A and B are true.” (7)

Note that AB and A + B are themselves propositions, and are examples of com-
pound propositions. Suppose 4, = “A tossed die shows n dots” and H =
tossed coin shows a head.” Then, A,H = “The die shows n dots and the coin
shows a head,” while 4,, + H = “The die shows n dots, or the coin shows a head,
or the die shows n dots and the coin shows a head.” Note that paraphrasing or
rewording of propositions is permitted provided the meaning is not compromised.
The definitions in Egs. (6) and (7) show clearly that the logical product and logical
sum are commmutative — cf. Eq. (8) below.

One can employ the operations negation, logical product, and logical sum
to construct logical or Boolean functions of propositions. We shall encounter a
few Boolean functions below, but we must forgo any discussion of the theory of
Boolean functions.
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The set of propositions 4, B,C, ..., 1, Q along with the negation, product and
sum operations form a Boolean algebra if the following properties (the so-called
Huntington axioms) are satisfied [Whitesitt, 1961]:

A+B=B+A (a) AB = BA (b) (8)
A+Q=A4 (a) A-1=A4 (b) (9)
A+A=1 (a) AA=0 (b) (10)

AB+C)=AB+AC (a) A+BC=(A+B)A+C) (b (11)

Note that there is a duality between the operations in the two columns above: If
the sum is replaced by the product, the product by the sum, Q by 1 and 1 by
0 in one column, the other column is produced. This principle of duality allows
us to translate any Boolean equation into another valid equation. Also, literal
notation is understood to apply: symbols for propositions in theorems and other
expressions are to be regarded as variables, not fixed propositions — except where
the contrary is indicated. The objects 1 and Q are considered to be constants in
Boolean algebra (they are constant propositions and constant functions).

The Huntington axioms are deliberately parsimonious and yield several im-
portant results only as theorems. The theorems are sometimes expected, but
others may be surprising and very engaging. We list below several of the more
useful theorems [for proofs, see Whitesitt, 1961]:

A+(B+C)=(A+B)+C A(BC) = (AB)C (12)
A+ AB=4A A(A+B)=4 (13)
A+1=1 AQ=20 (14)
_8=1_ A= (13)
A+B=AD AB=A+B (16)
AvA=A4A AA=A (17)

By considering specific verbal propositions, one can verify that propositions in-
deed satisfy Eqs. (8)-(17). In particular, the commutativity and associativity of
the logical product and sum, Egs. (8) and (12), appear to be completely trivial
properties of propositions; yet, these properties play vital roles in Cox’s consistency
requirements discussed in our Sec. 5.

We now employ the preceding material to develop a more formal notation
for deductive syllogisms than used earlier. There are many occasions in which
one proposition is conditional on another in a manner that can be expressed by a
Boolean equation. We use one such conditional relation to reflect “A implies B”
in the syllogisms we consider. The equation

AB = A, (18)

called the inclusion relation and read “A implies B,” embodies some information
(some facts) we have regarding A and B. Clearly, for A = 1 this equation reduces
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to B = 1 (thus, A implies B); for B = Q it leads to A = Q. These we recognize as
the modus ponens and modus tollens in Egs. (2) and (4). Using our newly acquired
formalism, we can cast the modus ponens and modus tollens in the forms

AB =4 AB=A
A=1 B=0 (19)
B=1} A=Q

(It should be noted that some authors prefer to define the major premise “A
implies B” in terms of a binary operation called the material implication.)

4. PATTERNS OF INDUCTIVE REASONING

So far, we have considered syllogisms with the major premise AB = A and
the minor premises A = 1 and B = 0. To complete the study, we need to examine
the cases with the minor premises A = 0 and B= 1. For A= 0 and B= 1, our
information about A and B that is contained in AB = A produces no constraints
on B and A, respectively. We can formalize this state of affairs by syllogisms,
revealing the ostensible impasse:

AB=A AB=4
A=0 (a) B=1 (b (20)
B=1 A=7

This is exactly the situation studied in depth by Polya [1954], so let us see how he
resolved the impasse.

Note first of all, any solution of Eq. (20) must be inductive in nature (also,
we must define what we mean by solution). Hence, we call the syllogisms in Eq.
(20) enductive syllogisms, and to shorten our discussion, we concentrate on the
second syllogism, (b). Polya engaged in a detailed study to demonstrate that in
everyday problems with the structure of Eq. (20) there are identifiable patterns in
our reasoning process. Next, we summarize some conclusions Polya reached in his
analysis.

In arriving at the condition AB = A, we are often using only a portion of
the information we have about the problem and about A and B. In the least,
we know that B is a consequence of A (it is not suggested that the relationship
between A and B must be causal). So, if one consequence of A, namely B, should
turn out to be true, what can we infer about the truth value of A? We have
inadequate information about A to make any definitive statement of its truth.
However, compared to the situation in which the truth value of B is unknown,
we have inductive evidence that A is true. We shall summarize this by saying:
Compared to the case with the truth value of B unknown, learning that B is
true enhances the plausibility that A is true. (Assuming that A is true, given
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that B is true is committing the logical fallacy of assuming the consequent.) The
word plausibility arose in earlier discussion. We use plausibility as shorthand for
degree of plausibility and to mean something like: credibility, confidence, belief,
or appearance of truth. (We are skirting words like probability, likelihood, etc.
that have technical meaning.)

Now we are able to complete Eq. (20b):

AB=A
B=1 (21)

A more plausible

This result epitomizes the patterns of plausible reasoning revealed by Polya’s study
[Polya, 1954]. In no way have we been able to convey the depth and spirit Polya
brought to bear on his inquiries. By and large, Eq. (21) expresses what we mean by
rationality, though there remains some fine-tuning (e.g., in respect to continuity).
Also, Eq. (21) will be taken as our solution of Eq. (20b), as clarified by further
discussion. The essence of Eq. (21) is the commitment only to the direction, and
not extent, of change of the degree of plausibility. A simple illustration will be
given in a moment.

In analogy with deductive logic, inductive logic will use symbols and rules to
formalize the processes of inductive reasoning. The symbol E will always represent
all of our prior information (we use E as if it were a proposition, even though it
may be cumbersome to express some information as a proposition). In the present
context, E includes everything we know about the problem, in particular whether
the condition AB = A is based on a causal connection between A and B. The
symbol u(A|C) will be employed to represent the plausibility of A given C (because
A and C are variables, we prefer not to say explicitly “the plausibility of A true,
given that C is true”). Thus u(A|E) is the plausibility of A given only our prior
information E, and u(A|BE) is the plausibility of A given E and the datum B.
It appears that we are allowing plausibility to evolve into some numerical object;
we need to relate what our plans are.

Before the subject of inductive reasoning can become mathematical in nature,
we must identify some quantifiable attributes of plausibilities. If plausibilities are
to serve any useful purpose, they must at least have the capacity for describing
rationality. This requirement will be met if the plausibilities are capable of (1)
varying in a continuous fashion and (2) exhibiting inequality (as well as equality).
The simplest means for incorporating these attributes is to associate real numbers
with plausibilities. At this time, we are concerned only with identifying a minimal
set of attributes; other properties of plausibilities (e.g. the rules they obey) will
emerge as a result of the mathematical treatment of the subject.
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Using the plausibility as just defined, we can write for Eq. (21)

AB=A
B=1 (22)
u(A|BE) > u(A|E)

In summary, rationality, as so far explicated, requires only that the plausibility
not decrease in the face of inductive evidence. Nothing is said about the strengths
or magnitudes of plausibilities. The association of larger numbers with greater
plausibilities is clearly an inessential convention: it is consistent with our choosing
the word “plausibility” (instead of, say, implausibility).

The concept of rationality carries with it a continuity requirement whose
meaning will become clearer in the next few sections. For the moment suffice it
to say that small changes in plausibilities insinuate only small changes in their
numerical representatives.

Most of the conceptual work is behind us. Jaynes [1957] has shown how to
translate Polya’s rationality and Cox’s consistency requirements into desiderata
and then to construct a mathematical theory. Before undertaking this task, we
give the example promised earlier.

Suppose the propositions in Eq. (3) refer to the radius, s, of some asteroid
and suppose crude measurements give us the range of s: 1 < s < 37km. We have
summarized the prior information, E. The range in proposition A is predicted by
some far—out astrophysical theory, and we want very much to test the theory by
testing the hypothesis A. While thinking about A we learn B is true. Compared
to the situation in which we knew only that s is in the range 1 to 37km, the
information B = 1 enhances (or at least does not diminish) the plausibility that
A is true. This is the central idea Eq. (22) is supposed to convey.

5. THE DESIDERATA

Curiously, Cox [1946, 1961] and Polya [1954] seem never to have encountered
each other’s work, missing perhaps the stimulation to bring their own works to
a more satisfactory and complete form. Jaynes [1957] consolidated the Cox and
Polya contributions, supplying additional elements to arrive at the approach to
probability theory we are presenting here. The term “consistency” as associated
with Cox refers to the requirement that plausibilities be consistent with Boolean
algebra. Jaynes developed desiderata which embody rationality and consistency,
the latter having a broader significance than that employed by Cox. The desiderata
are then applied to create mathematical conditions which the plausibilities must
satisfy. This is the program attended to in this section.

First, a brief comment on the word “desideratum.” The primary function of
the Desiderata is to describe the essential features which the plausibilities must
embody. They do not stipulate that the plausibilities are to satisfy specific rules
or axioms.
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Desideratum 1. The numerical measures of plausibilities are real numbers.

Desideratum 2. Plausibilities must ezhibit qualitative agreement with ra-
tionality. As new information supporting the truth of a proposition is supplied,
the number which represents the plausibility will increase continuously and mono-
tonically. It is understood that as the plausibility of a proposition increases, the
plausibility of its negation will decrease continuously and monotonically. Also, to
maintain rationality, the deductive limit must obtain where appropriate. The con-
tinuity requirement will be applied to mathematical functions introduced below.
Finally, we hope it is unnecessary to remark that all pertinent information is to
be used in the course of any analysis of plausibilities.

Desideratum 3. All rules relating plausibilities must be consistent. If a result
can be derived in more than one way,all legitimate operations on the propositions
must lead to the same result. One is free to establish the truth value of a compound
proposition by examining the individual propositions in any possible sequence
allowed by Boolean algebra (this evaluation need not follow the physical or causal
relationships of the propositions.) The final results must be independent of the
sequence actually employed.

We investigate next the implications of the desiderata on the plausibility
u(AB|E), specifically to determine how u(AB|E) depends upon the plausibilities
of A and B. The truth value of AB will be determined by examining first A, then
B, as described by the following tree diagram:

AB

AB

The proposition AB can be reached only in the upper branch of the diagram.
Thus, the plausibility u(AB|E) depends only on the plausibilities u(A|E) and
u(B|AE) — under the circumstances depicted in the tree diagram. We express
this dependence as

u(AB|E) = F[u(A|E),u(B|AE)], (23)

where F represents an unknown function. However, F' is not arbitrary: It must
maintain the desiderata, and it is the consequences of this that we explore next.

One important result follows easily from the commutativity of the logical
product, AB = BA. The consistency requirement imposed on Eq. (23) requires
the invariance of that expression under interchange of A and B:

u(AB|E) = u(BA|E) = Flu(B|E), u(A|BE)]. (24)
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This does not tell us a great deal about F, however. The associativity of the
logical product will be more prolific.
Writing
ABC = (AB)C = A(BC) (25)
and treating (AB) as one proposition C as the other, then A and (BC) similarly,
we obtain from Eq. (23)

u(ABC|E) = F[u(AB|E),u(C|ABE)]

= F[u(A|E),u(BC|AE)]. (26)

Applying Eq. (23) to u(AB|E) and u(BC|E) in these expressions leads to
F{F[u(A|E),u(B|AE)],u(C|ABE)} = F{u(A|E), F[u(B|AE),u(C|ABE)]}.

(27)
Finally, the notation
¢ =u(A|E), y=u(B|AE), z=u(C|ABE) (28)
allows us to write Eq. (27) in the form
F[F(z,y),2] = Flz, F(y,2)), (29)

which is a functional equation known, appropriately, as the associativity equation.
As we shall see eventually, this equation determines uniquely the class of functions
F which may be associated with plausibilities.

By assuming that F' is twice differentiable in both variables, Cox derived from
Eq. (29) a differential equation which he then solved. Some fuzzy set advocates
have pounced upon this assumption as invalidating Cox’s theory, in evident ig-
norance of the work of Aczél [1966, 1987], who derives the same general solution
without assuming differentiability. The earlier book by Aczél provides an extensive
bibliography on the associativity equation, starting with Abel [1826] who solved
this equation under the condition that it is symmetric in the independent variables
z,y,z. The result, as expressed by Aczél, is that all solutions of the associativity
equation may be constructed from any continuous, strictly increasing monotonic
function G(z) as follows:

F(z,y) = G7'[G(2) G(y)]. (30)

It is easy to verify that this form does indeed satisfy Eq. (29).
Upon reinstating the original variables, Eq. (28), we have from Eqs. (23) and
(30)
G[u(AB|E)] = G[u(A|E)] Glu(B|AE)]. (31)
We incur no loss of generality by using the simpler notation (for u itself is arbi-

trary):
v(A|E) = G[u(A|E)]. (32)
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Then, Eq. (31) along with Eq. (24) give us the product rule for plausibilities:

v(AB|E) = v(A|E) v(B|AE) (33a)
= v(B|E)v(A|BE). (33b)

Our desiderata, specifically with the commutativity and associativity of the logical
product, have produced a very impressive result: Irrespective of the scale used,
plausibilities must abide by the rules in Egs. (33a) and (33b). On the question of
scales of plausibilities, see Jaynes [1957]. The generality afforded by G is explored
by Tribus [1969], pp. 19 and 26-29.

Cox [1946, 1961] adopted Eq. (23) as an axiom, and we adopted it, perhaps
too quickly, by taking advantage of the freedom allowed by the desiderata to look
at a specific case. Does Eq. (23) describe only the specific case we examined or
is it completely general [Eq. (24) is treated as equivalent to Eq. (23)]? The book
by Tribus [1969], pp. 14-18, discusses all functional relations that the problem
allows. The conclusion is that Eq. (23), and no other functional relation, describes
the general case.

Though the scale of plausibility is quite arbitrary (and will remain so, much as
the relationship of temperature scales with thermodynamic relations), Eq. (33) al-
ready fixes numerical values of plausibilities (more correctly, v(A|E) = G[u(A|E)],
where u(A|FE) is the plausibility) in the deductive limits we discuss next.

We consider first the extreme case in which our prior information E dictates
that A is true (A = 1), while B remains arbitrary (provided it does not contradict
E ) — cf. the modus ponens in Eq. (19). Using AB = L -B = B and v(A|BE) =
v(1 |BE) = v(L|E) [A is already true by E, so v(1 |BE) is conditional only on
E] in Eq. (33a), we see that

v(B|E) = v(B|E)v(1 |E). (34)

Because B is arbitrary, there are cases in which v(B|E) # 0; in such cases, the
solution of Eq. (34) is
W(L1E) = 1. (35)

Thus, the certain proposition has a plausibility equal to unity — we continue
to refer to v(A|E) as the plausibility of A to avoid more terminology; cf. Egs.
(44)—(49) and the discussion following Eq. (49).

The other limiting case we consider obtains in a problem in which E informs
us that B is false (B = Q) and A is compatible with E and B but is otherwise
arbitrary. This limit corresponds to modus tollens in Eq. (19). Using AB = A-Q =
0 and v(B|AE) = v(Q |AE) = v(Q |E) in Eq. (23) gives

v(Q|E) = v(A|E)v(Q |E). (36)

For v(A|E) arbitrary, this equation has two solutions: v(Q |E) = 0 and v(Q |E) =
0o. Because A is arbitrary, it too can have truth value Q; this precludes v(Q |E) =



40 C.R. SMITH AND G. ERICKSON

—o0 as a solution. So we have a choice: 0 < v <1orl < v < oo. Strictly as a
convention we choose

v(Q|E) =0, (37)
because of its accord with the word plausibility and because the other choice
involves an infinite quantity which cannot be realistically implemented in hard-
ware or software. The two solutions can be interchanged by replacing v with v~!
[Jaynes, 1957].

Up to this point, we have used only the logical product in investigating the
consequences of the desiderata on the plausibilities. Naturally, one would turn
next to the negation and the logical sum to explore their relationship with the
plausibilities. In fact, we need consider only the negation, because the logical
product and negation, forming an exhaustive set of operations (meaning all others
can be represented by this set), already subsume the logical sum [cf. Eq. (16)]:

A+ B=AB. (38)

There are other exhaustive sets of logical operations, but it is not appropriate to
consider them here [Whitesitt, 1961].

Our information about the plausibility of A is identical to that for A; note
too that A and A are exhaustive and mutually exclusive (A+ A= 1, AA = Q).
Thus, by the requirement of rationality, v(A|E) and v(4 |E) must be related by
some function T'(z) as follows:

v(A|E) = T[v(A|E)). (39)
The rationality requires further that T'(z) be a monotonic decreasing function of
z (z represents a general argument). Moreover, because A = A, we see that
T Y(z) = T(z), (40)
so T(z) is self-reciprocal. However, this condition is not stringent enough to
completely characterize T'(z), for it must also be compatible with the product
rule, Eq. (33). By considering v(AB|E) for the particular propositions satisfying
the conditional relation A B = 0, one can show that T'(z) satisfies the functional
equation [see Cox, 1946 and Jaynes, 1957]:

zT[T(y)/z] = yT(T(z)/y]. (41)
Cox [1946] solved this equation by deriving from it a second-order differential
equation, the solution of which is given by

[T()]* +2" =1, (42)
where Eq. (40) has been taken into account and where n is arbitrary except n # 0.
Again, Aczél [1963] derives the same general solution without assuming differen-
tiability. Finally, for our convention v(Q |E) = 0, Eq. (37), only n > 0 is allowed.
If we let = = v(A|E) in Eq. (42) and take Eq. (39) into account, we obtain
[(AIE)" + (A |E)" =1, (43)
which provides the desired relation between v(A|E) and v(4 |E).
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6. THE RULES OF BAYESIAN PROBABILITY THEORY

We can eliminate the appearance of the constant n in Eq. (43) by introducing
a new function p(A|E), where

p(A|E) = [v(A|E)]". (44)

But, referring to Eq. (32), we see also that
p(A|E) = {G[u(a|E)]}". (45)
Hence, the arbitrariness in G renders superfluous the dependence of p(A|E) on n;

that is, the dependence on n in Eq. (45) can be absorbed by G. Raising Egs. (33),
(35) and (37) to the power n and using Eq. (43), we obtain

P(ABI|E) = p(A|E) p(B|AE) (46a)

= p(B|E)p(A|BE) (46b)
p(AIE)+p(A|E) =1 (47)
p(LIE)=1, p(Q|E) =0. (48)

We have noted already in Eq. (38) that the logical sum can be defined in terms of
the logical product and negation operations. Using Eqs. (38), (46) and (47), one
can show in a few lines

p(A + B|E) = p(A|E) + p(B|E) — p(AB|E). (49)

The rewards of our quest are before us: Egs. (46)—(49) represent the quanti-
tative rules we sought. These rules are unique: Any rules which represent degrees
of plausibility by real numbers and conflict with them will necessarily violate ra-
tionality or consistency. Of course, it makes no difference whether one calls that
real number a likelihood, a significance level, a degree of membership in a set, or
anything else.

In Eqs. (46), (47) and (49) we have three rules for plausibilities, along with
the limiting values in Eq. (48), which coincide with those of probability theory.
However, our derivation of these rules was based on rationality and consistency
requirements, with no reference to sets, counting, frequencies or mass phenom-
ena. Bearing this in mind, we shall refer henceforth to p(A|E) as the probability
of A, given the prior information E. In any line of reasoning in accord with the
desiderata — and we know of no valid inductive reasoning at variance with the
desiderata — one is entitled to the broadest possible interpretations and applica-
tions of the theory allowed by these foundations. This is not a trivial point, for
the actual numerical values one uses for the probabilities are often reflective of the
broad interpretation in which probabilities encode any information we are clever
enough to use — a few additional comments on numbers are provided in the next
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section. The meaning of the title of this paper should be clear, once we note that
the theory we have just developed is called Bayesian probability theory. Of course,
a full understanding of Bayesian probability theory will require an in—depth study

of its further development and applications — for a start, consult the relevant
books and papers in the references at the end of this paper, especially those of
Jaynes.

We would be remiss were we to omit one final formal result. The commuta-
tivity of logical products as embodied by Egs. (46a) and (46b) leads immediately
to

P(A|E) p(B|AE)
p(BIE)

This important expression is known as Bayes’ Theorem (or Bayes’ Rule). In light
of the preceding discussion, it is not a stunning result. Nonetheless, it is aston-
ishingly useful in applications. It affords the means for using datum B (which
may be a compound proposition) to update the prior probability p(A|E) to the
posterior probability p(A|BE) for A, incorporating both the datum B and our
prior information, E.

p(A|BE) =

(50)

7. CONCLUDING REMARKS

This paper is a brief tutorial on the foundations of Bayesian probability theory.
The space allocated to this tutorial does not allow us to explore several key issues
we suspect will occur to many readers. So, we want to close with a few remarks
which may point the reader in a direction for resolving the issues.

First, the probability p(A|E) we have arrived at is an arbitrary (positive,
strictly increasing monotonic) function of the plausibility u(A|E), itself a quantity
that is anthropomorphic and intuitive. Moreover, the necessity and role of the
prior information E in relation to p(A|E) [p(A|E) is conditional on E, and p(A)
has no meaning] deserve more discussion. Both of these points are discussed at
length in Jaynes [1957], Secs. 2 and 3 (see especially pp. 8-11).

The next question that arises is: Where do the numerical values of Bayesian
probabilities come from? The most fruitful methods are the principle of insuffi-
cient reason, the principle of maximum entropy and the symmetry principles based
on transformation groups. These methods are developed from first principles in
Jaynes [1957], Secs. 2 through 6 — see also Jaynes [1968] and [1983]. The sub-
ject of actual Bayesian probabilities brings to mind the Jeffreys prior and other
pioneering work of Sir Harold Jeffreys [1939]. One can carry out estimations of
parameters by direct application of Bayes’ theorem, Eq. (50) — important and
impressive results using this approach are achieved by Bretthorst [1987, 1988a,
1988b).
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Abstract

This paper presents a fully Bayesian derivation of maximum entropy
image reconstruction. The argument repeatedly goes from the particular
to the general, in that if there are general theories then they must
apply to special cases. Two such special cases, formalised as the "Cox
axioms", lead to the well-known fact that Bayesian probability theory
is the only consistent language of inference. Further cases,
formalised as the axioms of maximum entropy, show that the prior
probability distribution for any positive, additive distribution must
be monotonic in the entropy. Finally, a quantified special case shows
that this monotonic function must be the exponential, leaving only a
single dimensional scaling factor to be determined a posteriori. Many
types of distribution, including probability distributions themselves,
are positive and additive, so the entropy exponential is very general.

The following paper (Gull 1989) applies these ideas to image
reconstruction, showing how a sophisticated treatment can incorporate
prior expectation of spatial correlations.

1. Introduction

There is a simple mode of reasoning - compelling or infuriating according to
one’s point of view - which allows us to construct general theories. It is
this. If there is a general theory at all, it must apply to particular cases.
In particular, if we already know the answer for a simple case, this constrains
the general theory by falsifying all those which give wrong answers. If enough
such cases can be found to constrain the general theory completely, then there
will be no freedom left, and the theory will have been fully defined.

In experimental science, general theories usually have some "loose ends",
such as relativistic corrections to Newtonian dynamics, or cosmological terms in
general relativity, which are allowed by the experimental errors on the
constraining observations. However, in an argument about logic, there can be no
such loose ends.

We use this mode of reasoning three times here, leading successively to
Bayesian probability theory, to maximum entropy (MaxEnt), and finally to a
quantified prior for images. Firstly, if there is a general language for
inference, it must be that of ordinary probability theory, with our inferences
being quantified as probabilities: the proof is due to Cox (1946). However,
probability theory describes how we must modulate our inferences in the light of
evidence, but it does not tell us how to assign the prior probabilities which we
need in order to start the scheme. Secondly, if there is a general way of
assigning positive additive distributions (such as probability distributions),
then it must be MaxEnt: one source for the original form of this argument is
Shore and Johnson (1980), though we generalise away from unit normalisation.
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However, this argument does not address the reliability of a MaxEnt
distribution, in the sense of quantifying how much worse (i.e. less probable) a
different distribution might be. Thirdly, if there is a general quantification
of distributions, their probabilities must be exponential in their entropy
(scaled by some factor which can not be fixed a priori). This work builds upon
that of Frieden (1972), Gull and Daniell (1979) and Jaynes (1986), supersedes
all the author’s previous writings on the subject, and completes what we call
"Classic" MaxEnt.

Of course, at any stage it remains possible that there is no general theory,
in which case the argument would break down. Different problems would need
different theories. Although'it is a sociological fact that different problems
are indeed currently analysed in a multitude of different ways, the author knows
of no example in which a correct application of classical Bayesian methods would
give a demonstrably incorrect result. In the absence of such contrary evidence,
we shall avoid the Babel of Tongues by assuming that there are general theories.

Far from being restricted and thereby impoverished, the Classic MaxEnt
formulae in fact allow wide freedom, and the rigour of the underlying
mathematics can be turned to advantage. The following paper (Gull 1989)
introduces a sophisticated new use of Classic MaxEnt in the realm of image
reconstruction, and we surmise that more such developments will arise in the
future.

2. Bayesian probability theory: The Cox axioms.

One of the principal aims of science is to enable us to infer the plausible
outcomes of different situations, and thereby help us to predict the future, and
to understand the past. Logical reasoning, aided by mathematics, is the
principal intellectual tool we bring to bear upon this central problem of
inference.

Whatever the content of our discussions, be it Raman spectroscopy or Roman
history, we wish to be able to express our preferences for the various
possibilities i,j,k,... before us. A minimal requirement is that we be able
to rank our preferences consistently (i.e. transitively)

(Prefer i to j) AND (Prefer j to k) = (Prefer i to k) . [1]

Any transitive ranking can be mapped onto real numbers, by assigning numerical
codes P(i), P(j),... such that

P(i) > P(j) <= (Prefer i to j) . [2]

Now, if there is a common general language, it must apply in simple cases.
Cox (1946) formulated two such simple cases as axioms, which we restate briefly.
It is difficult to argue against either.

Axiom A:

If we first specify our preference for i being true, and then specify our
preference for j being true (given i), then we have implicitly defined our
preference for i and j together.
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Axiom B:
If we specify our preference for i being true, then we have implicitly specified
our preference for its negation ~i.

As a consequence of these remakably mild requirements, Cox showed that there is
a mapping of the original codes P into other codes pr that obey the usual rules
of probability theory

pr(i,jlh) = pr(ilh) pr(jli,h) (3]
pr(i|h) + pr(~i|h) =1 . [4]

Many authors have repeated this proof in greater or lesser detail, as in the
preceding paper (Smith and Erickson 1989).

Therefore, if there is a common language, then it can only be this one, and
in accordance with historical precedent set by Bernoulli and Laplace (Jaynes
1978) we call the codes pr thus defined "probabilities". Logically, of course,
there may be no common language. There may be a lurking "Axiom C", just as
convincing as Axioms A and B, which contradicts them. Although much effort has
been expended on such arguments (Klir 1987), no such contradictory axiom has
been demonstrated to our satisfaction, and accordingly we submit to the Bayesian
rules.

Bayes’ Theorem itself, which is a simple corollary of these rules, then tells
us how to modulate probabilities in accordance with extra evidence. It does not
tell us how to assign probabilities in the first place. It turns out that such
prior assignments should be accomplished by MaxEnt.

3. The axioms of maximum entropy.

The probability distribution pr(x) of a variable x is an example of a positive,

additive distribution. It is positive by construction. It is additive in the
sense that the overall probability in a domain D equals the sum of the
robabilities in any decomposition into sub-domains, and we write it as
ppr(x)dx. It also happens to be normalised, fall xPr(x)dx = 1.

Another example of a positive, additive distribution is the intensity or
power f(x,y) of incoherent light as a function of position (x,y) in an optical
image. This is positive, and additive because the integral fo(x,y)dxdy
represents the physically meaningful power in D. (By contrast, the amplitude of
incoherent light, though positive, is not additive.) For brevity, we shall call
a positive, additive distribution a "PAD".

It turns out to be simpler to investigate the general problem of assigning a
PAD than the specific problem of assigning a probability distribution, which
carries the technical infelicity of normalisation. Accordingly, we investigate
the assignment of a PAD f(x), given some definitive but incomplete constraints
on it: such constraints have been called "testable information" by Jaynes
(1978). Now if there is a general rule for assigning a single PAD, then it must
give sensible results in simple cases. The four "entropy axioms" - so-called
because they lead to entropic formulae - relate to such cases. Shore and
Johnson  (1980) and Tikochinsky, Tishby and Levine (1984) give related
derivations pertaining to the special case of probability distributions. Proofs
of the consequences of the axioms as formulated below appear in Skilling (1988),
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though our phraseology improves upon that paper.

Axiom I: "Subset Independence"

Separate treatment of individual separate distributions should give the same
assignment as joint treatment of their union.

More formally, if constraint C; applies to f(x) in domain x € D; and C, applies
to a separate domain x € Dy, then the assignment procedure should give

£[D1]C1] U £[Da|C2] = £[DyUDz|CyCy] , (5]

where £[D|C] means the PAD assigned in domain D on the basis of constraints C.
Consequence: The PAD f should be assigned by maximising over f some integral
of the form

S(f£,m) = [ dx m(x) 6(£(x),x) . (6]

Here © is a function, as yet unknown, and m is the Lebesgue measure associated
with x which must be given before an integral can be defined. The effect of
this basic axiom is to eliminate all cross-terms between different domains.

Axiom II: "Coordinate invariance"
The PAD should transform as a density under coordinate transformations.
Consequence: The PAD f should be assigned by maximising over f some integral

of invariants
S(£,m = [ dx m(x) $(£(x)/m(x)) , (7]
where ¢ is a function, as yet unknown. The crucial axiom is the next.

Axiom III: "System independence"
If a proportion q of a population has a certain property, then the proportion of
any sub-population having that property should properly be assigned as q.

For example, if 1/3 of kangaroos have blue eyes (Gull and Skilling 1984),
then the proportion of left-handed kangaroos having blue eyes should also be
assigned the value 1/3.

Consequence: The only integral of invariants whose maximum always selects
this assignment, regardless of any other subdivisions which may be present, is

S(f,m) = - [dx £(x) log(f(x)/em(x)) , (8]
where c is a constant.

Axiom IV: "Scaling"
In the absence of additional information, the PAD should be assigned equal to
the given measure (instead of being merely proportional). This is a practical
convenience rather than a deep requirement.

Consequence: The PAD f should be assigned by maximising over f

S(£,m) = [dx ( £(x) - m(x) - £(x) Log(£(x)/m(x)) ) . (91
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The additive constant fmdx in this expression ensures that the global maximum of
S, at f(x)=m(x), is zero, which is both convenient and required for other
purposes (Skilling 1988).

Because of its entropic form, we call S as defined in [9] the entropy of the
positive, additive distribution f. It reduces to the wusual cross-entropy
formula - fdx f log(f/m) if f and m happen to be normalised, but is actually
more general. (Holding that the general concept should carry the generic name,
we deliberately avoid [9] a qualified or personalised name.)

We see that MaxEnt is the only method which gives sensible results in simple
cases, so if there is a general assignment method, it must be MaxEnt.
(Logically, there may be a lurking, contradictory "Axiom V", but we have not
found one, and accordingly we submit to this "principle of maximum entropy".)
Two major applications follow from this analysis. Firstly, MaxEnt is seen to be
the proper method for assigning probability distributions pr(x), given testable
information. Secondly, in practical data analysis, if it is agreed that prior
knowledge of a PAD satisfies axioms I-IV, and if testable information is given
on it, then any single PAD to be assigned on this basis must be that given by
MaxEnt.

However, the arguments above do not address the reliability of the MaxEnt
assignment: would a slightly different PAD be very much inferior?. Furthermore,
experimental data are usually noisy, so that they do not constitute testable
information about a PAD f. Instead, they define the likelihood or conditional
probability pr(data|f) as a function of £. In order to use this in a proper
Bayesian analysis, we need the quantified prior probability pr(f) - or strictly
pr(f|m) because we have needed to set a measure m.

4. Quantification.
The reliability of an estimate is usually described in terms of ranges and
domains, leading us to investigate probability integrals over domains V of
possible PADs f(x), digitised for convenience into r cells as (fj,fp,...,f.).
pr(feVim) = [ dTf M(£) pr(fm) , [10]
\
where M(f) is the measure on the space of PADs. By definition, the single PAD
we most prefer is the most probable, and we identify this with the PAD assigned
by MaxEnt. Hence pr(f|m) must be of the form
pr(f|m) = monotonicfunction(S(f,m)) , (11]

but we do not yet know which function. Now S has the units (dimensions) of the
total £, so this monotonic function must incorporate a dimensional constant, o
say, not an absolute constant, so that
pr(fevim = [ dFf M(f) ®(aS(£,m)) / Zg(a,m) , [12]
\'
where ® is a monotonic function of dimensionless argument and

Zg(a,m) = [ dFE M(£) O(aS(£,m)) (13]
e}

is the partition function which ensures that pr(f|m) is properly normalised.
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In order to find ®, we repeat our earlier mode of reasoning, finding a simple
case for which the result is known, and arguing that any general theory must
apply to this specific example. Let the traditional team of monkeys throw balls
(each of quantum size q) at r cells (i=1,2,...,r), at random with Poisson
expectations pj. This arrangement satisfies the entropic axioms (I-IV), and the
probability of occupation numbers nj is known (from symmetry and straightforward
counting of possible outcomes) to be

nj -4

pr(nfp) =X p; ~ e ~/ n;! . [14]
i

Define £j=njq and mj=pjq to remain finite as the quantum size q is allowed to

approach zero. Then the image-space of f becomes constructed from microcells of

volume qFY, each associated with one lattice-point of integers (nj,ng,...,n.).

Hence we have, as q tends to 0,

pr(f&Vim) = b pr(n|p)
lattice points in V
ny -p3
=f (dYf [qF) T py Te 't nj! . [15]
i
\Y

Because we are taking n large, we may use Stirling’s formula

1/2 nj -nj
nj! = (2m;) n; e [16]

to obtain (accurately to within O(1/n))
drs (f;-my-f; log(fy/my))

pr(fevim) = [ exp [17]
v T (2mqf;)1/2 q

Here we recognise the entropy on r cells,
2(fi-mj-f; log(fi/my)) = S(f,m) , (18]

so that
drf exp(S(f,m)/q)
pr(fevim) = [ v [19]
v M£L2 (2ng)r/2

Comparing this with the previous formula [12], we must identify
q=1/e , ®(S(f,m)) = exp(aS(f,m)) [20]

and
Zg(am) = (2n/)t/2 | M(£) = m£5-1/2 [21]

save possibly for multiplicative constants in ®, Zg, M which can be defined to
be unity. Note how the often-ignored "square-root" factors in Stirling’s
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formula have enabled us to derive the measure M, which allows us to make the
passage between pointwise probability comparisons and full probability integrals
over domains.

A natural interpretation of the measure is as the invariant volume (det g)ll2
of a metric g defined on the space. Thus the natural metric for the space of
PADs is

1/£; if i=j
8ij = [22)

0 otherwise ,

which happens to equal (minus) the entropy curvature w8 = 82S/8f6f. This
quantity, also known as the Fisher information matrix, has also been given this
geometrical interpretation by Levine (1986) and by Rodriguez (1989) in these
Proceedings.

Although this analysis has used large numbers of small quanta g, so that « is
large, this limit also ensures that each nj will almost certainly be close to
its expectation pj. Indeed, the expected values of oS remain O(1l), so that the
identification

d(u) = exp(u) [23]
holds for finite arguments u. Finally, if there is a general form of @, it must
be valid for the small quantum case, so ® must be exponential.

To summarise, if there is a general prior for positive, additive
distributions f, it must be

pr(f|m) = exp(aS(f,m)) [Zg(ax) [24)

and furthermore
darf exp(aS(£f,m))

pr(fevim) = | : [25]
vy mEll2 2g(@)
where
are
Zg(@) = [ —— exp(aS(f,m)) . [26]
0 l'[fj_l/2

This quantified prior contains just one un-determined parameter o which can not
be fixed a priori because it is dimensional. (Logically, there may be a
lurking, contradictory thought experiment, but we have not found one, and
accordingly we commend this mode of quantification.)

5. Conclusions

The Classic MaxEnt prior ([24] and [9]) for positive, additive distributions is
the only one which gives the correct results in simple cases, so if there is a
general prior at all, it can only be this one. It is fully quantified except
for the single dimensional number « which can not be assigned a priori. As a
bonus, the formal derivation has given us the metric [22] which we need in order
to define integrals over ranges of distributions.
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Abstract

The Bayesian derivation of "Classic" MaxEnt image processing (Skilling
1989a) shows that exp(aS(f,m)), where S(f,m) is the entropy of image f
relative to model m, is the only consistent prior probability
distribution for positive, additive images. In this paper the
derivation of "Classic" MaxEnt is completed, showing that it leads to a
natural choice for the regularising parameter o, that supersedes the
traditional practice of setting x2=N. The new condition is that the
dimensionless measure of structure -2aS should be equal to the number
of good singular values contained in the data. The performance of this
new condition is discussed with reference to image deconvolution, but
leads to a reconstruction that is visually disappointing. A deeper
hypothesis space is proposed that overcomes these difficulties, by
allowing for spatial correlations across the image.

1. Introduction

The Maximum Entropy method (MaxEnt) has now become the standard method for data
analysis in many fields. It has been used most spectacularly in radio-
astronomical interferometry, where it deals routinely with images of up to a
million pixels, with high dynamic range. A review of the method, together with
many examples taken from fields such as optical deblurring and NMR spectroscopy
is given by Gull & Skilling (1984). Despite the success of the method in
practical applications, the underlying rationale of MaxEnt has caused widespread
controversy. This paper, together with the one preceding it (Skilling 1989a),
presents a Bayesian justification for the use of MaxEnt.

The desire for a fully Bayesian interpretation of MaxEnt is not new: the
advantage of such a probabilistic formulation being that it would then allow us
to quantify the reliability of MaxEnt images. The "team of monkeys" argument as
applied to image reconstruction (e.g. Gull & Daniell 1979, following Frieden
1972, see also Jaynes 1986b) was an attempt to derive a prior probability
distribution on the space of images. But these earlier attempts had a
fundamental drawback: why should we consider that all images are made randomly
by monkeys? Clearly they are not. However, the arguments presented here by
Skilling are of a completely different character. By asking merely that any
supposed general procedure should also work in every specific, simple case, he
shows that if there is a consistent prior on the space of images it must be of
the form exp(aS(f,m)), where S(f,m) is the entropy of image f relative to model
m. This prior is, of course, consistent with that derived by the "monkey"
argument, because it is conceivable (though unlikely) that some images could
actually be made that way.

The purpose of the present paper is to complete the derivation of "Classic"
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MaxEnt by addressing the choice of the regularising parameter o that appears in
the prior. With noisy data, traditional practice has been to select a value of o
that makes the x2 misfit statistic equal to the number of observations, but this
is ad hoc and does not allow for the reduction in effective number of degrees of
freedom caused by fitting accurate data. Section 2 gives a Bayesian
determination of o, finding that the amount of structure in the image,
quantified as -2aS, must equal the number of "good" (accurate) singular vectors
contained in the data. The value of x2 is not relevant to the choice of «, but
instead allows an estimate of the overall noise level if it is unknown.

The application of this method is discussed (Section 3) by reference to a
specific deconvolution example. Disconcertingly, the "Classic" reconstruction
is visually disappointing, with an unfortunate level of "ringing". This can
only be due to a poor choice of initial model m. Indeed, the initial, flat
model is very far from the final reconstruction. In order to allow the "good"
singular data vectors to be fitted, o must be small, so that there is little
entropic smoothing, and the consequence is under-smoothing of the "bad" noisy
data.

The next step must be a better model, incorporating some expectation of
correlated spatial statistics in a deeper hypothesis space (Section 4). We
introduce a set of "hidden variables" fii(x) which are then blurred to make the
model m(x) used in "Classic". The prior for these hidden variables must also be
of entropic form exp(BS(fi,flat)). The new multiplier B and the width of the
hidden blur are also determined by Bayesian methods.

The results from this deeper hypothesis space are excellent, and provide a
coherent rationale for some of the manipulations of the model m that have been
found useful in current practice.

2. The choice of a in Classic MaxEnt

In the preceding paper (Skilling 1989a) it was shown that the only consistent
prior for positive, additive images is of the form:

pr(f|ma) = exp oS(f,m) / Zg(a,m) , [2.1]

where S in the entropy of image f relative to model m and Zg is the normalising
partition fuction. Explicit forms for S and Z were derived for the case of an
image discretised to r pixels:

S(f,m) = ? (f£5 - my - £5 log(f;/my)) [2.2]
Zg(a,m) = [dTETMEL/2 expos . [2.3]

The only remaining parameter in this "Classic" hypothesis space is the
constant «. We do not believe that we can determine &« a priori by general
arguments. Not only is o dimensional, so that it depends on the scaling of the
problem, but its best-fitting value varies quite strongly with the type and
quality of the data available. It can only be determined a posteriori.

We therefore turn to the other side of the prbblem, the likelihood, which
we write as:

pr(D|f) = exp(’-i(f)) l 2, = . [2.4]
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where 2, = [ d"D exp(-L) , [2.5]

N being the number of data. The log-likelihood L(f) defined by this expression
contains all the details of the experimental setup and accuracies of
measurement. For the common case of independent, Gaussian errors, this reduces
toL = x2/2, but other types of error such as Poisson noise are also important.
Quite frequently, the overall level of noise is not well-known, so we will
eventually generalise to

pr(D|£,0) = exp(-L(£)/o?) [ Zp(0) , [2.6]

but for now we assume that the errors are known in advance, so that o = 1.
We now write down the joint p.d.f. of data and image:

pr(f,D| a,m) = 2Z~! Zg"l exp(as - L) . [2.7]

Bayes’ Theorem tells wus that this is also proportional to the posterior
probability distribution for f: pr(f|D,a,m). The maximum of this distribution
as a function of f is then our "best" reconstruction, and occurs at the maximum
of

Q = oS - L. [2.8]

This brings us back once again to the choice of «, which can now be viewed as a
regularising parameter. When seen this way, a controls the competition between S
and L: if o is large, the data cannot move the reconstruction far from the model
- the entropy term dominates. If o is low there is little smoothing and the
reconstruction will show wild oscillations as the noise in the data is
interpreted as true signal. We have to control « carefully, but there is usually
a large range of sensible values.

Our practice hitherto (Gull & Daniell 1978, Gull & Skilling 1984) has been
to set o so that the misfit statistic x* is equal to the number of data points
N. Although this has a respectable pedigree in the statistical literature (the
discrepancy method (Tikhonov & Arsenin 1977)), it is ad hoc, and can be
criticised on several grounds.

1) The only "derivation" of the x*=N condition that has been produced is a
frequentist argument. If the image was known in advance and the data were then
repeatedly measured, x°=N would result on average. However, the data are only
measured once and the image is not known a priori, but is instead estimated from
the one dataset we have.

2) There is no allowance for the fact that good data cause structure in the
reconstruction f. These "good" degrees of freedom are, in effect, parameters
that are being fitted from the data and because of this they no longer
contribute to the variance. In general terms, x2=N leads to "under-fitting" of
data (Titterington 1985). This is particularly apparent for imaging problems
where there is little or no blurring. The x*=N criterion leads to a uniform,
one standard deviation bias towards the model. This bias is very unfortunate: it
is the job of a regulariser such as entropy to cope with noise and missing
information, not to bias the data that we do have.

3) For many problems (such as radioastronomical imaging, where I started)
the data are nearly all noise, so that x’~ N for any reasonable «. The



56 S.F.GULL

statistic x* is in any case expected to vary by +vN from one data realisation
to another, and this can easily swamp the difference between x at o=c0 and the
x* appropriate to a sensible reconstruction.

For these reasons we now believe that there is no acceptable criterion for
selecting o« that looks only at the value of a misfit statistic such as x °
However, within our Bayesian framework there is a natural way of choosing a. We
simply treat it as another parameter in our hypothesis space, with its own prior
distribution. The joint p.d.f. is now

pr(f,D,a|m) = pr(e) pr(f,D|a,m) . [2.9]

To complete the assignment of the joint p.d.f. we select an uninformative prior,
uniform in log(w): pr(loge) = constant over some "sensible" range [opip %max]-
We shall return to the definition of "sensible" later.

Using Bayes’ Theorem, this joint distribution is also proportional to the
posterior distribution pr(f,x|D,m) and we proceed to estimate the best value of
o by marginalisation over the reconstruction f:

pr(a|D,m) = fdrf o £-1/2 pr(f,a|D,m) .
x2q 257t 771, [2.10)]
where 2q = [ d'f M£1/2 expas - L) . [2.11]

It is essential to perform this integral carefully, rather than estimating
o by maximising the integrand with respect to f and o simultaneously, because
the distribution in f-o space is significantly skew. In fact, the maximum of
pr(f,«|D,m) is usually at a=oyy=large; f ~m, which is certainly not what we
want.

We now evaluate the integrals involved. The integrand for Zg has a maximum
at £ = m and, using Gaussian approximations, we find that for all o a reasonable
approximation to log 2g is:

log Z2g = r/2 log(a/2w). [2.12]

In performing this integral, the terms from the volume element cancel with those
from the curvature \x8. This is a happy consequence of the fact that the entropy
curvature is also the natural metric tensor of the f space.

The 2Q integral is done similarly, expanding about the maximum of Q(f,m,x)
at f. We can aid our understanding by introducing at this point the eigenvalues
{21} of the symmetric matrix

A = diag(fl/2) . WL . diag(£l/2) , [2.13]

which is the curvature of L viewed in a the entropy metric. The eigenvalues A\
and e1§envectors in f space define the natural coordinates for our problem, and
the are the appropriate "singular values". A large value of A implies a
"good" or measured direction, whereas a low or zero A corresponds to a poorly

measured quantity.
Evaluating the integrals in the Gaussian approximation, we find
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log pr(e|D,m) = constant + r/2 log(e) - 1/2 logdet(al + B) + Q(f,m,a)
= constant + 1/2 3 log(a/(at3j) + oS(E,m) - L(E).  [2.14]
J

For large datasets this has a sharp maximum at a parEicular value of a.
Differentiating with respect to loga, and noting that the f derivatives cancel,
we find the condition:

2 as(Em = I Aj/(arry) . [2.15]
j

This fixes our estimate of a = & quite closely, provided we have many data, so
that we can return to the determination of the reconstruction £. Strictly,
having already integrated out f to determine pr(a), the formalism does not allow
us to return with a single value a. However, we are allowed to find the
distribution of any integral R Ef da f(x) r(x) by integrating the joint p.d.f.
successively over f and then «. Because pr(a) is so sharply peaked, the effect
on R is just as if o were set equal to a. We may as well simplify the notation
by setting a = @ in the derivation of f itself:

pr(f|D,m) f do pr(f,e|D,m)

J. do pr(e|D,m) pr(f|«,D,m)

"

pr(fl&,D,m)

zQ-l exp (aS(E,m) - L(E)) . [2.16]

The fluctuations (uncertainty) of f about £ can also be investigated, at least
in principle, by using the known curvature:

<sf8ft> = (w1l . [2.17]

We can understand our Bayesian formula for the best value & as follows.

1) The statistic A/(at)) is a measure of the quality of the data along any
given singular vector. If A >> a the data are good and A/(wtA) adds one to the
statistic. If, on the other hand, A << «, then the regularising entropy
dominates the observations and the contribution is approximately zero. We can
therefore say that 32A/(at)) specifies the number of good, independent data
measurements, or the number of degrees of freedom ndf(S) associated with the
entropy. We associate the degrees of freedom with the entropy rather than the
likelihood because these are the directions (dimensions) that contribute to the
entropy.

2) The quantity -2aS is a dimensionless measure of the amount of structure
in the image relative to the model, or the distance that the likelihood has been
able to pull the reconstruction away from the starting model.

The formula thus has a very plausible interpretation: the dimensionless
measure of the amount of structure demanded by the data is equal to the number
of good, independent measurements. We also note that, as we indicated earlier,
the value of the misfit statistic L is irrelevant to the choice of «. However,
it too has a role to play. To see this we now generalise to the case of unknown
overall noise level
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pr(D|f,0) = exp -L(f)/o® | 21(0), [2.18)]
and this time keeping all terms involving o find:

log pr(e,o|D) = constant - N log(o) + 1/2 % a’/(a’+Aj) +aS - L/g?, [2.19]
where o’ = ao’. There is now an additional Bayesian choice for o and its
estimate o,

2 L(F)/e® = N - 3 A(a+d) = ndf(L) [2.20]

The interpretation of this condition is also very plausible: the expected X
(=2L) is equal to the number of degrees of freedom controlled by the entropy,
that is, the poorly measured "bad" directions of f space. ThlS is less than the
number of data, thereby answering our first objection to x —N and showing that
the x (or L) is really suited to estimation of the noise level, not «. Notice
also how there is a clean division of degrees of freedom between S and L, so
that

N = ndf(S) + ndf(L) . [2.21)

The choice of regularising parameters has been much debated in the
statistical literature (Titterington 1985 gives a review). Our arguments in this
section have reproduced (albeit for an entropic variation) one of these
prescriptions, known elsewhere as Generalised Maximum Likelihood (Davies &
Anderssen 1986).

3. Performance of the Bayesian a

To illustrate both the power and the shortcomings of the Bayesian choice for «,
we turn now to a practical example, a picture of "Susie". Figure 1 shows Susie,
digitised on a 128x128 pixel grid, with grey-level values between 40 and 255.
This picture was blurred with a 6-pixel radius Gaussian point-spread function
(PSF) and noise of unit variance added. This is a traditional example for MaxEnt
processing (e.g. Daniell & Gull 1980, Gull & Skilling 1984), and we show a x*=N
reconstruction. Our previously-published "Susies" have used a disc PSF,
appropriate to an out-of-focus camera, and for which the MaxEnt results at this
signal-to-noise are more impressive visually. A Gaussian PSF gives less
improvement in resolution because the eigenvalues of WL fall off very fast.

We now reach the first practical difficulty associated with our Bayesian
answer. The log-determinant and the ndf(S) statistic require a knowledge of the
eigenvalue spectrum of £1/291£1/2, For the present case, this is a 16384x16384
matrix, a size which is well in excess of the limits for conventional
computational methods of calculating eigenvalues. However, Skilling (1989b) has
recently developed a method based on the application of the matrix to random
vectors, together with the use of MaxEnt, that allows an estimate of the
eigenvalue spectrum to be obtained. In particular, the accuracy of estimation of
scalars such as ndf(S) is excellent using this technique. It seems, therefore,
that practical computation of the Bayesian solution is in general possible.

For the moment, the problem of the eigenvalues is avoided in a different
way: we change the definition of S. All of the Bayesian analysis of the last
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Figure 1. 128x128 image of Susie, blurred with a 6-pixel Gaussian PSF. MaxEnt
reconstruction using x2 = N.

Figure 2. Susie images showing the behaviour of reconstruction quality as o is
varied.

59
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section applies equally to any regularising function, so we select a simple one
that allows us to to diagonalise VWL and WS simultaneously. This is the case
for a spatially-invariant, circulant PSF and for the quadratic

S = -1/2 3 (f5 - mj)2 , [3.1]
j

which is a linearised version of the correct form, and a reasonable
approximation for a low-contrast image such as Susie. The computations can now
be performed easily in eigenvector (Fourier Transform) coordinates. The change
in the definition of S makes no difference to the formulae, except that the
metric is now flat, the £1/2 terms disappear and f might possibly go negative.
The change makes no difference whatever to our conclusions about the performance
of the Bayesian solution.

Figure 2 shows the reconstruction from blurred Susie for a selection of «
values. When o is high the reconstruction looks like the original blurred data,
and when o« is too low unsightly ripples appear due to the amplification of
noise. Note, however that this behaviour covers a wide range of o (~104) and
that there is a large region where the reconstruction is generally satisfactory.

For our example the Bayesian solution suggests that there are ~790 good
degrees of freedom out of the total 16384. As might be expected, this is
somewhat greater than the 16384/36m=145 independent PSFs contained in the image,
the excess being a rough measure of the degree of deconvolution obtained. Its
estimate of the noise level was correct to within the expected error and,
indeed, we have always found that the noise level prediction performance of the
Bayesian solution is excellent. Figure 3 shows a plot of the posterior
probability of o, both as its logarithm, and also linearly, to emphasise the
discrimination in the determination of a, which is better than 1 db for this
dataset. The posterior p.d.f. is normalisable as « approaches zero (towards the
left of Figure 3a,b,c) if the noise level is known, but a global view shows
that it levels off once a exceeds the highest eigenvalue (towards the right of
Figure 3c), resulting in a technically improper distribution. We therefore
return to the definition of a "sensible" cutoff for o,y referred to earlier.
The scale of Figure 3c is rather large: in order to make a 50 per cent
contribution to the probability integral, the opay cutoff has to exceed
exp(exp(l.4x107)). Such numbers are typical of the "singularities" encountered
in this type of Bayesian analysis and we are content to take op,y less than this
bizarre value.

The reconstruction £(&) is shown as Figure 4. It it visually disappointing,
and is clearly in the range of the "over-fitted" solutions for which & is too
low. It is very easy to understand why this is so. The initial model used for
these reconstructions was everywhere uniform, at approximately the mean of the
data. This model is very far from the final reconstruction, because there is
plenty of real structure in the picture produced by the 790 good measurements in
the data. o must be reduced sufficiently to accommodate this structure, or a
large penalty in L results. An unfortunate consequence is that o now becomes too
low to reject noise properly along the "bad" directions. In general terms, the
Bayesian solution will tend to allow fluctuations of the same order of magnitude
as the deviation of the reconstruction from the initial model.
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Figure 3. Posterior distribution of the smoothing parameter o for the Susie
image, plotted (a) logarithmically, (b) linearly, (c) logarithmically over a
large range of a.
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Figure 4. "Classic MaxEnt" recons*truction of Susie.

Posterior Probability

o.-lll—l'lll‘lllllIIll‘!ll.1
s .
w | ]
ol N
CI! ]
g of ]
0O o~ -
S+t -
[ ;
n..+. 4
o~ ]
(ol o -
+t .
q-lll'LJIIJAL jl;glgll‘lld
?100 +120 +140 +160 +180

Model level

Figure 5. Posterior probability distribution of the initial model level my for
the Susie image. The maximum occurs at the mean of the data.
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4. New MaxEnt

We have seen that the Bayesian choice of « will often lead to a reconstruction
that is over-fitted. Despite this, we feel that this "Classic" choice 1is the
correct answer to the problem that we have so far formulated. In fact, it was
the purity of its derivation, combined with problems of its performance that led
us to propose the name "Classic" for it. We have derived a joint p.d.f
pr(D,f,a,0|m) which is still conditional on the knowledge of an initial model m.
This m was first introduced as a "measure" on the x-space of pixels, but it is a
point in f-space and acts as a "model" there. The only freedom that we have left
in our hypothesis space is to consider variations in this model, which we recall
was a flat, uniform picture set to the average of the data my. The fact that the
model was flat expresses our lack of prior information about the structure of
the picture, but where did the brightness level my come from?

The answer is again: Bayes’ Theorem. We expand the hypothesis space to
pr(D,f,a,o,molflat) and select an uninformative prior for pr(mg|flat). The
posterior distribution for my (Figure 5) is again sharply peaked and in the
Gaussian approximation has a maximum at exactly the mean of the data.
Reconstructions using values of my different from this Bayesian optimum
exacerbate the over-fitting problem, as one would expect. However, this exercise
of varying the model is very instructive, because it emphasises the cause of the
problem; the picture is very non-uniform. There are large areas of the picture
where the lighting is generally light or dark, with interesting details
superimposed. There are correlations from pixel to pixel present in the image
that we have so far ignored. Indeed, our earlier MaxEnt Axiom I forbids us to
put pixel-pixel correlations directly into our prior pr(f|m,a). We wish to
circumvent this axiom, but we must be subtle.

Suppose we imagine a silly case where the left half of our picture is
Susie, but the right half is a distant galaxy. Axiom I is designed to protect us
from letting the reconstruction of Susie influence our astrophysics, or vice-
versa. But there is nothing stopping us from having a different my level for
each half. In fact, in view of the grossly different luminance levels involved,
it would be extremely desirable to have different levels of mg and my. When seen
this way, there is nothing to prevent us considering the right and left halves
of the original Susie picture separately, because the average luminance levels
are different. A new hypothesis space involving pr(mR,mL|flat,L/R) will again
fix suitable levels for mg and my, a posteriori. If there is a strong right/left
brightness variation across the picture, then this two-value model will be
closer to the reconstruction and & will increase, reducing the ripples. But in
that case why not use 4 subdivisions (top/bottom, left/right), or 8, or more?

If we continue to subdivide, we can get a better model, closer to the
reconstruction, so we expect that « will increase. However, we are introducing
extra parameters, so that we would expect there to be a penalty fgr this, and
that it would be likely to have some effect on the choice of a. A further
consideration is that, if at all possible, we should like to avoid the sharp
boundaries that such a crude division of the model would involve.

We are now in a position to formulate a new, flexible hypothesis space that
is suitable for pictures such as Susie. We suppose that the model m for use in
"Classic" MaxEnt is itself generated from a blurred image of hidden variables fi:

m = f*b =B, [4.1)
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where b is our "model-blur" PSF, which can also be written as a circulant matrix
B. For the case of Susie we might like to think of fi as the source of
background lighting. If this model-blur is broad, then our model in "Classic" is
smooth, and there are effectively very few parameters in it. If b is narrow,
there are many parameters. The shape and width of the model-blur are to be
determined by Bayesian methods as well. We do not expect the shape of this blur
to matter greatly and we arbitrarily restrict it to be a Gaussian. The crucial
parameter is the width and we expect that the most useful width will be about
equal to the size of the correlation-length that is actually present in the
picture. Our Bayesian analysis of the larger, richer hypothesis space will then
tell us how useful is the freedom provided by the hidden variables. The final
probability levels will quantify for us the level of improvement relative to
"Classic", which is contained in our new space as limiting cases.

To complete the analysis we must assign a prior for the "pre-model" fi. We
treat fi as an image and again use the entropic prior:

pr(fi|,flat) = 21 exp(BT), [4.2]

where T = S(fi,flat) and we have introduced B as a new Lagrange multiplier for
the fi-space entropy T. We again restrict ourselves to the mathematically
tractable (but still interesting) case of quadratic S and T, circulant blurs and
spatially uniform noise level, for which the WL, WS and WT matrices are all
simultaneously diagonal in Fourier transform space. The Bayesian calculation of
& and B now yields:

-2 asE,m = ndf(s) = 3 BAi/ (BtBAta;b]) [4.3]
-2 B T(R,flat) = ndf(T) = ‘;Joc,\ib;_/(043+ﬂz\i+m\ibi) [4.4]
where b} are the eigenvalues of BB and
log pr(a,B,b|D) = constant + 1/2 f o/ (af+BAj+ar;bi)
+ BT + oS - L. [4.5]
The noise level o can also be estimated as before:
X = 2L(E)/6* = N - ndf(S) - ndf(T) . [4.6]

Notice how there is once again a neat division of the degrees of freedom between
S, T and L.

We have tested the performance of New MaxEnt on the Susie picture. Classic
MaxEnt is contained in New MaxEnt in several ways:
1) as B --> o, because fii cannot move from the initial mg.
2) As b --> o, because the model becomes flat.
3) (rather surprisingly) As b --> 0. This last case illustrates a general
peculiarity of

log pr(a,B,b|D) = constant + 1/2 log(det) + &S + BT - L, [4.7]

an object which would be known elsewhere in physics as a Gibbs’ surface. Our new
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MaxEnt reconstruction of Susie, having b=3 and b=7 pixels. The contour intervals
are linear.
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hypothesis space has sufficient structure to contain phase transitions and one
such occurs for the Susie image as the the width of b is reduced below &.27
pixels. Below this value of the model-blur, the model is sufficiently detailed
to cope with all the structure in the image demanded by the data, and S(f,m) no
longer adds anything that is useful. The New MaxEnt @ increases to infinity at
this point; S switches off and the reconstruction is the model m = @ * b. This
is illustrated in Figure 6, which shows the posterior distribution of @ and B
for b=3 and b=7 pixels.

Figure 7 shows the posterior distribution of the width of b, which rises to
a maximum at ~8.5 pixels. This diagram also answers the question of how useful
our new hypothesis space is. It is useful to the extent of being more probable
than Classic MaxEnt by exp(520). The extrinsic variables S and T are also
plotted, showing a change of slope at the phase transition. There is no specific
heat associated with this phase change! Inspection of the reconstruction and
effective model m = fi * b for the optimum width of b (Figure 8) confirms that
the New MaxEnt has indeed achieved its promise.

Figure 8. New MaxEnt reconstruction of Susie. Compare with Figure 4.

Of course, our New MaxEnt can be used to encourage smoothness in any image,
whether or not it is actually blurred. Indeed, our failure to offer a solution
the problem to analysing noisy, but unblurred pictures has been a continual
source of frustration over the years. We test the noise-smoothing properties of
the method with a picture of Susie which is in focus, but which has had 25 units
of noise added. For this type of problem, the Classic MaxEnt reconstruction is
almost identical to the data. The best value of the model blur is now ~3 pixels,
and there is an increase in probability of exp(10000) over Classic for this
case. The picture produced (Figure 9a) is also very good, and shows all the
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Figure 9. (a) Comparison of Classic and New MaxEnt reconstructions of a noisy

Susie picture. (b) Detail of Figure 9 (a), showing the improvement due to noise
suppression.
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structure that can be reliably produced from this noisy dataset. A detail from
this (Figure 9b) confirms that the pixel-to-pixel noise has been greatly
reduced, without degrading the information content of the picture in any way.

5. Discussion

Our New MaxEnt approach is related to other methods of introducing spatial
smoothing that have been found useful in practice. Within the context of maximum
entropy image processing, there are now many examples of "reconstruction-
dependent" models m(f). A particularly successful application to tomographic
mapping of stellar accretion discs is presented by Marsh and Horne (1989),
following Horne (1985). To improve the quality of the images, they used a model
that was a blurred form of their current reconstruction. We have also found
such techniques useful: Charter & Gull (1988) give an example of studies of drug
absorption rate into the bloodstream, in which a blurred version of the
reconstruction is again used as the model.

Such tricks have previously lacked any rigorous justification, because the
development of the MaxEnt story treats m as a point in f-space that is given a
priori. It was thus difficult to see how we could legally let it depend on
However, in New MaxEnt, the effective model m looks very much like a blurred
version of f, although it is actually a blurred version of the hidden variables
fi. We can now justify the above tricks in terms of New MaxEnt. Thus in the drug
absorption problem, f represents the rate of absorption into the bloodstream, fi
is the rate at which the tablets break down in the stomach, and b represents the
time delay as the drug passes through the liver. Charter (private communication)
also gives another, intriguing example, in which he simply pretends that the
data are more blurred than is actually true, adding an additional "pre-blur" to
the real PSF. Often the results are improved by this device, encouraging
smoothness and eliminating noise. We can now see that this trick too is covered
in New MaxEnt as the degenerate case a --> o that occurs in the case of Susie
for small model-blurs. The New MaxEnt hypothesis space provides a natural
justification for these variants, and automatically includes any consequential
effect upon the value of o due to the additional parameters in the model.

It is also useful to examine our new procedure in the context of spatial
statistics, where the currently favoured techniques are things such as Markov
random fields (Kinderman and Snell 1980, Geman & Geman 1984) and smoothness-
enforcing regularisers (Titterington 1985). We can compare New Maxent with these
techniques by marginalising out fi to get an effective prior for
pr(f|a,B,b,flat). We have not so far done this, because it would obscure the
real structure of our hypothesis space, which is still faithful to the spirit of
Axiom I. When we do it, we find

pr(f|a,B,b,my) « exp -1/2 dftrR-15f , [5.1]

where 8f; = f; - mg and R is a circulant matrix that has eigenvalues 1/a + b’ IB.

By varying the shape of the model-blur b we can clearly mimic any given
spectral behaviour of spatial smoothing. Markov random fields correspond to
particular functional forms of b. New MaxEnt contains these techniques as
special cases. However, we prefer the rationale of our new hypothesis space,
because we feel it is more closely related to our prior knowledge of the imaging
problem.
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6. Conclusions

The Bayesian choice of the regularising parameter «o completes the
derivation of Classic MaxEnt and represents a major advance over our previous
practice of setting x*=N. The resulting formula -20S = ndf(S) is theoretically
appealing, and expresses the fact that the amount of structure produced in the
reconstruction is equal to the number of good, independent measurements present
in the dataset.

For some problems we have found the Classic value of a to be satisfactory,
but there are general grounds for supposing that it leads to over-fitting,
because o has to be reduced to allow for the structure produced by good data.
This leads to under-smoothing of bad data, as we have illustrated with our
picture of Susie.

The New MaxEnt hypothesis space which incorporates spatial correlations is
sufficiently powerful to correct these problems and is considerably more
probable than Classic, showing that the inclusion of spatial information is
useful.

New MaxEnt also provides a consistent rationale for a wide class of model
manipulations that are found to be useful in practical applications. Athough we
have, for reasons of computational expediency, illustrated the New MaxEnt only
in the quadratic (Wiener filter) approximation, the results are already
excellent. We do not expect our conclusions to change when the correct entropic
forms are used, indeed the results can only impove.

Finally, we ask the question: "Is our hypothesis space good enough?" Of
course, the answer depends on what we are trying to achieve. Certainly our new
procedure is good enough to overcome the over-fitting problems of Classic MaxEnt
and produce a good reconstruction of Susie. However, looking at the images
produced for different values of the model-blur width, our eyes tell us that the
reconstruction for b=5 pixels is visually slightly better than that for the
Bayesian optimum b=8.5 pixels, although the probability of b=5 is lower by
exp(50). This is a warning that we may eventually find another, deeper
hypothesis space even more useful for the imaging problem ' (as envisaged by
Jaynes 1986a). We speculate that the improvement we get by going to b=5 tells us
something about human vision. We pay attention to the fine details present in
Susie’s face and relatively ignore the background. The computer, with its
spatially-invariant model PSF sees the smooth surfaces in the background and
weights them equally, thereby arriving at a slightly larger correlation length
than our eyes would like.
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THE THREE PHASES OF STATISTICAL MECHANICS

W.T. Grandy, Jr.
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ABSTRACT. The foundations of statistical mechanics are reviewed, based on the prin-
ciple of maximum entropy, and this principle is shown to underlie the fundamental
mechanisms of both equilibrium and nonequilibrium phenomena. Representative appli-
cations are provided—to quantum statistical systems in the first case, and to classical
hydrodynamics in the second. Extensions of these ideas inspired by modern notions of
chaos are mentioned, as well as ongoing work directed toward models of fully-developed
turbulence.

Because a great deal of the discussion at this workshop is related as much
to Bayes’ theorem as it is to maximum entropy, let us begin by restating that
theorem. If P(A|C) denotes the probability of a proposition A given hypothesis
C (itself a proposition), then Bayes’ theorem tells us that receipt of additional
information B leads to a reassessment of that probability in the form

_ P(B|AC)
P(A|BC) = P(A|C) P(BIC) (1)
The proposition C is often thought of as prior information, so that P(4|C) is a
prior probability of A based only on that information—called simply the prior.
Then the left-hand side of Eq.(1) is called a posterior probability, and the fraction
on the right-hand side is the ratio of the direct probability of the data to their
prior probability. This theorem, of course, merely reflects the symmetry present
in the standard rules for manipulating probabilities.

Now, when studying the behavior of some 102° molecules in a given volume
we are forced to the use of probability theory primarily because of an inability to
formulate that many initial conditions, let alone follow the individual trajectories
of the particles. The ensuing formalism—which we call statistical mechanics—
provides us with some surprises in this respect, however, the first of which is that
we never get past the prior in Eq.(1). That is, we rarely obtain more data to be
employed in updating our estimates, so that it is necessary to make predictions
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about the system based only on our initial data. In addition, that initial data
set usually consists of only a few pieces of macroscopic information, unlike the
apparently-copious amount in a time series, say. Nevertheless, even with such
burdensome constraints we are able to predict all other properties of such systems
which we are desirous of measuring, and to develop all of thermodynamics. Surely
this is something which John Wheeler would call ‘Magic Without Magic’ ! It is
the exposition of this magic which is the concern of this lecture.

The many-body system in thermal equilibrium provides the quintessential
example of the above remarks, for this state is defined through the observation
that measured macroscopic quantities such as temperature remain unchanged
under repeated measurement. The initial data provide our only information
beyond a general knowledge of the problem, and so prior probabilities are the
only ones we are led to consider. But, given sparse macroscopic data concerning
constants of the motion, how is one to construct these priors? As is very well
known by now, and first recognized by Gibbs, the optimum procedure in the
present case is provided by the principle of maximum entropy. Hence, let us first
review the relevant results of this prescription as rediscovered and reformulated
by Jaynes many years later.

PRINCIPLE OF MAXIMUM ENTROPY

Suppose data to be available in the form of values of some function f(z) at
discrete values of the variable z (for convenience), such that these numbers can be
interpreted as expectation values of f(z) over the n possible mutually-exclusive
and exhaustive alternatives {z;}. That is, we make the identification

(f(z)) = E Pif(zi), (2a)

such that
n
Y Pi=1, P;=P(z)>0. (2b)
i

At first glance, the information provided in Eq.(2a) does not appear adequate to
determine the probabilities in general. But if this is all we have—an extraordi-
narily underdetermined problem—some means for assigning these probabilities
must be found. As first demonstrated by Shannon (1948), the optimum measure
of uncertainty as to the appropriate distribution in this situation is the entropy
of the probability distribution,

n
S(P1,...,Pn)=-K» PilnP;, K>O0. (3)
T
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And about nine years later Jaynes (1957) stated the principle of maximum en-
tropy (PME) as the optimal means for determining the set {P;} subject to the
constraints (2).

The implied variational problem is most readily solved by means of La-
grange’s method of undetermined multipliers, the result being

R Sy
P; = Z(/\)e ,

Z(\) =) e M), (4)

1

The partition function Z () is defined by substitution into the constraint equation
(2b), and the Lagrange multiplier by substitution into (2a):

F={j(z)) =~ 5 Z(). (5)

The point is that A is adjusted so as to reproduce the known datum F, which is
all we can logically ask of any procedure of this kind. The expectation value of
any other function g(z) is then given by

(9()) = Y- Peglz2). ©

Some generalization is immediate and necessary. When data are specified
about m < n functions f,(z), we have constraints

F,=(f,(z))=ZP,—f,(z,-), r=1,...,m<n. (7)

A certain economy in notation is achieved by defining a ‘scalar product’
A f(.'l:,') = Alfl (.’L‘,‘) + o+ )\mfm(:c;) . (8)

Then the probability distribution maximizing the entropy subject to the con-
straints (7) is

Py = e NG,
Z(Ar-eAm) = Y e, (9)

with the Lagrange multipliers determined by the set of coupled differential equa-
tions

a
Fr=_a)\r1nZ(AI"'AM)a r=1')""m' (10)
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The maximum entropy itself is found from substituting Eqgs.(9) into (3):
Si=KlnZ+KM\-F, (11)

where the subscript I indicates that this is the information-theoretical entropy,
providing a convenient distinction from other such quantities later. Note the
explicit parameter dependence of Si:

aSI _ _ 1 351
A, =0, ’\"EaF,’

(12)

which also constitutes a Legendre transformation between descriptions in terms
of {F,} and {A,}.

Often the functions f, will also depend on a common external parameter «,
so that f, = f,(z;a). (They can also depend on an external parameter peculiar
to each function). Then

Z=Z(A1Am;a), Si=Si(F1: Fn;a). (13)

If we define

(df,) = <‘?,i > da, (14)

then a short calculation yields for the total differential

dS = KX -dQ, (15)

where
dQ, = d{f,) — (df,) (16)

is an inexact differential.

Prior to applying these results to something concrete, it is somewhat infor-
mative to mention one other way of looking at this problem of making predic-
tions from very sparse data. What we really have here is a rather severe inverse
problem, in that we are expected to estimate the causes of certain phenomena
based on knowledge of very few effects. Abstractly, consider the general opera-
tor equation F = K f, in which K is a known kernel specific to the particular
problem under consideration. If f is known, then this mathematical expression
constitutes the so-called direct problem and is solved by straightforward (though
possibly quite difficult) calculation. The snverse problem consists of determining
f if it is F' that is known. Standard matrix, integral transform, and integral equa-
tions provide simple examples of such problems when all quantities are known
fully and precisely. Often, however, F' is only known incompletely and, rather
than being deductive, the problem becomes one of inference based on incomplete
information. One already senses a relation to the earlier discussion.
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A common example of this scenario occurs when n trials of some process are
carried out in which each trial has m possible outcomes, so that there are m”™
conceivable outcomes to the total experiment. If the 7th result occurs n; times,
it is useful to define frequencies

n;

fiE—) lfifn- (17)
n

Suppose that we are given data in terms of M numbers Fj,

m
szzKiJ'fia IS]SM<ma (18)
1=1

where the K;; are known, and asked to determine the true frequencies which
might have produced these data. Although at first glance a seemingly outrageous
request, we do have substantial prior information concerning such a problem.
That is, we do know the number of ways a particular set of occupation numbers
{n;} can be realized, for it is just the multinomial coefficient:

n!
(T ()t

also called a multiplicity factor. Common sense then tells us that by maximizing
W subject to the given data we determine that set {n;} that can be realized
in the greatest number of ways. It is an equivalent procedure to maximize any
monotonic function of W, and if n is very large the result will be that set that
can be realized in the overwhelmingly greatest number of ways. Use of Stirling’s
formula then leads to the problem of maximizing

(19)

n~!logW =—_ f;log f; (20)

subject to the constraints (18), and thus we have simply reformulated the pre-
scription of maximizing the entropy. Clearly, the solution is

fi= %exp{z /\J‘KJ-,‘} . (21)
7

Classical statistical mechanics provides an example par ezcellence of this scenario,
although it is equally useful in areas such as image processing, say.

1. Equilibrium Phenomena

Perhaps the simplest application of the PME is to the many-body system in
thermal equilibrium, which we determine to be the correct state of the system
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by finding that repeated measurement yields the same value for the total system
energy, say: (E). There is only one set of alternatives, then, the system energy
levels E;(V'), and we consider just the one external parameter V, the system
volume. Thus, under the constraints

(E) = EP,’E{ s ZP; =1, (22)

we find from above that

1

Pes e 2 =T, (23)
and the Lagrange multiplier 8 is determined from
(B) = — 5= 10 2(5). (29
ap
The maximum entropy is then
S1=«klnZ + kB(E), (25)

where in this application we denote the constant K appearing in the definition
of entropy by k, for reasons which will become clear presently.
From the general expression (15) we see that

dS1 = kfdQ, (26a)
with
dQ = d(E) — (dE) . (260)

But from the original discussion of (dE) it is clear immediately that this quantity
is an element of mechanical work,

dW = (dE) = ZP,- (%’;ﬁ) dv
= —‘P av, (27)

because this is just the definition of the physical pressure. Hence, Eq.(26b) is
simply an expression of the first law of thermodynamics—dE = dQ + dW—
owing to the physical meanings of the quantities involved. That is, dQ must be
the element of heat introduced in classical thermodynamics, which is an inexact
differential. ‘ '
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One now sees that the Lagrange multiplier 8 is determined immediately as
the integrating factor for d@, which is the way the Kelvin temperature scale is de-
fined. Thus, 87! must be proportional to the absolute temperature T'. The units
are determined by choosing the constant K to be Boltzmann’s constant, «, yield-
ing the Kelvin temperature scale: 8 = (xT)~1. With these observations we have
now identified Sy with the physical entropy of a system in thermal equilibrium,
in which dS = dQ/T. These are just the equations of Gibbs for the canonical
ensemble, thereby allowing us to write S = S; and omit the expectation-value
symbols in the present context. In addition, Eq.(25) can now be written in a
more familiar form,

E-TS=-kThz
= F(T,V), (28)

where F is called the Helmholtz free energy. The pressure is now written explicitly

as a
—q-1_"
P=plsrInz. (29)

and from Eq.(12) we obtain the well-known expression

1 aS

T <6E>V ' (30)
This last relation provides a Legendre transformation illustrating that, although
in practice we usually measure the temperature in defining the equilibrium state,
it is an equivalent procedure to measure the energy, as we have found convenient
here.

There are now a number of other notions which logically should be discussed
in some detail at this point, such as fluctuations, and stability conditions for
the equilibrium state. But, owing to a lack of space here, we shall have to refer
elsewhere for those details (e.g., Grandy, 1987). Two points, however, merit
some comment now, the first having to do with the ‘magic’ of our prescription,
mentioned earlier. It appears that we have put almost nothing into the PME
and come out with all of classical thermodynamics. Some have felt that this is
beyond belief, for we do not seem to have inserted the dynamics of the actual
physical system into the development. This is only a mild subtlety, however, for in
Eq.(22) we have presumed that it is possible to enumerate the spectrum of global
energy levels of the system, and this is usually a rather nontrivial calculation.
Thus, while the structure of the theory is a simple result of the rules of inference,
its application to physical systems requires some decidedly serious knowledge of
basic physical theory.

The second point to be made concerns the interpretation of statistical me-
chanics as an inverse problem, as in Eqgs.(17)-(21). Let us recall Boltzmann’s
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expression for the physical entropy,
S =klogW, (31)

where W is proportional to the number of microscopic states available to the
system. That is, W is a multiplicity factor. From Eq.(28) we have S = (E—F)/T,
so that now the probability for a macroscopic state of the system to be realized
is

e PP =W e PP, (32)

Because W is a rapidly increasing function of energy and both 8 and E are
positive, one sees that the probability is sharply-peaked about the equilibrium
energy.

A significant generalization occurs when the Gibbs algorithm is extended to
a manifestly quantum-mechanical description in terms of the statistical operator,
or density matrix 4. In thermal equilibrium one now considers linear Hermitian
operators F; which are constants of the motion in the quantum-mechanical sense,
and which possibly are noncommuting. Expectation values are written

(Fy = Te(pF), Trp=1, (33)
incorporating both aspects of probability to be found in quantum statistical me-
chanics: that arising in connection with incomplete information, and that intrinsic
to quantum mechanics itself. The entropy is now defined as

S=—-kTrplnp, k>0. (34)

Maximization of S subject to the constraints (33) then yields the statistical op-
erator

1 A ~
p= e MFim—AmFn (35a)
with partition function
Z(A1++-Am) = Tre~MFi=—dnFn (35b)

The Lagrange multipliers are once again found from a set of coupled differential
equations:

<ﬁk>=—£;1nz, k=1,...,m. (36)

One finds for the maximum entropy

St=klnZ+ X (F), (37)
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in the dot-product notation introduced earlier, and

~ 1095 (38)
K 9(Fy)

Except for the dual interpretation of expectation values, these equations are
identical to those obtained above. The canonical ensemble is regained if only the
total energy (or temperature) is specified, which corresponds to an expectation
value of the N-body, time-independent Hamiltonian H ~- The statistical operator
is then

p=ePF-Hn) (39)

where F is the unit operator times F = —kT In Z. Because F' commutes with Hy
and is conserved, the trace of the last expression yields immediately the partition
function

Z(B) = TrePHn (40)

Further examples are plentiful, and we mention just two. If, in addition to
the total energy, the system is rotating uniformly with angular velocity w and
we measure a component of angular momentum j,-, we can consider the system
to be in thermal equilibrium in its rest frame (Gibbs, 1902; p.39). The resulting
description is called the rotational ensemble, with statistical operator

1 f J.
pr= e el (41)
r
Should both the total energy and total particle number N be provided—(H)
and (N)—then we obtain the equations of the grand canonical ensemble, which
are expressed in terms of the grand partition function:

oo
Zg = Z PPN Tre PHn (42)
N=0

where the chemical potential u provides the additional Lagrange multiplier cor-
responding to conservation of particle number. The average number of particles,
Helmholtz free energy, and total energy per particle, respectively, are given by

10
=—-—InZ 43a
N ﬂalla nsg, ( a)
F=G-p8"'lnZg, (43b)
E 10,4
N Naﬂ(v InZg), (43c)

and G = uN is called the Gibbs function.
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As an aside, we note that there #s a sense in which the spirit of Bayes’ theorem
emerges here, and which is a major strength of the PME. No probabilistic theory
can guarantee its predictions, of course, and it may happen that the latter do
not agree with observation. In that event the theory is telling us that there
are constraints operating of which we were unaware, and hence alerts us to the
possible existence of new physics. This call for re-assessment is clearly Bayesian
in spirit.

2. Nonequilibrium Systems

For systems clearly not in thérmal equilibrium, and for equilibrium systems
in which the observed quantities are not constants of the motion, a much more
general algorithm is needed than that developed in the preceding section. With
reference to Eq.(1), one might think that we are ready finally to move past the
prior and employ the full content of Bayes’ theorem, for if the need for ‘updating’
were ever evident one would think it would be for time-dependent problems of
this kind. We shall see, however, that this is not the case, and that we are still
concerned primarily with prior probabilities.

A detailed understanding of arbitrary irreversible problems necessarily passes
through three distinct stages of calculation:

(#) Construction of the initial ‘ensemble’, or statistical operator (o), describing
the initial state of the system of interest;
(#7) Solution of he microscopic dynamical problem so as to obtain the time-

evolved operator j(t);

(117) Prediction of the final macroscopic physical quantities of interest using 5(t).

Stage (i71) does not present any difficulties of principle, for one merely
calculates expectation values of the operators of interest via the prescription
(F) = Tr(pF)—a procedure justified within the theory itself. Stage (i) is tech-
nically the most difficult, but also the one which has received the most attention
over the past three decades. In one way or another, and usually to some degree
of approximation, one must solve the equation of motion

n229 _ 5,500, (14)

or the equivalent for open systems. The fundamental aspect of the calculational
stage is to solve this equation of motion subject to the initial conditions describing
the physical situation, and this brings us back to stage (7).

We presume the initial data defining the nonequilibrium state of a system can
be put into the form of expectation values of a number of Heisenberg operators
Fy(x,t), for which the variables x and ¢ vary over some information-gathering
space-time interval R;(x,t). The general time development of the Heisenberg
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operators is described by the unitary transformation
Fi(t) = ﬁf(t’tO)F(tO)(j(t$t0) ’ (45)

where for the moment we suppress the spatial variable. The time-development
operators are solutions of the equation of motion

ih—" = H(t)U(¢,t0), (46)

subject to the initial condition U (to,20) = 1. Should H not be explicitly depen-
dent on the time, Eq.(46) has the solution

Uo(t,t0) = e'(t=to)/™ (47)

otherwise, it is very difficult to find an expression for U in closed form.

Although the statistical operator j(to) remains stationary in the Heisenberg
picture, this is conventionally taken to coincide with the Schrodinger picture at
t =to. In the latter p evolves in time according to the prescription

p(t) = Ul(t,20)A(t0) U (8, t0) , (48)
which is equivalent to the equation of motion
., dp(t A R
n W _ 1), 5(0). (49)

If now we are given several pieces of data (ﬁ‘k (x,t)) over space-time regions
Rk (x,t), then we can once again construct the initial statistical operator en-
compassing only this information by maximizing the entropy subject to these
constraints. The result is

= Lo T / (. ) B(x, ) d3z dt | | (50a)
Z %P |2 [y,

where now
Z[{\e}] = Trexp [Z/ Ak (%, ) F(x, 1) d%;dt] (500)
kR

is called the partition functional. The Lagrange-multiplier functions Ax(x,t) are
identified from the initial data by means of the coupled set of functional differ-
ential equations

(Bu(x,8)) = Tr[pFa(x,1)] = 'ﬁ};ﬁ nZ, (xt) € R, (51)
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and the predicted expectation of any other Heisenberg operator J at (x,t) is
(F(x,8)) = T3S (x,8)] = Te[5(2) S (). (52)

It is important to emphasize that the p constructed here is nothing more
than the initial statistical operator describing only what is known about the ini-
tial state of the system. Aside from a possible clearly specified driving mode,
this is generally all one can hope to know regarding any experimentally repro-
ducible situation. Although a number of authors over the years have attempted
to construct a j(t) intended to describe the nonequilibrium system for all time,
that now appears to be an entirely unrealistic goal. Thus, we are still working
on the prior in Bayes’ theorem, at least in the absence of specified dynamical or
thermal driving. One should also note here that the above expressions contain as
a special case the well-known theory of dynamical response (e.g., Grandy, 1988).

LINEAR APPROXIMATION

The preceding expressions are rather difficult to employ in practice, for they
are exact and completely nonlinear. Often, however, a linear approximation is
adequate for describing the various phenomena. Suppose that initially the system
is described by the equilibrium ensemble

s _ 1 g TR
po = Zo(,B)e , H # H(¢)

(F)o = Tr(poF) . (53)

Again we suppress the spatial variable temporarily and consider new data (ﬁ‘(t))
obtained over a time interval —7 <t < 0, so that the new description is

b= —;—exp {—ﬂﬁ+ _Or M) F () dtJ ,
Z[B,A(t)] = Trexp [—/31‘1+ ’ A(t)F(t) dt] : (54)
_r
The explicit time dependence here is given by
F(t) = 03()FO,(t), Tot) = e~ iH/A, (55)

Define the Kubo transform as

_ T
BE/ e 4 Be*4 dz, (56)
0



THE THREE PHASES OF STATISTICAL DYNAMICS 85
and the covariance function

Kcp = (Eé% — (B)o(C)o
= Kpgc. (57)

Then, through leading order in ), the expectation value of some other Heisenberg
operator at some time ¢ is

(C@)) — (C)o ~ ° Kcr(t,t)A(t") dt’, (58)

-

and

A

Kcr(t,t') = (F(t')C(t))o — (F)o(Co. (59)
IfH # fI(t) we have a reciprocity relation exhibiting time translational invariance:
Kcr(t,t') = Kep(t —t') = Kpe(t' — t). (60)

Finally, a complete generalization yields for the linear approximation to ex-
pectation values in a region (x,t)

(C(%,8)) — (X))o = /R Kop(x, X, )X, t) & d',  (61a)

with covariance function

Kor(x,5;%,t') = (F(x',¢)C(x,t))0 — (F(x"))o(C(x))o
62
T BAc(x,t) 6Ap(x, )

InZ. (61b)

As an example of this formalism we consider some of the equations of linear
hydrodynamics.

LINEAR HYDRODYNAMICS

When a many-body system is perturbed from thermal equilibrium the re-
sulting situation is one of considerable chaos, compounded by the fact that in a
fluid containing a very large number of particles there is a corresponding large
number of degrees of freedom. If the system is then allowed to relax, most of these
degrees of freedom return rather quickly to their equilibrium values in ways deter-
mined by the microscopic characteristics of the system. But this relaxation can
be described on the macroscopic level by only a few long-lived modes which decay
relatively slowly, and these modes are related to the locally-conserved densities
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in the medium. That is, local excesses of these quantities can disappear neither
locally nor quickly, but must relax by spreading out over the entire system.

In a simple fluid the locally-conserved quantities are the number, energy,
and momentum densities, resulting in five long-lived hydrodynamic modes. We
denote these densities generically by the symbol é(x,t), along with associated
current densities J (x,t), and recall that local conservation equations take the
form

de(x,t) + V- J(x,t) =0, (62)

which are microscopic operator equations. When appropriate driving mecha-
nisms are introduced (e.g, Grandy, 1988), one derives from this last expression a
macroscopic conservation law:

at<é(x1t)>t +V- (j(x’t»t = .&(x’t) ’ (63)

where ¢ is the rate at which the source drives the density.

Of primary interest at the moment is the momentum density, for which
the current is the stress tensor Tj;(x,t), and the Lagrange-multiplier function
associated with the momentum density is identified as #mv(x,t), where v is
referred to as the velocity field. Let us consider an incompressible fluid, V-v = 0.
Then some further calculation converts the macroscopic equation (63) into what
are usually called the Navier-Stokes equations:

mno (84v; + [(v - V)V]i) = —8; P6ij + Bkpix + mnoFy, (64)

which are nonlinear in the fluid velocity. (Although the formal approximation
we have made is linear in the departure from equilibrium, the nonlinearity here
arises from the convective contribution to the total time derivative.) Indeed, we
see that the macroscopic equations are just equations of motion for the Lagrange-
multiplier functions. The notation is as follows: ng is the equilibrium number
density of the system of particles with mass m, P is the pressure, we have repre-
sented the possible driving force by F;, and p;x is the shear tensor. Explicitly,

dv av; av v
PikEﬂ( LS 25 £>+§a—z—i5ki- (65)

' | 9zF 3 kgt

The transport coefficients in this expression are derived within the linearized
theory in terms of space-integrated covariance functions. Specifically, the shear
viscosity in the steady state is

w N S E—— ..
n =~ —ﬂ—r?- lim —/ e ¢t <Tij(—t)T'J>0 dt,
(o]

V e—o0+
i3, (662)
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whereas the bulk viscosity is expressed in terms of the trace T' = > T:

¢ o~ _Tegr&/ e~ (T'(~ ):i") dt. (66b)

At this point one would think that the standard many-body theory has
completed its task, resulting in macroscopic deterministic equations such as those
of Eq.(64). Probability theory has fulfilled its role in describing these systems
and can retire with honor. Recent investigations into the dynamics of classical
systems give one reason to pause, however, and it is quite possible that there is
one more phase to go through.

3. Macroscopic Processes

Ever since the work of Poincaré it has been known that the number of in-
tegrable dynamical systems is severely limited, and that nonlinear equations of
motion possess solutions exhibiting highly irregular behavior for given param-
eter values. Only relatively recently, however, have the enormous advances in
computational ability made it possible to study this behavior in any detail. Ex-
amples of deterministic dynamical systems in which irregular or ‘chaotic’ motions
can occur are now commonplace. Hénon and Heiles (1964) presented an early
and important physical model in connection with the distribution of stellar ve-
locities within the galaxy. One is compelled to ask what bearing, if any, these
developments might have on the statistical-mechanical description of many-body
systems.

If the microscopic equations are nonlinear one must then allow for the pos-
sibility that the microscopic trajectories may exhibit irregular behavior. But a
major role of the microscopic equations of motion is to provide us with an enu-
meration of the various alternatives over which the probability index ranges, and
this has always been a technically difficult matter irrespective of whether or not
those equations are linear. Introspection suggests that nothing really changes
in this respect if the particle equations are highly nonlinear, for the procedures
remain the same. That is, because it always considers the full equations of mo-
tion, the PME is rather transparent to the actual structure of those equations. If
those equations are nonlinear it is possible that new phenomena could appear in
our macroscopic predictions, but that will not affect the way in which we make
those predictions. As long as the spectrum can be presented in principle, however
difficult in practice, then it matters little how irregular the microscopic motion
may be—that, after all, is just the point of statistical mechanics!

Entirely different conclusions emerge, however, with respect to macroscopic
motions of a system if the governing equations are nonlinear, for we usually
wish to—and often can—follow the trajectories in this case. We continue to use
the example of conventional hydrodynamics for an incompressible fluid, so that
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the equations of motion are just the Navier-Stokes equations (64). As already
pointed out, these are a linear approximation in the Lagrange-multiplier-function
v(x,t), and higher-order equations can be obtained in a straightforward way
from the perturbation expansion of the nonequilibrium expectation values. The
nonlinearity in Eq.(64) arises solely from the convection term in the derivative on
the left-hand side. It is useful to rewrite these equations in terms of dimensionless
variables by introducing a characteristic speed u of the fluid, and a characteristic
length £. Then, in vector notation, and without the external-force term, Eq.(64)
becomes

v+ R(vV-V)v=-VP + Viy, (67)

where R = ul/v is the Reynolds number, and v is called the kinematic viscosity
(the ratio of viscosity coefficient to the density). Clearly, the effect of nonlinearity
is controlled completely by R, and when R = O these are known as the Stokes
equations.

In some systems the experimentalist observes a series of spectacular insta-
bilities as R increases from zero past some critical value, and eventually com-
plete turbulence in the fluid flow emerges for sufficiently large Reynolds numbers.
(There is some controversy on this point, and we shall reiurn to it below.) Many
of these stages in the progression to fully-developed turbulence for various sys-
tems have been captured photographically, and can be observed in the beautiful
collection of Van Dyke (1982). One believes that this progression is described
theoretically by Eq.(67) as R varies, but these equations are very difficult either
to solve or to analyze in general. Nevertheless, in some applications it is possible
to approximate them without destroying the essential nonlinearity.

The now-classic example of this latter procedure begins with the attempt
by Saltzman (1962) to model the Rayleigh-Bénard instability in two dimensions
by Fourier expansion in Eq.(67) and truncation into a set of ordinary differential
equations. Shortly thereafter these equations were adopted by Lorenz (1963) as a
model for the unpredictable behavior of the weather, and were studied extensively
by him—with remarkable results. These reduced equations for convection of the
fluid are

dz

@ =W

dy i

7 - TETY-zE,

dz

—Jt——zy—bz, (68)

where z(t) is proportional to the amplitude of convective motion, y(t) and 2(t)
are proportional to two temperature modes, o is called the Prandtl number (the
ratio of kinematic viscosity to the thermal diffusivity), r is the Rayleigh number
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in units of its critical value (the convective analog of the Reynolds number), and
b is a constant related to the wavenumber of the fundamental mode.

This last set of equations is completely deterministic, so that we can study
(with the aid of the computer) the trajectories generated from various initial
conditions by fixing ¢ and b at the values adopted by Lorenz, say, and varying
r. For r < 1 all trajectories are attracted to a stable solution at the origin of
the variables in Eq.(68): z =y = z = 0. If r exceeds unity by much the model
is no longer physically realistic, but nevertheless still worth studying. There
are two stable solutions for 1 < r < 13.9, to which all stable trajectories are
attracted, and in the region 13.9 < r < 24.1 a complicated transition begins to
take place. For r > 24.1 all trajectories are attracted toward a subspace in which
they wander ‘chaotically’ forever. That is, the motion is highly irregular and
essentially unpredictable. This subspace is called a strange attractor.

To use the word ‘chaos’ here is to risk conveying an impression of motion
which is not deterministic. In reality, the motion is no more chaotic than that
of particles in an equilibrium gas—they all obey well-defined equations of mo-
tion. But ‘chaos’ now assumes a more technical meaning—namely, the result of
an extraordinary sensitivity to initial conditions. In the chaotic regime it is vir-
tually impossible to specify initial conditions precisely enough to be sure of the
ensuing trajectory, and it is in this sense we employ the above phrase ‘essentially
unpredictable’.

The importance of these results in the present context lies with the possibility
of being able to describe turbulence in some detail as a solution of the Navier-
Stokes equations, say. As noted above, it has been thought for many years that
smooth laminar flow will become unstable and cascade into turbulence eventually
when R exceeds some critical value. This is a macroscopic phenomenon, and so
would seem to be outside the purview of statistical mechanics. That is, the role
of the latter should cease with the derivation of the macroscopic equations of
motion and provision for calculation of the relevant parameters.

But completely-developed turbulence is more than just ‘chaotic’ motion, and
the phenomena uncovered by study of the Lorenz equations only provide us with
a beginning. There is, for example, some current controversy as to whether a fi-
nal state of fully-developed turbulence is always attainable, or whether so-called
coherent structures persist indefinitely in some systems (e.g., Lesieur, 1987). Nev-
ertheless, the onset of chaos may well signal the approach to a turbulent state,
which is intrinsically nonequilibrium and collective in nature. As the parameters
of the macroscopic equations continue to change, and full turbulence develops,
one realizes that the number of macroscopic degrees of freedom has increased
enormously (owing to nonlinearity). There are now a great many possible trajec-
tories available to the system, but it is very difficult to know which is taken owing
to the extreme sensitivity to initial conditions. Although the system state may
well be described by only a few macroscopic variables—or ‘supermacroscopic’
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variables—just what that state may be is difficult to determine exactly. It is as
if one did not really know the precise initial conditions.

Everything begins to sound familiar at this point, as if statistical mechanics
were emerging anew, but on a higher level. In the problems of hydrodynamics
it appears that the elementary volumes associated with the velocity field v(x,)
play the role of the basic units, or ‘particles’, with laminar flow being analogous to
the equilibrium state. [Years ago Hopf (1952) attempted to construct a statistical
theory of turbulence based on much the same point of view, but he did not
have available perspectives which were only to emerge from the more recent
computer-assisted understanding of chaos.] Some systems can then pass through
a number of ‘second-order phase transitions’, corresponding to the hydrodynamic
instabilities, and for a given range of parameter values the various states are both
stable and reproducible. A striking example of this kind of sequence is provided by
Couette flow between rotating concentric cylinders (e.g., DiPrima and Swinney,
1985).

In order to verify such notions as these, however, there are a number of
questions which must be addressed and resolve to a degree that has not yet been
achieved—questions suggested in part by our experience with the microscopic
theory. For example, one must identify the experimentally reproducible phenom-
ena on the macroscopic level and construct a definite catalog. What are the
macroscopic quantities we can measure or observe both on and off the strange
attractor? One known class of quantities consists of power spectra of the velocity
field, but it is not clear that this class is sufficient to characterize the phenomena
adequately.

Precisely how the notion of ‘insensitivity to initial conditions’ arises in a spe-
cific real problem of this kind is not entirely clear. But the suggestion is strong
that, as R increases and the nonlinearities become increasingly more important,
the observed instabilities signal a breakdown in the severely rigid uniformity of
laminar flow, or in ‘coherent’ structures. The onset of turbulence is characterized
by ‘insensitivities’ which are analogous to the ignorance of microscopic initial
conditions leading to the statistical description of many-body systems discussed
earlier. A higher-level statistical description will require construction of a prob-
ability distribution over possible macroscopic trajectories, which in turn requires
a very clear understanding of what kind of information can be obtained and how
it can be utilized for that purpose. As these points are clarified it is quite pos-
sible there will emerge a ‘canonical’ form of probability distribution every bit as
effective as that of Gibbs in describing ordinary thermodynamics. We are far
from reaching that point, however, and the observations made here merely serve
to outline a program in need of a great deal of development.
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ABSTRACT. Bell's theorem is expounded as an analysis in Bayesian
inference. Assuming the result of a spin measurement on a particle is
governed by a causal variable internal (hidden. "local") to the

particle, one learns about it by making a spin measurement: thence
about the internal variable of a second particle correlated with the
first; and from there predicts the probabilistic result of spin
measurements on the second particle. Such predictions are violated by
experiment: locality/causality fails. The statistical nature of the
observations rules out acausal signalling. superluminal or otherwise.
Quantum mechanics is irrelevant to this reasoning. although its correct
predictions of experiment imply it is a nonlocal/acausal theory.
Cramer's new transactional interpretation of the quantum formalism,
which incorporates this feature. is advocated as an invaluable way of
envisaging quantum processes. The usual paradoxes melt before it, and
one, the "delayed choice" experiment, is interpreted in detail.

1. BAYESIAN INTERPRETATION OF BELL'S THEOREM

In this section it is shown that no theory, postulating that the
results of spin measurements on a particle are causally governed by
variables internal to the particle. can reproduce the findings of
measurements on particle pairs. Quantum theory is irrelevant to the
argument: to test whether nature is nonlocal/acausal, it is the class
of 1local/causal theories which must be compared with experiment.
Nevertheless quantum theory correctly predicts the outcome of these
experiments. and is discussed in the light of this later on.

Let us begin by postulating the existence within a particle of internal
(i.e. local, "hidden") variables. There may be any number of these.
denoted collectively by . We might hope to learn about these by
measuring the spin of a particle in a particular direction, and
reasoning back to X\ using Bayes' theorem. From there, we hope to make
(probabilistic) predictions about future spin measurements on that
particle in any direction.
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Unfortunately the disturbance caused by measuring the spin would in
general alter the value of X in an unknown way: so with a single
particle we cannot predict the future, only improve our knowledge of
the past. This problem is circumvented by using two particles which
are correlated in some way, an ingenious and well-known idea due
originally to Einstein, Podolsky and Rosen (1935); application to spin
correlations is due to Bohm (1951). By measuring the spin of the first
particle in a selected direction, we infer something about its internal
variable; through the correlation, we then learn about the internal
variable of the second particle: and from there, we make probabilistic
predictions about spin measurements on the second particle. Locality
has it that the internal variable of the second particle is unchanged
by the measurement on the first, and causality that the first
measurement is uninfluenced by the second. Below, this analysis is
made quantitative, using the laws of probability as consistent laws of
inference (Cox 1946). This is the famous analysis of Bell (1964),
rephrased in Bayesian language.

For two photons or two spin-% particles, correlated by having zero net
angular momentum, results lie outside the predictions of causal

internal variable theories (Bell 1964). Because we are only able to
predict on a statistical basis, many pairs of particles are examined at
each direction setting of the apparati. Nevertheless,

locality/causality fails in this situation., and we accordingly conclude
that nature is nonlocal/acausal.

For simplicity we work with those particles observed to have only two
spin states, which we call z%. It has been claimed that nonlocality
need not be implied should particles have three exclusive categories:
+%, -%, and undetectable. (The idea is due originally to Pearle,
1970.) Quite apart from the ad hoc nature of this assumption, which
has no correspondent in quantum mechanics. the result still stands if
the analysis is applied only to those particles in the first two
categories. One is free to seek nonlocality/acausality wherever one
wants. The notation S*|v denotes "spin measurement in direction v (a
unit vector) is %"; this will accord with standard probability
notation. S is not a variable but a measurement. I denotes the
information that the total angular momentum of a pair is zero, or (in
quantum parlance) that the pair is in a singlet state, and that both
members of the pair are detected. Subscripts , and , denote the two
particles of a pair, ordered according to the times of measurement in
the laboratory frame.

Let us now calculate the probabilities of spin measurements on each
particle, p(S,*lv,.1) and p(s,*lv,.s,*,v,.1). First, p(S,*|v,,I) is a
marginal distribution over the internal variables of the particles:

p(S,*]v,.I) = [[dxn,dx, P(x,.%,.5,*|v,.1) (1)

]

[fangdn, POy IT) BIS, %[V, 0 0%,,1)  (2)
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where a capital P denotes a probability density. Nothing other than
the sum and product rules are involved here, and there is no
implication that (1) is an ensemble average over the internal

variables, for this is a procedure of inference. Because of the
correlation I. P(X,.%\,|I) is not separable. though indifference demands
it be symmetrical. (Bell's analysis combined X\, and X\, into a single

variable.) Next, we connect to the physics by making the local/causal
assumption that the probability of measured spin values depends only on
a particle's internal variable and the specified direction of
measurement:

p(S,;*|v,.x;. anything else) = F (v .\,) (3)
where F, are definite functions. complementary for the same value of
argument. Our reasoning remains valid no matter how fine, or fractal,
the structural dependence of F, on v. We shall in fact infer from the
observed exact (anti)correlation §S,=-S, when the directions are
identical (v,=v,) that F, = 0 or 1 everywhere in (v.X\)-space.
Experiment shows that

p(S, v, 1) = p(S,7|v;.1) = %. (4)
Define for convenience the "expectation"

A(v.)) = (+1)F.(v.x) + (-1)F_(v.X), (5)
which has the property

|A(v.N)] < 1. (6)
From (2)-(5) we have. on subtracting p(S; |v,.I) from p(S,"|v,.I).

0 = [fdn,dn, P(x;.x,]1) AV, ). (7)
Adding merely confirms normalisation:

1 = [fdx,dx, P(x,.x,]1). (8)
Now examine the probabilities of measured spin values on the second

particle of the pair, conditioned on the result of the first
measurement. From the laws of probability,

p(S,*1v,.8,*.v,,I) = p(S,*.8,*|v,.v,.I) / p(S,*|v,.v,.1) (9)
=__ 1 J_[d)‘id)‘z P(XNg 22 [1) D(S:%,S,% |V, .V . 000, 1)
p(S,*|v,.I) (10)

where. in passing from (9) to (10), we have again made the local/causal
assumption that p(S,*|v,,v,,I) is independent of v,: this follows by
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marginalizing (3) over \. Locality/causality demands further that
P(S;*.8,%|V,. ¥y X N 1) = Fulv,,8,) Fulvyny), (11)

for only then are the marginals for S,* and S,* dependent on just
(vy.%;) and (v,.X,) respectively.

We now demonstrate explicitly that expression (10) is identical to the
result derived from the proposed strategy of updating our knowledge of
X\, using the result of S,. This is in fact a consequence of the
consistency conditions that probability not depend on how the

conditioning data are partitioned, or on whatever has been marginalized
out, from which Cox derived the two laws of probability. We seek

P(S,*|v,.8,*.v,.1) = dez P(X;.5,*|v,.8,*.v,.1) (12)
= Idxz P(S,*[¥v, . %2.8,*.v,.1) P(X,|v,.8,%.v,.1) (13)
using only the laws of probability: and on demanding locality/causality

= [dx, Fu(v,.%;) P(X,18,%,v,.1). (14)

Next, we work out P(X\,|S,*,v,.I) as a marginal of the joint probability
of X, and X,:

P(x,18,*,v,.1) = fdx, P(ry %, 08,%.9,.1) (15)

and retrodict the joint probability. incorporating the result of S,
using Bayes' theorem:

P(x; 2 [S;%.v,.I) = K P(XN;, %, |V, I) P(S ¥V, Ay 0. 1), (16)

which on demanding locality/causality becomes

= K P(N; %, [I) Fo(v,.X\,). (17)

Normalisation demands that
K™ = [fdx,dx, P(x 2, 11) Fu(vy.n,) (18)
= p(S,*|v,.I). (19)

On substituting (19) into (17), the result into (15). and that into
(14) we have

p(S,*|v,.S,*.v,.I) = -1 Ifdxtdxz P(X o2 [I) Fu(vy.n,) Folvyong),
p(S,*|v,.I) (20)

which is just (10) with condition (11) already incorporated. This
completes our equivalence proof.
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The experimental result is

P(S."Iv,.8,7,v,.1) P(S.71v2.S,7.v,.I) = ¥(1-v,.v,). (21a)

p(S,7|Vv2.8,".¥,. 1) = p(S,7|¥,.8,7.v,. 1) = ¥(1+v,.v,) (21Db)
(Clauser and Shimony, 1982 (a review): Aspect et al (1982)). On
substituting these into (20) and re-arranging, we have the four
relations

%(1-v,.v,) p(S,"|v,.I)

[}

dexldxz P(hy 2, |I) Fu(v,.x,) Fo(vy,ny). (22)

[fax,dx, POy %, 11) Fo(V,.%,) Fo(v,.%,), (23)

1]

%(1-v,.v,) p(S, |v,.I)

K(1+y,.¥,) (S, "Iy, 1) = [fdx,dxn, PON X, IT) Fo(¥2.%,) Fal¥yox,), (24)

¥(1+v,.v,) p(S, |y,.I) = dexndxz P(Xy 2, |T) Fu(v,.np) Fo(¥,.2). (25)

Any of these implies determinism in the internal variable. For
example, putting v, = v, = v, (22) reduces to

[fax,ax, POy %, 1T) Fulv.x,) Fu(v.x,) = 0 (26)

and since P(X,.X,|I) is a measure of justified belief and is not
physical, this relation must hold regardless of its form. Since also
the physical quantity F, is non-negative., it follows that

Fo(v. %=3, (%)) F (V,%,) = 0V v,x,, (27)

where X, is functionally related to X, because of the correlation I.
This in turn implies that one of F, (v, X,(),)) and F,.(v,X\,) is always
zero. A similar argument applies to F_(v.X\,) and F (v, X\,(X,)); and to
F_ rather than F,_.. The result F_. F_ = 0 or 1 at every direction and
value of the internal variable, corresponding to determinism, now
follows.

If the probability of spin measurements (3) depends on further physical
quantities - such as time, in a dynamical hidden variable theory - F,
would be a marginal distribution over an imperfectly known quantity,
and would not be deterministic. Such theories are, therefore,
untenable.

Since (21a) implies (21b) and vice-versa, two of equations (22)-(25)
are redundant. Moreover, the sum of all four reduces to the
normalisation condition (8) on P(Xx,,X,|I). There is therefore only one
independent relation., which we choose as (22) + (23) - (24) - (25):

- v,.¥, = Jfan,dn, PO, IT) A(Y,00,) AV, (28)

This is the expectation value of the product of the spins. Equations
(8), (7) and (28) give the zeroth, first and second moments of
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P(X,;.X,|I) with respect to A. In passing from (22)-(25) to (28) it was
not necessary to use result (4). the measurement of S,. Next, based on
an inequality satisfied by the RHS of (28) but violated by the LHS, one
deduces the master result that no (non-negative, normalised) solution
exists for P(X,.X,|I): this is a slight generalisation of Bell's
original calculation (see Clauser and Shimony. 1978). It cannot
therefore be a probability. and ergo not the probability of anything:
existence of its arguments, the internal variables X\, and X\,, is simply
incompatible with the facts. To demonstrate this, first label the RHS
as E(v,.v,):

E(u.v) = [fdxdx, P02, 11) Alu,x,) A(Y.X,). (29)

]

s

e

=

'z
1

£

<

=
1

= [fanidx, PN, 1T) TA(W.X)A(E X )-A(W. XAV A,) T
(30)

Now add and subtract a new term:
E(u,w)-E(v.w) = [fdx,dn, P(xy. %, 1T) {A(W.%,)A(U. X, )I[1+A(Y. % )A(S.N,) I+

“ffaxgdn, POxyox, 1) {-A(H.X,)A(V.N,) I 1+A(U. X ()A(S.X,) ],
(31)

Since |A|<1., the square brackets are non-negative. and the magnitudes
of the curly brackets are 1. Thus

[E(u,w) - E(v,w)| < [fdx,dx, P(x;.x,|T) [1+A(V.x,)A(s.%;)]
= [fax,dn, PO X, 1T) [1+A(u. N )A(S.2,)],  (32)
or
|E(u.,w) - E(v,w)| € 2 + E(v,s) + E(u,s). (33)
Symmetry of P(X,.X,|I) has not in fact been employed. Next. a similar

inequality is derived with E ® -E throughout. The more stringent of
the two inequalities is always

JE(u.w) - E(v,w)| + |E(u,s) + E(v,s)]| < 2. (34)

Since equality is attained at A(v,\) = 1 Vv v,\, this inequality is
sharp over A. Further inequalities can be generated using the method
of Braunstein and Caves (1988).

It is easy to find directions s, u, v, w, such that (34) is violated
for E(u,v) = - u.v: for example if s is parallel to u and perpendicular
to w, with v in the same plane at acute angles © to u and "/,-6 to w.
Condition (34) then demands that sine + cos® < 1, which is clearly
false because sin?6 + cos?e = 1.
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A generalized proof goes through even if different functions F(v,\) are
defined for each detector, to allow for differences between them. We
simply attach subscripts , and , to the functions A(',X\,) and A(-,%,)
in the foregoing.

The entire analysis is a train of inference, constrained only by the
assumption of locality/causality (3); physics of the particles is
irrelevant. Therefore the idea can be applied (and illustrated) in
other areas. Suppose one isolates the individual members of a series
of couples, and asks each person a yes/no question off a prescribed
list. The analysis indicates the range of questions needed, and how to
tell from the collected replies, whether individuals were in
clandestine communication with their partners during the interrogation,
as distinct from every couple sticking to its own pre-arranged story.
The choice of question corresponds to the direction v; memory to the
internal variable, correlated through pre-arrangement in each couple;
and communication corresponds to nonlocality. In this simplified
problem we do not consider acausality.

Translating from particle experiments into this parlance, partners
always give opposite replies if the same question is put to each. This
is possible in isolation provided the couple pre-agreed answers to
every question on the 1list; but then the replies taken over many
couples and over many questions could not (in fact) have the completely
random character observed. This insight into the analysis has been
highlighted in a particularly clear model problem: Mermin (1985).

Another actualisation is: that it is impossible to program two
independent computers C,, C, so as to prompt successive users to input

a direction v, and to respond either "+" or"-", such that over many
pairs of users

p(C,*|v,) = p(C,*|v,) = %, (35)

p(C,*|v,.C,*,v,) = { %(1 - v,.v,) ++, —- (36)
®(1 + v,.v,) +-

1< i<

Here it is the program which corresponds to the internal variable.

Further insight into Bell's theorem is gained by looking at special
cases. Suppose, for example, that the internal variable is a direction
A, oriented in opposite directions for the members of a singlet pair,
and our state of knowledge corresponds to uniform probability over
solid angle. This is the usual "first try", corresponding to

P(h % 11) dxgdx, = 1 8(2)(x,4x,) d?x,d%,, (37)
4w

where 6(2) {g the delta function over the surface of the unit sphere.
A(v,\) must be a function, denoted g, of v.\, and equation (26) becomes
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Jain, g(v,.xy) g(-2,.¥,) = - v,.v,. (38)

Expansion of g in Legendre polynomials P, leads to the unique solution
g(v.\) = v3P,(v.A) = v8v.A. There is no zeroth Legendre polynomial, so
this result also satisfies the "first moment" equation (7). But g
exceeds unity in part of (v,\)-space, contrary to (6).

Nonlocality/acausality are not observed in everyday life because we do
not customarily observe individual particles travelling through a
vacuum. Nevertheless the conclusion is firm: they are present. The
novel concept of a nonlocal universe has led some physicists into
mysticism, to their detriment, for physics is about prediction and its
improvement. Shortly we shall exhibit a more fruitful alternative.

2. SIGNALLING?

Can nonlocality be exploited for long distance communication, or
acausality for picking up signals from the future? By comparing the
outputs of the two detectors after testing many particle pairs, we find
that the character of the randomness in spin measurements on a particle
is identical before and after its partner undergoes measurement. No
matter how we choose the detector directions, nature arranges it so
that any sufficiently long sample of output from either detector looks
like any other. Therefore we cannot pick up any information from a set
of particles about what is happening to their distant partners;
signalling using this mechanism is impossible. Mathematically, from
Bayes' theoren,

p(S, measured|S,*,I) = p(S, measured|I) p(S,*|S, measured,I), (39)
p(sztll)

and since, observationally,
p(S,*|S, was measured,I) = p(S,*|I), (40)

the posterior probability that S; was measured equals the prior; no
information has been gained.

Bell's theorem proves that measurement of particles has the definite
effect of altering the results that would otherwise have eventuated for
their distant partners, increasing the correlation beyond what mere
pre-arrangement could achieve. However, because this doesn't alter the
degree of randomness at the second detector, we can only confirm it by
conparing the results from both detectors, over many particle pairs.
Signalling, by contrast, is a stronger form of nonlocality, different
because of the random character of the observations. It is testable
from the output of the second detector alone, and it is disconfirmed.

Some tests have been done using photons. If the influence travels from
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the first detector at the speed of light or slower, it cannot catch up
with the second particle and "prime" it. Does it therefore travel
superluminally? (The two photons do not in fact propagate in exactly
opposite directions, but the problem remains.) Also, because of
relativistic space-time transformations, certain observers moving fast
enough see the measurements take place in reverse order. Which
particle tells which? Since no Lorentz frame is preferred, the
resolution should be symmetrical with respect to the particles,
seemingly implying acausality. The answers must lie with the theory
describing the particles: quantum mechanics.

Finally, if hidden variables (necessarily nonlocal/acausal) are ever
uncovered, tangible signals could be received before they had been
sent, and at speeds faster than light. Doubtless this is why we have
never seen hidden variables; it also hints that we never shall, and
that we are stuck with quantum randomness. Entirely identical systems
do behave differently.

3. QUANTUM MECHANICS

Although we compared the predictions of 1local/causal theories with
experiment, we know that quantum mechanics correctly predicts the
results (see, for example, Clauser and Shimony, 1978). It is therefore
a nonlocal/acausal theory. This feature was not built in explicitly:
indeed it emerges unexpectedly. To ask where inside quantum mechanics
it comes from is simply not fruitful; better to accept it and go on
from there. We recall Einstein's bold re-orientation of the constancy
of light-speed as a starting point rather than something to be
explained; and what it led to. In quantum mechanics too, reorientation
achieves a dramatic breakthrough; but first let us tidy up some loose
ends.

It is remarkable that, nature being nonlocal/acausal, we can make
prediction at all. There is a further, distinct, locality problem:
when working with two fermions (bosons), how can we get away without
using a monstrous Slater (anti)determinant for all the other identical
particles in the universe? The explanation is that the relative phases
of the others are unknown, and marginalizing ("averaging") over them
recovers the usual results.

Second, what is meant by stating that quantum theory accords with
experiment? Quantum mechanics predicts, for example, that

p(S *|¥(1,2)) = % (41)

where ¥ represents the wavefunction. Experiment begins by noting that
there are two alternatives S* and S~. This is the "coin-tossing"
problem, solved by Jaynes (1968): given information I that we know
nothing in advance distinguishing S* from S~, we assign for the
probability of n, measurements of S* and n_=N-n, measurements of S~
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1
p(n,|N,E) = \[ dq F(q) _N! : "+ (1-q)"- (42)
n,!n_!

where the "prior" F(q) =« q '(1-q)~*! and the constant of proportionality
is determined by demanding that (42) be normalised over n,, 0<n,¢N.
Then p(znext|n,,n_,E) 1s easily calculated via Bayes' theorenm.
Experimental results converge to %, in agreement with the theoretical
prediction (41).

This procedure is fully Bayesian, and avoids the "frequentist" view
that repeated results constitute an ensemble of the distribution (41).
Instead, p(S*|theory) and p(S*|experiment) are compared.

Finally, measurement is not a well-defined act in (quantum) reality; it
merely reflects an interaction of some form. Needles on dials are
themselves quantum objects, evaporating when examined closely into a
blur of elementary particles. This Gordian knot is severed by assuming
there is a well-defined answer, to be determined as best we can by
looking at the pointer closely, but not too closely. Quantum mechanics
predicts the result statistically. Since this procedure works,
measurement remains a legitimate concept.

4. THE TRANSACTIONAL INTERPRETATION OF QUANTUM MECHANICS

The predictive formalism of quantum mechanics works as perfectly in the
Bell experiments as everywhere else. But quantum theory still gives
cause for unease. What is needed is a fresh interpretation which takes
our new understanding into account. A nonlocal/acausal interpretation
of the Schrodinger representation has recently been proposed by J. G.
Cramer (1986), the seeds of which go back as far as Tetrode (1922).
What this looks like in the Heisenberg representation, closest to our
classical way of thinking, remains to be seen; but a similar concept,
two-point boundary conditions in time corresponding to the past and
future, has been proposed for the Feynman path integral representation
(Roberts 1978). Cramer's interpretation is by far the most helpful way
of thinking about gquantum phenomena yet found, and it hints at future

revisions of the physics. Certainly it consigns the Copenhagen
interpretation - "don't try to think, the formalism's the thing" - to
history.

Cramer's idea is this: the wavefunction ¥ satisfies the Schrodinger
equation

in a¥ = He (43)

(H is the Hamiltonian) and propagates forward in time (+t). Since H is
Hermitian, the conjugate wavefunction satisfies
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in g¢* = " (44)
a(-t)
and propagates backwards in time (-t). Interactions are viewed as

transactions between transmitter and receiver; the transmitter sends an
offer wave ¥ forward in time to the receiver, which itself sends a
confirm wave backwards in time to the transmitter. Either process is
stimulated 1linearly by the other, and consequently the amplitude
(probability) for the overall interaction is proportional to the
product ?*W. as required. The mysterious quadratic form is explained.
An operator 8 measured at the receiver projects out of the offer wave
one eigenfunction, giving the physical expectation value <¥|Z|¥>. 1In
Einstein's phrase, it is the offer wave which is "there when nobody
looks".

The immediate objection is that acausal signalling could take place via
the advanced wave. That this is untrue is demonstrated by adapting the
Wheeler-Feynman electrodynamic theory of retarded and advanced
potentials. Wheeler and Feynman (1945, 1949) were concerned about the
ad hoc manner in which advanced Lienard-Weichert potentials - which are
perfectly good solutions of Maxwell's equations - are customarily
eliminated "by causality". They reformulated the problem such that a
charged particle emits both retarded and advanced waves in a
time-symmetric combination; the advanced wave it emits is cancelled by
the effects of receiving other advanced waves from the future. The
advantage of this procedure is in replacing the ad hoc elimination of
advanced waves by boundary conditions in the distant past and future.
The disadvantage is that, in order to predict the evolution of a
system, an integral must be taken over the whole future light cone -
details of which are unknown. But if we are concerned exclusively with
interpretation, as we are in (43) and (44), this disadvantage
evaporates leaving only the benefit.

For full details, the reader is referred to Cramer's own exposition.
This includes such points as the parabolic nature of the Schrodinger
equation (43) in contrast with the hyperbolic relativistic equation it
approximates (the factor i in (43) keeps the dynamics reversible), and
reality of the overall wavefunction at transmitter and receiver but not
in between. It also applies the transactional idea to the entire gamut
of quantum paradoxes: measurement, Schrodinger's cat, Wigner's friend
(the infinite regress of nested observers) and others, resolving them
all objectively and realistically. The Bell experiment is included -
since the particles continually exchange waves, there is no longer any
problem about which affects which - but here we illustrate the idea
with a simpler problem: the "delayed choice" paradox.

Suppose we fire a single particle at a pair of Young's slits, and only
decide after it has passed them whether to measure the interference
pattern (due to both slits) or the position of the particle (indicating
which one slit was traversed). How can our choice of what is placed
beyond the slits - photographic emulsion for recording fringes, or
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collimators to detect particles - influence whether the particle
traverses one slit or both, when it has already passed them? This
puzzle has the authentic quantum flavour.

To fill in the details: first, it is known that a single particle can
interfere with itself: second, we can be as certain as we like when the
particle traverses the slits, by measuring its "perpendicular" velocity
to arbitrary accuracy. (The uncertainty principle provides no excuse,
for the experiment can be repeated many times, with the problem growing
ever more acute.) Third, if we choose to measure position, we are not
stating in advance which slit was traversed, only that one was.
Finally, the paradox is a consequence of the non-commutativity of the
two operators - transverse position and momentum - which are
alternatives for measurement.

The transactional resolution is that the source of the particle emits
offer waves forward in time, which pass unhindered through both slits.
Depending on the experiment selected, confirm waves from the future
come back through one slit or both. What is observed is the
"handshake" between the offer and confirm waves, and this incorporates
the chosen measurement while avoiding the paradox. Most other quantum
riddles yield just as easily.

One puzzling nonlocal effect, mentioned here for completeness, has a
further interpretation. Aharonov and Bohm (1959) predicted
quantum-theoretically that the magnetic field inside a region from
which a charged particle is excluded nevertheless influences the
particle's motion. Experiment confirms this (Chambers 1960). The
explanation is due to Peshkin (1981): although the particle is
excluded, its electric field still penetrates the region, and the
crossed electromagnetic fields there have angular momentum.
Quantisation of (total) angular momentum couples this to the motional
angular momentum of the particle. No metaphysical discussion of
whether the magnetic vector potential is "more real" than the magnetic
field is necessary.

Although these ideas are not testable other than at t = &«
- cosmologically - they do suggest where to look for the next
generation of physical theories. Despite the accuracy of some quantum
predictions to 1 part in 107, nature is not in general linear;
linearity is usually only a convenient mathematical approximation, and
a linear theory of excitation could very well turn out to be a weak-¥
approximation. Also, the offer and confirm waves ¥ and v* may prove to
be physically measurable quantities, in defiance of causal signalling
and gauge invariance.

5. CONCLUSION

Bell's theorem is an analysis in Bayesian inference, incorporating
physics only through the assumption of locality/causality. Tested
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against experiment, this assumption fails. The theory which correctly
predicts the experimental outcome, quantum mechanics, is therefore
nonlocal/acausal. A new "transactional" interpretation of quantum
mechanics has been built on this observation, which resolves
traditional quantum paradoxes; the statistical nature of quantum
processes is necessary to preclude acausal signalling. The
transactional interpretation suggests where quantum mechanics should be
probed for possible breakdowns.
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Abstract

The objective Bayesian view is considered in relation to philosophy and
philosophy of science. Carnap’s distinction between logical and
factual probabilities is rejected, as is an anti-Bayesian argument due
to Popper. Reasons for the confusion are advanced. Inductive
philosophy of science is defended, and a tentative methodology
proposed. Four prominent anti-inductivists are analysed: Popper,
Lakatos, Kuhn and Feyerabend. Popper is shown to have been misled by
the problem of improper priors, in hypothesis space; his deductive
doctrine of falsifiability is replaced by the inductive one of
testability. Kuhn’s view that successive theories do not approach any
kind of limit is criticised, and is traced to his rejection of
induction. It is concluded that deductive methodologies of science are
untenable, and that inductive methodology is sound.

1. Introduction

This paper divides into two parts: a survey of how our philosophical colleagues
view probability, and a critique of the prominent deductivist philosophies of
science. Scientists concerned with probability often do not realise that there
has long existed a parallel effort in philosophy. The two are related through
the connection - indeed identity - of probability theory with inductive logic, a
connection denied by one major school of thought. In both parts we shall
encounter a major figure of the 20th century: Karl Popper (1902- ).

2. Philosophers’ views of probability

I shall present this section from the objective Bayesian point of view. I
shall not attempt to defend it here since that has been masterfully done by
others (Jaynes: collected papers [1]). The objective Bayesian view is that the
probability of an occurrence, conditional on information in a given space,
measures how likely one believes that occurrence to be, and that the laws of
probability are laws of inference. This view is objective to the extent that
definite information corresponds to a definite probability. Anybody having the
same information but assigning a different probability is therefore guilty of
reasoning inconsistently. It is anthropomorphic to the extent that different
individuals often possess different information, and therefore (consistently)
assign different probabilities to the same event. That the objective Bayesian
view corresponds to the familiar sum and product rules ("Kolmogorov axioms") was
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demonstrated by R. T. Cox [2]. Alternative schemes may coincide with the
objective Bayesian in particular circumstances, for example the frequentist view
given an infinite number of trials. These alternatives are then quite
acceptable; but only the objective Bayesian view works irrespective of context.
(Have you ever actually seen an infinite number of trials?)

Philosophers do not suffer as badly as some from Frequentist’s Disease.
The reason is historical: philosophers have for centuries been concerned with
that logic to be used when there is insufficient information for certainty,
called inductive logic. They were discussing the problem of induction long
before probability even became quantitative, and longer still before
frequentists hijacked it. Consequently philosophy never completely fell for
this aberration. Of course, the frequentist view did influence philosophers,
and in fact Popper initially advocated it, in Logik der Forschung (translated as
The Logic of Scientific Discovery [3]). He was concerned to oppose non-
objectivity, but failed to distinguish properly between the objective Bayesian
view and the obviously crazy "subjective" one that anyone may assign any
probability to anything. (True; but doing it consistently is another matter.)

Today, thanks to Cox, we know that inductive logic is probability theory,
and vice versa. It is a generalization of the deductive logic of certainty,
Boolean algebra, from values 0 and 1 to the interval in between. This view is
inexorably gaining acceptance among physicists. In philosophy there is a
diversity of positions; one hugely influential stance is due to Rudolf Carnap
(1891-1970). Carnap distinguishes two kinds of probability, which he calls
logical and factual [4].

TESTABLE
INFORMATION DATA
HYPOTHESIS MEASURE "PRIOR" "POSTERIOR"
SPACE PROBABILITY PROBABILITY
3
Symmetry Maximum Bayes’
principles Entropy theorem

Figure 1: Bayesian Probability Assignments

Let us examine Carnap’s claim from an objective Bayesian perspective. The
Bayesian procedure for making inference is set out in Figure 1. We begin at the
level of the hypothesis space, {x}. The first stage is to determine the measure
m(x) on it, using symmetry arguments such as invariance under exchange of two
elements, or transformation group theory [5]. Next, testable information is
incorporated. These are statements like "the mean has value 2.7" which can be
checked, in contrast to data which are the outcome of measurements. (If the
mean is to be estimated, a symbol stands for its value at this point.) The
probability (density) p(x) is determined by maximising the information entropy

- [dx p(x) log (p(x)/m(x)) (1)

subject to the constraints of normalisation and any testable information [1].
If there is none, p(x) « m(x) without further ado and the entropy maximisation
is customarily omitted. Finally, data are brought in to update the "prior"
probability using Bayes’ theorem. Further data can be incorporated at any time,
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and the end result is independent of the order of incorporation. This is in
fact one of the consistency conditions from which Cox derived the laws of
probability in the Bayesian view [2]. The other is that probabilities shall not
depend on what has been marginalized out.

Carnap’s logical probability corresponds to the probability before data are
incorporated, for this is assigned using logical arguments: symmetry and maximum
entropy. But the rationale is not given with anything like the same clarity,
needed to tackle real problems. "Factual" probability corresponds to
probability assignments after data (facts) are incorporated. Thus, although
there is a distinction in the generation of these probabilities, they both have
fully Bayesian interpretations as the only ones which can be consistently
assigned from the information at hand, be it data or testable.

Philosophers often cite examples like

p(John is left-handed | John is a banker and
152 of bankers are left-handed) = 0.15 (2)

as logical assignments of probability. Whatever, this is an unfortunate
example, because the information is given in the "handedness-space" of all
bankers, not the required space of John’s handedness. While Bayesians certainly
emerge with the answer 0.15, the problem contains extra complications.

Philosophers who have criticised Carnap’s position include W. V. O. Quine
(1908- ) and Popper. Indeed, entire books have been written on the Popper-
Carnap controversy [6].

Popper has in addition presented a technical anti-Bayesian argument ([7].
Though erroneous, it is still doing damage today, and a refutation is in order.
The reader is warned that philosophers often use a notation in which the
conditioning information follows after a comma. Thus, what scientists call
p(A|B) is written by Popper as p(A,B) - which unfortunately has the distinct
meaning to scientists "the joint probability of A and B". Here we use
"scientific" notation.

Popper’s argument, paraphrased, runs like this: suppose proposition B
supports proposition A, given information I. This is held to correspond to the
inequality

D(A|BI) > p(A|I). (3)

since p(A|I) = p(AB|I) + p(AB|I), marginalizing over B (from the sum and
product rules), and since p(AB|I) can be decomposed using the product rule,
further inequalities can be derived.

Popper now supposes that the statement "B supports A to the degree z"
corresponds to the Bayesian assigmment

pP(A|BI) = z. (&)

It is then easy to conjure up a contradiction of the type "I am likely to drink
tea. I an unlikely to drink coffee." (Both type (4).) "But, given a choice, I
am more likely to drink coffee than tea." (Type (3).) Popper makes the point
with dice.

Popper concludes that the Bayesian view is inconsistent. But this is
semantic confusion: the concept of support is different in (3) and (4). Suppose
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(3) is taken as the definition of what it means for B to support A; this accords
well with intuition. That done, the word means something else in (4), for no
inequality is at hand.

Let us illuminate this by showing that "supports" in (4) may not coincide
with intuition. Suppose that A, B and I are such that

0.99 = p(A|BI) < p(A|I). (5)

There is no problem in arranging this: let, for example

A = "there will be a traffic jam in central London today",

B = "there are no road works in central London at present", and

I = "it is a working day". Then B is antagonistic to A; but according to
Popper’s qualitative statement of (5), it supports it to a degree of 0.99, i.e.
very strongly. The lesson is that assignment of probability is distinct from
comparisons of probabilities. Only probabilities, not their differences (or
differences of their logarithms) satisfy Cox’s axioms.

In summary, I believe the confusion prevailing over probability in
philosophy is due to two factors. First, the philosopher’s disposition is to
ask "What is probability?", while the scientist seeks solutions to specific
physical problems, asking instead "How can probability help me?" The general is
always illustrated by the specific.

Second, it could be that probability has had its day in philosophy.
Philosophy bore the torch of Western learning and enquiry for centuries; but, as
more became known, specialised areas of knowledge branched off from it. Science
itself is the outstanding example; until relatively recently physics was known
as Natural Philosophy. But with the underpinning of Cox, recognition of the
dominant role of the Principle of Maximum Entropy, and the beginnings (in
quantum statistical mechanics) of an operator-valued theory of probability, the
day of the amateur - in the best sense, for philosophers are often eminent in
several branches of their discipline - may be at an end.

3. Modern philosophy of science

This section critically surveys much 20th century philosophy’s view of
scientific methodology. For the basis of this material I am indebted to my
former colleague at the University of Sydney, David Stove, now retired from its
Department of Traditional and Modern Philosophy. David holds to the relevance
of Carnap’s distinction, but he is a defender of induction, and a formidable
critic of deductivist philosophy of science.

Philosophy of science is best described as that which scientific endeavours
have in common, but which non-scientific studies do not necessarily share. We
should not suppose, though, that there is anything magic about science: it is
simply a sustained application of common sense. And since common sense is
consistent reasoning (in an appropriately chosen space), we find ourselves
staring straight at Bayesian inductive probability.

Bayes notwithstanding, modern philosophy of science has grown into a major
pathology associated with the names Popper, Lakatos, Kuhn and Feyerabend.
Describing it is my aim here, and as a preliminary arming I present a tentative
flowchart of how science is done.
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Figure 2: A Broad Methodology For Science

In its basic form, the model is given in Figure 2. There is no endpoint,
and so no "final answer". Instead, one continually refines theory and practice.
The vexed debate over realism is circumvented by defining scientific truth as
the asymptote towards which this process (in practice) converges. Laws of
Nature are unknown and never change (assuming, reasonably, that they exist), but
our approximations to them improve as we learn more.

Since the loops always contain at least one inductive step, the whole
process is inductive. This is no more than it should be: one can be almost
certain that the Sun will continue to rise in the east, based on past
observations (and the celestial mechanics constructed to explain them), but
certainty is absent.

The model can be fleshed out to varying degrees, and that which I have
found most illustrative in physical science is displayed in Figure 3. It is
here that philosophy can help scientists, although they generally pursue such a
strategy implicitly.

A new intuitive leap can throw up a theory at any time. The resulting
flowchart is welded to the old by applying the process to the union of the two
theories. Unifying demonstrates directly that science is not dogmatically
reductionistic: reductionism is simply a convenient way of implementing the
strategy of Figure 3. The intuitive leap corresponds to a widening of the
region of hypothesis space under consideration, a process for which there is as
yet no theory, even in model problems. Meanwhile, the hotchpotch of guess,
conjecture and imagination called intuition is precisely what distinguishes
great scientists from the rest.

The inductive view of science goes at least as far back as the 12th century
scholar Roger Bacon, and thence forward to Elizabeth I’s courtier Francis Bacon.
(Of course, William of Ockham’s famous razor principle "Essentia non sunt
multiplicanda praeter necessitatem" - entities should not be multiplied beyond
necessity - is essentially Bayesian.) The distinguished British empirical
philosopher David Hume (1711-1776) argued against induction, and Stove traces
today’s movement to this source [8].
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Figure 3: A Detailed Methodology For Physical Science

never meet face-to-face,
auxiliary assumptions are involved in reaching the interface [9].
On the inductive picture, extra assumptions are

called the Quine-Duhem thesis.
readily incorporated by setting up the prior distribution for their parameters,
calculating the joint posterior distribution of these and the desired quantities
from the data by using Bayes’ theorem, and then marginalizing over the extra
parameters to take them out.

More recently, Pierre Duhem (1861-1916) argued that theory and experiment
because in real science a prohibitive number of

Today this is
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Karl Popper opened the modern era with Logik der Forschung in 1934. It is
far more about philosophy of science than probability theory. Curiously though,
Popper is regarded more by his profession, at least outside England, as a
celebrity than a philosopher’s philosopher. Summarising him is not easy: as
with most cults, many meanings can be read into it. This is due to such
contradictions as his acceptance of probability but rejection of induction;
David Stove, in the first part of Popper And After: Four Modern Irrationalists
[8) exposes the devices by which Popper (among others) lays his smokescreen.

Popper’s primary tenets can nevertheless be discerned. One is that all
observations are ‘"theory-laden". In Popper's own words, "sense-data,
untheoretical items of observation, simply do not exist" [10]. It is difficult
for Bayesians to express the depth of their disagreement with this. Data are
data, be they a distraction (noise) or tracks in bubble chambers photographed at
enormous ingenuity and cost. Whatever, they are incorporated into theory using
Bayes’ theorem. Of course, theories suggest which data to seek, but that is not
at all the same thing; once found, data can be used to update the probability of
any hypothesis whatsoever.

Popper also insists that science is deductive rather than inductive.
Partly this is a terminological disparity, referring not to the overall process
but to a single stage: deduction of the consequences of a hypothesis prior to

testing.  (Popper’s scheme is often described as hypothetico-deductive.) But
Popper does reject induction; we have seen already his rejection of the
inductive view of probability in favour of other interpretations. Indeed,

Popper has asserted that no theory ever becomes more probable when evidence in
its favour is discovered, and that every scientific theory not only begins by
being infinitely improbable, but always remains so [11].

The first of these statements directly denies Bayes’ theorem. Underlying
the second is the idea, seldom recognised, of the space in which probabilities
are defined. This contains an infinity of competing theories, and before
looking at their distinctive features we must assign each equal prior
probability 1/co, or =zero. It seems that Popper is correct. But Bayesians
recognise this as the problem of non-normalisable or improper priors, in
hypothesis space. The resolution is the same: though the prior is non-
normalisable, Bayes’ theorem gives for the posterior ratio a well-defined limit
of 0/0 which may perfectly well be normalisable [5]. Bayesians can open The
Logic of Scientific Discovery, and the first volume of its massive Postscript
(12], expounding Popper’s post-frequentist "propensity" view of probability
(much closer to Bayesian, though never made plain), almost at random and
illuminate the problems exposed.

The idea by which Popper is best known, and one of which most students are
aware, is the doctrine of falsifiability. A hypothesis is only scientific if it
is capable of being proved false by observation. This is an important idea, but
it is baldly deductivist in restricting the concept to falsity but not truth;
for in deductive logic a single counter-example can falsify a theory but no
number of examples can prove it. In real science though, theories are not
proved false (or true) with certainty. Instead, data are incorporated via
Bayes’ theorem into the posterior probability, which may approach zero or one.
As it gets sufficiently close (a matter of taste), the theory is rejected or
adopted. So the criterion is not falsifiability, but testability: that one can
conceive of data which alter the probability of the hypothesis. Equivalently,
the hypothesis must not be equally disposed to every datum. Stove traces
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Popper’s dictum of falsifiability to his early distaste, in Vienna, with
dogmatic claims that ideas such as Marx’s and Freud’s were "irrefutable"
[11,13]. The word game began here, though Marx at least understood the stakes
long before. He wrote to Engels in 1857, concerning a historical event: "One
can always get out of [making an ass of oneself] with a little dialectic. I
have, of course, so worded my proposition as to be right either way" [14].

Popper does refer to testability although, deprived of inductive logic, he
fails to nail down the idea. (Any statement pertaining to a theory, but which
is not testable, is part of that theory’s interpretation.) He also refers to
degrees of falsifiability, and attempts to relate them to probability. This
again is word-play: the ease with which a hypothesis is tested is a matter for
technologists, not theoreticians.

It was the successor to Popper’s London Chair, Imre Lakatos (1922-1974),
who pointed out afresh that in real science, theories are never disproved (or
proved) with certainty. Lakatos clearly reached this conclusion through
contrasting the natural sciences with mathematics, in whose history he had
worked [15]. But, following Popper in renouncing induction, Lakatos was left
with no framework to hang his observation on. His own attempt to build one, a
doctrine of research programmes [16], confuses philosophy with history of
science.

Like many ideas given birth in eastern Europe, deductivism has become
popular in America. Let us therefore examine the work of Thomas Kuhn (1922-

), another avowed anti-inductivist and the author of the hugely influential
work The Structure of Scientific Revolutions [17]. Like Lakatos, Kuhn is a
first-rate historian of science, who has written on the Copernican revolution in
astronomy, and the black-body controversy which gave birth to the earliest
quantum hypothesis. The Structure of Scientific Revolutions presents a cyclic
view of how science evolves, beginning with a mass of unordered observations and
competing theories, going into a quiescent stage after the triumph of one theory
over the rest, followed by gradual breakdown into chaos again under the
accunulation of anomalies from more stringent testing. Kuhn has bequeathed us
one of today’s fashionable words, paradigm, to describe the model prevailing
during the quiescent stage.

The history of science abounds with examples of this process; trouble again
arises when it is combined with anti-inductivism as a philosophy. Close to the
end of The Structure of Scientific Revolutions, Kuhn clearly echoes Popper’s
assertion that every theory is infinitely improbable, when he says that ‘"we
117- N have to relinquish the notion that changes of paradigm carry
scientists....closer and closer to the truth" [18]. In other words, Kuhn
believes that theories come and go as arbitrarily as fashions in clothing. For
anti-inductivists, the closer fit to observation of relativistic mechanics than
Newton’s counts for nothing. This singular ideology is deflated by applying it
to progressively simpler problems: it can hardly be no more true that the Moon
is made of rock than green cheese.

There is no doubting, though, that Popper, Lakatos and Kuhn all appear
respectful to science. Consider finally the ideas of Paul Feyerabend (1924~

) [19,20]. Feyerabend describes his approach as ‘"epistemological
anarchism", and his slogan is "Anything Goes". Again, this derives clearly from
the idea that all theories are equally invalid, though it is also an accurate
distillation of the subjective Bayesian stance. And Popper’s oldest criticism
holds of it: it is not falsifiable!
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Feyerabend is on record as stating that normal science is a fairytale, and
that equal time should be given to "astrology, acupuncture and witchcraft" [21]
(though I do not know what unctions he seeks when ill). He is fond of
categorising science with "religion, prostitution and so on" [19]. Feyerabend
believes that science is just one of many internally consistent views of the
world, and that the consequent choice between them should be made on social
grounds. But while many systems are internally consistent, only one plugs
consistently into the world of observations, and to reason systematically about
that world we must use it: science. Ethical and social considerations may
dictate which areas to study, but that is a different matter. Feyerabend’s
ideas have been brought forth by "the sleep of reason", and while they could
probably only flourish in a society disillusioned with science (through its
perceived misuse), they represent the logical culmination of the rejection of
induction. For that is what Popper, Lakatos, Kuhn and Feyerabend have in
common; and despite much mutual repudiation, it far outweighs their differences.
The ideas of these four comprise a major stream in contemporary philosophy of
science.

It is an odd fact that scientists often quote these philosophers favourably
[22]. Science magazine recently lauded Feyerabend’s views as "a breath of fresh
air" [21]. The explanation is undoubtedly a benign ignorance. Being prepared
to revise hypotheses in the light of fresh information (an attitude politicians
might heed) makes scientists easy prey. What, by contrast, could alter
Feyerabend’s opinion?

4. Conclusion

The objective Bayesian view is as capable of resolving problems concerning
inductive logic in philosophy as it is in science. Difficulties are not
conceptual, but merely technical: the huge spaces used in real problems, and the
determination of prior probabilities in a wide variety of contexts ([1]. In
particular, the Bayesian view, applied to scientific methodology, produces a
coherent, inductive philosophy of science. Non-inductive philosophies of
science invariably lead to absurdities.
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ABSTRACT. The maximum entropy formalism is used to obtain the distribution of amplitudes of a
single quantum state. Such a distribution is required to account for the observed irregular but reproducible
spectra at high levels of excitation. The computed distribution agrees well with experimentally determined
histograms. The reasons for possible deviations are noted. Special attention is given to the conceptual
foundations of the approach and analogies are drawn with classical statistical mechanics. A distinction
between the objective and subjective elements in quantum mechanics is made . In particular it is proposed
that the amplitudes are objective while their distribution reflects a state of knowledge.

1. Introduction

The technical problem which we address is the nature of the spectrum of highly excited
states of systems with few degrees of freedom (e.g., molecules or nuclei). Such a
spectrum is typically quite dense with many transitions whose intensities vary in a
seemingly erratic manner as we scan the frequency. Often, the density of transitions is
comparable to the density of states which implies the near absence of selection roles (which
are typical of low excitation spectra). Traditional methods of spectroscopy, which seek to
assign each and every transition are thus of limited use.

The problem is not one of data analysis. I shall assume that the spectrum has been
measured with low signal to noise. Hence I shall take the reported experimental results as
the true, inherent, spectrum of the system. The 'statistics' are therefore not due to external
noise. Rather, they are considered as a signature of the 'irregular’ character [1] of highly
excited states of the isolated system. Such deterministic yet chaotic dynamics is well
understood for classical systems [2]. The point is that, strictly speaking, a quantal
Hamiltonian with a purely discrete spectrum cannot give rise to chaotic dynamics. This can
be argued in general [3,4] since with a purely discrete spectrum, any initial pure state can
be expanded as a sum over eigenstates. Hence the time evolution is given by a discrete
number of oscillating exponentials so that it is quasiperiodic. It can also be proved in detail
by establishing the convergence of perturbation expansions [5] for a purely discrete
spectrum. In classical mechanics, where the energy spectrum is continuous, these
arguments fail. One can therefore conclude that there is no chaos in discrete quantal
systems. Yet both experimental and computational results very clearly demonstrate that
also in quantum mechanics it is useful to consider both the 'statistical' limit[6] and the
behavior enroute to this limit.
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1.1 The Distribution of Amplitudes

In addition to the technical problem we thus have a problem of interpretation. The wave
functions of even the highly excited states can be numerically determined. Using enough
care and computer time such converged computations have indeed been carried out. How
then can we apply statistical considerations to the result? The problem is quite reminiscent
of the basic issue in classical statistical mechanics. At a given instant in time, each
molecule in a (dilute) gas has a well defined position and momentum. These will evolve
according to the (Hamilton) equation of motion. Even for a chaotic system, given precise
initial conditions, the future evolution is uniquely specified. Statistics only comes in when
we ask for the distribution of velocities of all molecules at a given instant. In otherwords,
when we ask for the distribution of velocities irrespective of position.

In constructing the distribution of amplitudes we shall use a similar approach. We
shall ask for the distribution of amplitudes irrespective of, say, the corresponding energy.
This can be understood in two ways. The first is that we pick a particular 'reference
vector' in Hilbert space, say li> and consider the distribution of the amplitudes <fli> as we
go over all the vectors If> of interest. (As appropriate for a workshop at St John's College,
we use the Dirac braket notation). Alternatively, we can specify a complete reference basis
set of vectors {In>} and examine the distribution of amplitudes <nlf> for a particular state
If> of interest.

In terms of the analogy with classical statistical mechanics, what we are doing is
equivalent to our understanding of the Boltzmann velocity distribution circa 1890. Indeed,
our invariance argument below (namely that in the limit, the distribution of the amplitudes
<nlf> must be independent of the choice of the particular 'coordinate set' {In>}), is
fashioned precisely by analogy with Maxwell's derivation of the Boltzmann distribution.
(Recall that he required the velocity distribution to be invariant to the choice of the
coordinate system used to define the components of the velocity vector. See e.g., [7])

There is one further amusing analogy with the example of the Boltzmann velocity
distribution. When Otto Stern set out an experiment to verify the predicted distribution, the
initial agreement was not perfect. The fit was much improved after Einstein pointed out
that the experimental distribution must incorporate an additional Jacobian [8] (which is due
to the faster molecules being preferentially sampled in the effusion). Here too, we shall
find that the distribution that can be observed is not the one that we can most readily predict
and differs from it by a Jacobian.

1.2 Quantum Chaos?

There is also a second sense in which the consideration of the distribution of quantal
amplitudes is analogous to classical statistical mechanics. The time evolution of a trajectory
in classical phase space which originates from sharply specified initial conditions can be
traced back precisely. This is not the case when the initial conditions specify only a region
and the dynamics are chaotic. Two trajectories which originate quite near to one another
will, in time, exponentially diverge. This 'spreading out' or 'mixing' of an initially
localized region in phase space is an important ingredient in modern ergodic theory[9]. It
would be of interest to pursue a similar point of view with regards to the distribution of
amplitudes. There have been preliminary attempts [10] to use such an approach, but much
more work remains to be done.

1.3 Objective vs. Subjective in Quantum Mechanics

Beyond the purely technical problem, our considerations have a bearing on the issue of
what is 'objective’, (i.e., representing the real world), and what is 'subjective’ (i.e.,
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representing our knowledge of the real world) in quantum mechanics[11]. Our approach is
that the amplitudes are objective. What is subjective is the distribution over the amplitudes.
A fully specified pure state corresponds to a unique set of amplitudes and as such is
analogous to a point in classical phase space. Typically, however, we can only specify a
region in phase space (or a distribution therein) and we take the same to be true for the
amplitudes which we regard as the 'coordinates' of the system in a Hilbert space.
Elsewhere, [12], we have discussed the 'collapse’ of the wavefunction upon measurement
from the present point of view.

2. The statistical Wavefunction

To specify the wavefunction If> of the final state accessed in the spectral transition we
expand it in a fixed orthonormal basis set {In>} in an N dimensional (Hilbert) space

N
if> = 2 X 0> M

n=1

The expansion coefficients xf, are known as amplitudes since it is their squares which are
probabilities. For our purpose it is convenient to think of them as the coordinates of the
state If> where xp is the projection of If> along the n'th axis <nlf> = xg,. Strictly speaking
the amplitudes can be complex numbers but for the moment we shall take them to be real.
Hence, since the state If> is normalised,

N
1=<fit>= Y xf Q)
n=1

the amplitudes (for a given f) can therefore be regarded as the direction cosines of a unit
vector in an N dimensional vector space. Different states If> are orthogonal,

N
Spp=<fIf'>= Y xgmXfy 3)

n=1

which brings in correlations between the amplitudes belonging to different states.

In the chaotic limit we expect the state If> to have components along many
directions. They cannot all be equal to one another (and to 1/YN) since different states need
be orthogonal. We can, however, ask for their distribution, i.e. for the number of
components Pg (x) dx which have a magnitude between x and x + dx, for the given state f.
Of course, the question is operationally reasonable only if the number, N, of possible
components is large.

Note that the distribution is introduced in terms of the amplitudes rather than as the
distribution of the probabilities. The reason is that one expects the distribution, in the
chaotic limit, to be independent of any particular basis {In>}. Since it is the amplitudes
which are the 'direction cosines' and hence it is the vector x of amplitudes which will be
linearly transformed upon rotation, (i.e., upon change of basis)

x;=Uxyg, xg=<n'lf>, Un,ns<n In>, €))

to a different basis {I n'>}, it is the distribution of amplitudes which is of primary concern.
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As discussed in the introduction, the reasoning is quite analogous to the statistical
mechanics of a classical ideal monoatomic gas. Any mechanical state of the gas
corresponds to a particular point in the 6N dimensional phase space of the N atoms. When
however we ask for, say, the distribution of velocities irrespective of which atom, we get
sensible results. Indeed, the invariance under rotation of axis is precisely the argument
used by Maxwell [7] to derive the Boltzman distribution.

The distribution we are concerned with here is therefore of our own making and
hence reflects our own state of knowledge. Any particular state If> has definite values for
the amplitudes along any particular direction In>. The probability density Pg(x) is
introduced by our asking for the distribution of the values of the amplitudes irrespective of
the direction.

2.1. Maximum Entropy

In the limit of large N we can write the condition that the state If> is normalised, equation
(2), as

N 00
=Y x= [ xPPp) dx = <x2> 5)

n=1 -

In (5), summation over all basis vectors n is replaced by an integration over all values of
the amplitude, with Pg (x)dx as the fraction of amplitudes with values in the range x to x +
dx. Hence Ps (x) itself need to be normalised

["Pexyax=1 ©)

If (5) and (6) are the only two constraints on Pf (x), we obtain as the distribution of
maximum entropy [13]

P (x) = @n <x %) exp(x2/2 <x2>) )
We have dropped the subscript f since the density is universal. Note also that the Gaussian
distribution (7) inherently satisfies the constraint that positive and negative values of x are
equally probable, <x>=0.

2.2 The Distribution of Probabilities

The corresponding density of probabilities y = x2 can now be obtained by the usual rule for
change of variable in a probability density

P(y)= (21t <y>)‘1f2 y' V2 exp (-y /2 <y>) ®)

The factor y-1/2 comes from the Jacobian dx/dy and implies that low values of the
probability y = x2 are strongly favored.
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2.3 The Prior Distribution of Probabilities

The probability distribution (8) can be derived directly as the distribution of maximal
entropy provided one uses a measure (or a prior probability) for the distribution of y

2

Pl (y) oy ©)

One can indeed bring forth very general arguments why y-1/2 is the proper prior
distribution for probabilities [14]. Independent arguments leading to the same result have
been presented at this meeting by Skilling. In the present context we prefer, however, the
argument which uses a prior uniform density for the amplitudes because the physics is
more obvious.

2.4 Complex Amplitudes

So far we have taken the amplitudes to be real. If they are complex, the required changes
are quite straight-forward. Since the normalization is a constraint on <l x 2>, the real and
imaginary parts of x are independently distributed with a Gaussian density of width
<l x 12>. The essential change is that y = | x I2 now has an exponential distribution

P (y) = (<y>)lexp (-y/<y>) (10)
Numerical studies (e.g., [15] for an early example) show that, in the statistical limit, the

Gaussian density is accurate provided that one considers the amplitudes with respect to
basis states of comparable energy. Many more details can be found in [16].

3. The Optical Spectrum

An ideal 'stick’ spectrum is given by

SE =D, y8E-Ep (11)
f

where yr is the intensity of the transition to the final state If> of energy Ef,
ye=IxgR=1<iIDIf> 2 (12)

D is the transition operator and li> is the initial state. What we are concerned with is the
distribution P(y) of intensities irrespective of the energy of the final state. In otherwords,
here too we generate a distribution by collapsing the energy resolved spectrum onto the
intensity axis and examining the fraction, P(y) dy, of transitions with intensities in the
range y to 'y + dy.

The intensities yy satisfy a sum rule:

Y ye= Y Ix*=<iID'DIi> (13)
f f

which can be regarded as the analog of the normalization condition (2) for the state d | i>.
Hence the distribution of spectral intensities in the chaotic limit is given by (8), (or by (10),
if the amplitudes are complex).
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3.1 Additional Constraints

The simple derivation above does lead to a distribution which sometimes but not always
agrees with experimental results. To examine one (out of several) reasons for deviations
we note that for spectra which access very highly excited states, each final state If> in (12)
can be expanded as in (1), hence

x¢=<fIDIi>=Y xp<n IDli>=xc.d"  (14)
n

where d is a fixed (for all final states f) vector whose components are the amplitudes
<i|DIn>. In otherwords, the set of amplitudes {x¢}, f variable, is obtained by a rotation
of the set {dp}. In the strict chaotic limit such rotations will have no effect on the
distribution of amplitudes. If, however, it is possible to introduce a privileged basis set
such that at the energy range of interest, the amplitudes <n | D | i> have a systematic
structure then this will be reflected in the distribution of intensities. This diagnostic tool
has served us well in a number of concrete examples (e.g. [17]).
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Abstract. By relying on the principle of indifference in a form suited to quantum
mechanics, we prove that the density operator which should be assigned to a quan-
tum system when only partial information is available has a generalized canonical
form. This result provides an indirect justification of the quantal maximum en-
tropy criterion, based on the use of von Neumann’s entropy with constraints on
the known expectation values.

We present below the main ideas of a work already published in a detailed form.
We include some relevant references [1-5], in which a more complete bibliography
can be found.

Our aim is to select the least biased density operator D in case the only available
information is the set of expectation values a; = (A;) of some observables A;.
The state D of the system is supposed to be generated by some reproducible
statistical device. In equilibrium statistical mechanics, the observables A; are
the constants of the motion; for irreversible processes, they are macroscopic non-
commuting quantities, taken either at the initial time or at arbitrary times [3]; we
also have in mind small quantum systems, prepared in a systematic fashion, then
tested by measuring some observables A; [5]. We assume that the data a; have
been observed on some samples of the statistical ensemble described by D; these
samples must differ from one another if the observables A4; do not commute. We
are interested in D before measurement, so as to disregard the resulting quantum
perturbation and to make predictions about untested samples.

The available data
TrDA; = a; (1)

are not sufficient in general for determining D. The maztmum entropy criterion
advocated long ago by Jaynes may achieve such a determination, through the
maximization of
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S(D) = —TrDInD (2

subject to the contraints (1). As in equilibrium statistical mechanics, this yields
the generalized canonical distribution

D= —;—eXp (" Z:ﬂ;Ai) ’ (3)

where the Lagrange multipliers §; are related to the data a; by

Z = Tr exp (- ZﬂiAi) , olnZ/dB; = —a;. (4)

The maximum of (2) defines the relevant entropy relative to the data a;, a quantity
useful in irreversible statistical mechanics [3] as well as in measurement theory [5].

In spite of its many successes, this procedure has been criticized, even by Jaynes
himself. Within the context of information theory, it is natural to require that the
uncertainty due to the statistical description of a state by a density operator D
should be measured by a quantity S(D) which is additive and invariant in a change
of basis; these conditions justify von Neumann’s form (2) for S(D). Moreover,
when the observables A; are constants of the motion, (2) can be identified with
the thermodynamic entropy. But the identification of the information content
(2) as a measure of bias in the choice of D is questionable : why should we
require additivity for a measure of bias? A direct justification of (3),(4) from (1),
by-passing the maximum entropy criterion, is therefore desirable. This has been
achieved in various ways in ordinary statistics [1]. Quantum mechanics brings in
difficulties, due to the non-commutation of the observables A; and to the operator
nature of quantum states D, which we have solved as follows [2].

Hypotheses. We shall rely only on the principle of indifference (or of insufficient
reason) introduced by Laplace : equal ignorance implies equal likelthood. In order
to apply this priciple, it is necessary to define the possible elementary equivalent
events which will be considered equally probable. Their choice, which may be a
source of difficulties [4], is always (though sometimes implicitly) based on some
invariance, for instance under permutations for discrete events. In quantum me-
chanics, the required equivalence between events is d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>