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Definetti’s Theorem for Abstract Finite Exchangeable
Sequences
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We show that a finite collection of exchangeable random variables on an
arbitrary measurable space is a signed mixture of i.i.d. random variables. Two
applications of this idea are examined, one concerning Bayesian consistency,
in which it is established that a sequence of posterior distributions continues
to converge to the true value of a parameter θ under much wider assump-
tions than are ordinarily supposed, the next pertaining to Statistical Physics
where it is demonstrated that the quantum statistics of Fermi-Dirac may be
derived from the statistics of classical (i.e. independent) particles by means
of a signed mixture of multinomial distributions.
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1. INTRODUCTION

The roots of the idea of finite exchangeability of events can be
traced back to the new “Algebra” in Ref. 11 where the game “Rencontre”
(“Matches”) was analyzed (Problem XXXV. and Problem XXXVI.) In the
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Preface de Moivre writes enthusiastically, “In the 35th and 36th Problems
I explain a new sort of Algebra,... I assure the Reader, that the Method I
have followed has a degree of Simplicity, not to say of Generality,. . .”.

Infinite sequences of exchangeable events seem to have first been dis-
cussed by Haag.(25) Not long after, de Finetti(12) independently introduced
exchangeable random variables and proved his famous representation the-
orem for the 2-valued case. More precisely: if X1,X2, . . . , take values in
{0,1} and

IP(X1 =x1,X2 =x2, . . . ,Xn =xn)= IP(X1 =xπ(1),X2 =xπ(2), . . . ,Xn =xπ(n))

holds for all n ∈ IN, x1, . . . , xn ∈ {0,1}, and all finite permutations π of
{1,2, . . . , n}, then for some measure µ on [0,1]

IP(X1 =x1,X2 =x2, . . .Xn =xn)=
∫ 1

0
p

∑
xi (1−p)n−∑

xi dµ(p).

In words, X1,X2, . . . , are conditionally i.i.d. given the random variable p,
which is distributed according to the measure µ. The success and impact
of exchangeable random variables is well documented. Recently Dawid(10)

wrote, “Perhaps the greatest and most original success of de Finetti’s
methodological program is his theory of exchangeability (Ref. 13).”

The theorem has been extended and generalized in various directions.
De Finetti himself showed that his representation held for real-valued ran-
dom variables.(13) Many years later Dynkin(21) replaced IR with more gen-
eral spaces that are in some sense separable, and Hewitt and Savage(26)

soon after extended the result to compact Hausdorff spaces, from which it
can readily be extended to, for example, Polish or locally compact spaces.
The theorem does not hold without some topological assumptions, how-
ever, as was shown by Dubins and Freedman.(20)

It is well known that de Finetti’s theorem also does not hold in gen-
eral for finite sequences of exchangeable random variables; for an easy
example showing failure in case n = 2 (see Refs. 16, 17 or 34). It is not
difficult to see the trouble: suppose that X1,X2, . . . ,XN are conditionally
i.i.d. given some random variable θ which is distributed according to some
probability measure ν. Then for 1� i, j �N ,

IEXiXj = IEX1X2 (by exchangeability)

= IEν{IE[X1X2|θ ]}
= IEν{IE[X1|θ ] IE[X2|θ ]} (conditional independence)

= IEν{ (IE[X1|θ ])2} (conditionally identically dist’d).
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And of course IEXi = IEν{IE[X1|θ ]}= IEXj , so that

Cov(Xi,Xj ) = IEν{ (IE[X1|θ ])2}− (IEν{IE[X1|θ ]})2

= Varν(IE[X1|θ ])

� 0.

This gives immediately the familiar fact that the classical de Finetti
representation works only for sequences that are nonnegatively correlated,
and instances where this condition fails are often encountered in practice;
take, for example, hypergeometric sequences.

In response to this problem there have been several versions and mod-
ifications of the theorem developed for the finite case. Kendall(29) (also
Ref. 14) showed that every finite system of exchangeable events is equiva-
lent to a random sampling scheme without replacement, where the number
of items in the sampling has an arbitrary distribution. Diaconis(16) and
Diaconis and Freedman(17) used this to find total variation distances to
the closest mixture of i.i.d. random variables, (which turns out to imply
de Finetti’s theorem in the limit). Gnedin(24) explored conditions on the
density of a finite exchangeable sequence and found a criterion for extend-
ability to an infinite sequence. Several other aspects of finite exchangeabil-
ity are in Refs. 1, 18, 19, 30, 35 give useful surveys of exchangeability (see
also Ref. 33).

The present paper reexamines the failure in the finite case of de Finetti’s
theorem and in the process reveals that while for infinite exchangeable
sequences the classical (that is, nonnegative) mixtures of i.i.d. random vari-
ables are sufficient, with some finite sequences, we need to consider an
extended notion of “mixture” to retain de Finetti’s convenient representa-
tion. In particular, we have the

Theorem 1.1. Let (S,B) be an abstract measurable space and write
S∗ for the set of probability measures on (S,B). Endow S∗ with the small-
est σ -field B∗ making p �→p(A) measurable for all A∈B. If p ∈S∗, then
pn is the product measure on (Sn,Bn).

If IP is an exchangeable probability on (Sn,Bn) then there exists a
signed measure ν of bounded variation such that

IP(A)=
∫

S∗
pn(A)dν(p) for all A∈Bn.

Further, ν satisfies ν(S∗)=1.

It is noted that in the book by Dellacherie and Meyer(15) there is
presented a sketch of how a proof of this result would proceed (credited
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to P. Cartier) in the more restrictive scenario of an exchangeable law on
IRn. Their treatment is concise, and they remark, “. . .we shall not give any
details, since for us this result is a luxury, which we shall not use.”

Some years later, it appears that Jaynes(27) independently discovered
this theorem in the case where the random variables take only the val-
ues {0,1}. In that essay he alludes to the extension of the theorem to the
abstract case, saying, “. . .a more powerful and abstract approach, which
does not require us to go into all that detail, was discovered by Dr. Eric
Mjolsness while he was a student of [mine]. We hope that, with its pub-
lication, the useful results of this representation will become more readily
obtainable. . .”. Alas, to the knowledge of the present authors that publi-
cation never appeared.

In any event, this research is distinct from the above papers in a
number of ways. First, this result holds for an arbitrary measurable space
without any topological assumptions. As we have stated, Jaynes proved it
for {0,1}, while Dellacherie and Meyer’s argument(15) works for real-val-
ued random variables. The great generality of this paper is afforded in
part because, in contrast to Ref. 20, one deals with finite sequences which
avoids some of the pathologies that arise with infinite product spaces and
limits, and it is also due in part to clever devices used by Diaconis and
Freedman.(17)

Second, the method of proof of the representation is of a differ-
ent character and may have some independent interest. For example, de
Finetti(14) shows that finite exchangeable sequences are mixtures of hyper-
geometric processes, and then takes a weak limit as the sample size
increases without bound. For us, there is no limit whatever; we have only
finitely many exchangeable random variables to use. Similarly, Kendall(29)

used the (Reversed) Martingale Convergence Theorem combined with the
hypergeometric mixture representation to show the existence of a sigma
algebra conditional on which X1,X2, . . . , are i.i.d., again a limiting argu-
ment. Hewitt and Savage(26) start the analysis with an infinite sequence
and derive its mixture representation; we can get no help from there. And
while the reasoning in Ref. 27 applies to finite sequences, nevertheless
his proof uses Bernstein and Legendre polynomials to find a continuous
mixture. Ours instead manipulates discrete sums of urn measures in the
spirit of Refs. 16 and 17. The argument in Ref. 15 is more of an alge-
braic approach, in which they compare coefficients in certain expansions
of point masses. Their idea easily generalizes to IRn, however, the method
presented here is perhaps more natural, since it capitalizes on the intuition
provided by the urn process analogy.

Third, we present two applications of the idea of finite exchangeabil-
ity, that is, results that specifically use the signed mixture representation
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to provide insight in the areas of Bayesian theory and Statistical Physics,
both of which seem to be new.

And lastly, the conclusion of this paper usefully complements what
is currently known regarding bounds for abstract finite exchangeable
sequences. Indeed, Diaconis and Freedman,(17) and Freedman(23) showed
that for a finite exchangeable real-valued sequence of length k that can be
embedded in a sequence of length N � k, a classical mixture of an i.i.d.
sequence is at most 2(1 − Nk/N

k) away (in terms of total variation dis-
tance), where Nk =N(N −1) . . . (N −k +1). This bound is sharp.

Now, suppose we have an exchangeable sequence that is only slightly
negatively correlated, say ρ =−0.01. Then it is easy to see (in Refs. 30 and
34, for example) that N can be at most 100. One can see the reason why
by considering exchangeable X1,X2, . . . ,XN with X1 having finite nonzero
variance σ 2 and correlation coefficient with X2 being ρ. Then the variance
of

∑N
i=1 Xi is

N∑
i=1

σ 2 +
∑
i �=j

ρσ 2 =Nσ 2[1+ (N −1)ρ]

and since the above quantity is positive it follows

ρ >−(N −1)−1

or in other words, the integer N is at most 100.
The bound 2(1−100k/100k) monotonically increases as a function of

k, and by the time k=12, it has already passed the value 1, the maximum
total variation distance between any two distributions being of course 2.
From a practical standpoint this means that for even moderately sized
samples, the present bound gives little insight. It is completely unclear how
close the closest classical mixture is, and the situation only worsens as
the variables become more correlated. Again, with an infinite sequence the
above correlation inequality would hold for all N � 1, and in such a case
ρ would therefore be nonnegative.

This paper guarantees an exact representation, for any finite k, and
regardless of the underlying correlation structure. In an application to
Bayesian theory, we show that by allowing the mixture to stand in for a
Prior distribution one can formally justify common practical procedures;
in addition, the resulting Posteriors continue to converge to degenerate
distributions under the usual regularity conditions. Thus any nonclassical
behavior in the Posterior would become negligible in the limit.

We present a second application in the area of Statistical Physics. We
demonstrate that the quantum statistics of Fermi-Dirac may be derived
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from the statistics of classical (i.e. independent) particles by means of a
signed mixture of multinomial distributions, or Maxwell–Boltzmann statis-
tics. This work continues in the vein of work by Bach et al.,(4) who per-
formed a similar derivation of Bose–Einstein Statistics using the classical
de Finetti theorem. In many ways the resulting asymmetry for Fermi-Di-
rac statistics is eliminated.

As a final remark, it should be pointed out that the use of signed
measures in probability theory is by no means new; it has claimed even
proponents such as Refs. 5 and 22. The existing literature is voluminous.
For the purposes of this paper those results are not needed, but the inter-
ested reader could begin by consulting the survey by Mückenheim(32).

2. FINITE EXCHANGEABLE SEQUENCES

We start by extending some earlier results of Ref. 16 from the space {0,1}
to the more general {0,1, . . . , n}. Let Pn represent all probabilities on∏n

i=1 Si , where Si ={s0, s1, . . . , sn−1} for each i. Then Pn is a nn −1 dimen-
sional simplex which is naturally embedded in Euclidean nn space.

Pn can be coordinatized by writing p = (p0, p1, . . . , pnn−1) where
pj represents the probability of the outcome j , and j = 0,1, . . . , nn −
1 is thought of as having its n-ary representation, written with n n-ary
digits. Thus if n = 3, then j = 5 refers to the point 012. Let �n(k) =
�n(k0, k1, . . . , kn−1) be the set of j,0 � j < nn, with exactly k0 digits 0,
k1 digits 1, . . . , kn−1 digits n − 1. The number of elements in �n(k) is
n!/(k0!k1! · · · kn−1!).

Let En be the exchangeable measures in Pn; then En is convex as a
subset of Pn.

Lemma 2.1. En has
(2n−1

n

)
extreme points h0,h1, . . . ,h

(2n−1
n )−1, where

hk is the measure putting mass k0!k1! · · · kn−1!/n! at each of the coor-
dinates i ∈ �n(k), and mass 0 elsewhere. Here, the index vector k =
(k0, k1, . . . , kn−1) runs over all possible distinct “urns”, as described in the
proof below.

Each exchangeable probability p∈En has a unique representation as a
mixture of the

(2n−1
n

)
extreme points.

Proof. This is a direct generalization of Ref. 16 results to a higher
dimensional setting. Intuitively, hk is a column vector representing the mea-
sure associated with n drawings without replacement from the unique urn
containing n balls, k0 marked with s0, k1 marked with s1, . . . , kn−1 marked
with sn−1; h stands for “hypergeometric”. Each hk is exchangeable, and
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finding the total number of distinct urns amounts to finding the num-
ber of ways to distribute n indistinguishable balls into n boxes marked
s0, s1, . . . , sn−1, respectively. It is well known that the number of ways to dis-
tribute r balls into m (ordered) boxes is just

(
m+r−1

r

)
. In this case, m= r =n.

Note that when S ={s0, s1}={0,1}, this matches Diaconis(16) result where
En had n+1 extreme points, because in that case m=2 and r =n, so that

(
2+n−1

n

)
=

(
n+1

n

)
=n+1.

Now suppose that hk is a mixture of two other exchangeable mea-
sures, that is hk =pa + (1 −p)b, where a and b are exchangeable and 0 <

p<1. Then a and b put mass zero at every point where hk puts mass zero,
namely, on the complement of �n(k).

By exchangeability, outcomes with the same number of s0’s, s1’s,
. . . , sn−1’s have the same probability. Therefore, the entries of both a and
b must be equal at all coordinates j ∈�n(k). But the sum of the entries is
1 in each vector, so the mass at each j ∈�n(k) must be k0!k1! · · · kn−1!/n!.
This implies a =b, and hk is in fact an extreme point of En.

It is well known that every point of a simplex has a unique represen-
tation as a mixture of extreme points. �

Now we see that En is a
(2n−1

n

)
sided polyhedron. The extreme points

h0,h1, . . . ,h
(2n−1

n )−1 are linearly independent because they are supported

on the disjoint sets �n(j), j = 0, . . . ,
(2n−1

n

)−1. And, a probability p is in
En if and only if it is constant on the sets �n(k).

An interesting subclass is the class Mn ⊂En of i.i.d. probabilities on Pn.
Mn can be parameterized as an nth degree polynomial of n−1 variables:

m = (pn
0 , pn−1

0 p1, . . . , pn−2p
n−1
n−1, p

n
n−1).

In general, for j ∈ �n(k), we have mj = ∏n−1
i=0 p

ki

i , where pi � 0, i =
0, . . . , n−1, and p0 +p1 +· · ·+pn−1 =1. The set Mn is a smooth surface
that twists through En.

The class of mixtures of i.i.d. probabilities (with which de Finetti’s
theorem is associated) is a convex set lying in En. Measures in this set can
be represented in uncountably many ways.

The above has similarly been a many-dimensional analogue of Ref.
16. This next proposition may be viewed as an alternative proof of the
claim for IRn made in Ref. 15.

Proposition 2.1. Each exchangeable probability p∈En can be written
as a (possibly) signed mixture of measures {vi}⊂Mn.
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Proof. Consider the
(2n−1

n

)−1 dimensional hyperplane H of Euclid-
ean nn space that is determined by the linearly independent hypergeo-
metric vectors {hk}, and consider the surface Mn ⊂ H. We choose

(2n−1
n

)
linearly independent vectors {vi : i = 1, . . . ,

(2n−1
n

)} in the uncountable col-
lection Mn to construct a basis for H. Then any p ∈ En ⊂ H can be
written as a (possibly) signed linear combination p=∑

i aivi . The fact that∑
i ai = 1 follows from the observation that vi (

∏n
j=1 Sj ) = 1 for all i, so

that p(
∏n

j=1 Sj )=∑
i ai =1. �

In symmetry to the above we may, as Diaconis(17) did, define the col-
umn vector mk to represent the measure associated with n drawings with
replacement from the urn containing k0 balls marked with s0, k1 marked
with s1, . . . , kn−1 marked with sn−1; m stands for “multinomial”. From
our Proposition 2.1 follows the corollary.

Corollary 2.1. Each extreme point hk can be written as a unique
signed mixture of the multinomial measures {mj}.

Proof. In essence, we have only chosen {mj} as a particular basis for
the hyperplane H. For each k, the measure mk is exchangeable, so it is
(from Lemma 2.1) a unique mixture of the measures {hj}. That is, there
exist nonnegative weights w0,w1, . . . ,w

(2n−1
n )−1 that sum to one satisfying

mk =
(2n−1

n )−1∑
j=0

wj hj.

A moment’s reflection will convince us that the weights are exactly
the ordinary multinomial distribution; in fact, we can display them explic-
itly in the form

mk =
∑

j

(
n

j0 j1 · · · jn−1

)(
k0

n

)j0

· · ·
(

kn−1

n

)jn−1

·hj,

where we interpret 00 =1 and the summation runs over the
(2n−1

n

)
indices j.

Letting wk be the column vector containing the weights associated
with mk we can write in matrix notation M =HW, where

M =
[

m0 m1 · · · m
(2n−1

n )
−1

]
, H =

[
h0 h1 · · · h

(2n−1
n )−1

]
, and

W =
[

w0 w1 · · · w
(2n−1

n )−1

]
.
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Now, the matrix W is invertible; indeed, W is merely the change of
basis matrix from the basis {hj } to the basis {mj }. Linear independence of
the wj ’s follows from the observation that any column vector β satisfying
W β =0 also satisfies M β =H (W β)=0. And the vectors mk, each corre-
sponding to distinct urns k, are easily verified to be linearly independent,
hence β must be 0 and invertibility of W follows.

The required representation is obtained by inverting W to yield H =
M W−1, which gives each extreme point hk to be the mixture of the
vectors {mj}, with the weights being the corresponding k-th column of
W−1. �

Note that in the above proof no claim was made either way regard-
ing the sign of the weights of W−1. The fact of the matter is that except
in the degenerate cases an extreme point hk will be a signed mixture of
the mj’s. For an arbitrary exchangeable measure nothing can in general be
said. The deciding factor is the vector’s location in En; if it happens to fall
in the convex set of mixtures of i.i.d. vectors in Mn, then its representa-
tion will be classical. If it falls too close to the extreme points hk, then its
existing mixture representation is necessarily signed.

Example. Now we go to make precise that which has been men-
tioned above. An illuminating example occurs already in case n=2. Con-
sider sampling without replacement from an urn containing two balls, one
marked 0 and the other marked 1. Here the exchangeable random vari-
ables X1, X2 satisfy

IP(X1 =1,X2 =0)= IP(X1 =0,X2 =1)= 1
2
,

IP(X1 =0,X2 =0)= IP(X1 =1,X2 =1)=0.

Suppose for the moment that there existed a nonnegative mixing measure
µ for this case. Then one would have

0= IP(X1 =1,X2 =1)=
∫ 1

0
p2dµ(p)

implying that µ puts mass 1 at the point p =0, but on the other hand,

0= IP(X1 =0,X2 =0)=
∫ 1

0
(1−p)2dµ(p),

which implies that µ puts mass 1 at the point p = 1, which is impos-
sible. This particular example is the one Diaconis(16) and Diaconis and
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Freedman(17) used to display the inadequacy of de Finetti’s theorem when
applied to certain finite sequences of exchangeable random variables.

Now consider the space P2 of all possible assignments of probabilities
to the four events {X1 = x1,X2 = x2}, xi = 0,1, that is, all probabilities on
{0,1}2.P2 is a three dimensional simplex which may be embedded in IR4.

These probabilities are represented as the set of all points p =
(p0, p1, p2, p3), where pi �0 and p0 +p1 +p2 +p3 =1. Set

p0 = IP(X1 =0,X2 =0),

p1 = IP(X1 =0,X2 =1),

p2 = IP(X1 =1,X2 =0),

p3 = IP(X1 =1,X2 =1).

(Notice that pj represents the probability of the outcome j, j = 0,1,2,3,

written in binary notation.) Here we have the sets

�2(2,0)={0}, �2(1,1)={1,2},

�2(0,2)={3}.
The subclass E2 of exchangeable probabilities is the set of all p where

p1 =p2, that is, the set of all p which are constant on the sets �2(k),k =
(2,0), (1,1), (0,2).E is convex as a subset of P2.

In particular, the hypergeometric vectors (extreme points) hk are given
by

h(2,0) = (1,0,0,0)T , h(1,1) = (0,1/2,1/2,0)T , and

h(0,2) = (0,0,0,1)T .

It is clear that the hk are linearly independent, since they are supported
on the disjoint sets �2(k).

Moving to the class M2, we recognize it as the set of vectors ((1 −
p)2, (1 − p)p,p(1 − p),p2) parametrized in p for the values 0 � p � 1,
where of course p would represent IP(X1 = 1). As special cases we iden-
tify the multinomial vectors

m(2,0) = (1,0,0,0)T , m(1,1) = (1/4,1/4,1/4,1/4)T , and

m(0,2) = (0,0,0,1)T .

Notice that m(2,0) =h(2,0) and m(0,2) =h(0,2); in the degenerate cases it does
not matter whether one samples with or without replacement.
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Now consider the 2-dimensional plane H of Euclidean 4-space that
is spanned by the vectors hk. Since E2 ⊂H, then any exchangeable p may
be written as a (possibly signed) linear combination of the hk’s. For the
exchangeable vectors mk this mixture takes the form

(
m(2,0) m(1,1) m(0,2)

) = (
h(2,0) h(1,1) h(0,2)

) ·W,

where

W =

 1 0 1/4

0 1 1/4
0 0 1/2


 .

Of course, the multinomial mk’s lie also in H, and further span the sub-
space. By a change of basis the hk’s are signed mixtures of the mk’s. In
other words H =MW−1, where

W−1 =

 1 0 −1/2

0 1 −1/2
0 0 2


 .

The two negative entries are evidence that when random variables are neg-
atively correlated we must resort to extended notions of mixtures to retain
de Finetti’s convenient representation. Going back to the counterexample
quoted earlier, from the matrix we may conclude that to resolve the prob-
lem it suffices to allow µ to place mass −1/2 on the points x =0 and x =
1, and place mass 2 on x =1/2.

3. PROOF OF THE THEOREM

Proof. For s = (s0, s1, . . . , sn−1) ∈ Sn, let U(s) be the urn consisting
of n balls, marked s0, s1, . . . , sn−1, respectively. Let HU(s) be the distribu-
tion of n draws made at random without replacement from U(s). Thus,
HU(s) is a probability on (Sn,Bn). The map s �→ HU(s)(A) is measurable
on (Sn,Bn) for each A∈Bn.

We shall see now that exchangeability of IP entails

IP(A)=
∫

Sn

HU(s)(A) IP(ds).

This is true because HU(s) is the measure placing mass 1/n! at the n! points
which are permutations of s = (s0, s1, . . . , sn−1), in which case HU(s)(A) =
1/n!

∑
π 1A(πs), where π is a permutation of the first n positive integers and

the summation extends over the n! such permutations π . Next we calculate
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∫
Sn

HU(s)(A) IP(ds) =
∫

Sn

1
n!

∑
π

1A(πs) IP(ds)

= 1
n!

∑
π

∫
Sn

1A(πs) IP(ds)

= 1
n!

∑
π

∫
Sn

1A(s) IP(ds) (by exchangeability)

= 1
n!

·n! IP(A)

= IP(A).

Furthermore, from our Corollary 2.1 we may write

HU(s)(A)=
∫

S∗
pn(A)µ(s, dp),

where µ(s, ·) is a unique signed measure with finite support on S∗, the
space of probability measures on (S,B), and pn(A) is the probability of
getting an outcome in A when doing an n-length i.i.d. experiment based
on probability measure p ∈S∗. We may think of µ as a signed transition
kernel. Thus, we may write

IP(A) =
∫

Sn

HU(s)(A) IP(ds)

=
∫

Sn

(∫
S∗

pn(A)µ(s, dp)

)
IP(ds)

=
∫

S∗
pn(A)ν(dp),

where ν is the signed measure on S∗ defined by

ν(B)=
∫

Sn

µ(s,B) IP(ds), B ∈B∗.

Of course, ν(S∗)= ∫
Sn µ(s, S∗) IP(ds)= ∫

Sn IP(ds)=1.
There are two remaining details to check. First, µ should have the

right measurability properties, and second, ν should be well defined. It is
clear on the one hand that for each s the function µ(s, ·) is a measure on
S∗. On the other hand, we next show that for each B ∈B∗, the function
µ(·,B) is a measurable function of s. To see why this is the case it is use-
ful to examine the explicit form of the signed measure µ guaranteed by
Corollary 2.1. It is defined by the formula

µ(s,B)=
(2n−1

n )∑
k=1

wkj 1B(p(k)
s ),
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where the (possibly negative) weights wkj are from a j th column of the
matrix W−1 and do not depend on s, and the measures p

(k)
s are elements

of S∗ defined by

p(k)
s (A)=

n−1∑
i=0

c
(k)
i 1A(si) for A∈B.

The numbers c
(k)
i are nonnegative and sum to one.

Since µ(·,B) is a linear combination of indicator functions, it suffices
to show that for fixed k the function 1B(p

(k)
s ) is a measurable function of

s, or in other words, we just need to verify that the set {s :p(k)
s ∈B} is Bn

measurable. Further, we remember that we endowed S∗ with the weak∗σ -
algebra B∗, generated by the class of sets {p : p(A)< t}, as A ranges over
B and t over [0,1]. Thus, it is only necessary to confirm the measurability
for such “nice” sets B ∈B∗. After these simplifications we find

{s :p(k)
s ∈B}=

{
s :

∑
c
(k)
i 1A(si)< t

}

and this set is Bn measurable because the function g(s)=∑
ci1A(si) is a

measurable function of s when A∈B.
Keeping in mind that all real-valued countably additive set functions are

automatically of bounded variation, we finish the proof by verifying that µ is
bounded. First fix s, let W−1 = (wij ) be as in Corollary 2.1 and notice

‖µ(s, ·)‖var =‖
∑

w(k) δp(k)‖var �
∑
i,j

|wij |,

and this last quantity is a finite constant depending only on n. �

4. AN APPLICATION TO BAYESIAN CONSISTENCY

We turn to Bayesian theory, where de Finetti’s Theorem is commonly
applied, for example in Predictive Inference. The standard setup involves
some unknown (random) parameter θ , conditional on which a sequence
of random variables X1,X2, . . . , is distributed according to some family
{f (·|θ) : θ ∈ �} of p.d.f.’s indexed by θ , called the Likelihood family. In
some situations θ may be interpreted as a strong law limit of a sequence
of observations. The Bayesian has subjective beliefs about θ , represented
by a Prior probability distribution π(θ) on �, the parameter space. The
goal is to use the information contained in observations X1,X2, . . . ,Xn to
sequentially update the Prior distribution π(θ) to a Posterior distribution
π(θ |x) via Bayes’ Rule π(θ |x)∝f (x|θ)π(θ).



602 Kerns and Székely

One hopes that with more and more information, one would become
more confident about the location of θ , which would be reflected in the
Posterior π(θ |x) by a concentration as n → ∞ to a degenerate distribu-
tion centered at the true value of θ . It is a celebrated fact that under some
regularity conditions such convergence does take place (see Refs. 6, 31,
and 36). The usual method of proof is to suppose that the Likelihood
may be written as a product of identical factors: f (x|θ) = ∏n

i=1 f (xi |θ).
Then (depending on the particular proof) one takes logarithms, normalizes
accordingly, and appeals to the Strong Law of Large Numbers to show
that the Posterior does indeed concentrate as n→∞ to the true value of
θ .

In this context the problem arises when one goes to use such a state-
ment in practice; one is always confined by Nature to finite samples. As
we have seen in Section 1, under finite exchangeability the Likelihood cer-
tainly may not be written as a product of identical factors without first
supposing that the sequence could be imbedded in an infinite exchangeable
sequence and then applying de Finetti’s theorem, that is, unless one asserts
that the sequence could in principle continue indefinitely. In particular, this
immediately restricts the Bayesian to observations which are nonnegative-
ly correlated, and even then it is not guaranteed – in theory or practice –
that a given sampling process could continue without end.

The theorem presented in this chapter shows that, with the introduc-
tion of an intermediate mixing generalized random variable β one may
consider the sequence conditionally i.i.d. given β and θ without concern
for the correlation or the conceptual difficulties associated with sampling
from a “potentially infinite” exchangeable sequence.

A pointed criticism of this method would be that the resulting Like-
lihood f (x|θ) is decomposed into summands some of which (possibly)
take negative values, and this in turn may seem unpleasant or unnatu-
ral. In fact, it seems as though we have traded one conceptual difficulty
for another! However, it should be realized that the method is merely
a mathematical technique meant to justify and explain what is strongly
desired and commonly observed in practice: namely, the convergence of
the sequence of Posteriors to a distribution degenerate at the true value
of the parameter.

We go to demonstrate this fact, and for simplicity we prove it for the
case when β and θ take at most a countable number of values by modify-
ing an argument in Ref. 7, a more general setting being much more tech-
nically cumbersome (see Ref. 6). Here we suppose that the true parameter
θi∗ is distinguishable from the other values in the sense that the logarith-
mic divergences

∫ |f (x|βk, θi∗)| log |f (x|βk, θi∗)/f (x|βl, θi)|dx are strictly
positive for any k �= l or i �= i∗.
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Proposition 4.1. Let x= (x1, x2, . . . , xn) be exchangeable observations
from a Likelihood family {f (·|θ) : θ ∈�}, where �={θ1, θ2, . . . , } is count-
able. Suppose that θi∗ is the true value of θ and the following regularity
conditions hold:

(1) The Likelihood f (·|βk, θi)>0 w.p.1, for all k, i �1.
(2) The Prior satisfies π(θi∗) > 0 and there exists k∗ such that

g(βk∗ |θi∗) �=0, where g denotes the mass function of β.
(3) The joint mass function g(β, θ) is of bounded variation:∑

k,i |g(βk, θi)|<∞.
(4) For any k �= l or i �= i∗,

∫
f (x|βk, θi∗) log

[
f (x|βk, θi∗)

f (x|βl, θi)

]
dx >0.

Then

lim
n→∞π(θi∗ |x)=1, lim

n→∞π(θi |x)=0, i �= i∗.

Proof. By Bayes’ rule,

π(θi |x)= f (x|θi)π(θi)∑
m f (x|θm)π(θm)

.

But by Theorem 1.1 we may write

f (x|θ)=
∑

k

n∏
j=1

f (xj |βk, θ) ·g(βk|θ),

where f (·|β, θ) � 0 and g(β|θ) is (possibly) signed. The above expression
then becomes

π(θi |x) =
∑

k

∏n
j=1 f (xj |βk, θi) g(βk|θi)π(θi)∑

m

∑
l

∏n
j=1 f (xj |βl, θm)g(βl |θm)π(θm)

=
∑

k

∏n
j=1 f (xj |βk, θi) g(βk, θi)∑

m,l

∏n
j=1 f (xj |βl, θm)g(βl, θm)

.

By condition 2, there exists k∗ such that g(βk∗ , θi∗) �= 0; consequently
after using condition 1 and dividing numerator and denominator by∏n

j=1 f (xj |βk∗ , θi∗) there is obtained

=
∑

k

exp{Sk,i}g(βk, θi)∑
m,l exp{Sl,m}g(βl, θm)

,
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where

Sk,i = log


 n∏

j=1

f (xj |βk, θi)

f (xj |βk∗, θi∗)


=

n∑
j=1

log
f (xj |βk, θi)

f (xj |βk∗ , θi∗)
.

Now, conditional on (βk∗ , θi∗), Sk,i is the sum of n i.i.d. random variables
and therefore

lim
n→∞

1
n
Sk,i =

∫
f (x|βk∗ , θi∗) log

[
f (x|βk, θi)

f (x|βk∗ , θi∗)

]
dx,

by the Strong Law of Large Numbers. Condition 4 implies that the right-
hand side is negative for k �= k∗ or i �= i∗, and it of course equals zero for
k = k∗, i = i∗; therefore as n → ∞, Sk,i → −∞ for k �= k∗ or i �= i∗ and
Sk∗,i∗ → 0. Proposition 4.1 now follows from Condition 3 and the Dom-
inated Convergence Theorem. �

5. AN APPLICATION TO STATISTICAL PHYSICS

Following Johnson et al.,(28) Bach,(3) Constantini and Garibaldi,(8)

consider a physical system comprising a number n of particles of some
kind, for example electrons, protons or photons. Suppose that there are
d states (energy levels) in which each particle can be. If Xi represents
the state of particle i, i = 1, . . . , n, then the overall state of the system is
(X1, . . . ,Xn), and equilibrium is defined as the overall state with the high-
est probability of occurrence.

If all dn arrangements are equally likely the system is said to behave
according to Maxwell–Boltzmann statistics (MB), where “statistics” is
used here in a sense meaningful to physicists. Assumptions on the system
that lead to such behavior are as follows:

(1) The particles are identical in terms of physical properties but dis-
tinguishable in terms of position. This is equivalent to the state-
ment that the particle size is small compared with the average
distance between particles.

(2) There is no theoretical limit on the fraction of the total number
of particles in a given energy state, but the density of particles
is sufficiently low and the temperature sufficiently high that no
more than one particle is likely to be in a given state at the same
time.

However, modern experimentation (particularly at low temperatures)
has yielded two more plausible sets of hypotheses concerning physical
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systems; these result in Bose–Einstein statistics (BE) and Fermi–Dirac
statistics (FD).

For both, one supposes that the particles are indistinguishable (thereby
granting exchangeability). The BE statistics are obtained by retaining the
second assumption that there is no limit on the number of particles that
may occupy a particular energy state. Particles that are observed to obey
BE statistics are called bosons and include photons, alpha particles, and
deuterons.

For FD statistics one stipulates instead that only one particle can
occupy a particular state at a given time (a condition well known as the
Pauli exclusion principle). Particles that obey the principle are called ferm-
ions and include protons, neutrons, and electrons. All known elementary
particles fall into one of the two above categories.

Much work has been done studying these different models and their
consequences for the interpretation of the physical concepts. Constantin-
i et al.(9) proposed a new set of ground hypotheses for deriving the three
models. Bach et al.,(4) using the argument that exchangeable random vari-
ables are appropriate for describing indistinguishable particles, used a mul-
tivariate de Finetti’s theorem to derive BE statistics. Bach(2) explored the
quantum properties of indistinguishable particles, while Bach,(3) Constan-
tini and Garibaldi(8) attempted to base the derivation of the different sta-
tistics on the correlation structure and an introduced relevance quotient.

This section, in the spirit of Ref. 4, shows that the FD of indis-
tinguishable (exchangeable) particles can be derived from the statistics of
classical (i.e. independent) particles by means of Theorem 1.1.

More precisely, we are concerned with the statistical problem of
distributing n particles into d cells. We introduce a probability space
(�,B,µ) and random variables Xi: �→{1, . . . , d}, where the event {Xi =
j} represents the outcome that particle i is in cell j . As remarked above,
there are dn different configurations, which are characterized by the events
{X = j}, where X = (X1, . . . ,Xn) and j∈{1, . . . , d}n.

For a given configuration {X = j}, we define the occupation numbers
nk, k =1, . . . , d, by

nk(j)=
n∑

i=1

δk,ji
.

For the particles of MB statistics we obtain

IPMB(X = j)=d−n j∈{0, . . . , n}d .



606 Kerns and Székely

However, under BE statistics we have

IPBE(X = j)=
(

n

n1(j) · · ·nd(j)

)−1(
n+d −1

n

)−1

j∈{0, . . . , n}d .

For FD statistics, according to the Pauli exclusion principle we must
assume n�d. Also, whenever there exists an occupation number nk larger
than 1 we must set the corresponding probability zero, with the remaining
configurations being equally likely:

IPFD(X = j)=
{

0, if n(j) /∈{0,1}d ,(
d
n

)−1
(n!)−1, if n(j)∈{0,1}d .

It is immediately clear that IPMB, IPBE, and IPFD are exchangeable. It
was shown in Ref. 4 that IPBE is a nonnegative Dirichlet mixture of multi-
nomial distributions, i.e., statistics corresponding to classical, independent
particles. And in Ref. 3, the correlation structures for the models were
found to be

CorrBE/FD(Xi,Xj )=±(d ±1)−1,

where of course CorrMB(Xi,Xj )= 0. The negative correlation in FD sta-
tistics (due to the Pauli exclusion principle) shows that a classical mix-
ture representation will not hold, and also suggests why no such deriva-
tion of them using classical particles has been done until now. However, by
exchangeability we may immediately apply Theorem 1.1 to see that IPFD is
indeed a (necessarily signed) mixture, more precisely a linear combination,
of multinomial distributions.

Two remarks are in order. First, it is unnecessary to repeat all of the
hard work present in the above papers to assert the mixture representa-
tion; it is a natural corollary of our current study. Secondly, an obvious
(and perhaps tempting) question would concern the physical interpretation
of the mixing generalized random variable and its signed distribution. Let
it be clear that no such explanation is made or implied here. In all of the
above mentioned papers there was no attempt to understand the physical
significance of the mixture; throughout the goal was to find some way to
mathematically base the modern, quantum particles on the more familiar
classical particles of Maxwell–Boltzmann.

It seems that in the 1980s an asymmetry was created in the literature
by Bach and his colleagues since such a basis was possible only for BE,
while the status of FD remained unresolved. It is hoped that the theorem
of this paper and the representation of this section may help to restore the
symmetry to this long standing problem.
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