
P e r g a m o n
Computers Math. Applic. Vol. 30, No. 10, pp. 55-77, 1995

Copyright(~)1995 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0898-1221/95 $9.50 + 0.00
0898-1221(95)00156-5

Bayes ian E s t i m a t i o n and the K a l m a n Fi l ter

A. L. BARKER
Computer Science Department and Institute for Parallel Computation

University of Virginia

Charlottesville, VA 22903, U.S.A.

alb2k©virginia, edu

D. E. BROWN
Department of Systems Engineering and Institute for Parallel Computation

University of Virginia

Charlottesville, VA 22903, U.S.A.

deb©virginia, edu

W. N. MARTIN
Computer Science Department and Institute for Parallel Computation

University of Virginia

Charlottesville, VA 22903, U.S.A.

martin©virginia, edu

(Received December 1994; accepted January I995)

A b s t r a c t - - I n this tutorial article, we give a Bayesian derivation of a basic state estimation re-
sult for discrete-time Markov process models with independent process and measurement noise and
measurements not affecting the state. We then list some properties of Gaussian random vectors
and show how the Kalman filtering algorithm follows from the general state estimation result and a
linear-Gaussian model definition. We give some illustrative examples including a probabilistic Turing
machine, dynamic classification, and tracking a moving object.

K e y w o r d s - - K a l m a n filter, Bayesian statistics, Tracking, Markov models, Dyanamic classification,
Turing machine.

1. I N T R O D U C T I O N

The goal of this paper is to provide a relatively self-contained derivation of some Bayesian esti-

mat ion results leading to the Kalman filter, with emphasis on conceptual simplicity. The results

we present are really just a repackaging of s tandard results in opt imal es t imat ion theory and

Bayesian analysis, following mainly from references [1-4]. We hope, though, t ha t this paper

will provide useful results which can be put to immediate practical use. We adopt a Bayesian

approach because it lends itself to a straightforward, intuitive derivation.

The usual Bayesian derivation proceeds by first generat ing a posterior density from the prior

densi ty and current measurement , and then updat ing this posterior density to be the prior density

for the next t ime step. This process is then repeated sequentially for all measurements . In this

paper, we consider the problem as a batch est imation problem, where we are given all the da ta

at once. From this batch estimate, the recursive algori thm follows from the ordering of the

computa t ions by which the mathemat ica l expression is evaluated. We also encapsulate some of

the algebraic manipulat ions into a theorem on mult iplying Gaussian densities.

This research was sponsored in part by the Jet Propulsion Laboratory under Grant Number 95772. Thanks to
many people on USENET for helpful references.

55

56 A.L. BARKER et al.

We have tried to write out enough steps in the derivations that each equation follows easily

from the previous ones. Some results are stated without proof, though, and we have sacrificed

some formality and generality for the sake of clarity. In Section 2, we formally define the problem

for general densities. In Section 3, we derive an expression for the desired solution in terms of the

known densities. In Section 4, we give some theorems on Ganssian random vectors and densities.

In Section 5, we give a linear, Gaussian model and use the results in Sections 3 and 4 to derive

the Kalman filtering algorithm, which efficiently solves the problem in this case. In Section 6,

we give some examples. The general progression is from abstract to more concrete; some readers

may wish to skim the first few sections on a first reading and concentrate on the examples,

particularly Example 3. The notes at the end of each section provide additional information but

are not needed to follow the main text except as indicated.

2. T H E P R O B L E M

First a bit of notation. We will write xk ~ x(tk); that is, the discrete subscript k indexes a

real-valued variable tk which is the argument to x. These real-valued variables can take on any

values and in particular need not be evenly spaced. We assume the association is ordered so that

t~ < tj iff i < j . We refer to these variables as t ime instances, though in many applications these

variables do not refer to time. We write the tilde symbol above random variables, and take the

variable name without the tilde to refer to a member of the random variable's range. Thus, ~ is a

vector random variable, an observation (or value, or mathematical ly a realization) of which may

be x. We write p(x) for the density function of random vector ~, and likewise p(x I Y) for this

density conditioned on ~) = y. We assume the density value associated with any observed event

is nonzero. We generally allow random vectors to contain both continuous and discrete random

variables as elements.

We consider system models of the class

Xk+l ~- f (:~k, ~'k, tk, tk+l) , (1)

~k+l = g (~k+l,¢k+~), (2)

where the density p(xo) of random vector x0 and the densities for all members of the vector

random variable families ~k and Ck are assumed to be known a priori. All of these random

variables with known densities are assumed mutually statistically independent. We also assume

tha t from these equations the densities p(xk+l I Xk) and p(zk+l I xk+l) can be computed. We

are given the set Z = ((z l , t l) , . . . , (zn, tn)) of observed values for the random variables 5k at n

known time points. The problem is to determine, for any given future t ime instant tq with q > n,

the posterior density p(xq I Z) for state ~q given the observed da ta Z. The problem is illustrated

in Figure 1.

NOTES:

1. We assume density functions, possibly containing Dirac delta functions, are defined for all

probabili ty distributions we deal with.

2. The random variable families # and q~ in (1) and (2) are discrete-time independent stochastic

processes. The xk form is a discrete-time Markov process because we have the property

p(xk I xo, . . . ,xk-1) :- p(xk I xk-1). This property holds for any past s tate conditioning:

we can eliminate conditioning on all but the most recent state. I t can be shown tha t a

Markov process is also reverse-time Markov: given the state conditioned on any future

states we can eliminate the conditioning on all but the closest future state in time. When

all elements of the state vector ~k are discrete random variables, the term Markov chain is

usually used instead of Markov process.

3. Equation (1) is a motion model, or state transition equation, and is a description, here a

stochastic (or probabilistic) one, of the motion of the state vector with time. Equation (2)

M e a s u r e m e n t s :

States: G--(

Kalman Filter

,>--()-

I

57

T i m e :
I I I I I •

tO t 1 t2 tn tq
Figure 1. Given the measured data Z and the density for initial state xo, calculate the density for
final state Xq.

is a sensor model, or measurement model, and is a description, here also stochastic, of the

information sensors return about the state.

4. Note the generality of the concept of "states" xk in (1). A dependence on any finite number

of previous states can be reduced to Markov dependence using the trick of augmenting the

state vector and "copying states forward" in the state update (1). This is analogous to

reducing a high order differential equation to a system of first order equations.

5. The t ime values in the arguments to f , equation (1), are known values, and we could

generally include vectors of any known values in the arguments to f and g.

6. In our derivations, we really only need to know the densities p(xk+l I xk) and p(zk+l I Xk+l)

rather than (1) and (2) and the random variables involved. Equations (1) and (2) are useful

in modeling physical situations; in some cases, though, it may be simpler to just define these

conditional densities as the model.

7. This problem, with tq >_ t~, is a filtering problem. The problem with tq < tn is a smoothing

problem, which can be handled similarly to the filtering problem.

8. Equation (1) is an iterated function system; such systems have received much recent s tudy

in relation to nonlinear dynamics and chaos theory. See [5,6] for reviews of such systems

from a statistical viewpoint.

3. C A L C U L A T I N G T H E P O S T E R I O R D E N S I T Y

In this section, we derive an expression for the desired posterior density p(Xq I Z) in terms

of the known density functions. We assume the reader is familiar with multivariate joint and

conditional densities, and with relations such as Bayes' rule and p(x, y) = p(x I Y)P(Y) for random

vectors x and y.

The first step we take in deriving our expression for p(Xq I Z) is to write p(Xq I Z) in terms of

the joint density p(xo, . . . , xn, Xq I Z). By definition, p(Xq I Z) is just the marginal

p(Xq I z) = / dX p (xo,..., xq I Z), (3)

where f dX is taken to mean the multiple integral over all space of the variables xo,. • •, Xn. If

any elements in mixed random vector xi are discrete, we may take the integral as a shorthand

for summation with respect to discrete elements and integration with respect to continuous

ones. Alternately, we could consider discrete densities as mixtures of delta functions or write the

integrals as Stieltjes integrals.

Applying Bayes' rule to (3), we get

/ • p(xq l Z) = dX p(Z] xo , . . . ,Xn ,xq)p (X° 'p (~ n'xq), (4)

30:10-/

58 A.L. BARKER et al.

where

]] dx p(z I (5) p(Z)

is the normalizing constant. Now, from equation (2) and the independence of the Ck we can write

p(xq [Z) = c -1 / dX p(zl] x i) . . . p (z n I Xn)p(Xo,'' ' , Xn, Xq), (6)

where we have set c = p(Z).
Since we assume q > n, we can break down the joint density p(xo, . . . , xn, Xq) as

p (xo, . . . , xn, Xq) = p (Xq

= p (Zq

= p (Xq

= p (Xq

= p (xq

xo , . . . , xn)p (xo , . . . , xn)

xn)p(xo,... ,Xn-l,Xn)

~n) p (xn Ixo,..., ~,~-~)p (~o,..., ~n-~)

x,~)p(x,~ I xn-s)p(xo , . . . ,xn-1)

x,~)[i=~P(Xilxi-1)]p(xo),

where we have used the Markov property (see Note 2, Section 1) to eliminate conditioning and

repeatedly applied Bayes' rule to "unroll" p(xo, . . . , xn, Xa). "Plugging in, we get

Finally, on rearranging terms, we obtain the result

c -1 / dXp(xo)[p(x l I xo)p(zl Ix1)] [P(X2 I xl)P(Z2 I x2)] . . . p(Xq I Z)

• ' ' ~ (X n - 1 I Xn-2)P(Zn-1 I Xn-1)] ~9(Xn I Xn-1)P(Zn I Xn)]p(Xq I Xn), (S)

The game now is to evaluate this expression• Notice that the terms dependent on any x~ appear

in sequence, with at most 3 terms in the sequence. These sequences are strictly increasing in

time "left to right" in the equation.

Whether expression (8) can be efficiently evaluated depends strongly on the form of the densities

involved. We would like to find a sequence of evaluation for the integrals such that the result

after each step leaves an expression which can then be efficiently evaluated in the next step, and

so on. In real-time problems, an ordering which follows the time ordering of the states is also

desirable.

Let us consider equation (8) in the case where we take q -- n + l . In this case, we can rewrite (8)

as

"1

• p(zn t xn)p(xn+l I xn) I . (9)

where Z= indicates the data set up to (z,~, tn) and dX(,~-i,o) indicates the integral with respect

to xo, . . . , Xn-1. When written in this form, we can see that the recursive equation

= c-~ 1 [dxa p(xk I Zk-1)p(zk I Xk)p(Xk+l I Xk) (10) p(Xk+l Zk)
J

Kalman Filter 59

holds by plugging in the underlined expression. The underlined density is a recursive "function

call" and the other densities in the r.h.s, were assumed to be known a priori. Using recursive

relations like (10), one can efficiently update a previous estimate whenever new data is received,

without recomputing everything. This is especially important if the integrations are performed

numerically. Note tha t the way (10) is written, the recursion only goes down to p(x2 [Z1) -=

p(x2 [zl) , since Z0 is undefined. In this case it is more convenient to define the recursion in

terms of a pair of mutually recursive equations for p(xk I Zk-1) and p(xk [Zk) (see Note 2).

NOTES:

1. See [7] for a measure-theoretic t reatment of mixed continuous and discrete random vectors.

2. It is often convenient to evaluate (8) using the time-ordered pair of mutual ly recursive

equations given by

Zk) = _/ dxkp(xk+l,Xk [Zk) p(xk+l I

/" dxk P(Xk+l I Xk, Zk)p(xk I Zk)

= / " dxkp(xk+l [xk)p(xk I Zk)
J

and

p(xk I zk)=p(xklZk- l , zk)

o~ p(zk I xk,Zk-1)p(xklZk_l)

= p(zklxk)p(xk I Zk-1),

where we define Zo = 0 and p(xk I 0) = p(xk). The recursive "function calls" are under-

lined. The first equation can be considered a prediction of a future state, and the second

a measurement update or a correction of the prediction when given a new observation or

sensor report. We could alternately have started with these equations and used them to

derive equation (8).

4 . S O M E T H E O R E M S O N G A U S S I A N

R A N D O M V E C T O R S A N D D E N S I T I E S

Before considering the linear-Gaussian model, we first present some theorems related to Gauss-

ian random vectors [8,9]. Then in the following section, we apply these theorems to evaluate the

integrals in equation (8) for the linear-Gaussian model. From this point on, until the examples,

we consider only continuous random variables. First we make some definitions. Let

a be an r x 1 matr ix (column vector),

A be an r x r symmetric, positive definite matrix,

b be an s x 1 matr ix (column vector),

B be an s x s symmetric, positive definite matrix,

Q be an r x s matrix,

x be an s x 1 matr ix (column vector),

be an s x 1 random matrix (column vector).

Define

C -- C(Q,A,B) = (Q'A-1Q + B- l) -1 (11)

= B - BQ' (A + QBQ') -~ QB, (12)

60 A . L . BARKER et al.

and

c - c(Q,a,A,b,B) = C [Q'A-la + B-lb] (13)

= b + CQ'A-I(a - Qb). (14)

Also define the r-dimensional Mahalanobis distance M~ as the quadratic form

Mr(a,A,x) = Mr(x,A,a) = (1) (x - a)!A-l(x - a), (15)

and the Gaussian density function by

Jr(A) = (27r) -~/2 det(A) -1/~, (16)

a~(a, A, x) = C~(x, A, a) = J~(A) e -M'(a'A'x). (17)

Here Gr(a, A, x) is the r-dimensional Gaussian (i.e., normal) density function with mean a and

covariance matrix A.

Using the above definitions, we first give a theorem on adding Mahalanobis distances.

THEOREM 1. Let variables a, A, r, b, B, s, c, C, and Q be defined as nbove. Then

Mr(a, A, Qx) + Ms(b, B, x) = M,(c, C, x) + M, (a, A + QBQ', Qb).

This theorem was taken from [3, Appendix A], and a proof can be found there. The proof is

straightforward, though somewhat tedious, and involves completing the square and applying the

matrix inversion lemma (see Note 1).

The following theorem, illustrating one of the amazing reproducing properties of the Gaussian

density, can be easily proven using Theorem 1 along with the relation

B / det(A) det(B) det (Q'A-1Q + B -1) = det (Q Q + A).

THEOREM 2. Let variables a, A, r, b, B, s, c, C, and Q be defined as above. Then

at(a, A, Qx)as(b, B, x) = as(c, C, x)ar (a, A + QBQ', Qb) .

Note that Theorem 2 can be used to shift the dependence on x from a pair of Gaussians to a

single Gaussian. The theorem is illustrated in Figures 2 and 3 for an r = s = 2 dimensional case

with Q = I. The two Gaussians shown in Figure 2 are the Gaussians in the 1.h.s. of Theorem 2.

Note that they are both Gaussians in variable x = (xl, x2)'. The Gaussian in Figure 3 is their

product, which is again Gaussian in x by the r.h.s, of Theorem 2. The Gaussian in Figure 3 is

not normalized; from Theorem 2 we know its normalizing constant is the reciprocal of another

Gaussian independent of x.

x2 x2

,B
!density

U ,.I.D 0 -0 -~.~ U ,".~ 0

xl xl
Figure 2. Two Gauss ian densi t ies in x = (x l , x2) / space to be mul t ip l ied .

)

)density

We will also need the following result, that linear transformations of Gaussian random vectors

are Gaussian random vectors. See, e.g., [9] for a proof.

Kalman Filter 61

x~

0.003

~.002

likelihood
D01

-5 -2.5 0 2.5 5

xl

Figure 3. Product of the Gaussians is Gaussian (Theorem 2).

THEOREM 3. Let 2, x, b, B and Q be defined as above. Let d be an s x 1 matrix of constants.

Let ~ have density p(x) = G~(b, B, x). Then random vector ~ = ~ + d has density

p(w) = Gs(b + d, B, w) = G~(b, B, w - d),

and random vector ~) = Q2 has density

p(y) = G~ (QD, QBQ' , y).

NOTES:

1. The equivalence between (11) and (12) is known as the matrix inversion lemma. Anothe r

useful formula is

A / = AQ' (Q Q + B) -1 (A_ 1 + Q ,B_ IQ) - 1 Q , B _ I .

2. The t e rm CQ'A -1 in (14) is known as the Kalman gain matrix.

5. T H E L I N E A R - G A U S S I A N C A S E

We now consider a l inear -Gauss ian case of model equat ions (1) and (2), and derive the K a l m a n

filtering a lgor i thm for efficiently comput ing p(Xq I Z) in this case. Firs t we define some variables.

Let

be an r x 1 r andom matr ix (column vector),

be an r x r mat r ix ,

F be an r x u matr ix ,

be an m x 1 r a n d o m mat r ix (column vector),

be an s x 1 r andom mat r ix (column vector),

H be an s x r matr ix ,

be an s x 1 r andom mat r ix (column vector),

Q be an m x m symmetr ic , positive definite matr ix ,

R be an s x s symmetr ic , positive definite matr ix ,

be an r x 1 ma t r ix (column vector),

62 A.L. BARKER et al.

be an r x r matrix,

A be an r x 1 matrix (column vector),

A be an r x r matrix,

where we have left off the subscripting. The variables in the first group occur directly in the

model. Those in the second group are used in the algorithm, and of these only a0 and T0 occur

directly in the model as the known parameters for the density p(xo) of initial state x0.

The linear-Gaussian model we consider is given by

Xk+l ---- ff2k+l,k Xk + Fk+l,k Wk, (18)

Zk+l = Hk+l Xk+t + Vk+l, (19)

where in addition to the assumptions made for equations (1) and (2), we assume p(wk) =

Gm(O, Qk, wk) and p(vk+l) = Gs(O, Rk+l,vk+l). That is, ~k and vk are independent Gauss-

ian random vectors with zero mean and covariance matrices Qk and Rk, respectively. We are

given that p(xo) = Gr(a0, ~0, x0), with a0 a known r x 1 matrix and ~0 a known r x r positive

definite, symmetric matrix; i.e., ~0 is Ganssian with mean a0 and covariance matrix ~0.

Since (18) and (19) have the form of (1) and (2), an expression for the desired result p(Xq I Z)

is given by (8). Therefore, we next compute expressions for p(xk+l I xk) and P(Zk+l I xk+t) to

plug into (8). Using Theorem 3 on (18) and (19), we see

p(Xk+l I zk) = 6r((I)k+l,k Xk, rk+l,kQ r +,,k, Xk+l), (20)

p(zk+l] Xk+l) = Gs(Hk+I Xk+l, Rk+l, zk+l). (21)

We now use (20) and (21), along with Theorem 2, to develop a pair of equations which we will

then use to obtain an algorithm for evaluating p(x e I Z) in the integral expression (8). Using (20)

followed by Theorem 2 we get

dxk Gr(ak, F~k, xk) (Xk+l I Xk) P

= / dXk Gr((Yk, ~k, Xk)Gr((~k+l,k Xk, z +l)

= G~(zk+l, rk+l,kQkr~+l,k + ~k+l,k2~¢~c+~,k, ~k+l,k ak) (22)

- Gr()~k+l, Ak+l, Xk+l) (23)

because the xk term is shifted to a single, normalized Gaussian which integrates to 1. We now

apply (21) followed by Theorem 2 again to get

G~(Ak+l,Ak+l,Xk+l) P (Zk+l l Xk+l)

---- Gr(Ak+l, Ak+l, Xk+l)Gs(Hk+l Xk+l, Rk+l, Zk+l)

(x Gr(c(Hk+l, Zk+l, Rk+l,)~k+l, hk+l), C(Hk+I, Rk+l, Ak+l), Xk+l) (24)

- G~(ak+l, F~k+I, Xk+l), (25)

where functions c and C are defined in equations (12) and (14), and we have dropped the Gaussian

term involving only constants to get proportionality.

Using these results we get an efficient algorithm, known as the Kalman filtering algorithm, for

evaluating p(xq] Z) in the case of the linear-Gaussian model. We apply the above equations

repeatedly in sequence, ending up with the result already normalized. In other words we eval-

uate (8) "left to right," where the previously evaluated part is collapsed into a single Gaussian.

More specifically, start with known density p(xo) = Gr(a0, ~0,x0) and compute Gr()~I,AI,Xl)

using (22). Using this result, compute G,(a l , ~1,xl) using (24), followed by Gr(,k2,A2,x2) us-

ing (22), etc., with the final result being p(Xq I Z) = G~()%+1, A~+I, xq).

Kalman Filter 63

NOTES:

1. Using Note 2 in Section 3, we see p(xk I (z l , t l) , . . . , (z k - l , t k - 1)) = Gr()~k,Ak,Xk) and

p(xk I (z l , t l) , . . . , (zk,tk)) = Gr(ak, Ek,xk). For this reason, computing (22) is often

called the prediction step and computing (24) the measurement update step.

2. The variable lettering in (18) and (19) follows that in [1].

3. Equation (12) is usually preferable to (11) for evaluating C since it uses fewer inverses. Sim-

ilarly (14) is preferable to (13) for computing c. The form of the equations for computing c

and C starting with the Kalman gain matrix, given in [1] and elsewhere, is preferable com-

putationally to the form we have presented. Instead of computing (24) using (12) and (14),

the Kalman gain matrix is first computed as

Kk+l = Ak+lg~+l [gk+,Ak+,H~+l + Rk+l] -1 •

Then it can be shown that

Zk+l = [I - K k + l U k + l] Ak+l

and

(:rk+l ----)~k+l -[- Kk+l [Zk+l -- Hk+l)~k+l].

Note that only one matrix inverse is required, and the matrix to be inverted has the di-

mensions of the measurement vector, not the state vector.

4. Note that matrix (I) in (18) need not be invertible. Also, setting a column of H in (19)

to the zero vector corresponds to an element of the state vector which cannot be directly

observed.

5. Since the time increments tk+l -- tk are known values, the matrices ~k+l,k and Fk+l,k can

contain any functions of these time increments. If the state's motion is assumed to obey

an arbitrary finite order, constant coefficient, linear, homogeneous differential equation

in continuous time, then matrix (I)k+l,k becomes the matrix exponential which solves the

equivalent system of first order equations for xk+l with initial condition Xk.

6. While we have used the time-ordered "left to right" evaluation of the integrals in (8),

Theorem 2 can be used to evaluate the integrals in essentially any order. For example,

if the prior p(xo) were not Ganssian and its product with a Gaussian required numerical

integration, then we could perform the integrals analytically with respect to the Gaussians

and then perform a single numerical integration at the end with respect to x0.

7. If a known r × 1 vector uk is added to the r.h.s, of (18), sometimes called a control term,

the only effect is to shift the mean of the Gaussian in (20). The algorithm changes in that

Ak+l ---- (I)k+l,k ak + uk in (22) and (23).

8. There are a number of variations and extensions of the basic Kalman filter algorithm to

address, among other things, nonlinearities in the motion model and numerical stability.

See [10] for a survey. See also [11] for another Bayesian derivation of the Kalman filter,

and [12] for a least squares approach and many additional references.

6. E X A M P L E S

In this section, we give some examples applying the preceeding results. A general approach for

a practical (as opposed to theoretical) application follows. While we present the approach as a

sequence of steps, the steps are really interdependent.

STEP 1. Determine an appropriate state representation of the problem and define the state

transition function, or motion model, as a discrete-time, deterministic function f . Tha t is, assume

64 A.L. BARKER et al.

all quantities including errors, etc., are known exactly. Similarly, describe the measurement model

as a deterministic function g of the known state.

STEP 2. Replace x0 and all unknown quantities (corresponding to 7r in f and ¢ in g) by random

variables. Write all variables which are functions of random variables, e.g., the Xk and zk for

k > 0, as random variables. In our notation, this step involves simply placing the tilde symbol

above the random quantities.

STEP 3. Define densities for the random variables x0, ~, and ¢ introduced in Step 2.

STEP 4. Make sure the independence assumptions of Section 1 hold. If not, either revise the

models definitions in Step 1, t ry an augmented state vector approach, or use more general results

than those we have presented.

STEP 5. Compute the densities p(xk+l I Xk) and p(Zk+l I Xk+l). This is possible in theory, but

may be difficult in practice. Alternately, we could start with this as the first step and define

these densities as the model.

STEP 6. Gather observed data Z from the system being modeled.

STEP 7. Use equation (8), or an equivalent form, to predict the density for the state &q at

future time tq. If the model has linear-Gaussian form and is of low enough dimension to compute

the necessary matrix inverses, then use the Kalman filter algorithm. Otherwise, develop an

acceptably efficient algorithm for evaluating (8). This can be extremely difficult or impossible if

the model is not chosen with care, and numerical or approximation techniques may be necessary.

STEP 8. Test the model's predictions and, if necessary, refine the model.

We emphasize that equation (8) is an extremely general mathematical result about estimation

for discrete-time Markov systems with independent random disturbances and measurements not

affecting the state. As such it has applications in finance, economics, engineering, the sciences, etc.

The generality of systems having the form of (1) and (2) is illustrated in Example 1, concerning

a Turing machine. This is a somewhat theoretical example. The random variables involved are

purely discrete, thus all integrals are interpreted as sums. Example 2 is a dynamic classification

problem. The state vector in this example is a combination of a discrete classification variable

and continuous variables corresponding to signal values. Example 3 concerns tracking a moving

object, and is worked out in some detail. In this example the model is linear-Gaussian, thus all

random variables are continuous and the Kalman filtering algorithm can be applied.

6.1. E x a m p l e 1: A n I m p e r f e c t l y O b s e r v e d , P r o b a b i l i s t i c T u r i n g Machine

A Turing machine [13,14] is a model of effective computation; no known deterministic compu-

tations have been shown to be noncomputable in principle by a Turing machine. Informally, a

Turing machine can be thought of as a semi-infinite tape of symbols scanned by a tape head. At

time to, the tape contains the initial tape input in the leftmost cells of the tape, and a special

blank symbol in the remaining cells. A move of the Turing machine takes it from time k to time

k + 1 by writing a new character at the position of the tape head and then moving the head left

or right.

More formally, let Q be a finite set of states, and let A = {0, 1, B} be an alphabet of characters.

For our purposes, Turing machine M at time k is characterized by a state qk from a finite set

of possible states Q, an nk dimensional row vector (or string, or array) of characters Tk E A n~

called the tape, and an integer Pk indexing the place of the "tape head" on the tape. For this

example we will use array notation and write Tk[i] for the i th element of the tape, with i _> 0.

We also define ck = Tk ~k] as the character currently being "scanned" by the tape head. We thus

write the Turing machine at time k as the vector Mk = (qk, nk, Tk, Pk)'.

Kalman Filter 65

The initial s tate vector of the Turing machine is given as Mo = (qo, no,To, 0)'. A function

Move takes the machine from time k to t ime k + 1 as Mk+l = Move(Mk). We assume we have

the functions

Moveq : Q x A ~ Q,

MoveT : Q × A --* A,

Movep : Q x A --~ { -1 , 1}.

Then we define the total Move() function as

Move(Mk) = (Moveq(qk, ck), nk + 1, Tk+l, Pk + Movep(pk, ck))',

(26)

(27)

(2s)

(29)

where Tk+l [nk+l] = B, Tk+l [Pk] = MOVeT(qk, Ck), and Tk+ 1 [i] ~-- Tk[i] otherwise. Function Move

is not defined for all machine states Mk, and the machine is said to halt at t ime k if Move(Mk)

is undefined or if Pk+l = --1. Note that the size of the tape increases with each t ime step to give

a constructively infinite tape.

A probabilistic Turing machine [15] can be characterized as a Turing machine where the function

Morea takes an additional, discrete, independent random variable as an argument [16]. This

random variable is restricted to have finite range; i.e., it can have only finitely many possible

values. Thus, for example, in (29) Move a is replaced with Moveq(qk, ck, ~rk), so the next state is

also a random variable, etc. Note that our formulation is slightly different from those in [15,16]. A

nondeterministic Turing machine, in standard computer science terminology, can be characterized

as a Turing machine where Moveq is multiple-valued. The nondeterministic machine essentially

branches and computes the results for all possible q values at each time step. An equivalent

probabilistic Turing machine is a machine which computes all outputs having nonzero probability,

and where each possible Moveq value in the nondeterministic machine is assumed equally likely.

To put the Turing machine into the form of (1), we take xk -= Mk, and xk+l = Move(xk). The

state is essentially the instantaneous description, or ID, of the machine at any given time. With

this information stored in the state vector, no information about previous states is needed to run

the machine forward in time.

We have mapped the Turing machine into states xk of the form (1), but we have not yet defined

the sensor model g of (2). We take the function g to model an external agent 's observation

of a probabilistic Turing machine as it evolves in time. For example, we might have 5k+1 =

xk+l + ¢k+1, with ¢ an appropriately dimensioned vector of independent random variables, so

the observer gets da ta corrupted by additive noise. As another example, the observer may not be

able to read some tape cells at all, but can read all other state information perfectly. This type

of model relates to another characterization of nondeterministic machines, where the machine is

allowed to "guess an input structure" [17].

6.2. E x a m p l e 2, D y n a m i c C la s s i f i ca t i on o f a n I n p u t S igna l

Consider a discrete-time signal s(tk) c R d, k = 0, 1, 2 , For example, s(tk) might be ampli-

tude values or time-localized frequency values taken at discrete times from a person's continuous

speech stream. For simplicity, assume the signal is sampled at constant t ime intervals. Assume

tha t at each time point tk the signal also has associated with it a discrete class value wk, from

a known, finite set of classes 12. In the speech processing example, we will take the class wk to

represent the current word (or phoneme) being spoken. The state representation we define for

this problem is as follows. The state xk is a vector of the previous L signal a t t r ibute vectors s

along with a discrete classification variable; i.e.,

zk = (s(tk)', s (t k - 1) ' , . . . , (30)

Now, we cannot observe the state directly. At each time point tk we measure a vector of

real-valued signal at tr ibutes zk. For example, the vector zk might be noisy measurements taken

66 A.L. BARKER et aL

from a microphone input. The objective is to predict the class Wk at each t ime k > L. If s is

continuous, then these measurement times determine the discrete t ime instants tk at which we

consider the continuous signal s(t). Of course we cannot measure the class value wk directly, even

with noise. Including it in the state representation is a convenient fiction introduced to facilitate

modeling.

Notice that we took the state to include the previous L at t r ibute vectors to allow more realistic

motion models. In the speech context, this means tha t the current word being spoken is modeled

as being a function of the speech at tr ibutes at the previous L measurement times. Thus the

model could take into account a "sentence-like" block of previous speech with large enough L.

The classification variable wk could alternately be defined as the word spoken at a previous t ime

instant, to take information from the succeeding speech into account, or the problem could be

formulated as a smoothing problem.

The function f in (1), or equivalently the density p(xk+l [Xk), is chosen to model the flow

of the state, with random elements taking uncertainties into account. Thus in the speech da ta

example, it is a stochastic speech model. We need to model, or estimate, the joint probabili ty of

S(tk+l) and Wk+l given their values at the previous L t ime instants. Creating this model is one

of the most difficult and important tasks in an effective application. We will not be more specific

in describing f .

The function g in (2), or equivalently the density P(Zk+l I Xk+l), is chosen to model the

errors introduced in the measurement process. In the speech example, we model the signal

t ransformation and noise introduced by the microphone and any other sources, as well as the

fact that we cannot directly observe the class value wk. For concreteness, assume g is of linear-

Gaussian form (19), where H is a matrix having partitioned f o r m (I (dxd) [0 (dx(L-1)d) [0 (dxl))

with superscripts denoting the matrix dimensions. Thus, at t ime k + 1 the d-dimensional mea-

surement Zk+l is the true signal vector s(tk+l) corrupted by additive Gaussian noise. Tha t is,

p(zk+l I xk+l) = p(Zk+l [s(tk+l)) = Gd(s(tk+l), I, zk+l), where we have taken the correlation

matr ix to be the identity matrix.

If we are given a set of data, equation (8) "solves" the problem of finding the posterior density

for the current state given the observed data. Since the class w is a component of the state

vector, we can in principle integrate out the other components to obtain a probabili ty for each

classification at each time step. Of course (8) is really just a start ing point. The models and

estimation algorithms must be chosen so that an acceptably efficient implementation, in terms

of running t ime and accuracy, can be found. Even given a model with an acceptably efficient

implementation, the problem of estimating the parameters of the model remains. In this type of

problem, one typically has a set of training data with known classifications, and the goal is to set

the parameters of the model to maximize the posterior density of the parameter vector given the

training data. Since finding the optimal parameter vector is typically intractable, approximate

algorithms like hill-climbing or annealing are used. See [18] for a tutorial introduction to Markov

models in speech recognition and a discussion of the many practical problems tha t arise.

6.3. E x a m p l e 3: T r a c k i n g a M o v i n g O b j e c t

For this example, we modify our notation slightly. We drop the convention tha t subscripts

are implicit t ime arguments, and instead we write the time arguments explicitly. Thus, we write

x(tk) where before we simply wrote Xk. We use subscripts instead to indicate the elements of

vectors. For example, xi(tk) is the i th component of vector x at t ime tk.

Consider a ball of known mass m thrown at a robot. The goal of the robot is to predict the

position of the ball at t ime tq, perhaps as a subproblem in an a t tempt to catch the ball. Over t ime

the robot receives noisy sensor measurements about the position of the ball. We assume the raw

sensor measurements have been preprocessed into position estimates contaminated with additive

Gaussian noise. This noise is assumed to have a known covariance matr ix at each measurement

time.

Kalman Filter 67

In what follows we first define the state-vector representation of the thrown-ball system. Then

we define the true differential equations describing the motion of the ball. Next, we define

the robot ' s model of the ball 's motion equations-- these equations are not identical to the true

equations of motion. We then solve for the discrete-time form of the robot 's model and include

a noise te rm to help compensate for the fact that the model is incorrect. After defining the

true motion model and the robot 's motion model, we define the true sensor model, and assume

the robot uses the true sensor model as well. The robot 's model corresponds to equation (1)

in the general system, and to equation (18) in the linear-Gaussian system. The sensor model

corresponds to (2) in the general system and (19) in the linear-Ganssian system. Finally, we give

a specific example.

The coordinate system is a fixed, rectangular system with the third coordinate as the vertical

direction. We take the state x(tk) of the system to be the position of the center of mass of the

ball, y(tk) = (Yl (tk), y2(tk), y3(tk))', along with its velocity vector v(tk) = (Vl (tk), v2(tk), ?23 (tk))'.

Thus,

x(tk) - (y(tk)' , ?2(tk)')'

=-- (yl(tk), y2(tk), y3(tk), Vl(tk), v2(tk), v3(tk))' (31)

=-- (Xl(tk), x2(tk), x3(tk), x4(tk), X5(tk), X6(tk))' .

For the purposes of this example, we assume the true motion of the ball is described by Newton's

law as

m a(t) = Force(t) = re(O, O, -g) ' - ~ (vl(t), v2(t), v3(t)) ' , (32)

where the ball experiences a retarding force proportional to its velocity in addition to the force

of gravity. The retarding force might, for example, be due to air resistance. Thus,

. . I

m (91,92, Y3) : m(0 , 0, - -g) ' -- (~ (Yl, Y2, Y3)' (33)

or

92 + aS---A2 = 0 .

m 0

Y3 q- 01~)3 -[- g
m

(34)

Notice tha t the system can be easily decoupled into three independent systems and solved sep-

arately. For the purposes of this example, though, we consider all the equations simultaneously.

Rewriting in terms of the state vector x, defined in (31), we have

xn(t)

 2(t) x (t)

 3(t) = (35)
 4(t) m

 s(t) axe(t)
m

:/:6(t) O~x6(t)
g

m

Now, the robot is assumed to model the thrown-ball system as (35) but with a = 0. Tha t

is, the retarding force is not accounted for in the model. In Figure 4, we show the x2 and x3

components of a ball's t rajectory with a = .5, the true model, as a dashed line. A ball 's t ra jectory

with a = 0, the robot 's assumed model, is the solid line. The initial condition for both cases is

x(to) = (0, 0, 0, 5, 5, 5)' and we take mass m = 1.

height
(x3)

1.2

1

0.8

0.6

0.4

0.2

-0.2

I
. . . . , - , , , , , , _ .

1 2 3 \ 4 5
I
t

68 A.L. BARKER et al.

Figure 4. Trajectory of the ball under two different models.

distance
(x2)

Solving the robot ' s model system for discrete-time and including additive noise in the velocity

transitions to compensate for modeling errors, we obtain

X(tk+l) ---- (I)(tk+l, tk)x(tk) + F(tk+l, tk)w(tk) + u(tk), (36)

where w(tk) is a 3-dimensional error or noise vector. Matrices • and F and vector u will be defined

next. Defining the time increment Atk = t k + l - - t k and writing out the matrices equation (36)

becomes

xl(tk+l) I z2(tk+l)
x 3 (t k + l) =

x4(tk+l)
zb(tk+,)
x6(tk+,)

1 0 0 Atk 0 0

0 1 0 0 Ark 0

0 0 1 0 0 Atk

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

+

o o o1(0 0 0
0 0 0 w~(tk)

Atk 0 0 w2(tk)

0 Atk 0 w3(tk)

0 0 Atk

x,(tk)
x2(tk)
xa(tk)
z4(tk)

(37)

0

0

(Atk)2g
2

0

0

-(Atk)g

We can verify that (36) with W(tk) = 0 solves (35) with a = 0 by differentiating. Notice tha t the

additive noise in the velocity transitions grows linearly larger for longer t ime periods because of

the way F is defined. We have used a control term u(tk) (see Note 7, Section 5) to incorporate

terms due to the constant accelleration. We could alternately have expanded to a 9-dimensional

s tate representation by including three accelleration components in the state.

We now consider the sensor model. The robot receives sensor measurements only about the

position of the ball, with Gaussian errors. Thus, we have

z (tk+l) = H(tk+l)z(tk+,) + r(tk+l), (3S)

Kalman Filter 69

or, writing out the matrices,

(Zl(tk+l)) (1 0 0 0 0 0
z2(tk+l) = 0 1 0 0 0 0
Z3(tk+l) 0 0 1 0 0 0

xl(tk+l)
x2(tk+l)
x3(tk+l)

x4(tk+l)
x5(tk+l)
x6(tk+l)

rl(tk+l))
+ r2(tk+l) •

r3(tk+l)
(39)

Here r is a sensor error term (we have used the letter r instead of v for the error te rm to

avoid conflict with the velocity vector v). Unlike the error terms Wk in the motion model (36),

the rk error terms are not assumed to affect the ball's trajectory; each r k affects only a single

measurement zk. Notice that because of the way H is defined, the robot can only directly sense

the position of the ball, not its velocity, and these measurements are corrupted with noise.

Now tha t we have defined both the robot 's model of the ball's motion and its sensor model as

deterministic processes, we consider the unknown quantities to be random variables. Thus we

define densities for the quantities w(tk), r(tk), and x(to). In terms of the previous notation, we

would now write the tilde symbol above these quantities and all functions of these quantities, but

we will not do this explicitly. We define p(w(tk)) = G3(0,I , w(tk)), p(r(tk)) = G3(0, I/4, r(tk)),
and p(x(to)) = G6(a(to), I, x(to)). We take or(t0) = (0, 0, 0, 5, 5, 5)' to be the true initial condition

as well as the mean of the modeled prior p(x(to)). Notice that with these Gaussian density

assumptions, the robot 's model has linear-Gaussian form. Tha t is, equation (36) corresponds

to (18), and (38) corresponds to (19). Thus, given a data set Z, we can use the Kalman filtering

algorithm to compute the density for the state vector at any future time.

The Kalman filter algorithm allows us to compute a density estimating the state at any future

time, and this estimate is Gaussian. If the robot 's model were identical to the true model then

these est imates would be the true densities for the future states. Since the model is incorrect,

though, they are only approximations. We may want the density for a subset of the state

elements, rather than for the entire state. For example, we may want the density for only

the position coordinates. In this case, because the densities are Gaussian, we do not need to

explicitly integrate out the other components. The estimate for a subset of coordinate positions

is again Gaussian and is obtained by simply eliminating the unwanted coordinate positions and

their corresponding rows and columns in the covariance matrix. This can be seen by applying

Theorem 3 with the matr ix Q (of Theorem 3) chosen to eliminate the unwanted coordinate

positions, leaving the others unchanged.

Assume tha t we observe the system at times tl = 1/8, t2 = 1/3, and t3 = 1, and take to = 0.

We are given the data set Z = {(z(tl) , tl), (z(t2), t2), (z(t3), t3)} sensed from the true t ra jectory

with a = 0.5. Figure 5 is a phase plot of the x5 and x6 components of the true trajectory. Time

is not shown and could be considered to be "coming out of the page." The small circles along the

pa th indicate the bali 's true position at measurement times t l , . . . , t3. According to the sensor

model, a measurement is a sample from a Gaussian with mean at the true position. The larger

gray circles are the 39.3 percent probability ellipses (circles in this case) for the measurements.

The small squares show the actual sampled values, which are the observed measurements (or the

realizations of the 5i).

In Figure 6, we show the x2 and x3 components of the mean for the Kalman filter est imate of

the state. At the end of the first three of these segments, we show the 39.3 percent probabili ty

ellipse around the mean in gray. Actually, though, each point on the curves is a mean value

and has a Gaussian density associated with it. Note that since the probabili ty ellipses do not

depend on the measured data, they remain circular (rather than becoming elliptical) through

time. The true t rajectory is again shown as the dashed curve. Time increases left to right along

each piece of the estimate. The breaks occur whenever a new measurement is received. The

leftmost solid segment is the mean ofp(x(t)) for to _< t < tl. The next solid segment is the mean

70 A.L. BARKER et al.

height
(x3)

2

1.5

1

0.5
~" %%%%%%%

N~, distance

4.5

-1

-1.5
Figure 5. The ball's true path and sensor data measured from it.

height
(x3)

distance
(x2)

. . v

Figure 6. Estimates of the ball's path and the true path.

of p(x(t) [(z (t l) , t l)) for tl _< t < t2, followed by the mean of p(x(t) I (z (t l) , t ,) , (z(t2), t2)) for

t2 <_ t < t3, etc. Only the final solid segment is conditioned on all the data Z. After receiving

all the data the other estimates could be improved, if desired, by formulating the problem as a

smoothing problem (see Note 7, Section 2). Notice that the estimates tend to overshoot the true

trajectory because the model does not take the velocity-dependent retarding force into account.

I m m e d i a t e l y af ter measu remen t s are received the es t ima tes t end to improve.

A P P E N D I X

T H E K A L M A N F I L T E R I N M A T H E M A T I C A

This a p p e n d i x conta ins M a t h e m a t i c a [19] code for genera t ing some of the graphs , as well as

E x a m p l e 3. The code was wr i t t en and typese t using the T E X / M a t h e m a t i c a sys t em [20].

F i r s t we per fo rm some setup.

I I (

<<Statistics c Cont inuousDistribut ions c

Set0ptions [Plot, Frame->True] ;

Kalman Filter 71

$DefaultFont = {"Helvetica",4};

SeedRandom [31454623] ;

dashl = { Dashing[{0.005, 0.005}] };

dash2 = { Dashing[{O.Ol, O.Oi}] };

dash3 = { Dashing[{O.01, 0.01, 0.001, 0.01}] };

solid = { };

)

I J

Now we define the r-dimensional Gaussian density as in (15) to (17).

I 1

(

Mahalanobis [r_, a_,A_,x_] : = (1/2) (x-a). Inverse [A] . (x-a) ;

J[r_,A] := (2 Pi)^(-r/2) Det[A]^(-1/2);

Gaussian[r ,a_,A_,x_] := J[r,A] Exp[-Mahalanobis[r,a,A,x]];

)

[I

This code produces the illustrations of Theorem 2 in Section 4.

[1

(

$DefaultFont =

{"Helvetica", 2};

Print ["Doing combined plot.. "] ;

f igur e 1 =PIot 3D [Evaluate [

Gaussian[2,{-l.5,0},{{4,2},{2,2}},{x,y}]] ,

{x,-6,6}, {y,- 5,5},

AxesLabel -> {"xl ","x2 ","density"},

AxesEdge -> {Automatic, {-I, -i}, Automatic},

PlotRange -> {0, .08},

ViewPoint -> {0,-2,2},

PlotPoints -> 25,

DisplayFunction -> Identity,

ClipFill -> None] ;

f igure2=Plot3D [Evaluate [

Gaussian [2, { i. 5,0}, {{4,-2}, {-2,2}}, {x, y}]],

{x,-6,6}, {y,- 5,5},

AxesLabel -> {"xl ", "x2 ","density"},

AxesEdge -> {Automatic, {-1,-l},Automatic},

PlotRange -> {0, .08},

ViewPoint -> {0,-2,2},

PlotPoints -> 25,

DisplayFunction -> Identity,

ClipFill -> None] ;

figure=Show [GraphicsArray [{figurel, figure2}]] ;

PSTeX [figure, "gaussianPlot"] ;

Print ["Doing product plot.. "] ;

f igure3=Plot 3D [Evaluate [

Gaussian [2, {- 1 .5 ,0} , {{4,2}, {2,2}}, {x, y}]

72 A.L. BARKER et al.

Caussian[2,{l.5,0},{{4,-2},{-2,2}},{x,y}]],

{x,-6,6}, {y,- 5,S},

AxesLabel -> {"xl ","x2 ","likelihood"},

AxesEdge -> {Automatic,{-l,-l},Automatic},

PlotRange -> {0,.003},

ViewPoint - > {0,-2,2},

PlotPoints -> 25,

ClipFill -> None] ;

PSTeX [f igure3, "productPlot"] ;

)

Doing combined plot..

PSTeX::file: Graphics being processed (without prolog) to file

"gaussianPlot.ps".

Doing product plot..

PSTeX::file: Graphics being processed (without prolog) to file

"productPlot.ps".

I J

Now we compute Example 3 in Section 6. The code is a basic loop implementation of the

Kalman filter algorithm. Alternately, we could have defined transformation rules corresponding

to Theorem 2 and had Mathematica evaluate (8) automatically.

We first define the true motion equations of the thrown-ball system and solve for the discrete-

time equations.

I I

(

stateVector[t_] := { xl[t], x2[t], x3[t], x4[t], x5[t], x6[t]

system[t_,alpha_] :=

{ xl'[t] == x4[t],

x2'[t] == x5[t],

x3'[t] =: x6[t],

x4' [t] == -alpha x4[t] / m,

x5' [t] == -alpha x5[t] / m,

x6'[t] == -g + (-alpha x6[t] / m),

x6[O] == i6, x5[O] == i5, x4[O] == i4,

x3[O] == i3, x2[O] == i2, xl[O] == il };

soln[t_,alpha_] : = DSolve [system[t,alpha] , stateVector [t] , t] ;

x[t_,O] = stateVector[t] /. soln[t,O] [[I]];

x[t_,alpha_] = stateVector[t] /. soln[t,alpha] [[i]] ;

Print ["System solution for alpha = 0:"];

Print ["x [t] = ", x[t,O]];

Print ["System solution for alpha > O: "];

Print ["x [t] = ", x[t,a]] ;

)

};

LinearSolve::nosol: Linear equation encountered which has no solution.

Kalman Filter 73

LinearSolve::nosol: Linear equation encountered which has no solution.

System solution for alpha = 0:

2

gt

x[t] = {il + i4 t, i2 + i5 t, i3 + i6 t , i4, i5, i6 - g t}

2

System solution for alpha > O:

i4 m i4 m i5 m i5 m

x[t] = {il + , i2 + ,

a (a t)/m a (a t)/m

aE aE

> i3 +

g m

2 m (i6 + ---)

i6 m g m a g m t i4 i5

. . . . 4 r

a 2 (a t)/m a (a t)/m (a t)/m

a aE E E

g m

- (- - -) +

a

g m

i6 + ---

a

}

(a t) / m

E

I I

Now we generate Figure 4. We plot two position coordinates of the state, x2 and x3, for the two

different models. We take mass m = 1 and and t ime 0 < t < 1. We define the initial condit ion

to be x(to) = (0, O, O, 5, 5, 5)'.

I

(

i l = 0 ; i2=0; i3=0; i4=5; i5=5; i6=5;

g = 9 . 8 ; m=l;

figure=ParametricPlot[

Evaluate [{{x[t,O] [[2]],x[t,O] [[3]]},{x[t,.5] [[2]],x[t,.5] [[3]] }}],

{ t , o , i } ,

PlotRange -> A u t o m a t i c ,

PlotStyle -> { solid, dash2 },

AxesLabel -> {"distance\n(x2)","height\n(x3)"}];

PSTeX[figure, "ballPaths"]

)

PSTeX::file: Graphics being processed (without prolog) to file "ballPaths.ps".

Out [4]= - Graphics-

i J

Next we measure some da ta from the system. First we define the measurement times, along

with some constants. We also define the measurement matr ix H. Then we run the sys tem forward

and "measure" the da ta Z from the true state vector.

CAHI~ 30; IO-F

74 A . L . BARKER et aL

(

g = 9.8; alpha = 0.5; m = 1;

t [0] = 0 ; t [1] = 1 / 8 ; t [2] = 1 / 3 ; t [3] = 1 ;

H = {{i,0,0,0,0,0},

{0 ,1 ,0 ,0 ,0 ,0 } ,

{0 ,0 ,1 ,0 ,0 ,0 } } ;

Do[(

(* g e t

v[k+l]

t [4] =1.1 ;

a random noise vector *)

= { Random[NormalDistribution[O, 1/2]],

Random [NormalDistribut ion [0,1/2]] ,

Random [NormalDistribution [0, i/2]] } ;

(* measure the position coordinates with noise *)

z[k+l] = H . x[t[k+l],O.5] + v[k+l];

) , {k ,O,2}] ;

I I

Now tha t we have measured the da ta from the true system, we define the parameters of the

model system. We define the matrices ~I, and r which appear in the model, as well as the vector u.

We take the definition of H as tha t given previously, the true measurement matrix. Note that

the assumed measurement model is correct.

I]

(

P h i [t l _ , t 0 _] : : {{l,O,O,tl-tO,O,O},

{0, l,O,O,tl-tO,O},

{ o ,o , l ,O ,O , t l - tO } ,

{o ,o ,o , l ,O,O} ,

{o ,o ,o ,o , l ,O} ,

{o ,o ,o ,o ,o ,1 } } ;

Unprotect [Gmmma] ;

G~mma[tl_,tO_] : : { {0 ,0 ,0 } ,

{0 ,0 ,0} ,

{0 ,0 ,0} ,

{ t l - tO, O, 0},

{O,tl-tO,O},

{o ,o , t 1 - to } } ;

u[tl_,tO_] : : { O,

O,

-g (t l - t 0) ^ 2 / 2,

0,

0,

-g (t l - tO)}

I 1

Next we define the means and covariance matrices for the densities of the unknown quantities,

which we assumed to be Gaussian.

Kalman Filter 75

(

sigma [0] ={0, O, O, 5,5,5} ;

Sigma [0] =IdentityMatrix [6] ;

R = IdentityMatrix[3] / 4;

Q = IdentityMatrix[3] ;

)

J

Now we define C and c as in (12) and (14).

]

(

CFun[Q_,A_,B_] := B - B . Transpose [Q] . Inverse [A + Q.B.Transpose[Q]].Q.B;

cFun[Q_,a_,A_,b_,B_] := b + CFun[Q,A,B].Transpose[Q].Inverse[A].(a-Q.b);

)

We now define the Kalman filter relations and loop over the data. After this step the Zk and

Ak matrices and the ak and Ak vectors will have been calculated. In practice we could update

our est imates after each measurement.

(

Do [(

Lambda[k] = Gamma[t[k] , t [k - 1]] Q . Transpose [Gamma [t [k] , t [k - 1]]]

+ Phi [t [k] ,t [k-l]] . Sigma [k-l] . Transpose [Phi [t [k] ,t [k-l]]] ;

Sigma[k] = CFun[H, R, Lambda[k]];

lambda[k] = Phi[t[k],t[k-l]] . sigma[k-l] + u[t[kJ,t[k-l]];

sigma [k] = cFun [H, z [k] , R, lambda [k] , Lambda [k]] ;

) , { k , l , 3 }] ;

Now we plot the est imated final two state coordinates.

(

(* define the prediction from a t_k time to an arbitrary time *)

mean0fPrediction [lowK_, tVar] : =

Phi [tVar,t [lowK]] . sigma [lowK] + u [tVar,t [lowK]] ;

cov0fPrediction[lowK , tVar] :=

G~mma [tVar, t [lowK]]. Q. Transpose [G~mma [tVar, t [lowK]]]

+ Phi [tVar, t [lowK]] . Sigma [lowK] . Transpose [Phi [tVar, t [lowK]]] ;

(* loop and compute each segment of the estimate's mean *)

Do [(

fig [k] = ParametricPlot [Evaluate [Take [meanOfPrediction [k-l, tVar] , {2,3}]] ,

{tVar,t [k-l] ,t [k] },

DisplayFunction -> Identity,

76 A.L. BARKER et aL

AxesLabel -> {"distance\n(x2)", "height\n(x3) "}] ;

covEllipse [k] = Graphics [{GrayLevel[.8], Disk [

Take [meanOfPrediction [k-l, t [k]] , {2,3}],

N [Sqrt [covOfPrediction [k-1, t [k]]

) , { k , l , 4 }] ;

(* plot the true path of the ball *)

truePath = ParametricPlot [

Evaluate [{x [t , . 5] [[2]] ,x[t,.5] [[3]] }],

{ t , 0 , 1 . 1 } ,

PlotRange -> {{-1,6},{-1.5,2.0}},

PlotStyle -> dash2,

AxesLabel -> {"distance\n(x2)","heightkn(x3)"}] ;

(* plot circles along the true path at the measurement times,

(* and covariances of measurement

timePoints = Graphics[{{GrayLevel

Disk [{x [t [1],

Disk[{x[t [2] ,.5] [[2]] ,x

Disk[{x[t [3] ,.5] [[2]] ,x

{GrayLevel [0. I] ,

Disk[{x[t [I] ,.5] [[2]] ,x

Disk[{x[t [2] ,.5] [[2]] ,x

Disk[{x[t [3] ,.5] [[2]] ,x

}] ;

(* plot squares at the measured data points

fillSquare[p_,w] : = Rectangle[{p[[l]]-w,p[

dataZ = Graphics [{

,)

errors centered at these points *)

[0 . 8] ,

.5] [[2]] ,xEt[1] , .5] [[3]] } , 1 / 2] ,

[t [2] ,.5] [[3]] } ,1 /2] ,
[t [3], . 5] [[3]] } , 1/9_] },

[[3,3]]]]] }];

[t [l] , . 5] [[3]] } , .05] ,
[t [2],.5] [[3]] } , .05] ,
[t [3] ,.5] [[3]] } , .05] }

,)

[2]] -w}, {p [[1]] +w,p [[2]] +w}] ;

GrayLevel [0. i] ,

fillSquare [Take [z [1] , -2] , . 05] ,

f illSquare [Take [z [2] , -2] , . 05] ,

f illSquare [Take [z [3], -2],. 05]

}];

(* combine p l o t s t o c r e a t e F igu re 5 *)

measuredFig = S h o w [t r u e P a t h , t i m e P o i n t s , d a t a Z , t r u e P a t h] ;

PSTeX[measuredFig, "measuredData"] ;

(* combine p l o t s t o c r e a t e F i gu re 6 *)

e s t i m a t e F i g = S h o w [t r u e P a t h , c o v E l l i p s e [1] , c o v E l l i p s e [2] , c o v E l l i p s e [3] ,

f i g [1] , f i g [2] , f i g [3] , f i g [4] , t r u e P a t h] ;

PSTeX[estimateFig, "estimatedPaths"]

)

PSTeX::file: Graphics being processed (without prolog) to file

"measuredData.ps".

PSTeX::file: Graphics being processed (without prolog) to file

"estimatedPaths.ps".

Out [1 O] = -Graph ic s -

I I

From Note 3 in Section 5, a more efficient algorithm for computing A, F~, A, and a is as follows.

As a check the code prints the differences between these results and the previously computed

ones (but the output is not shown).

Kalman Filter 77

(

KSigma[0] = Sigma[O] ;

Ksigma[0] = sigma[O] ;

Do [(

(* Lambda and lambda are computed as before *)

Lambda[k] = Gamma[t[k] ,t[k-l]] Q Transpose [G~mma [t [k] ,t[k-l]]]

+ Phi[t[k],t[k-l]] KSigma[k-l] . Transpose[Phi[t[k],t[k-l]]];

lambda[k] = Phi[t[k],t[k-l]] . Ksigma[k-l] + u[t[k],t[k-l]];

(* compute Sigma and sigma using the Kalman gain matrix *)

KalmanGain[k] = Lambda[k] . Transpose[H] Inverse [

H . Lambda[k] Transpose[H] + R] ;

KSigma[k] = (IdentityMatrix[6] -KalmanGain[k] H) . Lambda[k];

Ksigma[k] = lambda[k] + KalmanGain[k] (z[k] - H . lambda[k]);

Print [....] ; Print ["Differences for k=" ,k] ;

Print [MatrixForm[N[Sigma[k]-KSigma[k]]] ," ", N[sigma[k]-Ksigma[k]]] ;

) , { k , 1 , 3 }] ;

l]

R E F E R E N C E S

1. J.S. Meditch, Stochastic Optimal Linear Estimation and Control, McGraw-Hill, (1969).
2. A.E. Bryson, Jr. and Y.-C. Ho, Applied Optimal Control, Ginn and Company, (1969).

3. D.J. Salmond, Tracking in uncertain environments, Technical Report, Royal Aerospace Establishment, Farn-

borough, Hants, U.K., from a Ph.D. Thesis, University of Sussex, (September 1989).

4. J.O. Berger, Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, (1985).

5. L.M. Berliner, Statistics, probability and chaos, Statistical Science 7 (1), 69-122 (1992).

6. S. Chattergee and M.R. Yilmaz, Chaos, fractals and statistics, Statistical Science 7 (1), 49-121 (1992).
7. S. Mori, C.-Y. Chong, E. Tse and R.P. Wishner, Tracking and classifying multiple targets without a priori

identification, IEEE Transactions on Automatic Control AC-31 (5) (1986).
8. K.S. Miller, Multidimensional Gaussian Distributions, Wiley, (1964).

9. R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, Prentice Hall, (1988).

10. C.-B. Chang and J.A. Tabaczynski, Application of state estimation to target tracking, IEEE Transactions

on Automatic Control AC-29 (2) (1984).

11. R.J. Meinhold and N.D. Singpurwalla, Understanding the kalman filter, The American Statistician 37 (2),

123-127 (1983).
12. Y. Bar-Shalom and T.E. Fortmann, Tracking and Data Association, Academic Press, (1988).

13. E. Mendelson, Introduction to Mathematical Logic, Van Nostrand, (1964).

14. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addi-
son-Wesley, (1979).

15. E.S. Santos, Probabilistic Turing machines and computability, Proceedings of the American Mathematical

Society 22, 704-710 (1969).
16. J. Gill, Computational complexity of probabilistic Turing machines, SIAM Journal on Computing 6 (4),

675-695 (1977).
17. M.R. Garey and D.S. Johnson, Computers and Intractability, l~eeman, (1979).
18. L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceed-

ings o] the IEEE T7 (2), 257-285 (1989).
19. S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley, (1991).

20. D. Dill, Interactive TEX/Mathematiea Documents, Technical manual, (February 1994).

