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Some Formulas for Use with Bayesian Ability Estimates

Abstract

Relationships between Bayesian ability estimates and the parameters

of a normal population distribution arederived in thecontextof classical test

theory. Analogues are provided for use as approximations in work with

itemresponse theory. The following questions addressed:

• What is therelationship between thedistribution of the latentability

variable in a population, and the distribution of ability estimates?

• Because calculating Bayesian estimates typically requires knowing

the population distribution, how should one proceed if it is not

known?

• WhatifBayesian ability estimates havebeencalculated in

accordance with a common population distribution, but it is later

desiredto estimate thedistributions of specified subpopulations?
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Introduction

From the timeof Truman Kelley (1923), Bayesian ability estimates haveoftenbeen

used in educational testing. Reasons for doingso rangefrom Novick's theoretical

arguments for Bayesian inference in general (e.g., Novick and Jackson, 1974) to a more

practical desire to obtain finite ability estimates for all examinees in thecontext of item

response theory(IRT). This paperprovides someformulas for practical workwith

Bayesian abilityestimates, focusing on the following questions:

1. Whatis therelationship between thedistribution of thelatent ability variable in a

population and thedistribution of Bayesian ability estimates?

2. Because calculating Bayesian estimates typically requires knowing thepopulation

distribution, how should one proceed if it is not known?

3. What ifBayesian ability estimates havebeencalculated using a common population

distribution, but it is laterdesired to estimate thedistributions of specified

subpopulations?

Exactrelationships arederived to address thesequestions in thecontext of classical

test theory, assuming normally distributed abilities anderrors. Analogues are offered as

computing approximations in a not-uncommon IRTcontext: A researcher has software to

calculate Bayesian IRTestimates for individuals under the assumption of a normal

population distribution, butpossesses neither values of thepopulation parameters nor

software with which to estimate them.

Classical Test Theory

Background and Notation

The symbol e denotes a real-valued latent proficiency variable, assumed to follow

a normal distribution in a population of examinees; that is,

el,u,u2.... N(,u,u2) . (1)

Underclassicaltest theory (CIT) one observes thevalueof themanifest variable x , which

is the sumof the latentvariable and an independent, real-valued erroror disturbance terme:



x=8+e.

If nonnalityis assumed for the errorterms,
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(2)

e r- N(O,O;).

Equivalently, the conditional distribution ofx given 8 can be written as

Together, Equations 1 through 3 imply that

Whenan individual's x is observed, Equation 4 is interpreted as a likelihood

function for the unobserved 8, denoted l(BIx). Under the assumptions outlined

previously,

l«(JJx) = N(x,o;) ,

a normal distribution with meanx andvariance 0;. The maximum likelihood estimate

(MLE) of an examinee's8, denoted {}, is therefore simply x in this context, and the

estimation errorvariance is 0;.

(3)

(4)

(5)

(6)

N(/1,cfl) is the priordistribution for an examinee's 8 valueunderCI'T. It

represents what is known about 8 before a test scoreis observed, Suppose Jl, o', and 0;

are known. The posterior distribution for an individual's 8 afterobserving x is obtained by

Bayes theorem as p(91x./1, o", 0;) ee l(8!x) p(61jJ, cfl). Ifnormality is assumed for e and

8. then the posterior is also normal;

with (posterior) variance

(/ =(a-Z + a;Z)-l

=(1-p}cfl.

where p is thereliability coefficient, defined by

(7)
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and with (posterior) mean

"8=px +(I-p)#

cf 0;
=cf + 0;x + cf +o;/l.

(8)

(9)

(see Box and Taio, 1973. pp. 74-75, for a proof). Equations 7 and 9 are familiar as

Kelley's (1923) formulas, "8 is the Bayesmean, or expectation a posteriori (EAP),

estimateof f) for an examinee with observed response x. Because the posterior is normal,

"8 is also the Bayes modal estimate for (). or the modeof its posterior.

Question 1: What is the relationship between the distribution of the latent

ability variable in a population, and the distribution of ability

estimates?

Because thebottom linein test theory is usually inference aboutindividual

examinees, attention has focused on obtaining scores for individuals that are optimal in one

senseor another. MLEsare consistent and bestasymptotically normal estimates of

individuals' Os; Bayesian estimates minimize the average squared difference between

estimates and truevalues. A fundamental paradox of testtheoryis that the distribution of

these "good' estimates ofindividuals' & is I1QJ. a goodestimate ofthe 8 distribution (Lord.

1969; Mislevy, Beaton. Kaplan. and Sheehan. 1992). In the CIT settingdescribed above,

both MLEsand Bayesian estimates follow normal distributions. Theirmeans are equalto

the meanof () in thepopulation. but theirvariances are notequalto the variance of f) :

ForMLEs.

but

For Bayesian estimates,

E(0) =E(x) =/l,

Var(8) =Var(x)=cf +a;.

(10)

(11)
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E(8) = E[px +(1- p),u]

=pE(x) +(l-p)E(,u)

=p,u +(I-p),u

but

=,u.

Var(8)=Var[px +(I-p),u]

=pzVar(x)

=pZ(<f+o;)

=p<f.

(12)

(13)

Thedecomposition of variance implied byEquations 7 and 13 should be noted: thevariance

of 8 can be expressed as thesumof theposterior variance (which is the samefor all

examinees under CIT) andthevariance of theBayes mean estimates:

Var(8) = E[Var(8Ix)]+Var[E(8Ix)]

=Var(81x) +Var(8)

= (l-p)<f +p<f

= <f. (14)

FromEquation 11. the variance of MLEs is anoverestimate of thevariance of 8.

FromEquation 13, the variance of Bayesian estimates is an underestimate. In bothcases.

estimating <f from thevariance of a largesample of individual estimates requires

adjustments. With MLEs. theadjustment implied byEquation 11is

(15)

ifan estimate of 0; is available, or, equivalently.

if an estimate of p is used. WithBayes mean estimates. Equation 13 implies

<f ... Var(8)/p,

(16)

(17)
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Question 2: Because calculating Bayesian estimates typically requires

knowing the population distribution, how should one proceed

if it is not known?

Bayesianestimates underthe normal-distribution err case requirethe structural

parameters u; a", and 0;. If theseare not known,theycan be approximated in familiar

ways:Equation 10 for an estimateof J.l, an internalconsistency estimatefor p, then

Equation 16 followed by Equation 8 for estimates of a" and 0;. This sectionderivesan

alternative approach that lends itselfbetterto an IRT analogue. The basic ideais first to

constructBayesianestimatesfor Os by usingprovisional values for J.l and a", and then to

employthe mean and variance of theresulting estimates to obtain improved valuesforu

and a". These valuescan be used in tum to construct improvedestimates for individual

examinees.

The provisionalvalues foru and a" may be denoted by J.l* and (1 *2. Assuming

0; to be known, one defines the following quantities:

and

"8*=p*x +(I-p*)J.l*.

The expectedmeanand variance of "8* in the population of examinees, denoted

subsequently as M and Sl, are derivedas follows:

M5E("8*)

=E[p*x +(l-P*)J.l*]

=p *E(x) + (1- p*}J.l *

=p *Jl + (1-P*}Jl *

and

(18)
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SZ == Var(8*)

=Var[p*x +(I-p*),u*]

=p*zVar(x)

=p *Z (a; + cr).

Given (estimates of) M andSl, one can thensolvefor,u ander in terms of known

quantities:

,u =[M -(I-p*),u *]/p*

and

Theserelationships require theexistence of themoments thatare involved, butnot

normality.

(19)

(20)

(21)

Question 3: What if Bayesian ability estimates have been calculated in

accordance with a common population distribution, but it is

later desired to estimate the distributions of specified

subpopulations?

Bayesian ability estimation cancombine examinees' observed scores with

information fromothersources, suchas a subpopulation membership. Suppose, for

example, that thedistributions of girlsand boys are N(,ug, 0:) and N(,ub' a:)
respectively-s-normal, witha common within-group variance. If,ug > ,ub , then the Bayes

estimate for a girl with a given observed score willbe higher thanthatof a boywith the

samescore. This mightbe the wayto bet,but it is not the way to run a faircontest, suchas

awarding benefits to individuals. If Bayesian estimates are to beusedat all in sucha

situation, theyshould be calculated with the same priordistribution forall examinees, so as

to preserve rankorderings. But if individual Bayesian estimates based on a common prior

are calculated for suchpurposes, it follows from thepreceding section that theywillyield

biased estimates of subpopulation characteristics when analyzed as if theyweretrue Os.

Specifically, theoverall population meanandvariance play theroleof,u* and u*z in the

preceeding section; the actual mean andvariance of a subpopulation of interest correspond

to,u and cr; and the resulting biased estimates correspond to M andSl.
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As an illustration, therunning example of girls andboysis continued. It is

assumed thatbothsubpopulations areof equal size, and that !J. denotes the mean difference

J,l, - J,lb' Theoverall population mean andvariance are

and

Although thepopulation is actually themixture of twonormals ratherthannormal itself,

Equations 7 through 9 might be employed to approximate theposterior mean andvariance

for eachindividual boy andgirl. Themean of these Bayes mean estimates for girlsis

obtained viaEquation 18 as a weighted average of thecorrect value, J,lg, andtheoverall

mean, u:

Mg =E(8*1girl)=PJ,l, +(1- P)J,l.
(22)

Equation 22shows that thedegree of biasdepends on p. An improved estimate of the true

girls' mean canbe based on Equation 20:

Ilg =[M, -(I-p)J,l]/p.

Item Response Theory

Theessential ideasof IRTare thattheprobabilities of multiple responses from an

examinee aredriven by an unobservable proficiency variable 8,and thatresponses are

independent given 8. The2-parameter logistic IRTmodel for binary (correct/incorrect) test

items, for example, gives theprobability of a correct response to Itemj as the following

function of 8:

(23)

where qsdenotes the logistic distribution function, qs(z) = [1 +exp(z)t;a valueof 1 forXj

means "correct" and0 means "incorrect;" andaj andbj areparameters of Itemj, indicatlng

its sensitivity anddifficulty. It is assumed in this presentation thatitemparameters are

known. In practice, of course, theymustbe estimated. The interested readeris referred to

Tsutakawa andJohnson (1990) forone technique for taking uncertainty about item
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parameters into account whenestimating 8. If theitemparameters areestimated accurately,

however, this source of uncertainty can be ignored.

Underthe usual IRTassumption of conditional, or local, independence, the

probability of a vector of responses x = (Xl" ..,XII) to n items is a product of terms over

items:

II

P(xI8)= ITPj(8Y'1 Qj(8)1-XI ,

j=l

Ability Estimates for Individual Examinees

(24)

Afterx hasbeen observed, Equation 24 is interpreted as a likelihood function

l(8!x), and serves as a basis for estimating 8. The maximizing value, again denoted fJ, is

the MLE. For samples of x withfixed 8 and largen, fJ is approximately normally

distributed:

(25)

where theestimation errorvariance is approximatedby thereciprocal of the information

function, 19:

(26)

"with Pj (8) denoting thesecond derivative of Pj ( 8) withrespectto 8. It shouldbe noted

thatin contrast to theCIT setting, thesampling variance of theMLEdepends on thevalue

of 8. In practice, estimated standard errors areoften obtained by evaluating Equation 26

with the fJ thatcorresponds to an examinee's x. Their squares, estimated errorvariances,

maybe denoted by a;. Large-sample properties offerno guarantee of distributional

properties of fJ when n is small, however, andeven80 items canbe "small"in unfavorable

circumstances:

• The likelihood functions under theone-, two-, and three-parameter logistic IRT

models have no finite maxima ifall theresponsesarecorrect or all are incorrect
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• The likelihood functions underthe three-parameter models haveno finite maxima

for many response patterns withfew correct responses, in comparison with the sum

of the lower-asymptote itemparameters.

• Evenwhenfinite maxima existunder the three-parameter model, likelihood

functions can be decidely non-normal-often skewed right, sometimes multimodal

(Yen, Burkett, and Sykes, 1991).

• Evenwhen likelihoods areroughly normal, thevalueprovided byEquation 26 may

not be a goodapproximation of the inverse of the sampling variance of 8.

As in CIT, Bayesian IRTestimates of 8 areobtained via Bayestheorem as

measures of center tendency in the posteriordistribution, namely p(8Ix) 0<: l(~) p(8).

BockandMislevy (1982) outlined numerical approximations for Bayes meanestimation in

the contextofIRT. Onecalculates the values of l(~) and p(8) at each pointalonga grid,

takesthe products at each point, andrescales the results to sumto one. Thisprocedure

yieldsa discrete approximation of the (possibly quitenon-normal) posterior p(fh). Its

meanand variance areobtained byformulas for weighted means andvariances, withthe

pointsin the gridserving as observations and theirrespective posterior probabilities as

weights. Theresulting Bayesmean estimates andposterior variances, 6and (j~, can be

approximated as accurately as desired by spacing the gridpoints closely enough, and the

circumstances described previously thatplague maximum likelihood estimation present no

suchproblems. The relevant formulas are shown below, with the gridpointsdenoted em,
for me l, ...,M:

and

p(emlx) = l(xlem)p(emY~l(Xle8)p(e8)'

6= L',emP(emlx),
1ft

(j~ = L',(em- 6)2p(em1li).
m

(27)

(28)

(29)

Ifp(8) werenormally distributed, as in Equation 1, andifan asymptotic normal

approximation couldbeobtained for (} viaEquation 25, an examinee's Bayesian mean
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estimate andposterior variance couldbe approximated byrevising Equations 7 through 9 as

follows:

(30)

with

-2 (-2 _2)-1
(1% "'" (1 + (1%

(31)

(32)

and

(33)

The preceeding formulas apply as approximations for those examinees with

response patterns yielding finite values for 8 andO;. Werethis thecase forall response

patterns in a data set,onecouldcalculate theaverage errorvariance, and thenapply the

formulas in the CIT sections to approximate population and subpopulation parameters.

For examinees infinite MLEs, however, Equations 30 through 33 cannotbeapplied.

Because Bayesian estimates canbe obtained for all patterns, however, it maybeuseful to

use themas the basis for approximating for thepopulation mean andvariance. To motivate

the approximations, direct maximum likelihood estimation of population parameters-that

is, bypassing the stepof estimating individuals' es-is first reviewed.

Estimates for Population Parameters

The expression X=(Xl,•••,XN) maybeused to denote the response vectorsfrom a

sampleof N examinees. If 8-p( 61a), where a is thepossibly vector-valued parameter of

thedistribution, themaximum likelihood estimate of a is obtained by maximizing the

marginal likelihood function

l(Xla) =IIIp(x jI8)p(8Ia)d8.

i

(34)
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Oneobtainsthe maximum by setting to zerothefirst derivatives of thenatural logarithm of

Equation 34 withrespect to eachof theelements of a , and thenfinding the values that

solve theseresulting likelihood equations (Mislevy, 1984). Hp(6\a) is the univariate

normal density, for example, then a=(p.,cr). Whether or not normality is assumed for the

8 distribution, the maximum likelihood estimates of thepopulation meanandvariance can

be written in termsof the posterior means andvariances of the individual examinees:

p, =LE( 81xj ,a)
j

and

=Lli;
i (35)

(36)

That is, the MLEof J.l is themeanof the Bayesian estimates of theexaminees, and the MLE

of cr is the sumof theposterior variances and the variance of the posterior means­

providedthat theywere calculated with thecorrectmeanandvariance at thestart. The

results specialize to Equations 12and 14in thecaseof CIT. Mislevy (1984) shows how

this property of "self-consistency" lies at the heartof estimating a bymeansof Dempster,

Laird, and Rubin's (1977) EM algorithm.

Approximations Based on Bayesian Estimates

One can begin with an provisional approximation for p(8), which may, but need

not be, normal. Initial values for the meanandvariance maybe denoted by J.l* and a *2 •

An improved approximation of J.l and u2 is obtained bymodifying theCIT correction

formulas as follows:

1. ObtainBayesmean estimates andposterior variances, 8i and s; i=I,... ,N, for all

examinees.

2. Calculate M andSJ., the sample meanandvariance of the 8i s.

3. Calculate theaverage of the individual examinees' posterior variances:
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-2 ~ 1 ",,-2
0" =N z:a, .

j (37)

4. Calculate a psuedo-average errorvariance, analogous to 0: in the CIT solution:

( 2 )-10:2 = a- + 0"*-2 •

5. Calculate a psuedo-average reliability coefficient:

(38)

6. Apply Equations 20 and21 toobtain improved approximations of Jl and o".

Analogous formulas can be usedtoapproximate subpopulation means and

variances when a common mean andvariance wasusedto generate theoriginal set

of estimates for individuals.

A Numerical Illustration

Thisexample is based on theresponses of 325students to a 19-item test. The items

wereopen-ended, and the two-parameter logistic model wasfit to thedata with Mislevy

andBock's (1983) BILOG program. The scale wasset so that themeanandvariance of

the sample were 0 and 1respectively. Theapproximation formulas of thepreceeding

section wereemployed, starting fromvalues forJl* of -1,0, and 1,crossedwithvalues

for 0"*2 of .25, 1, and4. Fromthe resulting improved estimates ineachcombination, a

second approximating stepwasthencarried out. Theresults are shown in Figure1.

[Figure 1about here]

Eachpanelin Figure 1contains thefollowing values:

• Provisional estimates at thestartof an approximation cycle, Jl* and 0"*2. With

these, Bayesian posterior means andvariances were calculated forall examinees

usingBILOG.

• Intermediate calculations M, Sl, p*, and ao: 2, which are functions of Jl* and cr:2

andtheestimates of provisional posterior means andvariances for individual

examinees based on Jl* and ao: 2
•
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Theresulting updated estimates it and fr.

Thecenterpanel starts from, andreturns to, theMLEvalues of 0 and1. Thepanels

around theperimeter correspond to initial values forJlof -1,0, or 1,and for initial values

for a *2of .25, 1,or 4. The resulting improved estimates wereused in tum for a second

adjustment cycle, summaries of which appear in thepanel closernextto thecenter.

Although this example is meant to be illustrative ratherthancomprehensive, some

tentative observations canbe made from theresults. In eachcase,a single adjustment step

produced an accurate estimate of themean. Even from theinitial approximations farthest

from thecorrect value, a single step would have been sufficient Theadjustments also

improved theestimates of thepopulation variance in eachcase,butnot by as much

(although it maybe noted that theresults aregiven in terms of variances ratherthan

standard deviations; standard deviations areoffbyonlyabout5-percent). Unless initial

approximations arefairly accurate, it would appear prudent tocarryout at leasttwoadjust

stepsin order toobtain a satisfactory approximation of thevariance.
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